1
|
Park JS, Sung MJ, Na HJ. Drosophila model systems reveal intestinal stem cells as key players in aging. Ann N Y Acad Sci 2025. [PMID: 40276941 DOI: 10.1111/nyas.15351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
The intestines play important roles in responding immediately and dynamically to food intake, environmental stress, and metabolic dysfunction, and they are involved in various human diseases and aging. A key part of their function is governed by intestinal stem cells (ISCs); therefore, understanding ISCs is vital. Dysregulation of ISC activity, which is influenced by various cell signaling pathways and environmental signals, can lead to inflammatory responses, tissue damage, and increased cancer susceptibility. Aging exacerbates these dynamics and affects ISC function and tissue elasticity. Additionally, proliferation and differentiation profoundly affect ISC behavior and gut health, highlighting the complex interplay between environmental factors and gut homeostasis. Drosophila models help us understand the complex regulatory networks in the gut, providing valuable insights into disease mechanisms and therapeutic strategies targeting human intestinal diseases.
Collapse
Affiliation(s)
- Joung-Sun Park
- Institute of Nanobio Convergence, Pusan National University, Busan, Republic of Korea
- Department of Molecular Biology, Pusan National University, Busan, Republic of Korea
| | - Mi Jeong Sung
- Aging Research Group, Division of Food Functionality Research, Korea Food Research Institute, Wanju, Republic of Korea
| | - Hyun-Jin Na
- Aging Research Group, Division of Food Functionality Research, Korea Food Research Institute, Wanju, Republic of Korea
| |
Collapse
|
2
|
Khan MK, Rolff J. Insect immunity in the Anthropocene. Biol Rev Camb Philos Soc 2025; 100:698-723. [PMID: 39500735 PMCID: PMC11885697 DOI: 10.1111/brv.13158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 03/08/2025]
Abstract
Anthropogenic activities result in global change, including climate change, landscape degradation and pollution, that can alter insect physiology and immune defences. These changes may have contributed to global insect decline and the dynamics of insect-transmitted diseases. The ability of insects to mount immune responses upon infection is crucial for defence against pathogens and parasites. Suppressed immune defences reduce fitness by causing disease-driven mortality and elevated immune responses reduce energy available to invest in other fitness traits such as reproduction. Understanding the impact of anthropogenic factors on insect-pathogen interactions is therefore key to determining the contribution of anthropogenic global change to pathogen-driven global insect decline and the emergence and transmission of insect-borne diseases. Here, we synthesise evidence of the impact of anthropogenic factors on insect immunity. We found evidence that anthropogenic factors, such as insecticides and heavy metals, directly impacting insect immune responses by inhibiting immune activation pathways. Alternatively, factors such as global warming, heatwaves, elevated CO2 and landscape degradation can indirectly reduce insect immune responses via reducing the energy available for immune function. We further review how anthropogenic factors impact pathogen clearance and contribute to an increase in vector-borne diseases. We discuss the fitness cost of anthropogenic factors via pathogen-driven mortality and reduced reproductive output and how this can contribute to species extinction. We found that most research has determined the impact of a single anthropogenic factor on insect immune responses or pathogen resistance. We recommend studying the combined impact of multiple stressors on immune response and pathogen resistance to understand better how anthropogenic factors affect insect immunity. We conclude by highlighting the importance of initiatives to mitigate the impact of anthropogenic factors on insect immunity, to reduce the spread of vector-borne diseases, and to protect vulnerable ecosystems from emerging diseases.
Collapse
Affiliation(s)
- Md Kawsar Khan
- Institute of BiologyFreie Universität BerlinKönigin‐Luise‐Str. 1‐3Berlin14195Germany
- School of Natural SciencesMacquarie University18 Wally's Walk, North Ryde‐2109SydneyNSWAustralia
| | - Jens Rolff
- Institute of BiologyFreie Universität BerlinKönigin‐Luise‐Str. 1‐3Berlin14195Germany
| |
Collapse
|
3
|
Balakrishnan B, Sarojini BK, Dayananda BS, Raghu SV, Venugopal DM, Prabhu A. Tamarind seed gum-based hydrogel for the targeted delivery of imidazobenzothiazole sulfonamide derivative as an anticancer agent. Int J Biol Macromol 2025; 295:139665. [PMID: 39793781 DOI: 10.1016/j.ijbiomac.2025.139665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/20/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
The current investigation intended to assess the controlled delivery of 7-sulfonamide-2-(4-methylphenyl) imidazo[2,1-b] [1, 3] benzothiazole an anticancer agent (ACA) by tamarind seed gum-based hydrogel; for its potential activity against hepatocellular carcinoma. The FTIR spectra, SEM, 13C NMR, PXRD, and TGA analyses evidenced the successful loading of ACA into the hydrogel system. The rheological testing conveyed the increase in the elastic nature of ACA-loaded hydrogel helping in an effective release. In-vitro delivery of ACA from the hydrogel matrix was maximum at pH 5.5 with controlled and prolonged release of 98.93 ± 1 % over 1680 min. The ACA-release kinetics was well-fitted to the Hill equation model (R2 = 0.9925), leading to a non-Fickian diffusion process (n = 0.5217). The tamarind seed gum-based hydrogel as a potential matrix for the oral administration of the ACA at hepatocellular carcinoma was envisaged and acute oral toxicity assessment on the Drosophila Melanogaster model indicated a high safety profile in-vivo. The ACA-loaded TG-g-poly (AMPS) system showed an enhanced anticancer activity with an IC50 value of 37.27 μg/mL than the ACA (IC50 = 44.75 μg/mL). Studies on the ACA-loaded hydrogel's ability to induce apoptosis in hepatocellular carcinoma cells further supported its anticancer effectiveness in-vitro.
Collapse
Affiliation(s)
- Bhavya Balakrishnan
- Department of Industrial Chemistry, Mangalore University, Mangalagangotri 574199, Karnataka, India
| | | | | | - Shamprasad Varija Raghu
- Division of Neuroscience, Yenepoya Research Centre (YRC), Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India
| | - Deepa Mugudthi Venugopal
- Neurogenetics lab, Department of Applied Zoology, Mangalore University, Mangalagangotri 574199, Karnataka, India
| | - Ashwini Prabhu
- Division of Cancer Research and Therapeutics (CaRT), Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 585018, Karnataka, India
| |
Collapse
|
4
|
Monteith KM, Thornhill P, Vale PF. Genetic Variation in Trophic Avoidance Behaviour Shows Fruit Flies are Generally Attracted to Bacterial Substrates. Ecol Evol 2024; 14:e70541. [PMID: 39524313 PMCID: PMC11550905 DOI: 10.1002/ece3.70541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/22/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Pathogen avoidance behaviours are often assumed to be an adaptive host defence. However, there is limited experimental data on heritable, intrapopulation phenotypic variation for avoidance, a strong prerequisite for adaptive responses to selection. We investigated trophic pathogen avoidance in 122 inbred Drosophila melanogaster lines, and in a derived outbred population. Using the FlyPAD system, we tracked the feeding choice that flies made between substrates that were either clean or contained a bacterial pathogen. We uncovered significant, but weakly heritable variation in the preference index amongst fly lines. However, instead of avoidance, most lines demonstrated a preference for substrates containing several bacterial pathogens, showing avoidance only for extremely high bacterial concentrations. Bacterial preference was not associated with susceptibility to infection and was retained in flies with disrupted immune signalling. Phenotype-genotype association analysis indicated several novel genes (CG2321, CG2006, and ptp99A) associated with increased preference for the bacterial substrate, while the amino-acid transporter sobremesa was associated with greater aversion. Given the known fitness benefits of consuming high-protein diets, our results suggest that bacterial attraction may instead reflect a dietary preference for protein over carbohydrate. More work quantifying intrapopulation variation in avoidance behaviours is needed to fully assess its importance in host-pathogen evolutionary ecology.
Collapse
Affiliation(s)
- Katy M. Monteith
- Institute of Ecology and Evolution, School of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Phoebe Thornhill
- Institute of Ecology and Evolution, School of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Pedro F. Vale
- Institute of Ecology and Evolution, School of Biological SciencesUniversity of EdinburghEdinburghUK
| |
Collapse
|
5
|
Wang J, Wang X, Liu L, Wang X, Wang J, Zheng Y, Wang L, Pan X. Analyzing the Interaction between Tetrahymena pyriformis and Bacteria under Different Physicochemical Conditions When Infecting Guppy Using the eDNA Method. Animals (Basel) 2024; 14:2194. [PMID: 39123720 PMCID: PMC11310954 DOI: 10.3390/ani14152194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/09/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
In the aquaculture system of ornamental fish, the interaction between bacterial microbiota and ciliate protozoa can prevent or promote disease outbreaks, and different physicochemical conditions will affect the relationships between them. We investigated the interaction between bacterial microbiota and the parasite Tetrahymena pyriformis when infecting Poecilia reticulata (guppy) under different physicochemical conditions. The abundance of T. pyriformis in water, the relative abundance of bacterial species, and histopathological observation were studied or monitored using environmental DNA (eDNA) extraction technology, the qPCR method, and 16s rRNA sequencing, respectively. The morphological identification and phylogenetic analysis of T. pyriformis were carried out. The infected guppy tissue was also stained by the hematoxylin and eosin methods. The results showed: (1) the bacterial communities of water samples were mainly composed of species assigned to Proteobacteria and Bacteroidetes, and Tabrizicola and Puniceicoccaceae were positively correlated with fish mortality, T. pyriformis abundance, and temperature. (2) Arcicella and Methyloversatilis universalis with different correlations between ciliates appeared in different treatment groups, the result of which proved that environmental factors affected the interaction between bacteria and T. pyriformis. (3) Lower temperatures and a higher pH were more beneficial for preventing disease outbreaks.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xuming Pan
- Laboratory of Protozoology, Harbin Normal University, Harbin 150025, China; (J.W.); (X.W.); (L.L.); (X.W.); (J.W.); (Y.Z.); (L.W.)
| |
Collapse
|
6
|
Bényei ÉB, Nazeer RR, Askenasy I, Mancini L, Ho PM, Sivarajan GAC, Swain JEV, Welch M. The past, present and future of polymicrobial infection research: Modelling, eavesdropping, terraforming and other stories. Adv Microb Physiol 2024; 85:259-323. [PMID: 39059822 DOI: 10.1016/bs.ampbs.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Over the last two centuries, great advances have been made in microbiology as a discipline. Much of this progress has come about as a consequence of studying the growth and physiology of individual microbial species in well-defined laboratory media; so-called "axenic growth". However, in the real world, microbes rarely live in such "splendid isolation" (to paraphrase Foster) and more often-than-not, share the niche with a plethora of co-habitants. The resulting interactions between species (and even between kingdoms) are only very poorly understood, both on a theoretical and experimental level. Nevertheless, the last few years have seen significant progress, and in this review, we assess the importance of polymicrobial infections, and show how improved experimental traction is advancing our understanding of these. A particular focus is on developments that are allowing us to capture the key features of polymicrobial infection scenarios, especially as those associated with the human airways (both healthy and diseased).
Collapse
Affiliation(s)
| | | | - Isabel Askenasy
- Department of Biochemistry, Tennis Court Road, Cambridge, United Kingdom
| | - Leonardo Mancini
- Department of Biochemistry, Tennis Court Road, Cambridge, United Kingdom
| | - Pok-Man Ho
- Department of Biochemistry, Tennis Court Road, Cambridge, United Kingdom
| | | | - Jemima E V Swain
- Department of Biochemistry, Tennis Court Road, Cambridge, United Kingdom
| | - Martin Welch
- Department of Biochemistry, Tennis Court Road, Cambridge, United Kingdom.
| |
Collapse
|
7
|
Porzio E, Andrenacci D, Manco G. Thermostable Lactonases Inhibit Pseudomonas aeruginosa Biofilm: Effect In Vitro and in Drosophila melanogaster Model of Chronic Infection. Int J Mol Sci 2023; 24:17028. [PMID: 38069351 PMCID: PMC10707464 DOI: 10.3390/ijms242317028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Pseudomonas aeruginosa is one of the six antimicrobial-resistant pathogens known as "ESKAPE" that represent a global threat to human health and are considered priority targets for the development of novel antimicrobials and alternative therapeutics. The virulence of P. aeruginosa is regulated by a four-chemicals communication system termed quorum sensing (QS), and one main class of QS signals is termed acylhomoserine lactones (acyl-HSLs), which includes 3-Oxo-dodecanoil homoserine lactone (3-Oxo-C12-HSL), which regulates the expression of genes implicated in virulence and biofilm formation. Lactonases, like Paraoxonase 2 (PON2) from humans and the phosphotriesterase-like lactonases (PLLs) from thermostable microorganisms, are able to hydrolyze acyl-HSLs. In this work, we explored in vitro and in an animal model the effect of some lactonases on the production of Pseudomonas virulence factors. This study presents a model of chronic infection in which bacteria were administered by feeding, and Drosophila adults were treated with enzymes and the antibiotic tobramycin, alone or in combination. In vitro, we observed significant effects of lactonases on biofilm formation as well as effects on bacterial motility and the expression of virulence factors. The treatment in vivo by feeding with the lactonase SacPox allowed us to significantly increase the biocidal effect of tobramycin in chronic infection.
Collapse
Affiliation(s)
- Elena Porzio
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Via P. Castellino 111, 80131 Naples, Italy
| | - Davide Andrenacci
- CNR Institute of Molecular Genetics “Luigi-Luca Cavalli-Sforza” Unit of Bologna, 40136 Bologna, Italy
| | - Giuseppe Manco
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Via P. Castellino 111, 80131 Naples, Italy
| |
Collapse
|
8
|
Touré H, Herrmann JL, Szuplewski S, Girard-Misguich F. Drosophila melanogaster as an organism model for studying cystic fibrosis and its major associated microbial infections. Infect Immun 2023; 91:e0024023. [PMID: 37847031 PMCID: PMC10652941 DOI: 10.1128/iai.00240-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023] Open
Abstract
Cystic fibrosis (CF) is a human genetic disease caused by mutations in the cystic fibrosis transmembrane conductance regulator gene that encodes a chloride channel. The most severe clinical manifestation is associated with chronic pulmonary infections by pathogenic and opportunistic microbes. Drosophila melanogaster has become the invertebrate model of choice for modeling microbial infections and studying the induced innate immune response. Here, we review its contribution to the understanding of infections with six major pathogens associated with CF (Staphylococcus aureus, Pseudomonas aeruginosa, Burkholderia cepacia, Mycobacterium abscessus, Streptococcus pneumoniae, and Aspergillus fumigatus) together with the perspectives opened by the recent availability of two CF models in this model organism.
Collapse
Affiliation(s)
- Hamadoun Touré
- Université Paris-Saclay, UVSQ, INSERM, Infection et Inflammation, Montigny-le-Bretonneux, France
| | - Jean-Louis Herrmann
- Université Paris-Saclay, UVSQ, INSERM, Infection et Inflammation, Montigny-le-Bretonneux, France
- Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Ile-de-France Ouest, GHU Paris-Saclay, Hôpital Raymond Poincaré, Garches, France
| | - Sébastien Szuplewski
- Université Paris-Saclay, UVSQ, Laboratoire de Génétique et Biologie Cellulaire, Montigny-le-Bretonneux, France
| | - Fabienne Girard-Misguich
- Université Paris-Saclay, UVSQ, INSERM, Infection et Inflammation, Montigny-le-Bretonneux, France
| |
Collapse
|
9
|
de Oliveira Pereira T, Groleau MC, Déziel E. Surface growth of Pseudomonas aeruginosa reveals a regulatory effect of 3-oxo-C 12-homoserine lactone in the absence of its cognate receptor, LasR. mBio 2023; 14:e0092223. [PMID: 37732738 PMCID: PMC10653899 DOI: 10.1128/mbio.00922-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/26/2023] [Indexed: 09/22/2023] Open
Abstract
IMPORTANCE The bacterium Pseudomonas aeruginosa colonizes and thrives in many environments, in which it is typically found in surface-associated polymicrobial communities known as biofilms. Adaptation to this social behavior is aided by quorum sensing (QS), an intercellular communication system pivotal in the expression of social traits. Regardless of its importance in QS regulation, the loss of function of the master regulator LasR is now considered a conserved adaptation of P. aeruginosa, irrespective of the origin of the strains. By investigating the QS circuitry in surface-grown cells, we found an accumulation of QS signal 3-oxo-C12-HSL in the absence of its cognate receptor and activator, LasR. The current understanding of the QS circuit, mostly based on planktonic growing cells, is challenged by investigating the QS circuitry of surface-grown cells. This provides a new perspective on the beneficial aspects that underline the frequency of LasR-deficient isolates.
Collapse
Affiliation(s)
- Thays de Oliveira Pereira
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, Québec, Canada
| | - Marie-Christine Groleau
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, Québec, Canada
| | - Eric Déziel
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, Québec, Canada
| |
Collapse
|
10
|
Neophytou C, Soteriou E, Pitsouli C. The Sterol Transporter Npc2c Controls Intestinal Stem Cell Mitosis and Host-Microbiome Interactions in Drosophila. Metabolites 2023; 13:1084. [PMID: 37887409 PMCID: PMC10609107 DOI: 10.3390/metabo13101084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/05/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
Cholesterol is necessary for all cells to function. The intracellular cholesterol transporters Npc1 and Npc2 control sterol trafficking and their malfunction leads to Neimann-Pick Type C disease, a rare disorder affecting the nervous system and the intestine. Unlike humans that encode single Npc1 and Npc2 transporters, flies encompass two Npc1 (Npc1a-1b) and eight Npc2 (Npc2a-2h) members, and most of the Npc2 family genes remain unexplored. Here, we focus on the intestinal function of Npc2c in the adult. We find that Npc2c is necessary for intestinal stem cell (ISC) mitosis, maintenance of the ISC lineage, survival upon pathogenic infection, as well as tumor growth. Impaired mitosis of Npc2c-silenced midguts is accompanied by reduced expression of Cyclin genes, and genes encoding ISC regulators, such as Delta, unpaired1 and Socs36E. ISC-specific Npc2c silencing induces Attacin-A expression, a phenotype reminiscent of Gram-negative bacteria overabundance. Metagenomic analysis of Npc2c-depleted midguts indicates intestinal dysbiosis, whereby decreased commensal complexity is accompanied by increased gamma-proteobacteria. ISC-specific Npc2c silencing also results in increased cholesterol aggregation. Interestingly, administration of the non-steroidal ecdysone receptor agonist, RH5849, rescues mitosis of Npc2c-silenced midguts and increases expression of the ecdysone response gene Broad, underscoring the role of Npc2c and sterols in ecdysone signaling. Assessment of additional Npc2 family members indicates potential redundant roles with Npc2c in ISC control and response to ecdysone signaling. Our results highlight a previously unidentified essential role of Npc2c in ISC mitosis, as well as an important role in ecdysone signaling and microbiome composition in the Drosophila midgut.
Collapse
Affiliation(s)
| | | | - Chrysoula Pitsouli
- Department of Biological Sciences, University of Cyprus, 1 University Avenue, 2109 Aglantzia, Cyprus; (C.N.); (E.S.)
| |
Collapse
|
11
|
Lennard PR, Hiemstra PS, Nibbering PH. Complementary Activities of Host Defence Peptides and Antibiotics in Combating Antimicrobial Resistant Bacteria. Antibiotics (Basel) 2023; 12:1518. [PMID: 37887219 PMCID: PMC10604037 DOI: 10.3390/antibiotics12101518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/27/2023] [Accepted: 10/02/2023] [Indexed: 10/28/2023] Open
Abstract
Due to their ability to eliminate antimicrobial resistant (AMR) bacteria and to modulate the immune response, host defence peptides (HDPs) hold great promise for the clinical treatment of bacterial infections. Whereas monotherapy with HDPs is not likely to become an effective first-line treatment, combinations of such peptides with antibiotics can potentially provide a path to future therapies for AMR infections. Therefore, we critically reviewed the recent literature regarding the antibacterial activity of combinations of HDPs and antibiotics against AMR bacteria and the approaches taken in these studies. Of the 86 studies compiled, 56 featured a formal assessment of synergy between agents. Of the combinations assessed, synergistic and additive interactions between HDPs and antibiotics amounted to 84.9% of the records, while indifferent and antagonistic interactions accounted for 15.1%. Penicillin, aminoglycoside, fluoro/quinolone, and glycopeptide antibiotic classes were the most frequently documented as interacting with HDPs, and Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, and Enterococcus faecium were the most reported bacterial species. Few studies formally evaluated the effects of combinations of HDPs and antibiotics on bacteria, and even fewer assessed such combinations against bacteria within biofilms, in animal models, or in advanced tissue infection models. Despite the biases of the current literature, the studies suggest that effective combinations of HDPs and antibiotics hold promise for the future treatment of infections caused by AMR bacteria.
Collapse
Affiliation(s)
- Patrick R. Lennard
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
- Institute of Immunology and Infection, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FE, UK
- PulmoScience Lab, Department of Pulmonology, Leiden University Medical Centre, Leiden 2333, The Netherlands
- Department of Infectious Diseases, Leiden University Medical Centre, Leiden 2333, The Netherlands;
| | - Pieter S. Hiemstra
- PulmoScience Lab, Department of Pulmonology, Leiden University Medical Centre, Leiden 2333, The Netherlands
| | - Peter H. Nibbering
- Department of Infectious Diseases, Leiden University Medical Centre, Leiden 2333, The Netherlands;
| |
Collapse
|
12
|
Emergence of Small Colony Variants Is an Adaptive Strategy Used by Pseudomonas aeruginosa to Mitigate the Effects of Redox Imbalance. mSphere 2023; 8:e0005723. [PMID: 36853007 PMCID: PMC10117050 DOI: 10.1128/msphere.00057-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
The ability to generate a subpopulation of small colony variants (SCVs) is a conserved feature of Pseudomonas aeruginosa and could represent a key adaptive strategy to colonize and persist in multiple niches. However, very little is known about the role of the SCV phenotype, the conditions that promote its emergence, and its possible involvement in an adaptive strategy. In the present work, we investigated the in vitro selective conditions promoting the emergence of SCVs from the prototypical strain PA14, which readily forms SCVs in nonagitated standing cultures. We found that O2 limitation, which causes a redox imbalance, is the main factor selecting for the SCV phenotype, which promotes survival of the population via formation of a biofilm at the air-liquid interface to access the electron acceptor. When this selective pressure is relieved by aeration or supplementation of an alternative electron acceptor, SCVs are barely detectable. We also observed that SCV emergence contributes to redox rebalancing, suggesting that it is involved in an adaptive strategy. We conclude that selection for the SCV phenotype is an adaptive solution adopted by P. aeruginosa to access poorly available O2. IMPORTANCE The bacterium Pseudomonas aeruginosa is an opportunistic pathogen that thrives in many environments. It poses a significant health concern, notably because it is a causative agent of nosocomial infections and the most prevalent pathogen found in the lungs of people with cystic fibrosis. In infected hosts, its persistence is often related to the emergence of an alternative phenotype known as small colony variant (SCV). Identification of conditions selecting for the SCV phenotype contributes to knowledge regarding adaptive mechanisms exploited by P. aeruginosa to survive in multiple niches and persist during infections. Hindering this adaptation strategy could help control persistent P. aeruginosa infections.
Collapse
|
13
|
Cross ST, Brehm AL, Dunham TJ, Rodgers CP, Keene AH, Borlee GI, Stenglein MD. Galbut Virus Infection Minimally Influences Drosophila melanogaster Fitness Traits in a Strain and Sex-Dependent Manner. Viruses 2023; 15:539. [PMID: 36851753 PMCID: PMC9965562 DOI: 10.3390/v15020539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
Galbut virus (family Partitiviridae) infects Drosophila melanogaster and can be transmitted vertically from infected mothers or infected fathers with near perfect efficiency. This form of super-Mendelian inheritance should drive infection to 100% prevalence, and indeed, galbut virus is ubiquitous in wild D. melanogaster populations. However, on average, only about 60% of individual flies are infected. One possible explanation for this is that a subset of flies are resistant to infection. Although galbut virus-infected flies appear healthy, infection may be sufficiently costly to drive selection for resistant hosts, thereby decreasing overall prevalence. To test this hypothesis, we quantified a variety of fitness-related traits in galbut virus-infected flies from two lines from the Drosophila Genetic Reference Panel (DGRP). Galbut virus-infected flies had no difference in average lifespan and total offspring production compared to their uninfected counterparts. Galbut virus-infected DGRP-517 flies pupated and eclosed faster than their uninfected counterparts. Some galbut virus-infected flies exhibited altered sensitivity to viral, bacterial, and fungal pathogens. The microbiome composition of flies was not measurably perturbed by galbut virus infection. Differences in phenotype attributable to galbut virus infection varied as a function of fly sex and DGRP strain, and differences attributable to infection status were dwarfed by larger differences attributable to strain and sex. Thus, galbut virus infection does produce measurable phenotypic changes, with changes being minor, offsetting, and possibly net-negative.
Collapse
Affiliation(s)
- Shaun T. Cross
- Department of Environmental, Agricultural, and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ali L. Brehm
- Center for Vector-Borne and Infectious Diseases, Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Tillie J. Dunham
- Center for Vector-Borne and Infectious Diseases, Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Case P. Rodgers
- Center for Vector-Borne and Infectious Diseases, Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Alexandra H. Keene
- Center for Vector-Borne and Infectious Diseases, Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Grace I. Borlee
- Center for Vector-Borne and Infectious Diseases, Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Mark D. Stenglein
- Center for Vector-Borne and Infectious Diseases, Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
14
|
HP1a-mediated heterochromatin formation promotes antimicrobial responses against Pseudomonas aeruginosa infection. BMC Biol 2022; 20:234. [PMID: 36266682 PMCID: PMC9583553 DOI: 10.1186/s12915-022-01435-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 10/10/2022] [Indexed: 11/23/2022] Open
Abstract
Background Pseudomonas aeruginosa is a Gram-negative bacterium that causes severe infectious disease in diverse host organisms, including humans. Effective therapeutic options for P. aeruginosa infection are limited due to increasing multidrug resistance and it is therefore critical to understand the regulation of host innate immune responses to guide development of effective therapeutic options. The epigenetic mechanisms by which hosts regulate their antimicrobial responses against P. aeruginosa infection remain unclear. Here, we used Drosophila melanogaster to investigate the role of heterochromatin protein 1a (HP1a), a key epigenetic regulator, and its mediation of heterochromatin formation in antimicrobial responses against PA14, a highly virulent P. aeruginosa strain. Results Animals with decreased heterochromatin levels showed less resistance to P. aeruginosa infection. In contrast, flies with increased heterochromatin formation, either in the whole organism or specifically in the fat body—an organ important in humoral immune response—showed greater resistance to P. aeruginosa infection, as demonstrated by increased host survival and reduced bacterial load. Increased heterochromatin formation in the fat body promoted the antimicrobial responses via upregulation of fat body immune deficiency (imd) pathway-mediated antimicrobial peptides (AMPs) before and in the middle stage of P. aeruginosa infection. The fat body AMPs were required to elicit HP1a-mediated antimicrobial responses against P. aeruginosa infection. Moreover, the levels of heterochromatin in the fat body were downregulated in the early stage, but upregulated in the middle stage, of P. aeruginosa infection. Conclusions These data indicate that HP1a-mediated heterochromatin formation in the fat body promotes antimicrobial responses by epigenetically upregulating AMPs of the imd pathway. Our study provides novel molecular, cellular, and organismal insights into new epigenetic strategies targeting heterochromatin that have the potential to combat P. aeruginosa infection. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01435-8.
Collapse
|
15
|
Arch M, Vidal M, Koiffman R, Melkie ST, Cardona PJ. Drosophila melanogaster as a model to study innate immune memory. Front Microbiol 2022; 13:991678. [PMID: 36338030 PMCID: PMC9630750 DOI: 10.3389/fmicb.2022.991678] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/03/2022] [Indexed: 09/12/2023] Open
Abstract
Over the last decades, research regarding innate immune responses has gained increasing importance. A growing body of evidence supports the notion that the innate arm of the immune system could show memory traits. Such traits are thought to be conserved throughout evolution and provide a survival advantage. Several models are available to study these mechanisms. Among them, we find the fruit fly, Drosophila melanogaster. This non-mammalian model has been widely used for innate immune research since it naturally lacks an adaptive response. Here, we aim to review the latest advances in the study of the memory mechanisms of the innate immune response using this animal model.
Collapse
Affiliation(s)
- Marta Arch
- Tuberculosis Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Maria Vidal
- Tuberculosis Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Comparative Medicine and Bioimage Centre of Catalonia (CMCiB), Germans Trias I Pujol Research Institute (IGTP), Badalona, Spain
- Microbiology Department, Laboratori Clínic Metropolitana Nord, Germans Trias i Pujol University Hospital, Badalona, Spain
| | - Romina Koiffman
- Tuberculosis Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- UCBL, UnivLyon, Université Claude Bernard Lyon 1 (UCBL1), Villeurbanne, France
| | - Solomon Tibebu Melkie
- Tuberculosis Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- UCBL, UnivLyon, Université Claude Bernard Lyon 1 (UCBL1), Villeurbanne, France
| | - Pere-Joan Cardona
- Tuberculosis Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Comparative Medicine and Bioimage Centre of Catalonia (CMCiB), Germans Trias I Pujol Research Institute (IGTP), Badalona, Spain
- Microbiology Department, Laboratori Clínic Metropolitana Nord, Germans Trias i Pujol University Hospital, Badalona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
16
|
Fuse N, Okamori C, Okaji R, Tang C, Hirai K, Kurata S. Transcriptome features of innate immune memory in Drosophila. PLoS Genet 2022; 18:e1010005. [PMID: 36252180 PMCID: PMC9612818 DOI: 10.1371/journal.pgen.1010005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 10/27/2022] [Accepted: 10/03/2022] [Indexed: 11/21/2022] Open
Abstract
Immune memory is the ability of organisms to elicit potentiated immune responses at secondary infection. Current studies have revealed that similar to adaptive immunity, innate immunity exhibits memory characteristics (called "innate immune memory"). Although epigenetic reprogramming plays an important role in innate immune memory, the underlying mechanisms have not been elucidated, especially at the individual level. Here, we established experimental systems for detecting innate immune memory in Drosophila melanogaster. Training infection with low-pathogenic bacteria enhanced the survival rate of the flies at subsequent challenge infection with high-pathogenic bacteria. Among low-pathogenic bacteria, Micrococcus luteus (Ml) and Salmonella typhimurium (St) exerted apparent training effects in the fly but exhibited different mechanisms of action. Ml exerted training effects even after its clearance from flies, while live St persisted in the flies for a prolonged duration. RNA sequencing (RNA-Seq) analysis revealed that Ml training enhanced the expression of the immune-related genes under the challenge condition but not under the non-challenge condition. In contrast, St training upregulated the expression of the immune-related genes independent of challenge. These results suggest that training effects with Ml and St are due to memory and persistence of immune responses, respectively. Furthermore, we searched for the gene involved in immune memory, and identified a candidate gene, Ada2b, which encodes a component of the histone modification complex. The Ada2b mutant suppressed Ml training effects on survival and disrupted the expression of some genes under the training + challenge condition. These results suggest that the gene expression regulated by Ada2b may contribute to innate immune memory in Drosophila.
Collapse
Affiliation(s)
- Naoyuki Fuse
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
- * E-mail: (NF); (SK)
| | - Chisaki Okamori
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Ryoma Okaji
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Chang Tang
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Kikuko Hirai
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Shoichiro Kurata
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
- * E-mail: (NF); (SK)
| |
Collapse
|
17
|
Lee DH, Cha JH, Kim DW, Lee K, Kim YS, Oh HY, Cho YH, Cha CJ. Colistin-degrading proteases confer collective resistance to microbial communities during polymicrobial infections. MICROBIOME 2022; 10:129. [PMID: 35982474 PMCID: PMC9389796 DOI: 10.1186/s40168-022-01315-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The increasing prevalence of resistance against the last-resort antibiotic colistin is a significant threat to global public health. Here, we discovered a novel colistin resistance mechanism via enzymatic inactivation of the drug and proposed its clinical importance in microbial communities during polymicrobial infections. RESULTS A bacterial strain of the Gram-negative opportunistic pathogen Stenotrophomonas maltophilia capable of degrading colistin and exhibiting a high-level colistin resistance was isolated from the soil environment. A colistin-degrading protease (Cdp) was identified in this strain, and its contribution to colistin resistance was demonstrated by growth inhibition experiments using knock-out (Δcdp) and complemented (Δcdp::cdp) mutants. Coculture and coinfection experiments revealed that S. maltophilia carrying the cdp gene could inactivate colistin and protect otherwise susceptible Pseudomonas aeruginosa, which may seriously affect the clinical efficacy of the drug for the treatment of cystic fibrosis patients with polymicrobial infection. CONCLUSIONS Our results suggest that Cdp should be recognized as a colistin resistance determinant that confers collective resistance at the microbial community level. Our study will provide vital information for successful clinical outcomes during the treatment of complex polymicrobial infections, particularly including S. maltophilia and other colistin-susceptible Gram-negative pathogens such as P. aeruginosa. Video abstract.
Collapse
Affiliation(s)
- Do-Hoon Lee
- Department of Systems Biotechnology and Center for Antibiotic Resistome, Chung-Ang University, Anseong, 17456, Republic of Korea
| | - Ju-Hee Cha
- Department of Systems Biotechnology and Center for Antibiotic Resistome, Chung-Ang University, Anseong, 17456, Republic of Korea
| | - Dae-Wi Kim
- Department of Systems Biotechnology and Center for Antibiotic Resistome, Chung-Ang University, Anseong, 17456, Republic of Korea
- Division of Life Sciences, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Kihyun Lee
- Department of Systems Biotechnology and Center for Antibiotic Resistome, Chung-Ang University, Anseong, 17456, Republic of Korea
| | - Yong-Seok Kim
- Department of Systems Biotechnology and Center for Antibiotic Resistome, Chung-Ang University, Anseong, 17456, Republic of Korea
| | - Hyo-Young Oh
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam, 13488, Republic of Korea
| | - You-Hee Cho
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam, 13488, Republic of Korea
| | - Chang-Jun Cha
- Department of Systems Biotechnology and Center for Antibiotic Resistome, Chung-Ang University, Anseong, 17456, Republic of Korea.
| |
Collapse
|
18
|
Abstract
Sunlight drives phototrophic metabolism, which affects redox conditions and produces substrates for nonphototrophs. These environmental parameters fluctuate daily due to Earth’s rotation, and nonphototrophic organisms can therefore benefit from the ability to respond to, or even anticipate, such changes. Circadian rhythms, such as daily changes in body temperature, in host organisms can also affect local conditions for colonizing bacteria. Here, we investigated the effects of light/dark and temperature cycling on biofilms of the opportunistic pathogen Pseudomonas aeruginosa PA14. We grew biofilms in the presence of a respiratory indicator dye and found that enhanced dye reduction occurred in biofilm zones that formed during dark intervals and at lower temperatures. This pattern formation occurred with cycling of blue, red, or far-red light, and a screen of mutants representing potential sensory proteins identified two with defects in pattern formation, specifically under red light cycling. We also found that the physiological states of biofilm subzones formed under specific light and temperature conditions were retained during subsequent condition cycling. Light/dark and temperature cycling affected expression of genes involved in primary metabolic pathways and redox homeostasis, including those encoding electron transport chain components. Consistent with this, we found that cbb3-type oxidases contribute to dye reduction under light/dark cycling conditions. Together, our results indicate that cyclic changes in light exposure and temperature have lasting effects on redox metabolism in biofilms formed by a nonphototrophic, pathogenic bacterium.
Collapse
|
19
|
The Protective Effects of Carrageenan Oligosaccharides on Intestinal Oxidative Stress Damage of Female Drosophila melanogaster. Antioxidants (Basel) 2021; 10:antiox10121996. [PMID: 34943099 PMCID: PMC8698627 DOI: 10.3390/antiox10121996] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 12/18/2022] Open
Abstract
Carrageenan oligosaccharides (COS) have been reported to possess excellent antioxidant activities, but the underlying mechanism remains poorly understood. In this study, H2O2 was applied to trigger oxidative stress. The results showed that the addition of COS could effectively extend the lifespan of female Drosophila, which was associated with improvements by COS on the antioxidant defense system, including a decrease in MDA, the enhanced activities of SOD and CAT, the reduction of ROS in intestinal epithelial cells, and the up-regulation of antioxidant-relevant genes (GCL, GSTs, Nrf2, SOD). Meanwhile, the axenic female Drosophila fed with COS showed almost no improvement in the above measurements after H2O2 treatment, which highlighted the antioxidant mechanism of COS was closely related to intestinal microorganisms. Then, 16S rDNA high-throughput sequencing was applied and the result showed that the addition of COS in diets contributed to the diversity and abundance of intestinal flora in H2O2 induced female Drosophila. Moreover, COS significantly inhibited the expression of gene mTOR, elevated its downstream gene 4E-BP, and further inhibited autophagy-relevant genes (AMPKα, Atg1, Atg5, Atg8a) in H2O2 induced female Drosophila. The inhibition of the mTOR pathway and the activation of autophagy was probably mediated by the antioxidant effects of COS. These results provide potential evidence for further understanding of COS as an intestinal antioxidant.
Collapse
|
20
|
Brás R, Monteiro A, Sunkel CE, Resende LP. Aneuploidy facilitates dysplastic and tumorigenic phenotypes in the Drosophila gut. Biol Open 2021; 10:bio058623. [PMID: 33948620 PMCID: PMC8576263 DOI: 10.1242/bio.058623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/27/2021] [Indexed: 11/20/2022] Open
Abstract
Aneuploidy has been strongly linked to cancer development, and published evidence has suggested that aneuploidy can have an oncogenic or a tumor suppressor role depending on the tissue context. Using the Drosophila midgut as a model, we have recently described that adult intestinal stem cells (ISCs), do not activate programmed cell death upon aneuploidy induction, leading to an increase in ISC proliferation rate, and tissue dysplasia. How aneuploidy impacts ISCs in intestinal tumorigenic models remains to be investigated, and it represents a very important biological question to address since data from multiple in vivo models suggests that the cellular impact of aneuploidy is highly dependent on the cellular and tissue context. Using manipulation of different genetic pathways such as EGFR, JAK-STAT and Notch that cause dysplastic phenotypes in the Drosophila gut, we found that concomitant aneuploidy induction by impairment of the spindle assembly checkpoint (SAC) consistently leads to a more severe progression of intestinal dysplasia or tumorigenesis. This is characterized by an accumulation of progenitor cells, high tissue cell density and higher stem cell proliferation rates, revealing an additive or synergistic effect depending on the misregulated pathway in which aneuploidy was induced. Thus, our data suggests that in the Drosophila gut, both dysplasia and tumorigenic phenotypes can be fueled by inducing genomic instability of resident stem cells.
Collapse
Affiliation(s)
- Rita Brás
- Instituto de Investigaçaõ e Inovaçaõ em Saúde, Universidade do Porto, 4200-1353 Porto, Portugal
- IBMC – Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-1353 Porto, Portugal
| | - Augusta Monteiro
- Instituto de Investigaçaõ e Inovaçaõ em Saúde, Universidade do Porto, 4200-1353 Porto, Portugal
- IBMC – Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-1353 Porto, Portugal
| | - Claudio E. Sunkel
- Instituto de Investigaçaõ e Inovaçaõ em Saúde, Universidade do Porto, 4200-1353 Porto, Portugal
- IBMC – Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-1353 Porto, Portugal
- ICBAS – Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, 4050-353 Porto, Portugal
| | - Luís Pedro Resende
- Instituto de Investigaçaõ e Inovaçaõ em Saúde, Universidade do Porto, 4200-1353 Porto, Portugal
- IBMC – Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-1353 Porto, Portugal
| |
Collapse
|
21
|
Bronnec V, Alexeyev OA. In vivo model of Propionibacterium (Cutibacterium) spp. biofilm in Drosophila melanogaster. Anaerobe 2021; 72:102450. [PMID: 34619359 DOI: 10.1016/j.anaerobe.2021.102450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 08/27/2021] [Accepted: 09/14/2021] [Indexed: 01/12/2023]
Abstract
OBJECTIVES Acne vulgaris is a common inflammatory disorder of the pilosebaceous unit and Propionibacterium acnes biofilm-forming ability is believed to be a contributing factor to the disease development. In vivo models mimicking hair follicle environment are lacking. The aim of this study was to develop an in vivo Propionibacterium spp. biofilm model in Drosophila melanogaster (fruit fly). METHODS We created a sterile line of D. melanogaster able to sustain Propionibacterium spp. biofilms in the gut. In order to mimic the lipid-rich, anaerobic environment of the hair follicle, fruit flies were maintained on lipid-rich diet. Propionibacterium spp. biofilms were visualized by immunofluorescence and scanning electron microscopy. We further tested if the biofilm-dispersal activity of DNase I can be demonstrated in the developed model. RESULTS We have demonstrated the feasibility of our in vivo model for development and study of P. acnes, P. granulosum and P. avidum biofilms. The model is suitable to evaluate dispersal as well as other agents against P. acnes biofilm. CONCLUSIONS We report a novel in vivo model for studying Propionibacterium spp. biofilms. The model can be suitable for both mechanistic as well as interventional studies.
Collapse
Affiliation(s)
- Vicky Bronnec
- Department of Pathology, Medical Biosciences, Umeå University, Umeå, Sweden
| | - Oleg A Alexeyev
- Department of Pathology, Medical Biosciences, Umeå University, Umeå, Sweden.
| |
Collapse
|
22
|
Rocha LS, Silva BPD, Correia TML, Silva RPD, Meireles DDA, Pereira R, Netto LES, Meotti FC, Queiroz RF. Peroxiredoxin AhpC1 protects Pseudomonas aeruginosa against the inflammatory oxidative burst and confers virulence. Redox Biol 2021; 46:102075. [PMID: 34315109 PMCID: PMC8327333 DOI: 10.1016/j.redox.2021.102075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/13/2021] [Accepted: 07/17/2021] [Indexed: 11/16/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic bacterium in patients with cystic fibrosis and hospital acquired infections. It presents a plethora of virulence factors and antioxidant enzymes that help to subvert the immune system. In this study, we identified the 2-Cys peroxiredoxin, alkyl-hydroperoxide reductase C1 (AhpC1), as a relevant scavenger of oxidants generated during inflammatory oxidative burst and a mechanism of P. aeruginosa (PA14) escaping from killing. Deletion of AhpC1 led to a higher sensitivity to hypochlorous acid (HOCl, IC50 3.2 ± 0.3 versus 19.1 ± 0.2 μM), hydrogen peroxide (IC50 91.2 ± 0.3 versus 496.5 ± 6.4 μM) and the organic peroxide urate hydroperoxide. ΔahpC1 strain was more sensitive to the killing by isolated neutrophils and less virulent in a mice model of infection. All mice intranasally instilled with ΔahpC1 survived as long as they were monitored (15 days), whereas 100% wild-type and ΔahpC1 complemented with ahpC1 gene (ΔahpC1 attB:ahpC1) died within 3 days. A significantly lower number of colonies was detected in the lung and spleen of ΔahpC1-infected mice. Total leucocytes, neutrophils, myeloperoxidase activity, pro-inflammatory cytokines, nitrite production and lipid peroxidation were much lower in lungs or bronchoalveolar liquid of mice infected with ΔahpC1. Purified AhpC neutralized the inflammatory organic peroxide, urate hydroperoxide, at a rate constant of 2.3 ± 0.1 × 106 M-1s-1, and only the ΔahpC1 strain was sensitive to this oxidant. Incubation of neutrophils with uric acid, the urate hydroperoxide precursor, impaired neutrophil killing of wild-type but improved the killing of ΔahpC1. Hyperuricemic mice presented higher levels of serum cytokines and succumbed much faster to PA14 infection when compared to normouricemic mice. In summary, ΔahpC1 PA14 presented a lower virulence, which was attributed to a poorer ability to neutralize the oxidants generated by inflammatory oxidative burst, leading to a more efficient killing by the host. The enzyme is particularly relevant in detoxifying the newly reported inflammatory organic peroxide, urate hydroperoxide.
Collapse
Affiliation(s)
- Leonardo Silva Rocha
- Programa Multicêntrico de Pós-graduação em Bioquímica e Biologia Molecular, Universidade Estadual do Sudoeste da Bahia, Brazil
| | | | - Thiago M L Correia
- Programa Multicêntrico de Pós-graduação Multicêntrico em Ciências Fisiológicas, Instituto Multidisciplinar de Saúde, Universidade Federal da Bahia, Brazil
| | | | - Diogo de Abreu Meireles
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Brazil
| | - Rafael Pereira
- Programa Multicêntrico de Pós-graduação em Bioquímica e Biologia Molecular, Universidade Estadual do Sudoeste da Bahia, Brazil; Programa Multicêntrico de Pós-graduação Multicêntrico em Ciências Fisiológicas, Instituto Multidisciplinar de Saúde, Universidade Federal da Bahia, Brazil; Departamento de Ciências Biológicas, Universidade Estadual do Sudoeste da Bahia, Brazil
| | - Luis Eduardo Soares Netto
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Brazil
| | - Flavia Carla Meotti
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Brazil.
| | - Raphael Ferreira Queiroz
- Programa Multicêntrico de Pós-graduação em Bioquímica e Biologia Molecular, Universidade Estadual do Sudoeste da Bahia, Brazil; Departamento de Ciências Naturais, Universidade Estadual do Sudoeste da Bahia, Brazil.
| |
Collapse
|
23
|
Reactive Oxygen Species-Dependent Innate Immune Mechanisms Control Methicillin-Resistant Staphylococcus aureus Virulence in the Drosophila Larval Model. mBio 2021; 12:e0027621. [PMID: 34126772 PMCID: PMC8262968 DOI: 10.1128/mbio.00276-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Antibiotic-resistant Staphylococcus aureus strains constitute a major public health concern worldwide and are responsible for both health care- and community-associated infections. Here, we establish a robust and easy-to-implement model of oral S. aureus infection using Drosophila melanogaster larvae that allowed us to follow the fate of S. aureus at the whole-organism level as well as the host immune responses. Our study demonstrates that S. aureus infection triggers H2O2 production by the host via the Duox enzyme, thereby promoting antimicrobial peptide production through activation of the Toll pathway. Staphylococcal catalase mediates H2O2 neutralization, which not only promotes S. aureus survival but also minimizes the host antimicrobial response, hence reducing bacterial clearance in vivo. We show that while catalase expression is regulated in vitro by the accessory gene regulatory system (Agr) and the general stress response regulator sigma B (SigB), it no longer depends on these two master regulators in vivo. Finally, we confirm the versatility of this model by demonstrating the colonization and host stimulation capabilities of S. aureus strains belonging to different sequence types (CC8 and CC5) as well as of two other bacterial pathogens, Salmonella enterica serovar Typhimurium and Shigella flexneri. Thus, the Drosophila larva can be a general model to follow in vivo the innate host immune responses triggered during infection by human pathogens.
Collapse
|
24
|
Wang Y, Cao Q, Cao Q, Gan J, Sun N, Yang CG, Bae T, Wu M, Lan L. Histamine activates HinK to promote the virulence of Pseudomonas aeruginosa. Sci Bull (Beijing) 2021; 66:1101-1118. [PMID: 36654344 DOI: 10.1016/j.scib.2021.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/25/2020] [Accepted: 12/28/2020] [Indexed: 01/20/2023]
Abstract
During infections, bacteria stimulate host cells to produce and release histamine, which is a key mediator of vital cellular processes in animals. However, the mechanisms underlying the bacterial cell's ability to sense and respond to histamine are poorly understood. Herein, we show that HinK, a LysR-type transcriptional regulator, is required to evoke responses to histamine in Pseudomonas aeruginosa, an important human pathogen. HinK directly binds to and activates the promoter of genes involved in histamine uptake and metabolism, iron acquisition, and Pseudomonas quinolone signal (PQS) biosynthesis. The transcriptional regulatory activity of HinK is induced when histamine is present, and it occurs when HinK binds with imidazole-4-acetic acid (ImAA), a histamine metabolite whose production in P. aeruginosa depends on the HinK-activated histamine uptake and utilization operon hinDAC-pa0222. Importantly, the inactivation of HinK inhibits diverse pathogenic phenotypes of P. aeruginosa. These results suggest that histamine acts as an interkingdom signal and provide insights into the mechanism used by pathogenic bacteria to exploit host regulatory signals to promote virulence.
Collapse
Affiliation(s)
- Yaya Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Qiao Cao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; College of Life Science, Northwest University, Xi'an 710069, China
| | - Qin Cao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianhua Gan
- State Key Laboratory of Genetic Engineering, Shanghai Public Health Clinical Center, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 201438, China
| | - Ning Sun
- The State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Cai-Guang Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Taeok Bae
- Department of Microbiology and Immunology, Indiana University School of Medicine-Northwest, Gary IN 46408, USA
| | - Min Wu
- Department of Biomedical Sciences, University of North Dakota, Grand Forks ND 58203-9037, USA
| | - Lefu Lan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; NMPA Key Laboratory for Testing Technology of Pharmaceutical Microbiology, Shanghai Institute for Food and Drug Control, Shanghai 201203, China.
| |
Collapse
|
25
|
Two-Component Signaling Systems Regulate Diverse Virulence-Associated Traits in Pseudomonas aeruginosa. Appl Environ Microbiol 2021; 87:AEM.03089-20. [PMID: 33771779 DOI: 10.1128/aem.03089-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/18/2021] [Indexed: 12/30/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that can cause problematic infections at different sites throughout the human body. P. aeruginosa encodes a large suite of over 60 two-component signaling systems that enable cells to rapidly sense and respond to external signals. Previous work has shown that some of these sensory systems contribute to P. aeruginosa pathogenesis, but the virulence-associated processes and phenotypic traits that each of these systems controls are still largely unclear. To aid investigations of these sensory systems, we have generated deletion strains for each of 64 genes encoding histidine kinases and one histidine phosphotransferase in P. aeruginosa PA14. We carried out initial phenotypic characterizations of this collection by assaying these mutants for over a dozen virulence-associated traits, and we found that each of these phenotypes is regulated by multiple sensory systems. Our work highlights the usefulness of this collection for further studies of P. aeruginosa two-component signaling systems and provides insight into how these systems may contribute to P. aeruginosa infection.IMPORTANCE Pseudomonas aeruginosa can grow and survive under a wide range of conditions, including as a human pathogen. As such, P. aeruginosa must be able to sense and respond to diverse signals and cues in its environment. This sensory capability is endowed in part by the hundreds of two-component signaling proteins encoded in the P. aeruginosa genome, but the precise roles of each remain poorly defined. To facilitate systematic study of the signaling repertoire of P. aeruginosa PA14, we generated a library of deletion strains, each lacking one of the 64 histidine kinases. By subjecting these strains to a battery of phenotypic assays, we confirmed the functions of many and unveiled roles for dozens of previously uncharacterized histidine kinases in controlling various traits, many of which are associated with P. aeruginosa virulence. Thus, this work provides new insight into the functions of two-component signaling proteins and provides a resource for future investigations.
Collapse
|
26
|
Benítez-Chao DF, León-Buitimea A, Lerma-Escalera JA, Morones-Ramírez JR. Bacteriocins: An Overview of Antimicrobial, Toxicity, and Biosafety Assessment by in vivo Models. Front Microbiol 2021; 12:630695. [PMID: 33935991 PMCID: PMC8083986 DOI: 10.3389/fmicb.2021.630695] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/08/2021] [Indexed: 12/13/2022] Open
Abstract
The world is facing a significant increase in infections caused by drug-resistant infectious agents. In response, various strategies have been recently explored to treat them, including the development of bacteriocins. Bacteriocins are a group of antimicrobial peptides produced by bacteria, capable of controlling clinically relevant susceptible and drug-resistant bacteria. Bacteriocins have been studied to be able to modify and improve their physicochemical properties, pharmacological effects, and biosafety. This manuscript focuses on the research being developed on the biosafety of bacteriocins, which is a topic that has not been addressed extensively in previous reviews. This work discusses the studies that have tested the effect of bacteriocins against pathogens and assess their toxicity using in vivo models, including murine and other alternative animal models. Thus, this work concludes the urgency to increase and advance the in vivo models that both assess the efficacy of bacteriocins as antimicrobial agents and evaluate possible toxicity and side effects, which are key factors to determine their success as potential therapeutic agents in the fight against infections caused by multidrug-resistant microorganisms.
Collapse
Affiliation(s)
- Diego Francisco Benítez-Chao
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico.,Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Parque de Investigación e Innovación Tecnológica, Universidad Autónoma de Nuevo León, Apodaca, Mexico
| | - Angel León-Buitimea
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico.,Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Parque de Investigación e Innovación Tecnológica, Universidad Autónoma de Nuevo León, Apodaca, Mexico
| | - Jordy Alexis Lerma-Escalera
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico.,Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Parque de Investigación e Innovación Tecnológica, Universidad Autónoma de Nuevo León, Apodaca, Mexico
| | - José Rubén Morones-Ramírez
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico.,Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Parque de Investigación e Innovación Tecnológica, Universidad Autónoma de Nuevo León, Apodaca, Mexico
| |
Collapse
|
27
|
NirA Is an Alternative Nitrite Reductase from Pseudomonas aeruginosa with Potential as an Antivirulence Target. mBio 2021; 12:mBio.00207-21. [PMID: 33879591 PMCID: PMC8092218 DOI: 10.1128/mbio.00207-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The emergence of widespread antimicrobial resistance has led to the need for development of novel therapeutic interventions. Antivirulence strategies are an attractive alternative to classic antimicrobial therapy; however, they require identification of new specific targets which can be exploited in drug discovery programs. The opportunistic pathogen Pseudomonas aeruginosa produces an arsenal of virulence factors causing a wide range of diseases in multiple hosts and is difficult to eradicate due to its intrinsic resistance to antibiotics. With the antibacterial pipeline drying up, antivirulence therapy has become an attractive alternative strategy to the traditional use of antibiotics to treat P. aeruginosa infections. To identify P. aeruginosa genes required for virulence in multiple hosts, a random library of Tn5 mutants in strain PAO1-L was previously screened in vitro for those showing pleiotropic effects in the production of virulence phenotypes. Using this strategy, we identified a Tn5 mutant with an insertion in PA4130 showing reduced levels of a number of virulence traits in vitro. Construction of an isogenic mutant in this gene presented results similar to those for the Tn5 mutant. Furthermore, the PA4130 isogenic mutant showed substantial attenuation in disease models of Drosophila melanogaster and Caenorhabditis elegans as well as reduced toxicity in human cell lines. Mice infected with this mutant demonstrated an 80% increased survival rate in acute and agar bead lung infection models. PA4130 codes for a protein with homology to nitrite and sulfite reductases. Overexpression of PA4130 in the presence of the siroheme synthase CysG enabled its purification as a soluble protein. Methyl viologen oxidation assays with purified PA4130 showed that this enzyme is a nitrite reductase operating in a ferredoxin-dependent manner. The preference for nitrite and production of ammonium revealed that PA4130 is an ammonia:ferredoxin nitrite reductase and hence was named NirA.
Collapse
|
28
|
Chen X, Hu B, Huang L, Cheng L, Liu H, Hu J, Hu S, Han C, He H, Kang B, Xu H, Zhang R, Wang J, Li L. The differences in intestinal growth and microorganisms between male and female ducks. Poult Sci 2021; 100:1167-1177. [PMID: 33518075 PMCID: PMC7858134 DOI: 10.1016/j.psj.2020.10.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/03/2020] [Accepted: 10/19/2020] [Indexed: 01/22/2023] Open
Abstract
There are great differences in physiological and biological functions between animals of different sexes. However, whether there is a consensus between sexes in duck intestinal development and microorganisms is still unknown. The current study used Nonghua ducks to estimate the effect of sex on the intestine by evaluating differences in intestinal growth indexes and microorganisms. The intestines of male and female ducks were sampled at 2, 5, and 10 wk from the duodenum, jejunum, ileum, and cecum. Then, the intestinal length and weight were measured, the morphology was observed with HE staining, and the intestinal content was analyzed by 16S rRNA sequencing. The results showed that male ducks have shorter intestinal lengths with higher relative weights/relative lengths. The values of jejunal villus height (VH)/crypt depth (CD) of female ducks were significantly higher at 2 wk, whereas the jejunal VH/CD was significantly lower at 10 wk. There was obvious separation of microorganisms in each intestinal segment of ducks of different sexes at the 3 time periods. The dominant phyla at different stages were Firmicutea, Proteobacteria, Bacteroidetes, and Actinobacteria. The duodenal Chao index at the genus level of male ducks was significantly higher at 10 wk than that of female ducks. Significantly different genera were found only in the jejunum, and the abundances of Escherichia_Shigella, Pseudomonas, Clostridium_sensu_stricto_1, Sphingomonas, and Desulfovibrio in male ducks were higher than those in female ducks, whereas the abundance of Rothia was lower, and the abundance of viral infectious diseases, lipid metabolism, metabolism of terpenoids and polyketides, parasitic infectious diseases, xenobiotic biodegradation and metabolism, cardiovascular disease, and metabolism of other amino acids in male ducks were higher than that in female ducks, whereas gene folding, sorting and degradation pathways, and nucleotide metabolism were lower. This study provides a basic reference for the intestinal development and microbial symbiosis of ducks of different sexes.
Collapse
Affiliation(s)
- Xuefei Chen
- Work for Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agriculture University, Chengdu, China
| | - Bo Hu
- Work for Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agriculture University, Chengdu, China
| | - Liansi Huang
- Work for Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agriculture University, Chengdu, China
| | - Lumin Cheng
- Work for Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agriculture University, Chengdu, China
| | - Hehe Liu
- Work for Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agriculture University, Chengdu, China
| | - Jiwei Hu
- Work for Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agriculture University, Chengdu, China
| | - Shenqiang Hu
- Work for Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agriculture University, Chengdu, China
| | - Chunchun Han
- Work for Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agriculture University, Chengdu, China
| | - Hua He
- Work for Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agriculture University, Chengdu, China
| | - Bo Kang
- Work for Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agriculture University, Chengdu, China
| | - Hengyong Xu
- Work for Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agriculture University, Chengdu, China
| | - Rongping Zhang
- Work for Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agriculture University, Chengdu, China
| | - Jiwen Wang
- Work for Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agriculture University, Chengdu, China
| | - Liang Li
- Work for Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agriculture University, Chengdu, China.
| |
Collapse
|
29
|
Henry Y, Tarapacki P, Colinet H. Larval density affects phenotype and surrounding bacterial community without altering gut microbiota in Drosophila melanogaster. FEMS Microbiol Ecol 2020; 96:5813260. [PMID: 32221589 DOI: 10.1093/femsec/fiaa055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/20/2020] [Indexed: 12/25/2022] Open
Abstract
Larval crowding represents a complex stressful situation arising from inter-individual competition for time- and space-limited resources. The foraging of a large number of individuals may alter the chemical and bacterial composition of food and in turn affect individual's traits. Here we used Drosophila melanogaster to explore these assumptions. First, we used a wide larval density gradient to investigate the impact of crowding on phenotypical traits. We confirmed that high densities increased development time and pupation height, and decreased viability and body mass. Next, we measured concentrations of common metabolic wastes (ammonia, uric acid) and characterized bacterial communities, both in food and in larvae, for three contrasting larval densities (low, medium and high). Ammonia concentration increased in food from medium and high larval densities, but remained low in larvae regardless of the larval density. Uric acid did not accumulate in food but was detected in larvae. Surprisingly, bacterial composition remained stable in guts of larvae whatever their rearing density, although it drastically changed in the food. Overall, these results indicate that crowding deeply affects individuals, and also their abiotic and biotic surroundings. Environmental bacterial communities likely adapt to altered nutritional situations resulting from crowding, putatively acting as scavengers of larval metabolic wastes.
Collapse
Affiliation(s)
- Y Henry
- ECOBIO - UMR 6553, Univ Rennes 1, CNRS, Rennes, France.,Eawag - Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - P Tarapacki
- ECOBIO - UMR 6553, Univ Rennes 1, CNRS, Rennes, France
| | - H Colinet
- ECOBIO - UMR 6553, Univ Rennes 1, CNRS, Rennes, France
| |
Collapse
|
30
|
Cao Q, Yang N, Wang Y, Xu C, Zhang X, Fan K, Chen F, Liang H, Zhang Y, Deng X, Feng Y, Yang CG, Wu M, Bae T, Lan L. Mutation-induced remodeling of the BfmRS two-component system in Pseudomonas aeruginosa clinical isolates. Sci Signal 2020; 13:13/656/eaaz1529. [PMID: 33144518 DOI: 10.1126/scisignal.aaz1529] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Genetic mutations are a primary driving force behind the adaptive evolution of bacterial pathogens. Multiple clinical isolates of Pseudomonas aeruginosa, an important human pathogen, have naturally evolved one or more missense mutations in bfmS, which encodes the sensor histidine kinase of the BfmRS two-component system (TCS). A mutant BfmS protein containing both the L181P and E376Q substitutions increased the phosphorylation and thus the transcriptional regulatory activity of its cognate downstream response regulator, BfmR. This reduced acute virulence and enhanced biofilm formation, both of which are phenotypic changes associated with a chronic infection state. The increased phosphorylation of BfmR was due, at least in part, to the cross-phosphorylation of BfmR by GtrS, a noncognate sensor kinase. Other spontaneous missense mutations in bfmS, such as A42E/G347D, T242R, and R393H, also caused a similar remodeling of the BfmRS TCS in P. aeruginosa This study highlights the plasticity of TCSs mediated by spontaneous mutations and suggests that mutation-induced activation of BfmRS may contribute to host adaptation by P. aeruginosa during chronic infections.
Collapse
Affiliation(s)
- Qiao Cao
- College of Life Science, Northwest University, Xi'an 710127, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Nana Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yanhui Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chenchen Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xue Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ke Fan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Feifei Chen
- College of Life Science, Northwest University, Xi'an 710127, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Haihua Liang
- College of Life Science, Northwest University, Xi'an 710127, China
| | - Yingchao Zhang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong 999077, China
| | - Xin Deng
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong 999077, China
| | - Youjun Feng
- School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Cai-Guang Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Min Wu
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58203-9037, USA
| | - Taeok Bae
- Department of Microbiology and Immunology, Indiana University School of Medicine-Northwest, Gary, IN 46408, USA
| | - Lefu Lan
- College of Life Science, Northwest University, Xi'an 710127, China. .,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China.,NMPA Key Laboratory for Testing Technology of Pharmaceutical Microbiology, Shanghai Institute for Food and Drug Control, Shanghai, China
| |
Collapse
|
31
|
Kamareddine L, Najjar H, Sohail MU, Abdulkader H, Al-Asmakh M. The Microbiota and Gut-Related Disorders: Insights from Animal Models. Cells 2020; 9:cells9112401. [PMID: 33147801 PMCID: PMC7693214 DOI: 10.3390/cells9112401] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 10/23/2020] [Accepted: 10/29/2020] [Indexed: 02/06/2023] Open
Abstract
Over the past decade, the scientific committee has called for broadening our horizons in understanding host–microbe interactions and infectious disease progression. Owing to the fact that the human gut harbors trillions of microbes that exhibit various roles including the production of vitamins, absorption of nutrients, pathogen displacement, and development of the host immune system, particular attention has been given to the use of germ-free (GF) animal models in unraveling the effect of the gut microbiota on the physiology and pathophysiology of the host. In this review, we discuss common methods used to generate GF fruit fly, zebrafish, and mice model systems and highlight the use of these GF model organisms in addressing the role of gut-microbiota in gut-related disorders (metabolic diseases, inflammatory bowel disease, and cancer), and in activating host defense mechanisms and amending pathogenic virulence.
Collapse
Affiliation(s)
- Layla Kamareddine
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, P.O. Box 2713 Doha, Qatar; (L.K.); (H.N.); (M.U.S.); (H.A.)
| | - Hoda Najjar
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, P.O. Box 2713 Doha, Qatar; (L.K.); (H.N.); (M.U.S.); (H.A.)
| | - Muhammad Umar Sohail
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, P.O. Box 2713 Doha, Qatar; (L.K.); (H.N.); (M.U.S.); (H.A.)
- Biomedical Research Center, QU Health, Qatar University, P.O. Box 2713 Doha, Qatar
| | - Hadil Abdulkader
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, P.O. Box 2713 Doha, Qatar; (L.K.); (H.N.); (M.U.S.); (H.A.)
| | - Maha Al-Asmakh
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, P.O. Box 2713 Doha, Qatar; (L.K.); (H.N.); (M.U.S.); (H.A.)
- Biomedical Research Center, QU Health, Qatar University, P.O. Box 2713 Doha, Qatar
- Correspondence: ; Tel.: +974-4403-4789
| |
Collapse
|
32
|
Pip serves as an intermediate in RpoS-modulated phz2 expression and pyocyanin production in Pseudomonas aeruginosa. Microb Pathog 2020; 147:104409. [PMID: 32707314 DOI: 10.1016/j.micpath.2020.104409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/17/2020] [Accepted: 07/17/2020] [Indexed: 11/22/2022]
Abstract
Pyocyanin, a main virulence factor that is produced by Pseudomonas aeruginosa, plays an important role in pathogen-host interaction during infection. Two copies of phenazine-biosynthetic operons on genome, phz1 (phzA1B1C1D1E1F1G1) and phz2 (phzA2B2C2D2E2F2G2), contribute to phenazine biosynthesis. In our previous study, we found that RpoS positively regulates expression of the phz2 operon and pyocyanin biosynthesis in P. aeruginosa PAO1. In this work, when a TetR-family regulator gene, pip, was knocked out, we found that pyocyanin production was dramatically reduced, indicating that Pip positively regulates pyocyanin biosynthesis. With further phenazines quantification and β-galactosidase assay, we confirmed that Pip positively regulates phz2 expression, but does not regulate phz1 expression. In addition, while the rpoS gene was deleted, expression of pip was down-regulated. Expression of rpoS in the wild-type PAO1 strain, however, was similar to that in the Pip-deficient mutant PAΔpip, suggesting that expression of pip could positively be regulated by RpoS, whereas rpoS could not be regulated by Pip. Taken together, we drew a conclusion that Pip might serve as an intermediate in RpoS-modulated expression of the phz2 operon and pyocyanin biosynthesis in P. aeruginosa.
Collapse
|
33
|
Ma S, Sun H, Yang W, Gao M, Xu H. Impact of Probiotic Combination in InR[E19]/TM2 Drosophila melanogaster on Longevity, Related Gene Expression, and Intestinal Microbiota: A Preliminary Study. Microorganisms 2020; 8:E1027. [PMID: 32664584 PMCID: PMC7409141 DOI: 10.3390/microorganisms8071027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/02/2020] [Accepted: 07/09/2020] [Indexed: 12/16/2022] Open
Abstract
The insulin receptor (InR) pertains to the insulin receptor family, which plays a key role in the insulin/insulin-like growth factor (IGF)-like signaling (IIS) pathway. Insulin signaling defects may result in the development of metabolic diseases, such as type 2 diabetes, and the InR mutant has been suggested to bear insulin signaling deficiency. Numerous studies have reported that probiotics are beneficial for the treatment of diabetes; however, the effect of probiotics on patients with InR deficiency has seldom been reported. Therefore, we chose the InR[E19]/TM2 Drosophila melanogaster to investigate. The results indicated that probiotics significantly reduce the mean and median lifespan of InR[E19]/TM2 Drosophila (by 15.56% and 23.82%, respectively), but promote that of wild-type files (by 9.31% and 16.67%, respectively). Significant differences were obtained in the expression of lifespan- and metabolism-related genes, such as Imp-L2, Tor, and GstD2, between the standard diet groups and the probiotics groups. Furthermore, analysis of 16S rDNA via high throughput sequencing revealed that the gut bacterial diversity of Drosophila fed with a probiotic combination also differs from that of Drosophila fed with a standard diet. In summary, these findings indicate that a probiotic combination indeed affects InR[E19]/TM2 Drosophila, but not all of its impacts are positive.
Collapse
Affiliation(s)
- Shuang Ma
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China; (S.M.); (H.S.); (W.Y.); (M.G.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Sun
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China; (S.M.); (H.S.); (W.Y.); (M.G.)
| | - Weichao Yang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China; (S.M.); (H.S.); (W.Y.); (M.G.)
| | - Mingfu Gao
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China; (S.M.); (H.S.); (W.Y.); (M.G.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Xu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China; (S.M.); (H.S.); (W.Y.); (M.G.)
| |
Collapse
|
34
|
Panayidou S, Georgiades K, Christofi T, Tamana S, Promponas VJ, Apidianakis Y. Pseudomonas aeruginosa core metabolism exerts a widespread growth-independent control on virulence. Sci Rep 2020; 10:9505. [PMID: 32528034 PMCID: PMC7289854 DOI: 10.1038/s41598-020-66194-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/13/2020] [Indexed: 02/04/2023] Open
Abstract
To assess the role of core metabolism genes in bacterial virulence - independently of their effect on growth - we correlated the genome, the transcriptome and the pathogenicity in flies and mice of 30 fully sequenced Pseudomonas strains. Gene presence correlates robustly with pathogenicity differences among all Pseudomonas species, but not among the P. aeruginosa strains. However, gene expression differences are evident between highly and lowly pathogenic P. aeruginosa strains in multiple virulence factors and a few metabolism genes. Moreover, 16.5%, a noticeable fraction of the core metabolism genes of P. aeruginosa strain PA14 (compared to 8.5% of the non-metabolic genes tested), appear necessary for full virulence when mutated. Most of these virulence-defective core metabolism mutants are compromised in at least one key virulence mechanism independently of auxotrophy. A pathway level analysis of PA14 core metabolism, uncovers beta-oxidation and the biosynthesis of amino-acids, succinate, citramalate, and chorismate to be important for full virulence. Strikingly, the relative expression among P. aeruginosa strains of genes belonging in these metabolic pathways is indicative of their pathogenicity. Thus, P. aeruginosa strain-to-strain virulence variation, remains largely obscure at the genome level, but can be dissected at the pathway level via functional transcriptomics of core metabolism.
Collapse
Affiliation(s)
- Stavria Panayidou
- Infection and Cancer Laboratory, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Kaliopi Georgiades
- Infection and Cancer Laboratory, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus.,Bioinformatics Research Laboratory, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Theodoulakis Christofi
- Infection and Cancer Laboratory, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Stella Tamana
- Bioinformatics Research Laboratory, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Vasilis J Promponas
- Bioinformatics Research Laboratory, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus.
| | - Yiorgos Apidianakis
- Infection and Cancer Laboratory, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus.
| |
Collapse
|
35
|
Ponton F, Morimoto J, Robinson K, Kumar SS, Cotter SC, Wilson K, Simpson SJ. Macronutrients modulate survival to infection and immunity in Drosophila. J Anim Ecol 2019; 89:460-470. [PMID: 31658371 PMCID: PMC7027473 DOI: 10.1111/1365-2656.13126] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/17/2019] [Indexed: 12/21/2022]
Abstract
Immunity and nutrition are two essential modulators of individual fitness. However, while the implications of immune function and nutrition on an individual's lifespan and reproduction are well established, the interplay between feeding behaviour, infection and immune function remains poorly understood. Asking how ecological and physiological factors affect immune responses and resistance to infections is a central theme of eco‐immunology. In this study, we used the fruit fly, Drosophila melanogaster, to investigate how infection through septic injury modulates nutritional intake and how macronutrient balance affects survival to infection by the pathogenic Gram‐positive bacterium Micrococcus luteus. Our results show that infected flies maintain carbohydrate intake, but reduce protein intake, thereby shifting from a protein‐to‐carbohydrate (P:C) ratio of ~1:4 to ~1:10 relative to non‐infected and sham‐infected flies. Strikingly, the proportion of flies dying after M. luteus infection was significantly lower when flies were fed a low‐P high‐C diet, revealing that flies shift their macronutrient intake as means of nutritional self‐medication against bacterial infection. These results are likely due to the effects of the macronutrient balance on the regulation of the constitutive expression of innate immune genes, as a low‐P high‐C diet was linked to an upregulation in the expression of key antimicrobial peptides. Together, our results reveal the intricate relationship between macronutrient intake and resistance to infection and integrate the molecular cross‐talk between metabolic and immune pathways into the framework of nutritional immunology.
Collapse
Affiliation(s)
- Fleur Ponton
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Juliano Morimoto
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Katie Robinson
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Sheemal S Kumar
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | | | - Kenneth Wilson
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Stephen J Simpson
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
36
|
Hudson AL, Moatt JP, Vale PF. Terminal investment strategies following infection are dependent on diet. J Evol Biol 2019; 33:309-317. [DOI: 10.1111/jeb.13566] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 10/30/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Ali L. Hudson
- Institute of Evolutionary Biology School of Biological Sciences University of Edinburgh Edinburgh UK
| | - Joshua P. Moatt
- Institute of Evolutionary Biology School of Biological Sciences University of Edinburgh Edinburgh UK
| | - Pedro F. Vale
- Institute of Evolutionary Biology School of Biological Sciences University of Edinburgh Edinburgh UK
| |
Collapse
|
37
|
Leech T, Evison SEF, Armitage SAO, Sait SM, Bretman A. Interactive effects of social environment, age and sex on immune responses in Drosophila melanogaster. J Evol Biol 2019; 32:1082-1092. [PMID: 31313398 DOI: 10.1111/jeb.13509] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 06/21/2019] [Accepted: 07/01/2019] [Indexed: 12/13/2022]
Abstract
Social environments have been shown to have multiple effects on individual immune responses. For example, increased social contact might signal greater infection risk and prompt a prophylactic upregulation of immunity. This differential investment of resources may in part explain why social environments affect ageing and lifespan. Our previous work using Drosophila melanogaster showed that single-sex social contact reduced lifespan for both sexes. Here, we assess how social interactions (isolation or contact) affect susceptibility to infection, phagocytotic activity and expression of a subset of immune- and stress-related genes in young and old flies of both sexes. Social contact had a neutral, or even improved, effect on post-infection lifespan in older flies and reduced the expression of stress response genes in females; however, it reduced phagocytotic activity. Overall, the effects of social environment were complex and largely subtle and do not indicate a consistent effect. Together, these findings indicate that social contact in D. melanogaster does not have a predictable impact on immune responses and does not simply trade-off immune investment with lifespan.
Collapse
Affiliation(s)
- Thomas Leech
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Sophie E F Evison
- Department of Animal and Plant Sciences, Western Bank, University of Sheffield, Sheffield, UK
| | | | - Steven M Sait
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Amanda Bretman
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
38
|
Dinh H, Mendez V, Tabrizi ST, Ponton F. Macronutrients and infection in fruit flies. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 110:98-104. [PMID: 31082476 DOI: 10.1016/j.ibmb.2019.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 04/24/2019] [Accepted: 05/08/2019] [Indexed: 06/09/2023]
Abstract
Nutrition and infection are closely linked. While it is now well established that hosts can modulate their nutrition after being infected, the extent to which this change in foraging provides the host with a greater fitness remains to be fully understood. Our study explored the relationships between dietary choice, macronutrients intake [i.e., protein (P) and carbohydrate (C)], infection, survival rate and growth of pathogenic bacterial population in the true fruit fly Bactrocera tryoni. Results showed that flies injected with the bacterium Serratia marcescens decreased their macronutrient intake and shifted their diet choice to carbohydrate-biased diet compared to naïve individuals. Interestingly, flies injected with either PBS (i.e., sham-infected) or heat-killed bacteria also reduced food intake and modulated diet choice but only for a day after injection. When infected flies were restricted to the diet they selected (i.e., PC 1:8), they survived better the infection than those restricted to a protein-biased diet (i.e., PC 1:5). In addition, we did not observe any growth of pathogen load in infected flies fed PC 1:8 for the first 3 days post-infection. Finally, a decrease in lipid body reserves was found in flies injected with live bacteria and, interestingly, this loss of body lipid also occurred in flies injected with heat-killed bacteria, but in a diet-dependent manner. Our results indicated that B. tryoni flies modulated their macronutrient intake and decreased the negative effects of the infection on their survival ("nutritional self-medication") the first days following the infection.
Collapse
Affiliation(s)
- Hue Dinh
- Department of Biological Science, Macquarie University, Australia
| | - Vivian Mendez
- Department of Biological Science, Macquarie University, Australia
| | | | - Fleur Ponton
- Department of Biological Science, Macquarie University, Australia.
| |
Collapse
|
39
|
de Melo ACC, da Mata Gomes A, Melo FL, Ardisson-Araújo DMP, de Vargas APC, Ely VL, Kitajima EW, Ribeiro BM, Wolff JLC. Characterization of a bacteriophage with broad host range against strains of Pseudomonas aeruginosa isolated from domestic animals. BMC Microbiol 2019; 19:134. [PMID: 31208333 PMCID: PMC6580649 DOI: 10.1186/s12866-019-1481-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 05/07/2019] [Indexed: 12/16/2022] Open
Abstract
Background Pseudomonas aeruginosa is an opportunistic pathogen and one of the leading causes of nosocomial infections. Moreover, the species can cause severe infections in cystic fibrosis patients, in burnt victims and cause disease in domestic animals. The control of these infections is often difficult due to its vast repertoire of mechanisms for antibiotic resistance. Phage therapy investigation with P. aeruginosa bacteriophages has aimed mainly the control of human diseases. In the present work, we have isolated and characterized a new bacteriophage, named Pseudomonas phage BrSP1, and investigated its host range against 36 P. aeruginosa strains isolated from diseased animals and against P. aeruginosa ATCC strain 27853. Results We have isolated a Pseudomonas aeruginosa phage from sewage. We named this virus Pseudomonas phage BrSP1. Our electron microscopy analysis showed that phage BrSP1 had a long tail structure found in members of the order Caudovirales. “In vitro” biological assays demonstrated that phage BrSP1 was capable of maintaining the P. aeruginosa population at low levels for up to 12 h post-infection. However, bacterial growth resumed afterward and reached levels similar to non-treated samples at 24 h post-infection. Host range analysis showed that 51.4% of the bacterial strains investigated were susceptible to phage BrSP1 and efficiency of plating (EOP) investigation indicated that EOP values in the strains tested varied from 0.02 to 1.72. Analysis of the phage genome revealed that it was a double-stranded DNA virus with 66,189 bp, highly similar to the genomes of members of the genus Pbunavirus, a group of viruses also known as PB1-like viruses. Conclusion The results of our “in vitro” bioassays and of our host range analysis suggested that Pseudomonas phage BrSP1 could be included in a phage cocktail to treat veterinary infections. Our EOP investigation confirmed that EOP values differ considerably among different bacterial strains. Comparisons of complete genome sequences indicated that phage BrSP1 is a novel species of the genus Pbunavirus. The complete genome of phage BrSP1 provides additional data that may help the broader understanding of pbunaviruses genome evolution. Electronic supplementary material The online version of this article (10.1186/s12866-019-1481-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna Cristhina Carmine de Melo
- CCBS - Curso de Ciências Biológicas, Laboratório de Biologia Molecular e Virologia, Prédio 28, primeiro andar, Universidade Presbiteriana Mackenzie, Rua da Consolação, 896, Consolação, São Paulo, SP, CEP 01302-907, Brazil
| | - Amanda da Mata Gomes
- CCBS - Curso de Ciências Biológicas, Laboratório de Biologia Molecular e Virologia, Prédio 28, primeiro andar, Universidade Presbiteriana Mackenzie, Rua da Consolação, 896, Consolação, São Paulo, SP, CEP 01302-907, Brazil
| | - Fernando L Melo
- Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, Brazil
| | - Daniel M P Ardisson-Araújo
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Av. Roraima, 1000, Cidade Universitária, Santa Maria, RS, CEP 97105-900, Brazil
| | - Agueda Palmira Castagna de Vargas
- Departamento de Medicina Veterinária Preventiva (DMVP), Centro de Ciências Rurais (CCR)Avenida Roraima, Universidade Federal de Santa Maria, 1000. Prédio 44, Sala 5137, Santa Maria, RS, CEP 97105-900, Brazil
| | - Valessa Lunkes Ely
- Departamento de Medicina Veterinária Preventiva (DMVP), Centro de Ciências Rurais (CCR)Avenida Roraima, Universidade Federal de Santa Maria, 1000. Prédio 44, Sala 5137, Santa Maria, RS, CEP 97105-900, Brazil
| | - Elliot W Kitajima
- NAP/MEPA, Departamento de Fitopatologia e Nematologia, ESALQ, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Bergmann M Ribeiro
- Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, Brazil
| | - José Luiz Caldas Wolff
- CCBS - Curso de Ciências Biológicas, Laboratório de Biologia Molecular e Virologia, Prédio 28, primeiro andar, Universidade Presbiteriana Mackenzie, Rua da Consolação, 896, Consolação, São Paulo, SP, CEP 01302-907, Brazil.
| |
Collapse
|
40
|
Jang HJ, Bae HW, Cho YH. Exploitation of Drosophila Infection Models to Evaluate Antibacterial Efficacy of Phages. Methods Mol Biol 2019; 1898:183-190. [PMID: 30570733 DOI: 10.1007/978-1-4939-8940-9_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Nonmammalian infection models have been exploited to understand the various aspects of host-pathogen interactions and also provided innovative research platforms for identification of virulence factors, screening for antimicrobial hits, and evaluation of antimicroial efficacy. Here we describe a relatively straightforward protocol to assess the antibacterial efficacy of bacteriophages (phages) toward the opportunistic human pathogen, Pseudomonas aeruginosa, based on the systemic infection model using the fruit fly, Drosophila melanogaster. Since phages, unlike antibacterial chemicals, can be easily and sensitively enumerated by simple assays, it is also possible to address the pharmacokinetic properties of administered phages even in this small-scale infection model.
Collapse
Affiliation(s)
- Hye-Jeong Jang
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Gyeonggi-do, South Korea
| | - Hee-Won Bae
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Gyeonggi-do, South Korea
| | - You-Hee Cho
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Gyeonggi-do, South Korea.
| |
Collapse
|
41
|
Saito R, Shinkai Y, Doi M. Intestinal F-box protein regulates quick avoidance behavior of Caenorhabditis elegans to the pathogenic bacterium Pseudomonas aeruginosa. Genes Cells 2018; 24:192-201. [PMID: 30589496 DOI: 10.1111/gtc.12666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/17/2018] [Accepted: 12/22/2018] [Indexed: 11/30/2022]
Abstract
In most animals, avoiding pathogenic bacteria is crucial for better health and a long life span. For this purpose, animals should be able to quickly sense the presence or uptake of pathogens. The intestine could be a candidate organ to induce escape behaviors; however, the intestinal signaling mechanism for acute regulation of neuronal activity is not well understood. Here, we show that adult Caenorhabditis elegans can respond to the pathogenic bacterium Pseudomonas aeruginosa within 30 min of exposure. This behavior was much faster than previously observed avoidance behaviors in response to P. aeruginosa. By genetic screening, we isolated a mutant defective in this quick avoidance behavior and found that the novel F-box protein FBXC-58 is involved. FBXC-58 is expressed in several tissues, but defective avoidance was rescued by expression of the protein in the intestine. Interestingly, we also found that some but not all mutants in the p38-MAPK and insulin-like signaling pathways, which function in the immune response to pathogens in the intestine, were defective in the quick avoidance behavior to P. aeruginosa. These results suggest that a novel signaling pathway in the intestine exists to regulate neuronal activity for a quick behavioral response.
Collapse
Affiliation(s)
- Ryuichi Saito
- Molecular Neurobiology Research Group and DAILAB, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan.,Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Yoichi Shinkai
- Molecular Neurobiology Research Group and DAILAB, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Motomichi Doi
- Molecular Neurobiology Research Group and DAILAB, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan.,Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
42
|
Hartmann S, Nusbaum DJ, Kim K, Alameh S, Ho CLC, Cruz RL, Levitin A, Bradley KA, Martchenko M. Role of a Small Molecule in the Modulation of Cell Death Signal Transduction Pathways. ACS Infect Dis 2018; 4:1746-1754. [PMID: 30354048 DOI: 10.1021/acsinfecdis.8b00231] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Inflammasomes activate caspase-1 in response to molecular signals from pathogens and other dangerous stimuli as a part of the innate immune response. A previous study discovered a small-molecule, 4-fluoro- N'-[1-(2-pyridinyl)ethylidene]benzohydrazide, which we named DN1, that reduces the cytotoxicity of anthrax lethal toxin (LT). We determined that DN1 protected cells irrespectively of LT concentration and reduced the pathogenicity of an additional bacterial exotoxin and several viruses. Using the LT cytotoxicity pathway, we show that DN1 does not prevent LT internalization and catalytic activity or caspase-1 activation. Moreover, DN1 does not affect the proteolytic activity of host cathepsin B, which facilitates the cytoplasmic entry of toxins. PubChem Bioactivities lists two G protein-coupled receptors (GPCR), type-1 angiotensin II receptor and apelin receptor, as targets of DN1. The inhibition of phosphatidylinositol 3-kinase, phospholipase C, and protein kinase B, which are downstream of GPCR signaling, synergized with DN1 in protecting cells from LT. We hypothesize that DN1-mediated antagonism of GPCRs modulates signal transduction pathways to induce a cellular state that reduces LT-induced pyroptosis downstream of caspase-1 activation. DN1 also reduced the susceptibility of Drosophila melanogaster to toxin-associated bacterial infections. Future experiments will aim to further characterize how DN1 modulates signal transduction pathways to inhibit pyroptotic cell death in LT-sensitive macrophages. DN1 represents a novel chemical probe to investigate host cellular mechanisms that mediate cell death in response to pathogenic agents.
Collapse
Affiliation(s)
- Stella Hartmann
- School of Applied Life Sciences, Keck Graduate Institute, 535 Watson Drive, Claremont, California 91711, United States
| | - David J. Nusbaum
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, 609 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Kevin Kim
- School of Applied Life Sciences, Keck Graduate Institute, 535 Watson Drive, Claremont, California 91711, United States
| | - Saleem Alameh
- School of Applied Life Sciences, Keck Graduate Institute, 535 Watson Drive, Claremont, California 91711, United States
| | - Chi-Lee C. Ho
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, 609 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Renae L. Cruz
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, 609 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Anastasia Levitin
- School of Applied Life Sciences, Keck Graduate Institute, 535 Watson Drive, Claremont, California 91711, United States
| | - Kenneth A. Bradley
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, 609 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Mikhail Martchenko
- School of Applied Life Sciences, Keck Graduate Institute, 535 Watson Drive, Claremont, California 91711, United States
| |
Collapse
|
43
|
Lee H, Baek JY, Kim SY, Jo H, Kang K, Ko JH, Cho SY, Chung DR, Peck KR, Song JH, Ko KS. Comparison of virulence between matt and mucoid colonies of Klebsiella pneumoniae coproducing NDM-1 and OXA-232 isolated from a single patient. J Microbiol 2018; 56:665-672. [PMID: 30141159 DOI: 10.1007/s12275-018-8130-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/09/2018] [Accepted: 05/24/2018] [Indexed: 12/22/2022]
Abstract
Nine Klebsiella pneumoniae isolates coproducing NDM-1 and OXA-232 carbapenemases were successively isolated from a single patient. Although they were isolated simultaneously and were isogenic, they presented different colony phenotypes (matt and mucoid). All nine isolates were resistant to most antibiotics except colistin and fosfomycin. In addition, matt-type isolates were resistant to tigecycline. No differences were detected in the cps cluster sequences, except for the insertion of IS5 in the wzb gene of two matt-type isolates. In vitro virulence assays based on production of capsular polysaccharide, biofilm formation, and resistance to human serum indicated that the mucoid-type isolates were significantly more virulent than the matt-type. In addition, mucoid-type isolates showed higher survival rates than the matt-type ones in infection experiments in the fruit fly, suggesting a higher virulence of K. pneumoniae isolates with a mucoid phenotype. To our knowledge, this is the first report of K. pneumoniae colonies with different phenotypes being isolated from the same sample. In addition, we show that virulence varies with colony phenotype. Dissemination of K. pneumoniae isolates expressing both antibiotic resistance and high virulence would constitute a great threat.
Collapse
Affiliation(s)
- Haejeong Lee
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Jin Yang Baek
- Asia Pacific Foundation for Infectious Diseases (APFID), Seoul, 06367, Republic of Korea
| | - So Yeon Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - HyunJi Jo
- Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - KyeongJin Kang
- Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Jae-Hoon Ko
- Division of Infectious Diseases, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Sun Young Cho
- Division of Infectious Diseases, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Doo Ryeon Chung
- Asia Pacific Foundation for Infectious Diseases (APFID), Seoul, 06367, Republic of Korea
- Division of Infectious Diseases, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Kyong Ran Peck
- Division of Infectious Diseases, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Jae-Hoon Song
- Asia Pacific Foundation for Infectious Diseases (APFID), Seoul, 06367, Republic of Korea
- Division of Infectious Diseases, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Kwan Soo Ko
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea.
- Asia Pacific Foundation for Infectious Diseases (APFID), Seoul, 06367, Republic of Korea.
| |
Collapse
|
44
|
Cohen E, Allen SR, Sawyer JK, Fox DT. Fizzy-Related dictates A cell cycle switch during organ repair and tissue growth responses in the Drosophila hindgut. eLife 2018; 7:e38327. [PMID: 30117808 PMCID: PMC6130973 DOI: 10.7554/elife.38327] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 08/16/2018] [Indexed: 12/21/2022] Open
Abstract
Ploidy-increasing cell cycles drive tissue growth in many developing organs. Such cycles, including endocycles, are increasingly appreciated to drive tissue growth following injury or activated growth signaling in mature organs. In these organs, the regulation and distinct roles of different cell cycles remains unclear. Here, we uncover a programmed switch between cell cycles in the Drosophila hindgut pylorus. Using an acute injury model, we identify mitosis as the response in larval pyloric cells, whereas endocycles occur in adult pyloric cells. By developing a novel genetic method, DEMISE (Dual-Expression-Method-for-Induced-Site-specific-Eradication), we show the cell cycle regulator Fizzy-related dictates the decision between mitosis and endocycles. After injury, both cycles accurately restore tissue mass and genome content. However, in response to sustained growth signaling, only endocycles preserve epithelial architecture. Our data reveal distinct cell cycle programming in response to similar stimuli in mature vs. developmental states and reveal a tissue-protective role of endocycles.
Collapse
Affiliation(s)
- Erez Cohen
- Department of Cell BiologyDuke University School of MedicineDurhamUnited States
| | - Scott R Allen
- Department of Cell BiologyDuke University School of MedicineDurhamUnited States
| | - Jessica K Sawyer
- Department of Pharmacology & Cancer BiologyDuke University School of MedicineDurhamUnited States
| | - Donald T Fox
- Department of Cell BiologyDuke University School of MedicineDurhamUnited States
- Department of Pharmacology & Cancer BiologyDuke University School of MedicineDurhamUnited States
- Regeneration Next InitiativeDuke University School of MedicineDurhamUnited States
| |
Collapse
|
45
|
Drosophila melanogaster as a polymicrobial infection model for Pseudomonas aeruginosa and Staphylococcus aureus. J Microbiol 2018; 56:534-541. [DOI: 10.1007/s12275-018-8331-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/12/2018] [Accepted: 07/16/2018] [Indexed: 01/09/2023]
|
46
|
Magana M, Sereti C, Ioannidis A, Mitchell CA, Ball AR, Magiorkinis E, Chatzipanagiotou S, Hamblin MR, Hadjifrangiskou M, Tegos GP. Options and Limitations in Clinical Investigation of Bacterial Biofilms. Clin Microbiol Rev 2018; 31:e00084-16. [PMID: 29618576 PMCID: PMC6056845 DOI: 10.1128/cmr.00084-16] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bacteria can form single- and multispecies biofilms exhibiting diverse features based upon the microbial composition of their community and microenvironment. The study of bacterial biofilm development has received great interest in the past 20 years and is motivated by the elegant complexity characteristic of these multicellular communities and their role in infectious diseases. Biofilms can thrive on virtually any surface and can be beneficial or detrimental based upon the community's interplay and the surface. Advances in the understanding of structural and functional variations and the roles that biofilms play in disease and host-pathogen interactions have been addressed through comprehensive literature searches. In this review article, a synopsis of the methodological landscape of biofilm analysis is provided, including an evaluation of the current trends in methodological research. We deem this worthwhile because a keyword-oriented bibliographical search reveals that less than 5% of the biofilm literature is devoted to methodology. In this report, we (i) summarize current methodologies for biofilm characterization, monitoring, and quantification; (ii) discuss advances in the discovery of effective imaging and sensing tools and modalities; (iii) provide an overview of tailored animal models that assess features of biofilm infections; and (iv) make recommendations defining the most appropriate methodological tools for clinical settings.
Collapse
Affiliation(s)
- Maria Magana
- Department of Clinical Microbiology, Athens Medical School, Aeginition Hospital, Athens, Greece
| | - Christina Sereti
- Department of Clinical Microbiology, Athens Medical School, Aeginition Hospital, Athens, Greece
- Department of Microbiology, Thriassio General Hospital, Attiki, Greece
| | - Anastasios Ioannidis
- Department of Clinical Microbiology, Athens Medical School, Aeginition Hospital, Athens, Greece
- Department of Nursing, Faculty of Human Movement and Quality of Life Sciences, University of Peloponnese, Sparta, Greece
| | - Courtney A Mitchell
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Anthony R Ball
- Gliese 623b, Mendon, Massachusetts, USA
- GAMA Therapeutics LLC, Pepperell, Massachusetts, USA
| | - Emmanouil Magiorkinis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, University of Athens, Athens-Goudi, Greece
| | | | - Michael R Hamblin
- Harvard-MIT Division of Health Science and Technology, Cambridge, Massachusetts, USA
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Maria Hadjifrangiskou
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - George P Tegos
- Gliese 623b, Mendon, Massachusetts, USA
- GAMA Therapeutics LLC, Pepperell, Massachusetts, USA
| |
Collapse
|
47
|
Siva-Jothy JA, Prakash A, Vasanthakrishnan RB, Monteith KM, Vale PF. Oral Bacterial Infection and Shedding in Drosophila melanogaster. J Vis Exp 2018. [PMID: 29912178 PMCID: PMC6101445 DOI: 10.3791/57676] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The fruit fly Drosophila melanogaster is one of the best developed model systems of infection and innate immunity. While most work has focused on systemic infections, there has been a recent increase of interest in the mechanisms of gut immunocompetence to pathogens, which require methods to orally infect flies. Here we present a protocol to orally expose individual flies to an opportunistic bacterial pathogen (Pseudomonas aeruginosa) and a natural bacterial pathogen of D. melanogaster (Pseudomonas entomophila). The goal of this protocol is to provide a robust method to expose male and female flies to these pathogens. We provide representative results showing survival phenotypes, microbe loads, and bacterial shedding, which is relevant for the study of heterogeneity in pathogen transmission. Finally, we confirm that Dcy mutants (lacking the protective peritrophic matrix in the gut epithelium) and Relish mutants (lacking a functional immune deficiency (IMD) pathway), show increased susceptibility to bacterial oral infection. This protocol, therefore, describes a robust method to infect flies using the oral route of infection, which can be extended to the study of a variety genetic and environmental sources of variation in gut infection outcomes and bacterial transmission.
Collapse
Affiliation(s)
- Jonathon A Siva-Jothy
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh
| | - Arun Prakash
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh
| | | | - Katy M Monteith
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh
| | - Pedro F Vale
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh; Centre for Immunity, Infection and Evolution, University of Edinburgh;
| |
Collapse
|
48
|
Thioester-Containing Proteins 2 and 4 Affect the Metabolic Activity and Inflammation Response in Drosophila. Infect Immun 2018; 86:IAI.00810-17. [PMID: 29463615 DOI: 10.1128/iai.00810-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 02/06/2018] [Indexed: 12/17/2022] Open
Abstract
Drosophila melanogaster is an outstanding model for studying host antipathogen defense. Although substantial progress has been made in understanding how metabolism and immunity are interrelated in flies, little information has been obtained on the molecular players that regulate metabolism and inflammation in Drosophila during pathogenic infection. Recently, we reported that the inactivation of thioester-containing protein 2 (Tep2) and Tep4 promotes survival and decreases the bacterial burden in flies upon infection with the virulent pathogens Photorhabdus luminescens and Photorhabdus asymbiotica Here, we investigated physiological and pathological defects in tep mutant flies in response to Photorhabdus challenge. We find that tep2 and tep4 loss-of-function mutant flies contain increased levels of carbohydrates and triglycerides in the presence or absence of Photorhabdus infection. We also report that Photorhabdus infection leads to higher levels of nitric oxide and reduced transcript levels of the apical caspase-encoding gene Dronc in tep2 and tep4 mutants. We show that Tep2 and Tep4 are upregulated mainly in the fat body rather than the gut in Photorhabdus-infected wild-type flies and that tep mutants contain decreased numbers of Photorhabdus bacteria in both tissue types. We propose that the inactivation of Tep2 or Tep4 in adult Drosophila flies results in lower levels of inflammation and increased energy reserves in response to Photorhabdus, which could confer a survival-protective effect during the initial hours of infection.
Collapse
|
49
|
Clatworthy AE, Romano KP, Hung DT. Whole-organism phenotypic screening for anti-infectives promoting host health. Nat Chem Biol 2018; 14:331-341. [PMID: 29556098 PMCID: PMC9843822 DOI: 10.1038/s41589-018-0018-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 11/20/2017] [Indexed: 01/19/2023]
Abstract
To date, antibiotics have been identified on the basis of their ability to kill bacteria or inhibit their growth rather than directly for their capacity to improve clinical outcomes of infected patients. Although historically successful, this approach has led to the development of an antibiotic armamentarium that suffers from a number of shortcomings, including the inevitable emergence of resistance and, in certain infections, suboptimal efficacy leading to long treatment durations, infection recurrence, or high mortality and morbidity rates despite apparent bacterial sterilization. Conventional antibiotics fail to address the complexities of in vivo bacterial physiology and virulence, as well as the role of the host underlying the complex, dynamic interactions that cause disease. New interventions are needed, aimed at host outcome rather than microbiological cure. Here we review the role of screening models for cellular and whole-organism infection, including worms, flies, zebrafish, and mice, to identify novel therapeutic strategies and discuss their future implications.
Collapse
Affiliation(s)
- Anne E. Clatworthy
- Broad Institute of MIT and Harvard, Cambridge, MA, USA,Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA,Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Keith P. Romano
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA,Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Deborah T. Hung
- Broad Institute of MIT and Harvard, Cambridge, MA, USA,Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA,Department of Genetics, Harvard Medical School, Boston, MA, USA,Correspondence and requests for materials should be addressed to D.T.H.
| |
Collapse
|
50
|
Little AS, Okkotsu Y, Reinhart AA, Damron FH, Barbier M, Barrett B, Oglesby-Sherrouse AG, Goldberg JB, Cody WL, Schurr MJ, Vasil ML, Schurr MJ. Pseudomonas aeruginosa AlgR Phosphorylation Status Differentially Regulates Pyocyanin and Pyoverdine Production. mBio 2018; 9:e02318-17. [PMID: 29382736 PMCID: PMC5790918 DOI: 10.1128/mbio.02318-17] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 12/18/2017] [Indexed: 12/31/2022] Open
Abstract
Pseudomonas aeruginosa employs numerous, complex regulatory elements to control expression of its many virulence systems. The P. aeruginosa AlgZR two-component regulatory system controls the expression of several crucial virulence phenotypes. We recently determined, through transcriptomic profiling of a PAO1 ΔalgR mutant strain compared to wild-type PAO1, that algZR and hemCD are cotranscribed and show differential iron-dependent gene expression. Previous expression profiling was performed in strains without algR and revealed that AlgR acts as either an activator or repressor, depending on the gene. Thus, examination of P. aeruginosa gene expression from cells locked into different AlgR phosphorylation states reveals greater physiological relevance. Therefore, gene expression from strains carrying algR alleles encoding a phosphomimetic (AlgR D54E) or a phosphoablative (AlgR D54N) form were compared by microarray to PAO1. Transcriptome analyses of these strains revealed 25 differentially expressed genes associated with iron siderophore biosynthesis or heme acquisition or production. The PAO1 algR D54N mutant produced lower levels of pyoverdine but increased expression of the small RNAs prrf1 and prrf2 compared to PAO1. In contrast, the algR D54N mutant produced more pyocyanin than wild-type PAO1. On the other hand, the PAO1 algR D54E mutant produced higher levels of pyoverdine, likely due to increased expression of an iron-regulated gene encoding the sigma factor pvdS, but it had decreased pyocyanin production. AlgR specifically bound to the prrf2 and pvdS promoters in vitro AlgR-dependent pyoverdine production was additionally influenced by carbon source rather than the extracellular iron concentration per se AlgR phosphorylation effects were also examined in a Drosophila melanogaster feeding, murine acute pneumonia, and punch wound infection models. Abrogation of AlgR phosphorylation attenuated P. aeruginosa virulence in these infection models. These results show that the AlgR phosphorylation state can directly, as well as indirectly, modulate the expression of iron acquisition genes that may ultimately impact the ability of P. aeruginosa to establish and maintain an infection.IMPORTANCE Pyoverdine and pyocyanin production are well-known P. aeruginosa virulence factors that obtain extracellular iron from the environment and from host proteins in different manners. Here, we show that the AlgR phosphorylation state inversely controls pyoverdine and pyocyanin production and that this control is carbon source dependent. P. aeruginosa expressing AlgR D54N, mimicking the constitutively unphosphorylated state, produced more pyocyanin than cells expressing wild-type AlgR. In contrast, a strain expressing an AlgR phosphomimetic (AlgR D54E) produced higher levels of pyoverdine. Pyoverdine production was directly controlled through the prrf2 small regulatory RNA and the pyoverdine sigma factor, PvdS. Abrogating pyoverdine or pyocyanin gene expression has been shown to attenuate virulence in a variety of models. Moreover, the inability to phosphorylate AlgR attenuates virulence in three different models, a Drosophila melanogaster feeding model, a murine acute pneumonia model, and a wound infection model. Interestingly, AlgR-dependent pyoverdine production was responsive to carbon source, indicating that this regulation has additional complexities that merit further study.
Collapse
Affiliation(s)
- Alexander S. Little
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Yuta Okkotsu
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Alexandria A. Reinhart
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - F. Heath Damron
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
| | - Mariette Barbier
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
| | - Brandon Barrett
- Department of Biology, University of Dallas, Irving, Texas, USA
| | - Amanda G. Oglesby-Sherrouse
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Joanna B. Goldberg
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Center for Cystic Fibrosis and Airways Disease Research, Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - William L. Cody
- Department of Biology, University of Dallas, Irving, Texas, USA
| | - Michael J. Schurr
- Department of Surgery, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Michael L. Vasil
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Michael J. Schurr
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|