1
|
Lai CW, Lin GW, Lee WC, Chang CC. Enhancing protein signal detection in asexual and viviparous pea aphids: A guided protocol for tissue dissection and proteinase K treatment. MethodsX 2024; 13:102982. [PMID: 39430779 PMCID: PMC11489042 DOI: 10.1016/j.mex.2024.102982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 09/26/2024] [Indexed: 10/22/2024] Open
Abstract
Aphids, as hemipteran insects, reproduce via parthenogenesis and viviparity, resulting in rapid and exponential offspring production. To investigate the molecular mechanisms underlying parthenogenetic viviparity in asexual aphids, precise protein detection through immunostaining is essential. Our previous research demonstrated the need for proteinase K (PK) treatment to improve tissue permeability, enabling antibodies targeting the germ-cell marker Ap-Vas1 to access gastrulating and later-stage embryos. However, optimal PK digestion protocols have not been thoroughly explored. In this study, we propose strategies to optimize PK digestion conditions for early, middle, and late-stage pea aphid embryos, which have varying tissue thicknesses. Additionally, we extend the application of PK treatment to salivary glands, a representative somatic tissue, by optimizing conditions for antibody penetration against the salivary gland marker C002. To enhance spatial precision in signal detection, we provide a detailed protocol for tissue dissection specific to pea aphids, focusing on the preservation of tissue integrity. These comprehensive guidelines, covering tissue dissection and PK titration, are expected to improve the specificity and intensity of protein signals in pea aphids and other aphid species.•Provide aphid-specific dissection methods to obtain intact embryos and salivary glands.•Present strategies for optimizing PK treatment conditions across different tissue types.
Collapse
Affiliation(s)
- Chun-wei Lai
- Laboratory for Genomics and Development, Department of Entomology, College of Bio-Resources and Agriculture, National Taiwan University (NTU), Taipei, Taiwan
- Genome and Systems Biology Degree Program, NTU, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, NTU, Taipei, Taiwan
- Taiwan Aphid Genomics Consortium, MK Innovation Hall, NTU, Taipei, Taiwan
| | - Gee-Way Lin
- Laboratory for Genomics and Development, Department of Entomology, College of Bio-Resources and Agriculture, National Taiwan University (NTU), Taipei, Taiwan
- College of Medicine, Taipei Medical University, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, NTU, Taipei, Taiwan
- Taiwan Aphid Genomics Consortium, MK Innovation Hall, NTU, Taipei, Taiwan
| | - Wen-Chih Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Taiwan Aphid Genomics Consortium, MK Innovation Hall, NTU, Taipei, Taiwan
| | - Chun-che Chang
- Laboratory for Genomics and Development, Department of Entomology, College of Bio-Resources and Agriculture, National Taiwan University (NTU), Taipei, Taiwan
- Genome and Systems Biology Degree Program, NTU, Taipei, Taiwan
- Institute of Biotechnology, College of Bio-Resources and Agriculture, NTU, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, NTU, Taipei, Taiwan
- International Graduate Program of Molecular Science and Technology, NTU, Taipei, Taiwan
- Master Program for Plant Medicine, NTU, Taipei, Taiwan
- Taiwan Aphid Genomics Consortium, MK Innovation Hall, NTU, Taipei, Taiwan
| |
Collapse
|
2
|
Hassan A, Blakeley G, McGregor AP, Zancolli G. Venom gland organogenesis in the common house spider. Sci Rep 2024; 14:15379. [PMID: 38965282 PMCID: PMC11224297 DOI: 10.1038/s41598-024-65336-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/19/2024] [Indexed: 07/06/2024] Open
Abstract
Venom is a remarkable innovation found across the animal kingdom, yet the evolutionary origins of venom systems in various groups, including spiders, remain enigmatic. Here, we investigated the organogenesis of the venom apparatus in the common house spider, Parasteatoda tepidariorum. The venom apparatus consists of a pair of secretory glands, each connected to an opening at the fang tip by a duct that runs through the chelicerae. We performed bulk RNA-seq to identify venom gland-specific markers and assayed their expression using RNA in situ hybridisation experiments on whole-mount time-series. These revealed that the gland primordium emerges during embryonic stage 13 at the chelicera tip, progresses proximally by the end of embryonic development and extends into the prosoma post-eclosion. The initiation of expression of an important toxin component in late postembryos marks the activation of venom-secreting cells. Our selected markers also exhibited distinct expression patterns in adult venom glands: sage and the toxin marker were expressed in the secretory epithelium, forkhead and sum-1 in the surrounding muscle layer, while Distal-less was predominantly expressed at the gland extremities. Our study provides the first comprehensive analysis of venom gland morphogenesis in spiders, offering key insights into their evolution and development.
Collapse
Affiliation(s)
- Afrah Hassan
- Department of Ecology and Evolution, University of Lausanne, Lausanne, 1015, Switzerland
| | - Grace Blakeley
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | | | - Giulia Zancolli
- Department of Ecology and Evolution, University of Lausanne, Lausanne, 1015, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland.
| |
Collapse
|
3
|
Gritti N, Power RM, Graves A, Huisken J. Image restoration of degraded time-lapse microscopy data mediated by near-infrared imaging. Nat Methods 2024; 21:311-321. [PMID: 38177507 PMCID: PMC10864180 DOI: 10.1038/s41592-023-02127-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 11/10/2023] [Indexed: 01/06/2024]
Abstract
Time-lapse fluorescence microscopy is key to unraveling biological development and function; however, living systems, by their nature, permit only limited interrogation and contain untapped information that can only be captured by more invasive methods. Deep-tissue live imaging presents a particular challenge owing to the spectral range of live-cell imaging probes/fluorescent proteins, which offer only modest optical penetration into scattering tissues. Herein, we employ convolutional neural networks to augment live-imaging data with deep-tissue images taken on fixed samples. We demonstrate that convolutional neural networks may be used to restore deep-tissue contrast in GFP-based time-lapse imaging using paired final-state datasets acquired using near-infrared dyes, an approach termed InfraRed-mediated Image Restoration (IR2). Notably, the networks are remarkably robust over a wide range of developmental times. We employ IR2 to enhance the information content of green fluorescent protein time-lapse images of zebrafish and Drosophila embryo/larval development and demonstrate its quantitative potential in increasing the fidelity of cell tracking/lineaging in developing pescoids. Thus, IR2 is poised to extend live imaging to depths otherwise inaccessible.
Collapse
Affiliation(s)
- Nicola Gritti
- Morgridge Institute for Research, Madison, WI, USA
- Mesoscopic Imaging Facility, European Molecular Biology Laboratory Barcelona, Barcelona, Spain
| | - Rory M Power
- Morgridge Institute for Research, Madison, WI, USA
- EMBL Imaging Center, European Molecular Biology Laboratory Heidelberg, Heidelberg, Germany
| | | | - Jan Huisken
- Morgridge Institute for Research, Madison, WI, USA.
- Department of Integrative Biology, University of Wisconsin Madison, Madison, WI, USA.
- Department of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany.
- Cluster of Excellence 'Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells' (MBExC), University of Göttingen, Göttingen, Germany.
| |
Collapse
|
4
|
Tsarouhas V, Liu D, Tsikala G, Engström Y, Strigini M, Samakovlis C. A surfactant lipid layer of endosomal membranes facilitates airway gas filling in Drosophila. Curr Biol 2023; 33:5132-5146.e5. [PMID: 37992718 DOI: 10.1016/j.cub.2023.10.058] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 09/14/2023] [Accepted: 10/26/2023] [Indexed: 11/24/2023]
Abstract
The mechanisms underlying the construction of an air-liquid interface in respiratory organs remain elusive. Here, we use live imaging and genetic analysis to describe the morphogenetic events generating an extracellular lipid lining of the Drosophila airways required for their gas filing and animal survival. We show that sequential Rab39/Syx1A/Syt1-mediated secretion of lysosomal acid sphingomyelinase (Drosophila ASM [dASM]) and Rab11/35/Syx1A/Rop-dependent exosomal secretion provides distinct components for lipid film assembly. Tracheal inactivation of Rab11 or Rab35 or loss of Rop results in intracellular accumulation of exosomal, multi-vesicular body (MVB)-derived vesicles. On the other hand, loss of dASM or Rab39 causes luminal bubble-like accumulations of exosomal membranes and liquid retention in the airways. Inactivation of the exosomal secretion in dASM mutants counteracts this phenotype, arguing that the exosomal secretion provides the lipid vesicles and that secreted lysosomal dASM organizes them into a continuous film. Our results reveal the coordinated functions of extracellular vesicle and lysosomal secretions in generating a lipid layer crucial for airway gas filling and survival.
Collapse
Affiliation(s)
- Vasilios Tsarouhas
- Stockholm University, Department of Molecular Biosciences, The Wenner-Gren Institute, 10691 Stockholm, Sweden; Science for Life Laboratory, SciLifeLab, 171 65 Stockholm, Sweden.
| | - Dan Liu
- Stockholm University, Department of Molecular Biosciences, The Wenner-Gren Institute, 10691 Stockholm, Sweden
| | - Georgia Tsikala
- Stockholm University, Department of Molecular Biosciences, The Wenner-Gren Institute, 10691 Stockholm, Sweden; IMBB, 70013 Heraklion, Crete, Greece
| | - Ylva Engström
- Stockholm University, Department of Molecular Biosciences, The Wenner-Gren Institute, 10691 Stockholm, Sweden
| | | | - Christos Samakovlis
- Stockholm University, Department of Molecular Biosciences, The Wenner-Gren Institute, 10691 Stockholm, Sweden; Science for Life Laboratory, SciLifeLab, 171 65 Stockholm, Sweden; ECCPS, Justus Liebig University of Giessen, 35390 Giessen, Germany.
| |
Collapse
|
5
|
Amin S, Basu M, Buzinova V, Delgado A, Mahadevan T, Mishra S, Zaida S, Wang X, Sokac AM. Glyoxal-based fixation of Drosophila embryos for immunofluorescence staining and RNA in situ hybridization. STAR Protoc 2023; 4:102385. [PMID: 37405926 PMCID: PMC10345161 DOI: 10.1016/j.xpro.2023.102385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/25/2023] [Accepted: 05/25/2023] [Indexed: 07/07/2023] Open
Abstract
The dialdehyde glyoxal is an alternative chemical fixative that cross-links tissues faster than formaldehyde, retains higher antigenicity, and is less hazardous than either formaldehyde or glutaraldehyde. Here we present a glyoxal-based fixation protocol for use with Drosophila embryos. We describe steps to prepare acid-free glyoxal, fix embryos, and then stain with antibodies for immunofluorescence (IF). We also describe methods for RNA fluorescence in situ hybridization (FISH) and FISH plus IF (FISH-IF) using glyoxal-fixed embryos. This protocol was adapted for Drosophila embryos from the methods of Bussolati et al.1 and Richter et al.2.
Collapse
Affiliation(s)
- Shrunali Amin
- University of Illinois at Urbana Champaign, Department of Cell & Developmental Biology, Urbana, IL 61801, USA; University of Illinois at Urbana Champaign, School of Molecular & Cellular Biology, Urbana, IL 61801, USA.
| | - Malika Basu
- University of Illinois at Urbana Champaign, School of Integrative Biology, Urbana, IL 61801, USA; Johns Hopkins University, Department of Molecular Microbiology & Immunology, Baltimore, MD 21205, USA
| | - Valeria Buzinova
- University of Illinois at Urbana Champaign, School of Molecular & Cellular Biology, Urbana, IL 61801, USA; University of Kentucky, Department of Molecular & Cellular Biochemistry, Lexington, KY 40536, USA
| | - Anthony Delgado
- University of Illinois at Urbana Champaign, School of Molecular & Cellular Biology, Urbana, IL 61801, USA; University of Illinois at Chicago, College of Medicine, Chicago, IL 60612, USA
| | - Tejas Mahadevan
- University of Illinois at Urbana Champaign, Department of Cell & Developmental Biology, Urbana, IL 61801, USA; University of Illinois at Urbana Champaign, School of Molecular & Cellular Biology, Urbana, IL 61801, USA
| | - Sanya Mishra
- University of Illinois at Urbana Champaign, School of Molecular & Cellular Biology, Urbana, IL 61801, USA; University of Texas Health Science Center, School of Biomedical Sciences, Katy, TX 77494, USA
| | - Sarah Zaida
- University of Illinois at Urbana Champaign, School of Molecular & Cellular Biology, Urbana, IL 61801, USA; Northwestern Medicine, Chicago, IL 60605, USA
| | - Xi Wang
- Department of BioSciences, Rice University, Houston, TX 77251, USA; Baylor College of Medicine, Department of Biochemistry, Houston, TX 77030, USA; University of Mississippi Medical Center, Department of Pharmacology & Toxicology, Jackson, MS 39216, USA
| | - Anna Marie Sokac
- University of Illinois at Urbana Champaign, Department of Cell & Developmental Biology, Urbana, IL 61801, USA; University of Illinois at Urbana Champaign, School of Molecular & Cellular Biology, Urbana, IL 61801, USA; Baylor College of Medicine, Department of Biochemistry, Houston, TX 77030, USA.
| |
Collapse
|
6
|
Zhang N, Meng X, Jiang H, Ge H, Qian K, Zheng Y, Park Y, Wang J. Restoration of energy homeostasis under oxidative stress: Duo synergistic AMPK pathways regulating arginine kinases. PLoS Genet 2023; 19:e1010843. [PMID: 37535699 PMCID: PMC10427004 DOI: 10.1371/journal.pgen.1010843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 08/15/2023] [Accepted: 06/26/2023] [Indexed: 08/05/2023] Open
Abstract
Rapid depletion of cellular ATP can occur by oxidative stress induced by reactive oxygen species (ROS). Maintaining energy homeostasis requires the key molecular components AMP-activated protein kinase (AMPK) and arginine kinase (AK), an invertebrate orthologue of the mammalian creatine kinase (CK). Here, we deciphered two independent and synergistic pathways of AMPK acting on AK by using the beetle Tribolium castaneum as a model system. First, AMPK acts on transcriptional factor forkhead box O (FOXO) leading to phosphorylation and nuclear translocation of the FOXO. The phospho-FOXO directly promotes the expression of AK upon oxidative stress. Concomitantly, AMPK directly phosphorylates the AK to switch the direction of enzymatic catalysis for rapid production of ATP from the phosphoarginine-arginine pool. Further in vitro assays revealed that Sf9 cells expressing phospho-deficient AK mutants displayed the lower ATP/ADP ratio and cell viability under paraquat-induced oxidative stress conditions when compared with Sf9 cells expressing wild-type AKs. Additionally, the AMPK-FOXO-CK pathway is also involved in the restoration of ATP homeostasis under oxidative stress in mammalian HEK293 cells. Overall, we provide evidence that two distinct AMPK-AK pathways, transcriptional and post-translational regulations, are coherent responders to acute oxidative stresses and distinguished from classical AMPK-mediated long-term metabolic adaptations to energy challenge.
Collapse
Affiliation(s)
- Nan Zhang
- College of Plant Protection, Yangzhou University, Yangzhou, China
- Jiangsu Lixiahe Institute of Agricultural Sciences, Yangzhou, China
| | - Xiangkun Meng
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Heng Jiang
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Huichen Ge
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Kun Qian
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Yang Zheng
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Yoonseong Park
- Department of Entomology, Kansas State University, Manhattan, Kansas, United States of America
| | - Jianjun Wang
- College of Plant Protection, Yangzhou University, Yangzhou, China
| |
Collapse
|
7
|
Herre M. Immunostaining Whole-Mount Olfactory Tissues of Mosquitoes. Cold Spring Harb Protoc 2023; 2023:55-60. [PMID: 35940641 DOI: 10.1101/pdb.prot107915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Mosquito olfactory tissues are covered in fine hair-like sensory structures called sensilla that house olfactory sensory neurons. This protocol for immunostaining whole-mounted mosquito antennae and maxillary palps enables the visualization of these neurons.
Collapse
Affiliation(s)
- Margaret Herre
- The Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, New York 10065, USA
| |
Collapse
|
8
|
Herre M, Goldman OV, Lu TC, Caballero-Vidal G, Qi Y, Gilbert ZN, Gong Z, Morita T, Rahiel S, Ghaninia M, Ignell R, Matthews BJ, Li H, Vosshall LB, Younger MA. Non-canonical odor coding in the mosquito. Cell 2022; 185:3104-3123.e28. [PMID: 35985288 PMCID: PMC9480278 DOI: 10.1016/j.cell.2022.07.024] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/05/2022] [Accepted: 07/20/2022] [Indexed: 12/23/2022]
Abstract
Aedes aegypti mosquitoes are a persistent human foe, transmitting arboviruses including dengue when they feed on human blood. Mosquitoes are intensely attracted to body odor and carbon dioxide, which they detect using ionotropic chemosensory receptors encoded by three large multi-gene families. Genetic mutations that disrupt the olfactory system have modest effects on human attraction, suggesting redundancy in odor coding. The canonical view is that olfactory sensory neurons each express a single chemosensory receptor that defines its ligand selectivity. We discovered that Ae. aegypti uses a different organizational principle, with many neurons co-expressing multiple chemosensory receptor genes. In vivo electrophysiology demonstrates that the broad ligand-sensitivity of mosquito olfactory neurons depends on this non-canonical co-expression. The redundancy afforded by an olfactory system in which neurons co-express multiple chemosensory receptors may increase the robustness of the mosquito olfactory system and explain our long-standing inability to disrupt the detection of humans by mosquitoes.
Collapse
Affiliation(s)
- Margaret Herre
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA; Kavli Neural Systems Institute, New York, NY 10065, USA; Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10065, USA
| | - Olivia V Goldman
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA; Kavli Neural Systems Institute, New York, NY 10065, USA
| | - Tzu-Chiao Lu
- Huffington Center on Aging and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gabriela Caballero-Vidal
- Disease Vector Group, Unit of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp 234 22, Sweden
| | - Yanyan Qi
- Huffington Center on Aging and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zachary N Gilbert
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - Zhongyan Gong
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - Takeshi Morita
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, New York, NY 10065, USA
| | - Saher Rahiel
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - Majid Ghaninia
- Disease Vector Group, Unit of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp 234 22, Sweden
| | - Rickard Ignell
- Disease Vector Group, Unit of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp 234 22, Sweden
| | - Benjamin J Matthews
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, New York, NY 10065, USA
| | - Hongjie Li
- Huffington Center on Aging and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Leslie B Vosshall
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA; Kavli Neural Systems Institute, New York, NY 10065, USA; Howard Hughes Medical Institute, New York, NY 10065, USA
| | - Meg A Younger
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA; Kavli Neural Systems Institute, New York, NY 10065, USA; Department of Biology, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
9
|
Guan D, Yang X, Jiang H, Zhang N, Wu Z, Jiang C, Shen Q, Qian K, Wang J, Meng X. Identification and Validation of ATP-Binding Cassette Transporters Involved in the Detoxification of Abamectin in Rice Stem Borer, Chilo suppressalis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4611-4619. [PMID: 35410476 DOI: 10.1021/acs.jafc.2c00414] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Chilo suppressalis has developed high levels of resistance to abamectin in many areas of China, while the underline resistance mechanisms are largely unclear. ATP-binding cassette (ABC) transporters function in transporting a large diversity of substrates including insecticides and play important roles in the detoxification metabolism of insects. In this study, synergism bioassay revealed that the ABC transporters were involved in the detoxification of C. suppressalis to abamectin. Six ABC transporter genes were upregulated in C. suppressalis after abamectin exposure, among which five genes CsABCC8, CsABCE1, CsABCF1, CsABCF2, and CsABCH1 were induced in the detoxification-related tissues. In addition, the five ABC transporters were recombinantly expressed in Sf9 cells, and the cytotoxicity assay showed that the viabilities of cells expressing CsABCC8 or CsABCH1 were significantly increased when compared with the viabilities of cells expressing EGFP after abamectin, chlorantraniliprole, cyantraniliprole, fipronil, and chlorpyrifos treatment, respectively. Overexpression of CsABCE1 significantly increased the viabilities of cells to abamectin, chlorantraniliprole, deltamethrin, and indoxacarb exposure, respectively. These results suggested that CsABCC8, CsABCE1, and CsABCH1 might participate in the detoxification and transport of abamectin and several other classes of insecticides in C. suppressalis. Our study provides valuable insights into the transport-related detoxification mechanisms in C. suppressalis and other insects.
Collapse
Affiliation(s)
- Daojie Guan
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Xuemei Yang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Heng Jiang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Nan Zhang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Zhaolu Wu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Chengyun Jiang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Qinwen Shen
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Kun Qian
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Jianjun Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Xiangkun Meng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
10
|
Carreira-Rosario A, York RA, Choi M, Doe CQ, Clandinin TR. Mechanosensory input during circuit formation shapes Drosophila motor behavior through patterned spontaneous network activity. Curr Biol 2021; 31:5341-5349.e4. [PMID: 34478644 PMCID: PMC8665011 DOI: 10.1016/j.cub.2021.08.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 07/05/2021] [Accepted: 08/05/2021] [Indexed: 01/30/2023]
Abstract
Neural activity sculpts circuit wiring in many animals. In vertebrates, patterned spontaneous network activity (PaSNA) generates sensory maps and establishes local circuits.1-3 However, it remains unclear how PaSNA might shape neuronal circuits and behavior in invertebrates. Previous work in the developing Drosophila embryo discovered intrinsic muscle activity that did not require synaptic transmission, and hence was myogenic, preceding PaSNA.4-6 These studies, however, monitored muscle movement, not neural activity, and were therefore unable to observe how myogenic activity might relate to subsequent neural network engagement. Here we use calcium imaging to directly record neural activity and characterize the emergence of PaSNA. We demonstrate that the spatiotemporal properties of PaSNA are highly stereotyped across embryos, arguing for genetic programming. Neural activity begins well before it becomes patterned, emerging during the myogenic stage. Remarkably, inhibition of mechanosensory input, as well as inhibition of muscle contractions, results in premature and excessive PaSNA, demonstrating that muscle movement serves as a brake on this process. Finally, transient mechanosensory inhibition during PaSNA, followed by quantitative modeling of larval behavior, shows that mechanosensory modulation during development is required for proper larval foraging. This work provides a foundation for using the Drosophila embryo to study the role of PaSNA in circuit formation, provides mechanistic insight into how PaSNA is entrained by motor activity, and demonstrates that spontaneous network activity is essential for locomotor behavior. These studies argue that sensory feedback during the earliest stages of circuit formation can sculpt locomotor behaviors through innate motor learning.
Collapse
Affiliation(s)
- Arnaldo Carreira-Rosario
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA; Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403, USA
| | - Ryan A York
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Minseung Choi
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Chris Q Doe
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403, USA.
| | - Thomas R Clandinin
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
11
|
Kobler O, Weiglein A, Hartung K, Chen YC, Gerber B, Thomas U. A quick and versatile protocol for the 3D visualization of transgene expression across the whole body of larval Drosophila. J Neurogenet 2021; 35:306-319. [PMID: 33688796 DOI: 10.1080/01677063.2021.1892096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Larval Drosophila are used as a genetically accessible study case in many areas of biological research. Here we report a fast, robust and user-friendly procedure for the whole-body multi-fluorescence imaging of Drosophila larvae; the protocol has been optimized specifically for larvae by systematically tackling the pitfalls associated with clearing this small but cuticularized organism. Tests on various fluorescent proteins reveal that the recently introduced monomeric infrared fluorescent protein (mIFP) is particularly suitable for our approach. This approach comprises an effective, low-cost clearing protocol with minimal handling time and reduced toxicity in the reagents employed. It combines a success rate high enough to allow for small-scale screening approaches and a resolution sufficient for cellular-level analyses with light sheet and confocal microscopy. Given that publications and database documentations typically specify expression patterns of transgenic driver lines only within a given organ system of interest, the present procedure should be versatile enough to extend such documentation systematically to the whole body. As examples, the expression patterns of transgenic driver lines covering the majority of neurons, or subsets of chemosensory, central brain or motor neurons, are documented in the context of whole larval body volumes (using nsyb-Gal4, IR76b-Gal4, APL-Gal4 and mushroom body Kenyon cells, or OK371-Gal4, respectively). Notably, the presented protocol allows for triple-color fluorescence imaging with near-infrared, red and yellow fluorescent proteins.
Collapse
Affiliation(s)
- Oliver Kobler
- Leibniz Institute for Neurobiology, Combinatorial NeuroImaging Core Facility (CNI), Magdeburg, Germany
| | - Aliće Weiglein
- Department of Genetics of Learning and Memory, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Kathrin Hartung
- Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Yi-Chun Chen
- Department of Genetics of Learning and Memory, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Bertram Gerber
- Department of Genetics of Learning and Memory, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Institute of Biology, Otto von Guericke University, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Otto von Guericke University, Magdeburg, Germany
| | - Ulrich Thomas
- Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Department of Cellular Neuroscience, Leibniz Institute for Neurobiology, Magdeburg, Germany
| |
Collapse
|
12
|
Basrur NS, De Obaldia ME, Morita T, Herre M, von Heynitz RK, Tsitohay YN, Vosshall LB. Fruitless mutant male mosquitoes gain attraction to human odor. eLife 2020; 9:e63982. [PMID: 33284111 PMCID: PMC7806257 DOI: 10.7554/elife.63982] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/28/2020] [Indexed: 12/27/2022] Open
Abstract
The Aedesaegypti mosquito shows extreme sexual dimorphism in feeding. Only females are attracted to and obtain a blood-meal from humans, which they use to stimulate egg production. The fruitless gene is sex-specifically spliced and encodes a BTB zinc-finger transcription factor proposed to be a master regulator of male courtship and mating behavior across insects. We generated fruitless mutant mosquitoes and showed that males failed to mate, confirming the ancestral function of this gene in male sexual behavior. Remarkably, fruitless males also gain strong attraction to a live human host, a behavior that wild-type males never display, suggesting that male mosquitoes possess the central or peripheral neural circuits required to host-seek and that removing fruitless reveals this latent behavior in males. Our results highlight an unexpected repurposing of a master regulator of male-specific sexual behavior to control one module of female-specific blood-feeding behavior in a deadly vector of infectious diseases.
Collapse
Affiliation(s)
- Nipun S Basrur
- Laboratory of Neurogenetics and Behavior, The Rockefeller UniversityNew YorkUnited States
| | - Maria Elena De Obaldia
- Laboratory of Neurogenetics and Behavior, The Rockefeller UniversityNew YorkUnited States
| | - Takeshi Morita
- Laboratory of Neurogenetics and Behavior, The Rockefeller UniversityNew YorkUnited States
| | - Margaret Herre
- Laboratory of Neurogenetics and Behavior, The Rockefeller UniversityNew YorkUnited States
- Kavli Neural Systems InstituteNew YorkUnited States
| | - Ricarda K von Heynitz
- Laboratory of Neurogenetics and Behavior, The Rockefeller UniversityNew YorkUnited States
| | - Yael N Tsitohay
- Laboratory of Neurogenetics and Behavior, The Rockefeller UniversityNew YorkUnited States
| | - Leslie B Vosshall
- Laboratory of Neurogenetics and Behavior, The Rockefeller UniversityNew YorkUnited States
- Kavli Neural Systems InstituteNew YorkUnited States
- Howard Hughes Medical InstituteNew YorkUnited States
| |
Collapse
|
13
|
Alvarez-Ochoa E, Froldi F, Cheng LY. Interorgan communication in development and cancer. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2020; 10:e394. [PMID: 32852143 DOI: 10.1002/wdev.394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 06/22/2020] [Accepted: 07/16/2020] [Indexed: 11/10/2022]
Abstract
Studies in model organisms have demonstrated that extensive communication occurs between distant organs both during development and in diseases such as cancer. Organs communicate with each other to coordinate growth and reach the correct size, while the fate of tumor cells depend on the outcome of their interaction with the immune system and peripheral tissues. In this review, we outline recent studies in Drosophila, which have enabled an improved understanding of the complex crosstalk between organs in the context of both organismal and tumor growth. We argue that Drosophila is a powerful model organism for studying these interactions, and these studies have the potential for improving our understanding of signaling pathways and candidate factors that mediate this conserved interorgan crosstalk. This article is categorized under: Establishment of Spatial and Temporal Patterns > Regulation of Size, Proportion, and Timing Early Embryonic Development > Development to the Basic Body Plan Invertebrate Organogenesis > Flies.
Collapse
Affiliation(s)
- Edel Alvarez-Ochoa
- Peter MacCallum Cancer Centre, Parkville, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Francesca Froldi
- Peter MacCallum Cancer Centre, Parkville, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Louise Y Cheng
- Peter MacCallum Cancer Centre, Parkville, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia.,The Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
14
|
Sograte-Idrissi S, Schlichthaerle T, Duque-Afonso CJ, Alevra M, Strauss S, Moser T, Jungmann R, Rizzoli SO, Opazo F. Circumvention of common labelling artefacts using secondary nanobodies. NANOSCALE 2020; 12:10226-10239. [PMID: 32356544 DOI: 10.1039/d0nr00227e] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A standard procedure to study cellular elements is via immunostaining followed by optical imaging. This methodology typically requires target-specific primary antibodies (1.Abs), which are revealed by secondary antibodies (2.Abs). Unfortunately, the antibody bivalency, polyclonality, and large size can result in a series of artifacts. Alternatively, small, monovalent probes, such as single-domain antibodies (nanobodies) have been suggested to minimize these limitations. The discovery and validation of nanobodies against specific targets are challenging, thus only a minimal amount of them are currently available. Here, we used STED, DNA-PAINT, and light-sheet microscopy, to demonstrate that secondary nanobodies (1) increase localization accuracy compared to 2.Abs; (2) allow direct pre-mixing with 1.Abs before staining, reducing experimental time, and enabling the use of multiple 1.Abs from the same species; (3) penetrate thick tissues more efficiently; and (4) avoid probe-induced clustering of target molecules observed with conventional 2.Abs in living or poorly fixed samples. Altogether, we show how secondary nanobodies are a valuable alternative to 2.Abs.
Collapse
Affiliation(s)
- Shama Sograte-Idrissi
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany. and Center for Biostructural Imaging of Neurodegeneration (BIN), University of Göttingen Medical Center, 37075 Göttingen, Germany and International Max Planck Research School for Molecular Biology, Göttingen, Germany
| | - Thomas Schlichthaerle
- Faculty of Physics and Center for Nanoscience, LMU Munich, 80539, Munich, Germany and Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Carlos J Duque-Afonso
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37075 Göttingen, Germany and Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany and Multiscale Bioimaging Cluster of Excellence (MBExC), University of Göttingen, 37075 Göttingen, Germany and University of Göttingen, 37075, Göttingen, Germany
| | - Mihai Alevra
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany.
| | - Sebastian Strauss
- Faculty of Physics and Center for Nanoscience, LMU Munich, 80539, Munich, Germany and Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37075 Göttingen, Germany and Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany and Multiscale Bioimaging Cluster of Excellence (MBExC), University of Göttingen, 37075 Göttingen, Germany and University of Göttingen, 37075, Göttingen, Germany
| | - Ralf Jungmann
- Faculty of Physics and Center for Nanoscience, LMU Munich, 80539, Munich, Germany and Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Silvio O Rizzoli
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany. and Center for Biostructural Imaging of Neurodegeneration (BIN), University of Göttingen Medical Center, 37075 Göttingen, Germany and Multiscale Bioimaging Cluster of Excellence (MBExC), University of Göttingen, 37075 Göttingen, Germany
| | - Felipe Opazo
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany. and Center for Biostructural Imaging of Neurodegeneration (BIN), University of Göttingen Medical Center, 37075 Göttingen, Germany and NanoTag Biotechnologies GmbH, 37079, Göttingen, Germany
| |
Collapse
|
15
|
Masselink W, Reumann D, Murawala P, Pasierbek P, Taniguchi Y, Bonnay F, Meixner K, Knoblich JA, Tanaka EM. Broad applicability of a streamlined ethyl cinnamate-based clearing procedure. Development 2019; 146:dev166884. [PMID: 30665888 PMCID: PMC7115989 DOI: 10.1242/dev.166884] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 01/09/2019] [Indexed: 12/21/2022]
Abstract
Turbidity and opaqueness are inherent properties of tissues that limit the capacity to acquire microscopic images through large tissues. Creating a uniform refractive index, known as tissue clearing, overcomes most of these issues. These methods have enabled researchers to image large and complex 3D structures with unprecedented depth and resolution. However, tissue clearing has been adopted to a limited extent due to a combination of cost, time, complexity of existing methods and potential negative impact on fluorescence signal. Here, we describe 2Eci (2nd generation ethyl cinnamate-based clearing), which can be used to clear a wide range of tissues in several species, including human organoids, Drosophila melanogaster, zebrafish, axolotl and Xenopus laevis, in as little as 1-5 days, while preserving a broad range of fluorescent proteins, including GFP, mCherry, Brainbow and Alexa-conjugated fluorophores. Ethyl cinnamate is non-toxic and can easily be used in multi-user microscope facilities. This method opens up tissue clearing to a much broader group of researchers due to its ease of use, the non-toxic nature of ethyl cinnamate and broad applicability.
Collapse
Affiliation(s)
- Wouter Masselink
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-BioCenter 1, 1030 Vienna, Austria
| | - Daniel Reumann
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Prayag Murawala
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-BioCenter 1, 1030 Vienna, Austria
| | - Pawel Pasierbek
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Yuka Taniguchi
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-BioCenter 1, 1030 Vienna, Austria
| | - François Bonnay
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Katharina Meixner
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Jürgen A Knoblich
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Elly M Tanaka
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-BioCenter 1, 1030 Vienna, Austria
| |
Collapse
|
16
|
Ramon-Cañellas P, Peterson HP, Morante J. From Early to Late Neurogenesis: Neural Progenitors and the Glial Niche from a Fly's Point of View. Neuroscience 2018; 399:39-52. [PMID: 30578972 DOI: 10.1016/j.neuroscience.2018.12.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 12/06/2018] [Accepted: 12/12/2018] [Indexed: 12/15/2022]
Abstract
Drosophila melanogaster is an important model organism used to study the brain development of organisms ranging from insects to mammals. The central nervous system in fruit flies is formed primarily in two waves of neurogenesis, one of which occurs in the embryo and one of which occurs during larval stages. In order to understand neurogenesis, it is important to research the behavior of progenitor cells that give rise to the neural networks which make up the adult nervous system. This behavior has been shown to be influenced by different factors including interactions with other cells within the progenitor niche, or local tissue microenvironment. Glial cells form a crucial part of this niche and play an active role in the development of the brain. Although in the early years of neuroscience it was believed that glia were simply scaffolding for neurons and passive components of the nervous system, their importance is nowadays recognized. Recent discoveries in progenitors and niche cells have led to new understandings of how the developing brain shapes its diverse regions. In this review, we attempt to summarize the distinct neural progenitors and glia in the Drosophila melanogaster central nervous system, from embryo to late larval stages, and make note of homologous features in mammals. We also outline the recent advances in this field in order to define the impact that glial cells have on progenitor cell niches, and we finally emphasize the importance of communication between glia and progenitor cells for proper brain formation.
Collapse
Affiliation(s)
- Pol Ramon-Cañellas
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas (CSIC), and Universidad Miguel Hernández (UMH), Campus de Sant Joan, Apartado 18, 03550 Sant Joan, Alicante, Spain
| | - Hannah Payette Peterson
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas (CSIC), and Universidad Miguel Hernández (UMH), Campus de Sant Joan, Apartado 18, 03550 Sant Joan, Alicante, Spain
| | - Javier Morante
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas (CSIC), and Universidad Miguel Hernández (UMH), Campus de Sant Joan, Apartado 18, 03550 Sant Joan, Alicante, Spain.
| |
Collapse
|
17
|
Edwards SS, Delgado MG, Nader GPDF, Piel M, Bellaïche Y, Lennon-Duménil AM, Glavic Á. An in vitro method for studying subcellular rearrangements during cell polarization in Drosophila melanogaster hemocytes. Mech Dev 2018; 154:277-286. [PMID: 30096416 DOI: 10.1016/j.mod.2018.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 08/04/2018] [Accepted: 08/06/2018] [Indexed: 12/13/2022]
Abstract
Thanks to the power of Drosophila genetics, this animal model has been a precious tool for scientists to uncover key processes associated to innate immunity. The fly immune system relies on a population of macrophage-like cells, also referred to as hemocytes, which are highly migratory and phagocytic, and can easily be followed in vivo. These cells have shown to play important roles in fly development, both at the embryonic and pupal stages. However, there is no robust assay for the study of hemocyte migration in vitro, which limits our understanding of the molecular mechanisms involved. Here, we contribute to fill this gap by showing that hemocytes adopt a polarized morphology upon ecdysone stimulation, allowing the study of the cytoskeleton rearrangements and organelle reorganization that take place during the first step of cell locomotion.
Collapse
Affiliation(s)
- Sandra Sofía Edwards
- Centro de Regulación del Genoma, Facultad de Ciencias, Universidad de Chile, Santiago 7800024, Chile.
| | - María Graciela Delgado
- Institut Curie, PSL Research University, INSERM U932 Immunité et Cancer, F-75248 Paris Cedex 05, France.
| | - Guilherme Pedreira de Freitas Nader
- Institut Curie, PSL Research University, CNRS, UMR 144, F-75005 Paris, France; Institut Pierre-Gilles de Gennes, PSL Research University, F-75005 Paris, France.
| | - Matthieu Piel
- Institut Curie, PSL Research University, CNRS, UMR 144, F-75005 Paris, France; Institut Pierre-Gilles de Gennes, PSL Research University, F-75005 Paris, France.
| | - Yohanns Bellaïche
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, F-75248 Paris Cedex 05, France; Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR 3215, INSERM U934, F-75005, France.
| | - Ana María Lennon-Duménil
- Institut Curie, PSL Research University, INSERM U932 Immunité et Cancer, F-75248 Paris Cedex 05, France.
| | - Álvaro Glavic
- Centro de Regulación del Genoma, Facultad de Ciencias, Universidad de Chile, Santiago 7800024, Chile.
| |
Collapse
|