1
|
Palli SR. RNAi turns 25:contributions and challenges in insect science. FRONTIERS IN INSECT SCIENCE 2023; 3:1209478. [PMID: 38469536 PMCID: PMC10926446 DOI: 10.3389/finsc.2023.1209478] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 05/26/2023] [Indexed: 03/13/2024]
Abstract
Since its discovery in 1998, RNA interference (RNAi), a Nobel prize-winning technology, made significant contributions to advances in biology because of its ability to mediate the knockdown of specific target genes. RNAi applications in medicine and agriculture have been explored with mixed success. The past 25 years of research on RNAi resulted in advances in our understanding of the mechanisms of its action, target specificity, and differential efficiency among animals and plants. RNAi played a major role in advances in insect biology. Did RNAi technology fully meet insect pest and disease vector management expectations? This review will discuss recent advances in the mechanisms of RNAi and its contributions to insect science. The remaining challenges, including delivery to the target site, differential efficiency, potential resistance development and possible solutions for the widespread use of this technology in insect management.
Collapse
Affiliation(s)
- Subba Reddy Palli
- Department of Entomology, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
2
|
Wang Y, Lee H, Fear JM, Berger I, Oliver B, Przytycka TM. NetREX-CF integrates incomplete transcription factor data with gene expression to reconstruct gene regulatory networks. Commun Biol 2022; 5:1282. [PMID: 36418514 PMCID: PMC9684490 DOI: 10.1038/s42003-022-04226-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/04/2022] [Indexed: 11/25/2022] Open
Abstract
The inference of Gene Regulatory Networks (GRNs) is one of the key challenges in systems biology. Leading algorithms utilize, in addition to gene expression, prior knowledge such as Transcription Factor (TF) DNA binding motifs or results of TF binding experiments. However, such prior knowledge is typically incomplete, therefore, integrating it with gene expression to infer GRNs remains difficult. To address this challenge, we introduce NetREX-CF-Regulatory Network Reconstruction using EXpression and Collaborative Filtering-a GRN reconstruction approach that brings together Collaborative Filtering to address the incompleteness of the prior knowledge and a biologically justified model of gene expression (sparse Network Component Analysis based model). We validated the NetREX-CF using Yeast data and then used it to construct the GRN for Drosophila Schneider 2 (S2) cells. To corroborate the GRN, we performed a large-scale RNA-Seq analysis followed by a high-throughput RNAi treatment against all 465 expressed TFs in the cell line. Our knockdown result has not only extensively validated the GRN we built, but also provides a benchmark that our community can use for evaluating GRNs. Finally, we demonstrate that NetREX-CF can infer GRNs using single-cell RNA-Seq, and outperforms other methods, by using previously published human data.
Collapse
Affiliation(s)
- Yijie Wang
- Computer Science Department, Indiana University, Bloomington, IN, 47408, USA.
| | - Hangnoh Lee
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, 50 South Drive, Bethesda, MD, 20892, USA
| | - Justin M Fear
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, 50 South Drive, Bethesda, MD, 20892, USA
| | - Isabelle Berger
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, 50 South Drive, Bethesda, MD, 20892, USA
| | - Brian Oliver
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, 50 South Drive, Bethesda, MD, 20892, USA.
| | - Teresa M Przytycka
- National Center of Biotechnology Information, National Library of Medicine, NIH, Bethesda, MD, 20894, USA.
| |
Collapse
|
3
|
Sánchez-Álvarez M, del Pozo MÁ, Bosch M, Pol A. Insights Into the Biogenesis and Emerging Functions of Lipid Droplets From Unbiased Molecular Profiling Approaches. Front Cell Dev Biol 2022; 10:901321. [PMID: 35756995 PMCID: PMC9213792 DOI: 10.3389/fcell.2022.901321] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/17/2022] [Indexed: 11/30/2022] Open
Abstract
Lipid droplets (LDs) are spherical, single sheet phospholipid-bound organelles that store neutral lipids in all eukaryotes and some prokaryotes. Initially conceived as relatively inert depots for energy and lipid precursors, these highly dynamic structures play active roles in homeostatic functions beyond metabolism, such as proteostasis and protein turnover, innate immunity and defense. A major share of the knowledge behind this paradigm shift has been enabled by the use of systematic molecular profiling approaches, capable of revealing and describing these non-intuitive systems-level relationships. Here, we discuss these advances and some of the challenges they entail, and highlight standing questions in the field.
Collapse
Affiliation(s)
- Miguel Sánchez-Álvarez
- Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Miguel Ángel del Pozo
- Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Marta Bosch
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Albert Pol
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
4
|
Shaukat A, Khan MHF, Ahmad H, Umer Z, Tariq M. Interplay Between BALL and CREB Binding Protein Maintains H3K27 Acetylation on Active Genes in Drosophila. Front Cell Dev Biol 2021; 9:740866. [PMID: 34650987 PMCID: PMC8509297 DOI: 10.3389/fcell.2021.740866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/07/2021] [Indexed: 12/22/2022] Open
Abstract
CREB binding protein (CBP) is a multifunctional transcriptional co-activator that interacts with a variety of transcription factors and acts as a histone acetyltransferase. In Drosophila, CBP mediated acetylation of histone H3 lysine 27 (H3K27ac) is a known hallmark of gene activation regulated by trithorax group proteins (trxG). Recently, we have shown that a histone kinase Ballchen (BALL) substantially co-localizes with H3K27ac at trxG target loci and is required to maintain gene activation in Drosophila. Here, we report a previously unknown interaction between BALL and CBP, which positively regulates H3K27ac. Analysis of genome-wide binding profile of BALL and CBP reveals major overlap and their co-localization at actively transcribed genes. We show that BALL biochemically interacts with CBP and depletion of BALL results in drastic reduction in H3K27ac. Together, these results demonstrate a previously unknown synergy between BALL and CBP and reveals a potentially new pathway required to maintain gene activation during development.
Collapse
Affiliation(s)
- Ammad Shaukat
- Epigenetics and Gene Regulation Laboratory, Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Muhammad Haider Farooq Khan
- Epigenetics and Gene Regulation Laboratory, Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Hina Ahmad
- Epigenetics and Gene Regulation Laboratory, Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Zain Umer
- Epigenetics and Gene Regulation Laboratory, Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Muhammad Tariq
- Epigenetics and Gene Regulation Laboratory, Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| |
Collapse
|
5
|
Jones CE, Tan WS, Grey F, Hughes DJ. Discovering antiviral restriction factors and pathways using genetic screens. J Gen Virol 2021; 102:001603. [PMID: 34020727 PMCID: PMC8295917 DOI: 10.1099/jgv.0.001603] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/29/2021] [Indexed: 12/24/2022] Open
Abstract
Viral infections activate the powerful interferon (IFN) response that induces the expression of several hundred IFN stimulated genes (ISGs). The principal role of this extensive response is to create an unfavourable environment for virus replication and to limit spread; however, untangling the biological consequences of this large response is complicated. In addition to a seemingly high degree of redundancy, several ISGs are usually required in combination to limit infection as individual ISGs often have low to moderate antiviral activity. Furthermore, what ISG or combination of ISGs are antiviral for a given virus is usually not known. For these reasons, and since the function(s) of many ISGs remains unexplored, genome-wide approaches are well placed to investigate what aspects of this response result in an appropriate, virus-specific phenotype. This review discusses the advances screening approaches have provided for the study of host defence mechanisms, including clustered regularly interspaced short palindromic repeats/CRISPR associated protein 9 (CRISPR/Cas9), ISG expression libraries and RNA interference (RNAi) technologies.
Collapse
Affiliation(s)
- Chloe E. Jones
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews, KY16 9ST, UK
| | - Wenfang S. Tan
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Finn Grey
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - David J. Hughes
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews, KY16 9ST, UK
| |
Collapse
|
6
|
Frankenreiter L, Gahr BM, Schmid H, Zimmermann M, Deichsel S, Hoffmeister P, Turkiewicz A, Borggrefe T, Oswald F, Nagel AC. Phospho-Site Mutations in Transcription Factor Suppressor of Hairless Impact Notch Signaling Activity During Hematopoiesis in Drosophila. Front Cell Dev Biol 2021; 9:658820. [PMID: 33937259 PMCID: PMC8079769 DOI: 10.3389/fcell.2021.658820] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/25/2021] [Indexed: 11/13/2022] Open
Abstract
The highly conserved Notch signaling pathway controls a multitude of developmental processes including hematopoiesis. Here, we provide evidence for a novel mechanism of tissue-specific Notch regulation involving phosphorylation of CSL transcription factors within the DNA-binding domain. Earlier we found that a phospho-mimetic mutation of the Drosophila CSL ortholog Suppressor of Hairless [Su(H)] at Ser269 impedes DNA-binding. By genome-engineering, we now introduced phospho-specific Su(H) mutants at the endogenous Su(H) locus, encoding either a phospho-deficient [Su(H) S269A ] or a phospho-mimetic [Su(H) S269D ] isoform. Su(H) S269D mutants were defective of Notch activity in all analyzed tissues, consistent with impaired DNA-binding. In contrast, the phospho-deficient Su(H) S269A mutant did not generally augment Notch activity, but rather specifically in several aspects of blood cell development. Unexpectedly, this process was independent of the corepressor Hairless acting otherwise as a general Notch antagonist in Drosophila. This finding is in agreement with a novel mode of Notch regulation by posttranslational modification of Su(H) in the context of hematopoiesis. Importantly, our studies of the mammalian CSL ortholog (RBPJ/CBF1) emphasize a potential conservation of this regulatory mechanism: phospho-mimetic RBPJ S221D was dysfunctional in both the fly as well as two human cell culture models, whereas phospho-deficient RBPJ S221A rather gained activity during fly hematopoiesis. Thus, dynamic phosphorylation of CSL-proteins within the DNA-binding domain provides a novel means to fine-tune Notch signal transduction in a context-dependent manner.
Collapse
Affiliation(s)
- Lisa Frankenreiter
- Department of General Genetics (190g), Institute of Biology (190), University of Hohenheim, Stuttgart, Germany
| | - Bernd M Gahr
- Department of General Genetics (190g), Institute of Biology (190), University of Hohenheim, Stuttgart, Germany
| | - Hannes Schmid
- Department of General Genetics (190g), Institute of Biology (190), University of Hohenheim, Stuttgart, Germany
| | - Mirjam Zimmermann
- Department of General Genetics (190g), Institute of Biology (190), University of Hohenheim, Stuttgart, Germany
| | - Sebastian Deichsel
- Department of General Genetics (190g), Institute of Biology (190), University of Hohenheim, Stuttgart, Germany
| | - Philipp Hoffmeister
- Department of Internal Medicine 1, Center for Internal Medicine, University Medical Center Ulm, Ulm, Germany
| | | | - Tilman Borggrefe
- Institute of Biochemistry, Justus-Liebig University of Giessen, Giessen, Germany
| | - Franz Oswald
- Department of Internal Medicine 1, Center for Internal Medicine, University Medical Center Ulm, Ulm, Germany
| | - Anja C Nagel
- Department of General Genetics (190g), Institute of Biology (190), University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
7
|
Nefedova LN. Drosophila melanogaster as a Model of Developmental Genetics: Modern Approaches and Prospects. Russ J Dev Biol 2020. [DOI: 10.1134/s1062360420040050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Rosin LF, Crocker O, Isenhart RL, Nguyen SC, Xu Z, Joyce EF. Chromosome territory formation attenuates the translocation potential of cells. eLife 2019; 8:49553. [PMID: 31682226 PMCID: PMC6855801 DOI: 10.7554/elife.49553] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 11/02/2019] [Indexed: 12/11/2022] Open
Abstract
The formation and spatial arrangement of chromosome territories (CTs) in interphase has been posited to influence the outcome and frequency of genomic translocations. This is supported by correlations between the frequency of inter-chromosomal contacts and translocation events in myriad systems. However, it remains unclear if CT formation itself influences the translocation potential of cells. We address this question in Drosophila cells by modulating the level of Condensin II, which regulates CT organization. Using whole-chromosome Oligopaints to identify genomic rearrangements, we find that increased contact frequencies between chromosomes due to Condensin II knockdown leads to an increased propensity to form translocations following DNA damage. Moreover, Condensin II over-expression is sufficient to drive spatial separation of CTs and attenuate the translocation potential of cells. Together, these results provide the first causal evidence that proper CT formation can protect the genome from potentially deleterious translocations in the presence of DNA damage.
Collapse
Affiliation(s)
- Leah F Rosin
- Department of Genetics, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Olivia Crocker
- Department of Genetics, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Randi L Isenhart
- Department of Genetics, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Son C Nguyen
- Department of Genetics, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Zhuxuan Xu
- Department of Genetics, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Eric F Joyce
- Department of Genetics, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| |
Collapse
|
9
|
Kim AR, Choi KW. TRiC/CCT chaperonins are essential for organ growth by interacting with insulin/TOR signaling in Drosophila. Oncogene 2019; 38:4739-4754. [PMID: 30792539 PMCID: PMC6756063 DOI: 10.1038/s41388-019-0754-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 12/28/2018] [Accepted: 02/08/2019] [Indexed: 12/12/2022]
Abstract
Organ size is regulated by intercellular signaling for cell growth and proliferation. The TOR pathway mediates a key signaling mechanism for controlling cell size and number in organ growth. Chaperonin containing TCP-1 (CCT) is a complex that assists protein folding and function, but its role in animal development is largely unknown. Here we show that the CCT complex is required for organ growth by interacting with the TOR pathway in Drosophila. Reduction of CCT4 results in growth defects by affecting both cell size and proliferation. Loss of CCT4 causes preferential cell death anterior to the morphogenetic furrow in the eye disc and within wing pouch in the wing disc. Depletion of any CCT subunit in the eye disc results in headless phenotype. Overgrowth by active TOR signaling is suppressed by CCT RNAi. The CCT complex physically interacts with TOR signaling components including TOR, Rheb, and S6K. Loss of CCT leads to decreased phosphorylation of S6K and S6 while increasing phosphorylation of Akt. Insulin/TOR signaling is also necessary and sufficient for promoting CCT complex transcription. Our data provide evidence that the CCT complex regulates organ growth by directly interacting with the TOR signaling pathway.
Collapse
Affiliation(s)
- Ah-Ram Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Republic of Korea.,Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Kwang-Wook Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Republic of Korea.
| |
Collapse
|
10
|
Grobler Y, Yun CY, Kahler DJ, Bergman CM, Lee H, Oliver B, Lehmann R. Whole genome screen reveals a novel relationship between Wolbachia levels and Drosophila host translation. PLoS Pathog 2018; 14:e1007445. [PMID: 30422992 PMCID: PMC6258568 DOI: 10.1371/journal.ppat.1007445] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 11/27/2018] [Accepted: 10/30/2018] [Indexed: 11/29/2022] Open
Abstract
Wolbachia is an intracellular bacterium that infects a remarkable range of insect hosts. Insects such as mosquitos act as vectors for many devastating human viruses such as Dengue, West Nile, and Zika. Remarkably, Wolbachia infection provides insect hosts with resistance to many arboviruses thereby rendering the insects ineffective as vectors. To utilize Wolbachia effectively as a tool against vector-borne viruses a better understanding of the host-Wolbachia relationship is needed. To investigate Wolbachia-insect interactions we used the Wolbachia/Drosophila model that provides a genetically tractable system for studying host-pathogen interactions. We coupled genome-wide RNAi screening with a novel high-throughput fluorescence in situ hybridization (FISH) assay to detect changes in Wolbachia levels in a Wolbachia-infected Drosophila cell line JW18. 1117 genes altered Wolbachia levels when knocked down by RNAi of which 329 genes increased and 788 genes decreased the level of Wolbachia. Validation of hits included in depth secondary screening using in vitro RNAi, Drosophila mutants, and Wolbachia-detection by DNA qPCR. A diverse set of host gene networks was identified to regulate Wolbachia levels and unexpectedly revealed that perturbations of host translation components such as the ribosome and translation initiation factors results in increased Wolbachia levels both in vitro using RNAi and in vivo using mutants and a chemical-based translation inhibition assay. This work provides evidence for Wolbachia-host translation interaction and strengthens our general understanding of the Wolbachia-host intracellular relationship.
Collapse
Affiliation(s)
- Yolande Grobler
- Department of Cell Biology, Howard Hughes Medical Institute and Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, NY, United States of America
| | - Chi Y. Yun
- High Throughput Biology Core, Skirball Institute at New York University Langone Medical Center, New York, NY, United States of America
| | - David J. Kahler
- High Throughput Biology Core, Skirball Institute at New York University Langone Medical Center, New York, NY, United States of America
| | - Casey M. Bergman
- Department of Genetics and Institute of Bioinformatics, University of Georgia, Athens, GA, United States of America
| | - Hangnoh Lee
- Section of Developmental Genomics, Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, United States of America
| | - Brian Oliver
- Section of Developmental Genomics, Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, United States of America
| | - Ruth Lehmann
- Department of Cell Biology, Howard Hughes Medical Institute and Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, NY, United States of America
| |
Collapse
|
11
|
Rosin LF, Nguyen SC, Joyce EF. Condensin II drives large-scale folding and spatial partitioning of interphase chromosomes in Drosophila nuclei. PLoS Genet 2018; 14:e1007393. [PMID: 30001329 PMCID: PMC6042687 DOI: 10.1371/journal.pgen.1007393] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/03/2018] [Indexed: 12/26/2022] Open
Abstract
Metazoan chromosomes are folded into discrete sub-nuclear domains, referred to as chromosome territories (CTs). The molecular mechanisms that underlie the formation and maintenance of CTs during the cell cycle remain largely unknown. Here, we have developed high-resolution chromosome paints to investigate CT organization in Drosophila cycling cells. We show that large-scale chromosome folding patterns and levels of chromosome intermixing are remarkably stable across various cell types. Our data also suggest that the nucleus scales to accommodate fluctuations in chromosome size throughout the cell cycle, which limits the degree of intermixing between neighboring CTs. Finally, we show that the cohesin and condensin complexes are required for different scales of chromosome folding, with condensin II being especially important for the size, shape, and level of intermixing between CTs in interphase. These findings suggest that large-scale chromosome folding driven by condensin II influences the extent to which chromosomes interact, which may have direct consequences for cell-type specific genome stability.
Collapse
Affiliation(s)
- Leah F. Rosin
- Department of Genetics, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Son C. Nguyen
- Department of Genetics, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Eric F. Joyce
- Department of Genetics, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
12
|
RNA interference technology to improve the baculovirus-insect cell expression system. Biotechnol Adv 2018; 36:443-451. [DOI: 10.1016/j.biotechadv.2018.01.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 12/11/2017] [Accepted: 01/13/2018] [Indexed: 02/02/2023]
|
13
|
Heigwer F, Port F, Boutros M. RNA Interference (RNAi) Screening in Drosophila. Genetics 2018; 208:853-874. [PMID: 29487145 PMCID: PMC5844339 DOI: 10.1534/genetics.117.300077] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 09/28/2017] [Indexed: 12/22/2022] Open
Abstract
In the last decade, RNA interference (RNAi), a cellular mechanism that uses RNA-guided degradation of messenger RNA transcripts, has had an important impact on identifying and characterizing gene function. First discovered in Caenorhabditis elegans, RNAi can be used to silence the expression of genes through introduction of exogenous double-stranded RNA into cells. In Drosophila, RNAi has been applied in cultured cells or in vivo to perturb the function of single genes or to systematically probe gene function on a genome-wide scale. In this review, we will describe the use of RNAi to study gene function in Drosophila with a particular focus on high-throughput screening methods applied in cultured cells. We will discuss available reagent libraries and cell lines, methodological approaches for cell-based assays, and computational methods for the analysis of high-throughput screens. Furthermore, we will review the generation and use of genome-scale RNAi libraries for tissue-specific knockdown analysis in vivo and discuss the differences and similarities with the use of genome-engineering methods such as CRISPR/Cas9 for functional analysis.
Collapse
Affiliation(s)
- Florian Heigwer
- Division of Signaling and Functional Genomics, German Cancer Research Center, and Department of Cell and Molecular Biology, Heidelberg University, Medical Faculty Mannheim, D-69120, Germany
| | - Fillip Port
- Division of Signaling and Functional Genomics, German Cancer Research Center, and Department of Cell and Molecular Biology, Heidelberg University, Medical Faculty Mannheim, D-69120, Germany
| | - Michael Boutros
- Division of Signaling and Functional Genomics, German Cancer Research Center, and Department of Cell and Molecular Biology, Heidelberg University, Medical Faculty Mannheim, D-69120, Germany
| |
Collapse
|
14
|
Host Cell S Phase Restricts Legionella pneumophila Intracellular Replication by Destabilizing the Membrane-Bound Replication Compartment. mBio 2017; 8:mBio.02345-16. [PMID: 28830950 PMCID: PMC5565972 DOI: 10.1128/mbio.02345-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Legionella pneumophila grows within cells ranging from environmental amoebae to human macrophages. In spite of this conserved strategy of pathogenesis, identification of host factors that restrict L. pneumophila intracellular replication has not been extended outside components of the mammalian innate immune response. We performed a double-stranded RNA (dsRNA) screen against more than 50% of the Drosophila melanogaster annotated open reading frames (ORFs) to identify host cell factors that restrict L. pneumophila. The majority of analyzed dsRNAs that stimulated L. pneumophila intracellular replication were directed against host proteins involved in protein synthesis or cell cycle control. Consistent with disruption of the cell cycle stimulating intracellular replication, proteins involved in translation initiation also resulted in G1 arrest. Stimulation of replication was dependent on the stage of cell cycle arrest, as dsRNAs causing arrest during S phase had an inhibitory effect on intracellular replication. The inhibitory effects of S phase arrest could be recapitulated in a human cell line, indicating that cell cycle control of L. pneumophila replication is evolutionarily conserved. Synchronized HeLa cell populations in S phase and challenged with L. pneumophila failed to progress through the cell cycle and were depressed for supporting intracellular replication. Poor bacterial replication in S phase was associated with loss of the vacuole membrane barrier, resulting in exposure of bacteria to the cytosol and their eventual degradation. These results are consistent with the model that S phase is inhibitory for L. pneumophila intracellular survival as a consequence of failure to maintain the integrity of the membrane surrounding intracellular bacteria. Legionella pneumophila has the ability to replicate within human macrophages and amoebal hosts. Here, we report that the host cell cycle influences L. pneumophila intracellular replication. Our data demonstrate that the G1 and G2/M phases of the host cell cycle are permissive for bacterial replication, while S phase is toxic for the bacterium. L. pneumophila replicates poorly within host cells present in S phase. The inability of L. pneumophila to replicate relies on its failure to control the integrity of its vacuole, leading to cytosolic exposure of the bacteria and eventual degradation. The data presented here argue that growth-arrested host cells that are encountered by L. pneumophila in either the environment or within human hosts are ideal targets for intracellular replication because their transit through S phase is blocked.
Collapse
|
15
|
Genome-Wide RNAi Screens for RNA Processing Events in Drosophila melanogaster S2 Cells. Methods Mol Biol 2017. [PMID: 28766301 DOI: 10.1007/978-1-4939-7204-3_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Over the past 10 years, the design and application of genome-wide screening (GWS) has improved to the point that it can now be done at level of the individual laboratory. The advantages of GWSs compared to classical genetic screens include: immediate identification of a positive scoring gene, relatively short period of time necessary to conduct the screen (as little as 1 week), cell lines do not present developmental needs for gene expression that an organism normally would, and validation/confirmation of results is straightforward. Here, we describe a general protocol for GWS to be conducted in Drosophila melanogaster S2 cells. We provide specific details on what type of experiments must be done before initiating a screen, the materials that are required to conduct a screen, and make suggestions on methods to carry out secondary screening and counter-screening once the initial GWS is complete. Multiple considerations are also raised that focus on how to anticipate false positives/negatives and how to minimize their occurrence through intelligent design. Finally, we provide specific examples of data that our group has gathered from published genome-wide screens in order to exemplify how "hits" are scored and confirmed.
Collapse
|
16
|
Yu Y, Bekele S, Pieper R. Quick 96FASP for high throughput quantitative proteome analysis. J Proteomics 2017; 166:1-7. [PMID: 28669814 DOI: 10.1016/j.jprot.2017.06.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/19/2017] [Accepted: 06/27/2017] [Indexed: 10/19/2022]
Abstract
Filter aided sample preparation (FASP) is becoming a central method for proteomic sample cleanup and peptide generation prior to LC-MS analysis. We previously adapted this method to a 96-well filter plate, and applied to prepare protein digests from cell lysate and body fluid samples in a high throughput quantitative manner. While the 96FASP approach is scalable and can handle multiple samples simultaneously, two key advantages compared to single FASP, it is also time-consuming. The centrifugation-based liquid transfer on the filter plate takes 3-5 times longer than single filter. To address this limitation, we now present a quick 96FASP (named q96FASP) approach that, relying on the use of filter membranes with a large MWCO size (~30kDa), significantly reduces centrifugal times. We show that q96FASP allows the generation of protein digests derived from whole cell lysates and body fluids in a quality similar to that of the single FASP method. Processing a sample in multiple wells in parallel, we observed excellent experimental repeatability by label-free quantitation approach. We conclude that the q96FASP approach promises to be a promising cost- and time-effective method for shotgun proteomics and will be particularly useful in large scale biomarker discovery studies. SIGNIFICANCE High throughput sample processing is of particular interests for quantitative proteomics. The previously developed 96FASP is high throughput and appealing, however it is time-consuming in the context of centrifugation-based liquid transfer (~1.5h per spin). This study presents a truly high throughput sample preparation method based on large cut-off 96-well filter plate, which shortens the spin time to ~20min. To our knowledge, this is the first multi-well method that is entirely comparable with conventional FASP. This study thoroughly examined two types of filter plates and performed side-by-side comparisons with single FASP. Two types of samples, whole cell lysate of a UTI (urinary tract infection)-associated Klebsiella pneumoniae cell and human urine, were tested which demonstrated its capability for quantitative proteomics. The q96FSAP approach makes the filter plate-based approach more appealing for protein biomarker discovery projects, and could be broadly applied to large scale proteomics analysis.
Collapse
Affiliation(s)
- Yanbao Yu
- J. Craig Venter Institute, 9714 Medical Center Drive, Rockville, MD 20850, United States.
| | - Shiferaw Bekele
- J. Craig Venter Institute, 9714 Medical Center Drive, Rockville, MD 20850, United States
| | - Rembert Pieper
- J. Craig Venter Institute, 9714 Medical Center Drive, Rockville, MD 20850, United States
| |
Collapse
|
17
|
RNA interference-mediated knockdown of the hydroxyacid-oxoacid transhydrogenase gene decreases thiamethoxam resistance in adults of the whitefly Bemisia tabaci. Sci Rep 2017; 7:41201. [PMID: 28117358 PMCID: PMC5259701 DOI: 10.1038/srep41201] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 12/16/2016] [Indexed: 11/08/2022] Open
Abstract
Bemisia tabaci has developed a high level of resistance to thiamethoxam, a second generation neonicotinoid insecticide that has been widely used to control this pest. In this study, we investigated whether hydroxyacid-oxoacid transhydrogenase (HOT) is involved in resistance to the neonicotinoid insecticide thiamethoxam in the whitefly. We cloned the full-length gene that encodes HOT in B. tabaci. Its cDNA contains a 1428-bp open reading frame encoding 475 amino acid residues. Then we evaluated the mRNA expression level of HOT in different developmental stages, and found HOT expression was significantly greater in thiamethoxam resistance adults than in thiamethoxam susceptible adults. Subsequently, seven field populations of B. tabaci adults were sampled, the expression of mRNA level of HOT significant positive correlated with thiamethoxam resistance level. At last, we used a modified gene silencing system to knock-down HOT expression in B. tabaci adults. The results showed that the HOT mRNA levels decreased by 57% and thiamethoxam resistance decreased significantly after 2 days of feeding on a diet containing HOT dsRNA. The results indicated that down-regulation of HOT expression decreases thiamethoxam resistance in B. tabaci adults.
Collapse
|
18
|
Sanchez-Alvarez M, Zhang Q, Finger F, Wakelam MJO, Bakal C. Cell cycle progression is an essential regulatory component of phospholipid metabolism and membrane homeostasis. Open Biol 2016; 5:150093. [PMID: 26333836 PMCID: PMC4593667 DOI: 10.1098/rsob.150093] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We show that phospholipid anabolism does not occur uniformly during the metazoan cell cycle. Transition to S-phase is required for optimal mobilization of lipid precursors, synthesis of specific phospholipid species and endoplasmic reticulum (ER) homeostasis. Average changes observed in whole-cell phospholipid composition, and total ER lipid content, upon stimulation of cell growth can be explained by the cell cycle distribution of the population. TORC1 promotes phospholipid anabolism by slowing S/G2 progression. The cell cycle stage-specific nature of lipid biogenesis is dependent on p53. We propose that coupling lipid metabolism to cell cycle progression is a means by which cells have evolved to coordinate proliferation with cell and organelle growth.
Collapse
Affiliation(s)
- Miguel Sanchez-Alvarez
- Division of Cancer Biology, Chester Beatty Laboratories, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Qifeng Zhang
- Lipidomics Facility, Babraham Institute, Cambridge CB22 3AT, UK
| | - Fabian Finger
- Division of Cancer Biology, Chester Beatty Laboratories, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | | | - Chris Bakal
- Division of Cancer Biology, Chester Beatty Laboratories, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| |
Collapse
|
19
|
Abstract
The transforming growth factor-β (TGF-β) family of cytokines figures prominently in regulation of embryonic development and adult tissue homeostasis from Drosophila to mammals. Genetic defects affecting TGF-β signaling underlie developmental disorders and diseases such as cancer in human. Therefore, delineating the molecular mechanism by which TGF-β regulates cell biology is critical for understanding normal biology and disease mechanisms. Forward genetic screens in model organisms and biochemical approaches in mammalian tissue culture were instrumental in initial characterization of the TGF-β signal transduction pathway. With complete sequence information of the genomes and the advent of RNA interference (RNAi) technology, genome-wide RNAi screening emerged as a powerful functional genomics approach to systematically delineate molecular components of signal transduction pathways. Here, we describe a protocol for image-based whole-genome RNAi screening aimed at identifying molecules required for TGF-β signaling into the nucleus. Using this protocol we examined >90 % of annotated Drosophila open reading frames (ORF) individually and successfully uncovered several novel factors serving critical roles in the TGF-β pathway. Thus cell-based high-throughput functional genomics can uncover new mechanistic insights on signaling pathways beyond what the classical genetics had revealed.
Collapse
|
20
|
Abstract
Image-based screening is used to measure a variety of phenotypes in cells and whole organisms. Combined with perturbations such as RNA interference, small molecules, and mutations, such screens are a powerful method for gaining systematic insights into biological processes. Screens have been applied to study diverse processes, such as protein-localization changes, cancer cell vulnerabilities, and complex organismal phenotypes. Recently, advances in imaging and image-analysis methodologies have accelerated large-scale perturbation screens. Here, we describe the state of the art for image-based screening experiments and delineate experimental approaches and image-analysis approaches as well as discussing challenges and future directions, including leveraging CRISPR/Cas9-mediated genome engineering.
Collapse
Affiliation(s)
- Michael Boutros
- Division Signaling and Functional Genomics, German Cancer Research Center (DKFZ) and Department of Cell and Molecular Biology, Heidelberg University, Im Neuenheimer Feld 580, 69120 Heidelberg, Germany; German Cancer Consortium (DKTK), 69120 Heidelberg, Germany.
| | - Florian Heigwer
- Division Signaling and Functional Genomics, German Cancer Research Center (DKFZ) and Department of Cell and Molecular Biology, Heidelberg University, Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Christina Laufer
- Division Signaling and Functional Genomics, German Cancer Research Center (DKFZ) and Department of Cell and Molecular Biology, Heidelberg University, Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| |
Collapse
|
21
|
Bernheim AG, Libis VK, Lindner AB, Wintermute EH. Phage-mediated Delivery of Targeted sRNA Constructs to Knock Down Gene Expression in E. coli. J Vis Exp 2016. [PMID: 27023729 PMCID: PMC4829038 DOI: 10.3791/53618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
RNA-mediated knockdowns are widely used to control gene expression. This versatile family of techniques makes use of short RNA (sRNA) that can be synthesized with any sequence and designed to complement any gene targeted for silencing. Because sRNA constructs can be introduced to many cell types directly or using a variety of vectors, gene expression can be repressed in living cells without laborious genetic modification. The most common RNA knockdown technology, RNA interference (RNAi), makes use of the endogenous RNA-induced silencing complex (RISC) to mediate sequence recognition and cleavage of the target mRNA. Applications of this technique are therefore limited to RISC-expressing organisms, primarily eukaryotes. Recently, a new generation of RNA biotechnologists have developed alternative mechanisms for controlling gene expression through RNA, and so made possible RNA-mediated gene knockdowns in bacteria. Here we describe a method for silencing gene expression in E. coli that functionally resembles RNAi. In this system a synthetic phagemid is designed to express sRNA, which may designed to target any sequence. The expression construct is delivered to a population of E. coli cells with non-lytic M13 phage, after which it is able to stably replicate as a plasmid. Antisense recognition and silencing of the target mRNA is mediated by the Hfq protein, endogenous to E. coli. This protocol includes methods for designing the antisense sRNA, constructing the phagemid vector, packaging the phagemid into M13 bacteriophage, preparing a live cell population for infection, and performing the infection itself. The fluorescent protein mKate2 and the antibiotic resistance gene chloramphenicol acetyltransferase (CAT) are targeted to generate representative data and to quantify knockdown effectiveness.
Collapse
Affiliation(s)
- Aude G Bernheim
- U1001, Institut National de la Santé et de la Recherche Médicale (INSERM), Université Paris Descartes
| | - Vincent K Libis
- U1001, Institut National de la Santé et de la Recherche Médicale (INSERM), Université Paris Descartes
| | - Ariel B Lindner
- U1001, Institut National de la Santé et de la Recherche Médicale (INSERM), Université Paris Descartes
| | - Edwin H Wintermute
- U1001, Institut National de la Santé et de la Recherche Médicale (INSERM), Université Paris Descartes;
| |
Collapse
|
22
|
Abstract
RNA interference (RNAi) is a potent tool for perturbation of gene function in model organisms and human cells. In Drosophila, efficient RNAi enables screening approaches for components of cellular processes in vivo and in vitro. In cultured cells, measuring the effect of depleting gene products on a genome-wide scale can systematically associate gene function with diverse processes, such as cell growth and proliferation, signaling and trafficking. Here, we describe methods for RNAi experiments in cultured Drosophila cells with a focus on genome-wide loss-of-function screening. We illustrate the design of long double-stranded RNAs and provide protocols for their production by in vitro transcription and delivery in cell-based assays. Furthermore, we provide methods to fine-tune signaling reporters and high-content microscopy assays for genome-wide screening. Finally, we describe essential steps of high-throughput data analysis and how the experimental set-up can improve data normalization using a genome-wide RNAi screen for Wnt pathway activity data as an example.
Collapse
Affiliation(s)
- Maximilian Billmann
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg University, Im Neuenheimer Feld 580, D-69120, Heidelberg, Germany
| | - Michael Boutros
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg University, Im Neuenheimer Feld 580, D-69120, Heidelberg, Germany.
| |
Collapse
|
23
|
Helenius IT, Nair A, Bittar HET, Sznajder JI, Sporn PHS, Beitel GJ. Focused Screening Identifies Evoxine as a Small Molecule That Counteracts CO2-Induced Immune Suppression. ACTA ACUST UNITED AC 2015; 21:363-71. [PMID: 26701099 DOI: 10.1177/1087057115624091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 12/03/2015] [Indexed: 12/20/2022]
Abstract
Patients with severe lung disease may develop hypercapnia, elevation of the levels of CO2 in the lungs and blood, which is associated with increased risk of death, often from infection. To identify compounds that ameliorate the adverse effects of hypercapnia, we performed a focused screen of 8832 compounds using a CO2-responsive luciferase reporter in Drosophila S2* cells. We found that evoxine, a plant alkaloid, counteracts the CO2-induced transcriptional suppression of antimicrobial peptides in S2* cells. Strikingly, evoxine also inhibits hypercapnic suppression of interleukin-6 and the chemokine CCL2 expression in human THP-1 macrophages. Evoxine's effects are selective, since it does not prevent hypercapnic inhibition of phagocytosis by THP-1 cells or CO2-induced activation of AMPK in rat ATII pulmonary epithelial cells. The results suggest that hypercapnia suppresses innate immune gene expression by definable pathways that are evolutionarily conserved and demonstrate for the first time that specific CO2 effects can be targeted pharmacologically.
Collapse
Affiliation(s)
- Iiro Taneli Helenius
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA, USA
| | - Aisha Nair
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Humberto E Trejo Bittar
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jacob I Sznajder
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Peter H S Sporn
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
| | - Greg J Beitel
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| |
Collapse
|
24
|
Helenius IT, Haake RJ, Kwon YJ, Hu JA, Krupinski T, Casalino-Matsuda SM, Sporn PHS, Sznajder JI, Beitel GJ. Identification of Drosophila Zfh2 as a Mediator of Hypercapnic Immune Regulation by a Genome-Wide RNA Interference Screen. THE JOURNAL OF IMMUNOLOGY 2015; 196:655-667. [PMID: 26643480 DOI: 10.4049/jimmunol.1501708] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 11/02/2015] [Indexed: 12/27/2022]
Abstract
Hypercapnia, elevated partial pressure of CO2 in blood and tissue, develops in many patients with chronic severe obstructive pulmonary disease and other advanced lung disorders. Patients with advanced disease frequently develop bacterial lung infections, and hypercapnia is a risk factor for mortality in such individuals. We previously demonstrated that hypercapnia suppresses induction of NF-κB-regulated innate immune response genes required for host defense in human, mouse, and Drosophila cells, and it increases mortality from bacterial infections in both mice and Drosophila. However, the molecular mediators of hypercapnic immune suppression are undefined. In this study, we report a genome-wide RNA interference screen in Drosophila S2* cells stimulated with bacterial peptidoglycan. The screen identified 16 genes with human orthologs whose knockdown reduced hypercapnic suppression of the gene encoding the antimicrobial peptide Diptericin (Dipt), but did not increase Dipt mRNA levels in air. In vivo tests of one of the strongest screen hits, zinc finger homeodomain 2 (Zfh2; mammalian orthologs ZFHX3/ATBF1 and ZFHX4), demonstrate that reducing zfh2 function using a mutation or RNA interference improves survival of flies exposed to elevated CO2 and infected with Staphylococcus aureus. Tissue-specific knockdown of zfh2 in the fat body, the major immune and metabolic organ of the fly, mitigates hypercapnia-induced reductions in Dipt and other antimicrobial peptides and improves resistance of CO2-exposed flies to infection. Zfh2 mutations also partially rescue hypercapnia-induced delays in egg hatching, suggesting that Zfh2's role in mediating responses to hypercapnia extends beyond the immune system. Taken together, to our knowledge, these results identify Zfh2 as the first in vivo mediator of hypercapnic immune suppression.
Collapse
Affiliation(s)
- Iiro Taneli Helenius
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA.,Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ryan J Haake
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Yong-Jae Kwon
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Jennifer A Hu
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Thomas Krupinski
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - S Marina Casalino-Matsuda
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Peter H S Sporn
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.,Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612, USA
| | - Jacob I Sznajder
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Greg J Beitel
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
25
|
Teixeira FK, Sanchez CG, Hurd TR, Seifert JRK, Czech B, Preall JB, Hannon GJ, Lehmann R. ATP synthase promotes germ cell differentiation independent of oxidative phosphorylation. Nat Cell Biol 2015; 17:689-96. [PMID: 25915123 PMCID: PMC4573567 DOI: 10.1038/ncb3165] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 03/18/2015] [Indexed: 12/23/2022]
Abstract
The differentiation of stem cells is a tightly regulated process essential for animal development and tissue homeostasis. Through this process, attainment of new identity and function is achieved by marked changes in cellular properties. Intrinsic cellular mechanisms governing stem cell differentiation remain largely unknown, in part because systematic forward genetic approaches to the problem have not been widely used. Analysing genes required for germline stem cell differentiation in the Drosophila ovary, we find that the mitochondrial ATP synthase plays a critical role in this process. Unexpectedly, the ATP synthesizing function of this complex was not necessary for differentiation, as knockdown of other members of the oxidative phosphorylation system did not disrupt the process. Instead, the ATP synthase acted to promote the maturation of mitochondrial cristae during differentiation through dimerization and specific upregulation of the ATP synthase complex. Taken together, our results suggest that ATP synthase-dependent crista maturation is a key developmental process required for differentiation independent of oxidative phosphorylation.
Collapse
Affiliation(s)
- Felipe K. Teixeira
- Howard Hughes Medical Institute (HHMI) and Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Cell Biology, New York University School of Medicine, New York, New York 10016, USA
| | - Carlos G. Sanchez
- Howard Hughes Medical Institute (HHMI) and Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Cell Biology, New York University School of Medicine, New York, New York 10016, USA
| | - Thomas R. Hurd
- Howard Hughes Medical Institute (HHMI) and Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Cell Biology, New York University School of Medicine, New York, New York 10016, USA
| | - Jessica R. K. Seifert
- Howard Hughes Medical Institute (HHMI) and Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Cell Biology, New York University School of Medicine, New York, New York 10016, USA
| | - Benjamin Czech
- Watson School of Biological Sciences, HHMI, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Jonathan B. Preall
- Watson School of Biological Sciences, HHMI, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Gregory J. Hannon
- Watson School of Biological Sciences, HHMI, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Ruth Lehmann
- Howard Hughes Medical Institute (HHMI) and Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Cell Biology, New York University School of Medicine, New York, New York 10016, USA
| |
Collapse
|
26
|
Caraus I, Alsuwailem AA, Nadon R, Makarenkov V. Detecting and overcoming systematic bias in high-throughput screening technologies: a comprehensive review of practical issues and methodological solutions. Brief Bioinform 2015; 16:974-86. [DOI: 10.1093/bib/bbv004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Indexed: 11/13/2022] Open
|
27
|
Sanchez-Alvarez M, Finger F, Arias-Garcia MDM, Bousgouni V, Pascual-Vargas P, Bakal C. Signaling networks converge on TORC1-SREBP activity to promote endoplasmic reticulum homeostasis. PLoS One 2014; 9:e101164. [PMID: 25007267 PMCID: PMC4090155 DOI: 10.1371/journal.pone.0101164] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 06/02/2014] [Indexed: 01/13/2023] Open
Abstract
The function and capacity of the endoplasmic reticulum (ER) is determined by multiple processes ranging from the local regulation of peptide translation, translocation, and folding, to global changes in lipid composition. ER homeostasis thus requires complex interactions amongst numerous cellular components. However, describing the networks that maintain ER function during changes in cell behavior and environmental fluctuations has, to date, proven difficult. Here we perform a systems-level analysis of ER homeostasis, and find that although signaling networks that regulate ER function have a largely modular architecture, the TORC1-SREBP signaling axis is a central node that integrates signals emanating from different sub-networks. TORC1-SREBP promotes ER homeostasis by regulating phospholipid biosynthesis and driving changes in ER morphology. In particular, our network model shows TORC1-SREBP serves to integrate signals promoting growth and G1-S progression in order to maintain ER function during cell proliferation.
Collapse
Affiliation(s)
- Miguel Sanchez-Alvarez
- Division of Cancer Biology, Chester Beatty Laboratories, Institute of Cancer Research, London, United Kingdom
| | - Fabian Finger
- Division of Cancer Biology, Chester Beatty Laboratories, Institute of Cancer Research, London, United Kingdom
| | - Maria del Mar Arias-Garcia
- Division of Cancer Biology, Chester Beatty Laboratories, Institute of Cancer Research, London, United Kingdom
| | - Vicky Bousgouni
- Division of Cancer Biology, Chester Beatty Laboratories, Institute of Cancer Research, London, United Kingdom
| | - Patricia Pascual-Vargas
- Division of Cancer Biology, Chester Beatty Laboratories, Institute of Cancer Research, London, United Kingdom
| | - Chris Bakal
- Division of Cancer Biology, Chester Beatty Laboratories, Institute of Cancer Research, London, United Kingdom
- * E-mail:
| |
Collapse
|
28
|
Identification of Regulators of the Three-Dimensional Polycomb Organization by a Microscopy-Based Genome-wide RNAi Screen. Mol Cell 2014; 54:485-99. [DOI: 10.1016/j.molcel.2014.03.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 02/11/2014] [Accepted: 02/24/2014] [Indexed: 11/17/2022]
|
29
|
Ashton-Beaucage D, Udell CM, Gendron P, Sahmi M, Lefrançois M, Baril C, Guenier AS, Duchaine J, Lamarre D, Lemieux S, Therrien M. A functional screen reveals an extensive layer of transcriptional and splicing control underlying RAS/MAPK signaling in Drosophila. PLoS Biol 2014; 12:e1001809. [PMID: 24643257 PMCID: PMC3958334 DOI: 10.1371/journal.pbio.1001809] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 02/05/2014] [Indexed: 12/11/2022] Open
Abstract
A global RNAi screening approach in Drosophila cells identifies a large group of transcription and splicing factors that modulate RAS/MAPK signaling by altering the expression of MAPK. The small GTPase RAS is among the most prevalent oncogenes. The evolutionarily conserved RAF-MEK-MAPK module that lies downstream of RAS is one of the main conduits through which RAS transmits proliferative signals in normal and cancer cells. Genetic and biochemical studies conducted over the last two decades uncovered a small set of factors regulating RAS/MAPK signaling. Interestingly, most of these were found to control RAF activation, thus suggesting a central regulatory role for this event. Whether additional factors are required at this level or further downstream remains an open question. To obtain a comprehensive view of the elements functionally linked to the RAS/MAPK cascade, we used a quantitative assay in Drosophila S2 cells to conduct a genome-wide RNAi screen for factors impacting RAS-mediated MAPK activation. The screen led to the identification of 101 validated hits, including most of the previously known factors associated to this pathway. Epistasis experiments were then carried out on individual candidates to determine their position relative to core pathway components. While this revealed several new factors acting at different steps along the pathway—including a new protein complex modulating RAF activation—we found that most hits unexpectedly work downstream of MEK and specifically influence MAPK expression. These hits mainly consist of constitutive splicing factors and thereby suggest that splicing plays a specific role in establishing MAPK levels. We further characterized two representative members of this group and surprisingly found that they act by regulating mapk alternative splicing. This study provides an unprecedented assessment of the factors modulating RAS/MAPK signaling in Drosophila. In addition, it suggests that pathway output does not solely rely on classical signaling events, such as those controlling RAF activation, but also on the regulation of MAPK levels. Finally, it indicates that core splicing components can also specifically impact alternative splicing. The RAS/MAPK pathway is a cornerstone of the cell proliferation signaling apparatus. It has a notable involvement in cancer as mutations in the components of the pathway are associated with aberrant proliferation. Previous work has focused predominantly on post-translational regulation of RAS/MAPK signaling such that a large and intricate network of factors is now known to act on core pathway components. However, regulation at the pre-translational level has not been examined nearly as extensively and is comparatively poorly understood. In this study, we used an unbiased and global screening approach to survey the Drosophila genome—using Drosophila cultured cells—for novel regulators of this pathway. Surprisingly, a majority of our hits were associated to either transcription or mRNA splicing. We used a series of secondary screening assays to determine which part of the RAS/MAPK pathway these candidates target. We found that these factors were not equally distributed along the pathway, but rather converged predominantly on mapk mRNA expression and processing. Our findings raise the intriguing possibility that regulation of mapk transcript production is a key step for a diverse set of regulatory inputs, and may play an important part in RAS/MAPK signaling dynamics.
Collapse
Affiliation(s)
- Dariel Ashton-Beaucage
- Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, Université de Montréal, Montréal, Québec, Canada
| | - Christian M. Udell
- Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, Université de Montréal, Montréal, Québec, Canada
| | - Patrick Gendron
- Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, Université de Montréal, Montréal, Québec, Canada
| | - Malha Sahmi
- Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, Université de Montréal, Montréal, Québec, Canada
| | - Martin Lefrançois
- Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, Université de Montréal, Montréal, Québec, Canada
| | - Caroline Baril
- Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, Université de Montréal, Montréal, Québec, Canada
| | - Anne-Sophie Guenier
- Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, Université de Montréal, Montréal, Québec, Canada
| | - Jean Duchaine
- Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, Université de Montréal, Montréal, Québec, Canada
| | - Daniel Lamarre
- Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, Université de Montréal, Montréal, Québec, Canada
- Département de médecine, Université de Montréal, Montréal, Québec, Canada
| | - Sébastien Lemieux
- Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, Université de Montréal, Montréal, Québec, Canada
- Département d'informatique et de recherche opérationnelle, Université de Montréal, Montréal, Québec, Canada
| | - Marc Therrien
- Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, Université de Montréal, Montréal, Québec, Canada
- Département de pathologie et de biologie cellulaire, Université de Montréal, Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|
30
|
Yun C, DasGupta R. Luciferase reporter assay in Drosophila and mammalian tissue culture cells. CURRENT PROTOCOLS IN CHEMICAL BIOLOGY 2014; 6:7-23. [PMID: 24652620 PMCID: PMC4059354 DOI: 10.1002/9780470559277.ch130149] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Luciferase reporter gene assays are one of the most common methods for monitoring gene activity. Because of their sensitivity, dynamic range, and lack of endogenous activity, luciferase assays have been particularly useful for functional genomics in cell-based assays, such as RNAi screening. This unit describes delivery of two luciferase reporters with other nucleic acids (siRNA/dsRNA), measurement of the dual luciferase activities, and analysis of data generated. The systematic query of gene function (RNAi) combined with the advances in luminescent technology have made it possible to design powerful whole genome screens to address diverse and significant biological questions.
Collapse
Affiliation(s)
- Chi Yun
- New York University School of Medicine, NYU RNAi Core, Department of Biochemistry and Molecular Pharmacology, Skirball Institute, Lab 3-7, 540 First Avenue, New York, NY 10016, Ph. (212) 263-9080, Fax (212) 283-7984
| | - Ramanuj DasGupta
- New York University School of Medicine, NYU Cancer Institute, Department of Biochemistry and Molecular Pharmacology, Smilow Research Building, Rm 1211, New York, NY 10016, Ph. (212) 263-9247, Fax (212) 263-9210
| |
Collapse
|
31
|
Mohr SE. RNAi screening in Drosophila cells and in vivo. Methods 2014; 68:82-8. [PMID: 24576618 DOI: 10.1016/j.ymeth.2014.02.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 02/07/2014] [Accepted: 02/13/2014] [Indexed: 12/31/2022] Open
Abstract
Here, I discuss how RNAi screening can be used effectively to uncover gene function. Specifically, I discuss the types of high-throughput assays that can be done in Drosophila cells and in vivo, RNAi reagent design and available reagent collections, automated screen pipelines, analysis of screen results, and approaches to RNAi results verification.
Collapse
Affiliation(s)
- Stephanie E Mohr
- Drosophila RNAi Screening Center, Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, United States.
| |
Collapse
|
32
|
Xu J, Cherry S. Viruses and antiviral immunity in Drosophila. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 42:67-84. [PMID: 23680639 PMCID: PMC3826445 DOI: 10.1016/j.dci.2013.05.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 04/26/2013] [Accepted: 05/02/2013] [Indexed: 05/10/2023]
Abstract
Viral pathogens present many challenges to organisms, driving the evolution of a myriad of antiviral strategies to combat infections. A wide variety of viruses infect invertebrates, including both natural pathogens that are insect-restricted, and viruses that are transmitted to vertebrates. Studies using the powerful tools in the model organism Drosophila have expanded our understanding of antiviral defenses against diverse viruses. In this review, we will cover three major areas. First, we will describe the tools used to study viruses in Drosophila. Second, we will survey the major viruses that have been studied in Drosophila. And lastly, we will discuss the well-characterized mechanisms that are active against these diverse pathogens, focusing on non-RNAi mediated antiviral mechanisms. Antiviral RNAi is discussed in another paper in this issue.
Collapse
Affiliation(s)
- Jie Xu
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | |
Collapse
|
33
|
Chak K, Kolodkin AL. Function of the Drosophila receptor guanylyl cyclase Gyc76C in PlexA-mediated motor axon guidance. Development 2014; 141:136-47. [PMID: 24284209 PMCID: PMC3865755 DOI: 10.1242/dev.095968] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 09/26/2013] [Indexed: 12/17/2022]
Abstract
The second messengers cAMP and cGMP modulate attraction and repulsion mediated by neuronal guidance cues. We find that the Drosophila receptor guanylyl cyclase Gyc76C genetically interacts with Semaphorin 1a (Sema-1a) and physically associates with the Sema-1a receptor plexin A (PlexA). PlexA regulates Gyc76C catalytic activity in vitro, and each distinct Gyc76C protein domain is crucial for regulating Gyc76C activity in vitro and motor axon guidance in vivo. The cytosolic protein dGIPC interacts with Gyc76C and facilitates Sema-1a-PlexA/Gyc76C-mediated motor axon guidance. These findings provide an in vivo link between semaphorin-mediated repulsive axon guidance and alteration of intracellular neuronal cGMP levels.
Collapse
Affiliation(s)
- Kayam Chak
- The Solomon H. Snyder Department of Neuroscience, Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Alex L. Kolodkin
- The Solomon H. Snyder Department of Neuroscience, Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
34
|
Giagtzoglou N, Li T, Yamamoto S, Bellen HJ. Drosophila EHBP1 regulates Scabrous secretion during Notch-mediated lateral inhibition. J Cell Sci 2013; 126:3686-96. [PMID: 23788431 DOI: 10.1242/jcs.126292] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Notch signaling is an evolutionarily conserved pathway that plays a central role in numerous developmental and disease processes. The versatility of the Notch pathway relies on the activity of context-dependent regulators. These include rab11, sec15, arp3 and Drosophila EHBP1 (dEHBP1), which control Notch signaling and cell fate acquisition in asymmetrically dividing mechanosensory lineages by regulating the trafficking of the ligand Delta. Here, we show that dEHBP1 also controls the specification of R8 photoreceptors, as its loss results in the emergence of supernumerary R8 photoreceptors. Given the requirements for Notch signaling during lateral inhibition, we propose that dEHBP1 regulates distinct aspects of Notch signaling in different developmental contexts. We show that dEHBP1 regulates the exocytosis of Scabrous, a positive regulator of Notch signaling. In conclusion, dEHBP1 provides developmental versatility of intercellular signaling by regulating the trafficking of distinct Notch signaling components.
Collapse
Affiliation(s)
- Nikolaos Giagtzoglou
- Department of Molecular and Human Genetics, Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
35
|
Beck A, Vinik Y, Shatz-Azoulay H, Isaac R, Streim S, Jona G, Boura-Halfon S, Zick Y. Otubain 2 is a novel promoter of beta cell survival as revealed by siRNA high-throughput screens of human pancreatic islets. Diabetologia 2013; 56:1317-26. [PMID: 23515685 DOI: 10.1007/s00125-013-2889-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 02/28/2013] [Indexed: 12/19/2022]
Abstract
AIMS/HYPOTHESIS Pro-inflammatory cytokines induce death of beta cells and hamper engraftment of transplanted islet mass. Our aim was to reveal novel genes involved in this process, as a platform for innovative therapeutic approaches. METHODS Small interfering RNA (siRNA) high-throughput screening (HTS) of primary human islets was employed to identify novel genes involved in cytokine-induced beta cell apoptosis. Dispersed human islets from nine human donors, treated with a combination of TNF-α, IL-1β and IFN-γ were transfected with ∼730 different siRNAs. Caspase-3/7 activity was measured, results were analysed and potential anti- and pro-apoptotic genes were identified. RESULTS Dispersed human pancreatic islets appeared to be suitable targets for performance of siRNA HTS. Using this methodology we found a number of potential pro- and anti-apoptotic target hits that have not been previously associated with pancreatic beta cell death. One such hit was the de-ubiquitinating enzyme otubain 2 (OTUB2). OTUB2 knockdown increased caspase-3/7 activity in MIN6 cells and primary human islets and inhibited insulin secretion and increased nuclear factor-κB (NF-κB) activity both under basal conditions and following cytokine treatment. CONCLUSIONS Use of dispersed human islets provides a new platform for functional HTS in a highly physiological system. Employing this technique enabled the identification of OTUB2 as a novel promoter of viability and insulin secretion in human beta cells. OTUB2 acts through the inhibition of NF-κB signalling, which is deleterious to beta cell survival. siRNA screens of human islets may therefore identify new targets, such as OTUB2, for therapeutic intervention in type 1 diabetes and islet transplantation.
Collapse
Affiliation(s)
- A Beck
- Department of Molecular Cell Biology, Weizmann Institute of Science, 234 Herzl Street, Rehovot 76100, Israel
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Muerdter F, Guzzardo PM, Gillis J, Luo Y, Yu Y, Chen C, Fekete R, Hannon GJ. A genome-wide RNAi screen draws a genetic framework for transposon control and primary piRNA biogenesis in Drosophila. Mol Cell 2013; 50:736-48. [PMID: 23665228 DOI: 10.1016/j.molcel.2013.04.006] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 04/04/2013] [Accepted: 04/05/2013] [Indexed: 01/19/2023]
Abstract
A large fraction of our genome consists of mobile genetic elements. Governing transposons in germ cells is critically important, and failure to do so compromises genome integrity, leading to sterility. In animals, the piRNA pathway is the key to transposon constraint, yet the precise molecular details of how piRNAs are formed and how the pathway represses mobile elements remain poorly understood. In an effort to identify general requirements for transposon control and components of the piRNA pathway, we carried out a genome-wide RNAi screen in Drosophila ovarian somatic sheet cells. We identified and validated 87 genes necessary for transposon silencing. Among these were several piRNA biogenesis factors. We also found CG3893 (asterix) to be essential for transposon silencing, most likely by contributing to the effector step of transcriptional repression. Asterix loss leads to decreases in H3K9me3 marks on certain transposons but has no effect on piRNA levels.
Collapse
Affiliation(s)
- Felix Muerdter
- Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Identification of genes required for damage survival using a cell-based RNAi screen against the Drosophila genome. Methods Mol Biol 2013; 920:9-26. [PMID: 22941593 DOI: 10.1007/978-1-61779-998-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Exposure to DNA-damaging agents invokes biological responses necessary for damage recovery and cell survival. Despite the presence of intact DNA repair pathways, lack of certain other biological pathways has been shown to sensitize cells to DNA-damaging agents' exposure. It is likely that following DNA damage a complex interplay between DNA repair pathways and other biological pathways might be required to ensure cell survival. In this chapter, we describe a high-throughput method for the identification of genes essential for cell survival following DNA damage by using a cell-based assay to measure viability in combination with an RNA interference-based genome-wide screening experiment.
Collapse
|
38
|
Garcia MA, Alvarez MS, Sailem H, Bousgouni V, Sero J, Bakal C. Differential RNAi screening provides insights into the rewiring of signalling networks during oxidative stress. MOLECULAR BIOSYSTEMS 2013; 8:2605-13. [PMID: 22790786 DOI: 10.1039/c2mb25092f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Reactive Oxygen Species (ROS) are a natural by-product of cellular growth and proliferation, and are required for fundamental processes such as protein-folding and signal transduction. However, ROS accumulation, and the onset of oxidative stress, can negatively impact cellular and genomic integrity. Signalling networks have evolved to respond to oxidative stress by engaging diverse enzymatic and non-enzymatic antioxidant mechanisms to restore redox homeostasis. The architecture of oxidative stress response networks during periods of normal growth, and how increased ROS levels dynamically reconfigure these networks are largely unknown. In order to gain insight into the structure of signalling networks that promote redox homeostasis we first performed genome-scale RNAi screens to identify novel suppressors of superoxide accumulation. We then infer relationships between redox regulators by hierarchical clustering of phenotypic signatures describing how gene inhibition affects superoxide levels, cellular viability, and morphology across different genetic backgrounds. Genes that cluster together are likely to act in the same signalling pathway/complex and thus make "functional interactions". Moreover we also calculate differential phenotypic signatures describing the difference in cellular phenotypes following RNAi between untreated cells and cells submitted to oxidative stress. Using both phenotypic signatures and differential signatures we construct a network model of functional interactions that occur between components of the redox homeostasis network, and how such interactions become rewired in the presence of oxidative stress. This network model predicts a functional interaction between the transcription factor Jun and the IRE1 kinase, which we validate in an orthogonal assay. We thus demonstrate the ability of systems-biology approaches to identify novel signalling events.
Collapse
Affiliation(s)
- Mar Arias Garcia
- Chester Beatty Laboratories, Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London, UK.
| | | | | | | | | | | |
Collapse
|
39
|
De Jesús DA, O’Connor TJ, Isberg RR. Analysis of Legionella infection using RNAi in Drosophila cells. Methods Mol Biol 2013; 954:251-64. [PMID: 23150401 PMCID: PMC4075055 DOI: 10.1007/978-1-62703-161-5_15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
RNA interference (RNAi) is the process of specific gene silencing by the use of double-stranded RNA (dsRNA). In cultured Drosophila cells, RNAi methodologies are well established and easily executed: dsRNA, when added to the cell culture medium, is efficiently internalized by the cells and, through the activity of endogenous processing machinery, targets the specified mRNA for degradation resulting in reduced levels of its encoded protein. This technique has proven very useful in studying the role of host genes during Legionella pneumophila infections, as it allows the effect of host factor depletion on intracellular growth of the bacterium to be examined. In this chapter we present the methods commonly used in our laboratory to study intracellular growth of L. pneumophila using dsRNA in Drosophila cells.
Collapse
Affiliation(s)
- Dennise A. De Jesús
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, 02111
| | - Tamara J. O’Connor
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, 02111
| | - Ralph R. Isberg
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, 02111,Corresponding author: Ralph R. Isberg, Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, 02111,
| |
Collapse
|
40
|
Desbordes SC, Studer L. Adapting human pluripotent stem cells to high-throughput and high-content screening. Nat Protoc 2012; 8:111-30. [DOI: 10.1038/nprot.2012.139] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
41
|
Panda D, Cherry S. Cell-based genomic screening: elucidating virus-host interactions. Curr Opin Virol 2012; 2:784-92. [PMID: 23122855 DOI: 10.1016/j.coviro.2012.10.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 10/11/2012] [Accepted: 10/12/2012] [Indexed: 12/22/2022]
Abstract
Viruses rely on host cell machinery for successful infection, while at the same time evading the host immune response. Characterization of these processes has revealed insights both into fundamental cellular processes as well as the nuances of viral replication. The recent advent of cell-based screening coupled with RNAi technology, has greatly facilitated studies focused on characterizing the virus-host interface and has expanded our understanding of cellular factors that impact viral infection. These findings have led to the discovery of potential therapeutic targets, but there is certainly more to be discovered. In this article we will review the recent progress in this arena and discuss the challenges and future of this emerging field.
Collapse
Affiliation(s)
- Debasis Panda
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, United States
| | | |
Collapse
|
42
|
Fisher KH, Wright VM, Taylor A, Zeidler MP, Brown S. Advances in genome-wide RNAi cellular screens: a case study using the Drosophila JAK/STAT pathway. BMC Genomics 2012; 13:506. [PMID: 23006893 PMCID: PMC3526451 DOI: 10.1186/1471-2164-13-506] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 09/12/2012] [Indexed: 12/01/2022] Open
Abstract
Background Genome-scale RNA-interference (RNAi) screens are becoming ever more common gene discovery tools. However, whilst every screen identifies interacting genes, less attention has been given to how factors such as library design and post-screening bioinformatics may be effecting the data generated. Results Here we present a new genome-wide RNAi screen of the Drosophila JAK/STAT signalling pathway undertaken in the Sheffield RNAi Screening Facility (SRSF). This screen was carried out using a second-generation, computationally optimised dsRNA library and analysed using current methods and bioinformatic tools. To examine advances in RNAi screening technology, we compare this screen to a biologically very similar screen undertaken in 2005 with a first-generation library. Both screens used the same cell line, reporters and experimental design, with the SRSF screen identifying 42 putative regulators of JAK/STAT signalling, 22 of which verified in a secondary screen and 16 verified with an independent probe design. Following reanalysis of the original screen data, comparisons of the two gene lists allows us to make estimates of false discovery rates in the SRSF data and to conduct an assessment of off-target effects (OTEs) associated with both libraries. We discuss the differences and similarities between the resulting data sets and examine the relative improvements in gene discovery protocols. Conclusions Our work represents one of the first direct comparisons between first- and second-generation libraries and shows that modern library designs together with methodological advances have had a significant influence on genome-scale RNAi screens.
Collapse
Affiliation(s)
- Katherine H Fisher
- The MRC Centre for Developmental and Biomedical Genetics and The Department of Biomedical Science, University of Sheffield, Firth Court,Western Bank, Sheffield S10 2TN, UK
| | | | | | | | | |
Collapse
|
43
|
Larschan E, Soruco MML, Lee OK, Peng S, Bishop E, Chery J, Goebel K, Feng J, Park PJ, Kuroda MI. Identification of chromatin-associated regulators of MSL complex targeting in Drosophila dosage compensation. PLoS Genet 2012; 8:e1002830. [PMID: 22844249 PMCID: PMC3405997 DOI: 10.1371/journal.pgen.1002830] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 05/29/2012] [Indexed: 12/04/2022] Open
Abstract
Sex chromosome dosage compensation in Drosophila provides a model for understanding how chromatin organization can modulate coordinate gene regulation. Male Drosophila increase the transcript levels of genes on the single male X approximately two-fold to equal the gene expression in females, which have two X-chromosomes. Dosage compensation is mediated by the Male-Specific Lethal (MSL) histone acetyltransferase complex. Five core components of the MSL complex were identified by genetic screens for genes that are specifically required for male viability and are dispensable for females. However, because dosage compensation must interface with the general transcriptional machinery, it is likely that identifying additional regulators that are not strictly male-specific will be key to understanding the process at a mechanistic level. Such regulators would not have been recovered from previous male-specific lethal screening strategies. Therefore, we have performed a cell culture-based, genome-wide RNAi screen to search for factors required for MSL targeting or function. Here we focus on the discovery of proteins that function to promote MSL complex recruitment to “chromatin entry sites,” which are proposed to be the initial sites of MSL targeting. We find that components of the NSL (Non-specific lethal) complex, and a previously unstudied zinc-finger protein, facilitate MSL targeting and display a striking enrichment at MSL entry sites. Identification of these factors provides new insight into how MSL complex establishes the specialized hyperactive chromatin required for dosage compensation in Drosophila. Gene regulation is essential to all living things. For example, levels of gene expression in individual cells must be fine-tuned during development and in response to changing environmental conditions. Genes are regulated by DNA binding proteins and by factors that influence DNA packaging into chromatin. The MSL complex in Drosophila melanogaster is a chromatin-modifying complex that specifically regulates a large number of genes. The MSL complex targets active genes on the single male X chromosome to upregulate their output to match both female X chromosomes. How the MSL complex specifically targets the X chromosome and upregulates active genes is only partially understood. In order to increase our understanding of gene regulation at a mechanistic level, we performed a genome-wide genetic screen in male cells to identify factors that facilitate MSL targeting and function. Our results identify two chromatin-associated protein complexes and a new candidate DNA binding protein as key factors in MSL–based regulation. We also provide an extensive list of additional candidate genes to be examined in future studies.
Collapse
Affiliation(s)
- Erica Larschan
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island, United States of America
| | - Marcela M. L. Soruco
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island, United States of America
| | - Ok-Kyung Lee
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Shouyong Peng
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - Eric Bishop
- Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jessica Chery
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island, United States of America
| | - Karen Goebel
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island, United States of America
| | - Jessica Feng
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island, United States of America
| | - Peter J. Park
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
- Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Mitzi I. Kuroda
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
44
|
A genome-wide screen identifies genes that affect somatic homolog pairing in Drosophila. G3-GENES GENOMES GENETICS 2012; 2:731-40. [PMID: 22870396 PMCID: PMC3385979 DOI: 10.1534/g3.112.002840] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Accepted: 04/24/2012] [Indexed: 12/03/2022]
Abstract
In Drosophila and other Dipterans, homologous chromosomes are in close contact in virtually all nuclei, a phenomenon known as somatic homolog pairing. Although homolog pairing has been recognized for over a century, relatively little is known about its regulation. We performed a genome-wide RNAi-based screen that monitored the X-specific localization of the male-specific lethal (MSL) complex, and we identified 59 candidate genes whose knockdown via RNAi causes a change in the pattern of MSL staining that is consistent with a disruption of X-chromosomal homolog pairing. Using DNA fluorescent in situ hybridization (FISH), we confirmed that knockdown of 17 of these genes has a dramatic effect on pairing of the 359 bp repeat at the base of the X. Furthermore, dsRNAs targeting Pr-set7, which encodes an H4K20 methyltransferase, cause a modest disruption in somatic homolog pairing. Consistent with our results in cultured cells, a classical mutation in one of the strongest candidate genes, pebble (pbl), causes a decrease in somatic homolog pairing in developing embryos. Interestingly, many of the genes identified by our screen have known roles in diverse cell-cycle events, suggesting an important link between somatic homolog pairing and the choreography of chromosomes during the cell cycle.
Collapse
|
45
|
Joyce EF, Williams BR, Xie T, Wu CT. Identification of genes that promote or antagonize somatic homolog pairing using a high-throughput FISH-based screen. PLoS Genet 2012; 8:e1002667. [PMID: 22589731 PMCID: PMC3349724 DOI: 10.1371/journal.pgen.1002667] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 03/07/2012] [Indexed: 12/22/2022] Open
Abstract
The pairing of homologous chromosomes is a fundamental feature of the meiotic cell. In addition, a number of species exhibit homolog pairing in nonmeiotic, somatic cells as well, with evidence for its impact on both gene regulation and double-strand break (DSB) repair. An extreme example of somatic pairing can be observed in Drosophila melanogaster, where homologous chromosomes remain aligned throughout most of development. However, our understanding of the mechanism of somatic homolog pairing remains unclear, as only a few genes have been implicated in this process. In this study, we introduce a novel high-throughput fluorescent in situ hybridization (FISH) technology that enabled us to conduct a genome-wide RNAi screen for factors involved in the robust somatic pairing observed in Drosophila. We identified both candidate "pairing promoting genes" and candidate "anti-pairing genes," providing evidence that pairing is a dynamic process that can be both enhanced and antagonized. Many of the genes found to be important for promoting pairing are highly enriched for functions associated with mitotic cell division, suggesting a genetic framework for a long-standing link between chromosome dynamics during mitosis and nuclear organization during interphase. In contrast, several of the candidate anti-pairing genes have known interphase functions associated with S-phase progression, DNA replication, and chromatin compaction, including several components of the condensin II complex. In combination with a variety of secondary assays, these results provide insights into the mechanism and dynamics of somatic pairing.
Collapse
Affiliation(s)
- Eric F. Joyce
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Benjamin R. Williams
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Tiao Xie
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
- Image and Data Analysis Core, Harvard Medical School, Boston, Massachusetts, United States of America
| | - C.-ting Wu
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
46
|
Stuurman N, Swedlow JR. Software tools, data structures, and interfaces for microscope imaging. Cold Spring Harb Protoc 2012; 2012:50-61. [PMID: 22194261 DOI: 10.1101/pdb.top067504] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The arrival of electronic photodetectors in biological microscopy has led to a revolution in the application of imaging in cell and developmental biology. The extreme photosensitivity of electronic photodetectors has enabled the routine use of multidimensional data acquisition spanning space and time and spectral range in live cell and tissue imaging. These techniques have provided key insights into the molecular and structural dynamics of living biology. However, digital photodetectors offer another advantage-they provide a linear mapping between the photon flux coming from the sample and the electronic sample they produce. Thus, an image presented as a visual representation of the sample is also a quantitative measurement of photon flux. These quantitative measurements are the basis of subsequent processing and analysis to improve signal contrast, to compare changes in the concentration of signal, and to reveal changes in cell structure and dynamics. For this reason, many laboratories and companies have committed their resources to software development, resulting in the availability of a large number of image-processing and analysis packages. In this article, we review the software tools for image data analysis that are now available and give some examples of their use in imaging experiments to reveal new insights into biological mechanisms. In our final section, we highlight some of the new directions for image analysis that are significant unmet challenges and present our own ideas for future directions.
Collapse
|
47
|
Carralot JP, Ogier A, Boese A, Genovesio A, Brodin P, Sommer P, Dorval T. A novel specific edge effect correction method for RNA interference screenings. ACTA ACUST UNITED AC 2011; 28:261-8. [PMID: 22121160 DOI: 10.1093/bioinformatics/btr648] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
MOTIVATION High-throughput screening (HTS) is an important method in drug discovery in which the activities of a large number of candidate chemicals or genetic materials are rapidly evaluated. Data are usually obtained by measurements on samples in microwell plates and are often subjected to artefacts that can bias the result selection. We report here a novel edge effect correction algorithm suitable for RNA interference (RNAi) screening, because its normalization does not rely on the entire dataset and takes into account the specificities of such a screening process. The proposed method is able to estimate the edge effects for each assay plate individually using the data from a single control column based on diffusion model, and thus targeting a specific but recurrent well-known HTS artefact. This method was first developed and validated using control plates and was then applied to the correction of experimental data generated during a genome-wide siRNA screen aimed at studying HIV-host interactions. The proposed algorithm was able to correct the edge effect biasing the control data and thus improve assay quality and, consequently, the hit-selection step.
Collapse
Affiliation(s)
- Jean-Philippe Carralot
- Biology of Intracellular Pathogens, Inserm Avenir Team, Institut Pasteur Korea, Seongnam-si, Korea.
| | | | | | | | | | | | | |
Collapse
|
48
|
Beck A, Isaac R, Lavelin I, Hart Y, Volberg T, Shatz-Azoulay H, Geiger B, Zick Y. An siRNA screen identifies transmembrane 7 superfamily member 3 (TM7SF3), a seven transmembrane orphan receptor, as an inhibitor of cytokine-induced death of pancreatic beta cells. Diabetologia 2011; 54:2845-55. [PMID: 21853325 DOI: 10.1007/s00125-011-2277-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 06/21/2011] [Indexed: 01/05/2023]
Abstract
AIMS/HYPOTHESIS Pro-inflammatory cytokines induce death of pancreatic beta cells, leading to the development of type 1 diabetes. We sought to identify novel players and the underlying mechanisms involved in this process. METHODS A high-throughput screen of 3,850 mouse small interfering RNAs (siRNAs) was performed in cytokine-treated MIN6 beta cells. Cells were transfected with the different siRNAs and then treated with a combination of TNFα, IL-1β and IFNγ. Cellular apoptosis (caspase-3/7 activity), and changes in cellular reducing power and cell morphology were monitored. The resulting data were analysed and the corresponding z scores calculated. RESULTS Several gene families were identified as promoting cytokine-induced beta cell apoptosis, the most prominent being those encoding ubiquitin ligases and serine/threonine kinases. Conversely, deubiquitinating enzymes appeared to reduce apoptosis, while protein phosphatases were mainly associated with lowering cellular reducing power. The screen suggested with high confidence the involvement of several novel genes in cytokine-induced beta cell death, including Camkk2, Epn3, Foxp3 and Tm7sf3, which encodes an orphan seven transmembrane receptor. siRNAs to Tm7sf3 promoted cytokine-induced death of MIN6 cells and human pancreatic islets, and abrogated insulin secretion in these cells. These findings implicate transmembrane 7 superfamily member 3 as a potential new player in the inhibition of cytokine-induced death and in the promotion of insulin secretion from pancreatic beta cells. CONCLUSIONS/INTERPRETATION The signalling pathways and novel genes that we identified in this screen and that mediate beta cell death offer new possible targets for therapeutic intervention in diabetes and its adverse complications.
Collapse
Affiliation(s)
- A Beck
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Cultured Drosophila melanogaster S2 and S2R+ cell lines have become important tools for uncovering fundamental aspects of cell biology as well as for gene discovery. Despite their utility, these cell lines are nonmotile and cannot build polarized structures or cell-cell contacts. Here we outline a previously isolated, but uncharacterized, Drosophila cell line named Dm-D17-c3 (or D17). These cells spread and migrate in culture, form cell-cell junctions and are susceptible to RNA interference (RNAi). Using this protocol, we describe how investigators, upon receiving cells from the Bloomington stock center, can culture cells and prepare the necessary reagents to plate and image migrating D17 cells; they can then be used to examine intracellular dynamics or observe loss-of-function RNAi phenotypes using an in vitro scratch or wound healing assay. From first thawing frozen ampules of D17 cells, investigators can expect to begin assaying RNAi phenotypes in D17 cells within roughly 2-3 weeks.
Collapse
|
50
|
Mohr SE, Perrimon N. RNAi screening: new approaches, understandings, and organisms. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 3:145-58. [PMID: 21953743 DOI: 10.1002/wrna.110] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
RNA interference (RNAi) leads to sequence-specific knockdown of gene function. The approach can be used in large-scale screens to interrogate function in various model organisms and an increasing number of other species. Genome-scale RNAi screens are routinely performed in cultured or primary cells or in vivo in organisms such as C. elegans. High-throughput RNAi screening is benefitting from the development of sophisticated new instrumentation and software tools for collecting and analyzing data, including high-content image data. The results of large-scale RNAi screens have already proved useful, leading to new understandings of gene function relevant to topics such as infection, cancer, obesity, and aging. Nevertheless, important caveats apply and should be taken into consideration when developing or interpreting RNAi screens. Some level of false discovery is inherent to high-throughput approaches and specific to RNAi screens, false discovery due to off-target effects (OTEs) of RNAi reagents remains a problem. The need to improve our ability to use RNAi to elucidate gene function at large scale and in additional systems continues to be addressed through improved RNAi library design, development of innovative computational and analysis tools and other approaches.
Collapse
Affiliation(s)
- Stephanie E Mohr
- Drosophila RNAi Screening Center, Department of Genetics, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|