1
|
Diversi F, Dabin J, Mazza E, Rinaldin M, de Castro Reis F, Hackett JA, Heppenstall PA. Papillomavirus-like particles as vectors for ex vivo gene therapy of the skin. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102501. [PMID: 40171279 PMCID: PMC11960642 DOI: 10.1016/j.omtn.2025.102501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 02/28/2025] [Indexed: 04/03/2025]
Abstract
Ex vivo gene delivery to the skin utilizing retroviral vectors has been demonstrated to be a viable clinical option for replacement of defective genes. However, because these vectors integrate their cargo into the genome, safety issues arise when utilizing them to deliver gene-editing nucleases. Here, we explored the use of Papillomavirus, a non-integrating viral vector, for ex vivo skin gene editing, exploiting its natural tropism for basal keratinocytes. We demonstrated that Papillomavirus-like particles (PVLPs) can deliver a variety of DNA constructs encoding fluorophores, Cre recombinase, calcium indicators, Cas9, and short hairpin RNA (shRNA) to keratinocytes, offering advantages over other viral vectors such as adeno-associated virus (AAV) and Lentivirus. We further showed that PVLPs can be used for gene therapy for Olmsted syndrome, a genetic skin disease caused by a gain-of-function mutation in the Trpv3 gene. Specifically, PVLP-delivered SaCas9 and shRNA effectively disrupted the Trpv3 gene or reduced its expression, leading to decreased TRPV3 activity and mitigating the hyperactivity associated with Olmsted syndrome. Skin equivalents generated from PVLP-treated keratinocytes exhibited complete transduction, and PVLP-shRNA treatment significantly reduced hyperkeratosis in skin equivalents from mice bearing the Olmsted syndrome mutation. These findings highlight PVLP as a promising tool for ex vivo skin gene therapy.
Collapse
Affiliation(s)
- Francesco Diversi
- Neuroscience Area, International School for Advanced Studies (SISSA/ISAS), Via Bonomea 265, 34136 Trieste, Italy
| | - Juliette Dabin
- Epigenetics & Neurobiology Unit European Molecular Biology Laboratory (EMBL) Rome, Italy
| | - Elisa Mazza
- Neuroscience Area, International School for Advanced Studies (SISSA/ISAS), Via Bonomea 265, 34136 Trieste, Italy
| | - Mirko Rinaldin
- Neuroscience Area, International School for Advanced Studies (SISSA/ISAS), Via Bonomea 265, 34136 Trieste, Italy
| | - Fernanda de Castro Reis
- Neuroscience Area, International School for Advanced Studies (SISSA/ISAS), Via Bonomea 265, 34136 Trieste, Italy
| | - Jamie A. Hackett
- Epigenetics & Neurobiology Unit European Molecular Biology Laboratory (EMBL) Rome, Italy
| | - Paul A. Heppenstall
- Neuroscience Area, International School for Advanced Studies (SISSA/ISAS), Via Bonomea 265, 34136 Trieste, Italy
| |
Collapse
|
2
|
Ziebarth T, Pape N, Nelson JS, van Alphen FI, Kalia M, Meijer HG, Rose CR, Reiner A. Atypical plume-like events contribute to glutamate accumulation in metabolic stress conditions. iScience 2025; 28:112256. [PMID: 40241754 PMCID: PMC12002667 DOI: 10.1016/j.isci.2025.112256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 12/02/2024] [Accepted: 03/17/2025] [Indexed: 04/18/2025] Open
Abstract
Neural glutamate homeostasis is important for health and disease. Ischemic conditions, like stroke, cause imbalances in glutamate release and uptake due to energy depletion and depolarization. We here used the glutamate sensor SF-iGluSnFR(A184V) to probe how chemical ischemia affects the extracellular glutamate dynamics in slice cultures from mouse cortex. SF-iGluSnFR imaging showed spontaneous glutamate release indicating synchronous network activity, similar to calcium imaging with GCaMP6f. Glutamate imaging further revealed local, atypically large, and long-lasting plume-like release events. Plumes occurred with low frequency, independent of network activity, and persisted in tetrodotoxin (TTX). Blocking glutamate uptake with TFB-TBOA favored plumes, whereas blocking ionotropic glutamate receptors (iGluRs) suppressed plumes. During chemical ischemia plumes became more pronounced, overly abundant and contributed to large-scale glutamate accumulation. Similar plumes were previously observed in cortical spreading depression and migraine models, and they may thus be a more general consequence of glutamate uptake dysfunctions in neurological and neurodegenerative diseases.
Collapse
Affiliation(s)
- Tim Ziebarth
- Department of Biology and Biotechnology, Ruhr University Bochum, Universitätsstrasse 150, 44801 Bochum, Germany
| | - Nils Pape
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Joel S.E. Nelson
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Fleur I.M. van Alphen
- Department of Applied Mathematics, University of Twente, Drienerlolaan 5, 7522 NB Enschede, the Netherlands
| | - Manu Kalia
- Department of Applied Mathematics, University of Twente, Drienerlolaan 5, 7522 NB Enschede, the Netherlands
| | - Hil G.E. Meijer
- Department of Applied Mathematics, University of Twente, Drienerlolaan 5, 7522 NB Enschede, the Netherlands
| | - Christine R. Rose
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Andreas Reiner
- Department of Biology and Biotechnology, Ruhr University Bochum, Universitätsstrasse 150, 44801 Bochum, Germany
| |
Collapse
|
3
|
Jiang M, Ding H, Huang Y, Lau CW, Guo Y, Luo J, Shih YT, Xia Y, Yao X, Chiu JJ, Wang L, Chien S, Huang Y. Endothelial Serotonin Receptor 1B Acts as a Mechanosensor to Drive Atherosclerosis. Circ Res 2025; 136:887-901. [PMID: 40071330 DOI: 10.1161/circresaha.124.325453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 03/02/2025] [Accepted: 03/04/2025] [Indexed: 04/12/2025]
Abstract
BACKGROUND Atherosclerosis is characterized by the accumulation of fatty and fibrotic plaques, which preferentially develop at curvatures and branches along the arterial trees that are exposed to disturbed flow. However, the mechanisms by which endothelial cells sense disturbed flow are still unclear. METHODS The partial carotid ligation mouse model was used to investigate disturbed flow-induced atherogenesis. In vitro experiments were performed using the ibidi system to generate oscillatory shear stress and laminar shear stress. ApoE-/- mice with endothelium-specific knockout or overexpression of 5-HT1B (serotonin receptor 1B) were used to investigate the role of endothelial 5-HT1B in atherosclerosis. RNA sequencing analysis, immunofluorescence analysis, and molecular biological techniques were used to explore the role of 5-HT1B in mechanotransduction and endothelial activation. RESULTS The data showed that human endothelial cells express a high level of 5-HT1B, which is a serotonin receptor subtype. Endothelial 5-HT1B is upregulated in atherosclerotic areas of both humans and rodents and is increased by disturbed flow both in vivo and in vitro. Endothelium-specific overexpression of 5-HT1B exacerbates, whereas knockout or knockdown of 5-HT1B in endothelium inhibits disturbed flow-induced endothelial inflammation and atherogenesis in both male and female ApoE-/- mice. We reveal a previously unknown role of 5-HT1B as a mechanosensor in endothelial cells in response to mechanical stimuli. Upon activation by oscillatory shear stress, 5-HT1B recruits β-arrestin, orchestrates RhoA (ras homolog family member A), and then activates mechanosensitive YAP (yes-associated protein), thereby enhancing endothelial inflammation and monocyte infiltration. Pharmacological blockade of 5-HT1B suppresses endothelial activation and atherogenesis via inhibition of YAP. CONCLUSIONS Taken together, these results uncover that endothelial 5-HT1B acts as a mechanosensor for disturbed flow and contributes to atherogenesis. Inhibition of 5-HT1B could be a promising therapeutic strategy for atherosclerosis.
Collapse
MESH Headings
- Animals
- Humans
- Mechanotransduction, Cellular
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Atherosclerosis/genetics
- Receptor, Serotonin, 5-HT1B/metabolism
- Receptor, Serotonin, 5-HT1B/genetics
- Mice
- Male
- Mice, Knockout, ApoE
- Mice, Inbred C57BL
- Endothelial Cells/metabolism
- Stress, Mechanical
- Cells, Cultured
- Female
- Human Umbilical Vein Endothelial Cells/metabolism
- Apolipoproteins E/genetics
- Mice, Knockout
- Disease Models, Animal
Collapse
Affiliation(s)
- Minchun Jiang
- Department of Endocrinology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China (M.J.)
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China (M.J., H.D., C.W.L., Y.X., X.Y., Yu Huang)
| | - Huanyu Ding
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China (M.J., H.D., C.W.L., Y.X., X.Y., Yu Huang)
| | - Yuhong Huang
- Department of Biomedical Sciences (Yuhong Huang, L.W., Yu Huang), City University of Hong Kong, Hong Kong, China
| | - Chi Wai Lau
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China (M.J., H.D., C.W.L., Y.X., X.Y., Yu Huang)
| | - Ying Guo
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China (Y.G.)
| | - Jianfang Luo
- Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China (J.L.)
| | - Yu-Tsung Shih
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan (Y.-T.S., J.-J.C.)
| | - Yin Xia
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China (M.J., H.D., C.W.L., Y.X., X.Y., Yu Huang)
| | - Xiaoqiang Yao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China (M.J., H.D., C.W.L., Y.X., X.Y., Yu Huang)
| | - Jeng-Jiann Chiu
- College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan (J.-J.C.)
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan (Y.-T.S., J.-J.C.)
| | - Li Wang
- Department of Biomedical Sciences (Yuhong Huang, L.W., Yu Huang), City University of Hong Kong, Hong Kong, China
| | - Shu Chien
- Departments of Bioengineering and Medicine, and Institute of Engineering in Medicine, University of California, San Diego, CA (S.C.)
| | - Yu Huang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China (M.J., H.D., C.W.L., Y.X., X.Y., Yu Huang)
- Department of Biomedical Sciences (Yuhong Huang, L.W., Yu Huang), City University of Hong Kong, Hong Kong, China
- Tung Biomedical Sciences Centre (Yu Huang), City University of Hong Kong, Hong Kong, China
| |
Collapse
|
4
|
Zahm AM, Cranney CW, Gormick AN, Rondem KE, Schmitz B, Himes SR, English JG. ConSeqUMI, an error-free nanopore sequencing pipeline to identify and extract individual nucleic acid molecules from heterogeneous samples. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.03.647077. [PMID: 40236236 PMCID: PMC11996460 DOI: 10.1101/2025.04.03.647077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Nanopore sequencing has revolutionized genetic analysis by offering linkage information across megabase-scale genomes. However, the high intrinsic error rate of nanopore sequencing impedes the analysis of complex heterogeneous samples, such as viruses, bacteria, complex libraries, and edited cell lines. Achieving high accuracy in single-molecule sequence identification would significantly advance the study of diverse genomic populations, where clonal isolation is traditionally employed for complete genomic frequency analysis. Here, we introduce ConSeqUMI, an innovative experimental and analytical pipeline designed to address long-read sequencing error rates using unique molecular indices for precise consensus sequence determination. ConSeqUMI processes nanopore sequencing data without the need for reference sequences, enabling accurate assembly of individual molecular sequences from complex mixtures. We establish robust benchmarking criteria for this platform's performance and demonstrate its utility across diverse experimental contexts, including mixed plasmid pools, recombinant adeno-associated virus genome integrity, and CRISPR/Cas9-induced genomic alterations. Furthermore, ConSeqUMI enables detailed profiling of human pathogenic infections, as shown by our analysis of SARS-CoV-2 spike protein variants, revealing substantial intra-patient genetic heterogeneity. Lastly, we demonstrate how individual clonal isolates can be extracted directly from sequencing libraries at low cost, allowing for post-sequencing identification and validation of observed variants. Our findings highlight the robustness of ConSeqUMI in processing sequencing data from UMI-labeled molecules, offering a critical tool for advancing genomic research. GRAPHICAL ABSTRACT
Collapse
|
5
|
Hoffmann M, Sorensen RJ, Extross A, He Y, Schmidt D. Protein Carrier Adeno-Associated Virus. ACS NANO 2025; 19:12308-12322. [PMID: 40117458 PMCID: PMC11966780 DOI: 10.1021/acsnano.5c01498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 03/23/2025]
Abstract
Adeno-associated virus (AAV) has emerged as a leading platform for gene therapy, enabling the delivery of therapeutic DNA to target cells. However, the potential of AAV to deliver protein payloads has been unexplored. In this study, we engineered a protein carrier AAV (pcAAV) to package and deliver proteins by inserting binding domains on the interior capsid surface. These binding domains mediate the packaging of specific target proteins through interaction with cognate peptides or protein tags during the capsid assembly process. We demonstrate the packaging of multiple proteins, including green fluorescent protein, Streptococcus pyogenes Cas9, Cre recombinase, and the engineered peroxidase APEX2. Packaging efficiency is modulated by the binding domain insertion site, the viral protein isoform containing the binding domain, and the subcellular localization of the target protein. We show that pcAAV can enter cells and deliver the protein payload and that enzymes retain their activity after packaging. Importantly, this protein packaging capability can be translated to multiple AAV serotypes. Our work establishes AAV as a protein delivery vehicle, significantly expanding the utility of this viral vector for biomedical applications.
Collapse
Affiliation(s)
- Mareike
Daniela Hoffmann
- Department
of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Ryan James Sorensen
- Department
of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Ajay Extross
- Department
of Molecular, Cellular, Developmental Biology, and Genetics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Yungui He
- Department
of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Daniel Schmidt
- Department
of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
6
|
Feng X, Xu M, Liu Y, Wang X, Duan Y, Zheng X, Yin W, Cai Y, Zhang W, Jiang Q, Pang J, Li J. The sperm quality in DIO male mice is linked to the NF-κB signaling and Ppp2ca expression in the hypothalamus. iScience 2025; 28:112110. [PMID: 40160428 PMCID: PMC11951025 DOI: 10.1016/j.isci.2025.112110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/24/2024] [Accepted: 02/21/2025] [Indexed: 04/02/2025] Open
Abstract
Recent studies show obesity correlated with reduced sperm quality in males, but the mechanism is unclear. In this study, diet-induced obese (DIO) male mice exhibited disrupted luteinizing hormone (LH) pulse release due to altered function of the hypothalamic-pituitary-gonadal (HPG) axis. This alteration was caused by activation of nuclear factor kappa B (NF-κB) signaling in the hypothalamus, which led to decreased sperm quality. RNA sequencing (RNA-seq) analysis of the hypothalamic arcuate nucleus (ARC) revealed a signaling network involving protein phosphatase 2 catalytic subunit alpha (Ppp2ca). This network disrupted LH pulse secretion by inhibiting Akt kinase (AKT) and cAMP responsive element-binding protein 1 (CREB1) activities, thereby reducing KiSS-1 metastasis-suppressor (Kiss1) expression. Furthermore, overexpression of the Ppp2ca gene in the ARC led to disrupted LH patterns and reduced sperm quality. These findings offer new insights into the molecular mechanisms underlying sperm quality decline in DIO male mice.
Collapse
Affiliation(s)
- Xu Feng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Jiangsu Provincial Key Laboratory of Molecular Targets and Intervention of Metabolic Disease, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Maoxing Xu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Jiangsu Provincial Key Laboratory of Molecular Targets and Intervention of Metabolic Disease, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Ying Liu
- Clinical Center of Reproductive Medicine, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Xiaoyu Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Jiangsu Provincial Key Laboratory of Molecular Targets and Intervention of Metabolic Disease, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yiman Duan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Jiangsu Provincial Key Laboratory of Molecular Targets and Intervention of Metabolic Disease, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xiaoyan Zheng
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Jiangsu Provincial Key Laboratory of Molecular Targets and Intervention of Metabolic Disease, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Wen Yin
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Jiangsu Provincial Key Laboratory of Molecular Targets and Intervention of Metabolic Disease, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yafei Cai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Wei Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Qin Jiang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jing Pang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Jiangsu Provincial Key Laboratory of Molecular Targets and Intervention of Metabolic Disease, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Juxue Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Jiangsu Provincial Key Laboratory of Molecular Targets and Intervention of Metabolic Disease, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, China
| |
Collapse
|
7
|
Porret R, Alcaraz-Serna A, Peter B, Bernier-Latmani J, Cecchin R, Alfageme-Abello O, Ermellino L, Hafezi M, Pace E, du Pré MF, Lana E, Golshayan D, Velin D, Eyquem J, Tang Q, Petrova TV, Coukos G, Irving M, Pot C, Pantaleo G, Sollid LM, Muller YD. T cell receptor precision editing of regulatory T cells for celiac disease. Sci Transl Med 2025; 17:eadr8941. [PMID: 40106579 DOI: 10.1126/scitranslmed.adr8941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 02/11/2025] [Indexed: 03/22/2025]
Abstract
Celiac disease, a gluten-sensitive enteropathy, demonstrates a strong human leukocyte antigen (HLA) association, with more than 90% of patients carrying the HLA-DQ2.5 allotype. No therapy is available for the condition except for a lifelong gluten-free diet. To address this gap, we explored the therapeutic potential of regulatory T cells (Tregs). By orthotopic replacement of T cell receptors (TCRs) through homology-directed repair, we generated gluten-reactive HLA-DQ2.5-restricted CD4+ engineered (e) T effector cells (Teffs) and eTregs and performed in vivo experiments in HLA-DQ2.5 transgenic mice. Of five validated TCRs, TCRs specific for two immunodominant and deamidated gluten epitopes (DQ2.5-glia-α1a and DQ2.5-glia-α2) were selected for further evaluation. CD4+ eTeffs exposed to deamidated gluten through oral gavage colocalized with dendritic and B cells in the Peyer's patches and gut-draining lymph nodes and specifically migrated to the intestine. The suppressive function of human eTregs correlated with high TCR functional activity. eTregs specific for one epitope suppressed the proliferation and gut migration of CD4+ eTeffs specific for the same and the other gluten epitope, demonstrating bystander suppression. The suppression requires an antigen-specific activation of eTregs given that polyclonal Tregs failed to suppress CD4+ eTeffs. These findings highlight the potential of gluten-reactive eTregs as a therapeutic for celiac disease.
Collapse
Affiliation(s)
- Raphaël Porret
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne CH-1005, Switzerland
| | - Ana Alcaraz-Serna
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne CH-1005, Switzerland
| | - Benjamin Peter
- Laboratories of Neuroimmunology, Service of Neurology and Neuroscience Research Center, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne CH-1005, Switzerland
| | - Jeremiah Bernier-Latmani
- Department of Oncology, Lausanne University Hospital and University of Lausanne, 1005 Lausanne, Switzerland
| | - Rebecca Cecchin
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne CH-1005, Switzerland
| | - Oscar Alfageme-Abello
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne CH-1005, Switzerland
| | - Laura Ermellino
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne CH-1005, Switzerland
| | - Morteza Hafezi
- Department of Oncology, Lausanne University Hospital and University of Lausanne, 1005 Lausanne, Switzerland
| | - Eleonora Pace
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne CH-1005, Switzerland
| | - M Fleur du Pré
- Norwegian Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo and Department of Immunology, Oslo University Hospital, Oslo NO-0424, Norway
| | - Erica Lana
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne CH-1005, Switzerland
| | - Dela Golshayan
- Transplantation Center, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne CH-1005, Switzerland
| | - Dominique Velin
- Service of Gastroenterology and Hepatology, Lausanne University Hospital and University of Lausanne, Lausanne CH-1005, Switzerland
| | - Justin Eyquem
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Qizhi Tang
- Diabetes Center, University of California San Francisco, San Francisco, CA 94143, USA
| | - Tatiana V Petrova
- Department of Oncology, Lausanne University Hospital and University of Lausanne, 1005 Lausanne, Switzerland
| | - George Coukos
- Department of Oncology, Lausanne University Hospital and University of Lausanne, 1005 Lausanne, Switzerland
- Ludwig Institute for Cancer Research Lausanne Branch, 1066 Lausanne, Switzerland
| | - Melita Irving
- Department of Oncology, Lausanne University Hospital and University of Lausanne, 1005 Lausanne, Switzerland
- Ludwig Institute for Cancer Research Lausanne Branch, 1066 Lausanne, Switzerland
| | - Caroline Pot
- Laboratories of Neuroimmunology, Service of Neurology and Neuroscience Research Center, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne CH-1005, Switzerland
| | - Giuseppe Pantaleo
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne CH-1005, Switzerland
| | - Ludvig M Sollid
- Norwegian Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo and Department of Immunology, Oslo University Hospital, Oslo NO-0424, Norway
| | - Yannick D Muller
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne CH-1005, Switzerland
- Centre for Human Immunology Lausanne, Lausanne CH-1005, Switzerland
| |
Collapse
|
8
|
Arizono M, Idziak A, Nägerl UV. Live STED imaging of functional neuroanatomy. Nat Protoc 2025:10.1038/s41596-024-01132-6. [PMID: 40087378 DOI: 10.1038/s41596-024-01132-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 12/11/2024] [Indexed: 03/17/2025]
Abstract
In the mammalian brain, a large network of excitable and modulatory cells efficiently processes, analyzes and stores vast amounts of information. The brain's anatomy influences the flow of neural information between neurons and glia, from which all thought, emotion and action arises. Consequently, one of the grand challenges in neuroscience is to uncover the finest structural details of the brain in the context of its overall architecture. Recent developments in microscopy and biosensors have enabled the investigation of brain microstructure and function with unprecedented specificity and resolution, dendritic spines being an exemplary case, which has provided deep insights into neuronal mechanisms of higher brain function, such as learning and memory. As diffraction-limited light microscopy methods cannot resolve the fine details of brain cells (the 'anatomical ground truth'), electron microscopy is used instead to contextualize functional signals. This approach can be quite unsatisfying given the fragility and dynamic nature of the structures under investigation. We have recently developed a method for combining super-resolution stimulated emission depletion microscopy with functional measurements in brain slices, offering nanoscale resolution in functioning brain structures. We describe how to concurrently perform morphological and functional imaging with a confocal STED microscope. Specifically, the procedure guides the user on how to record astrocytic Ca2+ signals at tripartite synapses, outlining a framework for analyzing structure-function relationships of brain cells at nanoscale resolution. The imaging requires 2-3 h and the image analysis between 2 h and 2 d.
Collapse
Affiliation(s)
- Misa Arizono
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, CNRS UMR 5297, Bordeaux, France.
- The Hakubi Center for Advanced Research, Kyoto University, Kyoto, Japan.
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Agata Idziak
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, CNRS UMR 5297, Bordeaux, France
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - U Valentin Nägerl
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, CNRS UMR 5297, Bordeaux, France.
- Department of Anatomy and Cell Biology, University Medical Center, Georg-August-University of Göttingen, Göttingen, Germany.
| |
Collapse
|
9
|
Avilés EC, Wang SK, Patel S, Cordero S, Shi S, Lin L, Kefalov VJ, Goodrich LV, Cepko CL, Xue Y. ERG responses to high-frequency flickers require FAT3 signaling in mouse retinal bipolar cells. J Gen Physiol 2025; 157:e202413642. [PMID: 39903280 PMCID: PMC11793021 DOI: 10.1085/jgp.202413642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/17/2024] [Accepted: 01/07/2025] [Indexed: 02/06/2025] Open
Abstract
Vision is initiated by the reception of light by photoreceptors and subsequent processing via downstream retinal neurons. Proper circuit organization depends on the multifunctional tissue polarity protein FAT3, which is required for amacrine cell connectivity and retinal lamination. Here, we investigated the retinal function of Fat3 mutant mice and found decreases in both electroretinography and perceptual responses to high-frequency flashes. These defects did not correlate with abnormal amacrine cell wiring, pointing instead to a role in bipolar cell subtypes that also express FAT3. The role of FAT3 in the response to high temporal frequency flashes depends upon its ability to transduce an intracellular signal. Mechanistically, FAT3 binds to the synaptic protein PTPσ intracellularly and is required to localize GRIK1 to OFF-cone bipolar cell synapses with cone photoreceptors. These findings expand the repertoire of FAT3's functions and reveal its importance in bipolar cells for high-frequency light response.
Collapse
Affiliation(s)
- Evelyn C. Avilés
- Department of Neurobiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sean K. Wang
- Departments of Genetics and Ophthalmology, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - Sarina Patel
- Department of Neurobiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Sebastian Cordero
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Shuxiang Shi
- Lingang Laboratory, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Lucas Lin
- Departments of Genetics and Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Vladimir J. Kefalov
- Gavin Herbert Eye Institute and Center for Translational Vision Research, University of California, Irvine, Irvine, CA, USA
| | - Lisa V. Goodrich
- Department of Neurobiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Constance L. Cepko
- Departments of Genetics and Ophthalmology, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - Yunlu Xue
- Departments of Genetics and Ophthalmology, Harvard Medical School, Boston, MA, USA
- Lingang Laboratory, Shanghai, China
| |
Collapse
|
10
|
Sahu SU, Castro M, Muldoon JJ, Asija K, Wyman SK, Krishnappa N, de Oñate L, Eyquem J, Nguyen DN, Wilson RC. Peptide-enabled ribonucleoprotein delivery for CRISPR engineering (PERC) in primary human immune cells and hematopoietic stem cells. Nat Protoc 2025:10.1038/s41596-025-01154-8. [PMID: 40032999 DOI: 10.1038/s41596-025-01154-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/10/2024] [Indexed: 03/05/2025]
Abstract
Peptide-enabled ribonucleoprotein delivery for CRISPR engineering (PERC) is a new approach for ex vivo genome editing of primary human cells. PERC uses a single amphiphilic peptide reagent to mediate intracellular delivery of the same pre-formed CRISPR ribonucleoprotein enzymes that are broadly used in research and therapeutics, resulting in high-efficiency editing of stimulated immune cells and cultured hematopoietic stem and progenitor cells (HSPCs). PERC facilitates nuclease-mediated gene knockout, precise transgene knock-in and base editing. The protocol involves mixing the CRISPR ribonucleoprotein enzyme with peptide and then incubating with cultured cells. For efficient transgene knock-in, adeno-associated virus (AAV) homology-directed repair template (HDRT) DNA may be included. In contrast to electroporation, PERC is appealing because it needs no dedicated hardware and has less impact on cell phenotype and viability. Because of the gentle nature of PERC, delivery can be performed multiple times without substantial impact to cell health or phenotype. Editing efficiencies can surpass 90% when using either Cas9 or Cas12a in primary T cells or HSPCs. After 3 h dedicated to reagent preparation, the PERC delivery step can be completed in 1 h, with the associated cell culture steps taking 3-7 d total. Because the protocol calls for only three readily available reagents (protein, RNA and peptide) and does not require dedicated hardware for any step, PERC demands no special expertise and is exceptionally straightforward to adopt. The inherent compatibility of PERC with established cell engineering pipelines makes the protocol appealing for rapid deployment in research and clinical settings.
Collapse
Affiliation(s)
- Srishti U Sahu
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
- California Institute for Quantitative Biosciences at University of California Berkeley, Berkeley, CA, USA
| | - Madalena Castro
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
- California Institute for Quantitative Biosciences at University of California Berkeley, Berkeley, CA, USA
| | - Joseph J Muldoon
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Kunica Asija
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
- California Institute for Quantitative Biosciences at University of California Berkeley, Berkeley, CA, USA
| | - Stacia K Wyman
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA
| | | | - Lorena de Oñate
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - Justin Eyquem
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, University of California San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - David N Nguyen
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Ross C Wilson
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA.
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA.
- California Institute for Quantitative Biosciences at University of California Berkeley, Berkeley, CA, USA.
| |
Collapse
|
11
|
Li J, Oh SI, Liu C, Zhao B. Inhibition of GABARAP or GABARAPL1 prevents aminoglycoside- induced hearing loss. Proc Natl Acad Sci U S A 2025; 122:e2416453122. [PMID: 39928869 PMCID: PMC11848329 DOI: 10.1073/pnas.2416453122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 01/06/2025] [Indexed: 02/12/2025] Open
Abstract
Aminoglycosides (AGs) are highly potent, broad-spectrum antibiotics frequently used as first-line treatments for multiple life-threatening infections. Despite their severe ototoxicity, causing irreversible hearing loss in millions of people annually, no preventive therapy has been approved. We previously reported that GABARAP and several other central autophagy proteins are essential for AG-induced hearing loss. This finding opens avenues for the rational design and development of inhibitors that selectively target proteins in this pathway, thereby mitigating AG ototoxicity. In this study, we generated a mouse model with a targeted deletion of GABARAPL1, a homolog of GABARAP, and another model deficient in both GABARAP and GABARAPL1. We found that normal hearing is unaffected by the depletion of these proteins. Remarkably, both proteins are essential for AG-induced hearing loss, with GABARAP playing a more significant role. To further explore the therapeutic potential, we designed and validated short hairpin RNAs targeting the mouse and human GABARAP gene. By inhibiting GABARAP expression in inner ear hair cells using adeno-associated virus-mediated RNA interference, we successfully prevented AG-induced hair cell death and subsequent hearing loss. Our findings underscore the critical role of GABARAP in AG ototoxicity and highlight its potential as a therapeutic target for preventing AG-induced hearing loss.
Collapse
Affiliation(s)
- Jinan Li
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN46202
| | - Seung-Il Oh
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN46202
| | - Chang Liu
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN46202
| | - Bo Zhao
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN46202
| |
Collapse
|
12
|
Dai L, Zhang P, Niu X, Peng X, Suleiman RB, Zhang G, Wan X. CRISPR knock-in of a chimeric antigen receptor into GAPDH 3'UTR locus generates potent B7H3-specific NK-92MI cells. Cancer Gene Ther 2025; 32:227-239. [PMID: 39833547 DOI: 10.1038/s41417-025-00872-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/17/2024] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
CAR-NK therapy is becoming a promising approach to treat solid tumors. However, the random insertion of the CAR gene and inflexible CAR expression caused by common preparation methods significantly impact its efficacy and safety. Here we successfully established a novel type of CAR-NK cells by integrating CAR sequences into the GAPDH 3'UTR locus of NK-92MI cells (CRISPR-CAR-NK), achieving site-specific integration of the CAR gene and allowing endogenous regulatory components to govern CAR expression. CRISPR-CAR-NK cells had comparable growth capacity but displayed superior anti-tumor activity compared with their lentiviral counterparts. They activated and degranulated more effectively when co-cultured with tumor cells, due to increased expression of activating receptors and decreased expression of inhibitory molecules. They also enhanced the production of Granzyme B and IFN-γ, and more effectively triggered the IFN-γ pathway. Moreover, CRISPR-CAR-NK cells demonstrated distinct properties from conventional CAR-NK concerning metabolic features and signal dependence. Notably, CRISPR-CAR-NK cells exhibited lower metabolic levels without compromising antitumor activity, and their function was less reliant on the PI3K-AKT pathway, implying that the CRISPR-CAR-NK cells have significant potential for enhanced synergy with AKT inhibitors and adaptation to nutrient stress within the tumor microenvironment. These findings provide a novel potential strategy for cancer immunotherapy and an experimental foundation and paradigm for optimizing CAR-NK cells utilizing CRISPR technology, highlighting the potential of CRISPR to advance immunotherapies.
Collapse
Affiliation(s)
- Liujiang Dai
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Pengchao Zhang
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiangyun Niu
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xixia Peng
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Rabiatu Bako Suleiman
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guizhong Zhang
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Xiaochun Wan
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
13
|
Song L, Hasegawa T, Brown N, Bower J, Samulski R, Hirsch M. AAV vector transduction restriction and attenuated toxicity in hESCs via a rationally designed inverted terminal repeat. Nucleic Acids Res 2025; 53:gkaf013. [PMID: 39868534 PMCID: PMC11760972 DOI: 10.1093/nar/gkaf013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 01/02/2025] [Accepted: 01/07/2025] [Indexed: 01/28/2025] Open
Abstract
Adeno-associated virus (AAV) inverted terminal repeats (ITRs) induce p53-dependent apoptosis in human embryonic stem cells (hESCs). To interrogate this phenomenon, a synthetic ITR (SynITR), harboring substitutions in putative p53 binding sites was generated and evaluated for vector production and gene delivery. Replication of SynITR flanked transgenic genome was similar compared to wild type (wt) ITR, with a modest increase in vector titers. Packaged in the AAV2 capsid, wtITR and SynITR vectors demonstrated similar transduction efficiencies of human cells without toxicity. Following AAV2-wtITR vector infection of hESCs, rapid apoptosis was observed as reported. In contrast, infection by AAV2 vectors packaged with SynITRs attenuated the wtITR-induced hESC toxicity. While hESC particle entry and the abundance of double stranded circular episomes was similar for the ITR contexts, reporter expression was inhibited from transduced SynITR genomes. Mechanistically, infection of hESCs induced γH2AX in an ITR-independent manner, however, canonical activation of p53α was uncoupled using AAV-SynITR. Further investigations in hESCs revealed additional novel findings: (i) p53β is uniquely and constitutively active and (ii) AAV vector infection, independent of the ITR sequence, induces activation of p53ψ. The data herein reveal an ITR-dependent AAV vector transduction restriction specific to hESCs and manipulation of the DNA damage response via ITR engineering.
Collapse
Affiliation(s)
- Liujiang Song
- Ophthalmology, University of North Carolina, 130 Mason Farm Rd, Chapel Hill, NC 27517, USA
- Carolina Eye Research Institute, 115 Mason Farm Rd, Chapel Hill, NC 27514, USA
- Gene Therapy Center, University of North Carolina, 104 Manning Dr, Chapel Hill, NC 27514, USA
| | - Tomoko Hasegawa
- Ophthalmology, University of North Carolina, 130 Mason Farm Rd, Chapel Hill, NC 27517, USA
- Carolina Eye Research Institute, 115 Mason Farm Rd, Chapel Hill, NC 27514, USA
- Gene Therapy Center, University of North Carolina, 104 Manning Dr, Chapel Hill, NC 27514, USA
| | - Nolan J Brown
- Gene Therapy Center, University of North Carolina, 104 Manning Dr, Chapel Hill, NC 27514, USA
| | - Jacquelyn J Bower
- Ophthalmology, University of North Carolina, 130 Mason Farm Rd, Chapel Hill, NC 27517, USA
- Carolina Eye Research Institute, 115 Mason Farm Rd, Chapel Hill, NC 27514, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, 101 Manning Dr, Chapel Hill, NC 27514, USA
| | - Richard J Samulski
- Gene Therapy Center, University of North Carolina, 104 Manning Dr, Chapel Hill, NC 27514, USA
- Pharmacology, University of North Carolina, 120 Mason Farm Rd, Chapel Hill, NC 27599, USA
| | - Matthew L Hirsch
- Ophthalmology, University of North Carolina, 130 Mason Farm Rd, Chapel Hill, NC 27517, USA
- Carolina Eye Research Institute, 115 Mason Farm Rd, Chapel Hill, NC 27514, USA
- Gene Therapy Center, University of North Carolina, 104 Manning Dr, Chapel Hill, NC 27514, USA
| |
Collapse
|
14
|
Raghavan R, Friedrich MJ, King I, Chau-Duy-Tam Vo S, Strebinger D, Lash B, Kilian M, Platten M, Macrae RK, Song Y, Nivon L, Zhang F. Rational engineering of minimally immunogenic nucleases for gene therapy. Nat Commun 2025; 16:105. [PMID: 39747875 PMCID: PMC11696374 DOI: 10.1038/s41467-024-55522-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 12/16/2024] [Indexed: 01/04/2025] Open
Abstract
Genome editing using CRISPR-Cas systems is a promising avenue for the treatment of genetic diseases. However, cellular and humoral immunogenicity of genome editing tools, which originate from bacteria, complicates their clinical use. Here we report reduced immunogenicity (Red)(i)-variants of two clinically relevant nucleases, SaCas9 and AsCas12a. Through MHC-associated peptide proteomics (MAPPs) analysis, we identify putative immunogenic epitopes on each nuclease. Using computational modeling, we rationally design these proteins to evade the immune response. SaCas9 and AsCas12a Redi variants are substantially less recognized by adaptive immune components, including reduced binding affinity to MHC molecules and attenuated generation of cytotoxic T cell responses, yet maintain wild-type levels of activity and specificity. In vivo editing of PCSK9 with SaCas9.Redi.1 is comparable in efficiency to wild-type SaCas9, but significantly reduces undesired immune responses. This demonstrates the utility of this approach in engineering proteins to evade immune detection.
Collapse
Affiliation(s)
- Rumya Raghavan
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- McGovern Institute for Brain Research at MIT, Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Howard Hughes Medical Institute, Cambridge, MA, 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Massachusetts, 02139, Cambridge, USA
| | - Mirco J Friedrich
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- McGovern Institute for Brain Research at MIT, Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Howard Hughes Medical Institute, Cambridge, MA, 02139, USA
| | - Indigo King
- Cyrus Biotechnology, Seattle, WA, 98121, USA
| | - Samuel Chau-Duy-Tam Vo
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- McGovern Institute for Brain Research at MIT, Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Howard Hughes Medical Institute, Cambridge, MA, 02139, USA
| | - Daniel Strebinger
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- McGovern Institute for Brain Research at MIT, Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Howard Hughes Medical Institute, Cambridge, MA, 02139, USA
| | - Blake Lash
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- McGovern Institute for Brain Research at MIT, Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Howard Hughes Medical Institute, Cambridge, MA, 02139, USA
| | - Michael Kilian
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center, DKFZ, Heidelberg, Germany
| | - Michael Platten
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center, DKFZ, Heidelberg, Germany
| | - Rhiannon K Macrae
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- McGovern Institute for Brain Research at MIT, Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Howard Hughes Medical Institute, Cambridge, MA, 02139, USA
| | - Yifan Song
- Cyrus Biotechnology, Seattle, WA, 98121, USA
| | - Lucas Nivon
- Cyrus Biotechnology, Seattle, WA, 98121, USA
| | - Feng Zhang
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
- McGovern Institute for Brain Research at MIT, Cambridge, MA, 02139, USA.
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Howard Hughes Medical Institute, Cambridge, MA, 02139, USA.
| |
Collapse
|
15
|
Ming H, Tan J, Cao SY, Yu CP, Qi YT, Wang C, Zhang L, Liu Y, Yuan J, Yin M, Lei QY. NUFIP1 integrates amino acid sensing and DNA damage response to maintain the intestinal homeostasis. Nat Metab 2025; 7:120-136. [PMID: 39753713 DOI: 10.1038/s42255-024-01179-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 11/15/2024] [Indexed: 01/30/2025]
Abstract
Nutrient availability strongly affects intestinal homeostasis. Here, we report that low-protein (LP) diets decrease amino acids levels, impair the DNA damage response (DDR), cause DNA damage and exacerbate inflammation in intestinal tissues of male mice with inflammatory bowel disease (IBD). Intriguingly, loss of nuclear fragile X mental retardation-interacting protein 1 (NUFIP1) contributes to the amino acid deficiency-induced impairment of the DDR in vivo and in vitro and induces necroptosis-related spontaneous enteritis. Mechanistically, phosphorylated NUFIP1 binds to replication protein A2 (RPA32) to recruit the ataxia telangiectasia and Rad3-related (ATR)-ATR-interacting protein (ATRIP) complex, triggering the DDR. Consistently, both reintroducing NUFIP1 but not its non-phospho-mutant and inhibition of necroptosis prevent bowel inflammation in male Nufip1 conditional knockout mice. Intestinal inflammation and DNA damage in male mice with IBD can be mitigated by NUFIP1 overexpression. Moreover, NUFIP1 protein levels in the intestine of patients with IBD were found to be significantly decreased. Conclusively, our study uncovers that LP diets contribute to intestinal inflammation by hijacking NUFIP1-DDR signalling and thereby activating necroptosis.
Collapse
Affiliation(s)
- Hui Ming
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; School of Basic Medical Sciences, Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; Shanghai Key Laboratory of Radiation Oncology; the Shanghai Key Laboratory of Medical Epigenetics, State Key Laboratory of Medical Neurobiology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jing Tan
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; School of Basic Medical Sciences, Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; Shanghai Key Laboratory of Radiation Oncology; the Shanghai Key Laboratory of Medical Epigenetics, State Key Laboratory of Medical Neurobiology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Si-Yi Cao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; School of Basic Medical Sciences, Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; Shanghai Key Laboratory of Radiation Oncology; the Shanghai Key Laboratory of Medical Epigenetics, State Key Laboratory of Medical Neurobiology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cheng-Ping Yu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; School of Basic Medical Sciences, Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; Shanghai Key Laboratory of Radiation Oncology; the Shanghai Key Laboratory of Medical Epigenetics, State Key Laboratory of Medical Neurobiology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu-Ting Qi
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; School of Basic Medical Sciences, Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; Shanghai Key Laboratory of Radiation Oncology; the Shanghai Key Laboratory of Medical Epigenetics, State Key Laboratory of Medical Neurobiology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chao Wang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; School of Basic Medical Sciences, Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; Shanghai Key Laboratory of Radiation Oncology; the Shanghai Key Laboratory of Medical Epigenetics, State Key Laboratory of Medical Neurobiology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lei Zhang
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Ying Liu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jian Yuan
- State Key Laboratory of Cardiology and Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Miao Yin
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; School of Basic Medical Sciences, Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; Shanghai Key Laboratory of Radiation Oncology; the Shanghai Key Laboratory of Medical Epigenetics, State Key Laboratory of Medical Neurobiology, Shanghai Medical College, Fudan University, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Qun-Ying Lei
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; School of Basic Medical Sciences, Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; Shanghai Key Laboratory of Radiation Oncology; the Shanghai Key Laboratory of Medical Epigenetics, State Key Laboratory of Medical Neurobiology, Shanghai Medical College, Fudan University, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- New Cornerstone Science Laboratory, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
16
|
Sedorovitz M, Byrne LC, Betegon M. Chromatographic Purification and Polishing of AAV Particles. Methods Mol Biol 2025; 2848:249-257. [PMID: 39240527 DOI: 10.1007/978-1-0716-4087-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
The production of Adeno-associated virus (AAV) vectors in the lab setting has typically involved expression in adherent cells followed by purification through ultracentrifugation in density gradients. This production method is, however, not easily scalable, presents high levels of cellular impurities that co-purify with the virus, and results in a mixture of empty and full capsids. Here we describe a detailed AAV production protocol that overcomes these limitations through AAV expression in suspension cells followed by AAV affinity purification and AAV polishing to separate empty and full capsids, resulting in high yields of ultra-pure AAV that is highly enriched in full capsids.
Collapse
Affiliation(s)
- Morgan Sedorovitz
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
- Avista Therapeutics, Pittsburgh, PA, USA
| | - Leah C Byrne
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Miguel Betegon
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
17
|
Tamura N, Suzuki K, Shiraki H, Waguri I, Segi-Nishida E. Production of Adeno-Associated Virus Vector Serotype rh.10 and Optimization of Its Purification via Chloroform Extraction. Biol Pharm Bull 2025; 48:355-362. [PMID: 40222918 DOI: 10.1248/bpb.b24-00850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Recombinant adeno-associated virus (AAV) vectors are widely used for manipulating gene expression. AAVrh.10 is a highly infectious AAV serotype for the central nervous system and various tissues. Owing to its potential use in research, we aimed to optimize the production strategy and develop a simple purification protocol for the AAVrh.10 vector. In this study, we explored a simple production and purification strategy for the AAVrh.10 vector via chloroform extraction and ultrafiltration. Initially, we evaluated the optimal conditions for AAVrh.10-CAG-GFP production using AAV-293 cells. AAVrh.10-CAG-GFP was successfully produced in a serum-free medium after plasmid transfection. Moreover, the culture medium contained a substantial amount of the virus. Therefore, both AAVrh.10-containing cell lysate and culture medium should be used to prepare the AAVrh.10 viral vector. To purify and concentrate AAVrh.10-CAG-GFP from the crude lysate and medium, we optimized the chloroform extraction and ultrafiltration strategies. Subsequently, purified AAVrh.10-CAG-GFP was used to infect HEK-293T cells. Overall, this study provides a simple and effective AAVrh.10 vector preparation strategy for basic and preclinical research.
Collapse
Affiliation(s)
- Naoki Tamura
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Kanzo Suzuki
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Hirono Shiraki
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Issei Waguri
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Eri Segi-Nishida
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| |
Collapse
|
18
|
Vats A, Xi Z, Byrne LC, Chen Y. Retinal Explant Culture from Mouse, Human, and Nonhuman Primates and Its Applications in Vision Research. Methods Mol Biol 2025; 2848:169-186. [PMID: 39240523 DOI: 10.1007/978-1-0716-4087-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
The retinal explant culture system is a valuable tool for studying the pharmacological, toxicological, and developmental aspects of the retina. It is also used for translational studies such as gene therapy. While no photoreceptor-like cell lines are available for in vitro studies of photoreceptor cell biology, the retinal explant culture maintains the laminated retinal structure ex vivo for as long as a month. Human and nonhuman primate (NHP) postmortem retinal explants cut into small pieces offer the possibility of testing multiple conditions for safety and adeno-associated viral (AAV) vector optimization. In addition, the cone-enriched foveal area can be studied using the retinal explants. Here, we present a detailed working protocol for retinal explant isolation and culture from mouse, human, and NHP for testing drug efficacy and AAV transduction. Future applications of this protocol include combining live imaging and multiwell retinal explant culture for high-throughput drug screening systems in rodent and human retinal explants to identify new drugs against retinal degeneration.
Collapse
Affiliation(s)
- Abhishek Vats
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Zhouhuan Xi
- Department of Ophthalmology, Eye Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Leah C Byrne
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yuanyuan Chen
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA.
- McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
19
|
Oestreicher D, Chepurwar S, Kusch K, Rankovic V, Jung S, Strenzke N, Pangrsic T. CaBP1 and 2 enable sustained Ca V1.3 calcium currents and synaptic transmission in inner hair cells. eLife 2024; 13:RP93646. [PMID: 39718549 DOI: 10.7554/elife.93646] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024] Open
Abstract
To encode continuous sound stimuli, the inner hair cell (IHC) ribbon synapses utilize calcium-binding proteins (CaBPs), which reduce the inactivation of their CaV1.3 calcium channels. Mutations in the CABP2 gene underlie non-syndromic autosomal recessive hearing loss DFNB93. Besides CaBP2, the structurally related CaBP1 is highly abundant in the IHCs. Here, we investigated how the two CaBPs cooperatively regulate IHC synaptic function. In Cabp1/2 double-knockout mice, we find strongly enhanced CaV1.3 inactivation, slowed recovery from inactivation and impaired sustained exocytosis. Already mild IHC activation further reduces the availability of channels to trigger synaptic transmission and may effectively silence synapses. Spontaneous and sound-evoked responses of spiral ganglion neurons in vivo are strikingly reduced and strongly depend on stimulation rates. Transgenic expression of CaBP2 leads to substantial recovery of IHC synaptic function and hearing sensitivity. We conclude that CaBP1 and 2 act together to suppress voltage- and calcium-dependent inactivation of IHC CaV1.3 channels in order to support sufficient rate of exocytosis and enable fast, temporally precise and indefatigable sound encoding.
Collapse
Affiliation(s)
- David Oestreicher
- Experimental Otology Group, InnerEarLab, Department of Otolaryngology, University Medical Center Göttingen, Göttingen, Germany
- Auditory Neuroscience Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Shashank Chepurwar
- Auditory Systems Physiology Group, Institute for Auditory Neuroscience, InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
- Collaborative Research Center 889, University of Göttingen, Göttingen, Germany
| | - Kathrin Kusch
- Functional Auditory Genomics, Institute for Auditory Neuroscience, University Medical Center Göttingen, Göttingen, Germany
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Vladan Rankovic
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
- Restorative Cochlear Genomics Group, Auditory Neuroscience and Optogenetics Laboratory, German Primate Cente, Göttingen, Germany
| | - Sangyong Jung
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Nicola Strenzke
- Auditory Systems Physiology Group, Institute for Auditory Neuroscience, InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
- Collaborative Research Center 889, University of Göttingen, Göttingen, Germany
| | - Tina Pangrsic
- Experimental Otology Group, InnerEarLab, Department of Otolaryngology, University Medical Center Göttingen, Göttingen, Germany
- Auditory Neuroscience Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Collaborative Research Center 889, University of Göttingen, Göttingen, Germany
- Multiscale Bioimaging Cluster of Excellence (MBExC), University of Göttingen, Göttingen, Germany
| |
Collapse
|
20
|
Qiu C, Chen Y, Wu R, Zhang Y, Lang M, Gao M, Cao J, Zhang Y, Chen X, Liao S. Protein engineering enables Serratia marcescens nuclease A to hydrolyze nucleic acids under high-salt conditions. Int J Biol Macromol 2024; 283:137860. [PMID: 39566763 DOI: 10.1016/j.ijbiomac.2024.137860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/24/2024] [Accepted: 11/17/2024] [Indexed: 11/22/2024]
Abstract
For the purpose of removing nucleotide impurities, Serratia marcescens Nuclease A (SmNucA) is widespread used in biopharmaceutical manufacturing, such as production of adeno-associated viral vector, one of the leading gene delivery platforms that features low immunogenicity. However, such utilization of wild-type SmNucA is limited in saline environment. Depending on downstream process development, the ionic strength can be as high as 500 mM, at which the potency of wild-type SmNucA plunges. We herein design an SmNucA variant with four Lys mutations, namely HighSalt NucA, to improve nucleic acids binding under high-salt conditions. Km determination and molecular dynamics (MD) simulation implies a new catalytical mechanism adopted by HighSalt NucA and another mutant that harbors four Arg substitutions at the same sites. We thereby conclude that basic-residue mutations on the SmNucA surface stabilize the local conformation in close proximity to the substrate-binding cleft at saline concentration of 500 mM. In addition to Lys and Arg mutations, saturation mutagenesis further indicated that certain hydrophobic residues (Ala, Val, Trp, Tyr) and polar residues (Ser, Thr, Asn, Gln) also render SmNucA salt-tolerant, albeit to differing extent. In contrast to activity loss of the wild-type with 400-500 mM NaCl, HighSalt NucA maintains broad substrate specificity even under these extreme conditions, which expands its application prospect in the removal of nucleic acid impurities during process development.
Collapse
Affiliation(s)
- Cunjia Qiu
- Synthetic Biology Department, WuXi Biologics, 1951 Huifeng West Road, Fengxian District, Shanghai 201400, China
| | - Yaoxi Chen
- Synthetic Biology Department, WuXi Biologics, 1951 Huifeng West Road, Fengxian District, Shanghai 201400, China
| | - Ruirui Wu
- Synthetic Biology Department, WuXi Biologics, 1951 Huifeng West Road, Fengxian District, Shanghai 201400, China
| | - Yifeng Zhang
- Synthetic Biology Department, WuXi Biologics, 1951 Huifeng West Road, Fengxian District, Shanghai 201400, China
| | - Meng Lang
- Synthetic Biology Department, WuXi Biologics, 1951 Huifeng West Road, Fengxian District, Shanghai 201400, China
| | - Mengqiu Gao
- Synthetic Biology Department, WuXi Biologics, 1951 Huifeng West Road, Fengxian District, Shanghai 201400, China
| | - Jian Cao
- Synthetic Biology Department, WuXi Biologics, 1951 Huifeng West Road, Fengxian District, Shanghai 201400, China
| | - Yujun Zhang
- Synthetic Biology Department, WuXi Biologics, 1951 Huifeng West Road, Fengxian District, Shanghai 201400, China
| | - Xiaoyue Chen
- Synthetic Biology Department, WuXi Biologics, 1951 Huifeng West Road, Fengxian District, Shanghai 201400, China.
| | - Shanhui Liao
- Synthetic Biology Department, WuXi Biologics, 1951 Huifeng West Road, Fengxian District, Shanghai 201400, China.
| |
Collapse
|
21
|
Nishiyama H, Nishiyama N, Zemelman BV. Purkinje cell ablation and Purkinje cell-specific deletion of Tsc1 in the developing cerebellum strengthen cerebellothalamic synapses. J Physiol 2024; 602:6973-7001. [PMID: 39558452 DOI: 10.1113/jp285887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 10/22/2024] [Indexed: 11/20/2024] Open
Abstract
Cerebellar damage early in life often causes long-lasting motor, social and cognitive impairments, suggesting the roles of the cerebellum in developing a broad spectrum of behaviours. This recent finding has promoted research on how cerebellar damage affects the development of the cerebral cortex, the brain region responsible for higher-order control of all behaviours. However, the cerebral cortex is not directly connected to the cerebellum. The thalamus is a major direct target of the cerebellar nuclei, conveying cerebellar signals to the cerebral cortex. Despite its crucial position in cerebello-cerebral interaction, thalamic susceptibility to cerebellar damage remains largely unclear. Here, we studied the consequences of early cerebellar perturbation on thalamic development. Whole-cell patch-clamp recordings showed that the synaptic organization of the cerebellothlamic circuit is similar to that of the primary sensory thalamus, in which aberrant sensory activity alters synaptic circuit formation. The ablation of Purkinje cells in the developing cerebellum strengthened cerebellothalamic synapses and enhanced thalamic suprathreshold activities. Purkinje-cell specific deletion of tuberous sclerosis complex subunit 1 (Tsc1), an autism-associated gene for which the protein product negatively regulates the mammalian target of rapamycin, also strengthened cerebellothalamic synapses. However, this strengthening occurred only in homozygous deletion, whereas both homozygous and hemizygous deletion are known to cause autism-like behaviours. These results suggest that, although the cerebellothalamic projection is vulnerable to disturbances in the developing cerebellar cortex, other changes may also drive the behavioural consequences of early cerebellar perturbation. KEY POINTS: Cerebellar damage early in life often causes motor, social and cognitive impairments, suggesting the roles of the cerebellum in developing a broad spectrum of behaviours. Recent studies focus on how the developing cerebellum affects the formation and function of the cerebral cortex, the higher-order centre for all behaviours. However, the cerebellum does not directly connect to the cerebral cortex. Here, we studied the consequences of early cerebellar perturbation on the thalamus because it is a direct postsynaptic target of the cerebellum, sending cerebellar signals to the cerebral cortex. Loss of cerebellar Purkinje cells, which are commonly associated with various neurological disorders, strengthened cerebellothalamic synapses, suggesting the vulnerability of the thalamus to substantial disturbance in the developing cerebellum. Purkinje cell-specific loss of tuberous sclerosis complex-1, a negative regulator of mammalian target of rapamycin, is an established mouse model of autism. This mouse model also showed strengthened cerebellothalamic synapses.
Collapse
Affiliation(s)
- Hiroshi Nishiyama
- Center for Learning and Memory, Department of Neuroscience, The University of Texas at Austin, Austin, TX, USA
| | - Naoko Nishiyama
- Center for Learning and Memory, Department of Neuroscience, The University of Texas at Austin, Austin, TX, USA
| | - Boris V Zemelman
- Center for Learning and Memory, Department of Neuroscience, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
22
|
Morikawa R, Rodrigues TM, Schreyer HM, Cowan CS, Nadeau S, Graff-Meyer A, Patino-Alvarez CP, Khani MH, Jüttner J, Roska B. The sodium-bicarbonate cotransporter Slc4a5 mediates feedback at the first synapse of vision. Neuron 2024; 112:3715-3733.e9. [PMID: 39317184 PMCID: PMC11602199 DOI: 10.1016/j.neuron.2024.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 07/22/2024] [Accepted: 08/27/2024] [Indexed: 09/26/2024]
Abstract
Feedback at the photoreceptor synapse is the first neuronal circuit computation in vision, which influences downstream activity patterns within the visual system. Yet, the identity of the feedback signal and the mechanism of synaptic transmission are still not well understood. Here, we combined perturbations of cell-type-specific genes of mouse horizontal cells with two-photon imaging of the result of light-induced feedback in cones and showed that the electrogenic bicarbonate transporter Slc4a5, but not the electroneutral bicarbonate transporter Slc4a3, both expressed specifically in horizontal cells, is necessary for horizontal cell-to-cone feedback. Pharmacological blockage of bicarbonate transporters and buffering pH also abolished the feedback but blocking sodium-proton exchangers and GABA receptors did not. Our work suggests an unconventional mechanism of feedback at the first visual synapse: changes in horizontal cell voltage modulate bicarbonate transport to the cell, via Slc4a5, which leads to the modulation of feedback to cones.
Collapse
Affiliation(s)
- Rei Morikawa
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland
| | - Tiago M Rodrigues
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland; Department of Ophthalmology, University of Basel, 4031 Basel, Switzerland
| | | | - Cameron S Cowan
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland
| | - Sarah Nadeau
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland
| | - Alexandra Graff-Meyer
- Facility for Advanced Imaging and Microscopy, Friedrich Miescher Institute for Biomedical Research, 4056 Basel, Switzerland
| | | | | | - Josephine Jüttner
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland
| | - Botond Roska
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland; Department of Ophthalmology, University of Basel, 4031 Basel, Switzerland.
| |
Collapse
|
23
|
Gilger BC, Hasegawa T, Sutton RB, Bower JJ, Li C, Hirsch ML. A chimeric anti-vascularization immunomodulator prevents high-risk corneal transplantation rejection via ex vivo gene therapy. Mol Ther 2024; 32:4006-4020. [PMID: 39245940 PMCID: PMC11573577 DOI: 10.1016/j.ymthe.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/06/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024] Open
Abstract
Corneal blindness affects more than 5 million individuals, with over 180,000 corneal transplantations (CTs) performed annually. In high-risk CTs, almost all grafts are rejected within 10 years. Here, we investigated adeno-associated virus (AAV) ex vivo gene therapy to establish immune tolerance in the corneal allograft to prevent high-risk CT rejection. Our previous work has demonstrated that HLA-G contributes to ocular immune privilege by inhibiting both immune cells and neovascularization; however, homodimerization is a rate-limiting step for optimal HLA-G function. Therefore, a chimeric protein called single-chain immunomodulator (scIM), was engineered to mimic the native activity of the secreted HLA-G dimer complex and eliminate the need for homodimerization. In a murine corneal burn model, AAV8-scIM significantly reduced corneal vascularization and fibrosis. Next, ex vivo AAV8-scIM gene delivery to corneal allografts was evaluated in a high-risk CT rejection rabbit model. All scIM-treated corneas were well tolerated and transparent after 42 days, while 83% of vehicle-treated corneas were rejected. Histologically, AAV-scIM-treated corneas were devoid of immune cell infiltration and vascularization, with minimal fibrosis at the host-graft interface. The data collectively demonstrate that scIM gene therapy prevents corneal neovascularization, reduces trauma-induced corneal fibrosis, and prevents allogeneic CT rejection in a high-risk large animal model.
Collapse
Affiliation(s)
- Brian C Gilger
- Department of Clinical Sciences, North Carolina State University, Raleigh, NC 27607, USA; Bedrock Therapeutics, Raleigh, NC 27613, USA
| | - Tomoko Hasegawa
- Department of Ophthalmology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - R Bryan Sutton
- Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Bedrock Therapeutics, Raleigh, NC 27613, USA
| | - Jacquelyn J Bower
- Department of Ophthalmology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Chengwen Li
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Bedrock Therapeutics, Raleigh, NC 27613, USA
| | - Matthew L Hirsch
- Department of Ophthalmology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Bedrock Therapeutics, Raleigh, NC 27613, USA.
| |
Collapse
|
24
|
Sterin I, Niazi A, Kim J, Park J, Park S. Dynamic Organization of Neuronal Extracellular Matrix Revealed by HaloTag-HAPLN1. J Neurosci 2024; 44:e0666242024. [PMID: 39251350 PMCID: PMC11502233 DOI: 10.1523/jneurosci.0666-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/04/2024] [Accepted: 08/30/2024] [Indexed: 09/11/2024] Open
Abstract
The brain's extracellular matrix (ECM) regulates neuronal plasticity and animal behavior. ECM staining shows a net-like structure around a subset of neurons, a ring-like structure at the nodes of Ranvier, and diffuse staining in the interstitial matrix. However, understanding the structural features of ECM deposition across various neuronal types and subcellular compartments remains limited. To visualize the organization pattern and assembly process of the hyaluronan-scaffolded ECM in the brain, we fused a HaloTag to hyaluronan proteoglycan link protein 1, which links hyaluronan and proteoglycans. Expression or application of the probe in primary rat neuronal cultures enables us to identify spatial and temporal regulation of ECM deposition and heterogeneity in ECM aggregation among neuronal populations. Dual-color birthdating shows the ECM assembly process in culture and in vivo. Sparse expression in mouse brains of either sex reveals detailed ECM architectures around excitatory neurons and developmentally regulated dendritic ECM. Our study uncovers extensive structural features of the brain's ECM, suggesting diverse roles in regulating neuronal plasticity.
Collapse
Affiliation(s)
- Igal Sterin
- Department of Neurobiology, University of Utah, Salt Lake City, Utah 84112
| | - Ava Niazi
- Department of Neurobiology, University of Utah, Salt Lake City, Utah 84112
- Neuroscience Program, University of Utah, Salt Lake City, Utah 84112
| | - Jennifer Kim
- Department of Neurobiology, University of Utah, Salt Lake City, Utah 84112
| | - Joosang Park
- Department of Neurobiology, University of Utah, Salt Lake City, Utah 84112
| | - Sungjin Park
- Department of Neurobiology, University of Utah, Salt Lake City, Utah 84112
| |
Collapse
|
25
|
Kasatkina LA, Ma C, Sheng H, Lowerison M, Menozzi L, Baloban M, Tang Y, Xu Y, Humayun L, Vu T, Song P, Yao J, Verkhusha VV. Advanced deep-tissue imaging and manipulation enabled by biliverdin reductase knockout. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.18.619161. [PMID: 39464005 PMCID: PMC11507915 DOI: 10.1101/2024.10.18.619161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
We developed near-infrared (NIR) photoacoustic and fluorescence probes, as well as optogenetic tools from bacteriophytochromes, and enhanced their performance using biliverdin reductase-A knock-out model (Blvra-/-). Blvra-/- elevates endogenous heme-derived biliverdin chromophore for bacteriophytochrome-derived NIR constructs. Consequently, light-controlled transcription with IsPadC-based optogenetic tool improved up to 25-fold compared to wild-type cells, with 100-fold activation in Blvra-/- neurons. In vivo , light-induced insulin production in Blvra-/- reduced blood glucose in diabetes by ∼60%, indicating high potential for optogenetic therapy. Using 3D photoacoustic, ultrasound, and two-photon fluorescence imaging, we overcame depth limitations of recording NIR probes. We achieved simultaneous photoacoustic imaging of DrBphP in neurons and super-resolution ultrasound localization microscopy of blood vessels ∼7 mm deep in the brain, with intact scalp and skull. Two-photon microscopy provided cell-level resolution of miRFP720-expressing neurons ∼2.2 mm deep. Blvra-/- significantly enhances efficacy of biliverdin-dependent NIR systems, making it promising platform for interrogation and manipulation of biological processes.
Collapse
|
26
|
Behrens J, Braren I, Jaeckstein MY, Lilie L, Heine M, Sass F, Sommer J, Silbert-Wagner D, Fuh MM, Worthmann A, Straub L, Moustafa T, Heeren J, Scheja L. An efficient AAV vector system of Rec2 serotype for intravenous injection to study metabolism in brown adipocytes in vivo. Mol Metab 2024; 88:101999. [PMID: 39094948 PMCID: PMC11362766 DOI: 10.1016/j.molmet.2024.101999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/12/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024] Open
Abstract
OBJECTIVE Recombinant adeno-associated virus (rAAV) vectors are powerful tools for the sustained expression of proteins in vivo and have been successfully used for mechanistic studies in mice. A major challenge associated with this method is to obtain tissue specificity and high expression levels without need of local virus administration. METHODS To achieve this goal for brown adipose tissue (BAT), we developed a rAAV vector for intravenous bolus injection, which includes an expression cassette comprising an uncoupling protein-1 enhancer-promoter for transcription in brown adipocytes and miR122 target sequences for suppression of expression in the liver, combined with packaging in serotype Rec2 capsid protein. To test tissue specificity, we used a version of this vector expressing Cre recombinase to transduce mice with floxed alleles to knock out MLXIPL (ChREBP) or tdTomato-Cre reporter mice. RESULTS We demonstrated efficient Cre-dependent recombination in interscapular BAT and variable effects in minor BAT depots, but little or no efficacy in white adipose tissues, liver and other organs. Direct overexpression of glucose transporter SLC2A1 (GLUT1) using the rAAV vector in wild type mice resulted in increased glucose uptake and glucose-dependent gene expression in BAT, indicating usefulness of this vector to increase the function even of abundant proteins. CONCLUSION Taken together, we describe a novel brown adipocyte-specific rAAV method to express proteins for loss-of-function and gain-of-function metabolic studies. The approach will enable researchers to access brown fat swiftly, reduce animal breeding time and costs, as well as enable the creation of new transgenic mouse models combining multiple transgenes.
Collapse
Affiliation(s)
- Janina Behrens
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ingke Braren
- Vector Facility, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michelle Y Jaeckstein
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Luka Lilie
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Markus Heine
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Finnja Sass
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Judith Sommer
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Austria
| | - Dagmar Silbert-Wagner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Austria
| | - Marceline M Fuh
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna Worthmann
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Leon Straub
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tarek Moustafa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Austria
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ludger Scheja
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
27
|
Sawada T, Iino Y, Yoshida K, Okazaki H, Nomura S, Shimizu C, Arima T, Juichi M, Zhou S, Kurabayashi N, Sakurai T, Yagishita S, Yanagisawa M, Toyoizumi T, Kasai H, Shi S. Prefrontal synaptic regulation of homeostatic sleep pressure revealed through synaptic chemogenetics. Science 2024; 385:1459-1465. [PMID: 39325885 DOI: 10.1126/science.adl3043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 06/28/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024]
Abstract
Sleep is regulated by homeostatic processes, yet the biological basis of sleep pressure that accumulates during wakefulness, triggers sleep, and dissipates during sleep remains elusive. We explored a causal relationship between cellular synaptic strength and electroencephalography delta power indicating macro-level sleep pressure by developing a theoretical framework and a molecular tool to manipulate synaptic strength. The mathematical model predicted that increased synaptic strength promotes the neuronal "down state" and raises the delta power. Our molecular tool (synapse-targeted chemically induced translocation of Kalirin-7, SYNCit-K), which induces dendritic spine enlargement and synaptic potentiation through chemically induced translocation of protein Kalirin-7, demonstrated that synaptic potentiation of excitatory neurons in the prefrontal cortex (PFC) increases nonrapid eye movement sleep amounts and delta power. Thus, synaptic strength of PFC excitatory neurons dictates sleep pressure in mammals.
Collapse
Affiliation(s)
- Takeshi Sawada
- International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yusuke Iino
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kensuke Yoshida
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
- RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Hitoshi Okazaki
- International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Shinnosuke Nomura
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Chika Shimizu
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Tomoki Arima
- International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Motoki Juichi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Siqi Zhou
- International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | | | - Takeshi Sakurai
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
- Department of Molecular Behavioral Physiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Sho Yagishita
- International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Taro Toyoizumi
- RIKEN Center for Brain Science, Wako, Saitama, Japan
- Department of Mathematical Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Haruo Kasai
- International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Shoi Shi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
28
|
Sahu SK, Reddy P, Lu J, Shao Y, Wang C, Tsuji M, Delicado EN, Rodriguez Esteban C, Belmonte JCI. Targeted partial reprogramming of age-associated cell states improves markers of health in mouse models of aging. Sci Transl Med 2024; 16:eadg1777. [PMID: 39259812 DOI: 10.1126/scitranslmed.adg1777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 11/13/2023] [Accepted: 08/22/2024] [Indexed: 09/13/2024]
Abstract
Aging is a complex multifactorial process associated with epigenome dysregulation, increased cellular senescence, and decreased rejuvenation capacity. Short-term cyclic expression of octamer-binding transcription factor 4 (Oct4), sex-determining region Y-box 2 (Sox2), Kruppel-like factor 4 (Klf4), and cellular myelocytomatosis oncogene (cMyc) (OSKM) in wild-type mice improves health but fails to distinguish cell states, posing risks to healthy cells. Here, we delivered a single dose of adeno-associated viruses (AAVs) harboring OSK under the control of the cyclin-dependent kinase inhibitor 2a (Cdkn2a) promoter to specifically partially reprogram aged and stressed cells in a mouse model of Hutchinson-Gilford progeria syndrome (HGPS). Mice showed reduced expression of proinflammatory cytokines and extended life spans upon aged cell-specific OSK expression. The bone marrow and spleen, in particular, showed pronounced gene expression changes, and partial reprogramming in aged HGPS mice led to a shift in the cellular composition of the hematopoietic stem cell compartment toward that of young mice. Administration of AAVs carrying Cdkn2a-OSK to naturally aged wild-type mice also delayed aging phenotypes and extended life spans without altering the incidence of tumor development. Furthermore, intradermal injection of AAVs carrying Cdkn2a-OSK led to improved wound healing in aged wild-type mice. Expression of CDKN2A-OSK in aging or stressed human primary fibroblasts led to reduced expression of inflammation-related genes but did not alter the expression of cell cycle-related genes. This targeted partial reprogramming approach may therefore facilitate the development of strategies to improve health and life span and enhance resilience in the elderly.
Collapse
Affiliation(s)
| | | | | | | | - Chao Wang
- Altos Labs, San Diego, CA 92122, USA
| | | | | | | | | |
Collapse
|
29
|
Shen Q, Suga S, Moriwaki Y, Du Z, Aizawa E, Okazaki M, Izpisua Belmonte JC, Hirabayashi Y, Suzuki K, Kurita M. Optimization of an adeno-associated viral vector for epidermal keratinocytes in vitro and in vivo. J Dermatol Sci 2024; 115:101-110. [PMID: 39127592 DOI: 10.1016/j.jdermsci.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/10/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Local gene therapies, including in vivo genome editing, are highly anticipated for the treatment of genetic diseases in skin, especially the epidermis. While the adeno-associated virus (AAV) is a potent vector for in vivo gene delivery, the lack of efficient gene delivery methods has limited its clinical applications. OBJECTIVE To optimize the AAV gene delivery system with higher gene delivery efficiency and specificity for epidermis and keratinocytes (KCs), using AAV capsid and promoter engineering technologies. METHODS AAV variants with mutations in residues reported to be critical to determine the tropism of AAV2 for KCs were generated by site-directed mutagenesis of AAVDJ. The infection efficiency and specificity for KCs of these variants were compared with those of previously reported AAVs considered to be suitable for gene delivery to KCs in vitro and in vivo. Additionally, we generated an epidermis-specific promoter using the most recent short-core promoter and compared its specificity with existing promoters. RESULTS A novel AAVDJ variant capsid termed AAVDJK2 was superior to the existing AAVs in terms of gene transduction efficiency and specificity for epidermis and KCs in vitro and in vivo. A novel tissue-specific promoter, termed the K14 SCP3 promoter, was superior to the existing promoters in terms of gene transduction efficiency and specificity for KCs. CONCLUSION The combination of the AAVDJK2 capsid and K14 SCP3 promoter improves gene delivery to epidermis in vivo and KCs in vitro. The novel AAV system may benefit experimental research and development of new epidermis-targeted gene therapies.
Collapse
Affiliation(s)
- Qi Shen
- Department of Plastic and Reconstructive Surgery, The University of Tokyo Hospital, Tokyo, Japan
| | - Shogo Suga
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Yuta Moriwaki
- Department of Plastic and Reconstructive Surgery, The University of Tokyo Hospital, Tokyo, Japan
| | - Zening Du
- Department of Plastic and Reconstructive Surgery, The University of Tokyo Hospital, Tokyo, Japan
| | - Emi Aizawa
- Graduate School of Engineering Science, Osaka University, Toyonaka, Japan
| | - Mutsumi Okazaki
- Department of Plastic and Reconstructive Surgery, The University of Tokyo Hospital, Tokyo, Japan
| | | | - Yusuke Hirabayashi
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Keiichiro Suzuki
- Graduate School of Engineering Science, Osaka University, Toyonaka, Japan; Institute for Advanced Co-Creation Studies, Osaka University, Toyonaka, Japan; Graduate School of Frontier Bioscience, Osaka University, Suita, Japan.
| | - Masakazu Kurita
- Department of Plastic and Reconstructive Surgery, The University of Tokyo Hospital, Tokyo, Japan.
| |
Collapse
|
30
|
Sripada SA, Hosseini M, Ramesh S, Wang J, Ritola K, Menegatti S, Daniele MA. Advances and opportunities in process analytical technologies for viral vector manufacturing. Biotechnol Adv 2024; 74:108391. [PMID: 38848795 DOI: 10.1016/j.biotechadv.2024.108391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/14/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024]
Abstract
Viral vectors are an emerging, exciting class of biologics whose application in vaccines, oncology, and gene therapy has grown exponentially in recent years. Following first regulatory approval, this class of therapeutics has been vigorously pursued to treat monogenic disorders including orphan diseases, entering hundreds of new products into pipelines. Viral vector manufacturing supporting clinical efforts has spurred the introduction of a broad swath of analytical techniques dedicated to assessing the diverse and evolving panel of Critical Quality Attributes (CQAs) of these products. Herein, we provide an overview of the current state of analytics enabling measurement of CQAs such as capsid and vector identities, product titer, transduction efficiency, impurity clearance etc. We highlight orthogonal methods and discuss the advantages and limitations of these techniques while evaluating their adaptation as process analytical technologies. Finally, we identify gaps and propose opportunities in enabling existing technologies for real-time monitoring from hardware, software, and data analysis viewpoints for technology development within viral vector biomanufacturing.
Collapse
Affiliation(s)
- Sobhana A Sripada
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA
| | - Mahshid Hosseini
- Joint Department of Biomedical Engineering, North Carolina State University, and University of North Carolina, Chapel Hill, 911 Oval Dr., Raleigh, NC 27695, USA
| | - Srivatsan Ramesh
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA
| | - Junhyeong Wang
- Joint Department of Biomedical Engineering, North Carolina State University, and University of North Carolina, Chapel Hill, 911 Oval Dr., Raleigh, NC 27695, USA
| | - Kimberly Ritola
- North Carolina Viral Vector Initiative in Research and Learning (NC-VVIRAL), North Carolina State University, 890 Oval Dr, Raleigh, NC 27695, USA; Neuroscience Center, Brain Initiative Neurotools Vector Core, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA; North Carolina Viral Vector Initiative in Research and Learning (NC-VVIRAL), North Carolina State University, 890 Oval Dr, Raleigh, NC 27695, USA; Biomanufacturing Training and Education Center, North Carolina State University, 890 Main Campus Dr, Raleigh, NC 27695, USA.
| | - Michael A Daniele
- Joint Department of Biomedical Engineering, North Carolina State University, and University of North Carolina, Chapel Hill, 911 Oval Dr., Raleigh, NC 27695, USA; North Carolina Viral Vector Initiative in Research and Learning (NC-VVIRAL), North Carolina State University, 890 Oval Dr, Raleigh, NC 27695, USA; Department of Electrical and Computer Engineering, North Carolina State University, 890 Oval Dr, Raleigh, NC 27695, USA.
| |
Collapse
|
31
|
Nickl P, Jenickova I, Elias J, Kasparek P, Barinka C, Kopkanova J, Sedlacek R. Multistep allelic conversion in mouse pre-implantation embryos by AAV vectors. Sci Rep 2024; 14:20160. [PMID: 39215103 PMCID: PMC11364770 DOI: 10.1038/s41598-024-70853-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Site-specific recombinases (SSRs) are critical for achieving precise spatiotemporal control of engineered alleles. These enzymes play a key role in facilitating the deletion or inversion of loci flanked by recombination sites, resulting in the activation or repression of endogenous genes, selection markers or reporter elements. However, multiple recombination in complex alleles can be laborious. To address this, a new and efficient method using AAV vectors has been developed to simplify the conversion of systems based on Cre, FLP, Dre and Vika recombinases. In this study, we present an effective method for ex vivo allele conversion using Cre, FLP (flippase), Dre, and Vika recombinases, employing adeno-associated viruses (AAV) as delivery vectors. AAVs enable efficient allele conversion with minimal toxicity in a reporter mouse line. Moreover, AAVs facilitate sequential allele conversion, essential for fully converting alleles with multiple recombination sites, typically found in conditional knockout mouse models. While simple allele conversions show a 100% efficiency rate, complex multiple conversions consistently achieve an 80% conversion rate. Overall, this strategy markedly reduces the need for animals and significantly speeds up the process of allele conversion, representing a significant improvement in genome engineering techniques.
Collapse
Affiliation(s)
- Petr Nickl
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prumyslova 595, 252 50, Vestec, Czech Republic.
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic.
| | - Irena Jenickova
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prumyslova 595, 252 50, Vestec, Czech Republic
| | - Jan Elias
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prumyslova 595, 252 50, Vestec, Czech Republic
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
| | - Petr Kasparek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prumyslova 595, 252 50, Vestec, Czech Republic
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
| | - Cyril Barinka
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50, Vestec, Czech Republic
| | - Jana Kopkanova
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prumyslova 595, 252 50, Vestec, Czech Republic
| | - Radislav Sedlacek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prumyslova 595, 252 50, Vestec, Czech Republic.
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic.
| |
Collapse
|
32
|
Kantor B, O'Donovan B, Rittiner J, Hodgson D, Lindner N, Guerrero S, Dong W, Zhang A, Chiba-Falek O. The therapeutic implications of all-in-one AAV-delivered epigenome-editing platform in neurodegenerative disorders. Nat Commun 2024; 15:7259. [PMID: 39179542 PMCID: PMC11344155 DOI: 10.1038/s41467-024-50515-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 07/12/2024] [Indexed: 08/26/2024] Open
Abstract
Safely and efficiently controlling gene expression is a long-standing goal of biomedical research, and CRISPR/Cas system can be harnessed to create powerful tools for epigenetic editing. Adeno-associated-viruses (AAVs) represent the delivery vehicle of choice for therapeutic platform. However, their small packaging capacity isn't suitable for large constructs including most CRISPR/dCas9-effector vectors. Thus, AAV-based CRISPR/Cas systems have been delivered via two separate viral vectors. Here we develop a compact CRISPR/dCas9-based repressor system packaged in AAV as a single optimized vector. The system comprises the small Staphylococcus aureus (Sa)dCas9 and an engineered repressor molecule, a fusion of MeCP2's transcription repression domain (TRD) and KRAB. The dSaCas9-KRAB-MeCP2(TRD) vector platform repressed robustly and sustainably the expression of multiple genes-of-interest, in vitro and in vivo, including ApoE, the strongest genetic risk factor for late onset Alzheimer's disease (LOAD). Our platform broadens the CRISPR/dCas9 toolset available for transcriptional manipulation of gene expression in research and therapeutic settings.
Collapse
Affiliation(s)
- Boris Kantor
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA.
- Viral Vector Core, Duke University School of Medicine, Durham, NC, USA.
- Center for Advanced Genomic Technologies, Duke University School of Medicine, Durham, NC, USA.
| | - Bernadette O'Donovan
- Division of Translational Brain Sciences, Department of Neurology, Duke University School of Medicine, Durham, NC, USA
- Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC, USA
| | - Joseph Rittiner
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA
- Viral Vector Core, Duke University School of Medicine, Durham, NC, USA
- Center for Advanced Genomic Technologies, Duke University School of Medicine, Durham, NC, USA
| | - Dellila Hodgson
- Division of Translational Brain Sciences, Department of Neurology, Duke University School of Medicine, Durham, NC, USA
- Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC, USA
| | - Nicholas Lindner
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA
- Viral Vector Core, Duke University School of Medicine, Durham, NC, USA
- Center for Advanced Genomic Technologies, Duke University School of Medicine, Durham, NC, USA
| | - Sophia Guerrero
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA
- Viral Vector Core, Duke University School of Medicine, Durham, NC, USA
- Center for Advanced Genomic Technologies, Duke University School of Medicine, Durham, NC, USA
| | - Wendy Dong
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA
- Viral Vector Core, Duke University School of Medicine, Durham, NC, USA
- Center for Advanced Genomic Technologies, Duke University School of Medicine, Durham, NC, USA
| | - Austin Zhang
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA
- Viral Vector Core, Duke University School of Medicine, Durham, NC, USA
- Center for Advanced Genomic Technologies, Duke University School of Medicine, Durham, NC, USA
| | - Ornit Chiba-Falek
- Division of Translational Brain Sciences, Department of Neurology, Duke University School of Medicine, Durham, NC, USA.
- Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
33
|
Sahu S, Castro M, Muldoon JJ, Asija K, Wyman SK, Krishnappa N, de Onate L, Eyquem J, Nguyen DN, Wilson RC. Peptide-enabled ribonucleoprotein delivery for CRISPR engineering (PERC) in primary human immune cells and hematopoietic stem cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.14.603391. [PMID: 39071446 PMCID: PMC11275745 DOI: 10.1101/2024.07.14.603391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Peptide-enabled ribonucleoprotein delivery for CRISPR engineering (PERC) is a new approach for ex vivo genome editing of primary human cells. PERC uses a single amphiphilic peptide reagent to mediate intracellular delivery of the same pre-formed CRISPR ribonucleoprotein enzymes that are broadly used in research and therapeutics, resulting in high-efficiency editing of stimulated immune cells and cultured hematopoietic stem and progenitor cells (HSPCs). PERC facilitates nuclease-mediated gene knockout, precise transgene knock-in, and base editing. PERC involves mixing the CRISPR ribonucleoprotein enzyme with peptide and then incubating the formulation with cultured cells. For efficient transgene knock-in, adeno-associated virus (AAV) bearing homology-directed repair template DNA may be included. In contrast to electroporation, PERC is appealing as it requires no dedicated hardware and has less impact on cell phenotype and viability. Due to the gentle nature of PERC, delivery can be performed multiple times without substantial impact to cell health or phenotype. Here we report methods for improved PERC-mediated editing of T cells as well as novel methods for PERC-mediated editing of HSPCs, including knockout and precise knock-in. Editing efficiencies can surpass 90% using either Cas9 or Cas12a in primary T cells or HSPCs. Because PERC calls for only three readily available reagents - protein, RNA, and peptide - and does not require dedicated hardware for any step, PERC demands no special expertise and is exceptionally straightforward to adopt. The inherent compatibility of PERC with established cell engineering pipelines makes this approach appealing for rapid deployment in research and clinical settings.
Collapse
|
34
|
Hoffmann MD, Sorensen RJ, Extross A, He Y, Schmidt D. Protein Carrier AAV. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.14.607995. [PMID: 39185209 PMCID: PMC11343202 DOI: 10.1101/2024.08.14.607995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
AAV is widely used for efficient delivery of DNA payloads. The extent to which the AAV capsid can be used to deliver a protein payload is unexplored. Here, we report engineered AAV capsids that directly package proteins - Protein Carrier AAV (pcAAV). Nanobodies inserted into the interior of the capsid mediate packaging of a cognate protein, including Green Fluorescent Protein (GFP), Streptococcus pyogenes Cas9, Cre recombinase, and the engineered peroxidase APEX2. We show that protein packaging efficiency is affected by the nanobody insertion position, the capsid protein isoform into which the nanobody is inserted, and the subcellular localization of the packaged protein during recombinant AAV capsid production; each of these factors can be rationally engineered to optimize protein packaging efficiency. We demonstrate that proteins packaged within pcAAV retain their enzymatic activity and that pcAAV can bind and enter the cell to deliver the protein payload. Establishing pcAAV as a protein delivery platform may expand the utility of AAV as a therapeutic and research tool.
Collapse
Affiliation(s)
- Mareike D. Hoffmann
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Ryan J. Sorensen
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Ajay Extross
- Department of Molecular, Cellular, Developmental Biology, and Genetics
| | - Yungui He
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Daniel Schmidt
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN, 55455, USA
| |
Collapse
|
35
|
Wang X, Wang T, Kaneko S, Kriukov E, Lam E, Szczepan M, Chen J, Gregg A, Wang X, Fernandez-Gonzalez A, Mitsialis SA, Kourembanas S, Baranov P, Sun Y. Photoreceptors inhibit pathological retinal angiogenesis through transcriptional regulation of Adam17 via c-Fos. Angiogenesis 2024; 27:379-395. [PMID: 38483712 PMCID: PMC11303108 DOI: 10.1007/s10456-024-09912-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/03/2024] [Indexed: 04/11/2024]
Abstract
Pathological retinal angiogenesis profoundly impacts visual function in vascular eye diseases, such as retinopathy of prematurity (ROP) in preterm infants and age-related macular degeneration in the elderly. While the involvement of photoreceptors in these diseases is recognized, the underlying mechanisms remain unclear. This study delved into the pivotal role of photoreceptors in regulating abnormal retinal blood vessel growth using an oxygen-induced retinopathy (OIR) mouse model through the c-Fos/A disintegrin and metalloprotease 17 (Adam17) axis. Our findings revealed a significant induction of c-Fos expression in rod photoreceptors, and c-Fos depletion in these cells inhibited pathological neovascularization and reduced blood vessel leakage in the OIR mouse model. Mechanistically, c-Fos directly regulated the transcription of Adam17 a shedding protease responsible for the production of bioactive molecules involved in inflammation, angiogenesis, and cell adhesion and migration. Furthermore, we demonstrated the therapeutic potential by using an adeno-associated virus carrying a rod photoreceptor-specific short hairpin RNA against c-fos which effectively mitigated abnormal retinal blood vessel overgrowth, restored retinal thickness, and improved electroretinographic (ERG) responses. In conclusion, this study highlights the significance of photoreceptor c-Fos in ROP pathology, offering a novel perspective for the treatment of this disease.
Collapse
Affiliation(s)
- Xudong Wang
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tianxi Wang
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Satoshi Kaneko
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Emil Kriukov
- Department of Ophthalmology, The Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Enton Lam
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Manon Szczepan
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jasmine Chen
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Austin Gregg
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xingyan Wang
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Angeles Fernandez-Gonzalez
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - S Alex Mitsialis
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stella Kourembanas
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Petr Baranov
- Department of Ophthalmology, The Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Ye Sun
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
36
|
Sutter SO, Tobler K, Seyffert M, Lkharrazi A, Zöllig J, Schraner EM, Vogt B, Büning H, Fraefel C. Interferon-γ inducible factor 16 (IFI16) restricts adeno-associated virus type 2 (AAV2) transduction in an immune-modulatory independent way. J Virol 2024; 98:e0011024. [PMID: 38837381 PMCID: PMC11338077 DOI: 10.1128/jvi.00110-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/28/2024] [Indexed: 06/07/2024] Open
Abstract
We determined the transcription profile of adeno-associated virus type 2 (AAV2)-infected primary human fibroblasts. Subsequent analysis revealed that cells respond to AAV infection through changes in several significantly affected pathways, including cell cycle regulation, chromatin modulation, and innate immune responses. Various assays were performed to validate selected differentially expressed genes and to confirm not only the quality but also the robustness of the raw data. One of the genes upregulated in AAV2-infected cells was interferon-γ inducible factor 16 (IFI16). IFI16 is known as a multifunctional cytosolic and nuclear innate immune sensor for double-stranded as well as single-stranded DNA, exerting its effects through various mechanisms, such as interferon response, epigenetic modifications, or transcriptional regulation. IFI16 thereby constitutes a restriction factor for many different viruses among them, as shown here, AAV2 and thereof derived vectors. Indeed, the post-transcriptional silencing of IFI16 significantly increased AAV2 transduction efficiency, independent of the structure of the virus/vector genome. We also show that IFI16 exerts its inhibitory effect on AAV2 transduction in an immune-modulatory independent way by interfering with Sp1-dependent transactivation of wild-type AAV2 and AAV2 vector promoters. IMPORTANCE Adeno-associated virus (AAV) vectors are among the most frequently used viral vectors for gene therapy. The lack of pathogenicity of the parental virus, the long-term persistence as episomes in non-proliferating cells, and the availability of a variety of AAV serotypes differing in their cellular tropism are advantageous features of this biological nanoparticle. To deepen our understanding of virus-host interactions, especially in terms of antiviral responses, we present here the first transcriptome analysis of AAV serotype 2 (AAV2)-infected human primary fibroblasts. Our findings indicate that interferon-γ inducible factor 16 acts as an antiviral factor in AAV2 infection and AAV2 vector-mediated cell transduction in an immune-modulatory independent way by interrupting the Sp1-dependent gene expression from viral or vector genomes.
Collapse
Affiliation(s)
| | - Kurt Tobler
- Institute of Virology,
University of Zurich,
Zurich, Switzerland
| | - Michael Seyffert
- Institute of Virology,
University of Zurich,
Zurich, Switzerland
| | - Anouk Lkharrazi
- Institute of Virology,
University of Zurich,
Zurich, Switzerland
| | - Joël Zöllig
- Institute of Virology,
University of Zurich,
Zurich, Switzerland
| | | | - Bernd Vogt
- Institute of Virology,
University of Zurich,
Zurich, Switzerland
| | - Hildegard Büning
- Institute of
Experimental Hematology, Hannover Medical
School, Hannover,
Germany
| | - Cornel Fraefel
- Institute of Virology,
University of Zurich,
Zurich, Switzerland
| |
Collapse
|
37
|
Fu XQ, Zhan WR, Tian WY, Zeng PM, Luo ZG. Comparative transcriptomic profiling reveals a role for Olig1 in promoting axon regeneration. Cell Rep 2024; 43:114514. [PMID: 39002126 DOI: 10.1016/j.celrep.2024.114514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 05/21/2024] [Accepted: 06/30/2024] [Indexed: 07/15/2024] Open
Abstract
The regenerative potential of injured axons displays considerable heterogeneity. However, the molecular mechanisms underlying the heterogeneity have not been fully elucidated. Here, we establish a method that can separate spinal motor neurons (spMNs) with low and high regenerative capacities and identify a set of transcripts revealing differential expression between two groups of neurons. Interestingly, oligodendrocyte transcription factor 1 (Olig1), which regulates the differentiation of various neuronal progenitors, exhibits recurrent expression in spMNs with enhanced regenerative capabilities. Furthermore, overexpression of Olig1 (Olig1 OE) facilitates axonal regeneration in various models, and down-regulation or deletion of Olig1 exhibits an opposite effect. By analyzing the overlapped differentially expressed genes after expressing individual Olig factor and functional validation, we find that the role of Olig1 is at least partially through the neurite extension factor 1 (Nrsn1). We therefore identify Olig1 as an intrinsic factor that promotes regenerative capacity of injured axons.
Collapse
Affiliation(s)
- Xiu-Qing Fu
- School of Life Science and Technology and State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China.
| | - Wen-Rong Zhan
- School of Life Science and Technology and State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Wei-Ya Tian
- School of Life Science and Technology and State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Peng-Ming Zeng
- School of Life Science and Technology and State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Zhen-Ge Luo
- School of Life Science and Technology and State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
38
|
Hoffmann M, Gallant J, LeBeau A, Schmidt D. Unlocking precision gene therapy: harnessing AAV tropism with nanobody swapping at capsid hotspots. NAR MOLECULAR MEDICINE 2024; 1:ugae008. [PMID: 39022346 PMCID: PMC11250487 DOI: 10.1093/narmme/ugae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024]
Abstract
Adeno-associated virus (AAV) has been remarkably successful in the clinic, but its broad tropism is a practical limitation of precision gene therapy. A promising path to engineer AAV tropism is the addition of binding domains to the AAV capsid that recognize cell surface markers present on a targeted cell type. We have recently identified two previously unexplored capsid regions near the 2/5-fold wall and 5-fold pore of the AAV capsid that are amenable to insertion of larger protein domains, including nanobodies. Here, we demonstrate that these hotspots facilitate AAV tropism switching through simple nanobody replacement without extensive optimization in both VP1 and VP2. Our data suggest that engineering VP2 is the preferred path for maintaining both virus production yield and infectivity. We demonstrate highly specific targeting of human cancer cells expressing fibroblast activating protein (FAP). Furthermore, we found that the combination of FAP nanobody insertion plus ablation of the heparin binding domain can reduce off-target infection to a minimum, while maintaining a strong infection of FAP receptor-positive cells. Taken together, our study shows that nanobody swapping at multiple capsid locations is a viable strategy for nanobody-directed cell-specific AAV targeting.
Collapse
Affiliation(s)
- Mareike D Hoffmann
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Joseph P Gallant
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Aaron M LeBeau
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Daniel Schmidt
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
39
|
Catalán-Tatjer D, Tzimou K, Nielsen LK, Lavado-García J. Unravelling the essential elements for recombinant adeno-associated virus (rAAV) production in animal cell-based platforms. Biotechnol Adv 2024; 73:108370. [PMID: 38692443 DOI: 10.1016/j.biotechadv.2024.108370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/05/2024] [Accepted: 04/27/2024] [Indexed: 05/03/2024]
Abstract
Recombinant adeno-associated viruses (rAAVs) stand at the forefront of gene therapy applications, holding immense significance for their safe and efficient gene delivery capabilities. The constantly increasing and unmet demand for rAAVs underscores the need for a more comprehensive understanding of AAV biology and its impact on rAAV production. In this literature review, we delved into AAV biology and rAAV manufacturing bioprocesses, unravelling the functions and essentiality of proteins involved in rAAV production. We discuss the interconnections between these proteins and how they affect the choice of rAAV production platform. By addressing existing inconsistencies, literature gaps and limitations, this review aims to define a minimal set of genes that are essential for rAAV production, providing the potential to advance rAAV biomanufacturing, with a focus on minimizing the genetic load within rAAV-producing cells.
Collapse
Affiliation(s)
- David Catalán-Tatjer
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Denmark
| | - Konstantina Tzimou
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Denmark
| | - Lars K Nielsen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Denmark; Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Australia
| | - Jesús Lavado-García
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Denmark.
| |
Collapse
|
40
|
Avilés EC, Wang SK, Patel S, Shi S, Lin L, Kefalov VJ, Goodrich LV, Cepko CL, Xue Y. High temporal frequency light response in mouse retina requires FAT3 signaling in bipolar cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.02.565326. [PMID: 37961274 PMCID: PMC10635074 DOI: 10.1101/2023.11.02.565326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Vision is initiated by the reception of light by photoreceptors and subsequent processing via downstream retinal neurons. Proper cellular organization depends on the multi-functional tissue polarity protein FAT3, which is required for amacrine cell connectivity and retinal lamination. Here we investigated the retinal function of Fat3 mutant mice and found decreases in physiological and perceptual responses to high frequency flashes. These defects did not correlate with abnormal amacrine cell wiring, pointing instead to a role in bipolar cell subtypes that also express FAT3. The role of FAT3 in the response to high temporal frequency flashes depends upon its ability to transduce an intracellular signal. Mechanistically, FAT3 binds to the synaptic protein PTPσ, intracellularly, and is required to localize GRIK1 to OFF-cone bipolar cell synapses with cone photoreceptors. These findings expand the repertoire of FAT3's functions and reveal its importance in bipolar cells for high frequency light response.
Collapse
Affiliation(s)
- Evelyn C. Avilés
- Department of Neurobiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
- Facultad de Ciencias Biologicas, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Sean K. Wang
- Departments of Genetics and Ophthalmology, Harvard Medical School, Boston, MA 02115
- Howard Hughes Medical Institute, Boston, MA 02115
| | - Sarina Patel
- Department of Neurobiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
| | - Shuxiang Shi
- Lingang Laboratory, Shanghai, China, 200031
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China, 201210
| | - Lucas Lin
- Departments of Genetics and Ophthalmology, Harvard Medical School, Boston, MA 02115
| | - Vladimir J. Kefalov
- Gavin Herbert Eye Institute & Center for Translational Vision Research, University of California, Irvine, CA 92697
| | - Lisa V. Goodrich
- Department of Neurobiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
| | - Constance L. Cepko
- Departments of Genetics and Ophthalmology, Harvard Medical School, Boston, MA 02115
- Howard Hughes Medical Institute, Boston, MA 02115
| | - Yunlu Xue
- Departments of Genetics and Ophthalmology, Harvard Medical School, Boston, MA 02115
- Lingang Laboratory, Shanghai, China, 200031
- Lead contact
| |
Collapse
|
41
|
Leach M, Cox C, Wickramasinghe SR, Chwatko M, Bhattacharyya D. Role of Microfiltration Membrane Morphology on Nanoparticle Purification to Enhance Downstream Purification of Viral Vectors. ACS APPLIED BIO MATERIALS 2024; 7:3932-3941. [PMID: 38822810 DOI: 10.1021/acsabm.4c00272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2024]
Abstract
In the rapidly advancing realms of gene therapy and biotechnology, the efficient purification of viral vectors is pivotal for ensuring the safety and efficacy of gene therapies. This study focuses on optimizing membrane selection for viral vector purification by evaluating key properties, including porosity, thickness, pore structure, and hydrophilicity. Notably, we employed adeno-associated virus (AAV)-sized nanoparticles (20 nm), 200 nm particles, and bovine serum albumin (BSA) to model viral vector harvesting. Experimental data from constant pressure normal flow filtration (NFF) at 1 and 2 bar using four commercial flat sheet membranes revealed distinct fouling behaviors. Symmetric membranes predominantly showed internal and external pore blockage, while asymmetric membranes formed a cake layer on the surface. Hydrophilicity exhibited a positive correlation with recovery, demonstrating an enhanced recovery with increased hydrophilicity. Membranes with higher porosity and interpore connectivity showcased superior throughput, reduced operating time, and increased recovery. Asymmetric polyether sulfone (PES) membranes emerged as the optimal choice, achieving ∼100% recovery of AAV-sized particles, an ∼44% reduction in model cell debris (200 nm particles), an ∼35% decrease in BSA, and the fastest operating time of all membranes tested. This systematic investigation into fouling behaviors and membrane properties not only informs optimal conditions for viral vector recovery but also lays the groundwork for advancing membrane-based strategies in bioprocessing.
Collapse
Affiliation(s)
- Mara Leach
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Catherine Cox
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, United States
| | | | - Malgorzata Chwatko
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Dibakar Bhattacharyya
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, United States
| |
Collapse
|
42
|
Kantor B, Odonovan B, Rittiner J, Hodgson D, Lindner N, Guerrero S, Dong W, Zhang A, Chiba-Falek O. All-in-one AAV-delivered epigenome-editing platform: proof-of-concept and therapeutic implications for neurodegenerative disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.14.536951. [PMID: 38798630 PMCID: PMC11118458 DOI: 10.1101/2023.04.14.536951] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Safely and efficiently controlling gene expression is a long-standing goal of biomedical research, and the recently discovered bacterial CRISPR/Cas system can be harnessed to create powerful tools for epigenetic editing. Current state-of-the-art systems consist of a deactivated-Cas9 nuclease (dCas9) fused to one of several epigenetic effector motifs/domains, along with a guide RNA (gRNA) which defines the genomic target. Such systems have been used to safely and effectively silence or activate a specific gene target under a variety of circumstances. Adeno-associated vectors (AAVs) are the therapeutic platform of choice for the delivery of genetic cargo; however, their small packaging capacity is not suitable for delivery of large constructs, which includes most CRISPR/dCas9-effector systems. To circumvent this, many AAV-based CRISPR/Cas tools are delivered in two pieces, from two separate viral cassettes. However, this approach requires higher viral payloads and usually is less efficient. Here we develop a compact dCas9-based repressor system packaged within a single, optimized AAV vector. The system uses a smaller dCas9 variant derived from Staphylococcus aureus ( Sa ). A novel repressor was engineered by fusing the small transcription repression domain (TRD) from MeCP2 with the KRAB repression domain. The final d Sa Cas9-KRAB-MeCP2(TRD) construct can be efficiently packaged, along with its associated gRNA, into AAV particles. Using reporter assays, we demonstrate that the platform is capable of robustly and sustainably repressing the expression of multiple genes-of-interest, both in vitro and in vivo . Moreover, we successfully reduced the expression of ApoE, the stronger genetic risk factor for late onset Alzheimer's disease (LOAD). This new platform will broaden the CRISPR/dCas9 toolset available for transcriptional manipulation of gene expression in research and therapeutic settings.
Collapse
|
43
|
Voorn RA, Sternbach M, Jarysta A, Rankovic V, Tarchini B, Wolf F, Vogl C. Slow kinesin-dependent microtubular transport facilitates ribbon synapse assembly in developing cochlear inner hair cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.12.589153. [PMID: 38659872 PMCID: PMC11042220 DOI: 10.1101/2024.04.12.589153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Sensory synapses are characterized by electron-dense presynaptic specializations, so-called synaptic ribbons. In cochlear inner hair cells (IHCs), ribbons play an essential role as core active zone (AZ) organizers, where they tether synaptic vesicles, cluster calcium channels and facilitate the temporally-precise release of primed vesicles. While a multitude of studies aimed to elucidate the molecular composition and function of IHC ribbon synapses, the developmental formation of these signalling complexes remains largely elusive to date. To address this shortcoming, we performed long-term live-cell imaging of fluorescently-labelled ribbon precursors in young postnatal IHCs to track ribbon precursor motion. We show that ribbon precursors utilize the apico-basal microtubular (MT) cytoskeleton for targeted trafficking to the presynapse, in a process reminiscent of slow axonal transport in neurons. During translocation, precursor volume regulation is achieved by highly dynamic structural plasticity - characterized by regularly-occurring fusion and fission events. Pharmacological MT destabilization negatively impacted on precursor translocation and attenuated structural plasticity, whereas genetic disruption of the anterograde molecular motor Kif1a impaired ribbon volume accumulation during developmental maturation. Combined, our data thus indicate an essential role of the MT cytoskeleton and Kif1a in adequate ribbon synapse formation and structural maintenance.
Collapse
Affiliation(s)
- Roos Anouk Voorn
- Presynaptogenesis and Intracellular Transport in Hair Cells Junior Research Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Centre Goettingen, 37075 Goettingen, Germany
- Göttingen Graduate Centre for Neurosciences, Biophysics and Molecular Biosciences, 37075 Goettingen, Germany
- Collaborative Research Centre 889 ‘Cellular Mechanisms of Sensory Processing’, 37075 Goettingen, Germany
- Auditory Neuroscience Group, Institute of Physiology, Medical University Innsbruck, A-6020 Innsbruck, Austria
| | - Michael Sternbach
- Campus Institute for Dynamics of Biological Networks, 37073 Goettingen, Germany
- Bernstein Centre for Computational Neuroscience, 37073 Goettingen, Germany
- Max Planck Institute for Dynamics and Self-Organization, 37077 Goettingen, Germany
| | | | - Vladan Rankovic
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37075 Göttingen, Germany
- Restorative Cochlear Genomics Group, Auditory Neuroscience and Optogenetics Laboratory, German Primate Center, 37075 Göttingen, Germany
| | - Basile Tarchini
- The Jackson Laboratory, Bar Harbor ME, USA
- Tufts University School of Medicine, Boston MA, USA
| | - Fred Wolf
- Campus Institute for Dynamics of Biological Networks, 37073 Goettingen, Germany
- Bernstein Centre for Computational Neuroscience, 37073 Goettingen, Germany
- Max Planck Institute for Dynamics and Self-Organization, 37077 Goettingen, Germany
- Institute for Dynamics of Complex Systems Georg-August-University, 37077 Goettingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, 37077 Goettingen, Germany
| | - Christian Vogl
- Presynaptogenesis and Intracellular Transport in Hair Cells Junior Research Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Centre Goettingen, 37075 Goettingen, Germany
- Collaborative Research Centre 889 ‘Cellular Mechanisms of Sensory Processing’, 37075 Goettingen, Germany
- Auditory Neuroscience Group, Institute of Physiology, Medical University Innsbruck, A-6020 Innsbruck, Austria
| |
Collapse
|
44
|
Sterin I, Niazi A, Kim J, Park J, Park S. Novel extracellular matrix architecture on excitatory neurons revealed by HaloTag-HAPLN1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.29.587384. [PMID: 38585814 PMCID: PMC10996768 DOI: 10.1101/2024.03.29.587384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
The brain's extracellular matrix (ECM) regulates neuronal plasticity and animal behavior. ECM staining shows an aggregated pattern in a net-like structure around a subset of neurons and diffuse staining in the interstitial matrix. However, understanding the structural features of ECM deposition across various neuronal types and subcellular compartments remains limited. To visualize the organization pattern and assembly process of the hyaluronan-scaffolded ECM in the brain, we fused a HaloTag to HAPLN1, which links hyaluronan and proteoglycans. Expression or application of the probe enables us to identify spatial and temporal regulation of ECM deposition and heterogeneity in ECM aggregation among neuronal populations. Dual-color birthdating shows the ECM assembly process in culture and in vivo. Sparse expression in vivo reveals novel forms of ECM architecture around excitatory neurons and developmentally regulated dendritic ECM. Overall, our study uncovers extensive structural features of the brain' ECM, suggesting diverse roles in regulating neuronal plasticity.
Collapse
Affiliation(s)
- Igal Sterin
- Department of Neurobiology, University of Utah, Salt Lake City, Utah, USA
| | - Ava Niazi
- Department of Neurobiology, University of Utah, Salt Lake City, Utah, USA
- Neuroscience Program, University of Utah, Salt Lake City, Utah, USA
| | - Jennifer Kim
- Department of Neurobiology, University of Utah, Salt Lake City, Utah, USA
| | - Joosang Park
- Department of Neurobiology, University of Utah, Salt Lake City, Utah, USA
| | - Sungjin Park
- Department of Neurobiology, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
45
|
Bai Y, Zhang X, Li Y, Qi F, Liu C, Ai X, Tang M, Szeto C, Gao E, Hua X, Xie M, Wang X, Tian Y, Chen Y, Huang G, Zhang J, Xiao W, Zhang L, Liu X, Yang Q, Houser SR, Chen X. Protein Kinase A Is a Master Regulator of Physiological and Pathological Cardiac Hypertrophy. Circ Res 2024; 134:393-410. [PMID: 38275112 PMCID: PMC10923071 DOI: 10.1161/circresaha.123.322729] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 01/12/2024] [Indexed: 01/27/2024]
Abstract
BACKGROUND The sympathoadrenergic system and its major effector PKA (protein kinase A) are activated to maintain cardiac output coping with physiological or pathological stressors. If and how PKA plays a role in physiological cardiac hypertrophy (PhCH) and pathological CH (PaCH) are not clear. METHODS Transgenic mouse models expressing the PKA inhibition domain (PKAi) of PKA inhibition peptide alpha (PKIalpha)-green fluorescence protein (GFP) fusion protein (PKAi-GFP) in a cardiac-specific and inducible manner (cPKAi) were used to determine the roles of PKA in physiological CH during postnatal growth or induced by swimming, and in PaCH induced by transaortic constriction (TAC) or augmented Ca2+ influx. Kinase profiling was used to determine cPKAi specificity. Echocardiography was used to determine cardiac morphology and function. Western blotting and immunostaining were used to measure protein abundance and phosphorylation. Protein synthesis was assessed by puromycin incorporation and protein degradation by measuring protein ubiquitination and proteasome activity. Neonatal rat cardiomyocytes (NRCMs) infected with AdGFP (GFP adenovirus) or AdPKAi-GFP (PKAi-GFP adenovirus) were used to determine the effects and mechanisms of cPKAi on myocyte hypertrophy. rAAV9.PKAi-GFP was used to treat TAC mice. RESULTS (1) cPKAi delayed postnatal cardiac growth and blunted exercise-induced PhCH; (2) PKA was activated in hearts after TAC due to activated sympathoadrenergic system, the loss of endogenous PKIα (PKA inhibition peptide α), and the stimulation by noncanonical PKA activators; (3) cPKAi ameliorated PaCH induced by TAC and increased Ca2+ influxes and blunted neonatal rat cardiomyocyte hypertrophy by isoproterenol and phenylephrine; (4) cPKAi prevented TAC-induced protein synthesis by inhibiting mTOR (mammalian target of rapamycin) signaling through reducing Akt (protein kinase B) activity, but enhancing inhibitory GSK-3α (glycogen synthase kinase-3α) and GSK-3β signals; (5) cPKAi reduced protein degradation by the ubiquitin-proteasome system via decreasing RPN6 phosphorylation; (6) cPKAi increased the expression of antihypertrophic atrial natriuretic peptide (ANP); (7) cPKAi ameliorated established PaCH and improved animal survival. CONCLUSIONS Cardiomyocyte PKA is a master regulator of PhCH and PaCH through regulating protein synthesis and degradation. cPKAi can be a novel approach to treat PaCH.
Collapse
Affiliation(s)
- Yingyu Bai
- Department of Biopharmaceuticals & Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Heping District, Tianjin, China
| | - Xiaoying Zhang
- Department of Physiology & Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
- Department of Cardiovascular Sciences, Center for Translational Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Ying Li
- The Second Artillery General Hospital, Beijing, China
| | - Fei Qi
- Department of Biopharmaceuticals & Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Heping District, Tianjin, China
| | - Chong Liu
- Department of Physiology & Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Xiaojie Ai
- Department of Physiology & Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Mingxin Tang
- Department of Physiology & Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Christopher Szeto
- Department of Physiology & Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Erhe Gao
- Department of Cardiovascular Sciences, Center for Translational Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Xiang Hua
- Fox Chase Cancer Center, Temple University, Philadelphia, PA 19111, USA
| | - Mingxing Xie
- Department of Ultrasound, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Xuejun Wang
- Division of Basic Biomedical Science, University of S Dakota Sanford School of Medicine, Vermillion, SD 57069, USA
| | - Ying Tian
- Department of Cardiovascular Sciences, Center for Translational Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Yongjie Chen
- Department of Epidemiology and Statistics, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Guowei Huang
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Junping Zhang
- Herman B Wells Center for Pediatric Research, Indiana University IUSM, Indianapolis, IN 46202, USA
| | - Weidong Xiao
- Herman B Wells Center for Pediatric Research, Indiana University IUSM, Indianapolis, IN 46202, USA
| | - Lili Zhang
- Research Vector Core, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Xueyuan Liu
- Research Vector Core, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Qing Yang
- Department of Cardiology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, China
| | - Steven R. Houser
- Department of Physiology & Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Xiongwen Chen
- Department of Biopharmaceuticals & Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Heping District, Tianjin, China
- Department of Physiology & Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
- Department of Cardiology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, China
| |
Collapse
|
46
|
Kim G, Chen Z, Li J, Luo J, Castro-Martinez F, Wisniewski J, Cui K, Wang Y, Sun J, Ren X, Crawford SE, Becerra SP, Zhu J, Liu T, Wang S, Zhao K, Wu C. Gut-liver axis calibrates intestinal stem cell fitness. Cell 2024; 187:914-930.e20. [PMID: 38280375 PMCID: PMC10923069 DOI: 10.1016/j.cell.2024.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 10/25/2023] [Accepted: 01/02/2024] [Indexed: 01/29/2024]
Abstract
The gut and liver are recognized to mutually communicate through the biliary tract, portal vein, and systemic circulation. However, it remains unclear how this gut-liver axis regulates intestinal physiology. Through hepatectomy and transcriptomic and proteomic profiling, we identified pigment epithelium-derived factor (PEDF), a liver-derived soluble Wnt inhibitor, which restrains intestinal stem cell (ISC) hyperproliferation to maintain gut homeostasis by suppressing the Wnt/β-catenin signaling pathway. Furthermore, we found that microbial danger signals resulting from intestinal inflammation can be sensed by the liver, leading to the repression of PEDF production through peroxisome proliferator-activated receptor-α (PPARα). This repression liberates ISC proliferation to accelerate tissue repair in the gut. Additionally, treating mice with fenofibrate, a clinical PPARα agonist used for hypolipidemia, enhances colitis susceptibility due to PEDF activity. Therefore, we have identified a distinct role for PEDF in calibrating ISC expansion for intestinal homeostasis through reciprocal interactions between the gut and liver.
Collapse
Affiliation(s)
- Girak Kim
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zuojia Chen
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jian Li
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jialie Luo
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Felipe Castro-Martinez
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jan Wisniewski
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kairong Cui
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yan Wang
- Mass Spectrometry Facility, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jialei Sun
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xiaobai Ren
- Department of Ophthalmology, Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Stanford, CA 94304, USA
| | - Susan E Crawford
- Department of Surgery, North Shore University Research Institute, University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
| | - S Patricia Becerra
- Section of Protein Structure and Function, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jimin Zhu
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Taotao Liu
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Sui Wang
- Department of Ophthalmology, Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Stanford, CA 94304, USA
| | - Keji Zhao
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chuan Wu
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
47
|
Kulkarni AA, Seal AG, Sonnet C, Oka K. Streamlined Adeno-Associated Virus Production Using Suspension HEK293T Cells. Bio Protoc 2024; 14:e4931. [PMID: 38379831 PMCID: PMC10875358 DOI: 10.21769/bioprotoc.4931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/28/2023] [Accepted: 01/17/2024] [Indexed: 02/22/2024] Open
Abstract
Recombinant adeno-associated viruses (rAAVs) are valuable viral vectors for in vivo gene transfer, also having significant ex vivo therapeutic potential. Continued efforts have focused on various gene therapy applications, capsid engineering, and scalable manufacturing processes. Adherent cells are commonly used for virus production in most basic science laboratories because of their efficiency and cost. Although suspension cells are easier to handle and scale up compared to adherent cells, their use in virus production is hampered by poor transfection efficiency. In this protocol, we developed a simple scalable AAV production protocol using serum-free-media-adapted HEK293T suspension cells and VirusGEN transfection reagent. The established protocol allows AAV production from transfection to quality analysis of purified AAV within two weeks. Typical vector yields for the described suspension system followed by iodixanol purification range from a total of 1 × 1013 to 1.5 × 1013 vg (vector genome) using 90 mL of cell suspension vs. 1 × 1013 to 2 × 1013 vg using a regular adherent cell protocol (10 × 15 cm dishes). Key features • Adeno-associated virus (AAV) production using serum-free-media-adapted HEK293T suspension cells. • Efficient transfection with VirusGEN. • High AAV yield from small-volume cell culture. Graphical overview.
Collapse
Affiliation(s)
- Aditi A. Kulkarni
- Gene Vector Core, Advanced Technology Cores, Baylor
College of Medicine, Houston, TX, USA
| | - Austin G. Seal
- Gene Vector Core, Advanced Technology Cores, Baylor
College of Medicine, Houston, TX, USA
| | - Corinne Sonnet
- Gene Vector Core, Advanced Technology Cores, Baylor
College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine,
Houston, TX, USA
| | - Kazuhiro Oka
- Gene Vector Core, Advanced Technology Cores, Baylor
College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor
College of Medicine, Houston, TX, USA
| |
Collapse
|
48
|
Matsushita N, Kato S, Nishizawa K, Sugawara M, Takeuchi K, Miyasaka Y, Mashimo T, Kobayashi K. Protocol for highly selective transgene expression through the flip-excision switch system by using a unilateral spacer sequence in rodents. STAR Protoc 2023; 4:102667. [PMID: 37906596 PMCID: PMC10622305 DOI: 10.1016/j.xpro.2023.102667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/29/2023] [Accepted: 10/03/2023] [Indexed: 11/02/2023] Open
Abstract
We present a protocol to induce Cre-dependent transgene expression in specific cell types in the rat brain, suppressing a leak expression in off-target cells, by using a flip-excision switch system with a unilateral spacer sequence. We describe steps for construction of transfer plasmids, preparation of adeno-associated viral vectors, intracranial injection, and detection of transgene expression. Our protocol provides a useful strategy for a better understanding of the structure and function of specific cell types in the complex neural circuit. For complete details on the use and execution of this protocol, please refer to Matsushita et al.1.
Collapse
Affiliation(s)
- Natsuki Matsushita
- Division of Laboratory Animal Research, Aichi Medical University School of Medicine, Aichi 480-1195, Japan.
| | - Shigeki Kato
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Kayo Nishizawa
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Masateru Sugawara
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Kosei Takeuchi
- Department of Medical Cell Biology, Aichi Medical University School of Medicine, Aichi 480-1195, Japan
| | - Yoshiki Miyasaka
- Laboratory of Reproductive Engineering, Institute of Experimental Animal Sciences, Osaka University Medical School, Suita 565-0871, Japan
| | - Tomoji Mashimo
- Division of Animal Genetics, Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan.
| |
Collapse
|
49
|
Hoffmann MD, Zdechlik AC, He Y, Nedrud D, Aslanidi G, Gordon W, Schmidt D. Multiparametric domain insertional profiling of adeno-associated virus VP1. Mol Ther Methods Clin Dev 2023; 31:101143. [PMID: 38027057 PMCID: PMC10661864 DOI: 10.1016/j.omtm.2023.101143] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 10/21/2023] [Indexed: 12/01/2023]
Abstract
Several evolved properties of adeno-associated virus (AAV), such as broad tropism and immunogenicity in humans, are barriers to AAV-based gene therapy. Most efforts to re-engineer these properties have focused on variable regions near AAV's 3-fold protrusions and capsid protein termini. To comprehensively survey AAV capsids for engineerable hotspots, we determined multiple AAV fitness phenotypes upon insertion of six structured protein domains into the entire AAV-DJ capsid protein VP1. This is the largest and most comprehensive AAV domain insertion dataset to date. Our data revealed a surprising robustness of AAV capsids to accommodate large domain insertions. Insertion permissibility depended strongly on insertion position, domain type, and measured fitness phenotype, which clustered into contiguous structural units that we could link to distinct roles in AAV assembly, stability, and infectivity. We also identified engineerable hotspots of AAV that facilitate the covalent attachment of binding scaffolds, which may represent an alternative approach to re-direct AAV tropism.
Collapse
Affiliation(s)
- Mareike D. Hoffmann
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Alina C. Zdechlik
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Yungui He
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - David Nedrud
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Wendy Gordon
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Daniel Schmidt
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
50
|
Shikano Y, Yagishita S, Tanaka KF, Takata N. Slow-rising and fast-falling dopaminergic dynamics jointly adjust negative prediction error in the ventral striatum. Eur J Neurosci 2023; 58:4502-4522. [PMID: 36843200 DOI: 10.1111/ejn.15945] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 02/22/2023] [Indexed: 02/28/2023]
Abstract
The greater the reward expectations are, the more different the brain's physiological response will be. Although it is well-documented that better-than-expected outcomes are encoded quantitatively via midbrain dopaminergic (DA) activity, it has been less addressed experimentally whether worse-than-expected outcomes are expressed quantitatively as well. We show that larger reward expectations upon unexpected reward omissions are associated with the preceding slower rise and following larger decrease (DA dip) in the DA concentration at the ventral striatum of mice. We set up a lever press task on a fixed ratio (FR) schedule requiring five lever presses as an effort for a food reward (FR5). The mice occasionally checked the food magazine without a reward before completing the task. The percentage of this premature magazine entry (PME) increased as the number of lever presses approached five, showing rising expectations with increasing proximity to task completion, and hence greater reward expectations. Fibre photometry of extracellular DA dynamics in the ventral striatum using a fluorescent protein (genetically encoded GPCR activation-based DA sensor: GRABDA2m ) revealed that the slow increase and fast decrease in DA levels around PMEs were correlated with the PME percentage, demonstrating a monotonic relationship between the DA dip amplitude and degree of expectations. Computational modelling of the lever press task implementing temporal difference errors and state transitions replicated the observed correlation between the PME frequency and DA dip amplitude in the FR5 task. Taken together, these findings indicate that the DA dip amplitude represents the degree of reward expectations monotonically, which may guide behavioural adjustment.
Collapse
Affiliation(s)
- Yu Shikano
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
- Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Sho Yagishita
- Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kenji F Tanaka
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Norio Takata
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|