1
|
Meng S, Shen Y, Zhang D, Bao L, Cao H, Song G, Xie C, Jagernath JS, Shen G, Chen J. Bax Inhibitor MoBi-1 Is Required for Conidiation, Pathogenicity, and Stress Responses in Magnaporthe oryzae. J Fungi (Basel) 2025; 11:359. [PMID: 40422693 DOI: 10.3390/jof11050359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/30/2025] [Accepted: 05/03/2025] [Indexed: 05/28/2025] Open
Abstract
Magnaporthe oryzae serves as a model organism for studying the molecular biology of filamentous fungi and the pathogenic mechanisms of fungal pathogens. It also poses a significant threat to rice production in China. Bax inhibitor-1 (Bi-1), a protein with evolutionary conservation, functions as an inhibitor of programmed cell death induced by the proapoptotic protein Bax. Despite the widespread presence of Bi-1 proteins in hyphal fungi, their biological functions have not been extensively characterized. Here, we characterized the function of MoBI-1, a putative Bax-inhibitor protein in M. oryzae, which is located in the mitochondria and participates in conidiation, stress adaptation, and pathogenicity. Further investigations revealed that MoBi-1 is also essential for the regulation of mitochondrial energy metabolism. Remarkably, experimental evidence indicates that MoBi-1 does not seem to function in inhibiting Bax-induced programmed cell death, thus lacking inherent Bax inhibitory function, which broadens the existing understanding of Bax inhibitor-1's function and provides significant new insights into the disease-causing mechanisms of M. oryzae.
Collapse
Affiliation(s)
- Shuai Meng
- National Joint Local Engineering Laboratory for High-Efficient Preparation of Biopesticide, College of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Yangyang Shen
- National Joint Local Engineering Laboratory for High-Efficient Preparation of Biopesticide, College of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Dixuan Zhang
- National Joint Local Engineering Laboratory for High-Efficient Preparation of Biopesticide, College of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Liutao Bao
- National Joint Local Engineering Laboratory for High-Efficient Preparation of Biopesticide, College of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Hao Cao
- National Joint Local Engineering Laboratory for High-Efficient Preparation of Biopesticide, College of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Gening Song
- National Joint Local Engineering Laboratory for High-Efficient Preparation of Biopesticide, College of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Chenshun Xie
- National Joint Local Engineering Laboratory for High-Efficient Preparation of Biopesticide, College of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Jane S Jagernath
- Agricultural Department, Faculty of Technological Sciences, Anton de Kom University of Suriname, Leysweg 86, Building 7, Paramaribo 999182, Suriname
| | - Guoqiang Shen
- Shaoxing Academy of Agricultural Sciences, Shaoxing 312000, China
| | - Jie Chen
- National Joint Local Engineering Laboratory for High-Efficient Preparation of Biopesticide, College of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| |
Collapse
|
2
|
Guo N, An R, Ren Z, Jiang J, Cai B, Hu S, Shao G, Jiao G, Xie L, Wang L, Zhao F, Tang S, Sheng Z, Hu P. Developing super rice varieties resistant to rice blast with enhanced yield and improved quality. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:232-234. [PMID: 39449161 DOI: 10.1111/pbi.14492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/30/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024]
Affiliation(s)
- Naihui Guo
- State Key Laboratory of Rice Biological Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre/Jiangxi Early-season Rice Research Center/China National Rice Research Institute, Hangzhou, P. R. China
| | - Ruihu An
- State Key Laboratory of Rice Biological Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre/Jiangxi Early-season Rice Research Center/China National Rice Research Institute, Hangzhou, P. R. China
| | - Zongliang Ren
- State Key Laboratory of Rice Biological Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre/Jiangxi Early-season Rice Research Center/China National Rice Research Institute, Hangzhou, P. R. China
| | - Jun Jiang
- State Key Laboratory of Rice Biological Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre/Jiangxi Early-season Rice Research Center/China National Rice Research Institute, Hangzhou, P. R. China
| | - Bonian Cai
- State Key Laboratory of Rice Biological Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre/Jiangxi Early-season Rice Research Center/China National Rice Research Institute, Hangzhou, P. R. China
| | - Shikai Hu
- State Key Laboratory of Rice Biological Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre/Jiangxi Early-season Rice Research Center/China National Rice Research Institute, Hangzhou, P. R. China
| | - Gaoneng Shao
- State Key Laboratory of Rice Biological Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre/Jiangxi Early-season Rice Research Center/China National Rice Research Institute, Hangzhou, P. R. China
| | - Guiai Jiao
- State Key Laboratory of Rice Biological Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre/Jiangxi Early-season Rice Research Center/China National Rice Research Institute, Hangzhou, P. R. China
| | - Lihong Xie
- State Key Laboratory of Rice Biological Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre/Jiangxi Early-season Rice Research Center/China National Rice Research Institute, Hangzhou, P. R. China
| | - Ling Wang
- State Key Laboratory of Rice Biological Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre/Jiangxi Early-season Rice Research Center/China National Rice Research Institute, Hangzhou, P. R. China
| | - Fengli Zhao
- State Key Laboratory of Rice Biological Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre/Jiangxi Early-season Rice Research Center/China National Rice Research Institute, Hangzhou, P. R. China
| | - Shaoqing Tang
- State Key Laboratory of Rice Biological Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre/Jiangxi Early-season Rice Research Center/China National Rice Research Institute, Hangzhou, P. R. China
| | - Zhonghua Sheng
- State Key Laboratory of Rice Biological Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre/Jiangxi Early-season Rice Research Center/China National Rice Research Institute, Hangzhou, P. R. China
| | - Peisong Hu
- State Key Laboratory of Rice Biological Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre/Jiangxi Early-season Rice Research Center/China National Rice Research Institute, Hangzhou, P. R. China
| |
Collapse
|
3
|
Brabham HJ, Gómez De La Cruz D, Were V, Shimizu M, Saitoh H, Hernández-Pinzón I, Green P, Lorang J, Fujisaki K, Sato K, Molnár I, Šimková H, Doležel J, Russell J, Taylor J, Smoker M, Gupta YK, Wolpert T, Talbot NJ, Terauchi R, Moscou MJ. Barley MLA3 recognizes the host-specificity effector Pwl2 from Magnaporthe oryzae. THE PLANT CELL 2024; 36:447-470. [PMID: 37820736 PMCID: PMC10827324 DOI: 10.1093/plcell/koad266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023]
Abstract
Plant nucleotide-binding leucine-rich repeat (NLRs) immune receptors directly or indirectly recognize pathogen-secreted effector molecules to initiate plant defense. Recognition of multiple pathogens by a single NLR is rare and usually occurs via monitoring for changes to host proteins; few characterized NLRs have been shown to recognize multiple effectors. The barley (Hordeum vulgare) NLR gene Mildew locus a (Mla) has undergone functional diversification, and the proteins encoded by different Mla alleles recognize host-adapted isolates of barley powdery mildew (Blumeria graminis f. sp. hordei [Bgh]). Here, we show that Mla3 also confers resistance to the rice blast fungus Magnaporthe oryzae in a dosage-dependent manner. Using a forward genetic screen, we discovered that the recognized effector from M. oryzae is Pathogenicity toward Weeping Lovegrass 2 (Pwl2), a host range determinant factor that prevents M. oryzae from infecting weeping lovegrass (Eragrostis curvula). Mla3 has therefore convergently evolved the capacity to recognize effectors from diverse pathogens.
Collapse
Affiliation(s)
- Helen J Brabham
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
- 2Blades, Evanston, IL 60201, USA
| | - Diana Gómez De La Cruz
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Vincent Were
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Motoki Shimizu
- Iwate Biotechnology Research Centre, Kitakami 024-0003, Japan
| | - Hiromasa Saitoh
- Department of Molecular Microbiology, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | | | - Phon Green
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Jennifer Lorang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Koki Fujisaki
- Iwate Biotechnology Research Centre, Kitakami 024-0003, Japan
| | - Kazuhiro Sato
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - István Molnár
- Institute of Experimental Botany of the Czech Academy of Sciences, 779 00 Olomouc, Czech Republic
| | - Hana Šimková
- Institute of Experimental Botany of the Czech Academy of Sciences, 779 00 Olomouc, Czech Republic
| | - Jaroslav Doležel
- Institute of Experimental Botany of the Czech Academy of Sciences, 779 00 Olomouc, Czech Republic
| | - James Russell
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Jodie Taylor
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Matthew Smoker
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Yogesh Kumar Gupta
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
- 2Blades, Evanston, IL 60201, USA
| | - Tom Wolpert
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Nicholas J Talbot
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Ryohei Terauchi
- Iwate Biotechnology Research Centre, Kitakami 024-0003, Japan
- Laboratory of Crop Evolution, Graduate School of Agriculture, Kyoto University, Kyoto 617-0001, Japan
| | - Matthew J Moscou
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| |
Collapse
|
4
|
Li L, Zhu XM, Bao JD, Wang JY, Liu XH, Lin FC. The cell cycle, autophagy, and cell wall integrity pathway jointly governed by MoSwe1 in Magnaporthe oryzae. Cell Commun Signal 2024; 22:19. [PMID: 38195499 PMCID: PMC10775494 DOI: 10.1186/s12964-023-01389-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/06/2023] [Indexed: 01/11/2024] Open
Abstract
The cell cycle is pivotal to cellular differentiation in plant pathogenic fungi. Cell wall integrity (CWI) signaling plays an essential role in coping with cell wall stress. Autophagy is a degradation process in which cells decompose their components to recover macromolecules and provide energy under stress conditions. However, the specific association between cell cycle, autophagy and CWI pathway remains unclear in model pathogenic fungi Magnaporthe oryzae. Here, we have identified MoSwe1 as the conserved component of the cell cycle in the rice blast fungus. We have found that MoSwe1 targets MoMps1, a conserved critical MAP kinase of the CWI pathway, through protein phosphorylation that positively regulates CWI signaling. The CWI pathway is abnormal in the ΔMoswe1 mutant with cell cycle arrest. In addition, we provided evidence that MoSwe1 positively regulates autophagy by interacting with MoAtg17 and MoAtg18, the core autophagy proteins. Moreover, the S phase initiation was earlier, the morphology of conidia and appressoria was abnormal, and septum formation and glycogen degradation were impaired in the ΔMoswe1 mutant. Our research defines that MoSWE1 regulation of G1/S transition, CWI pathway, and autophagy supports its specific requirement for appressorium development and virulence in plant pathogenic fungi. Video Abstract.
Collapse
Affiliation(s)
- Lin Li
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xue-Ming Zhu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jian-Dong Bao
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jiao-Yu Wang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xiao-Hong Liu
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Fu-Cheng Lin
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
5
|
Galli M, Jacob S, Zheng Y, Ghezellou P, Gand M, Albuquerque W, Imani J, Allasia V, Coustau C, Spengler B, Keller H, Thines E, Kogel KH. MIF-like domain containing protein orchestrates cellular differentiation and virulence in the fungal pathogen Magnaporthe oryzae. iScience 2023; 26:107565. [PMID: 37664630 PMCID: PMC10474474 DOI: 10.1016/j.isci.2023.107565] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 05/20/2023] [Accepted: 08/03/2023] [Indexed: 09/05/2023] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a pleiotropic protein with chemotactic, pro-inflammatory, and growth-promoting activities first discovered in mammals. In parasites, MIF homologs are involved in immune evasion and pathogenesis. Here, we present the first comprehensive analysis of an MIF protein from the devastating plant pathogen Magnaporthe oryzae (Mo). The fungal genome encodes a single MIF protein (MoMIF1) that, unlike the human homolog, harbors multiple low-complexity regions (LCRs) and is unique to Ascomycota. Following infection, MoMIF1 is expressed in the biotrophic phase of the fungus, and is strongly down-regulated during subsequent necrotrophic growth in leaves and roots. We show that MoMIF1 is secreted during plant infection, affects the production of the mycotoxin tenuazonic acid and inhibits plant cell death. Our results suggest that MoMIF1 is a novel key regulator of fungal virulence that maintains the balance between biotrophy and necrotrophy during the different phases of fungal infection.
Collapse
Affiliation(s)
- Matteo Galli
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, 35392 Giessen, Germany
| | - Stefan Jacob
- Institute of Biotechnology and Drug Research GmbH, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany
| | - Ying Zheng
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, 35392 Giessen, Germany
| | - Parviz Ghezellou
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Martin Gand
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Wendell Albuquerque
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Jafargholi Imani
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, 35392 Giessen, Germany
| | - Valérie Allasia
- Université Côte d'Azur, INRAE, CNRS, UMR1355-7254, ISA, 06903 Sophia Antipolis, France
| | - Christine Coustau
- Université Côte d'Azur, INRAE, CNRS, UMR1355-7254, ISA, 06903 Sophia Antipolis, France
| | - Bernhard Spengler
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Harald Keller
- Université Côte d'Azur, INRAE, CNRS, UMR1355-7254, ISA, 06903 Sophia Antipolis, France
| | - Eckhard Thines
- Institute of Biotechnology and Drug Research GmbH, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany
- Johannes Gutenberg-University Mainz, Microbiology and Biotechnology at the Institute of Molecular Physiology, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany
| | - Karl-Heinz Kogel
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, 35392 Giessen, Germany
| |
Collapse
|
6
|
Trémulot L, Macadré C, Gal J, Garmier M, Launay-Avon A, Paysant-Le Roux C, Ratet P, Noctor G, Dufresne M. Impact of high atmospheric carbon dioxide on the biotic stress response of the model cereal species Brachypodium distachyon. FRONTIERS IN PLANT SCIENCE 2023; 14:1237054. [PMID: 37662181 PMCID: PMC10469009 DOI: 10.3389/fpls.2023.1237054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/20/2023] [Indexed: 09/05/2023]
Abstract
Losses due to disease and climate change are among the most important issues currently facing crop production. It is therefore important to establish the impact of climate change, and particularly of high carbon dioxide (hCO2), on plant immunity in cereals, which provide 60% of human calories. The aim of this study was to determine if hCO2 impacts Brachypodium distachyon immunity, a model plant for temperate cereals. Plants were grown in air (430 ppm CO2) and at two high CO2 conditions, one that is relevant to projections within the coming century (1000 ppm) and a concentration sufficient to saturate photosynthesis (3000 ppm). The following measurements were performed: phenotyping and growth, salicylic acid contents, pathogen resistance tests, and RNAseq analysis of the transcriptome. Improved shoot development was observed at both 1000 and 3000 ppm. A transcriptomic analysis pointed to an increase in primary metabolism capacity under hCO2. Alongside this effect, up-regulation of genes associated with secondary metabolism was also observed. This effect was especially evident for the terpenoid and phenylpropanoid pathways, and was accompanied by enhanced expression of immunity-related genes and accumulation of salicylic acid. Pathogen tests using the fungus Magnaporthe oryzae revealed that hCO2 had a complex effect, with enhanced susceptibility to infection but no increase in fungal development. The study reveals that immunity in B. distachyon is modulated by growth at hCO2 and allows identification of pathways that might play a role in this effect.
Collapse
Affiliation(s)
- Lug Trémulot
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
| | - Catherine Macadré
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
| | - Joséphine Gal
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
| | - Marie Garmier
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
| | - Alexandra Launay-Avon
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
| | - Christine Paysant-Le Roux
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
| | - Pascal Ratet
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
| | - Graham Noctor
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
- Institut Universitaire de France (IUF), Paris, France
| | - Marie Dufresne
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
| |
Collapse
|
7
|
Karan B, Mahapatra S, Sahu SS, Pandey DM, Chakravarty S. Computational models for prediction of protein-protein interaction in rice and Magnaporthe grisea. FRONTIERS IN PLANT SCIENCE 2023; 13:1046209. [PMID: 36816487 PMCID: PMC9929577 DOI: 10.3389/fpls.2022.1046209] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/28/2022] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Plant-microbe interactions play a vital role in the development of strategies to manage pathogen-induced destructive diseases that cause enormous crop losses every year. Rice blast is one of the severe diseases to rice Oryza sativa (O. sativa) due to Magnaporthe grisea (M. grisea) fungus. Protein-protein interaction (PPI) between rice and fungus plays a key role in causing rice blast disease. METHODS In this paper, four genomic information-based models such as (i) the interolog, (ii) the domain, (iii) the gene ontology, and (iv) the phylogenetic-based model are developed for predicting the interaction between O. sativa and M. grisea in a whole-genome scale. RESULTS AND DISCUSSION A total of 59,430 interacting pairs between 1,801 rice proteins and 135 blast fungus proteins are obtained from the four models. Furthermore, a machine learning model is developed to assess the predicted interactions. Using composition-based amino acid composition (AAC) and conjoint triad (CT) features, an accuracy of 88% and 89% is achieved, respectively. When tested on the experimental dataset, the CT feature provides the highest accuracy of 95%. Furthermore, the specificity of the model is verified with other pathogen-host datasets where less accuracy is obtained, which confirmed that the model is specific to O. sativa and M. grisea. Understanding the molecular processes behind rice resistance to blast fungus begins with the identification of PPIs, and these predicted PPIs will be useful for drug design in the plant science community.
Collapse
Affiliation(s)
- Biswajit Karan
- Department of Electronics and Communication Engineering, Birla Institute of Technology, Ranchi, India
| | - Satyajit Mahapatra
- Department of Electronics and Communication Engineering, Birla Institute of Technology, Ranchi, India
| | - Sitanshu Sekhar Sahu
- Department of Electronics and Communication Engineering, Birla Institute of Technology, Ranchi, India
| | - Dev Mani Pandey
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Ranchi, India
| | - Sumit Chakravarty
- Department of Electrical and Computer Engineering, Kennesaw State University, Kennesaw, GA, United States
| |
Collapse
|
8
|
Singh AK, Ponnuswamy R, Srinivas Prasad M, Sundaram RM, Hari Prasad AS, Senguttuvel P, Kempa Raju KB, Sruthi K. Improving blast resistance of maintainer line DRR 9B by transferring broad spectrum resistance gene Pi2 by marker assisted selection in rice. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:253-262. [PMID: 36819122 PMCID: PMC9930015 DOI: 10.1007/s12298-023-01291-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 01/31/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Hybrid rice technology offers great promise to further enhance rice production and productivity for global food security. Improving hybrid rice parental lines is the first step in developing heterotic rice hybrids. To improve resistance against blast disease, a maintainer line DRR 9B was fortified with a major broad-spectrum blast resistance gene Pi2 through marker-assisted selection. The rice blast caused by Magnaporthe oryzae is a major disease and can cause severe yield losses upto 100%. The NILs of Samba Mahsuri namely BA-23-11-89-12-168 possessing Pi2 was utilized as a donor parent. The PCR-based molecular marker tightly linked to Pi2 gene was used for the foreground selection at BC1F1 generation. The molecular marker tightly linked to the major fertility restorer gene Rf4 was used for negative selection (i.e., selection of plants possessing non fertility restoring alleles) at BC1F1 generation to identify maintainer lines. The positive plants with Rf4 gene were added to the restorer pool for restorer line development. At each stage, MAS for Pi2 coupled with stringent phenotypic selection for agro-morphological and grain quality traits were exercised. At BC1F3 generation, one hundred families were screened against blast disease at uniform blast nursery (UBN) and selected resistant lines were advanced to next generations. In the BC1F5 generation plants were subjected to agro-morphological evaluation for yield and yield-contributing traits. The selected plants at BC1F5 generation were crossed with DRR 9A to assess the maintainer ability of blast resistance lines and for further CMS line conversion for hybrid rice breeding for developing blast resistance rice hybrids.
Collapse
Affiliation(s)
- Arun Kumar Singh
- ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, Telangana India
| | - Revathi Ponnuswamy
- ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, Telangana India
| | - M. Srinivas Prasad
- ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, Telangana India
| | - R. M. Sundaram
- ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, Telangana India
| | - A. S. Hari Prasad
- ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, Telangana India
| | - P. Senguttuvel
- ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, Telangana India
| | - K. B. Kempa Raju
- ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, Telangana India
| | - K. Sruthi
- ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, Telangana India
| |
Collapse
|
9
|
Patel A, Sahu KP, Mehta S, Javed M, Balamurugan A, Ashajyothi M, Sheoran N, Ganesan P, Kundu A, Gopalakrishnan S, Gogoi R, Kumar A. New Insights on Endophytic Microbacterium-Assisted Blast Disease Suppression and Growth Promotion in Rice: Revelation by Polyphasic Functional Characterization and Transcriptomics. Microorganisms 2023; 11:microorganisms11020362. [PMID: 36838327 PMCID: PMC9963279 DOI: 10.3390/microorganisms11020362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/24/2022] [Accepted: 01/01/2023] [Indexed: 02/05/2023] Open
Abstract
Plant growth-promoting endophytic microbes have drawn the attention of researchers owing to their ability to confer fitness benefits in many plant species. Here, we report agriculturally beneficial traits of rice-leaf-adapted endophytic Microbacterium testaceum. Our polyphasic taxonomic investigations revealed its identity as M. testaceum. The bacterium displayed typical endophytism in rice leaves, indicated by the green fluorescence of GFP-tagged M. testaceum in confocal laser scanning microscopy. Furthermore, the bacterium showed mineral solubilization and production of IAA, ammonia, and hydrolytic enzymes. Tobacco leaf infiltration assay confirmed its non-pathogenic nature on plants. The bacterium showed antifungal activity on Magnaporthe oryzae, as exemplified by secreted and volatile organic metabolome-mediated mycelial growth inhibition. GC-MS analysis of the volatilome of M. testaceum indicated the abundance of antimicrobial compounds. Bacterization of rice seedlings showed phenotypic traits of MAMP-triggered immunity (MTI), over-expression of OsNPR1 and OsCERK, and the consequent blast suppressive activity. Strikingly, M. testaceum induced the transcriptional tradeoff between physiological growth and host defense pathways as indicated by up- and downregulated DEGs. Coupled with its plant probiotic features and the defense elicitation activity, the present study paves the way for developing Microbacterium testaceum-mediated bioformulation for sustainably managing rice blast disease.
Collapse
|
10
|
The Plant Homeodomain Protein Clp1 Regulates Fungal Development, Virulence, and Autophagy Homeostasis in Magnaporthe oryzae. Microbiol Spectr 2022; 10:e0102122. [PMID: 36036638 PMCID: PMC9602895 DOI: 10.1128/spectrum.01021-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Rice blast disease caused by Magnaporthe oryzae is a serious threat to global grain yield and food security. Cti6 is a nuclear protein containing a plant homeodomain (PHD) that is involved in transcriptional regulation in Saccharomyces cerevisiae. The biological function of its homologous protein in M. oryzae has been elusive. Here, we report Clp1 with a PHD domain in M. oryzae, a homologous protein of the yeast Cti6. Clp1 was mainly located in the nucleus and partly in the vesicles. Clp1 colocalized and interacted with the autophagy-related proteins Atg5, Atg7, Atg16, Atg24, and Atg28 at preautophagosomal structures (PAS) and autophagosomes, and the loss of Clp1 increased the fungal background autophagy level. Δclp1 displayed reduced hyphal growth and hyperbranching, abnormal fungal morphology (including colony, spore, and appressorium), hindered appressorial glycogen metabolism and turgor production, weakened plant infection, and decreased virulence. The PHD is indispensable for the function of Clp1. Therefore, this study revealed that Clp1 regulates development and pathogenicity by maintaining autophagy homeostasis and affecting gene transcription in M. oryzae. IMPORTANCE The fungal pathogen Magnaporthe oryzae causes serious diseases of grasses such as rice and wheat. Autophagy plays an indispensable role in the pathogenic process of M. oryzae. Here, we report a Cti6-like protein, Clp1, that is involved in fungal development and infection of plants through controlling autophagy homeostasis in the cytoplasm and gene transcription in the nucleus in M. oryzae. This study will help us to understand an elaborated molecular mechanism of autophagy, gene transcription, and virulence in the rice blast fungus.
Collapse
|
11
|
Sahu PK, Sao R, Choudhary DK, Thada A, Kumar V, Mondal S, Das BK, Jankuloski L, Sharma D. Advancement in the Breeding, Biotechnological and Genomic Tools towards Development of Durable Genetic Resistance against the Rice Blast Disease. PLANTS 2022; 11:plants11182386. [PMID: 36145787 PMCID: PMC9504543 DOI: 10.3390/plants11182386] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 01/02/2023]
Abstract
Rice production needs to be sustained in the coming decades, as the changeable climatic conditions are becoming more conducive to disease outbreaks. The majority of rice diseases cause enormous economic damage and yield instability. Among them, rice blast caused by Magnaportheoryzae is a serious fungal disease and is considered one of the major threats to world rice production. This pathogen can infect the above-ground tissues of rice plants at any growth stage and causes complete crop failure under favorable conditions. Therefore, management of blast disease is essentially required to sustain global food production. When looking at the drawback of chemical management strategy, the development of durable, resistant varieties is one of the most sustainable, economic, and environment-friendly approaches to counter the outbreaks of rice blasts. Interestingly, several blast-resistant rice cultivars have been developed with the help of breeding and biotechnological methods. In addition, 146 R genes have been identified, and 37 among them have been molecularly characterized to date. Further, more than 500 loci have been identified for blast resistance which enhances the resources for developing blast resistance through marker-assisted selection (MAS), marker-assisted backcross breeding (MABB), and genome editing tools. Apart from these, a better understanding of rice blast pathogens, the infection process of the pathogen, and the genetics of the immune response of the host plant are very important for the effective management of the blast disease. Further, high throughput phenotyping and disease screening protocols have played significant roles in easy comprehension of the mechanism of disease spread. The present review critically emphasizes the pathogenesis, pathogenomics, screening techniques, traditional and molecular breeding approaches, and transgenic and genome editing tools to develop a broad spectrum and durable resistance against blast disease in rice. The updated and comprehensive information presented in this review would be definitely helpful for the researchers, breeders, and students in the planning and execution of a resistance breeding program in rice against this pathogen.
Collapse
Affiliation(s)
- Parmeshwar K. Sahu
- Department of Genetics and Plant Breeding, Indira Gandhi Krishi Vishwavidyalaya, Raipur 492012, Chhattisgarh, India
| | - Richa Sao
- Department of Genetics and Plant Breeding, Indira Gandhi Krishi Vishwavidyalaya, Raipur 492012, Chhattisgarh, India
| | | | - Antra Thada
- Department of Genetics and Plant Breeding, Indira Gandhi Krishi Vishwavidyalaya, Raipur 492012, Chhattisgarh, India
| | - Vinay Kumar
- ICAR-National Institute of Biotic Stress Management, Baronda, Raipur 493225, Chhattisgarh, India
| | - Suvendu Mondal
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra, India
| | - Bikram K. Das
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra, India
| | - Ljupcho Jankuloski
- Plant Breeding and Genetics Section, Joint FAO/IAEA Centre, International Atomic Energy Agency, 1400 Vienna, Austria
- Correspondence: (L.J.); (D.S.); Tel.: +91-7000591137 (D.S.)
| | - Deepak Sharma
- Department of Genetics and Plant Breeding, Indira Gandhi Krishi Vishwavidyalaya, Raipur 492012, Chhattisgarh, India
- Correspondence: (L.J.); (D.S.); Tel.: +91-7000591137 (D.S.)
| |
Collapse
|
12
|
Kumar R, Khatri A, Acharya V. Deep learning uncovers distinct behavior of rice network to pathogens response. iScience 2022; 25:104546. [PMID: 35754717 PMCID: PMC9218438 DOI: 10.1016/j.isci.2022.104546] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/06/2022] [Accepted: 06/02/2022] [Indexed: 12/15/2022] Open
Abstract
Rice, apart from abiotic stress, is prone to attack from multiple pathogens. Predominantly, the two rice pathogens, bacterial Xanthomonas oryzae (Xoo) and hemibiotrophic fungus, Magnaporthe oryzae, are extensively well explored for more than the last decade. However, because of lack of holistic studies, we design a deep learning-based rice network model (DLNet) that has explored the quantitative differences resulting in the distinct rice network architecture. Validation studies on rice in response to biotic stresses show that DLNet outperforms other machine learning methods. The current finding indicates the compactness of the rice PTI network and the rise of independent modules in the rice ETI network, resulting in similar patterns of the plant immune response. The results also show more independent network modules and minimum structural disorderness in rice-M. oryzae as compared to the rice-Xoo model revealing the different adaptation strategies of the rice plant to evade pathogen effectors.
Collapse
Affiliation(s)
- Ravi Kumar
- Functional Genomics and Complex System Lab, Biotechnology Division, The Himalayan Centre for High-throughput Computational Biology (HiCHiCoB, A BIC Supported by DBT, India), CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Abhishek Khatri
- Functional Genomics and Complex System Lab, Biotechnology Division, The Himalayan Centre for High-throughput Computational Biology (HiCHiCoB, A BIC Supported by DBT, India), CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, India
| | - Vishal Acharya
- Functional Genomics and Complex System Lab, Biotechnology Division, The Himalayan Centre for High-throughput Computational Biology (HiCHiCoB, A BIC Supported by DBT, India), CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
13
|
Ding Y, Gardiner DM, Powell JJ, Colgrave ML, Park RF, Kazan K. Adaptive defence and sensing responses of host plant roots to fungal pathogen attack revealed by transcriptome and metabolome analyses. PLANT, CELL & ENVIRONMENT 2021; 44:3526-3544. [PMID: 34591319 DOI: 10.1111/pce.14195] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/15/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Plant root-produced constitutive and inducible defences inhibit pathogenic microorganisms within roots and in the rhizosphere. However, regulatory mechanisms underlying host responses during root-pathogen interactions are largely unexplored. Using the model species Brachypodium distachyon (Bd), we studied transcriptional and metabolic responses altered in Bd roots following challenge with Fusarium graminearum (Fg), a fungal pathogen that causes diseases in diverse organs of cereal crops. Shared gene expression patterns were found between Bd roots and spikes during Fg infection associated with the mycotoxin deoxynivalenol (DON). Overexpression of BdMYB78, an up-regulated transcription factor, significantly increased root resistance during Fg infection. We show that Bd roots recognize encroaching Fg prior to physical contact by altering transcription of genes associated with multiple cellular processes such as reactive oxygen species and cell development. These changes coincide with altered levels of secreted host metabolites detected by an untargeted metabolomic approach. The secretion of Bd metabolites was suppressed by Fg as enhanced levels of defence-associated metabolites were found in roots during pre-contact with a Fg mutant defective in host perception and the ability to cause disease. Our results help to understand root defence strategies employed by plants, with potential implications for improving the resistance of cereal crops to soil pathogens.
Collapse
Affiliation(s)
- Yi Ding
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, St Lucia, Queensland, Australia
- The Plant Breeding Institute, School of Life & Environmental Sciences, Faculty of Science, The University of Sydney, Cobbitty, New South Wales, Australia
| | - Donald M Gardiner
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, St Lucia, Queensland, Australia
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, St Lucia, Queensland, Australia
| | - Jonathan J Powell
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, St Lucia, Queensland, Australia
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, St Lucia, Queensland, Australia
| | - Michelle L Colgrave
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, St Lucia, Queensland, Australia
- Australian Research Council, Centre of Excellence for Innovations in Peptide and Protein Science, School of Science, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Robert F Park
- The Plant Breeding Institute, School of Life & Environmental Sciences, Faculty of Science, The University of Sydney, Cobbitty, New South Wales, Australia
| | - Kemal Kazan
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, St Lucia, Queensland, Australia
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
14
|
Sheoran N, Ganesan P, Mughal NM, Yadav IS, Kumar A. Genome assisted molecular typing and pathotyping of rice blast pathogen, Magnaporthe oryzae, reveals a genetically homogenous population with high virulence diversity. Fungal Biol 2021; 125:733-747. [PMID: 34420700 DOI: 10.1016/j.funbio.2021.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 04/19/2021] [Accepted: 04/26/2021] [Indexed: 01/25/2023]
Abstract
Genome sequence-driven molecular typing tools have the potential to uncover the population biology and genetic diversity of rapidly evolving plant pathogens like Magnaporthe oryzae. Here, we report a new molecular typing technique -a digitally portable tool for population genetic analysis of M. oryzae to decipher the genetic diversity. Our genotyping tool exploiting allelic variations in housekeeping and virulence genes coupled with pathotyping revealed a prevalence of genetically homogenous populations within a single-field and plant niches such as leaf and panicle. The M. oryzae inciting leaf-blast and panicle-blast were confirmed to be genetically identical with no or minor nucleotide polymorphism in 17 genomic loci analyzed. Genetic loci such as Mlc1, Mpg1, Mps1, Slp1, Cal, Ef-Tu, Pfk, and Pgk were highly polymorphic as indicated by the haplotype-diversity, the number of polymorphic sites, and the number of mutations. The genetically homogenous single field population showed high virulence variability or diversity on monogenic rice differentials. The study indicated that the genetic similarity displayed by the isolates collected from a particular geographical location had no consequence on their virulence pattern on rice differentials carrying single/multiple resistance genes. The data on virulence diversity showed by the identical Sequence Types (STs) is indicative of no congruence between polymorphic virulence genes-based pathotyping and conserved housekeeping genes-based genotyping.
Collapse
Affiliation(s)
- Neelam Sheoran
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India.
| | - Prakash Ganesan
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India.
| | - Najeeb M Mughal
- Mountain Research Centre for Field Crops, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, India.
| | - Inderjit Singh Yadav
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, India.
| | - Aundy Kumar
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India.
| |
Collapse
|
15
|
Comparative Analysis of Transcriptome and sRNAs Expression Patterns in the Brachypodium distachyon- Magnaporthe oryzae Pathosystems. Int J Mol Sci 2021; 22:ijms22020650. [PMID: 33440747 PMCID: PMC7826919 DOI: 10.3390/ijms22020650] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 12/28/2020] [Accepted: 01/01/2021] [Indexed: 01/10/2023] Open
Abstract
The hemibiotrophic fungus Magnaporthe oryzae (Mo) is the causative agent of rice blast and can infect aerial and root tissues of a variety of Poaceae, including the model Brachypodium distachyon (Bd). To gain insight in gene regulation processes occurring at early disease stages, we comparatively analyzed fungal and plant mRNA and sRNA expression in leaves and roots. A total of 310 Mo genes were detected consistently and differentially expressed in both leaves and roots. Contrary to Mo, only minor overlaps were observed in plant differentially expressed genes (DEGs), with 233 Bd-DEGs in infected leaves at 2 days post inoculation (DPI), compared to 4978 at 4 DPI, and 138 in infected roots. sRNA sequencing revealed a broad spectrum of Mo-sRNAs that accumulated in infected tissues, including candidates predicted to target Bd mRNAs. Conversely, we identified a subset of potential Bd-sRNAs directed against fungal cell wall components, virulence genes and transcription factors. We also show a requirement of operable RNAi genes from the DICER-like (DCL) and ARGONAUTE (AGO) families for fungal virulence. Overall, our work elucidates the extensive reprogramming of transcriptomes and sRNAs in both plant host (Bd) and fungal pathogen (Mo), further corroborating the critical role played by sRNA species in the establishment of the interaction and its outcome.
Collapse
|
16
|
Peng W, Song N, Li W, Yan M, Huang C, Yang Y, Duan K, Dai L, Wang B. Integrated Analysis of MicroRNA and Target Genes in Brachypodium distachyon Infected by Magnaporthe oryzae by Small RNA and Degradome Sequencing. FRONTIERS IN PLANT SCIENCE 2021; 12:742347. [PMID: 34659311 PMCID: PMC8517397 DOI: 10.3389/fpls.2021.742347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/09/2021] [Indexed: 05/06/2023]
Abstract
Rice blast caused by Magnaporthe oryzae is one of the most important diseases that seriously threaten rice production. Brachypodium distachyon is a grass species closely related to grain crops, such as rice, barley, and wheat, and has become a new model plant of Gramineae. In this study, 15 small RNA samples were sequenced to examine the dynamic changes in microRNA (miRNA) expression in B. distachyon infected by M. oryzae at 0, 24, and 48 h after inoculation. We identified 432 conserved miRNAs and 288 predicted candidate miRNAs in B. distachyon. Additionally, there were 7 and 19 differentially expressed miRNAs at 24 and 48 h post-inoculation, respectively. Furthermore, using degradome sequencing, we identified 2,126 genes as targets for 308 miRNAs; using quantitative real-time PCR (qRT-PCR), we validated five miRNA/target regulatory units involved in B. distachyon-M. oryzae interactions. Moreover, using co-transformation technology, we demonstrated that BdNAC21 was negatively regulated by miR164c. This study provides a new approach for identifying resistance genes in B. distachyon by mining the miRNA regulatory network of host-pathogen interactions.
Collapse
Affiliation(s)
- Weiye Peng
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, China
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Na Song
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, China
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Wei Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, China
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Mingxiong Yan
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, China
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Chenting Huang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, China
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Yang Yang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, China
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Kangle Duan
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, China
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Liangying Dai
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, China
- College of Plant Protection, Hunan Agricultural University, Changsha, China
- Liangying Dai,
| | - Bing Wang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, China
- College of Plant Protection, Hunan Agricultural University, Changsha, China
- *Correspondence: Bing Wang,
| |
Collapse
|
17
|
Schnake A, Hartmann M, Schreiber S, Malik J, Brahmann L, Yildiz I, von Dahlen J, Rose LE, Schaffrath U, Zeier J. Inducible biosynthesis and immune function of the systemic acquired resistance inducer N-hydroxypipecolic acid in monocotyledonous and dicotyledonous plants. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6444-6459. [PMID: 32725118 PMCID: PMC7586749 DOI: 10.1093/jxb/eraa317] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/02/2020] [Indexed: 05/07/2023]
Abstract
Recent work has provided evidence for the occurrence of N-hydroxypipecolic acid (NHP) in Arabidopsis thaliana, characterized its pathogen-inducible biosynthesis by a three-step metabolic sequence from l-lysine, and established a central role for NHP in the regulation of systemic acquired resistance. Here, we show that NHP is biosynthesized in several other plant species in response to microbial attack, generally together with its direct metabolic precursor pipecolic acid and the phenolic immune signal salicylic acid. For example, NHP accumulates locally in inoculated leaves and systemically in distant leaves of cucumber in response to Pseudomonas syringae attack, in Pseudomonas-challenged tobacco and soybean leaves, in tomato inoculated with the oomycete Phytophthora infestans, in leaves of the monocot Brachypodium distachyon infected with bacterial (Xanthomonas translucens) and fungal (Magnaporthe oryzae) pathogens, and in M. oryzae-inoculated barley. Notably, resistance assays indicate that NHP acts as a potent inducer of acquired resistance to bacterial and fungal infection in distinct monocotyledonous and dicotyledonous species. Pronounced systemic accumulation of NHP in leaf phloem sap of locally inoculated cucumber supports a function for NHP as a phloem-mobile immune signal. Our study thus generalizes the existence and function of an NHP resistance pathway in plant systemic acquired resistance.
Collapse
Affiliation(s)
- Anika Schnake
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, Universitätsstraße 1, Düsseldorf, Germany
| | - Michael Hartmann
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, Universitätsstraße 1, Düsseldorf, Germany
| | - Stefan Schreiber
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, Universitätsstraße 1, Düsseldorf, Germany
| | - Jana Malik
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, Universitätsstraße 1, Düsseldorf, Germany
| | - Lisa Brahmann
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, Universitätsstraße 1, Düsseldorf, Germany
| | - Ipek Yildiz
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, Universitätsstraße 1, Düsseldorf, Germany
| | - Janina von Dahlen
- Institute for Population Genetics, Department of Biology, Heinrich Heine University, Universitätsstraße 1, Düsseldorf, Germany
| | - Laura E Rose
- Institute for Population Genetics, Department of Biology, Heinrich Heine University, Universitätsstraße 1, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstraße 1, Düsseldorf, Germany
| | - Ulrich Schaffrath
- Department of Plant Physiology, RWTH Aachen University, Aachen, Germany
| | - Jürgen Zeier
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, Universitätsstraße 1, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstraße 1, Düsseldorf, Germany
- Correspondence:
| |
Collapse
|
18
|
Constitutive Expression of Arabidopsis Senescence Associated Gene 101 in Brachypodium distachyon Enhances Resistance to Puccinia brachypodii and Magnaporthe oryzae. PLANTS 2020; 9:plants9101316. [PMID: 33036140 PMCID: PMC7650532 DOI: 10.3390/plants9101316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 11/17/2022]
Abstract
Brachypodium distachyon, as an effective model of cereal grains, is susceptible to most destructive cereal pathogens. Senescence associated gene 101 (SAG101) has been studied extensively in Arabidopsis. SAG101 is one of the important regulators of plant immunity. However, no homologous genes of AtSAG101 were found in B. distachyon. In this study, the AtSAG101 gene was transformed into B. distachyon. Three transgenic plant lines containing the AtSAG101 gene were confirmed by PCR and GUS gene activity. There were fewer Puccinia brachypodii urediospores in the AtSAG101-overexpressing plants compared to wild type plants. P. brachypodii biomass was obviously decreased in AtSAG101 transgenic plants. The length of infection hyphae and infection unit areas of P. brachypodii were significantly limited in transgenic plants. Moreover, there were small lesions in AtSAG101 transgenic plants challenged by Magnaporthe oryzae. Salicylic acid accumulation was significantly increased, which led to elevated pathogenesis-related gene expression in transgenic B. distachyon inoculated by P. brachypodii or M. oryzae compared to wild type plants. These results were consistent with infected phenotypes. Overexpression of AtSAG101 in B. distachyon caused resistance to M. oryzae and P. brachypodii. These results suggest that AtSAG101 could regulate plant resistance in B. distachyon.
Collapse
|
19
|
Shi HB, Chen N, Zhu XM, Su ZZ, Wang JY, Lu JP, Liu XH, Lin FC. The casein kinase MoYck1 regulates development, autophagy, and virulence in the rice blast fungus. Virulence 2020; 10:719-733. [PMID: 31392921 PMCID: PMC8647852 DOI: 10.1080/21505594.2019.1649588] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Casein kinases are serine/threonine protein kinases that are evolutionarily conserved in yeast and humans and are involved in a range of important cellular processes. However, the biological functions of casein kinases in the fungus Magnaporthe oryzae, the causal agent of destructive rice blast disease, are not characterized. Here, two casein kinases, MoYCK1 and MoHRR25, were identified and targeted for replacement, but only MoYCK1 was further characterized due to the possible nonviability of the MoHRR25 deletion mutant. Disruption of MoYCK1 caused pleiotropic defects in growth, conidiation, conidial germination, and appressorium formation and penetration, therefore resulting in reduced virulence in rice seedlings and barley leaves. Notably, the MoYCK1 deletion triggered quick lipidation of MoAtg8 and degradation of the autophagic marker protein GFP-MoAtg8 under nitrogen starvation conditions, in contrast to the wild type, indicating that autophagy activity was negatively regulated by MoYck1. Furthermore, we found that HOPS (homotypic fusion and vacuolar protein sorting) subunit MoVps41, a putative substrate of MoYck1, was co-located with MoAtg8 and positively required for the degradation of MoAtg8-PE and GFP-MoAtg8. In addition, MoYCK1 is also involved in the response to ionic hyperosmotic and heavy metal cation stresses. Taken together, our results revealed crucial roles of the casein kinase MoYck1 in regulating development, autophagy and virulence in M. oryzae.
Collapse
Affiliation(s)
- Huan-Bin Shi
- a State Key Laboratory of Rice Biology, Biotechnology Institute, Zhejiang University , Hangzhou , China.,b State Key Laboratory of Rice Biology, China National Rice Research Institute , Hangzhou , China
| | - Nan Chen
- a State Key Laboratory of Rice Biology, Biotechnology Institute, Zhejiang University , Hangzhou , China
| | - Xue-Ming Zhu
- a State Key Laboratory of Rice Biology, Biotechnology Institute, Zhejiang University , Hangzhou , China
| | - Zhen-Zhu Su
- a State Key Laboratory of Rice Biology, Biotechnology Institute, Zhejiang University , Hangzhou , China
| | - Jiao-Yu Wang
- c State Key Laboratory for Quality and Safety of Agro-products, Institute of Plant Protection Microbiology, Zhejiang Academy of Agricultural Science , Hangzhou , China
| | - Jian-Ping Lu
- d College of Life Sciences, Zhejiang University , Hangzhou , China
| | - Xiao-Hong Liu
- a State Key Laboratory of Rice Biology, Biotechnology Institute, Zhejiang University , Hangzhou , China
| | - Fu-Cheng Lin
- a State Key Laboratory of Rice Biology, Biotechnology Institute, Zhejiang University , Hangzhou , China
| |
Collapse
|
20
|
Betekhtin A, Hus K, Rojek-Jelonek M, Kurczynska E, Nibau C, Doonan JH, Hasterok R. In Vitro Tissue Culture in Brachypodium: Applications and Challenges. Int J Mol Sci 2020; 21:E1037. [PMID: 32033195 PMCID: PMC7037373 DOI: 10.3390/ijms21031037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/01/2020] [Accepted: 02/03/2020] [Indexed: 01/29/2023] Open
Abstract
Brachypodium distachyon has become an excellent model for plant breeding and bioenergy grasses that permits many fundamental questions in grass biology to be addressed. One of the constraints to performing research in many grasses has been the difficulty with which they can be genetically transformed and the generally low frequency of such transformations. In this review, we discuss the contribution that transformation techniques have made in Brachypodium biology as well as how Brachypodium could be used to determine the factors that might contribute to transformation efficiency. In particular, we highlight the latest research on the mechanisms that govern the gradual loss of embryogenic potential in a tissue culture and propose using B. distachyon as a model for other recalcitrant monocots.
Collapse
Affiliation(s)
- Alexander Betekhtin
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 28 Jagiellonska Street, 40-032 Katowice, Poland; (K.H.); (M.R.-J.); (E.K.); (R.H.)
| | - Karolina Hus
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 28 Jagiellonska Street, 40-032 Katowice, Poland; (K.H.); (M.R.-J.); (E.K.); (R.H.)
| | - Magdalena Rojek-Jelonek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 28 Jagiellonska Street, 40-032 Katowice, Poland; (K.H.); (M.R.-J.); (E.K.); (R.H.)
| | - Ewa Kurczynska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 28 Jagiellonska Street, 40-032 Katowice, Poland; (K.H.); (M.R.-J.); (E.K.); (R.H.)
| | - Candida Nibau
- National Plant Phenomics Centre, IBERS, Aberystwyth University, Aberystwyth SY23 3EE, UK; (C.N.); (J.H.D.)
| | - John H. Doonan
- National Plant Phenomics Centre, IBERS, Aberystwyth University, Aberystwyth SY23 3EE, UK; (C.N.); (J.H.D.)
| | - Robert Hasterok
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 28 Jagiellonska Street, 40-032 Katowice, Poland; (K.H.); (M.R.-J.); (E.K.); (R.H.)
| |
Collapse
|
21
|
Yang D, Tang J, Yang D, Chen Y, Ali J, Mou T. Improving rice blast resistance of Feng39S through molecular marker-assisted backcrossing. RICE (NEW YORK, N.Y.) 2019; 12:70. [PMID: 31502096 PMCID: PMC6733936 DOI: 10.1186/s12284-019-0329-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 08/30/2019] [Indexed: 05/13/2023]
Abstract
BACKGROUND Rice blast caused by Magnaporthe oryzae is one of the most widespread biotic constraints that threaten rice production. Using major resistance genes for rice blast resistance improvement is considered to be an efficient and technically feasible approach to achieve optimal grain yield. RESULTS We report here the introgression of the broad-spectrum blast resistance gene Pi2 into the genetic background of an elite PTGMS line, Feng39S, for enhancing it and its derived hybrid blast resistance through marker-assisted backcrossing (MABC) coupled with genomics-based background selection. Two PTGMS lines, designated as DB16206-34 and DB16206-38, stacking homozygous Pi2 were selected, and their genetic background had recurrent parent genome recovery of 99.67% detected by the SNP array RICE6K. DB16206-34 and DB16206-38 had high resistance frequency, with an average of 94.7%, when infected with 57 blast isolates over 2 years, and the resistance frequency of their derived hybrids ranged from 68.2% to 95.5% under inoculation of 22 blast isolates. The evaluation of results under natural blast epidemic field conditions showed that the selected PTGMS lines and their derived hybrids were resistant against leaf and neck blast. The characterizations of the critical temperature point of fertility-sterility alternation of the selected PTGMS lines, yield, main agronomic traits, and rice quality of the selected PTGMS lines and their hybrids were identical to those of the recurrent parent and its hybrids. DB16206-34/9311 or DB16206-38/9311 can be used as a blast-resistant version to replace the popular hybrid Fengliangyou 4. Likewise, DB16206-34/FXH No.1 or DB16206-38/FXH No.1 can also be used as a blast-resistant version to replace another popular hybrid Fengliangyou Xiang 1. CONCLUSIONS Our evaluation is the first successful case to apply MABC with genomics-based background selection to improve the blast resistance of PTGMS lines for two-line hybrid rice breeding.
Collapse
Affiliation(s)
- Dabing Yang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Jianhao Tang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Di Yang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Ying Chen
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Jauhar Ali
- Rice Breeding Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Tongmin Mou
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
22
|
Chen F, Ma R, Chen XL. Advances of Metabolomics in Fungal Pathogen-Plant Interactions. Metabolites 2019; 9:metabo9080169. [PMID: 31443304 PMCID: PMC6724083 DOI: 10.3390/metabo9080169] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/12/2019] [Accepted: 08/12/2019] [Indexed: 01/02/2023] Open
Abstract
Plant disease caused by fungus is one of the major threats to global food security, and understanding fungus-plant interactions is important for plant disease control. Research devoted to revealing the mechanisms of fungal pathogen-plant interactions has been conducted using genomics, transcriptomics, proteomics, and metabolomics. Metabolomics research based on mass spectrometric techniques is an important part of systems biology. In the past decade, the emerging field of metabolomics in plant pathogenic fungi has received wide attention. It not only provides a qualitative and quantitative approach for determining the pathogenesis of pathogenic fungi but also helps to elucidate the defense mechanisms of their host plants. This review focuses on the methods and progress of metabolomics research in fungal pathogen-plant interactions. In addition, the prospects and challenges of metabolomics research in plant pathogenic fungi and their hosts are addressed.
Collapse
Affiliation(s)
- Fangfang Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Ruijing Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Xiao-Lin Chen
- The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
23
|
Shi H, Chen N, Zhu X, Liang S, Li L, Wang J, Lu J, Lin F, Liu X. F‐box proteins MoFwd1, MoCdc4 and MoFbx15 regulate development and pathogenicity in the rice blast fungusMagnaporthe oryzae. Environ Microbiol 2019; 21:3027-3045. [DOI: 10.1111/1462-2920.14699] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 06/05/2019] [Accepted: 05/27/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Huan‐Bin Shi
- State Key Laboratory for Rice Biology, Biotechnology InstituteZhejiang University Hangzhou 310058 China
| | - Nan Chen
- State Key Laboratory for Rice Biology, Biotechnology InstituteZhejiang University Hangzhou 310058 China
| | - Xue‐Ming Zhu
- State Key Laboratory for Rice Biology, Biotechnology InstituteZhejiang University Hangzhou 310058 China
| | - Shuang Liang
- State Key Laboratory for Rice Biology, Biotechnology InstituteZhejiang University Hangzhou 310058 China
| | - Lin Li
- State Key Laboratory for Rice Biology, Biotechnology InstituteZhejiang University Hangzhou 310058 China
| | - Jiao‐Yu Wang
- Institute of Plant Protection MicrobiologyZhejiang Academy of Agricultural Science Hangzhou 310021 China
| | - Jian‐Ping Lu
- College of Life SciencesZhejiang University Hangzhou 310058 China
| | - Fu‐Cheng Lin
- State Key Laboratory for Rice Biology, Biotechnology InstituteZhejiang University Hangzhou 310058 China
| | - Xiao‐Hong Liu
- State Key Laboratory for Rice Biology, Biotechnology InstituteZhejiang University Hangzhou 310058 China
| |
Collapse
|
24
|
Developing japonica rice introgression lines with multiple resistance genes for brown planthopper, bacterial blight, rice blast, and rice stripe virus using molecular breeding. Mol Genet Genomics 2018; 293:1565-1575. [DOI: 10.1007/s00438-018-1470-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 06/29/2018] [Indexed: 10/28/2022]
|
25
|
Ma S, Song Q, Tao H, Harrison A, Wang S, Liu W, Lin S, Zhang Z, Ai Y, He H. Prediction of protein–protein interactions between fungus (Magnaporthe grisea) and rice (Oryza sativa L.). Brief Bioinform 2017; 20:448-456. [DOI: 10.1093/bib/bbx132] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/15/2017] [Indexed: 12/13/2022] Open
Affiliation(s)
- Shiwei Ma
- College of Life Sciences, Fujian Agriculture and Forestry University, China
| | - Qi Song
- College of Life Sciences, Fujian Agriculture and Forestry University, China
| | - Huan Tao
- College of Life Sciences, Fujian Agriculture and Forestry University, China
| | - Andrew Harrison
- Department of Mathematical Sciences, University of Essex, UK
| | - Shaobo Wang
- College of Life Sciences, Fujian Agriculture and Forestry University, China
| | - Wei Liu
- College of Life Sciences, Fujian Agriculture and Forestry University, China
| | - Shoukai Lin
- Fujian Provincial Key Laboratory of Ecology-toxicological Effects and Control for Emerging Contaminants, Putian University
| | - Ziding Zhang
- College of Biological Sciences, China Agriculture University, China
| | - Yufang Ai
- College of Life Sciences, Fujian Agriculture and Forestry University, China
| | - Huaqin He
- College of Life Sciences, Fujian Agriculture and Forestry University, China
| |
Collapse
|
26
|
Rioux RA, Van Ryzin BJ, Kerns JP. Brachypodium: A Potential Model Host for Fungal Pathogens of Turfgrasses. PHYTOPATHOLOGY 2017; 107:749-757. [PMID: 28134592 DOI: 10.1094/phyto-08-16-0318-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Brachypodium distachyon is a C3 grass that is an attractive model host system for studying pathogenicity of major turfgrass pathogens due to its genetic similarity to many cool-season turfgrasses. Infection assays with two or more isolates of the casual agents of dollar spot, brown patch, and Microdochium patch resulted in compatible interactions with B. distachyon inbred line Bd21-3. The symptoms produced by these pathogens on Bd21-3 closely resembled those observed on the natural turfgrass host (creeping bentgrass), demonstrating that B. distachyon is susceptible to the fungal pathogens that cause dollar spot, brown patch, and Microdochium patch on turfgrasses. The interaction between Sclerotinia homoeocarpa isolates and Brachypodium ecotypes was also investigated. Interestingly, differential responses of these ecotypes to S. homoeocarpa isolates was found, particularly when comparing B. distachyon to B. hybridum ecotypes. Taken together, these findings demonstrate that B. distachyon can be used as a model host system for these turfgrass diseases and leveraged for studies of molecular mechanisms contributing to host resistance.
Collapse
Affiliation(s)
- Renee A Rioux
- First author: Department of Plant Pathology, University of Wisconsin-Madison, Madison 53706; and second and third authors: Department of Entomology and Plant Pathology, North Carolina State University, Raleigh 27695
| | - Benjamin J Van Ryzin
- First author: Department of Plant Pathology, University of Wisconsin-Madison, Madison 53706; and second and third authors: Department of Entomology and Plant Pathology, North Carolina State University, Raleigh 27695
| | - James P Kerns
- First author: Department of Plant Pathology, University of Wisconsin-Madison, Madison 53706; and second and third authors: Department of Entomology and Plant Pathology, North Carolina State University, Raleigh 27695
| |
Collapse
|
27
|
Ke Y, Deng H, Wang S. Advances in understanding broad-spectrum resistance to pathogens in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:738-748. [PMID: 27888533 DOI: 10.1111/tpj.13438] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 11/22/2016] [Accepted: 11/22/2016] [Indexed: 05/22/2023]
Abstract
Rice diseases caused by multiple pathogen species are a major obstacle to achieving optimal yield. Using host pathogen species-non-specific broad-spectrum resistance (BSR) for rice improvement is an efficient way to control diseases. Recent advances in rice genomics and improved understanding of the mechanisms of rice-pathogen interactions have shown that using a single gene to improve rice BSR to multiple pathogen species is technically possible and the necessary resources exist. A variety of rice genes, including major disease resistance genes and defense-responsive genes, which function in pattern-triggered immunity signaling, effector-triggered immunity signaling or quantitative resistance, can mediate BSR to two or more pathogen species independently. These genes encode diverse proteins and function differently in promoting disease resistance, thus providing a relatively broad choice for different breeding programs. This updated knowledge will facilitate rice improvement with pathogen species-non-specific BSR via gene marker-assisted selection or biotechnological approaches.
Collapse
Affiliation(s)
- Yinggen Ke
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Hanqing Deng
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Shiping Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
28
|
Comparison and Validation of Putative Pathogenicity-Related Genes Identified by T-DNA Insertional Mutagenesis and Microarray Expression Profiling in Magnaporthe oryzae. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7198614. [PMID: 28286772 PMCID: PMC5329669 DOI: 10.1155/2017/7198614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/16/2016] [Accepted: 12/12/2016] [Indexed: 11/18/2022]
Abstract
High-throughput technologies of functional genomics such as T-DNA insertional mutagenesis and microarray expression profiling have been employed to identify genes related to pathogenicity in Magnaporthe oryzae. However, validation of the functions of individual genes identified by these high-throughput approaches is laborious. In this study, we compared two published lists of genes putatively related to pathogenicity in M. oryzae identified by T-DNA insertional mutagenesis (comprising 1024 genes) and microarray expression profiling (comprising 236 genes), respectively, and then validated the functions of some overlapped genes between the two lists by knocking them out using the method of target gene replacement. Surprisingly, only 13 genes were overlapped between the two lists, and none of the four genes selected from the overlapped genes exhibited visible phenotypic changes on vegetative growth, asexual reproduction, and infection ability in their knockout mutants. Our results suggest that both of the lists might contain large proportions of unrelated genes to pathogenicity and therefore comparing the two gene lists is hardly helpful for the identification of genes that are more likely to be involved in pathogenicity as we initially expected.
Collapse
|
29
|
López-Álvarez D, Zubair H, Beckmann M, Draper J, Catalán P. Diversity and association of phenotypic and metabolomic traits in the close model grasses Brachypodium distachyon, B. stacei and B. hybridum. ANNALS OF BOTANY 2017; 119:545-561. [PMID: 28040672 PMCID: PMC5458712 DOI: 10.1093/aob/mcw239] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/25/2016] [Accepted: 10/12/2016] [Indexed: 05/30/2023]
Abstract
BACKGROUND AND AIMS Morphological traits in combination with metabolite fingerprinting were used to investigate inter- and intraspecies diversity within the model annual grasses Brachypodium distachyon, Brachypodium stacei and Brachypodium hybridum . METHODS Phenotypic variation of 15 morphological characters and 2219 nominal mass ( m / z ) signals generated using flow infusion electrospray ionization-mass spectrometry (FIE-MS) were evaluated in individuals from a total of 174 wild populations and six inbred lines, and 12 lines, of the three species, respectively. Basic statistics and multivariate principal component analysis and discriminant analysis were used to differentiate inter- and intraspecific variability of the two types of variable, and their association was assayed with the rcorr function. KEY RESULTS Basic statistics and analysis of variance detected eight phenotypic characters [(stomata) leaf guard cell length, pollen grain length, (plant) height, second leaf width, inflorescence length, number of spikelets per inflorescence, lemma length, awn length] and 434 tentatively annotated metabolite signals that significantly discriminated the three species. Three phenotypic traits (pollen grain length, spikelet length, number of flowers per inflorescence) might be genetically fixed. The three species showed different metabolomic profiles. Discriminant analysis significantly discriminated the three taxa with both morphometric and metabolome traits and the intraspecific phenotypic diversity within B. distachyon and B. stacei . The populations of B. hybridum were considerably less differentiated. CONCLUSIONS Highly explanatory metabolite signals together with morphological characters revealed concordant patterns of differentiation of the three taxa. Intraspecific phenotypic diversity was observed between northern and southern Iberian populations of B. distachyon and between eastern Mediterranean/south-western Asian and western Mediterranean populations of B. stacei . Significant association was found for pollen grain length and lemma length and ten and six metabolomic signals, respectively. These results would guide the selection of new germplasm lines of the three model grasses in ongoing genome-wide association studies.
Collapse
Affiliation(s)
- Diana López-Álvarez
- Department of Agriculture and Environmental Sciences, High Polytechnic School of Huesca, University of Zaragoza, Ctra. Cuarte Km 1, 22071 Huesca, Spain
| | - Hassan Zubair
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Plas Gogerddan, Aberystwyth SY23 3EB, UK
| | - Manfred Beckmann
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Plas Gogerddan, Aberystwyth SY23 3EB, UK
| | - John Draper
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Plas Gogerddan, Aberystwyth SY23 3EB, UK
| | - Pilar Catalán
- Department of Agriculture and Environmental Sciences, High Polytechnic School of Huesca, University of Zaragoza, Ctra. Cuarte Km 1, 22071 Huesca, Spain
- Department of Botany, Institute of Biology, Tomsk State University, Lenin Av. 36, Tomsk 634050, Russia
| |
Collapse
|
30
|
Huang K, Caplan J, Sweigard JA, Czymmek KJ, Donofrio NM. Optimization of the HyPer sensor for robust real-time detection of hydrogen peroxide in the rice blast fungus. MOLECULAR PLANT PATHOLOGY 2017; 18:298-307. [PMID: 26950262 PMCID: PMC6638257 DOI: 10.1111/mpp.12392] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Reactive oxygen species (ROS) production and breakdown have been studied in detail in plant-pathogenic fungi, including the rice blast fungus, Magnaporthe oryzae; however, the examination of the dynamic process of ROS production in real time has proven to be challenging. We resynthesized an existing ROS sensor, called HyPer, to exhibit optimized codon bias for fungi, specifically Neurospora crassa, and used a combination of microscopy and plate reader assays to determine whether this construct could detect changes in fungal ROS during the plant infection process. Using confocal microscopy, we were able to visualize fluctuating ROS levels during the formation of an appressorium on an artificial hydrophobic surface, as well as during infection on host leaves. Using the plate reader, we were able to ascertain measurements of hydrogen peroxide (H2 O2 ) levels in conidia as detected by the MoHyPer sensor. Overall, by the optimization of codon usage for N. crassa and related fungal genomes, the MoHyPer sensor can be used as a robust, dynamic and powerful tool to both monitor and quantify H2 O2 dynamics in real time during important stages of the plant infection process.
Collapse
Affiliation(s)
- Kun Huang
- BioImaging CenterDelaware Biotechnology InstituteNewarkDE 19716USA
- Department of Plant and Soil SciencesUniversity of DelawareNewarkDE19716USA
| | - Jeff Caplan
- BioImaging CenterDelaware Biotechnology InstituteNewarkDE 19716USA
| | - James A. Sweigard
- DuPont Stine Haskell Research Center 1090 Elkton RdNewarkDE 19711USA
| | | | - Nicole M. Donofrio
- Department of Plant and Soil SciencesUniversity of DelawareNewarkDE19716USA
| |
Collapse
|
31
|
Azizi P, Rafii MY, Mahmood M, Abdullah SNA, Hanafi MM, Latif MA, Sahebi M, Ashkani S. Evaluation of RNA extraction methods in rice and their application in expression analysis of resistance genes against Magnaporthe oryzae. BIOTECHNOL BIOTEC EQ 2016. [DOI: 10.1080/13102818.2016.1259015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Parisa Azizi
- Laboratory of Food Crops, Institute of Tropical Agriculture, Universiti Putra Malaysia, Serdang, Malaysia
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Malaysia
| | - Mohd Y. Rafii
- Laboratory of Food Crops, Institute of Tropical Agriculture, Universiti Putra Malaysia, Serdang, Malaysia
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Malaysia
| | - Maziah Mahmood
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Serdang, Malaysia
| | - Siti Nor Akmar Abdullah
- Laboratory of Plantation Crop, Institute of Tropical Agriculture, Universiti Putra Malaysia, Serdang, Malaysia
| | - Mohamed Musa Hanafi
- Laboratory of Plantation Crop, Institute of Tropical Agriculture, Universiti Putra Malaysia, Serdang, Malaysia
| | - Muhammad Abdul Latif
- Laboratory of Food Crops, Institute of Tropical Agriculture, Universiti Putra Malaysia, Serdang, Malaysia
| | - Mahbod Sahebi
- Laboratory of Plantation Crop, Institute of Tropical Agriculture, Universiti Putra Malaysia, Serdang, Malaysia
| | - Sadegh Ashkani
- Laboratory of Food Crops, Institute of Tropical Agriculture, Universiti Putra Malaysia, Serdang, Malaysia
- Department of Agronomy and Plant Breeding, Shahr-e-Rey Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
32
|
Shi HB, Chen GQ, Chen YP, Dong B, Lu JP, Liu XH, Lin FC. MoRad6-mediated ubiquitination pathways are essential for development and pathogenicity in Magnaporthe oryzae. Environ Microbiol 2016; 18:4170-4187. [PMID: 27581713 DOI: 10.1111/1462-2920.13515] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Accepted: 08/28/2016] [Indexed: 01/19/2023]
Abstract
The ubiquitin system modulates protein functions through targeting substrates for ubiquitination. Here, E2 conjugating enzyme MoRad6-related ubiquitination pathways are identified and analyzed in Magnaporthe oryzae, the causal agent of rice blast disease. Disruption of MoRad6 leads to severe defects in growth, sporulation, conidial germination, appressorium formation, and plant infection. To depict the functions of MoRad6, three putative ubiquitin ligases, MoRad18, MoBre1 and MoUbr1, are also characterized. Deletion of MoRad18 causes minor phenotypic changes, while MoBre1 is required for growth, conidiation and pathogenicity in M. oryzae. Defects in ΔMobre1 likely resulted from the reduction in di- and tri-methylation level of Histone 3 lysine 4 (H3K4). Notably, MoUbr1 is crucial for conidial adhesion and germination, possibly by degrading components of cAMP/PKA and mitogen-activated protein kinase (MAPK) Pmk1 signaling pathways via the N-end rule pathway. Germination failure of ΔMoubr1 conidia could be rescued by elevation of cAMP level or enhanced Pmk1 phosphorylation resulting from further deletion of MoIra1, the M. oryzae homolog of yeast Ira1/2. These reveal vital effects of cAMP/PKA and MAPK Pmk1 signaling on conidial germination in M. oryzae. Altogether, our results suggest that MoRad6-mediated ubiquitination pathways are essential for the infection-related development and pathogenicity of M. oryzae.
Collapse
Affiliation(s)
- Huan-Bin Shi
- State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang University, Hangzhou, 310058, China
| | - Guo-Qing Chen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Ya-Ping Chen
- State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang University, Hangzhou, 310058, China
| | - Bo Dong
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, 310021, China
| | - Jian-Ping Lu
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiao-Hong Liu
- State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang University, Hangzhou, 310058, China
| | - Fu-Cheng Lin
- State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
33
|
Kawasaki A, Donn S, Ryan PR, Mathesius U, Devilla R, Jones A, Watt M. Microbiome and Exudates of the Root and Rhizosphere of Brachypodium distachyon, a Model for Wheat. PLoS One 2016; 11:e0164533. [PMID: 27727301 PMCID: PMC5058512 DOI: 10.1371/journal.pone.0164533] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 09/27/2016] [Indexed: 01/31/2023] Open
Abstract
The rhizosphere microbiome is regulated by plant genotype, root exudates and environment. There is substantial interest in breeding and managing crops that host root microbial communities that increase productivity. The eudicot model species Arabidopsis has been used to investigate these processes, however a model for monocotyledons is also required. We characterized the rhizosphere microbiome and root exudates of Brachypodium distachyon, to develop it as a rhizosphere model for cereal species like wheat. The Brachypodium rhizosphere microbial community was dominated by Burkholderiales. However, these communities were also dependent on how tightly they were bound to roots, the root type they were associated with (nodal or seminal roots), and their location along the roots. Moreover, the functional gene categories detected in microorganisms isolated from around root tips differed from those isolated from bases of roots. The Brachypodium rhizosphere microbiota and root exudate profiles were similar to those reported for wheat rhizospheres, and different to Arabidopsis. The differences in root system development and cell wall chemistry between monocotyledons and eudicots may also influence the microorganism composition of these major plant types. Brachypodium is a promising model for investigating the microbiome of wheat.
Collapse
Affiliation(s)
| | - Suzanne Donn
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| | - Peter R. Ryan
- CSIRO Agriculture and Food, Canberra, ACT, Australia
| | - Ulrike Mathesius
- Division of Plant Science, Research School of Biology, Australian National University, ACT, Australia
| | | | - Amanda Jones
- CSIRO Agriculture and Food, Canberra, ACT, Australia
| | - Michelle Watt
- CSIRO Agriculture and Food, Canberra, ACT, Australia
- Institute of Bio and Geosciences (IBG 2), Plant Sciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| |
Collapse
|
34
|
Autophagy-associated alpha-arrestin signaling is required for conidiogenous cell development in Magnaporthe oryzae. Sci Rep 2016; 6:30963. [PMID: 27498554 PMCID: PMC4976345 DOI: 10.1038/srep30963] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 07/10/2016] [Indexed: 01/06/2023] Open
Abstract
Conidiation patterning is evolutionarily complex and mechanism concerning conidiogenous cell differentiation remains largely unknown. Magnaporthe oryzae conidiates in a sympodial way and uses its conidia to infect host and disseminate blast disease. Arrestins are multifunctional proteins that modulate receptor down-regulation and scaffold components of intracellular trafficking routes. We here report an alpha-arrestin that regulates patterns of conidiation and contributes to pathogenicity in M. oryzae. We show that disruption of ARRDC1 generates mutants which produce conidia in an acropetal array and ARRDC1 significantly affects expression profile of CCA1, a virulence-related transcription factor required for conidiogenous cell differentiation. Although germ tubes normally develop appressoria, penetration peg formation is dramatically impaired and Δarrdc1 mutants are mostly nonpathogenic. Fluorescent analysis indicates that EGFP-ARRDC1 puncta are well colocalized with DsRed2-Atg8, and this distribution profile could not be altered in Δatg9 mutants, suggesting ARRDC1 enters into autophagic flux before autophagosome maturation. We propose that M. oryzae employs ARRDC1 to regulate specific receptors in response to conidiation-related signals for conidiogenous cell differentiation and utilize autophagosomes for desensitization of conidiogenous receptor, which transmits extracellular signal to the downstream elements of transcription factors. Our investigation extends novel significance of autophagy-associated alpha-arrestin signaling to fungal parasites.
Collapse
|
35
|
An T, Cai Y, Zhao S, Zhou J, Song B, Bux H, Qi X. Brachypodium distachyon T-DNA insertion lines: a model pathosystem to study nonhost resistance to wheat stripe rust. Sci Rep 2016; 6:25510. [PMID: 27138687 PMCID: PMC4853781 DOI: 10.1038/srep25510] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 04/18/2016] [Indexed: 11/24/2022] Open
Abstract
Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (PST), is one of the most destructive diseases and can cause severe yield losses in many regions of the world. Because of the large size and complexity of wheat genome, it is difficult to study the molecular mechanism of interaction between wheat and PST. Brachypodium distachyon has become a model system for temperate grasses' functional genomics research. The phenotypic evaluation showed that the response of Brachypodium distachyon to PST was nonhost resistance (NHR), which allowed us to present this plant-pathogen system as a model to explore the immune response and the molecular mechanism underlying wheat and PST. Here we reported the generation of about 7,000 T-DNA insertion lines based on a highly efficient Agrobacterium-mediated transformation system. Hundreds of mutants either more susceptible or more resistant to PST than that of the wild type Bd21 were obtained. The three putative target genes, Bradi5g17540, BdMYB102 and Bradi5g11590, of three T-DNA insertion mutants could be involved in NHR of Brachypodium distachyon to wheat stripe rust. The systemic pathologic study of this T-DNA mutants would broaden our knowledge of NHR, and assist in breeding wheat cultivars with durable resistance.
Collapse
Affiliation(s)
- Tianyue An
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100093, China
| | - Yanli Cai
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100093, China
| | - Suzhen Zhao
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Jianghong Zhou
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Bo Song
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Hadi Bux
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Institute of Plant Sciences, University of Sindh, Jamshoro, 76080, Pakistan
| | - Xiaoquan Qi
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
36
|
Kouzai Y, Kimura M, Yamanaka Y, Watanabe M, Matsui H, Yamamoto M, Ichinose Y, Toyoda K, Onda Y, Mochida K, Noutoshi Y. Expression profiling of marker genes responsive to the defence-associated phytohormones salicylic acid, jasmonic acid and ethylene in Brachypodium distachyon. BMC PLANT BIOLOGY 2016; 16:59. [PMID: 26935959 PMCID: PMC4776424 DOI: 10.1186/s12870-016-0749-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 02/26/2016] [Indexed: 05/07/2023]
Abstract
BACKGROUND Brachypodium distachyon is a promising model plants for grasses. Infections of Brachypodium by various pathogens that severely impair crop production have been reported, and the species accordingly provides an alternative platform for investigating molecular mechanisms of pathogen virulence and plant disease resistance. To date, we have a broad picture of plant immunity only in Arabidopsis and rice; therefore, Brachypodium may constitute a counterpart that displays the commonality and uniqueness of defence systems among plant species. Phytohormones play key roles in plant biotic stress responses, and hormone-responsive genes are used to qualitatively and quantitatively evaluate disease resistance responses during pathogen infection. For these purposes, defence-related phytohormone marker genes expressed at time points suitable for defence-response monitoring are needed. Information about their expression profiles over time as well as their response specificity is also helpful. However, useful marker genes are still rare in Brachypodium. RESULTS We selected 34 candidates for Brachypodium marker genes on the basis of protein-sequence similarity to known marker genes used in Arabidopsis and rice. Brachypodium plants were treated with the defence-related phytohormones salicylic acid, jasmonic acid and ethylene, and their transcription levels were measured 24 and 48 h after treatment. Two genes for salicylic acid, 7 for jasmonic acid and 2 for ethylene were significantly induced at either or both time points. We then focused on 11 genes encoding pathogenesis-related (PR) 1 protein and compared their expression patterns with those of Arabidopsis and rice. Phylogenetic analysis suggested that Brachypodium contains several PR1-family genes similar to rice genes. Our expression profiling revealed that regulation patterns of some PR1 genes as well as of markers identified for defence-related phytohormones are closely related to those in rice. CONCLUSION We propose that the Brachypodium immune hormone marker genes identified in this study will be useful to plant pathologists who use Brachypodium as a model pathosystem, because the timing of their transcriptional activation matches that of the disease resistance response. Our results using Brachypodium also suggest that monocots share a characteristic immune system, defined as the common defence system, that is different from that of dicots.
Collapse
Affiliation(s)
- Yusuke Kouzai
- Graduate School of Environmental and Life Science, Okayama University, Kita-ku, Okayama, Japan.
| | - Mamiko Kimura
- Graduate School of Environmental and Life Science, Okayama University, Kita-ku, Okayama, Japan.
| | - Yurie Yamanaka
- Graduate School of Environmental and Life Science, Okayama University, Kita-ku, Okayama, Japan.
| | - Megumi Watanabe
- Graduate School of Environmental and Life Science, Okayama University, Kita-ku, Okayama, Japan.
| | - Hidenori Matsui
- Graduate School of Environmental and Life Science, Okayama University, Kita-ku, Okayama, Japan.
| | - Mikihiro Yamamoto
- Graduate School of Environmental and Life Science, Okayama University, Kita-ku, Okayama, Japan.
| | - Yuki Ichinose
- Graduate School of Environmental and Life Science, Okayama University, Kita-ku, Okayama, Japan.
| | - Kazuhiro Toyoda
- Graduate School of Environmental and Life Science, Okayama University, Kita-ku, Okayama, Japan.
| | - Yoshihiko Onda
- Cellulose Production Research Team, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama, Japan.
| | - Keiichi Mochida
- Cellulose Production Research Team, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama, Japan.
| | - Yoshiteru Noutoshi
- Graduate School of Environmental and Life Science, Okayama University, Kita-ku, Okayama, Japan.
| |
Collapse
|
37
|
Gagné-Bourque F, Mayer BF, Charron JB, Vali H, Bertrand A, Jabaji S. Accelerated Growth Rate and Increased Drought Stress Resilience of the Model Grass Brachypodium distachyon Colonized by Bacillus subtilis B26. PLoS One 2015; 10:e0130456. [PMID: 26103151 PMCID: PMC4477885 DOI: 10.1371/journal.pone.0130456] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 05/20/2015] [Indexed: 11/18/2022] Open
Abstract
Plant growth-promoting bacteria (PGB) induce positive effects in plants, for instance, increased growth and reduced abiotic stresses susceptibility. The mechanisms by which these bacteria impact the host plant are numerous, diverse and often specific. Here, we studied the agronomical, molecular and biochemical effects of the endophytic PGB Bacillus subtilis B26 on the full life cycle of Brachypodium distachyon Bd21, an established model species for functional genomics in cereal crops and temperate grasses. Inoculation of Brachypodium with B. subtilis strain B26 increased root and shoot weights, accelerated growth rate and seed yield as compared to control plants. B. subtilis strain B26 efficiently colonized the plant and was recovered from roots, stems and blades as well as seeds of Brachypodium, indicating that the bacterium is able to migrate, spread systemically inside the plant, establish itself in the aerial plant tissues and organs, and is vertically transmitted to seeds. The presence of B. subtilis strain B26 in the seed led to systemic colonization of the next generation of Brachypodium plants. Inoculated Brachypodium seedlings and mature plants exposed to acute and chronic drought stress minimized the phenotypic effect of drought compared to plants not harbouring the bacterium. Protection from the inhibitory effects of drought by the bacterium was linked to upregulation of the drought-response genes, DREB2B-like, DHN3-like and LEA-14-A-like and modulation of the DNA methylation genes, MET1B-like, CMT3-like and DRM2-like, that regulate the process. Additionally, total soluble sugars and starch contents increased in stressed inoculated plants, a biochemical indication of drought tolerance. In conclusion, we show a single inoculation of Brachypodium with a PGB affected the whole growth cycle of the plant, accelerating its growth rates, shortening its vegetative period, and alleviating drought stress effects. These effects are relevant to grasses and cereal crops.
Collapse
Affiliation(s)
- François Gagné-Bourque
- Department of Plant Science, Macdonald Campus of McGill University, 21,111 Lakeshore Rd. Ste-Anne-de-Bellevue, Québec, CANADA, H9X 3V9
| | - Boris F. Mayer
- Department of Plant Science, Macdonald Campus of McGill University, 21,111 Lakeshore Rd. Ste-Anne-de-Bellevue, Québec, CANADA, H9X 3V9
| | - Jean-Benoit Charron
- Department of Plant Science, Macdonald Campus of McGill University, 21,111 Lakeshore Rd. Ste-Anne-de-Bellevue, Québec, CANADA, H9X 3V9
- * E-mail: (SJ); (JBC)
| | - Hojatollah Vali
- Facility of Electron Microscopy Research (FEMR) McGill University, 3640 University Street, Montréal, Québec, CANADA, H3A 0C7
| | - Annick Bertrand
- Soils and Crops Research Development Center, Agriculture and Agri-Food Canada, 2560 Hochelaga Boulevard, Québec City, Québec, CANADA, G1V 2J3
| | - Suha Jabaji
- Department of Plant Science, Macdonald Campus of McGill University, 21,111 Lakeshore Rd. Ste-Anne-de-Bellevue, Québec, CANADA, H9X 3V9
- * E-mail: (SJ); (JBC)
| |
Collapse
|
38
|
Azizi P, Rafii MY, Mahmood M, Abdullah SNA, Hanafi MM, Nejat N, Latif MA, Sahebi M. Differential Gene Expression Reflects Morphological Characteristics and Physiological Processes in Rice Immunity against Blast Pathogen Magnaporthe oryzae. PLoS One 2015; 10:e0126188. [PMID: 26001124 PMCID: PMC4441441 DOI: 10.1371/journal.pone.0126188] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 03/30/2015] [Indexed: 12/25/2022] Open
Abstract
The rice blast fungus Magnaporthe oryzae is a serious pathogen that jeopardises the world’s most important food-security crop. Ten common Malaysian rice varieties were examined for their morphological, physiological and genomic responses to this rice blast pathogen. qPCR quantification was used to assess the growth of the pathogen population in resistant and susceptible rice varieties. The chlorophyll content and photosynthesis were also measured to further understand the disruptive effects that M. oryzae has on infected plants of these varieties. Real-time PCR was used to explore the differential expression of eight blast resistance genes among the ten local varieties. Blast disease has destructive effects on the growth of rice, and the findings of our study provide evidence that the Pikh, Pi9, Pi21, and Osw45 genes are involved in defence responses in the leaves of Malaysian rice at 31 h after inoculation with M. oryzae pathotype P7.2. Both the chlorophyll content and photosynthesis were reduced, but the levels of Pikh gene expression remained constant in susceptible varieties, with a developed pathogen population and mild or severe symptoms. The Pi9, Pi21, and Osw45 genes, however, were simultaneously upregulated in infected rice plants. Therefore, the presence of the Pikh, Pi9, Pi21, and Osw45 genes in the germplasm is useful for improving the resistance of rice varieties.
Collapse
Affiliation(s)
- Parisa Azizi
- Laboratory of Food Crops, Institute of Tropical Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mohd Y. Rafii
- Laboratory of Food Crops, Institute of Tropical Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- * E-mail:
| | - Maziah Mahmood
- Laboratory of Food Crops, Institute of Tropical Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Siti N. A. Abdullah
- Laboratory of Plantation Crop, Institute of Tropical Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mohamed M. Hanafi
- Laboratory of Plantation Crop, Institute of Tropical Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Naghmeh Nejat
- Laboratory of Plantation Crop, Institute of Tropical Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Muhammad A. Latif
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Plant Pathology Division, Bangladesh Rice Research Institute, Gazipur-1701, Bangladesh
| | - Mahbod Sahebi
- Laboratory of Plantation Crop, Institute of Tropical Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
39
|
Tanweer FA, Rafii MY, Sijam K, Rahim HA, Ahmed F, Latif MA. Current advance methods for the identification of blast resistance genes in rice. C R Biol 2015; 338:321-34. [DOI: 10.1016/j.crvi.2015.03.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 03/03/2015] [Accepted: 03/03/2015] [Indexed: 11/25/2022]
|
40
|
Fitzgerald TL, Powell JJ, Schneebeli K, Hsia MM, Gardiner DM, Bragg JN, McIntyre CL, Manners JM, Ayliffe M, Watt M, Vogel JP, Henry RJ, Kazan K. Brachypodium as an emerging model for cereal-pathogen interactions. ANNALS OF BOTANY 2015; 115:717-31. [PMID: 25808446 PMCID: PMC4373291 DOI: 10.1093/aob/mcv010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 11/03/2014] [Accepted: 12/22/2014] [Indexed: 05/22/2023]
Abstract
BACKGROUND Cereal diseases cause tens of billions of dollars of losses annually and have devastating humanitarian consequences in the developing world. Increased understanding of the molecular basis of cereal host-pathogen interactions should facilitate development of novel resistance strategies. However, achieving this in most cereals can be challenging due to large and complex genomes, long generation times and large plant size, as well as quarantine and intellectual property issues that may constrain the development and use of community resources. Brachypodium distachyon (brachypodium) with its small, diploid and sequenced genome, short generation time, high transformability and rapidly expanding community resources is emerging as a tractable cereal model. SCOPE Recent research reviewed here has demonstrated that brachypodium is either susceptible or partially susceptible to many of the major cereal pathogens. Thus, the study of brachypodium-pathogen interactions appears to hold great potential to improve understanding of cereal disease resistance, and to guide approaches to enhance this resistance. This paper reviews brachypodium experimental pathosystems for the study of fungal, bacterial and viral cereal pathogens; the current status of the use of brachypodium for functional analysis of cereal disease resistance; and comparative genomic approaches undertaken using brachypodium to assist characterization of cereal resistance genes. Additionally, it explores future prospects for brachypodium as a model to study cereal-pathogen interactions. CONCLUSIONS The study of brachypodium-pathogen interactions appears to be a productive strategy for understanding mechanisms of disease resistance in cereal species. Knowledge obtained from this model interaction has strong potential to be exploited for crop improvement.
Collapse
Affiliation(s)
- Timothy L Fitzgerald
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Brisbane, QLD 4067, Australia, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Canberra, ACT 2601, Australia, United States Department of Agriculture Agricultural Research Service (USDA-ARS), Western Regional Research Center (WRRC), Albany, CA 94710, USA, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA and Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Jonathan J Powell
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Brisbane, QLD 4067, Australia, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Canberra, ACT 2601, Australia, United States Department of Agriculture Agricultural Research Service (USDA-ARS), Western Regional Research Center (WRRC), Albany, CA 94710, USA, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA and Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Brisbane, QLD 4067, Australia, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Canberra, ACT 2601, Australia, United States Department of Agriculture Agricultural Research Service (USDA-ARS), Western Regional Research Center (WRRC), Albany, CA 94710, USA, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA and Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Katharina Schneebeli
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Brisbane, QLD 4067, Australia, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Canberra, ACT 2601, Australia, United States Department of Agriculture Agricultural Research Service (USDA-ARS), Western Regional Research Center (WRRC), Albany, CA 94710, USA, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA and Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - M Mandy Hsia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Brisbane, QLD 4067, Australia, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Canberra, ACT 2601, Australia, United States Department of Agriculture Agricultural Research Service (USDA-ARS), Western Regional Research Center (WRRC), Albany, CA 94710, USA, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA and Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Donald M Gardiner
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Brisbane, QLD 4067, Australia, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Canberra, ACT 2601, Australia, United States Department of Agriculture Agricultural Research Service (USDA-ARS), Western Regional Research Center (WRRC), Albany, CA 94710, USA, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA and Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Jennifer N Bragg
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Brisbane, QLD 4067, Australia, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Canberra, ACT 2601, Australia, United States Department of Agriculture Agricultural Research Service (USDA-ARS), Western Regional Research Center (WRRC), Albany, CA 94710, USA, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA and Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Brisbane, QLD 4067, Australia, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Canberra, ACT 2601, Australia, United States Department of Agriculture Agricultural Research Service (USDA-ARS), Western Regional Research Center (WRRC), Albany, CA 94710, USA, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA and Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - C Lynne McIntyre
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Brisbane, QLD 4067, Australia, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Canberra, ACT 2601, Australia, United States Department of Agriculture Agricultural Research Service (USDA-ARS), Western Regional Research Center (WRRC), Albany, CA 94710, USA, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA and Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - John M Manners
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Brisbane, QLD 4067, Australia, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Canberra, ACT 2601, Australia, United States Department of Agriculture Agricultural Research Service (USDA-ARS), Western Regional Research Center (WRRC), Albany, CA 94710, USA, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA and Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Mick Ayliffe
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Brisbane, QLD 4067, Australia, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Canberra, ACT 2601, Australia, United States Department of Agriculture Agricultural Research Service (USDA-ARS), Western Regional Research Center (WRRC), Albany, CA 94710, USA, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA and Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Michelle Watt
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Brisbane, QLD 4067, Australia, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Canberra, ACT 2601, Australia, United States Department of Agriculture Agricultural Research Service (USDA-ARS), Western Regional Research Center (WRRC), Albany, CA 94710, USA, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA and Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - John P Vogel
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Brisbane, QLD 4067, Australia, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Canberra, ACT 2601, Australia, United States Department of Agriculture Agricultural Research Service (USDA-ARS), Western Regional Research Center (WRRC), Albany, CA 94710, USA, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA and Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Robert J Henry
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Brisbane, QLD 4067, Australia, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Canberra, ACT 2601, Australia, United States Department of Agriculture Agricultural Research Service (USDA-ARS), Western Regional Research Center (WRRC), Albany, CA 94710, USA, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA and Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Kemal Kazan
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Brisbane, QLD 4067, Australia, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Canberra, ACT 2601, Australia, United States Department of Agriculture Agricultural Research Service (USDA-ARS), Western Regional Research Center (WRRC), Albany, CA 94710, USA, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA and Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Brisbane, QLD 4067, Australia, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Canberra, ACT 2601, Australia, United States Department of Agriculture Agricultural Research Service (USDA-ARS), Western Regional Research Center (WRRC), Albany, CA 94710, USA, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA and Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| |
Collapse
|
41
|
Goddard R, Peraldi A, Ridout C, Nicholson P. Enhanced disease resistance caused by BRI1 mutation is conserved between Brachypodium distachyon and barley (Hordeum vulgare). MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:1095-106. [PMID: 24964059 DOI: 10.1094/mpmi-03-14-0069-r] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
This study investigated the impact of brassinosteroid (BR)-insensitive 1 (BRI1) mutation, the main receptor of BR in both Brachypodium distachyon and barley, on disease resistance against a range of fungal pathogens of cereals exhibiting different trophic lifestyles. Results presented here show that i) disruption of BRI1 has pleiotropic effects on disease resistance in addition to affecting plant development. BR signaling functions antagonistically with mechanisms of disease resistance that are effective against a broad range of cereal pathogens. ii) Disruption of BRI1 results in increased disease resistance against necrotrophic and hemibiotrophic pathogens that exhibit only a marginal asymptomatic phase but has no effect on biotrophic pathogens or those with a prolonged asymptomatic phase, and iii) disruption of BRI1 has a similar effect on disease resistance in B. distachyon and barley, indicating that defense mechanisms are conserved between these species. This work presents the first evidence for conservation of disease resistance mechanisms between the model species B. distachyon and the cereal crop barley and validates B. distachyon for undertaking model-to-crop translation studies of disease resistance.
Collapse
|
42
|
Devanna NB, Vijayan J, Sharma TR. The blast resistance gene Pi54of cloned from Oryza officinalis interacts with Avr-Pi54 through its novel non-LRR domains. PLoS One 2014; 9:e104840. [PMID: 25111047 PMCID: PMC4128725 DOI: 10.1371/journal.pone.0104840] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 07/15/2014] [Indexed: 11/23/2022] Open
Abstract
The dominant rice blast resistance gene Pi54 cloned by map-based cloning approach from indica rice cultivar Tetep confers broad spectrum resistance to Magnaporthe oryzae. In this investigation, an orthologue of Pi54 designated as Pi54of was cloned from Oryza officinalis conferring high degree of resistance to M. oryzae and is functionally validated. We have also characterized the Pi54of protein and demonstrate its interaction with AVR-Pi54 protein. The Pi54of encoded ∼43 kDa small and unique cytoplasmic LRR family of disease resistance protein having unique Zinc finger domain overlapped with the leucine rich repeat regions. Pi54of showed Magnaporthe-induced expression. The phylogenetic and western blot analysis confirmed orthologous nature of Pi54 and Pi54of genes, whereas the identity of protein was confirmed through MALDI-TOF analysis. The in silico analysis showed that Pi54of is structurally more stable than other cloned Pi54 proteins. The molecular docking revealed that Pi54of protein interacts with AVR-Pi54 through novel non-LRR domains such as STI1 and RhoGEF. The STI1 and GEF domains which interact with AVR-Pi54 are also components of rice defensome complex. The Pi54of protein showed differential domain specificity while interacting with the AVR protein. Functional complementation revealed that Pi54of transferred in two rice lines belonging to indica and japonica background imparts enhanced resistance against three highly virulent strains of M. oryzae. In this study, for the first time, we demonstrated that a rice blast resistance gene Pi54of cloned from wild species of rice provides high degree of resistance to M. oryzae and might display different molecular mechanism involved in AVRPi54-Pi54of interaction.
Collapse
Affiliation(s)
- Navadagi B. Devanna
- National Research Centre on Plant Biotechnology, Indian Agricultural Research Institute, New Delhi, India
| | - Joshitha Vijayan
- National Research Centre on Plant Biotechnology, Indian Agricultural Research Institute, New Delhi, India
| | - Tilak R. Sharma
- National Research Centre on Plant Biotechnology, Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
43
|
Germination and infectivity of microconidia in the rice blast fungus Magnaporthe oryzae. Nat Commun 2014; 5:4518. [PMID: 25082370 PMCID: PMC4143928 DOI: 10.1038/ncomms5518] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 06/26/2014] [Indexed: 11/09/2022] Open
Abstract
The rice blast fungus Magnaporthe oryzae is a model for studying fungal-plant interactions. Although it produces two types of spores (microconidia and macroconidia), previous infection studies have exclusively dealt with macroconidia. Germination of microconidia has not been reported, and their role in plant infection is not defined. Here we show that approximately 10% of microconidia germinate on plant surfaces, and that colonies derived from germinated microconidia are normal in growth and pathogenesis. In infection assays with rice and barley seedlings, microconidia fail to infect intact plants, but they can colonize and develop necrotic lesions on wounded leaves and stems. Microconidia also cause disease symptoms on inoculated spikelets in infection assays with barley and Brachypodium heads. Furthermore, microconidia are detected inside rice plants that developed blast lesions under laboratory or field conditions. Therefore, microconidia can germinate and are infectious, and may be an important factor in the rice blast cycle.
Collapse
|
44
|
Differential gene expression and metabolomic analyses of Brachypodium distachyon infected by deoxynivalenol producing and non-producing strains of Fusarium graminearum. BMC Genomics 2014; 15:629. [PMID: 25063396 PMCID: PMC4124148 DOI: 10.1186/1471-2164-15-629] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 06/18/2014] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Fusarium Head Blight (FHB) caused primarily by Fusarium graminearum (Fg) is one of the major diseases of small-grain cereals including bread wheat. This disease both reduces yields and causes quality losses due to the production of deoxynivalenol (DON), the major type B trichothecene mycotoxin. DON has been described as a virulence factor enabling efficient colonization of spikes by the fungus in wheat, but its precise role during the infection process is still elusive. Brachypodium distachyon (Bd) is a model cereal species which has been shown to be susceptible to FHB. Here, a functional genomics approach was performed in order to characterize the responses of Bd to Fg infection using a global transcriptional and metabolomic profiling of B. distachyon plants infected by two strains of F. graminearum: a wild-type strain producing DON (Fgdon+) and a mutant strain impaired in the production of the mycotoxin (Fgdon-). RESULTS Histological analysis of the interaction of the Bd21 ecotype with both Fg strains showed extensive fungal tissue colonization with the Fgdon+ strain while the florets infected with the Fgdon- strain exhibited a reduced hyphal extension and cell death on palea and lemma tissues. Fungal biomass was reduced in spikes inoculated with the Fgdon- strain as compared with the wild-type strain. The transcriptional analysis showed that jasmonate and ethylene-signalling pathways are induced upon infection, together with genes encoding putative detoxification and transport proteins, antioxidant functions as well as secondary metabolite pathways. In particular, our metabolite profiling analysis showed that tryptophan-derived metabolites, tryptamine, serotonin, coumaroyl-serotonin and feruloyl-serotonin, are more induced upon infection by the Fgdon+ strain than by the Fgdon- strain. Serotonin was shown to exhibit a slight direct antimicrobial effect against Fg. CONCLUSION Our results show that Bd exhibits defense hallmarks similar to those already identified in cereal crops. While the fungus uses DON as a virulence factor, the host plant preferentially induces detoxification and the phenylpropanoid and phenolamide pathways as resistance mechanisms. Together with its amenability in laboratory conditions, this makes Bd a very good model to study cereal resistance mechanisms towards the major disease FHB.
Collapse
|
45
|
Martínez-Soto D, Robledo-Briones AM, Estrada-Luna AA, Ruiz-Herrera J. Transcriptomic analysis of Ustilago maydis infecting Arabidopsis reveals important aspects of the fungus pathogenic mechanisms. PLANT SIGNALING & BEHAVIOR 2013; 8:e25059. [PMID: 23733054 PMCID: PMC4005800 DOI: 10.4161/psb.25059] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 05/15/2013] [Accepted: 05/16/2013] [Indexed: 05/03/2023]
Abstract
Transcriptomic and biochemical analyses of the experimental pathosystem constituted by Ustilago maydis and Arabidopsis thaliana were performed. Haploid or diploid strains of U. maydis inoculated in A. thaliana plantlets grew on the surface and within the plant tissues in the form of mycelium, inducing chlorosis, anthocyanin formation, malformations, necrosis and adventitious roots development, but not teliospores. Symptoms were more severe in plants inoculated with the haploid strain which grew more vigorously than the diploid strain. RNA extracted at different times post-infection was used for hybridization of one-channel microarrays that were analyzed focusing on the fungal genes involved in the general pathogenic process, biogenesis of the fungal cell wall and the secretome. In total, 3,537 and 3,299 genes were differentially expressed in the haploid and diploid strains, respectively. Differentially expressed genes were related to different functional categories and many of them showed a similar regulation occurring in U. maydis infecting maize. Our data suggest that the haploid strain behaves as a necrotrophic pathogen, whereas the diploid behaves as a biotrophic pathogen. The results obtained are evidence of the usefulness of the U. maydis-A. thaliana pathosystem for the analysis of the pathogenic mechanisms of U. maydis.
Collapse
Affiliation(s)
| | | | - Andrés A. Estrada-Luna
- Departamento de Ingeniería Genética; Unidad Irapuato; Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional; Irapuato, Gto México
| | - José Ruiz-Herrera
- Departamento de Ingeniería Genética; Unidad Irapuato; Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional; Irapuato, Gto México
| |
Collapse
|
46
|
Chen G, Liu X, Zhang L, Cao H, Lu J, Lin F. Involvement of MoVMA11, a Putative Vacuolar ATPase c' Subunit, in Vacuolar Acidification and Infection-Related Morphogenesis of Magnaporthe oryzae. PLoS One 2013; 8:e67804. [PMID: 23826342 PMCID: PMC3694887 DOI: 10.1371/journal.pone.0067804] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 05/27/2013] [Indexed: 11/18/2022] Open
Abstract
Many functions of vacuole depend on the activity of vacuolar ATPase which is essential to maintain an acidic lumen and create the driving forces for massive fluxes of ions and metabolites through vacuolar membrane. In filamentous fungus Magnaportheoryzae, subcellular colocalization and quinacrine staining suggested that the V1V0 domains of V-ATPase were fully assembled and the vacuoles were kept acidic during infection-related developments. Targeted gene disruption of MoVMA11 gene, encoding the putative c' subunit of V-ATPase, impaired vacuolar acidification and mimicked the phenotypes of yeast V-ATPase mutants in the poor colony morphology, abolished asexual and sexual reproductions, selective carbon source utilization, and increased calcium and heavy metals sensitivities, however, not in the typical pH conditional lethality. Strikingly, aerial hyphae of the MoVMA11 null mutant intertwined with each other to form extremely thick filamentous structures. The results also implicated that MoVMA11 was involved in cell wall integrity and appressorium formation. Abundant non-melanized swollen structures and rare, small appressoria without penetration ability were produced at the hyphal tips of the ΔMovma11 mutant on onion epidermal cells. Finally, the MoVMA11 null mutant lost pathogenicity on both intact and wounded host leaves. Overall, our data indicated that MoVMA11, like other fungal VMA genes, is associated with numerous cellular functions and highlighted that V-ATPase is essential for infection-related morphogenesis and pathogenesis in M. oryzae.
Collapse
Affiliation(s)
- Guoqing Chen
- State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang University, Hangzhou, China
| | - Xiaohong Liu
- State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang University, Hangzhou, China
| | - Lilin Zhang
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Huijuan Cao
- State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang University, Hangzhou, China
| | - Jianping Lu
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Fucheng Lin
- State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang University, Hangzhou, China
- China Tobacco Gene Research Center, Zhengzhou Tobacco Institute of CNTC, Zhengzhou, China
| |
Collapse
|
47
|
Raman V, Simon SA, Romag A, Demirci F, Mathioni SM, Zhai J, Meyers BC, Donofrio NM. Physiological stressors and invasive plant infections alter the small RNA transcriptome of the rice blast fungus, Magnaporthe oryzae. BMC Genomics 2013; 14:326. [PMID: 23663523 PMCID: PMC3658920 DOI: 10.1186/1471-2164-14-326] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 05/02/2013] [Indexed: 11/21/2022] Open
Abstract
Background The rice blast fungus, Magnaporthe oryzae is a destructive pathogen of rice and other related crops, causing significant yield losses worldwide. Endogenous small RNAs (sRNAs), including small interfering RNAs (siRNAs) and microRNAs (miRNAs) are critical components of gene regulation in many eukaryotic organisms. Recently several new species of sRNAs have been identified in fungi. This fact along with the availability of genome sequence makes M. oryzae a compelling target for sRNA profiling. We have examined sRNA species and their biosynthetic genes in M. oryzae, and the degree to which these elements regulate fungal stress responses. To this end, we have characterized sRNAs under different physiological stress conditions, which had not yet been examined in this fungus. Results The resulting libraries are composed of more than 37 million total genome matched reads mapping to intergenic regions, coding sequences, retrotransposons, inverted, tandem, and other repeated regions of the genome with more than half of the small RNAs arising from intergenic regions. The 24 nucleotide (nt) size class of sRNAs was predominant. A comparison to transcriptional data of M. oryzae undergoing the same physiological stresses indicates that sRNAs play a role in transcriptional regulation for a small subset of genes. Support for this idea comes from generation and characterization of mutants putatively involved in sRNAs biogenesis; our results indicate that the deletion of Dicer-like genes and an RNA-Dependent RNA Polymerase gene increases the transcriptional regulation of this subset of genes, including one involved in virulence. Conclusions Various physiological stressors and in planta conditions alter the small RNA profile of the rice blast fungus. Characterization of sRNA biosynthetic mutants helps to clarify the role of sRNAs in transcriptional control.
Collapse
Affiliation(s)
- Vidhyavathi Raman
- Department of Plant & Soil Sciences, University of Delaware, Newark, DE 19716, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Figueroa M, Alderman S, Garvin DF, Pfender WF. Infection of Brachypodium distachyon by formae speciales of Puccinia graminis: early infection events and host-pathogen incompatibility. PLoS One 2013; 8:e56857. [PMID: 23441218 PMCID: PMC3575480 DOI: 10.1371/journal.pone.0056857] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 01/15/2013] [Indexed: 01/01/2023] Open
Abstract
Puccinia graminis causes stem rust, a serious disease of cereals and forage grasses. Important formae speciales of P. graminis and their typical hosts are P. graminis f. sp. tritici (Pg-tr) in wheat and barley, P. graminis f. sp. lolii (Pg-lo) in perennial ryegrass and tall fescue, and P. graminis f. sp. phlei-pratensis (Pg-pp) in timothy grass. Brachypodium distachyon is an emerging genetic model to study fungal disease resistance in cereals and temperate grasses. We characterized the P. graminis-Brachypodium pathosystem to evaluate its potential for investigating incompatibility and non-host resistance to P. graminis. Inoculation of eight Brachypodium inbred lines with Pg-tr, Pg-lo or Pg-pp resulted in sporulating lesions later accompanied by necrosis. Histological analysis of early infection events in one Brachypodium inbred line (Bd1-1) indicated that Pg-lo and Pg-pp were markedly more efficient than Pg-tr at establishing a biotrophic interaction. Formation of appressoria was completed (60-70% of germinated spores) by 12 h post-inoculation (hpi) under dark and wet conditions, and after 4 h of subsequent light exposure fungal penetration structures (penetration peg, substomatal vesicle and primary infection hyphae) had developed. Brachypodium Bd1-1 exhibited pre-haustorial resistance to Pg-tr, i.e. infection usually stopped at appressorial formation. By 68 hpi, only 0.3% and 0.7% of the Pg-tr urediniospores developed haustoria and colonies, respectively. In contrast, development of advanced infection structures by Pg-lo and Pg-pp was significantly more common; however, Brachypodium displayed post-haustorial resistance to these isolates. By 68 hpi the percentage of urediniospores that only develop a haustorium mother cell or haustorium in Pg-lo and Pg-pp reached 8% and 5%, respectively. The formation of colonies reached 14% and 13%, respectively. We conclude that Brachypodium is an apt grass model to study the molecular and genetic components of incompatiblity and non-host resistance to P. graminis.
Collapse
Affiliation(s)
- Melania Figueroa
- Forage Seed and Cereal Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Corvallis, Oregon, United States of America
| | - Stephen Alderman
- Forage Seed and Cereal Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Corvallis, Oregon, United States of America
| | - David F. Garvin
- Plant Science Research Unit and Department of Agronomy and Plant Genetics, Agricultural Research Service, U.S. Department of Agriculture, University of Minnesota. St. Paul, Minnesota, United States of America
| | - William F. Pfender
- Forage Seed and Cereal Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Corvallis, Oregon, United States of America
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| |
Collapse
|
49
|
Jung YH, Jeong SH, Kim SH, Singh R, Lee JE, Cho YS, Agrawal GK, Rakwal R, Jwa NS. Secretome analysis of Magnaporthe oryzae using in vitro systems. Proteomics 2012; 12:878-900. [PMID: 22539438 DOI: 10.1002/pmic.201100142] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Magnaporthe oryzae is a devastating blast fungal pathogen of rice (Oryza sativa L.) that causes dramatic decreases in seed yield and quality. During the early stages of infection by this pathogen, the fungal spore senses the rice leaf surface, germinates, and penetrates the cell via an infectious structure known as an appressorium. During this process, M. oryzae secretes several proteins; however, these proteins are largely unknown mainly due to the lack of a suitable method for isolating secreted proteins during germination and appressoria formation. We examined the secretome of M. oryzae by mimicking the early stages of infection in vitro using a glass plate (GP), PVDF membrane, and liquid culture medium (LCM). Microscopic observation of M. oryzae growth revealed appressorium formation on the GP and PVDF membrane resembling natural M. oryzae-rice interactions; however, appresorium formation was not observed in the LCM. Secreted proteins were collected from the GP (3, 8, and 24 h), PVDF membrane (24 h), and LCM (48 h) and identified by two-dimensional gel electrophoresis (2DE) followed by tandem mass spectrometry. The GP, PVDF membrane, and LCM-derived 2D gels showed distinct protein patterns, indicating that they are complementary approaches. Collectively, 53 nonredundant proteins including previously known and novel secreted proteins were identified. Six biological functions were assigned to the proteins, with the predominant functional classes being cell wall modification, reactive oxygen species detoxification, lipid modification, metabolism, and protein modification. The in vitro system using GPs and PVDF membranes applied in this study to survey the M. oryzae secretome, can be used to further our understanding of the early interactions between M. oryzae and rice leaves.
Collapse
Affiliation(s)
- Young-Ho Jung
- Department of Molecular Biology, Sejong University, Gunja-dong, Seoul, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Fursova O, Pogorelko G, Zabotina OA. An efficient method for transient gene expression in monocots applied to modify the Brachypodium distachyon cell wall. ANNALS OF BOTANY 2012; 110:47-56. [PMID: 22589326 PMCID: PMC3380599 DOI: 10.1093/aob/mcs103] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 03/26/2012] [Indexed: 05/28/2023]
Abstract
BACKGROUND Agrobacterium-mediated transformation is widely used to produce insertions into plant genomes. There are a number of well-developed Agrobacterium-mediated transformation methods for dicotyledonous plants, but there are few for monocotyledonous plants. METHODS Three hydrolase genes were transiently expressed in Brachypodium distachyon plants using specially designed vectors that express the gene product of interest and target it to the plant cell wall. Expression of functional hydrolases in genotyped plants was confirmed using western blotting, activity assays, cell wall compositional analysis and digestibility tests. KEY RESULTS An efficient, new, Agrobacterium-mediated approach was developed for transient gene expression in the grass B. distachyon, using co-cultivation of mature seeds with bacterial cells. This method allows transformed tissues to be obtained rapidly, within 3-4 weeks after co-cultivation. Also, the plants carried transgenic tissue and maintained transgenic protein expression throughout plant maturation. The efficiency of transformation was estimated at around 5 % of initially co-cultivated seeds. Application of this approach to express three Aspergillus nidulans hydrolases in the Brachypodium cell wall successfully confirmed its utility and resulted in the expected expression of active microbial proteins and alterations of cell wall composition. Cell wall modifications caused by expression of A. nidulans α-arabinofuranosidase and α-galactosidase increased the biodegradability of plant biomass. CONCLUSIONS This newly developed approach is a quick and efficient technique for expressing genes of interest in Brachypodium plants, which express the gene product throughout development. In the future, this could be used for broad functional genomics studies of monocots and for biotechnological applications, such as plant biomass modification for biofuel production.
Collapse
|