1
|
Choi RH, Karasawa T, Meza CA, Maschek JA, Manuel AM, Nikolova LS, Fisher‐Wellman KH, Cox JE, Chaix A, Funai K. Semaglutide-induced weight loss improves mitochondrial energy efficiency in skeletal muscle. Obesity (Silver Spring) 2025; 33:974-985. [PMID: 40254778 PMCID: PMC12015655 DOI: 10.1002/oby.24274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/01/2025] [Accepted: 02/05/2025] [Indexed: 04/22/2025]
Abstract
OBJECTIVE Glucagon-like peptide-1 receptor agonists (e.g., semaglutide) potently induce weight loss, thereby reducing obesity-related complications. However, weight regain occurs when treatment is discontinued. An increase in skeletal muscle oxidative phosphorylation (OXPHOS) efficiency upon diet-mediated weight loss has been described, which may contribute to reduced systemic energy expenditure and weight regain. We set out to determine the unknown effect of semaglutide on muscle OXPHOS efficiency. METHODS C57BL/6J mice were fed a high-fat diet for 12 weeks before receiving semaglutide or vehicle for 1 or 3 weeks. The rates of ATP production and oxygen (O2) consumption were measured via high-resolution respirometry and fluorometry to determine OXPHOS efficiency in muscle at these two time points. RESULTS Semaglutide treatment led to significant reductions in fat and lean mass. Semaglutide improved skeletal muscle OXPHOS efficiency, measured as ATP produced per O2 consumed in permeabilized muscle fibers. Mitochondrial proteomic analysis revealed changes restricted to two proteins linked to complex III assembly (LYRM7 and TTC19; p < 0.05 without multiple corrections) without substantial changes in the abundance of OXPHOS subunits. CONCLUSIONS These data indicate that weight loss with semaglutide treatment increases skeletal muscle mitochondrial efficiency. Future studies could test whether it contributes to weight regain.
Collapse
Affiliation(s)
- Ran Hee Choi
- Diabetes & Metabolism Research Center, University of UtahSalt Lake CityUtahUSA
- Department of Nutrition and Integrative PhysiologyUniversity of UtahSalt Lake CityUtahUSA
| | - Takuya Karasawa
- Diabetes & Metabolism Research Center, University of UtahSalt Lake CityUtahUSA
- Department of Nutrition and Integrative PhysiologyUniversity of UtahSalt Lake CityUtahUSA
- Research Institute of Sport Science, Nippon Sport Science UniversitySetagayaJapan
| | - Cesar A. Meza
- Diabetes & Metabolism Research Center, University of UtahSalt Lake CityUtahUSA
- Department of Nutrition and Integrative PhysiologyUniversity of UtahSalt Lake CityUtahUSA
| | - J. Alan Maschek
- Diabetes & Metabolism Research Center, University of UtahSalt Lake CityUtahUSA
- Mass Spectrometry and Proteomics CoreUniversity of UtahSalt Lake CityUtahUSA
| | - Allison M. Manuel
- Mass Spectrometry and Proteomics CoreUniversity of UtahSalt Lake CityUtahUSA
| | - Linda S. Nikolova
- Electron Microscopy Core FacilityUniversity of UtahSalt Lake CityUtahUSA
| | - Kelsey H. Fisher‐Wellman
- Department of Cancer BiologyComprehensive Cancer Center of Wake Forest Baptist HealthWinston‐SalemNorth CarolinaUSA
| | - James E. Cox
- Diabetes & Metabolism Research Center, University of UtahSalt Lake CityUtahUSA
- Mass Spectrometry and Proteomics CoreUniversity of UtahSalt Lake CityUtahUSA
- Department of BiochemistryUniversity of UtahSalt Lake CityUtahUSA
| | - Amandine Chaix
- Diabetes & Metabolism Research Center, University of UtahSalt Lake CityUtahUSA
- Department of Nutrition and Integrative PhysiologyUniversity of UtahSalt Lake CityUtahUSA
- Molecular Medicine ProgramUniversity of UtahSalt Lake CityUtahUSA
| | - Katsuhiko Funai
- Diabetes & Metabolism Research Center, University of UtahSalt Lake CityUtahUSA
- Department of Nutrition and Integrative PhysiologyUniversity of UtahSalt Lake CityUtahUSA
- Department of BiochemistryUniversity of UtahSalt Lake CityUtahUSA
- Molecular Medicine ProgramUniversity of UtahSalt Lake CityUtahUSA
| |
Collapse
|
2
|
Hørsdal OK, Larsen AM, Wethelund KL, Dalsgaard FF, Seefeldt JM, Helgestad OKL, Moeslund N, Møller JE, Ravn HB, Nielsen RR, Wiggers H, Berg-Hansen K, Gopalasingam N. The ketone body 3-hydroxybutyrate increases cardiac output and cardiac contractility in a porcine model of cardiogenic shock: a randomized, blinded, crossover trial. Basic Res Cardiol 2025:10.1007/s00395-025-01103-2. [PMID: 40220139 DOI: 10.1007/s00395-025-01103-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/17/2025] [Accepted: 03/19/2025] [Indexed: 04/14/2025]
Abstract
Cardiogenic shock (CS) is characterized by reduced cardiac output (CO), reduced end-organ perfusion, and high mortality. Medical therapies have failed to improve survival. The ketone body 3-hydroxybutyrate (3-OHB) enhances cardiac function in heart failure and CS. We aimed to elucidate the cardiovascular and cardiometabolic effects of 3-OHB treatment during CS. In a randomized, assessor-blinded crossover design, we studied 16 female pigs (60 kg, 5 months of age). CS was induced by left main coronary artery microsphere injections. Predefined criteria for CS were a 30% reduction in CO or mixed venous saturation (SvO2). Intravenous 3-OHB infusion and a matching control solution were administered for 120 min in random order. Hemodynamic measurements were obtained by pulmonary artery catheterization and a left ventricular (LV) pressure-volume catheter. Myocardial mitochondrial function was assessed using high resolution respirometry. During CS, infusion with 3-OHB increased CO by 0.9 L/min (95%CI 0.4-1.3 L/min) compared with control infusion. SvO2 (P = 0.026) and heart rate (P < 0.001) increased. Stroke volume (P = 0.6) was not altered. LV contractile function as determined by LV end-systolic elastance improved during 3-OHB infusion compared with control infusion (P = 0.004). Systemic and pulmonary vascular resistance decreased, and diuresis increased. LV mitochondrial function was higher after 3-OHB infusion compared with control. We conclude that 3-OHB infusion enhances cardiac function by increasing contractility and reducing vascular resistance, while also preserving myocardial mitochondrial respiratory function in a large animal model of ischemic CS. These novel findings support the therapeutic potential of exogenous ketone supplementation in CS management.
Collapse
Affiliation(s)
- Oskar Kjærgaard Hørsdal
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark.
- Department of Cardiology, Aarhus University Hospital, Palle Juul Jensens Boulevard 99, 8200, Aarhus N, Denmark.
| | - Alexander Møller Larsen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Frederik Flyvholm Dalsgaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Jacob Marthinsen Seefeldt
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Ole Kristian Lerche Helgestad
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Pharmacology, Aalborg University Hospital, Aalborg, Denmark
| | - Niels Moeslund
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Heart-, Lung-, and Vascular Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Jacob Eifer Møller
- Department of Cardiology, Heart Center, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Hanne Berg Ravn
- Department of Anesthesiology and Intensive Care, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Roni Ranghøj Nielsen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Henrik Wiggers
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Kristoffer Berg-Hansen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Nigopan Gopalasingam
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
- Department of Cardiology, Gødstrup Hospital, Gødstrup, Denmark
| |
Collapse
|
3
|
Dorémus L, Dugast E, Delafenêtre A, Delouche M, Aupy T, Bernard O, Sebille S, Thiriet N, Piquereau J. Optimization of permeabilized brain tissue preparation to improve the analysis of mitochondrial oxidative capacities in specific subregions of the rat brain. J Neurosci Methods 2025; 416:110387. [PMID: 39921038 DOI: 10.1016/j.jneumeth.2025.110387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/28/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
BACKGROUND As the major energy producer of cerebral tissue, mitochondria play key roles in brain physiology and physiopathology. Yet, the fine details of the functioning of mitochondrial oxidative phosphorylation in this organ are still scattered with grey area. This is partly due to the heterogeneity of this tissue that challenges our abilities to study specific cerebral subregions. In the last decades, cerebral mitochondria have largely been studied as a single entity by isolating mitochondria from large sections of brain. Given the evidence that these organelles must adapt to brain areas functions, it seems crucial to develop technologies enabling study of the mitochondria in given subregions. NEW METHOD A few years ago, a method allowing the investigation of mitochondrial functions in permeabilized brain subregions have been proposed by Holloway's team. Although this protocol represented a significant advance, we propose improvements in the tissue permeabilization procedure and in the conditions for measuring oxidative capacity. RESULTS AND COMPARISON WITH EXISTING METHODS The present study demonstrates that adjustments enabled obtention of higher respiration values than Holloway's protocol and might allow the detection of slight mitochondrial alterations. In a second part of this study, we showed that cortex, striatum, hippocampus and cerebellum displayed similar maximal oxidative capacities (under pyruvate, malate and succinate) while complex IV-driven respiration is significantly lower in cerebellum compared to cortex. These observations were supported by the measurement of citrate synthase and cytochrome oxidase activities. CONCLUSION The developed procedure improves the investigations of mitochondrial electron transfer chain in specific cerebral regions.
Collapse
Affiliation(s)
- Léa Dorémus
- Laboratoire PRéTI UR 24184, Université de Poitiers, Poitiers, France.
| | - Emilie Dugast
- INSERM, U-1084, Laboratoire des Neurosciences Expérimentales et Cliniques, Université de Poitiers, Poitiers, France.
| | | | - Morgane Delouche
- UMR-S 1180, Inserm, Univ. Paris-Sud, Université Paris-Saclay, Orsay, France.
| | - Thomas Aupy
- INSERM, U-1084, Laboratoire des Neurosciences Expérimentales et Cliniques, Université de Poitiers, Poitiers, France.
| | - Olivier Bernard
- Laboratoire Mobilité Vieillissement et Exercice, Université de Poitiers, Poitiers, France.
| | - Stéphane Sebille
- Laboratoire PRéTI UR 24184, Université de Poitiers, Poitiers, France.
| | - Nathalie Thiriet
- INSERM, U-1084, Laboratoire des Neurosciences Expérimentales et Cliniques, Université de Poitiers, Poitiers, France.
| | - Jérôme Piquereau
- Laboratoire PRéTI UR 24184, Université de Poitiers, Poitiers, France; UMR-S 1180, Inserm, Univ. Paris-Sud, Université Paris-Saclay, Orsay, France.
| |
Collapse
|
4
|
Borger J, Zweck E, Moos C, Horn P, Voß F, Schultheiss H, Møller JE, Boeken U, Aubin H, Lichtenberg A, Kelm M, Roden M, Polzin A, Westenfeld R, Szendroedi J, Scheiber D. Myocardial inflammation is associated with impaired mitochondrial oxidative capacity in ischaemic cardiomyopathy. ESC Heart Fail 2025; 12:1246-1255. [PMID: 39477690 PMCID: PMC11911639 DOI: 10.1002/ehf2.15133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/29/2024] [Accepted: 10/05/2024] [Indexed: 03/18/2025] Open
Abstract
AIMS Myocardial inflammation and impaired mitochondrial oxidative capacity are hallmarks of heart failure (HF) pathophysiology. The extent of myocardial inflammation in patients suffering from ischaemic cardiomyopathy (ICM) or dilated cardiomyopathy (DCM) and its association with mitochondrial energy metabolism are unknown. We aimed at establishing a relevant role of cardiac inflammation in the impairment of mitochondrial energy production in advanced ischaemic and non-ischaemic HF. METHODS We included 81 patients with stage D HF (ICM, n = 44; DCM, n = 37) undergoing left ventricular assist device implantation (n = 59) or heart transplantation (n = 22) and obtained left ventricular tissue samples during open heart surgery. We quantified mitochondrial oxidative capacity, citrate synthase activity (CSA) and fibrosis and lymphocytic infiltration. We considered infiltration of >14 CD3+ cells/mm2 relevant inflammation. RESULTS Patients with ICM or DCM did not differ regarding age (61.5 ± 5.7 vs. 56.5 ± 12.7 years, P = 0.164), sex (86% vs. 84% male, P = 0.725), type 2 diabetes mellitus (34% vs. 18%, P = 0.126) or chronic kidney disease (8% vs. 11%, P = 0.994). ICM exhibited oxidative capacity reduced by 23% compared to DCM (108.6 ± 41.4 vs. 141.9 ± 59.9 pmol/(s*mg), P = 0.006). Maximum production of reactive oxygen species was not significantly different between ICM and DCM (0.59 ± 0.28 vs. 0.69 ± 0.36 pmol/(s*ml), P = 0.196). Mitochondrial content, detected by CSA, was lower in ICM (359.6 ± 164.1 vs. 503.0 ± 198.5 nmol/min/mg protein, P = 0.002). Notably, relevant inflammation was more common in ICM (27% vs. 6%, P = 0.024), and the absolute number of infiltrating leucocytes correlated with lower oxidative capacity (r = -0.296, P = 0.019). Fibrosis was more prevalent in ICM (20.9 ± 21.2 vs. 7.2 ± 5.6% of area, P = 0.002), but not associated with oxidative capacity (r = -0.13, P = 0.327). CONCLUSIONS More than every fourth ICM patient with advanced HF displays myocardial inflammation in the range of inflammatory cardiomyopathy associated with reduced mitochondrial oxidative capacity. Future studies may evaluate inflammation in ICM at earlier stages in standardised fashion to explore the therapeutic potential of immunosuppression to influence trajectories of HF in ICM.
Collapse
Affiliation(s)
- Julius Borger
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical FacultyHeinrich‐Heine UniversityDüsseldorfGermany
- Department of Cardiovascular Surgery, University Heart Centre Freiburg, University Hospital Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany
- Institute for Clinical Diabetology, German Diabetes Centre, Leibniz Centre for Diabetes ResearchHeinrich Heine UniversityDüsseldorfGermany
- German Centre for Diabetes Research (DZD e.V.), München‐Neuherberg, Partner DüsseldorfNeuherbergGermany
| | - Elric Zweck
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical FacultyHeinrich‐Heine UniversityDüsseldorfGermany
- Institute for Clinical Diabetology, German Diabetes Centre, Leibniz Centre for Diabetes ResearchHeinrich Heine UniversityDüsseldorfGermany
- German Centre for Diabetes Research (DZD e.V.), München‐Neuherberg, Partner DüsseldorfNeuherbergGermany
| | - Constanze Moos
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical FacultyHeinrich‐Heine UniversityDüsseldorfGermany
| | - Patrick Horn
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical FacultyHeinrich‐Heine UniversityDüsseldorfGermany
| | - Fabian Voß
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical FacultyHeinrich‐Heine UniversityDüsseldorfGermany
| | | | - Jacob Eifer Møller
- Department of Cardiology, Odense University Hospital, Odense, Denmark; Faculty of Health ScienceUniversity of Southern DenmarkOdenseDenmark
- The Heart Centre, RigshospitaletCopenhagen University HospitalCopenhagenDenmark
| | - Udo Boeken
- Department of Cardiac Surgery, Medical FacultyHeinrich‐Heine UniversityDüsseldorfGermany
| | - Hug Aubin
- Department of Cardiac Surgery, Medical FacultyHeinrich‐Heine UniversityDüsseldorfGermany
| | - Artur Lichtenberg
- Department of Cardiac Surgery, Medical FacultyHeinrich‐Heine UniversityDüsseldorfGermany
- Cardiovascular Research Institute Düsseldorf, Medical FacultyHeinrich‐Heine UniversityDüsseldorfGermany
| | - Malte Kelm
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical FacultyHeinrich‐Heine UniversityDüsseldorfGermany
- Cardiovascular Research Institute Düsseldorf, Medical FacultyHeinrich‐Heine UniversityDüsseldorfGermany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Centre, Leibniz Centre for Diabetes ResearchHeinrich Heine UniversityDüsseldorfGermany
- German Centre for Diabetes Research (DZD e.V.), München‐Neuherberg, Partner DüsseldorfNeuherbergGermany
- Cardiovascular Research Institute Düsseldorf, Medical FacultyHeinrich‐Heine UniversityDüsseldorfGermany
- Division of Endocrinology and Diabetology, Medical FacultyHeinrich‐Heine UniversityDüsseldorfGermany
| | - Amin Polzin
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical FacultyHeinrich‐Heine UniversityDüsseldorfGermany
| | - Ralf Westenfeld
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical FacultyHeinrich‐Heine UniversityDüsseldorfGermany
| | - Julia Szendroedi
- Institute for Clinical Diabetology, German Diabetes Centre, Leibniz Centre for Diabetes ResearchHeinrich Heine UniversityDüsseldorfGermany
- German Centre for Diabetes Research (DZD e.V.), München‐Neuherberg, Partner DüsseldorfNeuherbergGermany
- Cardiovascular Research Institute Düsseldorf, Medical FacultyHeinrich‐Heine UniversityDüsseldorfGermany
- Division of Endocrinology and Diabetology, Medical FacultyHeinrich‐Heine UniversityDüsseldorfGermany
- Department of Internal Medicine I and Clinical ChemistryUniversity Hospital of HeidelbergHeidelbergGermany
- Institute for Diabetes and Cancer (IDC) & Joint Heidelberg‐IDC Translational Diabetes Program, Helmholtz Centre MunichNeuherbergGermany
| | - Daniel Scheiber
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical FacultyHeinrich‐Heine UniversityDüsseldorfGermany
| |
Collapse
|
5
|
Rendon DA. Negative Alterations in the Respiratory Activity of Isolated Crude Heart Mitochondria Following In Vivo Isoproterenol Injection in Rats Are Not Observed in Heart Homogenate Suggesting That the Isolation Procedure Generates Experimental Artefacts. Int J Mol Sci 2025; 26:2388. [PMID: 40141033 PMCID: PMC11942314 DOI: 10.3390/ijms26062388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/04/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
Mitochondrial respiratory parameters (state 2 mitochondrial respiratory activity (state 2), state 3 mitochondrial respiratory activity (state 3), respiratory control (RC), mitochondrial ATP synthetic activity (MASA), and oxidative phosphorylation efficiency (ADP:O)) were assayed in heart homogenates (HHs) and in unwashed isolated mitochondria (isolated crude heart mitochondria (CHMs)), using rats sacrificed 3, 6, 24, and 48 h after receiving a subcutaneous injection of (-)-isoproterenol (67 mg/kg body weight). With HHs, the following was observed: (a) a statistically significant activation of RC and MASA at 3 h and 6 h after drug infusion; at those times, state 2, state 3, and ADP:O were not different. (b) No studied (-)-isoproterenol mitochondrial parameters were statistically different at 24 h and 48 h after drug administration. So extrapolating, (-)-isoproterenol treatment does not negatively impact mitochondrial respiratory function in vivo; on the contrary, a better 3 h and 6 h (-)-isoproterenol mitochondrial energetic functional state was observed. With CHMs, the following was observed: (a) a statistically significant activation of RC and MASA at 3 h, but no longer at 6 h after drug infusion. (b) No studied mitochondrial parameters were statistically different at 24 h after (-)-isoproterenol treatment, but at 48 h, a statistical decrease took place in (-)-isoproterenol RC, so the mitochondrial isolation procedure (MIP) causes additional negative alterations to the mitochondrial samples; therefore, isoproterenol-induced negative alterations of mitochondrial respiratory parameters reported in the literature using isolated heart mitochondria (IHMs) are possibly an experimental artefact.
Collapse
Affiliation(s)
- Dairo Alonso Rendon
- Laboratorio de Biofísica, Departamento de Física, Facultad de Ciencias, Universidad Nacional de Colombia-Sede Medellín, Medellín AA3840, Colombia
| |
Collapse
|
6
|
Sato N, Kusano T, Nagata K, Okamoto K. A non-purine inhibitor of xanthine oxidoreductase mitigates adenosine triphosphate degradation under hypoxic conditions in mouse brain. Brain Res 2025; 1849:149444. [PMID: 39755194 DOI: 10.1016/j.brainres.2025.149444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/12/2024] [Accepted: 01/01/2025] [Indexed: 01/06/2025]
Abstract
The brain is an organ that consumes a substantial amount of oxygen, and a reduction in oxygen concentration can rapidly lead to significant and irreversible brain injury. The progression of brain injury during hypoxia involves the depletion of intracellular adenosine triphosphate (ATP) due to decreased oxidative phosphorylation in the inner mitochondrial membrane. Allopurinol is a purine analog inhibitor of xanthine oxidoreductase that protects against hypoxic/ischemic brain injury; however, its underlying mechanism of action remains unclear. In addition, febuxostat is a non-purine xanthine oxidoreductase inhibitor with a different inhibitory mechanism from allopurinol. The impact of febuxostat on brain injury has not been well investigated. Therefore, this study aimed to examine brain ATP and its catabolite levels in the presence or absence of allopurinol and febuxostat under hypoxic conditions by inactivating brain metabolism using focal microwave irradiation. The hypoxic treatment caused a decrease in the adenylate energy charge and ATP levels and an increase in its catabolic products in mouse brains. The febuxostat group showed higher energy charge and ATP levels and lower ATP catabolites than the control group. Notably, despite the comparable suppression of uric acid production in both inhibitor groups, allopurinol treatment was less effective than febuxostat. These results suggest that febuxostat effectively prevents hypoxia-induced ATP degradation in the brain and that its effect is more potent than allopurinol. This study will contribute to developing therapies for improving hypoxia-induced brain dysfunction.
Collapse
Affiliation(s)
- Nana Sato
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Teruo Kusano
- Department of Biochemistry and Molecular Biology, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-Ku, Tokyo, Japan
| | - Koji Nagata
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Ken Okamoto
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
7
|
Popović A, Drljača Lero J, Miljković D, Popović M, Marinović J, Ljubković M, Andjelković Z, Čapo I. Karnozin EXTRA® causes changes in mitochondrial bioenergetics response in MCF-7 and MRC-5 cell lines. Biotech Histochem 2025; 100:50-62. [PMID: 39812443 DOI: 10.1080/10520295.2024.2448490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025] Open
Abstract
Numerous studies reported about potential effects of L-carnosine in regulation of tumor growth and metabolism. We evaluated the effects of different concentrations of L-carnosine from Karnozin EXTRA® supplement on mitochondrial respiratory chain complexes of human embryo lung fibroblasts (MRC-5) and human breast cancer cells (MCF-7), with different energy pathways. Also, we analyzed the proliferation index and expression of various markers of oxidative stress. Treatment with Karnozin EXTRA® (concentration of L-carnosine were 2, 5 and 10 mM) for 24 hours gradually decreased the number of cells and changed their morphological features. In both cell lines, a dose-dependent reduction of cell viability was recorded compared to the control group. Also, experimental groups showed a concentration-dependent decrease in fluorescence intensity of SOD2 expressions in MCF-7, while in MRC-5 we noticed higher fluorescence intensity in Carnosine 2 mM group. Treated cells, in both cell lines, showed different intensity of iNOS cytoplasmic immunopositivity in a concentration-dependent manner. In all experimental groups, we noticed an increased expression of marker of oxidative stress-cytochrome P450 2E1 (CYP2E1). The effects of Karnozin EXTRA® capsule on mitochondrial respiration, assessed with the Clark-type electrode, were manifested as a reduction of: basal cell respiration, maximum capacity of electron transport chain and mitochondrial ATP-linked respiration. Also, significant decrease in the activity of complex I (NADH-ubiquinone oxidoreductase), complex II (succinate dehydrogenase) and complex IV (cytochrome c oxidase) was observed in both cell lines. Bearing in mind that Karnozin EXTRA® is a potential regulator of energy metabolism of MCF-7 and MRC-5, these results provide a good basis for further preclinical and clinical research.
Collapse
Affiliation(s)
- Aleksandra Popović
- Faculty of Medicine Novi Sad, Department of Physiology, University of Novi Sad, Novi Sad, Serbia
| | - Jovana Drljača Lero
- Faculty of Medicine Novi Sad, Department of Pharmacy, University of Novi Sad, Novi Sad, Serbia
| | - Dejan Miljković
- Faculty of Medicine Novi Sad, Department of Histology and Embriology, University of Novi Sad, Novi Sad, Serbia
| | - Milan Popović
- Faculty of Medicine Novi Sad, Department of Histology and Embriology, University of Novi Sad, Novi Sad, Serbia
| | - Jasna Marinović
- Department of Physiology, University of Split School of Medicine, Split, Croatia
| | - Marko Ljubković
- Department of Physiology, University of Split School of Medicine, Split, Croatia
| | - Zlatibor Andjelković
- Institute of Histology and Embryology, Faculty of Medicine, University of Priština/Kosovska Mitrovica, Serbia
| | - Ivan Čapo
- Faculty of Medicine Novi Sad, Department of Histology and Embriology, University of Novi Sad, Novi Sad, Serbia
| |
Collapse
|
8
|
Marcinek DJ, Ferrucci L. Reduced oxidative capacity of skeletal muscle mitochondria IS a fundamental consequence of adult ageing. J Physiol 2025; 603:17-20. [PMID: 38970753 DOI: 10.1113/jp285040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 04/03/2024] [Indexed: 07/08/2024] Open
Affiliation(s)
- David J Marcinek
- Department of Radiology, University of Washington, Seattle, Washington, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Luigi Ferrucci
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, Baltimore, Maryland, USA
| |
Collapse
|
9
|
Moreno-Sanchez R, Vargas-Navarro JL, Padilla-Flores JA, Robledo-Cadena DX, Granados-Rivas JC, Taba R, Terasmaa A, Auditano GL, Kaambre T, Rodriguez-Enriquez S. Energy Metabolism Behavior and Response to Microenvironmental Factors of the Experimental Cancer Cell Models Differ from that of Actual Human Tumors. Mini Rev Med Chem 2025; 25:319-339. [PMID: 39411957 DOI: 10.2174/0113895575322436240924101642] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 04/09/2025]
Abstract
Analysis of the biochemical differences in the energy metabolism among bi-dimensional (2D) and tri-dimensional (3D) cultured cancer cell models and actual human tumors was undertaken. In 2D cancer cells, the oxidative phosphorylation (OxPhos) fluxes range is 2.5-19 nmol O2/min/mg cellular protein. Hypoxia drastically decreased OxPhos flux by 2-3 times in 2D models, similar to what occurs in mature multicellular tumor spheroids (MCTS), a representative 3D cancer cell model. However, mitochondrial protein contents and enzyme activities were significantly different between both models. Moreover, glycolytic fluxes were also significantly different between 2D and MCTS. The glycolytic flux range in 2D models is 1-34 nmol lactate/min/mg cellular protein, whereas in MCTS the range of glycolysis fluxes is 60-80 nmol lactate/min/mg cellular. In addition, sensitivity to anticancer canonical and metabolic drugs was greater in MCTS than in 2D. Actual solid human tumor samples show lower (1.6-4.5 times) OxPhos fluxes compared to normoxic 2D cancer cell cultures. These observations indicate that tridimensional organization provides a unique microenvironment affecting tumor physiology, which has not been so far faithfully reproduced by the 2D environment. Thus, the analysis of the resemblances and differences among cancer cell models undertaken in the present study raises caution on the interpretation of results derived from 2D cultured cancer cells when they are extended to clinical settings. It also raises awareness about detecting which biological and environmental factors are missing in 2D and 3D cancer cell models to be able to reproduce the actual human tumor behavior.
Collapse
Affiliation(s)
- Rafael Moreno-Sanchez
- Laboratorio de Control Metabólico, Carrera de Biología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla de Baz, Estado de México, México
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Jorge Luis Vargas-Navarro
- Laboratorio de Control Metabólico, Carrera de Biología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla de Baz, Estado de México, México
| | - Joaquin Alberto Padilla-Flores
- Laboratorio de Control Metabólico, Carrera de Biología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla de Baz, Estado de México, México
| | - Diana Xochiquetzal Robledo-Cadena
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1. Colonia Sección XVI, Tlalpan, México
| | - Juan Carlos Granados-Rivas
- Laboratorio de Control Metabólico, Carrera de Biología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla de Baz, Estado de México, México
| | - Rutt Taba
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Anton Terasmaa
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | | | - Tuuli Kaambre
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Sara Rodriguez-Enriquez
- Laboratorio de Control Metabólico, Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla de Baz, Estado de México, México
| |
Collapse
|
10
|
Queiroz ALF, Garcia CB, Silva JPMO, Cavalini DFA, Alexandrino AV, Cunha AF, Vercesi AE, Castilho RF, Shiguemoto GE. Preventive Effects of Resistance Training on Hemodynamics and Kidney Mitochondrial Bioenergetic Function in Ovariectomized Rats. Int J Mol Sci 2024; 26:266. [PMID: 39796122 PMCID: PMC11720031 DOI: 10.3390/ijms26010266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Menopause occurs due to the depletion of the ovarian reserve, leading to a progressive decline in estrogen (E2) levels. This decrease in E2 levels increases the risk of developing several diseases and can coexist with chronic kidney disease (CKD). Arterial hypertension (AH) is another condition associated with menopause and may either contribute to or result from CKD. Ovariectomy (OVX) induces hypoestrogenism, which can lead to mitochondrial bioenergetic dysfunction in the kidneys. Previous studies have suggested that exercise training has beneficial effects on adults with CKD and AH. To investigate the effects of OVX and resistance training (RT) on hemodynamic parameters and mitochondrial bioenergetic function of the kidney, female Wistar rats were divided into ovariectomized (OVX) and intact (INT) groups. These rats were either kept sedentary (SED) or subjected to RT for thirteen weeks. The RT involved climbing a vertical ladder with a workload apparatus. Hemodynamic parameters were assessed via tail plethysmography. Mitochondrial respiratory function was evaluated with high-resolution respirometry. Gene expression related to the electron transport chain (ETC) and oxidative phosphorylation (OXPHOS) was evaluated by real-time qPCR. At week 13, key hemodynamic parameters (systolic blood pressure and mean arterial pressure) were significantly elevated in the OVX-SED group. Compared with those in the other groups, mitochondrial bioenergetics were impaired in the OVX-SED group. In contrast, the trained groups presented improved mitochondrial bioenergetic function compared with the sedentary groups. OVX led to reduced gene expression related to the mitochondrial ETC and OXPHOS, whereas RT both prevented this reduction and increased gene expression in the trained groups. Our results indicate that hypoestrogenism significantly decreases OXPHOS and ETC capacity in the kidneys of sedentary animals. However, RT effectively increased the expression of genes related to mitochondrial ETC and OXPHOS, thereby counteracting the effects of OVX.
Collapse
Affiliation(s)
- Anne L. F. Queiroz
- Department of Physiological Sciences, Interinstitutional Post-Graduate Program of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos 13.566-490, SP, Brazil; (A.L.F.Q.); (C.B.G.); (D.F.A.C.); (A.V.A.)
- Post-Graduate Program of Physiotherapy, Federal University of São Carlos (UFSCar), São Carlos 13.566-490, SP, Brazil
| | - Christopher B. Garcia
- Department of Physiological Sciences, Interinstitutional Post-Graduate Program of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos 13.566-490, SP, Brazil; (A.L.F.Q.); (C.B.G.); (D.F.A.C.); (A.V.A.)
| | - João P. M. O. Silva
- Department of Genetics and Evolution, Federal University of São Carlos (UFSCar), São Carlos 13.566-490, SP, Brazil; (J.P.M.O.S.); (A.F.C.)
| | - Diego F. A. Cavalini
- Department of Physiological Sciences, Interinstitutional Post-Graduate Program of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos 13.566-490, SP, Brazil; (A.L.F.Q.); (C.B.G.); (D.F.A.C.); (A.V.A.)
| | - André V. Alexandrino
- Department of Physiological Sciences, Interinstitutional Post-Graduate Program of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos 13.566-490, SP, Brazil; (A.L.F.Q.); (C.B.G.); (D.F.A.C.); (A.V.A.)
- Department of Genetics and Evolution, Federal University of São Carlos (UFSCar), São Carlos 13.566-490, SP, Brazil; (J.P.M.O.S.); (A.F.C.)
- Department of Biological Sicences, Central Paulista University Center (UNICEP), Campus São Carlos, São Carlos 13.570-300, SP, Brazil
| | - Anderson F. Cunha
- Department of Genetics and Evolution, Federal University of São Carlos (UFSCar), São Carlos 13.566-490, SP, Brazil; (J.P.M.O.S.); (A.F.C.)
| | - Anibal E. Vercesi
- Department of Pathology, University of Campinas (UNICAMP), Campinas 13.083-970, SP, Brazil; (A.E.V.); (R.F.C.)
| | - Roger F. Castilho
- Department of Pathology, University of Campinas (UNICAMP), Campinas 13.083-970, SP, Brazil; (A.E.V.); (R.F.C.)
| | - Gilberto E. Shiguemoto
- Department of Physiological Sciences, Interinstitutional Post-Graduate Program of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos 13.566-490, SP, Brazil; (A.L.F.Q.); (C.B.G.); (D.F.A.C.); (A.V.A.)
- Post-Graduate Program of Physiotherapy, Federal University of São Carlos (UFSCar), São Carlos 13.566-490, SP, Brazil
| |
Collapse
|
11
|
Charles AL, Giannini M, Meyer A, Charloux A, Talha S, Vogel T, Raul JS, Wolff V, Geny B. Cannabis (THC) Aggravates the Deleterious Effects of Alcohol (EtOH) on Skeletal Muscles' Mitochondrial Respiration: Modulation by Age and Metabolic Phenotypes. BIOLOGY 2024; 13:1080. [PMID: 39765747 PMCID: PMC11673998 DOI: 10.3390/biology13121080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/10/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025]
Abstract
The anti-inflammatory and analgesic properties of cannabis might be useful to treat muscle diseases, including those linked or not to alcohol. Nevertheless, delta 9 tetrahydrocannabinol (THC) and ethanol (EtOH), often used concomitantly, can have deleterious effects on cardiac mitochondria. We therefore determined whether EtOH, alone and associated with THC, impairs skeletal muscle mitochondrial respiration. Further, we investigated potential modulation by metabolic phenotype and age by analyzing predominantly glycolytic gastrocnemius and oxidative soleus muscles in young and middle-aged rats (12 and 49 weeks). Considering the gastrocnemius, EtOH impaired mitochondrial respiration in a similar manner in young- and middle-aged muscles (-34.97 ± 2.97% vs. -37.50 ± 6.03% at 2.1 × 10-5 M; p < 0.05). Interestingly, concomitant THC aggravated EtOH-related mitochondrial impairment in young gastrocnemius (-49.92 ± 1.69%, vs. -34.97 ± 2.97 p < 0.05). Concerning the soleus, EtOH alone mainly decreased young muscle mitochondrial respiration (-42.39 ± 2.42% vs. -17.09 ± 7.61% at 2.1 × 10-5 M, p < 0.001, at 12 and 49 weeks). The soleus was less impaired at 12 weeks by THC and EtOH association than the gastrocnemius (-49.92 ±1.69 vs. -27.22 ± 8.96% in gastrocnemius and soleus, respectively, p < 0.05). In conclusion, EtOH, alone and associated with THC, significantly impairs skeletal muscle mitochondrial respiration and THC aggravates EtOH-induced effects on young glycolytic muscle. Age and metabolic phenotypes modulate these deleterious effects, with the glycolytic muscles of young rats being more prone to impairments than oxidative muscles.
Collapse
Affiliation(s)
- Anne-Laure Charles
- UR 3072, “Mitochondria, Oxidative Stress and Muscle Plasticity”, Biomedicine Research Center of Strasbourg (CRBS), Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France; (A.-L.C.); (M.G.); (A.M.); (A.C.); (S.T.); (T.V.); (V.W.)
| | - Margherita Giannini
- UR 3072, “Mitochondria, Oxidative Stress and Muscle Plasticity”, Biomedicine Research Center of Strasbourg (CRBS), Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France; (A.-L.C.); (M.G.); (A.M.); (A.C.); (S.T.); (T.V.); (V.W.)
- Physiology and Functional Explorations Department, University Hospital of Strasbourg, 67000 Strasbourg, France
| | - Alain Meyer
- UR 3072, “Mitochondria, Oxidative Stress and Muscle Plasticity”, Biomedicine Research Center of Strasbourg (CRBS), Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France; (A.-L.C.); (M.G.); (A.M.); (A.C.); (S.T.); (T.V.); (V.W.)
- Physiology and Functional Explorations Department, University Hospital of Strasbourg, 67000 Strasbourg, France
| | - Anne Charloux
- UR 3072, “Mitochondria, Oxidative Stress and Muscle Plasticity”, Biomedicine Research Center of Strasbourg (CRBS), Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France; (A.-L.C.); (M.G.); (A.M.); (A.C.); (S.T.); (T.V.); (V.W.)
- Physiology and Functional Explorations Department, University Hospital of Strasbourg, 67000 Strasbourg, France
| | - Samy Talha
- UR 3072, “Mitochondria, Oxidative Stress and Muscle Plasticity”, Biomedicine Research Center of Strasbourg (CRBS), Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France; (A.-L.C.); (M.G.); (A.M.); (A.C.); (S.T.); (T.V.); (V.W.)
- Physiology and Functional Explorations Department, University Hospital of Strasbourg, 67000 Strasbourg, France
| | - Thomas Vogel
- UR 3072, “Mitochondria, Oxidative Stress and Muscle Plasticity”, Biomedicine Research Center of Strasbourg (CRBS), Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France; (A.-L.C.); (M.G.); (A.M.); (A.C.); (S.T.); (T.V.); (V.W.)
- Geriatrics Department, University Hospital of Strasbourg, 67200 Strasbourg, France
| | - Jean-Sébastien Raul
- Toxicology Laboratory, Institute of Legal Medicine, Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France;
| | - Valérie Wolff
- UR 3072, “Mitochondria, Oxidative Stress and Muscle Plasticity”, Biomedicine Research Center of Strasbourg (CRBS), Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France; (A.-L.C.); (M.G.); (A.M.); (A.C.); (S.T.); (T.V.); (V.W.)
- Neuro-Vascular Department, University Hospital of Strasbourg, 67200 Strasbourg, France
| | - Bernard Geny
- UR 3072, “Mitochondria, Oxidative Stress and Muscle Plasticity”, Biomedicine Research Center of Strasbourg (CRBS), Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France; (A.-L.C.); (M.G.); (A.M.); (A.C.); (S.T.); (T.V.); (V.W.)
- Physiology and Functional Explorations Department, University Hospital of Strasbourg, 67000 Strasbourg, France
| |
Collapse
|
12
|
Tannous C, Ghali R, Karoui A, Habeichi NJ, Amin G, Booz GW, Mericskay M, Refaat M, Zouein FA. Nicotinamide Riboside Supplementation Restores Myocardial Nicotinamide Adenine Dinucleotide Levels, Improves Survival, and Promotes Protective Environment Post Myocardial Infarction. Cardiovasc Drugs Ther 2024; 38:1385-1396. [PMID: 37999834 DOI: 10.1007/s10557-023-07525-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/10/2023] [Indexed: 11/25/2023]
Abstract
AIMS Myocardial infarction (MI) is a major cause of death. Nicotinamide adenine dinucleotide (NAD+) is a coenzyme in oxidative phosphorylation and substrate of sirtuins and poly-ADP ribose polymerases, enzymes critical for cardiac remodeling post-MI. Decreased NAD+ is reported in several heart failure models with paradoxically an upregulation of nicotinamide riboside kinase 2, which uses nicotinamide riboside (NR) as substrate in an NAD+ biosynthetic pathway. We hypothesized that stimulating nicotinamide riboside kinase 2 pathway by NR supplementation exerts cardioprotective effects. METHODS AND RESULTS MI was induced by LAD ligation in 2-3-month-old male mice. NR was administered daily (1 µmole/g body weight) over 7 days. RT-PCR showed a 60-fold increase in nicotinamide riboside kinase 2 expression 4 days post-MI with a 60% drop in myocardial NAD+ and overall survival of 61%. NR restored NAD+ levels and improved survival to 92%. Assessment of respiration in cardiac fibers revealed mitochondrial dysfunction post-MI, and NR improved complexes II and IV activities and citrate synthase activity, a measure of mitochondrial content. Additionally, NR reduced elevated PARP1 levels and activated a type 2 cytokine milieu in the damaged heart, consistent with reduced early inflammatory and pro-fibrotic response. CONCLUSION Our data show that nicotinamide riboside could be useful for MI management.
Collapse
Affiliation(s)
- Cynthia Tannous
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut Medical Center, Riad El-Solh, Beirut, 1107 2020, Lebanon
- Department of Signaling and Cardiovascular Pathophysiology, UMR-S 1180, Université Paris-Saclay, Inserm, 17 avenue des Sciences, 91 400, Orsay, France
- The Cardiovascular, Renal and Metabolic Diseases Research Center of Excellence, American University of Beirut Medical Center, Riad El-Solh, Beirut, Lebanon
| | - Rana Ghali
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut Medical Center, Riad El-Solh, Beirut, 1107 2020, Lebanon
- The Cardiovascular, Renal and Metabolic Diseases Research Center of Excellence, American University of Beirut Medical Center, Riad El-Solh, Beirut, Lebanon
| | - Ahmed Karoui
- Department of Signaling and Cardiovascular Pathophysiology, UMR-S 1180, Université Paris-Saclay, Inserm, 17 avenue des Sciences, 91 400, Orsay, France
| | - Nada J Habeichi
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut Medical Center, Riad El-Solh, Beirut, 1107 2020, Lebanon
- Department of Signaling and Cardiovascular Pathophysiology, UMR-S 1180, Université Paris-Saclay, Inserm, 17 avenue des Sciences, 91 400, Orsay, France
- The Cardiovascular, Renal and Metabolic Diseases Research Center of Excellence, American University of Beirut Medical Center, Riad El-Solh, Beirut, Lebanon
- MatriceLab Innove Laboratory, Immeuble Les Gemeaux, 2 Rue Antoine Etex, 94000 Creteil, France
| | - Ghadir Amin
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut Medical Center, Riad El-Solh, Beirut, 1107 2020, Lebanon
- The Cardiovascular, Renal and Metabolic Diseases Research Center of Excellence, American University of Beirut Medical Center, Riad El-Solh, Beirut, Lebanon
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - George W Booz
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Mathias Mericskay
- Department of Signaling and Cardiovascular Pathophysiology, UMR-S 1180, Université Paris-Saclay, Inserm, 17 avenue des Sciences, 91 400, Orsay, France.
| | - Marwan Refaat
- Department of Cardiovascular Medicine, Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Fouad A Zouein
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut Medical Center, Riad El-Solh, Beirut, 1107 2020, Lebanon.
- Department of Signaling and Cardiovascular Pathophysiology, UMR-S 1180, Université Paris-Saclay, Inserm, 17 avenue des Sciences, 91 400, Orsay, France.
- The Cardiovascular, Renal and Metabolic Diseases Research Center of Excellence, American University of Beirut Medical Center, Riad El-Solh, Beirut, Lebanon.
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, MS, USA.
| |
Collapse
|
13
|
Jahan F, Vasam G, Cariaco Y, Nik-Akhtar A, Green A, Menzies KJ, Bainbridge SA. NAD + depletion is central to placental dysfunction in an inflammatory subclass of preeclampsia. Life Sci Alliance 2024; 7:e202302505. [PMID: 39389781 PMCID: PMC11467044 DOI: 10.26508/lsa.202302505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/12/2024] Open
Abstract
Preeclampsia (PE) is a hypertensive disorder of pregnancy and a major cause of maternal/perinatal adverse health outcomes with no effective therapeutic strategies. Our group previously identified distinct subclasses of PE, one of which exhibits heightened placental inflammation (inflammation-driven PE). In non-pregnant populations, chronic inflammation is associated with decreased levels of cellular NAD+, a vitamin B3 derivative involved in energy metabolism and mitochondrial function. Interestingly, specifically in placentas from women with inflammation-driven PE, we observed the increased activity of NAD+-consuming enzymes, decreased NAD+ content, decreased expression of mitochondrial proteins, and increased oxidative damage. HTR8 human trophoblasts likewise demonstrated increased NAD+-dependent ADP-ribosyltransferase (ART) activity, coupled with decreased mitochondrial respiration rates and invasive function under inflammatory conditions. Such adverse effects were attenuated by boosting cellular NAD+ levels with nicotinamide riboside (NR). Finally, in an LPS-induced rat model of inflammation-driven PE, NR administration (200 mg/kg/day) from gestational days 1-19 prevented maternal hypertension and fetal/placental growth restriction, improved placental mitochondrial function, and reduced inflammation and oxidative stress. This study demonstrates the critical role of NAD+ in maintaining placental function and identifies NAD+ boosting as a promising preventative strategy for PE.
Collapse
Affiliation(s)
- Fahmida Jahan
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Goutham Vasam
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
| | - Yusmaris Cariaco
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
| | - Abolfazl Nik-Akhtar
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Alex Green
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Keir J Menzies
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Canada
| | - Shannon A Bainbridge
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| |
Collapse
|
14
|
Hunter‐Manseau F, Cormier SB, Strang R, Pichaud N. Fasting as a precursor to high-fat diet enhances mitochondrial resilience in Drosophila melanogaster. INSECT SCIENCE 2024; 31:1770-1788. [PMID: 38514255 PMCID: PMC11632299 DOI: 10.1111/1744-7917.13355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/29/2024] [Accepted: 02/08/2024] [Indexed: 03/23/2024]
Abstract
Changes in diet type and nutrient availability can impose significant environmental stress on organisms, potentially compromising physiological functions and reproductive success. In nature, dramatic fluctuations in dietary resources are often observed and adjustments to restore cellular homeostasis are crucial to survive this type of stress. In this study, we exposed male Drosophila melanogaster to two modulated dietary treatments: one without a fasting period before exposure to a high-fat diet and the other with a 24-h fasting period. We then investigated mitochondrial metabolism and molecular responses to these treatments. Exposure to a high-fat diet without a preceding fasting period resulted in disrupted mitochondrial respiration, notably at the level of complex I. On the other hand, a short fasting period before the high-fat diet maintained mitochondrial respiration. Generally, transcript abundance of genes associated with mitophagy, heat-shock proteins, mitochondrial biogenesis, and nutrient sensing pathways increased either slightly or significantly following a fasting period and remained stable when flies were subsequently put on a high-fat diet, whereas a drastic decrease of almost all transcript abundances was observed for all these pathways when flies were exposed directly to a high-fat diet. Moreover, mitochondrial enzymatic activities showed less variation after the fasting period than the treatment without a fasting period. Overall, our study sheds light on the mechanistic protective effects of fasting prior to a high-fat diet and highlights the metabolic flexibility of Drosophila mitochondria in response to abrupt dietary changes and have implication for adaptation of species to their changing environment.
Collapse
Affiliation(s)
- Florence Hunter‐Manseau
- Department of Chemistry and BiochemistryUniversité de MonctonMonctonNew BrunswickCanada
- New Brunswick Centre for Precision MedicineMonctonNew BrunswickCanada
| | - Simon B. Cormier
- Department of Chemistry and BiochemistryUniversité de MonctonMonctonNew BrunswickCanada
- New Brunswick Centre for Precision MedicineMonctonNew BrunswickCanada
| | - Rebekah Strang
- Department of Chemistry and BiochemistryUniversité de MonctonMonctonNew BrunswickCanada
- New Brunswick Centre for Precision MedicineMonctonNew BrunswickCanada
| | - Nicolas Pichaud
- Department of Chemistry and BiochemistryUniversité de MonctonMonctonNew BrunswickCanada
- New Brunswick Centre for Precision MedicineMonctonNew BrunswickCanada
| |
Collapse
|
15
|
Choi RH, Karasawa T, Meza CA, Maschek JA, Manuel A, Nikolova LS, Fisher-Wellmen KH, Cox JE, Chaix A, Funai K. Semaglutide-induced weight loss improves mitochondrial energy efficiency in skeletal muscle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.13.623431. [PMID: 39605484 PMCID: PMC11601453 DOI: 10.1101/2024.11.13.623431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Objective Glucagon-like peptide 1 receptor agonists (e.g. semaglutide) potently induce weight loss and thereby reducing obesity-related complications. However, weight regain occurs when treatment is discontinued. An increase in skeletal muscle oxidative phosphorylation (OXPHOS) efficiency upon diet-mediated weight loss has been described, which may contribute to reduced systemic energy expenditure and weight regain. We set out to determine the unknown effect of semaglutide on muscle OXPHOS efficiency. Methods C57BL/6J mice were fed a high-fat diet for 12 weeks before receiving semaglutide or vehicle for 1 or 3 weeks. The rate of ATP production and O2 consumption were measured by a high-resolution respirometry and fluorometry to determine OXPHOS efficiency in skeletal muscle at these 2 timepoints. Results Semaglutide treatment led to significant reductions in fat and lean mass. Semaglutide improved skeletal muscle OXPHOS efficiency, measured as ATP produced per O2 consumed (P/O) in permeabilized muscle fibers. Mitochondrial proteomic analysis revealed changes restricted to two proteins linked to complex III assembly (Lyrm7 and Ttc1, p <0.05 without multiple corrections) without substantial changes in the abundance of OXPHOS subunits. Conclusions These data indicate that weight loss with semaglutide treatment increases skeletal muscle mitochondrial efficiency. Future studies could test whether it contributes to weight regain.
Collapse
Affiliation(s)
- Ran Hee Choi
- Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| | - Takuya Karasawa
- Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
- Research Institute of Sport Science, Nippon Sport Science University, Setagaya, Tokyo, Japan
| | - Cesar A. Meza
- Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| | - J. Alan Maschek
- Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
- Mass Spectrometry and Proteomics Core, University of Utah, Salt Lake City, UT, USA
| | - Allison Manuel
- Mass Spectrometry and Proteomics Core, University of Utah, Salt Lake City, UT, USA
| | - Linda S. Nikolova
- Electron Microscopy Core Facility, University of Utah, Salt Lake City, UT, USA
| | - Kelsey H. Fisher-Wellmen
- Department of Cancer Biology, Comprehensive Cancer Center of Wake Forest Baptist Health, Winston-Salem, NC, USA
| | - James E. Cox
- Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
- Mass Spectrometry and Proteomics Core, University of Utah, Salt Lake City, UT, USA
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Amandine Chaix
- Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, USA
| | - Katsuhiko Funai
- Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
16
|
Somers T, Siddiqi S, Janssen MCM, Morshuis WJ, Maas RGC, Buikema JW, van den Broek PHH, Schirris TJJ, Russel FGM. Effect of statins on mitochondrial function and contractile force in human skeletal and cardiac muscle. Biomed Pharmacother 2024; 180:117492. [PMID: 39326098 DOI: 10.1016/j.biopha.2024.117492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/28/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024] Open
Abstract
OBJECTIVES AND BACKGROUND The success of statin therapy in reducing cardiovascular morbidity and mortality is contrasted by the skeletal muscle complaints, which often leads to nonadherence. Previous studies have shown that inhibition of mitochondrial function plays a key role in statin intolerance. Recently, it was found that statins may also influence energy metabolism in cardiomyocytes. This study assessed the effects of statin use on cardiac muscle ex vivo from patients using atorvastatin, rosuvastatin, simvastatin or pravastatin and controls. METHODS Cardiac tissue and skeletal muscle tissue were harvested during open heart surgery after patients provided written informed consent. Patients included were undergoing cardiac surgery and either taking statins (atorvastatin, rosuvastatin, simvastatin or pravastatin) or without statin therapy (controls). Contractile behaviour of cardiac auricles was tested in an ex vivo set-up and cellular respiration of both cardiac and skeletal muscle tissue samples was measured using an Oxygraph-2k. Finally, statin acid and lactone concentrations were quantified in cardiac and skeletal homogenates by LC-MS/MS. RESULTS Fatty acid oxidation and mitochondrial complex I and II activity were reduced in cardiac muscle, while contractile function remained unaffected. Inhibition of mitochondrial complex III by statins, as previously described, was confirmed in skeletal muscle when compared to control samples, but not observed in cardiac tissue. Statin concentrations determined in skeletal muscle tissue and cardiac muscle tissue were comparable. CONCLUSIONS Statins reduce skeletal and cardiac muscle cell respiration without significantly affecting cardiac contractility.
Collapse
Affiliation(s)
- Tim Somers
- Department of Cardiothoracic Surgery, Radboud University Medical Center, Nijmegen 6500HB, The Netherlands; Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen 6500HB, The Netherlands; Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen 6500HB, The Netherlands.
| | - Sailay Siddiqi
- Department of Cardiothoracic Surgery, Radboud University Medical Center, Nijmegen 6500HB, The Netherlands; Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen 6500HB, The Netherlands
| | - Margit C M Janssen
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen 6500HB, The Netherlands
| | - Wim J Morshuis
- Department of Cardiothoracic Surgery, Radboud University Medical Center, Nijmegen 6500HB, The Netherlands
| | - Renee G C Maas
- Utrecht Regenerative Medicine Center, Circulatory Health Laboratory, University Utrecht, Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht 3508GA, The Netherlands
| | - Jan W Buikema
- Amsterdam Cardiovascular Sciences, Department of Physiology, VU University, De Boelelaan 1108, Amsterdam 1081HZ, The Netherlands; Amsterdam Heart Center, Department of Cardiology, Amsterdam University Medical Center, De Boelelaan 1117, Amsterdam 1081HZ, The Netherlands
| | - Petra H H van den Broek
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen 6500HB, The Netherlands
| | - Tom J J Schirris
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen 6500HB, The Netherlands; Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen 6500HB, The Netherlands
| | - Frans G M Russel
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen 6500HB, The Netherlands; Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen 6500HB, The Netherlands
| |
Collapse
|
17
|
Bannon ST, Decker ST, Erol ME, Fan R, Huang YT, Chung S, Layec G. Mitochondrial free radicals contribute to cigarette smoke condensate-induced impairment of oxidative phosphorylation in the skeletal muscle in situ. Free Radic Biol Med 2024; 224:325-334. [PMID: 39178923 PMCID: PMC11975403 DOI: 10.1016/j.freeradbiomed.2024.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/01/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
Oxidative stress plays a critical role in cellular dysfunction associated with cigarette smoke exposure and aging. Some chemicals from tobacco smoke have the potential to amplify mitochondrial ROS (mROS) production, which, in turn, may impair mitochondrial respiratory function. Accordingly, the present study tested the hypothesis that a mitochondria-targeted antioxidant (MitoTEMPO, MT) would attenuate the inhibitory effects of cigarette smoke on skeletal muscle respiratory capacity of middle-aged mice. Specifically, mitochondrial oxidative phosphorylation was assessed using high-resolution respirometry in permeabilized fibers from the fast-twitch gastrocnemius muscle of middle-aged C57Bl/6J mice. Before the assessment of respiration, tissues were incubated for 1hr with a control buffer (CON), cigarette smoke condensate (2 % dilution, SMOKE), or MitoTEMPO (10 μM) combined with cigarette smoke condensate (MT + SMOKE). Cigarette smoke condensate (CSC) decreased maximal-ADP stimulated respiration (CON: 60 ± 15 pmolO2.s-1.mg-1 and SMOKE: 33 ± 8 pmolO2.s-1.mg-1; p = 0.0001), and this effect was attenuated by MT (MT + SMOKE: 41 ± 7 pmolO2.s-1.mg-1; p = 0.02 with SMOKE). Complex-I specific respiration was inhibited by CSC, with no significant effect of MT (p = 0.35). Unlike CON, the addition of glutamate (ΔGlutamate) had an additive effect on respiration in fibers exposed to CSC (CON: 0.9 ± 1.1 pmolO2.s-1.mg-1 and SMOKE: 5.4 ± 3.7 pmolO2.s-1.mg-1; p = 0.008) and MT (MT + SMOKE: 8.2 ± 3.8 pmolO2.s-1.mg-1; p ≤ 0.01). Complex-II specific respiration was inhibited by CSC but was partially restored by MT (p = 0.04 with SMOKE). Maximal uncoupled respiration induced by FCCP was inhibited by CSC, with no significant effect of MT. These findings underscore that mROS contributes to cigarette smoke condensate-induced inhibition of mitochondrial respiration in fast-twitch gastrocnemius muscle fibers of middle-aged mice thus providing a potential target for therapeutic treatment of smoke-related diseases. In addition, this study revealed that CSC largely impaired muscle respiratory capacity by decreasing metabolic flux through mitochondrial pyruvate transporter (MPC) and/or the enzymes upstream of α-ketoglutarate in the Krebs cycle.
Collapse
Affiliation(s)
- Sean T Bannon
- Department of Kinesiology, University of Massachusetts Amherst, MA, USA
| | - Stephen T Decker
- Department of Kinesiology, University of Massachusetts Amherst, MA, USA; Diabetes and Metabolism Research Center, University of Utah, UT, USA
| | - Muhammet Enes Erol
- Department of Kinesiology, University of Massachusetts Amherst, MA, USA; School of Health and Kinesiology, University of Nebraska Omaha, NE, USA
| | - Rong Fan
- Department of Nutrition, University of Massachusetts Amherst, MA, USA
| | - Yu-Ting Huang
- Department of Kinesiology, University of Massachusetts Amherst, MA, USA
| | - Soonkyu Chung
- Department of Nutrition, University of Massachusetts Amherst, MA, USA
| | - Gwenael Layec
- Department of Kinesiology, University of Massachusetts Amherst, MA, USA; School of Health and Kinesiology, University of Nebraska Omaha, NE, USA.
| |
Collapse
|
18
|
Ducros L, Lavoie-Rochon AS, Pichaud N, Lamarre SG. Metabolic rate and mitochondrial physiology adjustments in Arctic char (Salvelinus alpinus) during cyclic hypoxia. J Exp Biol 2024; 227:jeb247834. [PMID: 39319396 DOI: 10.1242/jeb.247834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 09/10/2024] [Indexed: 09/26/2024]
Abstract
Diel fluctuations of oxygen levels characterize cyclic hypoxia and pose a significant challenge to wild fish populations. Although recent research has been conducted on the effects of hypoxia and reoxygenation, mechanisms by which fish acclimatize to cyclic hypoxia remain unclear, especially in hypoxia-sensitive species. We hypothesized that acclimation to cyclic hypoxia requires a downregulation of aerobic metabolic rate and an upregulation of mitochondrial respiratory capacities to mitigate constraints on aerobic metabolism and the elevated risk of oxidative stress upon reoxygenation. We exposed Arctic char (Salvelinus alpinus) to 10 days of cyclic hypoxia and measured their metabolic rate and mitochondrial physiology to determine how they cope with fluctuating oxygen concentrations. We measured oxygen consumption as a proxy of metabolic rate and observed that Arctic char defend their standard metabolic rate but decrease their routine metabolic rate during hypoxic phases, presumably through the repression of spontaneous swimming activities. At the mitochondrial level, acute cyclic hypoxia increases oxygen consumption without ADP (CI-LEAK) in the liver and heart. Respiration in the presence of ADP (OXPHOS) temporarily increases in the liver and decreases in the heart. Cytochrome c oxidase oxygen affinity also increases at day 3 in the liver. However, no change occurs in the brain, which is likely primarily preserved through preferential perfusion (albeit not measured in this study). Finally, in vivo measurements of reactive oxygen species revealed the absence of an oxidative burst in mitochondria in the cyclic hypoxia group. Our study shows that Arctic char acclimatize to cyclic hypoxia through organ-specific mitochondrial adjustments.
Collapse
Affiliation(s)
- Loïck Ducros
- Département de Biologie, Université de Moncton, Moncton, NB, Canada, E1A 3E9
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB, Canada, E1A 3E9
| | - A S Lavoie-Rochon
- Département de Biologie, Université de Moncton, Moncton, NB, Canada, E1A 3E9
| | - N Pichaud
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB, Canada, E1A 3E9
| | - S G Lamarre
- Département de Biologie, Université de Moncton, Moncton, NB, Canada, E1A 3E9
| |
Collapse
|
19
|
Bacoeur-Ouzillou O, Guerrier L, Touron J, Pinel A, Pereira B, Meunier N, Gillet B, Pezet D, Cassagnes L, Malpuech-Brugère C, Richard R, Gagniere J. Chemotherapy effects on mitochondrial function in adipose tissue in oesophageal and gastroesophageal junction adenocarcinomas with or without associated cachexia: protocol for a prospective, comparative observational study (ChiFMeOE). BMJ Open 2024; 14:e086686. [PMID: 39448207 PMCID: PMC11499755 DOI: 10.1136/bmjopen-2024-086686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 09/13/2024] [Indexed: 10/26/2024] Open
Abstract
INTRODUCTION Cachexia is strongly associated with digestive cancers, particularly oesogastric cancer. Mitochondria in adipose tissue are involved in the regulation of metabolism and physiopathology of cancer cachexia in animal studies. Chemotherapeutic regimens used to control tumour development could also alter mitochondrial function in adipose tissue. We hypothesise that cachexia induces an increase in adipose tissue mitochondrial energy metabolism and that chemotherapy can mitigate this. The purpose of the ChiFMeOE study is to identify adipocyte factors involved in the energy imbalance associated with the cachectic process and their response to chemotherapeutic treatments in patients with oesogastric cancer. METHODS AND ANALYSIS ChiFMeOE is a single-centre observational study that will prospectively include 60 patients referred to chemotherapy and surgery for oesophageal and gastro-oesophageal junction adenocarcinomas at the University Hospital of Clermont-Ferrand, France. Visceral and subcutaneous adipose tissue biopsies will be collected during surgery scheduled before and after neoadjuvant chemotherapy administration, as well as cachexia and nutritional assessment. The primary outcome is the maximum mitochondrial respiration rate (Vmax) measured by high-resolution respirometry. Secondary outcomes are other mitochondrial parameters (ie, enzymatic activities, proteins content and gene expression), tumour characteristics, nutritional status and body composition. ETHICS AND DISSEMINATION The study was approved by an independent institutional review board on June 2023 (Comité de protection des personnes Sud-Méditerranée V; 2023-A00582-43) and declared to the French regulatory authority for research. Written informed consent will be obtained prior to patient inclusion. The principal investigator will be notified of any changes in patient's health status requiring a modification of his management and/or treatment during the course of the protocol. Results will be published in peer-reviewed journals. TRIAL REGISTRATION NUMBER ClinicalTrials.gov, NCT05954117.
Collapse
Affiliation(s)
- Ophélie Bacoeur-Ouzillou
- Digestive and Hepatobiliary Surgery department, CHU Clermont-Ferrand, Clermont-Ferrand, France
- INRAe, Unité de Nutrition Humaine, ASMS team, F-63000 Clermont-Ferrand, France, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Lisa Guerrier
- INRAe, Unité de Nutrition Humaine, ASMS team, F-63000 Clermont-Ferrand, France, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Julianne Touron
- Unité de Nutrition Humaine, Clermont-Ferrand, France
- D.REF-AERO, Unité Fatigue et Vigilance, IRBA, Bretigny-sur-Orge, France
| | - Alexandre Pinel
- INRAe, Unité de Nutrition Humaine, ASMS team, F-63000 Clermont-Ferrand, France, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Bruno Pereira
- Biostatistics unit, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Nathalie Meunier
- Nutrition Exploration Unit (UEN) - CRNH-Auvergne, Clermont-Ferrand, France, Centre de Recherche en Nutrition Humaine-Auvergne, Clermont-Ferrand, France
| | - Brigitte Gillet
- Digestive and Hepatobiliary Surgery department, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Denis Pezet
- Digestive and Hepatobiliary Surgery department, CHU Clermont-Ferrand, Clermont-Ferrand, France
- U1071 Inserm / UCA, M2iSH, Clermont-Auvergne University, Clermont-Ferrand, France, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Lucie Cassagnes
- Department of radiology, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Corinne Malpuech-Brugère
- INRAe, Unité de Nutrition Humaine, ASMS team, F-63000 Clermont-Ferrand, France, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Ruddy Richard
- INRAe, Unité de Nutrition Humaine, ASMS team, F-63000 Clermont-Ferrand, France, Université Clermont Auvergne, Clermont-Ferrand, France
- Nutrition Exploration Unit (UEN) - CRNH-Auvergne, Clermont-Ferrand, France, Centre de Recherche en Nutrition Humaine-Auvergne, Clermont-Ferrand, France
| | - Johan Gagniere
- Digestive and Hepatobiliary Surgery department, CHU Clermont-Ferrand, Clermont-Ferrand, France
- U1071 Inserm / UCA, M2iSH, Clermont-Auvergne University, Clermont-Ferrand, France, Université Clermont Auvergne, Clermont-Ferrand, France
| |
Collapse
|
20
|
Rizo-Roca D, Guimarães DSPSF, Pendergrast LA, Di Leo N, Chibalin AV, Maqdasy S, Rydén M, Näslund E, Zierath JR, Krook A. Decreased mitochondrial creatine kinase 2 impairs skeletal muscle mitochondrial function independently of insulin in type 2 diabetes. Sci Transl Med 2024; 16:eado3022. [PMID: 39383244 DOI: 10.1126/scitranslmed.ado3022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 09/16/2024] [Indexed: 10/11/2024]
Abstract
Increased plasma creatine concentrations are associated with the risk of type 2 diabetes, but whether this alteration is associated with or causal for impairments in metabolism remains unexplored. Because skeletal muscle is the main disposal site of both creatine and glucose, we investigated the role of intramuscular creatine metabolism in the pathophysiology of insulin resistance in type 2 diabetes. In men with type 2 diabetes, plasma creatine concentrations were increased, and intramuscular phosphocreatine content was reduced. These alterations were coupled to reduced expression of sarcomeric mitochondrial creatine kinase 2 (CKMT2). In C57BL/6 mice fed a high-fat diet, neither supplementation with creatine for 2 weeks nor treatment with the creatine analog β-GPA for 1 week induced changes in glucose tolerance, suggesting that increased circulating creatine was associated with insulin resistance rather than causing it. In C2C12 myotubes, silencing Ckmt2 using small interfering RNA reduced mitochondrial respiration, membrane potential, and glucose oxidation. Electroporation-mediated overexpression of Ckmt2 in skeletal muscle of high-fat diet-fed male mice increased mitochondrial respiration, independent of creatine availability. Given that overexpression of Ckmt2 improved mitochondrial function, we explored whether exercise regulates CKMT2 expression. Analysis of public data revealed that CKMT2 content was up-regulated by exercise training in both humans and mice. We reveal a previously underappreciated role of CKMT2 in mitochondrial homeostasis beyond its function for creatine phosphorylation, independent of insulin action. Collectively, our data provide functional evidence for how CKMT2 mediates mitochondrial dysfunction associated with type 2 diabetes.
Collapse
Affiliation(s)
- David Rizo-Roca
- Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | | | - Logan A Pendergrast
- Department of Molecular Medicine and Surgery, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Nicolas Di Leo
- Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Alexander V Chibalin
- Department of Molecular Medicine and Surgery, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Salwan Maqdasy
- Department of Medicine (H7), Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden
| | - Mikael Rydén
- Department of Medicine (H7), Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden
| | - Erik Näslund
- Division of Surgery, Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, SE-182 57 Danderyd, Stockholm, Sweden
| | - Juleen R Zierath
- Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Anna Krook
- Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| |
Collapse
|
21
|
Li M, Wang Y, Wei X, Cai WF, Wu J, Zhu M, Wang Y, Liu YH, Xiong J, Qu Q, Chen Y, Tian X, Yao L, Xie R, Li X, Chen S, Huang X, Zhang C, Xie C, Wu Y, Xu Z, Zhang B, Jiang B, Wang ZC, Li Q, Li G, Lin SY, Yu L, Piao HL, Deng X, Han J, Zhang CS, Lin SC. AMPK targets PDZD8 to trigger carbon source shift from glucose to glutamine. Cell Res 2024; 34:683-706. [PMID: 38898113 PMCID: PMC11442470 DOI: 10.1038/s41422-024-00985-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
The shift of carbon utilization from primarily glucose to other nutrients is a fundamental metabolic adaptation to cope with decreased blood glucose levels and the consequent decline in glucose oxidation. AMP-activated protein kinase (AMPK) plays crucial roles in this metabolic adaptation. However, the underlying mechanism is not fully understood. Here, we show that PDZ domain containing 8 (PDZD8), which we identify as a new substrate of AMPK activated in low glucose, is required for the low glucose-promoted glutaminolysis. AMPK phosphorylates PDZD8 at threonine 527 (T527) and promotes the interaction of PDZD8 with and activation of glutaminase 1 (GLS1), a rate-limiting enzyme of glutaminolysis. In vivo, the AMPK-PDZD8-GLS1 axis is required for the enhancement of glutaminolysis as tested in the skeletal muscle tissues, which occurs earlier than the increase in fatty acid utilization during fasting. The enhanced glutaminolysis is also observed in macrophages in low glucose or under acute lipopolysaccharide (LPS) treatment. Consistent with a requirement of heightened glutaminolysis, the PDZD8-T527A mutation dampens the secretion of pro-inflammatory cytokines in macrophages in mice treated with LPS. Together, we have revealed an AMPK-PDZD8-GLS1 axis that promotes glutaminolysis ahead of increased fatty acid utilization under glucose shortage.
Collapse
Affiliation(s)
- Mengqi Li
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yu Wang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xiaoyan Wei
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Wei-Feng Cai
- Xiamen Key Laboratory of Radiation Oncology, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Jianfeng Wu
- Laboratory Animal Research Centre, Xiamen University, Xiamen, Fujian, China
| | - Mingxia Zhu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yongliang Wang
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China
| | - Yan-Hui Liu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Jinye Xiong
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Qi Qu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yan Chen
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xiao Tian
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Luming Yao
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Renxiang Xie
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiaomin Li
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Siwei Chen
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xi Huang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Cixiong Zhang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Changchuan Xie
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yaying Wu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Zheni Xu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Baoding Zhang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Bin Jiang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Zhi-Chao Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Qinxi Li
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Gang Li
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Shu-Yong Lin
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Li Yu
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Hai-Long Piao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China
| | - Xianming Deng
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Jiahuai Han
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Chen-Song Zhang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China.
| | - Sheng-Cai Lin
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
22
|
Thoral E, Dawson NJ, Bettinazzi S, Rodríguez E. An evolving roadmap: using mitochondrial physiology to help guide conservation efforts. CONSERVATION PHYSIOLOGY 2024; 12:coae063. [PMID: 39252884 PMCID: PMC11381570 DOI: 10.1093/conphys/coae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/11/2024]
Abstract
The crucial role of aerobic energy production in sustaining eukaryotic life positions mitochondrial processes as key determinants of an animal's ability to withstand unpredictable environments. The advent of new techniques facilitating the measurement of mitochondrial function offers an increasingly promising tool for conservation approaches. Herein, we synthesize the current knowledge on the links between mitochondrial bioenergetics, ecophysiology and local adaptation, expanding them to the wider conservation physiology field. We discuss recent findings linking cellular bioenergetics to whole-animal fitness, in the current context of climate change. We summarize topics, questions, methods, pitfalls and caveats to help provide a comprehensive roadmap for studying mitochondria from a conservation perspective. Our overall aim is to help guide conservation in natural populations, outlining the methods and techniques that could be most useful to assess mitochondrial function in the field.
Collapse
Affiliation(s)
- Elisa Thoral
- Department of Biology, Section for Evolutionary Ecology, Lund University, Sölvegatan 37, Lund 223 62, Sweden
| | - Neal J Dawson
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Garscube Campus, Bearsden Road, Glasgow, G61 1QH , UK
| | - Stefano Bettinazzi
- Research Department of Genetics, Evolution and Environment, University College London, Darwin Building, 99-105 Gower Street, WC1E 6BT, London, UK
| | - Enrique Rodríguez
- Research Department of Genetics, Evolution and Environment, University College London, Darwin Building, 99-105 Gower Street, WC1E 6BT, London, UK
| |
Collapse
|
23
|
Ramos PM, Wohlgemuth SE, Gingerich CA, Hawryluk B, Smith MT, Bell LC, Scheffler TL. Postmortem mitochondria function in longissimus lumborum of Angus and Brahman steers. Meat Sci 2024; 215:109538. [PMID: 38772311 DOI: 10.1016/j.meatsci.2024.109538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/09/2024] [Accepted: 05/09/2024] [Indexed: 05/23/2024]
Abstract
Mitochondria function and integrity may impact postmortem metabolism and meat quality development. Adaptations in heat tolerant Brahman may persist to limit cellular stress postmortem. Our objective was to evaluate glycolysis, pH decline, and mitochondria function in longissimus lumborum (LL) from Angus and Brahman steers (N = 28) early postmortem (1 to 6 h) and after rigor (24 h). We evaluated metabolites of anaerobic glycolysis, ATP, pH, and temperature, and determined mitochondria oxygen consumption rate (OCR) in permeabilized fibers. The main effects of breed (b) and time (t) and the interaction were tested. Brahman LL contained greater ATP during the first 6 h postmortem; Brahman also tended to exhibit a slower pH decline (b × t, P = 0.07) and more rapid temperature decline (b × t, P < 0.001), but metabolites of anaerobic glycolysis were not different. Mitochondria in Brahman and Angus LL were well-coupled and respired at 1 h postmortem. However, outer membrane integrity became increasingly compromised postmortem (t, P < 0.001). Brahman tended to exhibit greater electron transport system capacity (b, P < 0.1) and had greater capacity for oxidative phosphorylation (complex I and II substrates) at 6 h compared with Angus (P < 0.001). In totality, greater ATP, slower pH decline, and enhanced mitochondria capacity indicate that Brahman possess mitochondrial properties or cellular adaptations that help protect the cell during energy stress postmortem. Slower pH and more rapid temperature decline in LL from Brahman may also help preserve mitochondria function postmortem.
Collapse
Affiliation(s)
- Patricia M Ramos
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, United States of America
| | - Stephanie E Wohlgemuth
- Department of Physiology and Aging, University of Florida, Gainesville, FL 32603, United States of America
| | - Chloe A Gingerich
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, United States of America
| | - Briana Hawryluk
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, United States of America
| | - Morgan T Smith
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, United States of America
| | - Lindsey C Bell
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, United States of America
| | - Tracy L Scheffler
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, United States of America.
| |
Collapse
|
24
|
Li L, Niemann B, Knapp F, Werner S, Mühlfeld C, Schneider JP, Jurida LM, Molenda N, Schmitz ML, Yin X, Mayr M, Schulz R, Kracht M, Rohrbach S. Comparison of the stage-dependent mitochondrial changes in response to pressure overload between the diseased right and left ventricle in the rat. Basic Res Cardiol 2024; 119:587-611. [PMID: 38758338 DOI: 10.1007/s00395-024-01051-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/18/2024]
Abstract
The right ventricle (RV) differs developmentally, anatomically and functionally from the left ventricle (LV). Therefore, characteristics of LV adaptation to chronic pressure overload cannot easily be extrapolated to the RV. Mitochondrial abnormalities are considered a crucial contributor in heart failure (HF), but have never been compared directly between RV and LV tissues and cardiomyocytes. To identify ventricle-specific mitochondrial molecular and functional signatures, we established rat models with two slowly developing disease stages (compensated and decompensated) in response to pulmonary artery banding (PAB) or ascending aortic banding (AOB). Genome-wide transcriptomic and proteomic analyses were used to identify differentially expressed mitochondrial genes and proteins and were accompanied by a detailed characterization of mitochondrial function and morphology. Two clearly distinguishable disease stages, which culminated in a comparable systolic impairment of the respective ventricle, were observed. Mitochondrial respiration was similarly impaired at the decompensated stage, while respiratory chain activity or mitochondrial biogenesis were more severely deteriorated in the failing LV. Bioinformatics analyses of the RNA-seq. and proteomic data sets identified specifically deregulated mitochondrial components and pathways. Although the top regulated mitochondrial genes and proteins differed between the RV and LV, the overall changes in tissue and cardiomyocyte gene expression were highly similar. In conclusion, mitochondrial dysfuntion contributes to disease progression in right and left heart failure. Ventricle-specific differences in mitochondrial gene and protein expression are mostly related to the extent of observed changes, suggesting that despite developmental, anatomical and functional differences mitochondrial adaptations to chronic pressure overload are comparable in both ventricles.
Collapse
MESH Headings
- Animals
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/pathology
- Male
- Heart Failure/metabolism
- Heart Failure/physiopathology
- Heart Failure/pathology
- Heart Failure/genetics
- Disease Models, Animal
- Proteomics
- Ventricular Dysfunction, Right/physiopathology
- Ventricular Dysfunction, Right/metabolism
- Ventricular Dysfunction, Right/genetics
- Ventricular Dysfunction, Right/pathology
- Ventricular Function, Right
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Heart Ventricles/metabolism
- Heart Ventricles/physiopathology
- Heart Ventricles/pathology
- Rats
- Ventricular Function, Left
- Ventricular Dysfunction, Left/physiopathology
- Ventricular Dysfunction, Left/metabolism
- Ventricular Dysfunction, Left/pathology
- Ventricular Dysfunction, Left/genetics
- Transcriptome
- Rats, Sprague-Dawley
- Mitochondrial Proteins/metabolism
- Mitochondrial Proteins/genetics
Collapse
Affiliation(s)
- Ling Li
- Institute of Physiology, Justus Liebig University Giessen, Aulweg 129, 35392, Giessen, Germany
| | - Bernd Niemann
- Department of Cardiac and Vascular Surgery, Justus Liebig University Giessen, Rudolf-Buchheim-Street. 8, 35392, Giessen, Germany
| | - Fabienne Knapp
- Institute of Physiology, Justus Liebig University Giessen, Aulweg 129, 35392, Giessen, Germany
| | - Sebastian Werner
- Rudolf Buchheim Institute of Pharmacology, Justus Liebig University Giessen, Schubertstrasse 81, 35392, Giessen, Germany
| | - Christian Mühlfeld
- Hannover Medical School, Institute of Functional and Applied Anatomy, Carl-Neuberg-Street. 1, 30625, Hannover, Germany
| | - Jan Philipp Schneider
- Hannover Medical School, Institute of Functional and Applied Anatomy, Carl-Neuberg-Street. 1, 30625, Hannover, Germany
| | - Liane M Jurida
- Rudolf Buchheim Institute of Pharmacology, Justus Liebig University Giessen, Schubertstrasse 81, 35392, Giessen, Germany
| | - Nicole Molenda
- Institute of Physiology, Justus Liebig University Giessen, Aulweg 129, 35392, Giessen, Germany
| | - M Lienhard Schmitz
- Institute of Biochemistry, Justus Liebig University Giessen, Friedrichstr. 24, 35392, Giessen, Germany
| | - Xiaoke Yin
- School of Cardiovascular and Metabolic Medicine and Science, King's College London, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Manuel Mayr
- School of Cardiovascular and Metabolic Medicine and Science, King's College London, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Rainer Schulz
- Institute of Physiology, Justus Liebig University Giessen, Aulweg 129, 35392, Giessen, Germany
| | - Michael Kracht
- Rudolf Buchheim Institute of Pharmacology, Justus Liebig University Giessen, Schubertstrasse 81, 35392, Giessen, Germany
| | - Susanne Rohrbach
- Institute of Physiology, Justus Liebig University Giessen, Aulweg 129, 35392, Giessen, Germany.
| |
Collapse
|
25
|
Navarro CDC, Francisco A, Costa EFD, Dalla Costa AP, Sartori MR, Bizerra PFV, Salgado AR, Figueira TR, Vercesi AE, Castilho RF. Aging-dependent mitochondrial bioenergetic impairment in the skeletal muscle of NNT-deficient mice. Exp Gerontol 2024; 193:112465. [PMID: 38795789 DOI: 10.1016/j.exger.2024.112465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/02/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
Overall health relies on features of skeletal muscle that generally decline with age, partly due to mechanisms associated with mitochondrial redox imbalance and bioenergetic dysfunction. Previously, aged mice genetically devoid of the mitochondrial NAD(P)+ transhydrogenase (NNT, encoded by the nicotinamide nucleotide transhydrogenase gene), an enzyme involved in mitochondrial NADPH supply, were shown to exhibit deficits in locomotor behavior. Here, by using young, middle-aged, and older NNT-deficient (Nnt-/-) mice and age-matched controls (Nnt+/+), we aimed to investigate how muscle bioenergetic function and motor performance are affected by NNT expression and aging. Mice were subjected to the wire-hang test to assess locomotor performance, while mitochondrial bioenergetics was evaluated in fiber bundles from the soleus, vastus lateralis and plantaris muscles. An age-related decrease in the average wire-hang score was observed in middle-aged and older Nnt-/- mice compared to age-matched controls. Although respiratory rates in the soleus, vastus lateralis and plantaris muscles did not significantly differ between the genotypes in young mice, the rates of oxygen consumption did decrease in the soleus and vastus lateralis muscles of middle-aged and older Nnt-/- mice. Notably, the soleus, which exhibited the highest NNT expression level, was the muscle most affected by aging, and NNT loss. Additionally, histology of the soleus fibers revealed increased numbers of centralized nuclei in older Nnt-/- mice, indicating abnormal morphology. In summary, our findings suggest that NNT expression deficiency causes locomotor impairments and muscle dysfunction during aging in mice.
Collapse
Affiliation(s)
- Claudia D C Navarro
- Department of Pathology, School of Medical Sciences, University of Campinas (UNICAMP), 13083 887 Campinas, SP, Brazil
| | - Annelise Francisco
- Department of Pathology, School of Medical Sciences, University of Campinas (UNICAMP), 13083 887 Campinas, SP, Brazil; Department of Experimental Medical Science, Faculty of Medicine, Lund University, 221 84 Lund, Sweden
| | - Ericka F D Costa
- Department of Pathology, School of Medical Sciences, University of Campinas (UNICAMP), 13083 887 Campinas, SP, Brazil
| | - Ana P Dalla Costa
- Department of Pathology, School of Medical Sciences, University of Campinas (UNICAMP), 13083 887 Campinas, SP, Brazil
| | - Marina R Sartori
- Department of Pathology, School of Medical Sciences, University of Campinas (UNICAMP), 13083 887 Campinas, SP, Brazil
| | - Paulo F V Bizerra
- Department of Pathology, School of Medical Sciences, University of Campinas (UNICAMP), 13083 887 Campinas, SP, Brazil
| | - Andréia R Salgado
- Multidisciplinary Center for Biological Investigation on Laboratory Animals Science, University of Campinas, Campinas, SP, Brazil
| | - Tiago R Figueira
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, 14040 900 Ribeirão Preto, SP, Brazil
| | - Anibal E Vercesi
- Department of Pathology, School of Medical Sciences, University of Campinas (UNICAMP), 13083 887 Campinas, SP, Brazil
| | - Roger F Castilho
- Department of Pathology, School of Medical Sciences, University of Campinas (UNICAMP), 13083 887 Campinas, SP, Brazil.
| |
Collapse
|
26
|
Morla J, Salin K, Lassus R, Favre-Marinet J, Sentis A, Daufresne M. Multigenerational exposure to temperature influences mitochondrial oxygen fluxes in the Medaka fish (Oryzias latipes). Acta Physiol (Oxf) 2024; 240:e14194. [PMID: 38924292 DOI: 10.1111/apha.14194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 05/08/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024]
Abstract
AIM Thermal sensitivity of cellular metabolism is crucial for animal physiology and survival under climate change. Despite recent efforts, effects of multigenerational exposure to temperature on the metabolic functioning remain poorly understood. We aimed at determining whether multigenerational exposure to temperature modulate the mitochondrial respiratory response of Medaka fish. METHODS We conducted a multigenerational exposure with Medaka fish reared multiple generations at 20 and 30°C (COLD and WARM fish, respectively). We then measured the oxygen consumption of tail muscle at two assay temperatures (20 and 30°C). Mitochondrial function was determined as the respiration supporting ATP synthesis (OXPHOS) and the respiration required to offset proton leak (LEAK(Omy)) in a full factorial design (COLD-20°C; COLD-30°C; WARM-20°C; WARM-30°C). RESULTS We found that higher OXPHOS and LEAK fluxes at 30°C compared to 20°C assay temperature. At each assay temperature, WARM fish had lower tissue oxygen fluxes than COLD fish. Interestingly, we did not find significant differences in respiratory flux when mitochondria were assessed at the rearing temperature of the fish (i.e., COLD-20°C vs. WARM -30°C). CONCLUSION The lower OXPHOS and LEAK capacities in warm fish are likely the result of the multigenerational exposure to warm temperature. This is consistent with a modulatory response of mitochondrial capacity to compensate for potential detrimental effects of warming on metabolism. Finally, the absence of significant differences in respiratory fluxes between COLD-20°C and WARM-30°C fish likely reflects an optimal respiration flux when organisms adapt to their thermal conditions.
Collapse
Affiliation(s)
- Julie Morla
- INRAE, Aix-Marseille University, UMR RECOVER, Aix-en-Provence, France
| | - Karine Salin
- Départment of Environment and Resources, IFREMER, Unité de Physiologie Fonctionnelle des Organismes Marins-LEMAR UMR 6530, BP70, Plouzané, France
| | - Rémy Lassus
- INRAE, Aix-Marseille University, UMR RECOVER, Aix-en-Provence, France
| | | | - Arnaud Sentis
- INRAE, Aix-Marseille University, UMR RECOVER, Aix-en-Provence, France
| | - Martin Daufresne
- INRAE, Aix-Marseille University, UMR RECOVER, Aix-en-Provence, France
| |
Collapse
|
27
|
Azevedo RDSD, Falcão KVG, Almeida SMVD, Araújo MC, Silva-Filho RC, Souza Maia MBD, Amaral IPGD, Leite ACR, de Souza Bezerra R. The tissue-specific nature of physiological zebrafish mitochondrial bioenergetics. Mitochondrion 2024; 77:101901. [PMID: 38777222 DOI: 10.1016/j.mito.2024.101901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 04/27/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
Zebrafish are a powerful tool to study a myriad of experimental conditions, including mitochondrial bioenergetics. Considering that mitochondria are different in many aspects depending on the tissue evaluated, in the zebrafish model there is still a lack of this investigation. Especially for juvenile zebrafish. In the present study, we examined whether different tissues from zebrafish juveniles show mitochondrial density- and tissue-specificity comparing brain, liver, heart, and skeletal muscle (SM). The liver and brain complex IV showed the highest O2 consumption of all ETC in all tissues (10x when compared to other respiratory complexes). The liver showed a higher potential for ROS generation. In this way, the brain and liver showed more susceptibility to O2- generation when compared to other tissues. Regarding Ca2+ transport, the brain showed greater capacity for Ca2+ uptake and the liver presented low Ca2+ uptake capacity. The liver and brain were more susceptible to producing NO. The enzymes SOD and Catalase showed high activity in the brain, whereas GPx showed higher activity in the liver and CS in the SM. TEM reveals, as expected, a physiological diverse mitochondrial morphology. The essential differences between zebrafish tissues investigated probably reflect how the mitochondria play a diverse role in systemic homeostasis. This feature may not be limited to normal metabolic functions but also to stress conditions. In summary, mitochondrial bioenergetics in zebrafish juvenile permeabilized tissues showed a tissue-specificity and a useful tool to investigate conditions of redox system imbalance, mainly in the liver and brain.
Collapse
Affiliation(s)
- Rafael David Souto de Azevedo
- Laboratório de Biologia Celular e Molecular, Universidade de Pernambuco - UPE, Campus Garanhuns, Garanhuns, PE, Brazil.
| | - Kivia Vanessa Gomes Falcão
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Cidade Universitária, Recife, PE, Brazil
| | | | - Marlyete Chagas Araújo
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Cidade Universitária, Recife, PE, Brazil
| | | | | | | | | | - Ranilson de Souza Bezerra
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Cidade Universitária, Recife, PE, Brazil
| |
Collapse
|
28
|
Johnson TW, Holt J, Kleyman A, Zhou S, Sammut E, Bruno VD, Gaupp C, Stanzani G, Martin J, Arina P, Deutsch J, Ascione R, Singer M, Dyson A. Development and translation of thiometallate sulfide donors using a porcine model of coronary occlusion and reperfusion. Redox Biol 2024; 73:103167. [PMID: 38688060 PMCID: PMC11070758 DOI: 10.1016/j.redox.2024.103167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/12/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024] Open
Abstract
Sulfide-releasing compounds reduce reperfusion injury by decreasing mitochondria-derived reactive oxygen species production. We previously characterised ammonium tetrathiomolybdate (ATTM), a clinically used copper chelator, as a sulfide donor in rodents. Here we assessed translation to large mammals prior to clinical testing. In healthy pigs an intravenous ATTM dose escalation revealed a reproducible pharmacokinetic/pharmacodynamic (PK/PD) relationship with minimal adverse clinical or biochemical events. In a myocardial infarction (1-h occlusion of the left anterior descending coronary artery)-reperfusion model, intravenous ATTM or saline was commenced just prior to reperfusion. ATTM protected the heart (24-h histological examination) in a drug-exposure-dependent manner (r2 = 0.58, p < 0.05). Blood troponin T levels were significantly (p < 0.05) lower in ATTM-treated animals while myocardial glutathione peroxidase activity, an antioxidant selenoprotein, was elevated (p < 0.05). Overall, our study represents a significant advance in the development of sulfides as therapeutics and underlines the potential of ATTM as a novel adjunct therapy for reperfusion injury. Mechanistically, our study suggests that modulating selenoprotein activity could represent an additional mode of action of sulfide-releasing drugs.
Collapse
Affiliation(s)
- Thomas W Johnson
- Translational Biomedical Research Centre (TBRC), Faculty of Health Science, University of Bristol, UK
| | - James Holt
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, UK
| | - Anna Kleyman
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, UK
| | - Shengyu Zhou
- Institute of Pharmaceutical Science, King's College London, London, UK; Centre for Pharmaceutical Medicine Research, King's College London, London, UK
| | - Eva Sammut
- Translational Biomedical Research Centre (TBRC), Faculty of Health Science, University of Bristol, UK
| | - Vito Domenico Bruno
- Translational Biomedical Research Centre (TBRC), Faculty of Health Science, University of Bristol, UK
| | - Charlotte Gaupp
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, UK
| | - Giacomo Stanzani
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, UK
| | - John Martin
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, UK
| | - Pietro Arina
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, UK
| | - Julia Deutsch
- Translational Biomedical Research Centre (TBRC), Faculty of Health Science, University of Bristol, UK
| | - Raimondo Ascione
- Translational Biomedical Research Centre (TBRC), Faculty of Health Science, University of Bristol, UK
| | - Mervyn Singer
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, UK.
| | - Alex Dyson
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, UK; Institute of Pharmaceutical Science, King's College London, London, UK; Centre for Pharmaceutical Medicine Research, King's College London, London, UK.
| |
Collapse
|
29
|
Borowik AK, Lawrence MM, Peelor FF, Piekarz KM, Crosswhite A, Richardson A, Miller BF, Van Remmen H, Brown JL. Senolytic treatment does not mitigate oxidative stress-induced muscle atrophy but improves muscle force generation in CuZn superoxide dismutase knockout mice. GeroScience 2024; 46:3219-3233. [PMID: 38233728 PMCID: PMC11009189 DOI: 10.1007/s11357-024-01070-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/05/2024] [Indexed: 01/19/2024] Open
Abstract
Oxidative stress is associated with tissue dysfunctions that can lead to reduced health. Prior work has shown that oxidative stress contributes to both muscle atrophy and cellular senescence, which is a hallmark of aging that may drive in muscle atrophy and muscle contractile dysfunction. The purpose of the study was to test the hypothesis that cellular senescence contributes to muscle atrophy or weakness. To increase potential senescence in skeletal muscle, we used a model of oxidative stress-induced muscle frailty, the CuZn superoxide dismutase knockout (Sod1KO) mouse. We treated 6-month-old wildtype (WT) and Sod1KO mice with either vehicle or a senolytic treatment of combined dasatinib (5 mg/kg) + quercetin (50 mg/kg) (D + Q) for 3 consecutive days every 15 days. We continued treatment for 7 months and sacrificed the mice at 13 months of age. Treatment with D + Q did not preserve muscle mass, reduce NMJ fragmentation, or alter muscle protein synthesis in Sod1KO mice when compared to the vehicle-treated group. However, we observed an improvement in muscle-specific force generation in Sod1KO mice treated with D + Q when compared to Sod1KO-vehicle mice. Overall, these data suggest that reducing cellular senescence via D + Q is not sufficient to mitigate loss of muscle mass in a mouse model of oxidative stress-induced muscle frailty but may mitigate some aspects of oxidative stress-induced muscle dysfunction.
Collapse
Affiliation(s)
- Agnieszka K Borowik
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Marcus M Lawrence
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
- Department of Kinesiology and Outdoor Recreation, Southern Utah University, Cedar City, Utah, USA
| | - Frederick F Peelor
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Katarzyna M Piekarz
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Abby Crosswhite
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Arlan Richardson
- Oklahoma City VA Medical Center, Oklahoma City, OK, 73104, USA
- Department of Biochemistry & Molecular Biology, Oklahoma University Health Science Center, Oklahoma City, OK, 73104, USA
| | - Benjamin F Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
- Oklahoma City VA Medical Center, Oklahoma City, OK, 73104, USA
| | - Holly Van Remmen
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
- Oklahoma City VA Medical Center, Oklahoma City, OK, 73104, USA
| | - Jacob L Brown
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA.
- Oklahoma City VA Medical Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
30
|
Stouth DW, vanLieshout TL, Mikhail AI, Ng SY, Raziee R, Edgett BA, Vasam G, Webb EK, Gilotra KS, Markou M, Pineda HC, Bettencourt-Mora BG, Noor H, Moll Z, Bittner ME, Gurd BJ, Menzies KJ, Ljubicic V. CARM1 drives mitophagy and autophagy flux during fasting-induced skeletal muscle atrophy. Autophagy 2024; 20:1247-1269. [PMID: 38018843 PMCID: PMC11210918 DOI: 10.1080/15548627.2023.2288528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 11/30/2023] Open
Abstract
CARM1 (coactivator associated arginine methyltransferase 1) has recently emerged as a powerful regulator of skeletal muscle biology. However, the molecular mechanisms by which the methyltransferase remodels muscle remain to be fully understood. In this study, carm1 skeletal muscle-specific knockout (mKO) mice exhibited lower muscle mass with dysregulated macroautophagic/autophagic and atrophic signaling, including depressed AMP-activated protein kinase (AMPK) site-specific phosphorylation of ULK1 (unc-51 like autophagy activating kinase 1; Ser555) and FOXO3 (forkhead box O3; Ser588), as well as MTOR (mechanistic target of rapamycin kinase)-induced inhibition of ULK1 (Ser757), along with AKT/protein kinase B site-specific suppression of FOXO1 (Ser256) and FOXO3 (Ser253). In addition to lower mitophagy and autophagy flux in skeletal muscle, carm1 mKO led to increased mitochondrial PRKN/parkin accumulation, which suggests that CARM1 is required for basal mitochondrial turnover and autophagic clearance. carm1 deletion also elicited PPARGC1A (PPARG coactivator 1 alpha) activity and a slower, more oxidative muscle phenotype. As such, these carm1 mKO-evoked adaptations disrupted mitophagy and autophagy induction during food deprivation and collectively served to mitigate fasting-induced muscle atrophy. Furthermore, at the threshold of muscle atrophy during food deprivation experiments in humans, skeletal muscle CARM1 activity decreased similarly to our observations in mice, and was accompanied by site-specific activation of ULK1 (Ser757), highlighting the translational impact of the methyltransferase in human skeletal muscle. Taken together, our results indicate that CARM1 governs mitophagic, autophagic, and atrophic processes fundamental to the maintenance and remodeling of muscle mass. Targeting the enzyme may provide new therapeutic approaches for mitigating skeletal muscle atrophy.Abbreviation: ADMA: asymmetric dimethylarginine; AKT/protein kinase B: AKT serine/threonine kinase; AMPK: AMP-activated protein kinase; ATG: autophagy related; BECN1: beclin 1; BNIP3: BCL2 interacting protein 3; CARM1: coactivator associated arginine methyltransferase 1; Col: colchicine; CSA: cross-sectional area; CTNS: cystinosin, lysosomal cystine transporter; EDL: extensor digitorum longus; FBXO32/MAFbx: F-box protein 32; FOXO: forkhead box O; GAST: gastrocnemius; H2O2: hydrogen peroxide; IMF: intermyofibrillar; LAMP1: lysosomal associated membrane protein 1; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; mKO: skeletal muscle-specific knockout; MMA: monomethylarginine; MTOR: mechanistic target of rapamycin kinase; MYH: myosin heavy chain; NFE2L2/NRF2: NFE2 like bZIP transcription factor 2; OXPHOS: oxidative phosphorylation; PABPC1/PABP1: poly(A) binding protein cytoplasmic 1; PPARGC1A/PGC-1α: PPARG coactivator 1 alpha; PRKN/parkin: parkin RBR E3 ubiquitin protein ligase; PRMT: protein arginine methyltransferase; Sal: saline; SDMA: symmetric dimethylarginine; SIRT1: sirtuin 1; SKP2: S-phase kinase associated protein 2; SMARCC1/BAF155: SWI/SNF related, matrix associated, actin dependent regulator of chromatin subfamily c member 1; SOL: soleus; SQSTM1/p62: sequestosome 1; SS: subsarcolemmal; TA: tibialis anterior; TFAM: transcription factor A, mitochondrial; TFEB: transcription factor EB; TOMM20: translocase of outer mitochondrial membrane 20; TRIM63/MuRF1: tripartite motif containing 63; ULK1: unc-51 like autophagy activating kinase 1; VPS11: VPS11 core subunit of CORVET and HOPS complexes; WT: wild-type.
Collapse
Affiliation(s)
- Derek W. Stouth
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | | | - Andrew I. Mikhail
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Sean Y. Ng
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Rozhin Raziee
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Brittany A. Edgett
- School of Kinesiology and Health Studies, Queen’s University, Kingston, Ontario, Canada
| | - Goutham Vasam
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Erin K. Webb
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Kevin S. Gilotra
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Matthew Markou
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Hannah C. Pineda
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | | | - Haleema Noor
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Zachary Moll
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Megan E. Bittner
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Brendon J. Gurd
- School of Kinesiology and Health Studies, Queen’s University, Kingston, Ontario, Canada
| | - Keir J. Menzies
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology and the Centre for Neuromuscular Disease, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Vladimir Ljubicic
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
31
|
Studneva IM, Veselova OM, Dobrokhotov IV, Serebryakova LI, Palkeeva ME, Avdeev DV, Molokoedov AS, Sidorova MV, Pisarenko OI. The structural analogue of apelin-12 prevents energy disorders in the heart in experimental type 1 diabetes mellitus. BIOMEDITSINSKAIA KHIMIIA 2024; 70:135-144. [PMID: 38940202 DOI: 10.18097/pbmc20247003135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Type 1 diabetes mellitus (T1DM) is the most severe form of diabetes, which is characterized by absolute insulin deficiency induced by the destruction of pancreatic beta cells. The aim of this study was to evaluate the effect of a structural analogue of apelin-12 ((NαMe)Arg-Pro-Arg-Leu-Ser-His-Lys-Gly-Pro-Nle-Pro-Phe-OH, metilin) on hyperglycemia, mitochondrial (MCh) respiration in permeabilized cardiac left ventricular (LV) fibers, the myocardial energy state, and cardiomyocyte membranes damage in a model of streptozotocin (STZ) diabetes in rats. Metilin was prepared by solid-phase synthesis using the Fmoc strategy and purified using HPLC. Four groups of animals were used: initial state (IS); control (C), diabetic control (D) and diabetic animals additionally treated with metilin (DM). The following parameters have been studied: blood glucose, MCh respiration in LV fibers, the content of cardiac ATP, ADP, AMP, phosphocreatine (PCr) and creatine (Cr), the activity of creatine kinase-MB (CK-MB) and lactate dehydrogenase (LDH) in blood plasma. Administration of metilin to STZ-treated rats decreased blood glucose, increased state 3 oxygen consumption, the respiratory control ratio in MCh of permeabilized LV fibers, and increased the functional coupling of mitochondrial CK (mt-CK) to oxidative phosphorylation compared with these parameters in group D. In STZ-treated animals metilin administration caused an increase in the PCr content and prevention of the loss of total creatine (ΣCr=PCr+Cr) in the diabetic hearts, as well as restoration of the PCr/ATP ratio in the myocardium and a decrease in the activity of CK-MB and LDH in plasma to initial values. Thus, metilin prevented energy disorders disturbances in cardiomyocytes of animals with experimental T1DM.
Collapse
Affiliation(s)
- I M Studneva
- Chazov National Medical Research Center of Cardiology, Moscow, Russia
| | - O M Veselova
- Chazov National Medical Research Center of Cardiology, Moscow, Russia
| | - I V Dobrokhotov
- Chazov National Medical Research Center of Cardiology, Moscow, Russia
| | - L I Serebryakova
- Chazov National Medical Research Center of Cardiology, Moscow, Russia
| | - M E Palkeeva
- Chazov National Medical Research Center of Cardiology, Moscow, Russia
| | - D V Avdeev
- Chazov National Medical Research Center of Cardiology, Moscow, Russia
| | - A S Molokoedov
- Chazov National Medical Research Center of Cardiology, Moscow, Russia
| | - M V Sidorova
- Chazov National Medical Research Center of Cardiology, Moscow, Russia
| | - O I Pisarenko
- Chazov National Medical Research Center of Cardiology, Moscow, Russia
| |
Collapse
|
32
|
Coulson SZ, Duffy BM, Staples JF. Mitochondrial techniques for physiologists. Comp Biochem Physiol B Biochem Mol Biol 2024; 271:110947. [PMID: 38278207 DOI: 10.1016/j.cbpb.2024.110947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 01/28/2024]
Abstract
Mitochondria serve several important roles in maintaining cellular homeostasis, including adenosine triphosphate (ATP) synthesis, apoptotic signalling, and regulation of both reactive oxygen species (ROS) and calcium. Therefore, mitochondrial studies may reveal insights into metabolism at higher levels of physiological organization. The apparent complexity of mitochondrial function may be daunting to researchers new to mitochondrial physiology. This review is aimed, therefore, at such researchers to provide a brief, yet approachable overview of common techniques used to assess mitochondrial function. Here we discuss the use of high-resolution respirometry in mitochondrial experiments and common analytical platforms used for this technique. Next, we compare the use of common mitochondrial preparation techniques, including adherent cells, tissue homogenate, permeabilized fibers and isolated mitochondria. Finally, we outline additional techniques that can be used in tandem with high-resolution respirometry to assess additional aspects of mitochondrial metabolism, including ATP synthesis, calcium uptake, membrane potential and reactive oxygen species emission. We also include limitations to each of these techniques and outline recommendations for experimental design and interpretation. With a general understanding of methodologies commonly used to study mitochondrial physiology, experimenters may begin contributing to our understanding of this organelle, and how it affects other physiological phenotypes.
Collapse
Affiliation(s)
- Soren Z Coulson
- Department of Biology, University of Western Ontario, 1151 Richmond Street, London, Ontario, Canada.
| | - Brynne M Duffy
- Department of Biology, University of Western Ontario, 1151 Richmond Street, London, Ontario, Canada. https://twitter.com/BrynneDuffy
| | - James F Staples
- Department of Biology, University of Western Ontario, 1151 Richmond Street, London, Ontario, Canada
| |
Collapse
|
33
|
Toniyan KA, Malkov AA, Biryukov NS, Gorbacheva EY, Boyarintsev VV, Ogneva IV. The Cellular Respiration of Endometrial Biopsies from Patients with Various Forms of Endometriosis. Int J Mol Sci 2024; 25:3680. [PMID: 38612490 PMCID: PMC11011257 DOI: 10.3390/ijms25073680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/19/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Endometriosis is one of the leading pathologies of the reproductive system of women of fertile age, which shows changes in cell metabolism in the lesions. We conducted a study of the cellular respiration according to the polarography and the mRNA content of the main metabolic proteins using qRT-PCR of intraoperative endometrial biopsies from patients in the control group and with different localizations of endometriosis (adenomyosis, endometrioma, pelvic peritoneum). In biopsy samples of patients with endometriomas and pelvic peritoneum endometriotic lesions, the rate of oxygen absorption was significantly reduced, and, moreover, in the extragenital case, there was a shift to succinate utilization. The mRNA content of the cytochrome c, cytochrome c oxidase, and ATP synthase was also reduced, but hexokinase HK2 as well as pyruvate kinase were significantly higher than in the control. These oxidative phosphorylation and gene expression profiles suggest the Warburg effect and a shift in metabolism toward glycolysis. For adenomyosis, on the contrary, cellular respiration was significantly higher than in the control group due to the terminal region of the respiratory chain, ATP synthase, and its mRNA was increased as well. These data allow us to suggest that the therapeutic strategies of endometriosis based on modulation energy metabolism should take lesion localization into account.
Collapse
Affiliation(s)
- Konstantin A. Toniyan
- Cell Biophysics Laboratory, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, 123007 Moscow, Russia; (K.A.T.); (A.A.M.); (N.S.B.); (E.Y.G.)
- Gynecology Department, FGBU KB1 (Volynskaya) UDP RF, 121352 Moscow, Russia
| | - Artyom A. Malkov
- Cell Biophysics Laboratory, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, 123007 Moscow, Russia; (K.A.T.); (A.A.M.); (N.S.B.); (E.Y.G.)
- Medical and Biological Physics Department, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya Street, 119991 Moscow, Russia
| | - Nikolay S. Biryukov
- Cell Biophysics Laboratory, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, 123007 Moscow, Russia; (K.A.T.); (A.A.M.); (N.S.B.); (E.Y.G.)
- Medical and Biological Physics Department, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya Street, 119991 Moscow, Russia
| | - Elena Yu. Gorbacheva
- Cell Biophysics Laboratory, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, 123007 Moscow, Russia; (K.A.T.); (A.A.M.); (N.S.B.); (E.Y.G.)
- Gynecology Department, FGBU KB1 (Volynskaya) UDP RF, 121352 Moscow, Russia
| | - Valery V. Boyarintsev
- Emergency and Extreme Medicine Department, FGBU DPO CGMA UDP RF, 121359 Moscow, Russia;
| | - Irina V. Ogneva
- Cell Biophysics Laboratory, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, 123007 Moscow, Russia; (K.A.T.); (A.A.M.); (N.S.B.); (E.Y.G.)
- Medical and Biological Physics Department, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya Street, 119991 Moscow, Russia
| |
Collapse
|
34
|
Gao S, Zheng F, Yue L, Chen B. Chronic cadmium exposure impairs flight behavior by dampening flight muscle carbon metabolism in bumblebees. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133628. [PMID: 38301442 DOI: 10.1016/j.jhazmat.2024.133628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 02/03/2024]
Abstract
Cadmium pollution affects the global ecosystem because cadmium can be transferred up the food chain. The bumblebee, Bombus terrestris, is an important insect pollinator. Their foraging activity on flowers exposes them to harmful heavy metals, which damages their health and leads to massive population declines. However, the effects of chronic exposure to heavy metals on the flight performance of bumblebees have not yet been characterized. Here, we studied variation in the flight capacity of bumblebees induced by chronic cadmium exposure at field-realistic concentrations using behavioral, physiological, and molecular approaches. Chronic cadmium exposure caused a significant reduction in the duration, distance, and mean velocity of bumblebee flight. Transcriptome analysis showed that the impairment of carbon metabolism and mitochondrial dysfunction in the flight muscle were the primary causes. Physiological, biochemical, and metabolomic analyses validated disruptions in energy metabolism, and impairments in mitochondrial respiratory chain complexes activities. Histological analysis revealed muscle fiber damage and mitochondrial loss. Exogenous decanoic acid or citric acid partially restored sustained flight ability of bumblebees by mitigating muscle fiber damage and increasing energy generation. These findings provide insights into how long-term cadmium stress affects the flight ability of insects and will aid human muscle or exercise-related disease research.
Collapse
Affiliation(s)
- Shen Gao
- College of Life Sciences, Hebei University, Baoding 071002, China
| | - Fei Zheng
- College of Life Sciences, Hebei University, Baoding 071002, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lei Yue
- College of Life Sciences, Hebei University, Baoding 071002, China
| | - Bing Chen
- College of Life Sciences, Hebei University, Baoding 071002, China.
| |
Collapse
|
35
|
Hammoud S, Ivanova A, Osaki Y, Funk S, Yang H, Viquez O, Delgado R, Lu D, Phillips Mignemi M, Tonello J, Colon S, Lantier L, Wasserman DH, Humphreys BD, Koenitzer J, Kern J, de Caestecker M, Finkel T, Fogo A, Messias N, Lodhi IJ, Gewin LS. Tubular CPT1A deletion minimally affects aging and chronic kidney injury. JCI Insight 2024; 9:e171961. [PMID: 38516886 PMCID: PMC11063933 DOI: 10.1172/jci.insight.171961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 02/14/2024] [Indexed: 03/23/2024] Open
Abstract
Kidney tubules use fatty acid oxidation (FAO) to support their high energetic requirements. Carnitine palmitoyltransferase 1A (CPT1A) is the rate-limiting enzyme for FAO, and it is necessary to transport long-chain fatty acids into mitochondria. To define the role of tubular CPT1A in aging and injury, we generated mice with tubule-specific deletion of Cpt1a (Cpt1aCKO mice), and the mice were either aged for 2 years or injured by aristolochic acid or unilateral ureteral obstruction. Surprisingly, Cpt1aCKO mice had no significant differences in kidney function or fibrosis compared with wild-type mice after aging or chronic injury. Primary tubule cells from aged Cpt1aCKO mice had a modest decrease in palmitate oxidation but retained the ability to metabolize long-chain fatty acids. Very-long-chain fatty acids, exclusively oxidized by peroxisomes, were reduced in kidneys lacking tubular CPT1A, consistent with increased peroxisomal activity. Single-nuclear RNA-Seq showed significantly increased expression of peroxisomal FAO enzymes in proximal tubules of mice lacking tubular CPT1A. These data suggest that peroxisomal FAO may compensate in the absence of CPT1A, and future genetic studies are needed to confirm the role of peroxisomal β-oxidation when mitochondrial FAO is impaired.
Collapse
Affiliation(s)
- Safaa Hammoud
- Division of Nephrology and Hypertension, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Alla Ivanova
- Division of Nephrology and Hypertension, Department of Medicine, and
| | - Yosuke Osaki
- Division of Nephrology and Hypertension, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
- Division of Nephrology and Hypertension, Department of Medicine, and
| | - Steven Funk
- Division of Nephrology and Hypertension, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Haichun Yang
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Olga Viquez
- Division of Nephrology and Hypertension, Department of Medicine, and
| | - Rachel Delgado
- Division of Nephrology and Hypertension, Department of Medicine, and
| | - Dongliang Lu
- Division of Endocrinology, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | | | - Jane Tonello
- Division of Nephrology and Hypertension, Department of Medicine, and
| | - Selene Colon
- Division of Nephrology and Hypertension, Department of Medicine, and
| | - Louise Lantier
- Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - David H. Wasserman
- Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Benjamin D. Humphreys
- Division of Nephrology and Hypertension, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Jeffrey Koenitzer
- Division of Pulmonary Critical Care Medicine, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Justin Kern
- Division of Nephrology and Hypertension, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | | | - Toren Finkel
- Aging Institute, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Agnes Fogo
- Division of Nephrology and Hypertension, Department of Medicine, and
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Nidia Messias
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Irfan J. Lodhi
- Division of Endocrinology, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Leslie S. Gewin
- Division of Nephrology and Hypertension, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
- Division of Nephrology and Hypertension, Department of Medicine, and
- Department of Medicine, Veterans Affairs Hospital, St. Louis, Missouri, USA
| |
Collapse
|
36
|
Štětina T, Koštál V. Extracellular freezing induces a permeability transition in the inner membrane of muscle mitochondria of freeze-sensitive but not freeze-tolerant Chymomyza costata larvae. Front Physiol 2024; 15:1358190. [PMID: 38384799 PMCID: PMC10880108 DOI: 10.3389/fphys.2024.1358190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/29/2024] [Indexed: 02/23/2024] Open
Abstract
Background: Many insect species have evolved the ability to survive extracellular freezing. The search for the underlying principles of their natural freeze tolerance remains hampered by our poor understanding of the mechanistic nature of freezing damage itself. Objectives: Here, in search of potential primary cellular targets of freezing damage, we compared mitochondrial responses (changes in morphology and physical integrity, respiratory chain protein functionality, and mitochondrial inner membrane (IMM) permeability) in freeze-sensitive vs. freeze-tolerant phenotypes of the larvae of the drosophilid fly, Chymomyza costata. Methods: Larvae were exposed to freezing stress at -30°C for 1 h, which is invariably lethal for the freeze-sensitive phenotype but readily survived by the freeze-tolerant phenotype. Immediately after melting, the metabolic activity of muscle cells was assessed by the Alamar Blue assay, the morphology of muscle mitochondria was examined by transmission electron microscopy, and the functionality of the oxidative phosphorylation system was measured by Oxygraph-2K microrespirometry. Results: The muscle mitochondria of freeze-tolerant phenotype larvae remained morphologically and functionally intact after freezing stress. In contrast, most mitochondria of the freeze-sensitive phenotype were swollen, their matrix was diluted and enlarged in volume, and the structure of the IMM cristae was lost. Despite this morphological damage, the electron transfer chain proteins remained partially functional in lethally frozen larvae, still exhibiting strong responses to specific respiratory substrates and transferring electrons to oxygen. However, the coupling of electron transfer to ATP synthesis was severely impaired. Based on these results, we formulated a hypothesis linking the observed mitochondrial swelling to a sudden loss of barrier function of the IMM.
Collapse
Affiliation(s)
| | - Vladimír Koštál
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| |
Collapse
|
37
|
Kosik B, Larsen S, Bergdahl A. Actovegin improves skeletal muscle mitochondrial respiration and functional aerobic capacity in a type 1 diabetic male murine model. Appl Physiol Nutr Metab 2024; 49:265-272. [PMID: 37913525 DOI: 10.1139/apnm-2023-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Insulin deficiency in type 1 diabetes (T1D) leads to an impairment of glucose metabolism and mitochondrial function. Actovegin is a hemodialysate of calf blood, which has been shown to enhance glucose uptake and cell metabolism in healthy human skeletal muscle. The objectives of this study were to determine the effects of Actovegin on skeletal muscle mitochondrial respiration and functional aerobic capacity in a T1D mouse model. Effects on the expression of mitochondrial proteins, body mass, and food and water consumption were also investigated. Streptozotocin-induced T1D male C57B1/6 mice (aged 3-4 months) were randomized to an Actovegin group and a control group. Every third day, the Actovegin and control groups were injected intraperitoneally with (0.1 mL) Actovegin and (0.1 mL) physiological salt solution, respectively. Oxidative phosphorylation (OXPHOS) capacity of the vastus lateralis muscle was measured by high resolution respirometry in addition to the expression levels of the mitochondrial complexes as well as voltage-dependent anion channel. Functional aerobic capacity was measured using a rodent treadmill protocol. Body mass and food and water consumption were also measured. After 13 days, in comparison to the control group, the Actovegin group demonstrated a significantly higher skeletal muscle mitochondrial respiratory capacity in an ADP-restricted and ADP-stimulated environment. The Actovegin group displayed a significantly lesser decline in functional aerobic capacity and baseline body mass after 13 days. There were no significant differences in food or water consumption between groups. Actovegin could act as an effective agent for facilitating glucose metabolism and improving OXPHOS capacity and functional aerobic capacity in T1D. Further investigation is warranted to establish Actovegin's potential as an alternative therapeutic drug for T1D.
Collapse
Affiliation(s)
- Brandon Kosik
- Department of Health, Kinesiology and Applied Physiology, Concordia University, Montreal, Canada
| | - Steen Larsen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Andreas Bergdahl
- Department of Health, Kinesiology and Applied Physiology, Concordia University, Montreal, Canada
| |
Collapse
|
38
|
O'Brien KA, Gu W, Houck JA, Holzner LMW, Yung HW, Armstrong JL, Sowton AP, Baxter R, Darwin PM, Toledo-Jaldin L, Lazo-Vega L, Moreno-Aramayo AE, Miranda-Garrido V, Shortt JA, Matarazzo CJ, Yasini H, Burton GJ, Moore LG, Simonson TS, Murray AJ, Julian CG. Genomic Selection Signals in Andean Highlanders Reveal Adaptive Placental Metabolic Phenotypes That Are Disrupted in Preeclampsia. Hypertension 2024; 81:319-329. [PMID: 38018457 PMCID: PMC10841680 DOI: 10.1161/hypertensionaha.123.21748] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/24/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND The chronic hypoxia of high-altitude residence poses challenges for tissue oxygen supply and metabolism. Exposure to high altitude during pregnancy increases the incidence of hypertensive disorders of pregnancy and fetal growth restriction and alters placental metabolism. High-altitude ancestry protects against altitude-associated fetal growth restriction, indicating hypoxia tolerance that is genetic in nature. Yet, not all babies are protected and placental pathologies associated with fetal growth restriction occur in some Andean highlanders. METHODS We examined placental metabolic function in 79 Andeans (18-45 years; 39 preeclamptic and 40 normotensive) living in La Paz, Bolivia (3600-4100 m) delivered by unlabored Cesarean section. Using a selection-nominated approach, we examined links between putatively adaptive genetic variation and phenotypes related to oxygen delivery or placental metabolism. RESULTS Mitochondrial oxidative capacity was associated with fetal oxygen delivery in normotensive but not preeclamptic placenta and was also suppressed in term preeclamptic pregnancy. Maternal haplotypes in or within 200 kb of selection-nominated genes were associated with lower placental mitochondrial respiratory capacity (PTPRD [protein tyrosine phosphatase receptor-δ]), lower maternal plasma erythropoietin (CPT2 [carnitine palmitoyl transferase 2], proopiomelanocortin, and DNMT3 [DNA methyltransferase 3]), and lower VEGF (vascular endothelial growth factor) in umbilical venous plasma (TBX5 [T-box transcription factor 5]). A fetal haplotype within 200 kb of CPT2 was associated with increased placental mitochondrial complex II capacity, placental nitrotyrosine, and GLUT4 (glucose transporter type 4) protein expression. CONCLUSIONS Our findings reveal novel associations between putatively adaptive gene regions and phenotypes linked to oxygen delivery and placental metabolic function in highland Andeans, suggesting that such effects may be of genetic origin. Our findings also demonstrate maladaptive metabolic mechanisms in the context of preeclampsia, including dysregulation of placental oxygen consumption.
Collapse
Affiliation(s)
- Katie A O'Brien
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom (K.A.O., L.M.W.H., H.W.Y., J.L.A., A.P.S., R.B., P.M.D., G.J.B., A.J.M.)
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine (K.A.O., W.G., T.S.S.), University of California San Diego, La Jolla, CA
- Department of Biomedical Informatics (K.A.O., J.A.H., J.A.S., C.J.M., H.Y., C.G.J.), University of Colorado School of Medicine, Aurora, CO
| | - Wanjun Gu
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine (K.A.O., W.G., T.S.S.), University of California San Diego, La Jolla, CA
- Herbert Wertheim School of Public Health and Longevity Sciences (W.G.), University of California San Diego, La Jolla, CA
| | - Julie A Houck
- Department of Biomedical Informatics (K.A.O., J.A.H., J.A.S., C.J.M., H.Y., C.G.J.), University of Colorado School of Medicine, Aurora, CO
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences (J.A.H., L.G.M.), University of Colorado School of Medicine, Aurora, CO
| | - Lorenz M W Holzner
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom (K.A.O., L.M.W.H., H.W.Y., J.L.A., A.P.S., R.B., P.M.D., G.J.B., A.J.M.)
| | - Hong Wa Yung
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom (K.A.O., L.M.W.H., H.W.Y., J.L.A., A.P.S., R.B., P.M.D., G.J.B., A.J.M.)
| | - Jenna L Armstrong
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom (K.A.O., L.M.W.H., H.W.Y., J.L.A., A.P.S., R.B., P.M.D., G.J.B., A.J.M.)
| | - Alice P Sowton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom (K.A.O., L.M.W.H., H.W.Y., J.L.A., A.P.S., R.B., P.M.D., G.J.B., A.J.M.)
| | - Ruby Baxter
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom (K.A.O., L.M.W.H., H.W.Y., J.L.A., A.P.S., R.B., P.M.D., G.J.B., A.J.M.)
| | - Paula M Darwin
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom (K.A.O., L.M.W.H., H.W.Y., J.L.A., A.P.S., R.B., P.M.D., G.J.B., A.J.M.)
| | - Lilian Toledo-Jaldin
- Department of Obstetrics, Hospital Materno-Infantil, La Paz, Bolivia (L.T.-J., L.L.-V., A.E.M.-M., V.M.-G.)
| | - Litzi Lazo-Vega
- Department of Obstetrics, Hospital Materno-Infantil, La Paz, Bolivia (L.T.-J., L.L.-V., A.E.M.-M., V.M.-G.)
| | - Any Elena Moreno-Aramayo
- Department of Obstetrics, Hospital Materno-Infantil, La Paz, Bolivia (L.T.-J., L.L.-V., A.E.M.-M., V.M.-G.)
| | - Valquiria Miranda-Garrido
- Department of Obstetrics, Hospital Materno-Infantil, La Paz, Bolivia (L.T.-J., L.L.-V., A.E.M.-M., V.M.-G.)
| | - Jonathan A Shortt
- Department of Biomedical Informatics (K.A.O., J.A.H., J.A.S., C.J.M., H.Y., C.G.J.), University of Colorado School of Medicine, Aurora, CO
| | - Christopher J Matarazzo
- Department of Biomedical Informatics (K.A.O., J.A.H., J.A.S., C.J.M., H.Y., C.G.J.), University of Colorado School of Medicine, Aurora, CO
| | - Hussna Yasini
- Department of Biomedical Informatics (K.A.O., J.A.H., J.A.S., C.J.M., H.Y., C.G.J.), University of Colorado School of Medicine, Aurora, CO
| | - Graham J Burton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom (K.A.O., L.M.W.H., H.W.Y., J.L.A., A.P.S., R.B., P.M.D., G.J.B., A.J.M.)
| | - Lorna G Moore
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences (J.A.H., L.G.M.), University of Colorado School of Medicine, Aurora, CO
| | - Tatum S Simonson
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine (K.A.O., W.G., T.S.S.), University of California San Diego, La Jolla, CA
| | - Andrew J Murray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom (K.A.O., L.M.W.H., H.W.Y., J.L.A., A.P.S., R.B., P.M.D., G.J.B., A.J.M.)
| | - Colleen G Julian
- Department of Biomedical Informatics (K.A.O., J.A.H., J.A.S., C.J.M., H.Y., C.G.J.), University of Colorado School of Medicine, Aurora, CO
| |
Collapse
|
39
|
Thompson SD, Barrett KL, Rugel CL, Redmond R, Rudofski A, Kurian J, Curtin JL, Dayanidhi S, Lavasani M. Sex-specific preservation of neuromuscular function and metabolism following systemic transplantation of multipotent adult stem cells in a murine model of progeria. GeroScience 2024; 46:1285-1302. [PMID: 37535205 PMCID: PMC10828301 DOI: 10.1007/s11357-023-00892-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/25/2023] [Indexed: 08/04/2023] Open
Abstract
Onset and rates of sarcopenia, a disease characterized by a loss of muscle mass and function with age, vary greatly between sexes. Currently, no clinical interventions successfully arrest age-related muscle impairments since the decline is frequently multifactorial. Previously, we found that systemic transplantation of our unique adult multipotent muscle-derived stem/progenitor cells (MDSPCs) isolated from young mice-but not old-extends the health-span in DNA damage mouse models of progeria, a disease of accelerated aging. Additionally, induced neovascularization in the muscles and brain-where no transplanted cells were detected-strongly suggests a systemic therapeutic mechanism, possibly activated through circulating secreted factors. Herein, we used ZMPSTE24-deficient mice, a lamin A defect progeria model, to investigate the ability of young MDSPCs to preserve neuromuscular tissue structure and function. We show that progeroid ZMPST24-deficient mice faithfully exhibit sarcopenia and age-related metabolic dysfunction. However, systemic transplantation of young MDSPCs into ZMPSTE24-deficient progeroid mice sustained healthy function and histopathology of muscular tissues throughout their 6-month life span in a sex-specific manner. Indeed, female-but not male-mice systemically transplanted with young MDSPCs demonstrated significant preservation of muscle endurance, muscle fiber size, mitochondrial respirometry, and neuromuscular junction morphometrics. These novel findings strongly suggest that young MDSPCs modulate the systemic environment of aged animals by secreted rejuvenating factors to maintain a healthy homeostasis in a sex-specific manner and that the female muscle microenvironment remains responsive to exogenous regenerative cues in older age. This work highlights the age- and sex-related differences in neuromuscular tissue degeneration and the future prospect of preserving health in older adults with systemic regenerative treatments.
Collapse
Affiliation(s)
- Seth D Thompson
- Shirley Ryan AbilityLab, 355 E. Erie St, Chicago, IL, 60611, USA.
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, 60611, USA.
- Northwestern University Interdepartmental Neuroscience (NUIN) Graduate Program, Northwestern University, Chicago, IL, 60611, USA.
| | - Kelsey L Barrett
- Shirley Ryan AbilityLab, 355 E. Erie St, Chicago, IL, 60611, USA
| | - Chelsea L Rugel
- Shirley Ryan AbilityLab, 355 E. Erie St, Chicago, IL, 60611, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, 60611, USA
- Northwestern University Interdepartmental Neuroscience (NUIN) Graduate Program, Northwestern University, Chicago, IL, 60611, USA
| | - Robin Redmond
- Shirley Ryan AbilityLab, 355 E. Erie St, Chicago, IL, 60611, USA
| | - Alexia Rudofski
- Shirley Ryan AbilityLab, 355 E. Erie St, Chicago, IL, 60611, USA
| | - Jacob Kurian
- Department of Biomedical Engineering, Northwestern University, Chicago, IL, 60611, USA
| | - Jodi L Curtin
- Shirley Ryan AbilityLab, 355 E. Erie St, Chicago, IL, 60611, USA
| | - Sudarshan Dayanidhi
- Shirley Ryan AbilityLab, 355 E. Erie St, Chicago, IL, 60611, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, 60611, USA
| | - Mitra Lavasani
- Shirley Ryan AbilityLab, 355 E. Erie St, Chicago, IL, 60611, USA.
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, 60611, USA.
- Northwestern University Interdepartmental Neuroscience (NUIN) Graduate Program, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
40
|
Seefeldt JM, Libai Y, Berg K, Jespersen NR, Lassen TR, Dalsgaard FF, Ryhammer P, Pedersen M, Ilkjaer LB, Hu MA, Erasmus ME, Nielsen RR, Bøtker HE, Caspi O, Eiskjær H, Moeslund N. Effects of ketone body 3-hydroxybutyrate on cardiac and mitochondrial function during donation after circulatory death heart transplantation. Sci Rep 2024; 14:757. [PMID: 38191915 PMCID: PMC10774377 DOI: 10.1038/s41598-024-51387-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/04/2024] [Indexed: 01/10/2024] Open
Abstract
Normothermic regional perfusion (NRP) allows assessment of therapeutic interventions prior to donation after circulatory death transplantation. Sodium-3-hydroxybutyrate (3-OHB) increases cardiac output in heart failure patients and diminishes ischemia-reperfusion injury, presumably by improving mitochondrial metabolism. We investigated effects of 3-OHB on cardiac and mitochondrial function in transplanted hearts and in cardiac organoids. Donor pigs (n = 14) underwent circulatory death followed by NRP. Following static cold storage, hearts were transplanted into recipient pigs. 3-OHB or Ringer's acetate infusions were initiated during NRP and after transplantation. We evaluated hemodynamics and mitochondrial function. 3-OHB mediated effects on contractility, relaxation, calcium, and conduction were tested in cardiac organoids from human pluripotent stem cells. Following NRP, 3-OHB increased cardiac output (P < 0.0001) by increasing stroke volume (P = 0.006), dP/dt (P = 0.02) and reducing arterial elastance (P = 0.02). Following transplantation, infusion of 3-OHB maintained mitochondrial respiration (P = 0.009) but caused inotropy-resistant vasoplegia that prevented weaning. In cardiac organoids, 3-OHB increased contraction amplitude (P = 0.002) and shortened contraction duration (P = 0.013) without affecting calcium handling or conduction velocity. 3-OHB had beneficial cardiac effects and may have a potential to secure cardiac function during heart transplantation. Further studies are needed to optimize administration practice in donors and recipients and to validate the effect on mitochondrial function.
Collapse
Affiliation(s)
- Jacob Marthinsen Seefeldt
- Department of Cardiology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark.
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 82, 8200, Aarhus N, Denmark.
| | - Yaara Libai
- The Laboratory for Cardiovascular Precision Medicine, Rapport Faculty of Medicine, Technion and Rambam's Cardiovascular Research and Innovation Center, 2 Efron St, Haifa, Israel
| | - Katrine Berg
- Department of Cardiology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 82, 8200, Aarhus N, Denmark
| | - Nichlas Riise Jespersen
- Department of Cardiology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Thomas Ravn Lassen
- Department of Cardiology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Frederik Flyvholm Dalsgaard
- Department of Cardiology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
- Comparative Medicine Lab, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 82, 8200, Aarhus N, Denmark
| | - Pia Ryhammer
- Department of Anesthesiology, Regional Hospital Silkeborg, Falkevej 1A, 8600, Silkeborg, Denmark
| | - Michael Pedersen
- Comparative Medicine Lab, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 82, 8200, Aarhus N, Denmark
| | - Lars Bo Ilkjaer
- Department of Cardiothoracic and Vascular Surgery, Aarhus University Hospital, Palle Juul-Jensens, Boulevard 99, 8200, Aarhus N, Denmark
| | - Michiel A Hu
- Department of Cardiothoracic Surgery, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Michiel E Erasmus
- Department of Cardiothoracic Surgery, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Roni R Nielsen
- Department of Cardiology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Hans Erik Bøtker
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 82, 8200, Aarhus N, Denmark
| | - Oren Caspi
- The Laboratory for Cardiovascular Precision Medicine, Rapport Faculty of Medicine, Technion and Rambam's Cardiovascular Research and Innovation Center, 2 Efron St, Haifa, Israel
| | - Hans Eiskjær
- Department of Cardiology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Niels Moeslund
- Department of Cardiothoracic and Vascular Surgery, Aarhus University Hospital, Palle Juul-Jensens, Boulevard 99, 8200, Aarhus N, Denmark
| |
Collapse
|
41
|
Schytz CT, Ørtenblad N, Lundby AKM, Jacobs RA, Nielsen J, Lundby C. Skeletal muscle mitochondria demonstrate similar respiration per cristae surface area independent of training status and sex in healthy humans. J Physiol 2024; 602:129-151. [PMID: 38051639 DOI: 10.1113/jp285091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/15/2023] [Indexed: 12/07/2023] Open
Abstract
The impact of training status and sex on intrinsic skeletal muscle mitochondrial respiratory capacity remains unclear. We examined this by analysing human skeletal muscle mitochondrial respiration relative to mitochondrial volume and cristae density across training statuses and sexes. Mitochondrial cristae density was estimated in skeletal muscle biopsies originating from previous independent studies. Participants included females (n = 12) and males (n = 41) across training statuses ranging from untrained (UT, n = 8), recreationally active (RA, n = 9), active-to-elite runners (RUN, n = 27) and cross-country skiers (XC, n = 9). The XC and RUN groups demonstrated higher mitochondrial volume density than the RA and UT groups while all active groups (RA, RUN and XC) displayed higher mass-specific capacity of oxidative phosphorylation (OXPHOS) and mitochondrial cristae density than UT. Differences in OXPHOS diminished between active groups and UT when normalising to mitochondrial volume density and were lost when normalising to muscle cristae surface area density. Moreover, active females (n = 6-9) and males (n = 15-18) did not differ in mitochondrial volume and cristae density, OXPHOS, or when normalising OXPHOS to mitochondrial volume density and muscle cristae surface area density. These findings demonstrate: (1) differences in OXPHOS between active and untrained individuals may be explained by both higher mitochondrial volume and cristae density in active individuals, with no difference in intrinsic mitochondrial respiratory capacity (OXPHOS per muscle cristae surface area density); and (2) no sex differences in mitochondrial volume and cristae density or mass-specific and normalised OXPHOS. This highlights the importance of normalising OXPHOS to muscle cristae surface area density when studying skeletal muscle mitochondrial biology. KEY POINTS: Oxidative phosphorylation is the mitochondrial process by which ATP is produced, governed by the electrochemical gradient across the inner mitochondrial membrane with infoldings named cristae. In human skeletal muscle, the mass-specific capacity of oxidative phosphorylation (OXPHOS) can change independently of shifts in mitochondrial volume density, which may be attributed to variations in cristae density. We demonstrate that differences in skeletal muscle OXPHOS between healthy females and males, ranging from untrained to elite endurance athletes, are matched by differences in cristae density. This suggests that higher OXPHOS in skeletal muscles of active individuals is attributable to an increase in the density of cristae. These findings broaden our understanding of the variability in human skeletal muscle OXPHOS and highlight the significance of cristae, specific to mitochondrial respiration.
Collapse
Affiliation(s)
- Camilla Tvede Schytz
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Niels Ørtenblad
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Anne-Kristine Meinild Lundby
- Xlab, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Robert Acton Jacobs
- Department of Human Physiology & Nutrition, University of Colorado Colorado Springs (UCCS), Colorado Springs, Colorado, USA
| | - Joachim Nielsen
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Carsten Lundby
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
- Department of Health and Exercise Physiology, Inland Norway University of Applied Science, Lillehammer, Norway
| |
Collapse
|
42
|
Li A, Qin Y, Zhang Y, Zhen X, Gong G. Evaluation of Oxygen Consumption Rates In Situ. Methods Mol Biol 2024; 2755:215-226. [PMID: 38319581 DOI: 10.1007/978-1-0716-3633-6_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
An analysis of the mitochondrial respiration function represented by the oxygen consumption rate is necessary to assess mitochondrial bioenergetics and redox function. This protocol describes two alternative techniques to evaluate mitochondrial respiration function in situ: (1) measure oxygen consumption rates via an electrode; (2) measure oxygen consumption rates via a seahorse instrument. These in situ approaches provide more physiological access to mitochondria to evaluate mitochondrial respiration function in a relatively integrated cellular system.
Collapse
Affiliation(s)
- Anqi Li
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yuan Qin
- Department of Pharmacy, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Ying Zhang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xiaoqun Zhen
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Department of Clinical Laboratory, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guohua Gong
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
43
|
Gorbacheva EY, Sventitskaya MA, Biryukov NS, Ogneva IV. The Oxidative Phosphorylation and Cytoskeleton Proteins of Mouse Ovaries after 96 Hours of Hindlimb Suspension. Life (Basel) 2023; 13:2332. [PMID: 38137934 PMCID: PMC10744499 DOI: 10.3390/life13122332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/19/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
The purpose of this study was to assess oxidative phosphorylation (OXPHOS) in mouse ovaries, determine the relative content of proteins that form the respiratory chain complexes and the main structures of the cytoskeleton, and determine the mRNA of the corresponding genes after hindlimb suspension for 96 h. After hindlimb suspension, the maximum rate of oxygen uptake increased by 133% (p < 0.05) compared to the control due to the complex I of the respiratory chain. The content of mRNA of genes encoding the main components of the respiratory chain increased (cyt c by 78%, cox IV by 56%, ATPase by 69%, p < 0.05 compared with the control). The relative content of cytoskeletal proteins that can participate in the processes of transport and localization of mitochondria does not change, with the exception of an increase in the content of alpha-tubulin by 25% (p < 0.05) and its acetylated isoform (by 36%, p < 0.05); however, the mRNA content of these cytoskeletal genes did not differ from the control. The content of GDF9 mRNA does not change after hindlimb suspension. The data obtained show that short-term exposure to simulated weightlessness leads to intensification of metabolism in the ovaries.
Collapse
Affiliation(s)
- Elena Yu. Gorbacheva
- Cell Biophysics Laboratory, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, 76a, Khoroshevskoyoe shosse, Moscow 123007, Russia; (E.Y.G.); (N.S.B.); (I.V.O.)
- Gynecology Department, FGBU KB1 (Volynskaya) UDP RF, 10, Starovolynskaya Str., Moscow 121352, Russia
| | - Maria A. Sventitskaya
- Cell Biophysics Laboratory, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, 76a, Khoroshevskoyoe shosse, Moscow 123007, Russia; (E.Y.G.); (N.S.B.); (I.V.O.)
- Medical and Biological Physics Department, I. M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya St., Moscow 119991, Russia
| | - Nikolay S. Biryukov
- Cell Biophysics Laboratory, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, 76a, Khoroshevskoyoe shosse, Moscow 123007, Russia; (E.Y.G.); (N.S.B.); (I.V.O.)
- Medical and Biological Physics Department, I. M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya St., Moscow 119991, Russia
| | - Irina V. Ogneva
- Cell Biophysics Laboratory, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, 76a, Khoroshevskoyoe shosse, Moscow 123007, Russia; (E.Y.G.); (N.S.B.); (I.V.O.)
- Medical and Biological Physics Department, I. M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya St., Moscow 119991, Russia
| |
Collapse
|
44
|
Rosell-Hidalgo A, Eakins J, Walker P, Moore AL, Ghafourian T. Risk Assessment of Psychotropic Drugs on Mitochondrial Function Using In Vitro Assays. Biomedicines 2023; 11:3272. [PMID: 38137493 PMCID: PMC10741027 DOI: 10.3390/biomedicines11123272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Mitochondria are potential targets responsible for some drug- and xenobiotic-induced organ toxicities. However, molecular mechanisms of drug-induced mitochondrial toxicities are mostly unknown. Here, multiple in vitro assays were used to investigate the effects of 22 psychotropic drugs on mitochondrial function. The acute extracellular flux assay identified inhibitors of the electron transport chain (ETC), i.e., aripiprazole, phenytoin, and fluoxetine, an uncoupler (reserpine), substrate inhibitors (quetiapine, carbamazepine, buspirone, and tianeptine), and cytotoxic compounds (chlorpromazine and valproic acid) in HepG2 cells. Using permeabilized HepG2 cells revealed minimum effective concentrations of 66.3, 6730, 44.5, and 72.1 µM for the inhibition of complex-I-linked respiration for quetiapine, valproic acid, buspirone, and fluoxetine, respectively. Assessing complex-II-linked respiration in isolated rat liver mitochondria revealed haloperidol is an ETC inhibitor, chlorpromazine is an uncoupler in basal respiration and an ETC inhibitor under uncoupled respiration (IC50 = 135 µM), while olanzapine causes a mild dissipation of the membrane potential at 50 µM. This research elucidates some mechanisms of drug toxicity and provides some insight into their safety profile for clinical drug decisions.
Collapse
Affiliation(s)
- Alicia Rosell-Hidalgo
- Cyprotex Discovery Ltd., No. 24 Mereside, Alderley Park, Macclesfield, Cheshire SK10 4TG, UK; (A.R.-H.); (J.E.)
| | - Julie Eakins
- Cyprotex Discovery Ltd., No. 24 Mereside, Alderley Park, Macclesfield, Cheshire SK10 4TG, UK; (A.R.-H.); (J.E.)
| | - Paul Walker
- Cyprotex Discovery Ltd., No. 24 Mereside, Alderley Park, Macclesfield, Cheshire SK10 4TG, UK; (A.R.-H.); (J.E.)
| | - Anthony L. Moore
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK;
| | - Taravat Ghafourian
- Department of Pharmaceutical Sciences, Barry & Judy Silverman College of Pharmacy, Nova Southeastern University, 3200 South University Drive, Ft. Lauderdale, FL 33328-2018, USA
| |
Collapse
|
45
|
Brisendine MH, Nichenko AS, Bandara AB, Willoughby OS, Amiri N, Weingrad Z, Specht KS, Bond JM, Addington A, Jones RG, Murach KA, Poelzing S, Craige SM, Grange RW, Drake JC. Neuromuscular Dysfunction Precedes Cognitive Impairment in a Mouse Model of Alzheimer's Disease. FUNCTION 2023; 5:zqad066. [PMID: 38111538 PMCID: PMC10727840 DOI: 10.1093/function/zqad066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/17/2023] [Accepted: 11/26/2023] [Indexed: 12/20/2023] Open
Abstract
Alzheimer's disease (AD) develops along a continuum that spans years prior to diagnosis. Decreased muscle function and mitochondrial respiration occur years earlier in those that develop AD; however, it is unknown what causes these peripheral phenotypes in a disease of the brain. Exercise promotes muscle, mitochondria, and cognitive health and is proposed to be a potential therapeutic for AD, but no study has investigated how skeletal muscle adapts to exercise training in an AD-like context. Utilizing 5xFAD mice, an AD model that develops ad-like pathology and cognitive impairments around 6 mo of age, we examined in vivo neuromuscular function and exercise adapations (mitochondrial respiration and RNA sequencing) before the manifestation of overt cognitive impairment. We found 5xFAD mice develop neuromuscular dysfunction beginning as early as 4 mo of age, characterized by impaired nerve-stimulated muscle torque production and compound nerve action potential of the sciatic nerve. Furthermore, skeletal muscle in 5xFAD mice had altered, sex-dependent, adaptive responses (mitochondrial respiration and gene expression) to exercise training in the absence of overt cognitive impairment. Changes in peripheral systems, specifically neural communication to skeletal muscle, may be harbingers for AD and have implications for lifestyle interventions, like exercise, in AD.
Collapse
Affiliation(s)
- Matthew H Brisendine
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA 24061, USA
| | - Anna S Nichenko
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA 24061, USA
| | - Aloka B Bandara
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA 24061, USA
| | - Orion S Willoughby
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA 24061, USA
| | - Niloufar Amiri
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA 24061, USA
| | - Zach Weingrad
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Kalyn S Specht
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA 24061, USA
| | - Jacob M Bond
- Translational Biology, Medicine, and Health Program, Virginia Tech, Roanoke, VA 24016, USA
| | - Adele Addington
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA 24061, USA
| | - Ronald G Jones
- Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, AR 72701, USA
| | - Kevin A Murach
- Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, AR 72701, USA
| | - Steven Poelzing
- Translational Biology, Medicine, and Health Program, Virginia Tech, Roanoke, VA 24016, USA
| | - Siobhan M Craige
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA 24061, USA
- Translational Biology, Medicine, and Health Program, Virginia Tech, Roanoke, VA 24016, USA
| | - Robert W Grange
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA 24061, USA
| | - Joshua C Drake
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA 24061, USA
- Translational Biology, Medicine, and Health Program, Virginia Tech, Roanoke, VA 24016, USA
| |
Collapse
|
46
|
Pharaoh G, Kamat V, Kannan S, Stuppard RS, Whitson J, Martín-Pérez M, Qian WJ, MacCoss MJ, Villén J, Rabinovitch P, Campbell MD, Sweet IR, Marcinek DJ. The mitochondrially targeted peptide elamipretide (SS-31) improves ADP sensitivity in aged mitochondria by increasing uptake through the adenine nucleotide translocator (ANT). GeroScience 2023; 45:3529-3548. [PMID: 37462785 PMCID: PMC10643647 DOI: 10.1007/s11357-023-00861-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/23/2023] [Indexed: 07/28/2023] Open
Abstract
Aging muscle experiences functional decline in part mediated by impaired mitochondrial ADP sensitivity. Elamipretide (ELAM) rapidly improves physiological and mitochondrial function in aging and binds directly to the mitochondrial ADP transporter ANT. We hypothesized that ELAM improves ADP sensitivity in aging leading to rescued physiological function. We measured the response to ADP stimulation in young and old muscle mitochondria with ELAM treatment, in vivo heart and muscle function, and compared protein abundance, phosphorylation, and S-glutathionylation of ADP/ATP pathway proteins. ELAM treatment increased ADP sensitivity in old muscle mitochondria by increasing uptake of ADP through the ANT and rescued muscle force and heart systolic function. Protein abundance in the ADP/ATP transport and synthesis pathway was unchanged, but ELAM treatment decreased protein s-glutathionylation incuding of ANT. Mitochondrial ADP sensitivity is rapidly modifiable. This research supports the hypothesis that ELAM improves ANT function in aging and links mitochondrial ADP sensitivity to physiological function. ELAM binds directly to ANT and ATP synthase and ELAM treatment improves ADP sensitivity, increases ATP production, and improves physiological function in old muscles. ADP (adenosine diphosphate), ATP (adenosine triphosphate), VDAC (voltage-dependent anion channel), ANT (adenine nucleotide translocator), H+ (proton), ROS (reactive oxygen species), NADH (nicotinamide adenine dinucleotide), FADH2 (flavin adenine dinucleotide), O2 (oxygen), ELAM (elamipretide), -SH (free thiol), -SSG (glutathionylated protein).
Collapse
Affiliation(s)
- Gavin Pharaoh
- Department of Radiology, University of Washington, Seattle, WA, 98195, USA
| | - Varun Kamat
- Department of Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Sricharan Kannan
- Department of Radiology, University of Washington, Seattle, WA, 98195, USA
| | - Rudolph S Stuppard
- Department of Radiology, University of Washington, Seattle, WA, 98195, USA
| | - Jeremy Whitson
- Department of Biology, High Point University, High Point, NC, 27268, USA
| | - Miguel Martín-Pérez
- Department of Cell Biology, Physiology and Immunology, University of Barcelona, 08028, Barcelona, Spain
| | - Wei-Jun Qian
- Integrative Omics Group, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Michael J MacCoss
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Judit Villén
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Peter Rabinovitch
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Matthew D Campbell
- Department of Radiology, University of Washington, Seattle, WA, 98195, USA
| | - Ian R Sweet
- Department of Medicine, University of Washington, Seattle, WA, 98195, USA
| | - David J Marcinek
- Department of Radiology, University of Washington, Seattle, WA, 98195, USA.
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA.
| |
Collapse
|
47
|
Gopal K, Abdualkader AM, Li X, Greenwell AA, Karwi QG, Altamimi TR, Saed C, Uddin GM, Darwesh AM, Jamieson KL, Kim R, Eaton F, Seubert JM, Lopaschuk GD, Ussher JR, Al Batran R. Loss of muscle PDH induces lactic acidosis and adaptive anaplerotic compensation via pyruvate-alanine cycling and glutaminolysis. J Biol Chem 2023; 299:105375. [PMID: 37865313 PMCID: PMC10692893 DOI: 10.1016/j.jbc.2023.105375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/03/2023] [Accepted: 10/11/2023] [Indexed: 10/23/2023] Open
Abstract
Pyruvate dehydrogenase (PDH) is the rate-limiting enzyme for glucose oxidation that links glycolysis-derived pyruvate with the tricarboxylic acid (TCA) cycle. Although skeletal muscle is a significant site for glucose oxidation and is closely linked with metabolic flexibility, the importance of muscle PDH during rest and exercise has yet to be fully elucidated. Here, we demonstrate that mice with muscle-specific deletion of PDH exhibit rapid weight loss and suffer from severe lactic acidosis, ultimately leading to early mortality under low-fat diet provision. Furthermore, loss of muscle PDH induces adaptive anaplerotic compensation by increasing pyruvate-alanine cycling and glutaminolysis. Interestingly, high-fat diet supplementation effectively abolishes early mortality and rescues the overt metabolic phenotype induced by muscle PDH deficiency. Despite increased reliance on fatty acid oxidation during high-fat diet provision, loss of muscle PDH worsens exercise performance and induces lactic acidosis. These observations illustrate the importance of muscle PDH in maintaining metabolic flexibility and preventing the development of metabolic disorders.
Collapse
Affiliation(s)
- Keshav Gopal
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Abdualrahman Mohammed Abdualkader
- Faculty of Pharmacy, Université de Montréal, Montréal, Quebec, Canada; Montreal Diabetes Research Center, Montréal, Quebec, Canada; Cardiometabolic Health, Diabetes and Obesity Research Network, Montréal, Quebec, Canada
| | - Xiaobei Li
- Faculty of Pharmacy, Université de Montréal, Montréal, Quebec, Canada; Montreal Diabetes Research Center, Montréal, Quebec, Canada; Cardiometabolic Health, Diabetes and Obesity Research Network, Montréal, Quebec, Canada
| | - Amanda A Greenwell
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Qutuba G Karwi
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada; Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, Saint John's, Newfoundland and Labrador, Canada
| | - Tariq R Altamimi
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Christina Saed
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Golam M Uddin
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Ahmed M Darwesh
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - K Lockhart Jamieson
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Ryekjang Kim
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Farah Eaton
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - John M Seubert
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Gary D Lopaschuk
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - John R Ussher
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Rami Al Batran
- Faculty of Pharmacy, Université de Montréal, Montréal, Quebec, Canada; Montreal Diabetes Research Center, Montréal, Quebec, Canada; Cardiometabolic Health, Diabetes and Obesity Research Network, Montréal, Quebec, Canada.
| |
Collapse
|
48
|
Hernandez-Resendiz S, Prakash A, Loo SJ, Semenzato M, Chinda K, Crespo-Avilan GE, Dam LC, Lu S, Scorrano L, Hausenloy DJ. Targeting mitochondrial shape: at the heart of cardioprotection. Basic Res Cardiol 2023; 118:49. [PMID: 37955687 PMCID: PMC10643419 DOI: 10.1007/s00395-023-01019-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/14/2023]
Abstract
There remains an unmet need to identify novel therapeutic strategies capable of protecting the myocardium against the detrimental effects of acute ischemia-reperfusion injury (IRI), to reduce myocardial infarct (MI) size and prevent the onset of heart failure (HF) following acute myocardial infarction (AMI). In this regard, perturbations in mitochondrial morphology with an imbalance in mitochondrial fusion and fission can disrupt mitochondrial metabolism, calcium homeostasis, and reactive oxygen species production, factors which are all known to be critical determinants of cardiomyocyte death following acute myocardial IRI. As such, therapeutic approaches directed at preserving the morphology and functionality of mitochondria may provide an important strategy for cardioprotection. In this article, we provide an overview of the alterations in mitochondrial morphology which occur in response to acute myocardial IRI, and highlight the emerging therapeutic strategies for targeting mitochondrial shape to preserve mitochondrial function which have the future therapeutic potential to improve health outcomes in patients presenting with AMI.
Collapse
Affiliation(s)
- Sauri Hernandez-Resendiz
- Duke-NUS Medical School, Cardiovascular and Metabolic Disorders Programme, Singapore, Singapore
- National Heart Centre Singapore, National Heart Research Institute Singapore, Singapore, Singapore
| | - Aishwarya Prakash
- Duke-NUS Medical School, Cardiovascular and Metabolic Disorders Programme, Singapore, Singapore
- National Heart Centre Singapore, National Heart Research Institute Singapore, Singapore, Singapore
| | - Sze Jie Loo
- Duke-NUS Medical School, Cardiovascular and Metabolic Disorders Programme, Singapore, Singapore
- National Heart Centre Singapore, National Heart Research Institute Singapore, Singapore, Singapore
| | | | - Kroekkiat Chinda
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Gustavo E Crespo-Avilan
- Duke-NUS Medical School, Cardiovascular and Metabolic Disorders Programme, Singapore, Singapore
- National Heart Centre Singapore, National Heart Research Institute Singapore, Singapore, Singapore
| | - Linh Chi Dam
- Duke-NUS Medical School, Cardiovascular and Metabolic Disorders Programme, Singapore, Singapore
- National Heart Centre Singapore, National Heart Research Institute Singapore, Singapore, Singapore
| | - Shengjie Lu
- Duke-NUS Medical School, Cardiovascular and Metabolic Disorders Programme, Singapore, Singapore
- National Heart Centre Singapore, National Heart Research Institute Singapore, Singapore, Singapore
| | - Luca Scorrano
- Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Biology, University of Padova, Padova, Italy
| | - Derek J Hausenloy
- Duke-NUS Medical School, Cardiovascular and Metabolic Disorders Programme, Singapore, Singapore.
- National Heart Centre Singapore, National Heart Research Institute Singapore, Singapore, Singapore.
- National University Singapore, Yong Loo Lin School of Medicine, Singapore, Singapore.
- University College London, The Hatter Cardiovascular Institute, London, UK.
| |
Collapse
|
49
|
Decker ST, Matias AA, Cuadra AE, Bannon ST, Madden JP, Erol ME, Serviente C, Fenelon K, Layec G. Tissue-specific mitochondrial toxicity of cigarette smoke concentrate: consequence to oxidative phosphorylation. Am J Physiol Heart Circ Physiol 2023; 325:H1088-H1098. [PMID: 37712922 PMCID: PMC10907033 DOI: 10.1152/ajpheart.00199.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/16/2023]
Abstract
Cigarette smoke exposure is a well-known risk factor for developing numerous chronic health conditions, including pulmonary disease and cardiometabolic disorders. However, the cellular mechanisms mediating the toxicity of cigarette smoke in extrapulmonary tissues are still poorly understood. Therefore, the purpose of this study was to characterize the acute dose-dependent toxicity of cigarette smoke on mitochondrial metabolism by determining the susceptibility and sensitivity of mitochondrial respiration from murine skeletal (gastrocnemius and soleus) and cardiac muscles, as well as the aorta to cigarette smoke concentrate (CSC). In all tissues, exposure to CSC inhibited tissue-specific respiration capacity, measured by high-resolution respirometry, according to a biphasic pattern. With a break point of 451 ± 235 μg/mL, the aorta was the least susceptible to CSC-induced mitochondrial respiration inhibition compared with the gastrocnemius (151 ± 109 μg/mL; P = 0.008, d = 2.3), soleus (211 ± 107 μg/mL; P = 0.112; d = 1.7), and heart (94 ± 51 μg/mL; P < 0.001; d = 2.6) suggesting an intrinsic resistance of the vascular smooth muscle mitochondria to cigarette smoke toxicity. In contrast, the cardiac muscle was the most susceptible and sensitive to the effects of CSC, demonstrating the greatest decline in tissue-specific respiration with increasing CSC concentration (P < 0.001, except the soleus). However, when normalized to citrate synthase activity to account for differences in mitochondrial content, cardiac fibers' sensitivity to cigarette smoke inhibition was no longer significantly different from both fast-twitch gastrocnemius and slow-twitch soleus muscle fibers, thus suggesting similar mitochondrial phenotypes. Collectively, these findings established the acute dose-dependent toxicity of cigarette smoke on oxidative phosphorylation in permeabilized tissues involved in the development of smoke-related cardiometabolic diseases.NEW & NOTEWORTHY Despite numerous investigations into the mechanisms underlying cigarette smoke-induced mitochondrial dysfunction, no studies have investigated the tissue-specific mitochondrial toxicity to cigarette smoke. We demonstrate that, while aorta is least sensitive and susceptible to cigarette smoke-induced toxicity, the degree of cigarette smoke-induced toxicity in striated muscle depends on the tissue-specific mitochondrial content. We conclude that while the mitochondrial content influences cigarette smoke-induced toxicity in striated muscles, aorta is intrinsically protected against cigarette smoke-induced mitochondrial toxicity.
Collapse
Affiliation(s)
- Stephen T Decker
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, Massachusetts, United States
| | - Alexs A Matias
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, Massachusetts, United States
| | - Adolfo E Cuadra
- Department of Biology, University of Massachusetts Amherst, Amherst, Massachusetts, United States
| | - Sean T Bannon
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, Massachusetts, United States
| | - Jack P Madden
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, Massachusetts, United States
| | - M Enes Erol
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, Massachusetts, United States
| | - Corinna Serviente
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, Massachusetts, United States
- Institute for Applied Life Science, University of Massachusetts Amherst, Amherst, Massachusetts, United States
| | - Karine Fenelon
- Institute for Applied Life Science, University of Massachusetts Amherst, Amherst, Massachusetts, United States
- Department of Biology, University of Massachusetts Amherst, Amherst, Massachusetts, United States
| | - Gwenael Layec
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, Massachusetts, United States
- Institute for Applied Life Science, University of Massachusetts Amherst, Amherst, Massachusetts, United States
| |
Collapse
|
50
|
Puurand M, Tepp K, Kaambre T. Diving into cancer OXPHOS - The application of metabolic control analysis to cell and tissue research. Biosystems 2023; 233:105032. [PMID: 37739307 DOI: 10.1016/j.biosystems.2023.105032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/30/2023] [Accepted: 09/12/2023] [Indexed: 09/24/2023]
Abstract
Knowing how the oxidative phosphorylation (OXPHOS) system in cancer cells operates differently from that of normal cells would help find compounds that specifically paralyze the energy metabolism of cancer cells. The first experiments in the study of mitochondrial respiration using the metabolic control analysis (MCA) method were done with isolated liver mitochondria in the early 80s of the last century. Subsequent studies have shown that the regulation of mitochondrial respiration by ADP in isolated mitochondria differs significantly from a model of mitochondria in situ, where the contacts with components in the cytoplasm are largely preserved. The method of selective permeabilization of the outer membrane of the cells allows the application of MCA to evaluate the contribution of different components of the OXPHOS system to its functioning while mitochondria are in a natural state. In this review, we summarize the use of MCA to study OXPHOS in cancer using permeabilized cells and tissues. In addition, we give examples of how this data fits into cancer research with a completely different approach and methodology.
Collapse
Affiliation(s)
- Marju Puurand
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia.
| | - Kersti Tepp
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Tuuli Kaambre
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| |
Collapse
|