1
|
Parlar Köprülü RE, Okur ME, Kolbaşi B, Keskin İ, Ozbek H. Effects of Vincamine on Testicular Dysfunction in Alloxan-induced Diabetic Male Rats. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2022; 21:e132265. [PMID: 36942057 PMCID: PMC10024332 DOI: 10.5812/ijpr-132265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/03/2022] [Accepted: 12/17/2022] [Indexed: 01/21/2023]
Abstract
Background Diabetes mellitus (DM) is frequently linked with problems of several organ systems, including retinopathy, neuropathy, and nephropathy. Additionally, patients have changes in sexual functioning, such as decreased libido and fertility. Vincamine, a monoterpenoid indole alkaloid, has hypoglycemic and antioxidant effects. Objectives This research assessed the impact of vincamine on testicular dysfunction in alloxan-induced male rats by measuring fasting blood glucose, oxidative stress, seminal analysis, and histological examination of the testis. Methods Wister-albino male rats were randomized into the following groups at random: Untreated-healthy, untreated-DM, vincamine-treated (20 mg/kg) DM, vincamine-treated (40 mg/kg) DM, and clomiphene-treated DM (5 mg/kg). On day 14, rats were sacrificed, and semen/blood samples were collected. Sperm count, motility, and morphological abnormalities were noted by microscopic examination. The testis was examined histopathologically and assessed using Johnsen's score. Results Compared with the untreated diabetic group, a dosage of 40 mg/kg vincamine generate a significant reduction in fasting blood sugar (FBG). Compared with the untreated diabetic group, the vincamine-treated rats produced greater plasma testosterone levels and Johnsen scores. In the vincamine 20 mg/kg group, sperm concentration was higher than in the vincamine 40 mg/kg group. Conclusions It is possible that vincamine has a potential preventive effect against diabetes-related reproductive problems attributable to its antioxidant activity and capacity to restore testicular steroidogenesis.
Collapse
Affiliation(s)
- Rabia Edibe Parlar Köprülü
- Department of Medical Pharmacology, Istanbul Medipol University, Istanbul, Turkey
- Corresponding Author: Department of Medical Pharmacology, Istanbul Medipol University, Kavacık, Göztepe Mah, Atatürk Cd. No:40, 34810 Beykoz/İstanbul, Turkey. Tel: +90-5395840201, Fax: +90-4448544,
| | - Mehmet Evren Okur
- Department of Medical Pharmacology, Istanbul Health Sciences University, Istanbul, Turkey
| | - Bircan Kolbaşi
- Department of Histology, Istanbul Medipol University, Istanbul, Turkey
| | - İlknur Keskin
- Department of Histology, Istanbul Medipol University, Istanbul, Turkey
| | - Hanefi Ozbek
- Departmnet of Medical Pharmacology, Izmir Bakircay University, Izmir, Turkey
| |
Collapse
|
2
|
Patel SN, Mathews CE, Chandler R, Stabler CL. The Foundation for Engineering a Pancreatic Islet Niche. Front Endocrinol (Lausanne) 2022; 13:881525. [PMID: 35600597 PMCID: PMC9114707 DOI: 10.3389/fendo.2022.881525] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/30/2022] [Indexed: 12/01/2022] Open
Abstract
Progress in diabetes research is hindered, in part, by deficiencies in current experimental systems to accurately model human pathophysiology and/or predict clinical outcomes. Engineering human-centric platforms that more closely mimic in vivo physiology, however, requires thoughtful and informed design. Summarizing our contemporary understanding of the unique and critical features of the pancreatic islet can inform engineering design criteria. Furthermore, a broad understanding of conventional experimental practices and their current advantages and limitations ensures that new models address key gaps. Improving beyond traditional cell culture, emerging platforms are combining diabetes-relevant cells within three-dimensional niches containing dynamic matrices and controlled fluidic flow. While highly promising, islet-on-a-chip prototypes must evolve their utility, adaptability, and adoptability to ensure broad and reproducible use. Here we propose a roadmap for engineers to craft biorelevant and accessible diabetes models. Concurrently, we seek to inspire biologists to leverage such tools to ask complex and nuanced questions. The progenies of such diabetes models should ultimately enable investigators to translate ambitious research expeditions from benchtop to the clinic.
Collapse
Affiliation(s)
- Smit N. Patel
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Clayton E. Mathews
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
- Diabetes Institute, University of Florida, Gainesville, FL, United States
| | - Rachel Chandler
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Cherie L. Stabler
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
- Diabetes Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
3
|
Abstract
The islet of Langerhans is a complex endocrine micro-organ consisting of a multitude of endocrine and non-endocrine cell types. The two most abundant and prominent endocrine cell types, the beta and the alpha cells, are essential for the maintenance of blood glucose homeostasis. While the beta cell produces insulin, the only blood glucose-lowering hormone of the body, the alpha cell releases glucagon, which elevates blood glucose. Under physiological conditions, these two cell types affect each other in a paracrine manner. While the release products of the beta cell inhibit alpha cell function, the alpha cell releases factors that are stimulatory for beta cell function and increase glucose-stimulated insulin secretion. The aim of this review is to provide a comprehensive overview of recent research into the regulation of beta cell function by alpha cells, focusing on the effect of alpha cell-secreted factors, such as glucagon and acetylcholine. The consequences of differences in islet architecture between species on the interplay between alpha and beta cells is also discussed. Finally, we give a perspective on the possibility of using an in vivo imaging approach to study the interactions between human alpha and beta cells under in vivo conditions. Graphical abstract.
Collapse
Affiliation(s)
- Tilo Moede
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska Sjukhuset L1:03, 17176, Stockholm, Sweden.
| | - Ingo B Leibiger
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska Sjukhuset L1:03, 17176, Stockholm, Sweden
| | - Per-Olof Berggren
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska Sjukhuset L1:03, 17176, Stockholm, Sweden
| |
Collapse
|
4
|
Rodriguez-Diaz R, Tamayo A, Hara M, Caicedo A. The Local Paracrine Actions of the Pancreatic α-Cell. Diabetes 2020; 69:550-558. [PMID: 31882565 PMCID: PMC7085245 DOI: 10.2337/dbi19-0002] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 12/16/2019] [Indexed: 12/13/2022]
Abstract
Secretion of glucagon from the pancreatic α-cells is conventionally seen as the first and most important defense against hypoglycemia. Recent findings, however, show that α-cell signals stimulate insulin secretion from the neighboring β-cell. This article focuses on these seemingly counterintuitive local actions of α-cells and describes how they impact islet biology and glucose metabolism. It is mostly based on studies published in the last decade on the physiology of α-cells in human islets and incorporates results from rodents where appropriate. As this and the accompanying articles show, the emerging picture of α-cell function is one of increased complexity that needs to be considered when developing new therapies aimed at promoting islet function in the context of diabetes.
Collapse
Affiliation(s)
- Rayner Rodriguez-Diaz
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL
| | - Alejandro Tamayo
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL
| | - Manami Hara
- Department of Medicine, University of Chicago, Chicago, IL
| | - Alejandro Caicedo
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL
- Program in Neuroscience, University of Miami Miller School of Medicine, Miami, FL
| |
Collapse
|
5
|
Menegaz D, Hagan DW, Almaça J, Cianciaruso C, Rodriguez-Diaz R, Molina J, Dolan RM, Becker MW, Schwalie PC, Nano R, Lebreton F, Kang C, Sah R, Gaisano HY, Berggren PO, Baekkeskov S, Caicedo A, Phelps EA. Mechanism and effects of pulsatile GABA secretion from cytosolic pools in the human beta cell. Nat Metab 2019; 1:1110-1126. [PMID: 32432213 PMCID: PMC7236889 DOI: 10.1038/s42255-019-0135-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 10/04/2019] [Indexed: 12/13/2022]
Abstract
Pancreatic beta cells synthesize and secrete the neurotransmitter γ-aminobutyric acid (GABA) as a paracrine and autocrine signal to help regulate hormone secretion and islet homeostasis. Islet GABA release has classically been described as a secretory vesicle-mediated event. Yet, a limitation of the hypothesized vesicular GABA release from islets is the lack of expression of a vesicular GABA transporter in beta cells. Consequentially, GABA accumulates in the cytosol. Here we provide evidence that the human beta cell effluxes GABA from a cytosolic pool in a pulsatile manner, imposing a synchronizing rhythm on pulsatile insulin secretion. The volume regulatory anion channel (VRAC), functionally encoded by LRRC8A or Swell1, is critical for pulsatile GABA secretion. GABA content in beta cells is depleted and secretion is disrupted in islets from type 1 and type 2 diabetic patients, suggesting that loss of GABA as a synchronizing signal for hormone output may correlate with diabetes pathogenesis.
Collapse
Affiliation(s)
- Danusa Menegaz
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - D Walker Hagan
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Joana Almaça
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Chiara Cianciaruso
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Rayner Rodriguez-Diaz
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Judith Molina
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Robert M Dolan
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Matthew W Becker
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Petra C Schwalie
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Rita Nano
- Pancreatic Islet Processing Facility, Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Fanny Lebreton
- Cell Isolation and Transplantation Center, Faculty of Medicine, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Chen Kang
- Center for Cardiovascular Research and Division of Cardiology, Department of Internal Medicine, Washington University School of Medicine, St Louis, MO, USA
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA, USA
| | - Rajan Sah
- Center for Cardiovascular Research and Division of Cardiology, Department of Internal Medicine, Washington University School of Medicine, St Louis, MO, USA
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA, USA
| | - Herbert Y Gaisano
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Per-Olof Berggren
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- The Rolf Luft Research Center for Diabetes & Endocrinology, Karolinska Institutet, Stockholm, Sweden
- Division of Integrative Biosciences and Biotechnology, WCU Program, University of Science and Technology, Pohang, Korea
| | - Steinunn Baekkeskov
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
- Departments of Medicine and Microbiology/Immunology, Diabetes Center, University of California San Francisco, San Francisco, CA, USA.
| | - Alejandro Caicedo
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA.
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA.
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL, USA.
- Program in Neuroscience, Miller School of Medicine, University of Miami, Miami, FL, USA.
| | - Edward A Phelps
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
6
|
Du T, Yang L, Xu X, Shi X, Xu X, Lu J, Lv J, Huang X, Chen J, Wang H, Ye J, Hu L, Shen X. Vincamine as a GPR40 agonist improves glucose homeostasis in type 2 diabetic mice. J Endocrinol 2019; 240:195-214. [PMID: 30400036 DOI: 10.1530/joe-18-0432] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 11/02/2018] [Indexed: 12/18/2022]
Abstract
Vincamine, a monoterpenoid indole alkaloid extracted from the Madagascar periwinkle, is clinically used for the treatment of cardio-cerebrovascular diseases, while also treated as a dietary supplement with nootropic function. Given the neuronal protection of vincamine and the potency of β-cell amelioration in treating type 2 diabetes mellitus (T2DM), we investigated the potential of vincamine in protecting β-cells and ameliorating glucose homeostasis in vitro and in vivo. Interestingly, we found that vincamine could protect INS-832/13 cells function by regulating G-protein-coupled receptor 40 (GPR40)/cAMP/Ca2+/IRS2/PI3K/Akt signaling pathway, while increasing glucose-stimulated insulin secretion (GSIS) by modulating GPR40/cAMP/Ca2+/CaMKII pathway, which reveals a novel mechanism underlying GPR40-mediated cell protection and GSIS in INS-832/13 cells. Moreover, administration of vincamine effectively ameliorated glucose homeostasis in either HFD/STZ or db/db type 2 diabetic mice. To our knowledge, our current work might be the first report on vincamine targeting GPR40 and its potential in the treatment of T2DM.
Collapse
MESH Headings
- Animals
- Blood Glucose/metabolism
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/prevention & control
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/prevention & control
- Glucose/metabolism
- Homeostasis/drug effects
- Insulin Secretion/drug effects
- Insulin-Secreting Cells/drug effects
- Insulin-Secreting Cells/metabolism
- Male
- Mice
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Signal Transduction/drug effects
- Vasodilator Agents/pharmacology
- Vincamine/pharmacology
Collapse
Affiliation(s)
- Te Du
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Liu Yang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Xu Xu
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaofan Shi
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Xin Xu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Jian Lu
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jianlu Lv
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xi Huang
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jing Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Heyao Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Jiming Ye
- School of Health and Biomedical Sciences, RMIT University, Victoria, Australia
| | - Lihong Hu
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xu Shen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
7
|
Rorsman P, Ashcroft FM. Pancreatic β-Cell Electrical Activity and Insulin Secretion: Of Mice and Men. Physiol Rev 2018; 98:117-214. [PMID: 29212789 PMCID: PMC5866358 DOI: 10.1152/physrev.00008.2017] [Citation(s) in RCA: 519] [Impact Index Per Article: 74.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/30/2017] [Accepted: 06/18/2017] [Indexed: 12/14/2022] Open
Abstract
The pancreatic β-cell plays a key role in glucose homeostasis by secreting insulin, the only hormone capable of lowering the blood glucose concentration. Impaired insulin secretion results in the chronic hyperglycemia that characterizes type 2 diabetes (T2DM), which currently afflicts >450 million people worldwide. The healthy β-cell acts as a glucose sensor matching its output to the circulating glucose concentration. It does so via metabolically induced changes in electrical activity, which culminate in an increase in the cytoplasmic Ca2+ concentration and initiation of Ca2+-dependent exocytosis of insulin-containing secretory granules. Here, we review recent advances in our understanding of the β-cell transcriptome, electrical activity, and insulin exocytosis. We highlight salient differences between mouse and human β-cells, provide models of how the different ion channels contribute to their electrical activity and insulin secretion, and conclude by discussing how these processes become perturbed in T2DM.
Collapse
Affiliation(s)
- Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, United Kingdom; Department of Neuroscience and Physiology, Metabolic Research Unit, Göteborg, Sweden; and Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Frances M Ashcroft
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, United Kingdom; Department of Neuroscience and Physiology, Metabolic Research Unit, Göteborg, Sweden; and Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
8
|
Huang XT, Yue SJ, Li C, Huang YH, Cheng QM, Li XH, Hao CX, Wang LZ, Xu JP, Ji M, Chen C, Feng DD, Luo ZQ. A Sustained Activation of Pancreatic NMDARs Is a Novel Factor of β-Cell Apoptosis and Dysfunction. Endocrinology 2017; 158:3900-3913. [PMID: 28938426 DOI: 10.1210/en.2017-00366] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 08/30/2017] [Indexed: 02/07/2023]
Abstract
Type 2 diabetes, which features β-cell failure, is caused by the decrease of β-cell mass and insulin secretory function. Current treatments fail to halt the decrease of functional β-cell mass. Strategies to prevent β-cell apoptosis and dysfunction are highly desirable. Recently, our group and others have reported that blockade of N-methyl-d-aspartate receptors (NMDARs) in the islets has been proposed to prevent the progress of type 2 diabetes through improving β-cell function. It suggests that a sustained activation of the NMDARs may exhibit deleterious effect on β-cells. However, the exact functional impact and mechanism of the sustained NMDAR stimulation on islet β-cells remains unclear. Here, we identify a sustained activation of pancreatic NMDARs as a novel factor of apoptotic β-cell death and function. The sustained treatment with NMDA results in an increase of intracellular [Ca2+] and reactive oxygen species, subsequently induces mitochondrial membrane potential depolarization and a decrease of oxidative phosphorylation expression, and then impairs the mitochondrial function of β-cells. NMDA specifically induces the mitochondrial-dependent pathway of apoptosis in β-cells through upregulation of the proapoptotic Bim and Bax, and downregulation of antiapoptotic Bcl-2. Furthermore, a sustained stimulation of NMDARs impairs β-cell insulin secretion through decrease of pancreatic duodenal homeobox-1 (Pdx-1) and adenosine triphosphate synthesis. The activation of nuclear factor-κB partly contributes to the reduction of Pdx-1 expression induced by overstimulation of NMDARs. In conclusion, we show that the sustained stimulation of NMDARs is a novel mediator of apoptotic signaling and β-cell dysfunction, providing a mechanistic insight into the pathological role of NMDARs activation in diabetes.
Collapse
Affiliation(s)
- Xiao-Ting Huang
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
| | - Shao-Jie Yue
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
| | - Chen Li
- Department of Physiology, Changzhi Medical College, Changzhi, Shanxi 046000, China
| | - Yan-Hong Huang
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
| | - Qing-Mei Cheng
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
| | - Xiao-Hong Li
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
| | - Cai-Xia Hao
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
| | - Ling-Zhi Wang
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
| | - Jian-Ping Xu
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
| | - Ming Ji
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
| | - Chen Chen
- School of Biomedical Sciences, the University of Queensland, Brisbane 999029, Australia
| | - Dan-Dan Feng
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
| | - Zi-Qiang Luo
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
| |
Collapse
|
9
|
Doliba NM, Liu Q, Li C, Chen P, Liu C, Naji A, Matschinsky FM. Inhibition of cholinergic potentiation of insulin secretion from pancreatic islets by chronic elevation of glucose and fatty acids: Protection by casein kinase 2 inhibitor. Mol Metab 2017; 6:1240-1253. [PMID: 29031723 PMCID: PMC5641685 DOI: 10.1016/j.molmet.2017.07.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/24/2017] [Accepted: 07/31/2017] [Indexed: 01/24/2023] Open
Abstract
Objectives Chronic hyperlipidemia and hyperglycemia are characteristic features of type 2 diabetes (T2DM) that are thought to cause or contribute to β-cell dysfunction by “glucolipotoxicity.” Previously we have shown that acute treatment of pancreatic islets with fatty acids (FA) decreases acetylcholine-potentiated insulin secretion. This acetylcholine response is mediated by M3 muscarinic receptors, which play a key role in regulating β-cell function. Here we examine whether chronic FA exposure also inhibits acetylcholine-potentiated insulin secretion using mouse and human islets. Methods Islets were cultured for 3 or 4 days at different glucose concentration with 0.5 mM palmitic acid (PA) or a 2:1 mixture of PA and oleic acid (OA) at 1% albumin (PA/BSA molar ratio 3.3). Afterwards, the response to glucose and acetylcholine were studied in perifusion experiments. Results FA-induced impairment of insulin secretion and Ca2+ signaling depended strongly on the glucose concentrations of the culture medium. PA and OA in combination reduced acetylcholine potentiation of insulin secretion more than PA alone, both in mouse and human islets, with no evidence of a protective role of OA. In contrast, lipotoxicity was not observed with islets cultured for 3 days in medium containing less than 1 mM glucose and a mixture of glutamine and leucine (7 mM each). High glucose and FAs reduced endoplasmic reticulum (ER) Ca2+ storage capacity; however, preserving ER Ca2+ by blocking the IP3 receptor with xestospongin C did not protect islets from glucolipotoxic effects on insulin secretion. In contrast, an inhibitor of casein kinase 2 (CK2) protected the glucose dependent acetylcholine potentiation of insulin secretion in mouse and human islets against glucolipotoxicity. Conclusions These results show that chronic FA treatment decreases acetylcholine potentiation of insulin secretion and that this effect is strictly glucose dependent and might involve CK2 phosphorylation of β-cell M3 muscarinic receptors. Glucolipotoxicity impairs acetylcholine-potentiation of insulin secretion. Glucose amplification of insulin secretion rather than triggering is damaged by FA. Inhibitor of casein kinase 2 preserved islet function against glucolipotoxicity.
Collapse
Affiliation(s)
- Nicolai M Doliba
- Department of Biochemistry and Biophysics, University of Pennsylvania, School of Medicine, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania, School of Medicine, Philadelphia, PA 19104, USA.
| | - Qin Liu
- Department of Biochemistry and Biophysics, University of Pennsylvania, School of Medicine, Philadelphia, PA 19104, USA
| | - Changhong Li
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania, School of Medicine, Philadelphia, PA 19104, USA; Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Pan Chen
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Chengyang Liu
- Department of Surgery, University of Pennsylvania, School of Medicine, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania, School of Medicine, Philadelphia, PA 19104, USA
| | - Ali Naji
- Department of Surgery, University of Pennsylvania, School of Medicine, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania, School of Medicine, Philadelphia, PA 19104, USA
| | - Franz M Matschinsky
- Department of Biochemistry and Biophysics, University of Pennsylvania, School of Medicine, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania, School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
10
|
Abstract
Type 1 diabetes (T1D) patients who receive pancreatic islet transplant experience significant improvement in their quality-of-life. This comes primarily through improved control of blood sugar levels, restored awareness of hypoglycemia, and prevention of serious and potentially life-threatening diabetes-associated complications, such as kidney failure, heart and vascular disease, stroke, nerve damage, and blindness. Therefore, beta cell replacement through transplantation of isolated islets is an important option in the treatment of T1D. However, lasting success of this promising therapy depends on durable survival and efficacy of the transplanted islets, which are directly influenced by the islet isolation procedures. Thus, isolating pancreatic islets with consistent and reliable quality is critical in the clinical application of islet transplantation.Quality of isolated islets is important in pre-clinical studies as well, as efforts to advance and improve clinical outcomes of islet transplant therapy have relied heavily on animal models ranging from rodents, to pigs, to nonhuman primates. As a result, pancreatic islets have been isolated from these and other species and used in a variety of in vitro or in vivo applications for this and other research purposes. Protocols for islet isolation have been somewhat similar across species, especially, in mammals. However, given the increasing evidence about the distinct structural and functional features of human and mouse islets, using similar methods of islet isolation may contribute to inconsistencies in the islet quality, immunogenicity, and experimental outcomes. This may also contribute to the discrepancies commonly observed between pre-clinical findings and clinical outcomes. Therefore, it is prudent to consider the particular features of pancreatic islets from different species when optimizing islet isolation protocols.In this chapter, we explore the structural and functional features of pancreatic islets from mice, pigs, nonhuman primates, and humans because of their prevalent use in nonclinical, preclinical, and clinical applications.
Collapse
|
11
|
An excessive increase in glutamate contributes to glucose-toxicity in β-cells via activation of pancreatic NMDA receptors in rodent diabetes. Sci Rep 2017; 7:44120. [PMID: 28303894 PMCID: PMC5356012 DOI: 10.1038/srep44120] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 02/06/2017] [Indexed: 01/21/2023] Open
Abstract
In the nervous system, excessive activation of NMDA receptors causes neuronal injury. Although activation of NMDARs has been proposed to contribute to the progress of diabetes, little is known about the effect of excessive long-term activation of NMDARs on β-cells, especially under the challenge of hyperglycemia. Here we thoroughly investigated whether endogenous glutamate aggravated β-cell dysfunction under chronic exposure to high-glucose via activation of NMDARs. The glutamate level was increased in plasma of diabetic mice or patients and in the supernatant of β-cell lines after treatment with high-glucose for 72 h. Decomposing the released glutamate improved GSIS of β-cells under chronic high-glucose exposure. Long-term treatment of β-cells with NMDA inhibited cell viability and decreased GSIS. These effects were eliminated by GluN1 knockout. The NMDAR antagonist MK-801 or GluN1 knockout prevented high-glucose-induced dysfunction in β-cells. MK-801 also decreased the expression of pro-inflammatory cytokines, and inhibited I-κB degradation, ROS generation and NLRP3 inflammasome expression in β-cells exposed to high-glucose. Furthermore, another NMDAR antagonist, Memantine, improved β-cells function in diabetic mice. Taken together, these findings indicate that an increase of glutamate may contribute to the development of diabetes through excessive activation of NMDARs in β-cells, accelerating β-cells dysfunction and apoptosis induced by hyperglycemia.
Collapse
|
12
|
Lenguito G, Chaimov D, Weitz JR, Rodriguez-Diaz R, Rawal SAK, Tamayo-Garcia A, Caicedo A, Stabler CL, Buchwald P, Agarwal A. Resealable, optically accessible, PDMS-free fluidic platform for ex vivo interrogation of pancreatic islets. LAB ON A CHIP 2017; 17:772-781. [PMID: 28157238 PMCID: PMC5330806 DOI: 10.1039/c6lc01504b] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We report the design and fabrication of a robust fluidic platform built out of inert plastic materials and micromachined features that promote optimized convective fluid transport. The platform is tested for perfusion interrogation of rodent and human pancreatic islets, dynamic secretion of hormones, concomitant live-cell imaging, and optogenetic stimulation of genetically engineered islets. A coupled quantitative fluid dynamics computational model of glucose stimulated insulin secretion and fluid dynamics was first utilized to design device geometries that are optimal for complete perfusion of three-dimensional islets, effective collection of secreted insulin, and minimization of system volumes and associated delays. Fluidic devices were then fabricated through rapid prototyping techniques, such as micromilling and laser engraving, as two interlocking parts from materials that are non-absorbent and inert. Finally, the assembly was tested for performance using both rodent and human islets with multiple assays conducted in parallel, such as dynamic perfusion, staining and optogenetics on standard microscopes, as well as for integration with commercial perfusion machines. The optimized design of convective fluid flows, use of bio-inert and non-absorbent materials, reversible assembly, manual access for loading and unloading of islets, and straightforward integration with commercial imaging and fluid handling systems proved to be critical for perfusion assay, and particularly suited for time-resolved optogenetics studies.
Collapse
Affiliation(s)
- Giovanni Lenguito
- Department of Biomedical Engineering, Department of Pathology & Laboratory Medicine, University of Miami, Miami, FL 33136, USA.
| | - Deborah Chaimov
- Department of Biomedical Engineering, University of Florida, USA
| | | | | | - Siddarth A K Rawal
- Department of Biomedical Engineering, Department of Pathology & Laboratory Medicine, University of Miami, Miami, FL 33136, USA.
| | | | | | - Cherie L Stabler
- Department of Biomedical Engineering, University of Florida, USA
| | - Peter Buchwald
- Diabetes Research Institute, University of Miami, USA and Department of Molecular and Cellular Pharmacology, University of Miami, USA
| | - Ashutosh Agarwal
- Department of Biomedical Engineering, Department of Pathology & Laboratory Medicine, University of Miami, Miami, FL 33136, USA. and Diabetes Research Institute, University of Miami, USA
| |
Collapse
|
13
|
Li WH. Probes for monitoring regulated exocytosis. Cell Calcium 2017; 64:65-71. [PMID: 28089267 DOI: 10.1016/j.ceca.2017.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 01/07/2017] [Indexed: 12/12/2022]
Abstract
Regulated secretion is a fundamental cellular process that serves diverse functions in neurobiology, endocrinology, immunology, and numerous other aspects of animal physiology. In response to environmental or biological cues, cells release contents of secretory granules into an extracellular medium to communicate with or impact neighboring or distant cells through paracrine or endocrine signaling. To investigate mechanisms governing stimulus-secretion coupling, to better understand how cells maintain or regulate their secretory activity, and to characterize secretion defects in human diseases, probes for tracking various exocytotic events at the cellular or sub-cellular level have been developed over the years. This review summarizes different strategies and recent progress in developing optical probes for monitoring regulated secretion in mammalian cells.
Collapse
Affiliation(s)
- Wen-Hong Li
- Departments of Cell Biology and of Biochemistry, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390-9039, United States.
| |
Collapse
|
14
|
Dalgaard EG, Andersen K, Svenningsen P, Hansen PBL. Biosensor cell assay for measuring real-time aldosterone-induced release of histamine from mesenteric arteries. Acta Physiol (Oxf) 2017; 219:219-226. [PMID: 26990768 DOI: 10.1111/apha.12680] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/14/2016] [Accepted: 03/14/2016] [Indexed: 12/18/2022]
Abstract
AIMS The aims were to develop a method for real-time detection of histamine release and to test whether incubation with aldosterone induces histamine release from isolated, perfused mice mesenteric arteries. METHODS Fura-2-loaded HEK-293 cells transfected with the histamine H1 receptor was used as a sensitive biosensor assay for histamine release from isolated mouse mesenteric arteries. Activation of the H1 receptor by histamine was measured as an increased number of intracellular Ca2+ transient peaks using fluorescence imaging. RESULTS The developed biosensor was sensitive to histamine in physiological relevant concentrations and responded to substances released by the artery preparation. Aldosterone treatment of mesenteric arteries from wild-type mice for 50 min resulted in an increased number of intracellular Ca2+ transient peaks in the biosensor cells, which was significantly inhibited by the histamine H1 blocker pyrilamine. Mesenteric arteries from mast cell-deficient SASH mice induced similar pyrilamine-sensitive Ca2+ transient response in the biosensor cells. Mesenteric arteries from wild-type and SASH mice expressed histamine decarboxylase mRNA, indicating that mast cells are not the only source of histamine release. CONCLUSION The developed biosensor assay can measure release of substances from vascular preparations. Histamine is released from the vessel preparation in response to aldosterone treatment independently of mast cells. The assay enables us to study a new signaling mechanism for vascular responses induced by aldosterone.
Collapse
Affiliation(s)
- E. G. Dalgaard
- Department of Cardiovascular and Renal Research; Institute of Molecular Medicine; University of Southern Denmark; Odense C Denmark
| | - K. Andersen
- Department of Cardiovascular and Renal Research; Institute of Molecular Medicine; University of Southern Denmark; Odense C Denmark
| | - P. Svenningsen
- Department of Cardiovascular and Renal Research; Institute of Molecular Medicine; University of Southern Denmark; Odense C Denmark
| | - P. B. L. Hansen
- Department of Cardiovascular and Renal Research; Institute of Molecular Medicine; University of Southern Denmark; Odense C Denmark
| |
Collapse
|
15
|
Almaça J, Molina J, Menegaz D, Pronin AN, Tamayo A, Slepak V, Berggren PO, Caicedo A. Human Beta Cells Produce and Release Serotonin to Inhibit Glucagon Secretion from Alpha Cells. Cell Rep 2016; 17:3281-3291. [PMID: 28009296 PMCID: PMC5217294 DOI: 10.1016/j.celrep.2016.11.072] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/24/2016] [Accepted: 11/23/2016] [Indexed: 12/11/2022] Open
Abstract
In the pancreatic islet, serotonin is an autocrine signal increasing beta cell mass during metabolic challenges such as those associated with pregnancy or high-fat diet. It is still unclear whether serotonin is relevant for regular islet physiology and hormone secretion. Here, we show that human beta cells produce and secrete serotonin when stimulated with increases in glucose concentration. Serotonin secretion from beta cells decreases cyclic AMP (cAMP) levels in neighboring alpha cells via 5-HT1F receptors and inhibits glucagon secretion. Without serotonergic input, alpha cells lose their ability to regulate glucagon secretion in response to changes in glucose concentration, suggesting that diminished serotonergic control of alpha cells can cause glucose blindness and the uncontrolled glucagon secretion associated with diabetes. Supporting this model, pharmacological activation of 5-HT1F receptors reduces glucagon secretion and has hypoglycemic effects in diabetic mice. Thus, modulation of serotonin signaling in the islet represents a drug intervention opportunity.
Collapse
Affiliation(s)
- Joana Almaça
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Judith Molina
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Danusa Menegaz
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Alexey N Pronin
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Alejandro Tamayo
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Vladlen Slepak
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Program in Neuroscience, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Per-Olof Berggren
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Rolf Luft Research Center for Diabetes & Endocrinology, Karolinska Institutet, Stockholm SE-17177, Sweden; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Alejandro Caicedo
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Program in Neuroscience, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.
| |
Collapse
|
16
|
Marquard J, Otter S, Welters A, Stirban A, Fischer A, Eglinger J, Herebian D, Kletke O, Klemen MS, Stožer A, Wnendt S, Piemonti L, Köhler M, Ferrer J, Thorens B, Schliess F, Rupnik MS, Heise T, Berggren PO, Klöcker N, Meissner T, Mayatepek E, Eberhard D, Kragl M, Lammert E. Characterization of pancreatic NMDA receptors as possible drug targets for diabetes treatment. Nat Med 2015; 21:363-72. [PMID: 25774850 DOI: 10.1038/nm.3822] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 02/10/2015] [Indexed: 12/14/2022]
Abstract
In the nervous system, NMDA receptors (NMDARs) participate in neurotransmission and modulate the viability of neurons. In contrast, little is known about the role of NMDARs in pancreatic islets and the insulin-secreting beta cells whose functional impairment contributes to diabetes mellitus. Here we found that inhibition of NMDARs in mouse and human islets enhanced their glucose-stimulated insulin secretion (GSIS) and survival of islet cells. Further, NMDAR inhibition prolonged the amount of time that glucose-stimulated beta cells spent in a depolarized state with high cytosolic Ca(2+) concentrations. We also noticed that, in vivo, the NMDAR antagonist dextromethorphan (DXM) enhanced glucose tolerance in mice, and that in vitro dextrorphan, the main metabolite of DXM, amplified the stimulatory effect of exendin-4 on GSIS. In a mouse model of type 2 diabetes mellitus (T2DM), long-term treatment with DXM improved islet insulin content, islet cell mass and blood glucose control. Further, in a small clinical trial we found that individuals with T2DM treated with DXM showed enhanced serum insulin concentrations and glucose tolerance. Our data highlight the possibility that antagonists of NMDARs may provide a useful adjunct treatment for diabetes.
Collapse
Affiliation(s)
- Jan Marquard
- 1] Institute of Metabolic Physiology, Heinrich Heine University, Düsseldorf, Germany. [2] Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital Düsseldorf, Düsseldorf, Germany
| | - Silke Otter
- 1] Institute of Metabolic Physiology, Heinrich Heine University, Düsseldorf, Germany. [2] Institute for Beta Cell Biology, German Diabetes Center, Leibniz Center for Diabetes Research, Düsseldorf, Germany. [3] German Center for Diabetes Research, Partner Düsseldorf, Düsseldorf, Germany
| | - Alena Welters
- 1] Institute of Metabolic Physiology, Heinrich Heine University, Düsseldorf, Germany. [2] Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital Düsseldorf, Düsseldorf, Germany. [3] Institute for Beta Cell Biology, German Diabetes Center, Leibniz Center for Diabetes Research, Düsseldorf, Germany. [4] German Center for Diabetes Research, Partner Düsseldorf, Düsseldorf, Germany
| | - Alin Stirban
- Profil Institute for Metabolic Research, Neuss, Germany
| | | | - Jan Eglinger
- 1] Institute of Metabolic Physiology, Heinrich Heine University, Düsseldorf, Germany. [2] Institute for Beta Cell Biology, German Diabetes Center, Leibniz Center for Diabetes Research, Düsseldorf, Germany. [3] German Center for Diabetes Research, Partner Düsseldorf, Düsseldorf, Germany
| | - Diran Herebian
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital Düsseldorf, Düsseldorf, Germany
| | - Olaf Kletke
- Institute of Neuro- and Sensory Physiology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Maša Skelin Klemen
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Andraž Stožer
- 1] Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia. [2] Center for Open Innovations and Research, University of Maribor, Maribor, Slovenia
| | | | - Lorenzo Piemonti
- Diabetes Research Institute, Istituto di Ricovero e Cura a Carattere Scientifico, San Raffaele Scientific Institute, Milano, Italy
| | - Martin Köhler
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | - Jorge Ferrer
- 1] Department of Medicine, Imperial College London, London, UK. [2] Genomic Programming of Beta-Cells Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona, Spain
| | - Bernard Thorens
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | | | - Marjan Slak Rupnik
- 1] Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia. [2] Center for Open Innovations and Research, University of Maribor, Maribor, Slovenia. [3] Institute of Physiology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Tim Heise
- Profil Institute for Metabolic Research, Neuss, Germany
| | - Per-Olof Berggren
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | - Nikolaj Klöcker
- Institute of Neuro- and Sensory Physiology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Thomas Meissner
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital Düsseldorf, Düsseldorf, Germany
| | - Ertan Mayatepek
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital Düsseldorf, Düsseldorf, Germany
| | - Daniel Eberhard
- Institute of Metabolic Physiology, Heinrich Heine University, Düsseldorf, Germany
| | - Martin Kragl
- 1] Institute of Metabolic Physiology, Heinrich Heine University, Düsseldorf, Germany. [2] German Center for Diabetes Research, Partner Düsseldorf, Düsseldorf, Germany
| | - Eckhard Lammert
- 1] Institute of Metabolic Physiology, Heinrich Heine University, Düsseldorf, Germany. [2] Institute for Beta Cell Biology, German Diabetes Center, Leibniz Center for Diabetes Research, Düsseldorf, Germany. [3] German Center for Diabetes Research, Partner Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
17
|
Abdulreda MH, Caicedo A, Berggren PO. A NATURAL BODY WINDOW TO STUDY HUMAN PANCREATIC ISLET CELL FUNCTION AND SURVIVAL. CELLR4-- REPAIR, REPLACEMENT, REGENERATION, & REPROGRAMMING 2013; 1:111-122. [PMID: 29497630 PMCID: PMC5828509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The World Health Organization projects diabetes prevalence worldwide to be at 4.4% in 2030 compared to 2.8% in the year 2000. These alarming predictions come amid vigorous efforts in diabetes research which have failed so far to deliver effective therapies. Our incomplete understanding of the pathogenesis of diabetes is likely to contribute to the "disconnect" between our research efforts and their translation into successful therapies. Technically, studying the pathophysiology of the pancreatic islets is hindered by the anatomical location of the pancreas, which is deeply embedded in the body, and by lack of experimental tools that enable comprehensive interrogation of the pancreatic islets with sufficient resolution in the context of the natural in vivo environment non-invasively and longitudinally. Emerging evidence also indicates that challenges in successful translation of findings in animal models to the human setting are complicated by some inherent structural and functional differences between the mouse and human islets. In this review, we briefly describe the advantages and shortcomings of existing intravital imaging approaches used to study the pancreatic islet biology in vivo, and we contrast such techniques with a recently established intravital approach using pancreatic islet transplantation into the anterior chamber of the eye. We also provide a summary of recent structure-function studies in the human pancreas to reveal distinctive features of human islets compared with mouse islets. We finally touch on a recently renewed discussion of the validity of animal models in studying human health and disease, and we highlight the potential utility of "humanized" animal models in studying different aspects of human islet biology and improving our understanding of diabetes.
Collapse
Affiliation(s)
- M H Abdulreda
- Diabetes Research Institute, Diabetes Research Institute Federation Center at the University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - A Caicedo
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL, USA
- Program in Neuroscience, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - P-O Berggren
- Diabetes Research Institute, Diabetes Research Institute Federation Center at the University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Rolf Luft Research Center for Diabetes & Endocrinology, Diabetes Research Institute Federation Center at Karolinska Institutet, Stockholm, SE, Sweden
| |
Collapse
|
18
|
Kim B, Song HS, Jin HJ, Park EJ, Lee SH, Lee BY, Park TH, Hong S. Highly selective and sensitive detection of neurotransmitters using receptor-modified single-walled carbon nanotube sensors. NANOTECHNOLOGY 2013; 24:285501. [PMID: 23792421 DOI: 10.1088/0957-4484/24/28/285501] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We present receptor-modified carbon nanotube sensors for the highly selective and sensitive detection of acetylcholine (ACh), one kind of neurotransmitter. Here, we successfully expressed the M1 muscarinic acetylcholine receptor (M1 mAChR), a family of G protein-coupled receptors (GPCRs), in E. coli and coated single-walled carbon nanotube (swCNT)-field effect transistors (FETs) with lipid membrane including the receptor, enabling highly selective and sensitive ACh detection. Using this sensor, we could detect ACh at 100 pM concentration. Moreover, we showed that this sensor could selectively detect ACh among other neurotransmitters. This is the first demonstration of the real-time detection of ACh using specific binding between ACh and M1 mAChR, and it may lead to breakthroughs for various applications such as disease diagnosis and drug screening.
Collapse
Affiliation(s)
- Byeongju Kim
- Department of Physics and Astronomy, Seoul National University, Seoul 151-747, Korea
| | | | | | | | | | | | | | | |
Collapse
|