1
|
Martin J, Falaise A, Faour S, Terryn C, Hachet C, Thiébault É, Huber L, Nizet P, Rioult D, Jaffiol R, Salesse S, Dedieu S, Langlois B. Differential Modulation of Endothelial Cell Functionality by LRP1 Expression in Fibroblasts and Cancer-Associated Fibroblasts via Paracrine signals and Matrix Remodeling. Matrix Biol 2025:S0945-053X(25)00048-4. [PMID: 40379110 DOI: 10.1016/j.matbio.2025.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/09/2025] [Accepted: 05/13/2025] [Indexed: 05/19/2025]
Abstract
LRP1 is a multifunctional endocytosis receptor involved in the regulation of cancer cell aggressiveness, fibroblast phenotype and angiogenesis. In breast cancer microenvironment, cancer-associated fibroblasts (CAFs) play a crucial role in matrix remodeling and tumor niche composition. LRP1 expression was described in fibroblasts and CAFs but remains poorly understood regarding its impact on endothelial cell behavior and angiocrine signaling. We analyzed the angio-modulatory effect of LRP1 expression in murine embryonic fibroblasts (MEFs) and breast cancer-educated CAF2 cells. We employed conditioned media and fibroblast-derived matrices to model fibroblastic cells angiogenic effects on human umbilical vein endothelial cells (HUVEC). Neither the extracellular matrix assembled by MEFs knock-out for LRP1 (PEA-13) nor their secretome modify the migration of HUVEC as compared to wild-type. Conversely, LRP1-deficient CAF2 secretome and matrices stimulate endothelial cell migration. Using spheroids, we demonstrate that PEA-13 secretome does not affect HUVEC angio-invasion. By contrast, CAF2 secretome invalidated for LRP1 stimulates endothelial sprouting as compared to controls. In addition, it specifically stabilized peripheral VE-cadherin-mediated endothelial cell junctions. A global proteomic analysis revealed that LRP1 expression in CAFs orchestrates a specific mobilization of secreted matricial components, surface receptors and membrane-associated proteins at the endothelial cell surface, thereby illustrating the deep influence exerted by LRP1 in angiogenic signals emitted by activated fibroblasts.
Collapse
Affiliation(s)
- Julie Martin
- UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France; Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, UMR 7369 CNRS, Reims, France
| | - Auréana Falaise
- UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France; Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, UMR 7369 CNRS, Reims, France
| | - Sara Faour
- UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France; Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, UMR 7369 CNRS, Reims, France; Light, nanomaterials, nanotechnologies, ERL CNRS 7004, Université de Technologie de Troyes, Troyes, France
| | - Christine Terryn
- Plate-Forme Imagerie Cellulaire et Tissulaire (PICT), Université de Reims Champagne-Ardenne, UFR Médecine, Reims, France
| | - Cathy Hachet
- UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France; Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, UMR 7369 CNRS, Reims, France
| | - Émilie Thiébault
- UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France; Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, UMR 7369 CNRS, Reims, France
| | - Louise Huber
- UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France; Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, UMR 7369 CNRS, Reims, France
| | - Pierre Nizet
- UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France; Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, UMR 7369 CNRS, Reims, France
| | - Damien Rioult
- Plateau Technique Mobile de Cytométrie Environnementale MOBICYTE, Université de Reims Champagne-Ardenne/INERIS, Reims, France
| | - Rodolphe Jaffiol
- Light, nanomaterials, nanotechnologies, ERL CNRS 7004, Université de Technologie de Troyes, Troyes, France
| | - Stéphanie Salesse
- UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France; Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, UMR 7369 CNRS, Reims, France.
| | - Stéphane Dedieu
- UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France; Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, UMR 7369 CNRS, Reims, France.
| | - Benoit Langlois
- UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France; Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, UMR 7369 CNRS, Reims, France.
| |
Collapse
|
2
|
Kim K, Min S, Thangam R, Tag KR, Lee HJ, Heo J, Jung H, Swe TT, Zare I, Song G, Najafabadi AH, Lee J, Jung HD, Kim JS, Hur S, Song HC, Park SG, Zhang K, Zhao P, Bian L, Kim SH, Yoon J, Ahn JP, Kim HK, Kang H. Dynamic hierarchical ligand anisotropy for competing macrophage regulation in vivo. Bioact Mater 2025; 47:121-135. [PMID: 39897585 PMCID: PMC11787691 DOI: 10.1016/j.bioactmat.2025.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/30/2024] [Accepted: 01/10/2025] [Indexed: 02/04/2025] Open
Abstract
Diverse connective tissues exhibit hierarchical anisotropic structures that intricately regulate homeostasis and tissue functions for dynamic immune response modulation. In this study, remotely manipulable hierarchical nanostructures are tailored to exhibit multi-scale ligand anisotropy. Hierarchical nanostructure construction involves coupling liganded nanoscale isotropic/anisotropic Au (comparable to few integrin molecules-scale) to the surface of microscale isotropic/anisotropic magnetic Fe3O4 (comparable to integrin cluster-scale) and then elastically tethering them to a substrate. Systematic independent tailoring of nanoscale or microscale ligand isotropy versus anisotropy in four different hierarchical nanostructures with constant liganded surface area demonstrates similar levels of integrin molecule bridging and macrophage adhesion on the nanoscale ligand isotropy versus anisotropy. Conversely, the levels of integrin cluster bridging across hierarchical nanostructures and macrophage adhesion are significantly promoted by microscale ligand anisotropy compared with microscale ligand isotropy. Furthermore, microscale ligand anisotropy dominantly activates the host macrophage adhesion and pro-regenerative M2 polarization in vivo over the nanoscale ligand anisotropy, which can be cyclically reversed by substrate-proximate versus substrate-distant magnetic manipulation. This unprecedented scale-specific regulation of cells can be diversified by unlimited tuning of the scale, anisotropy, dimension, shape, and magnetism of hierarchical structures to decipher scale-specific dynamic cell-material interactions to advance immunoengineering strategies.
Collapse
Affiliation(s)
- Kanghyeon Kim
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Sunhong Min
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Ramar Thangam
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Kyong-Ryol Tag
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
- Advanced Analysis Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Hyun-Jeong Lee
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
- Advanced Analysis Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Jeongyun Heo
- Center for Theragnosis, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Hwapyung Jung
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Thet Thet Swe
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co., Ltd., Shiraz, 7178795844, Iran
| | - Guosheng Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | | | - Junmin Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, Republic of Korea
| | - Hyun-Do Jung
- Division of Materials Science and Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Sunghoon Hur
- Electronic Materials Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Hyun-Cheol Song
- Electronic Materials Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- KIST-SKKU Carbon-Neutral Research Center, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Sung-Gyu Park
- Department of Nano-Bio Convergence, Korea Institute of Materials Science (KIMS), Changwon, Gyeongnam, 51508, Republic of Korea
- Department of Future Convergence Materials, Korea University, Seoul, 02841, Republic of Korea
| | - Kunyu Zhang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, China
| | - Pengchao Zhao
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, China
| | - Liming Bian
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, China
| | - Se Hoon Kim
- Center for Theragnosis, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
- Graduate Program in Innovative Biomaterials Convergence, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Jae-Pyoung Ahn
- Advanced Analysis Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Hong-Kyu Kim
- Advanced Analysis Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
- Department of Future Convergence Materials, Korea University, Seoul, 02841, Republic of Korea
- College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
3
|
Zhao W, Liu Z, Li Z, Qian H, Hu J. Protocol for extraction and characterization of mouse brain-derived extracellular matrix for neuronal cell culture. STAR Protoc 2025; 6:103764. [PMID: 40220305 PMCID: PMC12018537 DOI: 10.1016/j.xpro.2025.103764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/26/2025] [Accepted: 03/20/2025] [Indexed: 04/14/2025] Open
Abstract
Neuronal cell cultures are highly sensitive to their microenvironment, particularly the choice of coating substrate. Here, we present a protocol to isolate extracellular matrix (ECM) from mouse brain tissue, providing a native coating material that closely mimics in vivo conditions. We detail decellularization steps, guidelines for measuring ECM quality, and instructions for co-culturing neuronal cells on the resulting substrate. By promoting improved neuronal survival, growth, and differentiation, this protocol has broad implications for in vitro neurobiological research and downstream applications.
Collapse
Affiliation(s)
- Weihao Zhao
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, The Department of Medical Genetics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610054, China; School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Ziqian Liu
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, The Department of Medical Genetics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610054, China; School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Zhenghao Li
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, The Department of Medical Genetics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610054, China; School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Hao Qian
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, The Department of Medical Genetics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610054, China; School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Jing Hu
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, The Department of Medical Genetics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610054, China; School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China.
| |
Collapse
|
4
|
Chen GH, Sia KC, Liu SW, Kao YC, Yang PC, Ho CH, Huang SC, Lee PY, Liang MZ, Chen L, Huang CC. Implantation of MSC spheroid-derived 3D decellularized ECM enriched with the MSC secretome ameliorates traumatic brain injury and promotes brain repair. Biomaterials 2025; 315:122941. [PMID: 39515193 DOI: 10.1016/j.biomaterials.2024.122941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/14/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Traumatic brain injury (TBI) presents substantial clinical challenges, as existing treatments are unable to reverse damage or effectively promote brain tissue regeneration. Although implantable biomaterials have been proposed to support tissue repair by mitigating the adverse microenvironment in injured brains, many fail to replicate the complex composition and architecture of the native extracellular matrix (ECM), resulting in only limited therapeutic outcomes. This study introduces an innovative approach by developing a mesenchymal stem cell (MSC) spheroid-derived three-dimensional (3D) decellularized ECM (dECM) that is enriched with the MSC-derived matrisome and secretome, offering a promising solution for TBI treatment and brain tissue regeneration. Proteomic and cytokine array analyses revealed that 3D dECM retained a diverse array of MSC spheroid-derived matrisome proteins and secretome components, which are crucial for replicating the complexity of native ECM and the therapeutic capabilities of MSCs. These molecules were found to underlie the observed effects of 3D dECM on immunomodulation, proneuritogenesis, and proangiogenesis in our in vitro functional assays. Implantation of 3D dECM into TBI model mice effectively mitigated postinjury tissue damage and promoted brain repair, as evidenced by a reduced brain lesion volume, decreased cell apoptosis, alleviated neuroinflammation, reduced glial scar formation, and increased of neuroblast recruitment to the lesion site. These outcomes culminated in improved motor function recovery in animals, highlighting the multifaceted therapeutic potential of 3D dECM for TBI. In summary, our study elucidates the transformative potential of MSC spheroid-derived bioactive 3D dECM as an implantable biomaterial for effectively mitigating post-TBI neurological damage, paving the way for its broader therapeutic application.
Collapse
Affiliation(s)
- Grace H Chen
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Kee-Chin Sia
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Shao-Wen Liu
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Ying-Chi Kao
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Pei-Ching Yang
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Chia-Hsin Ho
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Shih-Chen Huang
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Peng-Ying Lee
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Min-Zong Liang
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Linyi Chen
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, 30013, Taiwan; Department of Medical Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Chieh-Cheng Huang
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan.
| |
Collapse
|
5
|
Feng R, Ma S, Bai R, Zhu Y, Sarengele, Ning J, Xu Q, Wang C, Wang L, Bian C, Zheng Z, Shou P, Zhang L, Su X. Establishment and characterization study of ovine mammary organoids. BMC Vet Res 2025; 21:184. [PMID: 40108665 PMCID: PMC11921478 DOI: 10.1186/s12917-025-04657-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/10/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND The study of ovine lactation and mastitis is limited by the lack of physiologically relevant in vitro models. Compared to mammary epithelial cells, mammary gland organoids (MaOs) offer a better model for studying lactation, as they more accurately replicate the tissue structure and interactions of cells in vivo. Here, we optimize a protocol for the isolation, culture, characterization, and transfection of ovine MaOs derived from ewe mammary tissue. RESULTS We compared different enzymatic digestion methods and found that type IV collagenase digestion for 60 min yielded the highest number of MaOs compared to a mixed enzyme solution of type II collagenase and hyaluronidase. Culture medium optimization revealed that medium B supported superior growth, with increased budding structures, a higher number of MaOs over time, and a greater proportion of EdU-positive proliferating cells compared to media A and C. Cell-type characterization confirmed the presence of both luminal and myoepithelial cells, as shown by RT-PCR analysis of CK14, CK18, and CK7 expression, and further validated by immunofluorescence staining for CK14 and CK18. MaOs in medium B exhibited significantly higher mRNA expression levels of milk lipid metabolism-related genes (XDH, FABP3, SREBP1), lactose metabolism-related genes (GLUT1, GLUT4), and milk protein synthesis genes (EIF4E, CSN2) at multiple time points. In all media, XDH, FABP3, SREBP1, GLUT1, GLUT4, EIF4E, and CSN2 mRNA expression peaked at Day 7 before declining. Additionally, at Day 7, supernatant analysis confirmed that triglyceride, lactose, and CSN2 concentrations were significantly elevated in medium B compared to media A and C. Finally, we demonstrated that the ovine MaOs could be transfected using electroporation with 27.3% becoming GFP-positive. CONCLUSIONS This study establishes a protocol for the isolation, culture, characterization, and genetic manipulation of ovine MaOs. These organoids serve as a physiologically relevant model for studying the regulatory mechanisms of lactation and mastitis in sheep, providing a tool for future research in veterinary and agricultural sciences.
Collapse
Affiliation(s)
- Rui Feng
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Sijia Ma
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Ruixue Bai
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Yijing Zhu
- Ulanqab Animal Husbandry Workstation, Ulanqab Agriculture and Animal Husbandry Bureau, Ulanqab, 012000, Inner Mongolia Autonomous Region, PR China
| | - Sarengele
- Ulanqab Animal Husbandry Workstation, Ulanqab Agriculture and Animal Husbandry Bureau, Ulanqab, 012000, Inner Mongolia Autonomous Region, PR China
| | - Jingru Ning
- Ulanqab Animal Husbandry Workstation, Ulanqab Agriculture and Animal Husbandry Bureau, Ulanqab, 012000, Inner Mongolia Autonomous Region, PR China
| | - Quanzhong Xu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Chunwei Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Lequn Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Chao Bian
- Tumor radiotherapy department, Inner Mongolia People's Hospital, Hohhot, 010017, Inner Mongolia Autonomous Region, China
| | - Zhong Zheng
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Pengfei Shou
- Animal health quarantine and inspection Center, Ulanqab Agriculture and Animal Husbandry Bureau, Ulanqab, 012000, Inner Mongolia Autonomous Region, PR China
| | - Liguo Zhang
- Tumor radiotherapy department, Inner Mongolia People's Hospital, Hohhot, 010017, Inner Mongolia Autonomous Region, China
| | - Xiaohu Su
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, China.
| |
Collapse
|
6
|
White T, López-Márquez A, Badosa C, Jimenez-Mallebrera C, Samitier J, Giannotti MI, Lagunas A. Nanomechanics of cell-derived matrices as a functional read-out in collagen VI-related congenital muscular dystrophies. J R Soc Interface 2025; 22:20240860. [PMID: 40070338 PMCID: PMC11897821 DOI: 10.1098/rsif.2024.0860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/31/2025] [Accepted: 02/11/2025] [Indexed: 03/15/2025] Open
Abstract
Changes in the mechanical properties of the extracellular matrix (ECM) are a hallmark of disease. Due to its relevance, several in vitro models have been developed for the ECM, including cell-derived matrices (CDMs). CDMs are decellularized natural ECMs assembled by cells that closely mimic the in vivo stromal fibre organization and molecular content. Here, we applied atomic force microscopy-force spectroscopy (AFM-FS) to evaluate the nanomechanical properties of CDMs obtained from patients diagnosed with collagen VI-related congenital muscular dystrophies (COL6-RDs). COL6-RDs are a set of neuromuscular conditions caused by pathogenic variants in any of the three major COL6 genes, which result in deficiency or dysfunction of the COL6 incorporated into the ECM of connective tissues. Current diagnosis includes the genetic confirmation of the disease and categorization of the phenotype based on maximum motor ability, as no direct correlation exists between genotype and phenotype of COL6-RDs. We describe differences in the elastic modulus (E) among CDMs from patients with different clinical phenotypes, as well as the restoration of E in CDMs obtained from genetically edited cells. Results anticipate the potential of the nanomechanical analysis of CDMs as a complementary clinical tool, providing phenotypic information about COL6-RDs and their response to gene therapies.
Collapse
Affiliation(s)
- Tom White
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
| | - Arístides López-Márquez
- Laboratorio de Investigación Aplicada en Enfermedades Neuromusculares, Institut de Recerca Sant Joan de Déu, Barcelona, Catalunya, Spain
- Unidad de Patología Neuromuscular, Servicio de Neuropediatría, Hospital Sant Joan de Déu, Barcelona, Catalunya, Spain
- CIBER-ER, ISCIII, Madrid, Spain
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Carmen Badosa
- Laboratorio de Investigación Aplicada en Enfermedades Neuromusculares, Institut de Recerca Sant Joan de Déu, Barcelona, Catalunya, Spain
- Unidad de Patología Neuromuscular, Servicio de Neuropediatría, Hospital Sant Joan de Déu, Barcelona, Catalunya, Spain
- CIBER-ER, ISCIII, Madrid, Spain
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Cecilia Jimenez-Mallebrera
- Laboratorio de Investigación Aplicada en Enfermedades Neuromusculares, Institut de Recerca Sant Joan de Déu, Barcelona, Catalunya, Spain
- Unidad de Patología Neuromuscular, Servicio de Neuropediatría, Hospital Sant Joan de Déu, Barcelona, Catalunya, Spain
- CIBER-ER, ISCIII, Madrid, Spain
| | - Josep Samitier
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
- CIBER-BBN, ISCIII, Madrid, Spain
- Department of Electronic and Biomedical Engineering, University of Barcelona, Barcelona, Spain
| | - Marina Inés Giannotti
- CIBER-BBN, ISCIII, Madrid, Spain
- Nanoprobes and Nanoswitches, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Department of Materials Science and Physical Chemistry, University of Barcelona, Barcelona, Spain
| | - Anna Lagunas
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
- CIBER-BBN, ISCIII, Madrid, Spain
| |
Collapse
|
7
|
MacDonald E, Forrester A, Valades-Cruz CA, Madsen TD, Hetmanski JHR, Dransart E, Ng Y, Godbole R, Shp AA, Leconte L, Chambon V, Ghosh D, Pinet A, Bhatia D, Lombard B, Loew D, Larsen MR, Leffler H, Lefeber DJ, Clausen H, Blangy A, Caswell P, Shafaq-Zadah M, Mayor S, Weigert R, Wunder C, Johannes L. Growth factor-triggered de-sialylation controls glycolipid-lectin-driven endocytosis. Nat Cell Biol 2025; 27:449-463. [PMID: 39984654 DOI: 10.1038/s41556-025-01616-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 01/09/2025] [Indexed: 02/23/2025]
Abstract
Glycolipid-lectin-driven endocytosis controls the formation of clathrin-independent carriers and the internalization of various cargos such as β1 integrin. Whether this process is regulated in a dynamic manner remained unexplored. Here we demonstrate that, within minutes, the epidermal growth factor triggers the galectin-driven endocytosis of cell-surface glycoproteins, such as integrins, that are key regulators of cell adhesion and migration. The onset of this process-mediated by the Na+/H+ antiporter NHE1 as well as the neuraminidases Neu1 and Neu3-requires the pH-triggered enzymatic removal of sialic acids whose presence otherwise prevents galectin binding. De-sialylated glycoproteins are then retrogradely transported to the Golgi apparatus where their glycan make-up is reset to regulate EGF-dependent invasive-cell migration. Further evidence is provided for a role of neuraminidases and galectin-3 in acidification-dependent bone resorption. Glycosylation at the cell surface thereby emerges as a dynamic and reversible regulatory post-translational modification that controls a highly adaptable trafficking pathway.
Collapse
Affiliation(s)
- Ewan MacDonald
- Cellular and Chemical Biology Unit, Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Paris, France
- Cellular Organization and Signaling Group, National Centre for Biological Sciences, Bangalore, India
- Montpellier Cell Biology Research Center, CRBM, Université de Montpellier, CNRS, Montpellier, France
| | - Alison Forrester
- Cellular and Chemical Biology Unit, Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Paris, France
- WEL Research Institute, Wavre, Belgium
- Université de Namur ASBL, Namur, Belgium
| | - Cesar A Valades-Cruz
- Cellular and Chemical Biology Unit, Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Paris, France
- SERPICO Project Team, Inria-UMR144 CNRS Institut Curie, PSL Research University, Paris, France
- SERPICO Project Team, Inria Centre Rennes-Bretagne Atlantique, Rennes, France
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Thomas D Madsen
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
- Department for Cellular and Molecular Medicine, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark
| | - Joseph H R Hetmanski
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
- Division of Biosciences, Department of Life Sciences, Centre for Genome Engineering and Maintenance, Brunel University London, London, UK
| | - Estelle Dransart
- Cellular and Chemical Biology Unit, Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Paris, France
- SAIRPICO Project Team, Inria Center at University of Rennes, U1143 INSERM, Institut Curie, UMR3666 CNRS, PSL Research University, Paris, France
| | - Yeap Ng
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Rashmi Godbole
- Cellular Organization and Signaling Group, National Centre for Biological Sciences, Bangalore, India
- The University of Trans-disciplinary Health Sciences and Technology (TDU), Bangalore, India
| | - Ananthan Akhil Shp
- Cellular and Chemical Biology Unit, Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Paris, France
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Ludovic Leconte
- SERPICO Project Team, Inria-UMR144 CNRS Institut Curie, PSL Research University, Paris, France
- SERPICO Project Team, Inria Centre Rennes-Bretagne Atlantique, Rennes, France
| | - Valérie Chambon
- Cellular and Chemical Biology Unit, Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Paris, France
| | - Debarpan Ghosh
- Cellular and Chemical Biology Unit, Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Paris, France
| | - Alexis Pinet
- Cellular and Chemical Biology Unit, Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Paris, France
| | - Dhiraj Bhatia
- Cellular and Chemical Biology Unit, Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Paris, France
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Gujarat, India
| | - Bérangère Lombard
- CurieCoreTech Spectrométrie de Masse Protéomique, Institut Curie, Université PSL, Paris, France
| | - Damarys Loew
- CurieCoreTech Spectrométrie de Masse Protéomique, Institut Curie, Université PSL, Paris, France
| | - Martin R Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Hakon Leffler
- Section MIG (Microbiology, Immunology, Glycobiology), Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Dirk J Lefeber
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Henrik Clausen
- Department for Cellular and Molecular Medicine, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark
| | - Anne Blangy
- Montpellier Cell Biology Research Center (CRBM), Université de Montpellier, CNRS, Montpellier, France
| | - Patrick Caswell
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Massiullah Shafaq-Zadah
- Cellular and Chemical Biology Unit, Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Paris, France
- SAIRPICO Project Team, Inria Center at University of Rennes, U1143 INSERM, Institut Curie, UMR3666 CNRS, PSL Research University, Paris, France
| | - Satyajit Mayor
- Cellular Organization and Signaling Group, National Centre for Biological Sciences, Bangalore, India
- Centre for Mechanochemical Cell Biology, Warwick Medical School, University of Warwick, Warwick, UK
| | - Roberto Weigert
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| | - Christian Wunder
- Cellular and Chemical Biology Unit, Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Paris, France.
- SAIRPICO Project Team, Inria Center at University of Rennes, U1143 INSERM, Institut Curie, UMR3666 CNRS, PSL Research University, Paris, France.
| | - Ludger Johannes
- Cellular and Chemical Biology Unit, Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Paris, France.
- SAIRPICO Project Team, Inria Center at University of Rennes, U1143 INSERM, Institut Curie, UMR3666 CNRS, PSL Research University, Paris, France.
| |
Collapse
|
8
|
Schleinhege R, Neumann I, Oeckinghaus A, Schwab A, Pethő Z. A CNA-35-based high-throughput fibrosis assay reveals ORAI1 as a regulator of collagen release from pancreatic stellate cells. Matrix Biol 2025; 135:70-86. [PMID: 39662708 DOI: 10.1016/j.matbio.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/22/2024] [Accepted: 12/08/2024] [Indexed: 12/13/2024]
Abstract
RATIONALE Pancreatic stellate cells (PSCs) produce a collagen-rich connective tissue in chronic pancreatitis and pancreatic ductal adenocarcinoma (PDAC). Ca2+-permeable ion channels such as ORAI1 are known to affect PSC proliferation and myofibroblastic phenotype. However, it is unknown whether these channels play a role in collagen secretion. METHODS Using the PSC cell line PS-1, we characterized their cell-derived matrices using staining, mass spectroscopy, and cell migration assays. We developed and validated a high-throughput in vitro fibrosis assay to rapidly determine collagen quantity either with Sirius Red or, in the optimized version, with the collagen-binding peptide CNA-35-tdTomato. We assessed collagen deposition upon stimulating cells with transforming growth factor β1 (TGF-β1) and/or vitamin C without or with ORAI1 modulation. Orai1 expression was assessed by immunohistochemistry in the fibrotic tumor tissue of a murine PDAC model (KPfC). RESULTS We found that TGF-β1 and vitamin C promote collagen deposition from PSCs. We used small interfering RNA (siRNA) and the inhibitor Synta-66 to demonstrate that ORAI1 regulates collagen secretion of PSCs but not NIH-3T3 fibroblasts. Physiological levels of vitamin C induce a drastic increase of the intracellular [Ca2+] in PSCs, with Synta-66 inhibiting Ca2+ influx. Lastly, we revealed Orai1 expression in cancer-associated fibroblasts (CAFs) in murine PDAC (KPfC) samples. CONCLUSION In conclusion, our study introduces a robust in vitro assay for fibrosis and identifies ORAI1 as being engaged in PSC-driven fibrosis.
Collapse
Affiliation(s)
- Rieke Schleinhege
- Institute of Physiology II, University of Münster, Robert-Koch Str. 27B, 48149, Germany
| | - Ilka Neumann
- Institute of Physiology II, University of Münster, Robert-Koch Str. 27B, 48149, Germany
| | - Andrea Oeckinghaus
- Institute of Molecular Tumor Biology, University of Münster, 48149, Germany
| | - Albrecht Schwab
- Institute of Physiology II, University of Münster, Robert-Koch Str. 27B, 48149, Germany
| | - Zoltán Pethő
- Institute of Physiology II, University of Münster, Robert-Koch Str. 27B, 48149, Germany.
| |
Collapse
|
9
|
Mathur V, Agarwal P, Kasturi M, Srinivasan V, Seetharam RN, Vasanthan KS. Innovative bioinks for 3D bioprinting: Exploring technological potential and regulatory challenges. J Tissue Eng 2025; 16:20417314241308022. [PMID: 39839985 PMCID: PMC11748162 DOI: 10.1177/20417314241308022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/04/2024] [Indexed: 01/23/2025] Open
Abstract
The field of three dimensional (3D) bioprinting has witnessed significant advancements, with bioinks playing a crucial role in enabling the fabrication of complex tissue constructs. This review explores the innovative bioinks that are currently shaping the future of 3D bioprinting, focusing on their composition, functionality, and potential for tissue engineering, drug delivery, and regenerative medicine. The development of bioinks, incorporating natural and synthetic materials, offers unprecedented opportunities for personalized medicine. However, the rapid technological progress raises regulatory challenges regarding safety, standardization, and long-term biocompatibility. This paper addresses these challenges, examining the current regulatory frameworks and the need for updated guidelines to ensure patient safety and product efficacy. By highlighting both the technological potential and regulatory hurdles, this review offers a comprehensive overview of the future landscape of bioinks in bioprinting, emphasizing the necessity for cross-disciplinary collaboration between scientists, clinicians, and regulatory bodies to achieve successful clinical applications.
Collapse
Affiliation(s)
- Vidhi Mathur
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Prachi Agarwal
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Meghana Kasturi
- Department of Mechanical Engineering, University of Michigan, Dearborn, MI, USA
| | - Varadharajan Srinivasan
- Department of Civil Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Raviraja N Seetharam
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Kirthanashri S Vasanthan
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
10
|
López de Andrés J, Rodríguez-Santana C, de Lara-Peña L, Jiménez G, Escames G, Marchal JA. A bioengineered tumor matrix-based scaffold for the evaluation of melatonin efficacy on head and neck squamous cancer stem cells. Mater Today Bio 2024; 29:101246. [PMID: 39351489 PMCID: PMC11440243 DOI: 10.1016/j.mtbio.2024.101246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 10/04/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) presents a significant challenge worldwide due to its aggressiveness and high recurrence rates post-treatment, often linked to cancer stem cells (CSCs). Melatonin shows promise as a potent tumor suppressor; however, the effects of melatonin on CSCs remain unclear, and the development of models that closely resemble tumor heterogeneity could help to better understand the effects of this molecule. This study developed a tumor scaffold based on patient fibroblast-derived decellularized extracellular matrix that mimics the HNSCC microenvironment. Our study investigates the antitumoral effects of melatonin within this context. We validated its strong antiproliferative effect on HNSCC CSCs and the reduction of tumor invasion and migration markers, even in a strongly chemoprotective environment, as it is required to increase the minimum doses necessary to impact tumor viability compared to the non-scaffolded tumorspheres culture. Moreover, melatonin exhibited no cytotoxic effects on healthy cells co-cultured in the tumor hydrogel. This scaffold-based platform allows an in vitro study closer to HNSCC tumor reality, including CSCs, stromal component, and a biomimetic matrix, providing a new valuable research tool in precision oncology.
Collapse
Affiliation(s)
- Julia López de Andrés
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada, University of Granada, Granada, Spain
- BioFab i3D Lab-Biofabrication and 3D (Bio)printing Singular Laboratory, University of Granada, Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain
| | - César Rodríguez-Santana
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada, University of Granada, Granada, Spain
- Instituto de Biotecnología, Centro de Investigación Biomédica, University of Granada, Granada, Spain
- Department of Physiology, Faculty of Medicine, University of Granada, Granada, Spain
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Laura de Lara-Peña
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada, University of Granada, Granada, Spain
- BioFab i3D Lab-Biofabrication and 3D (Bio)printing Singular Laboratory, University of Granada, Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain
| | - Gema Jiménez
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada, University of Granada, Granada, Spain
- BioFab i3D Lab-Biofabrication and 3D (Bio)printing Singular Laboratory, University of Granada, Granada, Spain
- Department of Health Sciences, University of Jaén, Jaen, Spain
| | - Germaine Escames
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada, University of Granada, Granada, Spain
- Instituto de Biotecnología, Centro de Investigación Biomédica, University of Granada, Granada, Spain
- Department of Physiology, Faculty of Medicine, University of Granada, Granada, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Investigación Biosanitaria (Ibs), Granada, San Cecilio University Hospital, Granada, Spain
| | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada, University of Granada, Granada, Spain
- BioFab i3D Lab-Biofabrication and 3D (Bio)printing Singular Laboratory, University of Granada, Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain
| |
Collapse
|
11
|
Martinez ML, Nan K, Bao Z, Bacchetti R, Yuan S, Tyler J, Guezennec XL, Bard FA, Rainero E. Novel kinase regulators of extracellular matrix internalisation identified by high-content screening modulate invasive carcinoma cell migration. PLoS Biol 2024; 22:e3002930. [PMID: 39666682 PMCID: PMC11637276 DOI: 10.1371/journal.pbio.3002930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 11/06/2024] [Indexed: 12/14/2024] Open
Abstract
The interaction between cancer cells and the extracellular matrix (ECM) plays a pivotal role in tumour progression. While the extracellular degradation of ECM proteins has been well characterised, ECM endocytosis and its impact on cancer cell progression, migration, and metastasis is poorly understood. ECM internalisation is increased in invasive breast cancer cells, suggesting it may support invasiveness. However, current high-throughput approaches mainly focus on cells grown on plastic in 2D, making it difficult to apply these to the study of ECM dynamics. Here, we developed a high-content screening assay to study ECM uptake, based on the of use automated ECM coating for the generation of highly homogeneous ECM a pH-sensitive dye to image ECM trafficking in live cells. We identified that mitogen-activated protein kinase (MAPK) family members, MAP3K1 and MAPK11 (p38β), and the protein phosphatase 2 (PP2) subunit PPP2R1A were required for the internalisation of ECM-bound α2β1 integrin. Mechanistically, we show that down-regulation of the sodium/proton exchanger 1 (NHE1), an established macropinocytosis regulator and a target of p38, mediated ECM macropinocytosis. Moreover, disruption of α2 integrin, MAP3K1, MAPK11, PPP2R1A, and NHE1-mediated ECM internalisation significantly impaired cancer cell migration and invasion in 2D and 3D culture systems. Of note, integrin-bound ECM was targeted for lysosomal degradation, which was required for cell migration on cell-derived matrices. Finally, α2β1 integrin and MAP3K1 expression were significantly up-regulated in pancreatic tumours and correlated with poor prognosis in pancreatic cancer patients. Strikingly, MAP3K1, MAPK11, PPP2R1A, and α2 integrin expression were higher in chemotherapy-resistant tumours in breast cancer patients. Our results identified the α2β1 integrin/p38 signalling axis as a novel regulator of ECM endocytosis, which drives invasive migration and tumour progression, demonstrating that our high-content screening approach has the capability of identifying novel regulators of cancer cell invasion.
Collapse
Affiliation(s)
- Montserrat Llanses Martinez
- School of Biosciences, University of Sheffield, Western Bank, Sheffield, United Kingdom
- Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Keqian Nan
- School of Biosciences, University of Sheffield, Western Bank, Sheffield, United Kingdom
| | - Zhe Bao
- School of Biosciences, University of Sheffield, Western Bank, Sheffield, United Kingdom
| | - Rachele Bacchetti
- School of Biosciences, University of Sheffield, Western Bank, Sheffield, United Kingdom
| | - Shengnan Yuan
- School of Biosciences, University of Sheffield, Western Bank, Sheffield, United Kingdom
| | - Joe Tyler
- School of Biosciences, University of Sheffield, Western Bank, Sheffield, United Kingdom
| | | | - Frederic A. Bard
- Institute of Molecular and Cell Biology, Singapore, Singapore
- Centre de Recherche en Cancérologie de Marseille, CRCM, Marseille, France
| | - Elena Rainero
- School of Biosciences, University of Sheffield, Western Bank, Sheffield, United Kingdom
| |
Collapse
|
12
|
Chen L, Zhang Y, Wang K, Jin M, Chen Q, Wang S, Hu W, Cai Z, Li Y, Li S, Gao Y, Zhou S, Peng Q. A patch comprising human umbilical cord-derived hydrogel and mesenchymal stem cells promotes pressure ulcer wound healing. ENGINEERED REGENERATION 2024; 5:433-442. [DOI: 10.1016/j.engreg.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
|
13
|
Ferreira LP, Jorge C, Lagarto MR, Monteiro MV, Duarte IF, Gaspar VM, Mano JF. Photoacoustic processing of decellularized extracellular matrix for biofabricating living constructs. Acta Biomater 2024; 183:74-88. [PMID: 38838910 DOI: 10.1016/j.actbio.2024.05.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 05/07/2024] [Accepted: 05/30/2024] [Indexed: 06/07/2024]
Abstract
The diverse biomolecular landscape of tissue-specific decellularized extracellular matrix (dECM) biomaterials provides a multiplicity of bioinstructive cues to target cells, rendering them highly valuable for various biomedical applications. However, the isolation of dECM biomaterials entails cumbersome xenogeneic enzymatic digestions and also additional inactivation procedures. Such, increases processing time, increments costs and introduces residues of non-naturally present proteins in dECM formulations that remain present even after inactivation. To overcome these limitations, herein we report an innovative conjugation of light and ultrasound-mediated dECM biomaterial processing for fabricating dECM biomaterials. Such approach gathers on ultrasound waves to facilitate dECM-in-liquid processing and visible light photocrosslinking of tyrosine residues naturally present in dECM biomaterials. This dual step methodology unlocked the in-air production of cell laden dECM hydrogels or programmable dECM hydrogel spherical-like beads by using superhydrophobic surfaces. These in-air produced units do not require any additional solvents and successfully supported both fibroblasts and breast cancer cells viability upon encapsulation or surface seeding. In addition, the optimized photoacoustic methodology also enabled a rapid formulation of dECM biomaterial inks with suitable features for biofabricating volumetrically defined living constructs through embedded 3D bioprinting. The biofabricated dECM hydrogel constructs supported cell adhesion, spreading and viability for 7 days. Overall, the implemented photoacoustic processing methodology of dECM biomaterials offers a rapid and universal strategy for upgrading their processing from virtually any tissue. STATEMENT OF SIGNIFICANCE: Leveraging decellularized extracellular matrix (dECM) as cell instructive biomaterials has potential to open new avenues for tissue engineering and in vitro disease modelling. The processing of dECM remains however, lengthy, costly and introduces non-naturally present proteins in the final biomaterials formulations. In this regard, here we report an innovative light and ultrasound two-step methodology that enables rapid dECM-in-liquid processing and downstream photocrosslinking of dECM hydrogel beads and 3D bioprinted constructs. Such photoacoustic based processing constitutes a universally applicable method for processing any type of tissue-derived dECM biomaterials.
Collapse
Affiliation(s)
- Luís P Ferreira
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Carole Jorge
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Matilde R Lagarto
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Maria V Monteiro
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Iola F Duarte
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Vítor M Gaspar
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
14
|
Tharp KM, Kersten K, Maller O, Timblin GA, Stashko C, Canale FP, Menjivar RE, Hayward MK, Berestjuk I, Ten Hoeve J, Samad B, Ironside AJ, di Magliano MP, Muir A, Geiger R, Combes AJ, Weaver VM. Tumor-associated macrophages restrict CD8 + T cell function through collagen deposition and metabolic reprogramming of the breast cancer microenvironment. NATURE CANCER 2024; 5:1045-1062. [PMID: 38831058 DOI: 10.1038/s43018-024-00775-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 04/26/2024] [Indexed: 06/05/2024]
Abstract
Tumor progression is accompanied by fibrosis, a condition of excessive extracellular matrix accumulation, which is associated with diminished antitumor immune infiltration. Here we demonstrate that tumor-associated macrophages (TAMs) respond to the stiffened fibrotic tumor microenvironment (TME) by initiating a collagen biosynthesis program directed by transforming growth factor-β. A collateral effect of this programming is an untenable metabolic milieu for productive CD8+ T cell antitumor responses, as collagen-synthesizing macrophages consume environmental arginine, synthesize proline and secrete ornithine that compromises CD8+ T cell function in female breast cancer. Thus, a stiff and fibrotic TME may impede antitumor immunity not only by direct physical exclusion of CD8+ T cells but also through secondary effects of a mechano-metabolic programming of TAMs, which creates an inhospitable metabolic milieu for CD8+ T cells to respond to anticancer immunotherapies.
Collapse
Affiliation(s)
- Kevin M Tharp
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Kelly Kersten
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
- ImmunoX Initiative, University of California San Francisco, San Francisco, CA, USA
| | - Ori Maller
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Greg A Timblin
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Connor Stashko
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Fernando P Canale
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Rosa E Menjivar
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Mary-Kate Hayward
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Ilona Berestjuk
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Johanna Ten Hoeve
- UCLA Metabolomics Center, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Bushra Samad
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
- ImmunoX Initiative, University of California San Francisco, San Francisco, CA, USA
- UCSF CoLabs, University of California San Francisco, San Francisco, CA, USA
| | | | - Marina Pasca di Magliano
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, Cancer Biology Program, University of Michigan, Ann Arbor, MI, USA
| | - Alexander Muir
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Roger Geiger
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Alexis J Combes
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
- ImmunoX Initiative, University of California San Francisco, San Francisco, CA, USA
- UCSF CoLabs, University of California San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Valerie M Weaver
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California San Francisco, San Francisco, CA, USA.
- Department of Bioengineering and Therapeutic Sciences and Department of Radiation Oncology, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, and The Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
15
|
Zens B, Fäßler F, Hansen JM, Hauschild R, Datler J, Hodirnau VV, Zheden V, Alanko J, Sixt M, Schur FK. Lift-out cryo-FIBSEM and cryo-ET reveal the ultrastructural landscape of extracellular matrix. J Cell Biol 2024; 223:e202309125. [PMID: 38506714 PMCID: PMC10955043 DOI: 10.1083/jcb.202309125] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/19/2024] [Accepted: 03/01/2024] [Indexed: 03/21/2024] Open
Abstract
The extracellular matrix (ECM) serves as a scaffold for cells and plays an essential role in regulating numerous cellular processes, including cell migration and proliferation. Due to limitations in specimen preparation for conventional room-temperature electron microscopy, we lack structural knowledge on how ECM components are secreted, remodeled, and interact with surrounding cells. We have developed a 3D-ECM platform compatible with sample thinning by cryo-focused ion beam milling, the lift-out extraction procedure, and cryo-electron tomography. Our workflow implements cell-derived matrices (CDMs) grown on EM grids, resulting in a versatile tool closely mimicking ECM environments. This allows us to visualize ECM for the first time in its hydrated, native context. Our data reveal an intricate network of extracellular fibers, their positioning relative to matrix-secreting cells, and previously unresolved structural entities. Our workflow and results add to the structural atlas of the ECM, providing novel insights into its secretion and assembly.
Collapse
Affiliation(s)
- Bettina Zens
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Florian Fäßler
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Jesse M. Hansen
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Robert Hauschild
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Julia Datler
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | | | - Vanessa Zheden
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Jonna Alanko
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Michael Sixt
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Florian K.M. Schur
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| |
Collapse
|
16
|
Xu Y, Yao Y, Gao J. Cell-Derived Matrix: Production, Decellularization, and Application of Wound Repair. Stem Cells Int 2024; 2024:7398473. [PMID: 38882595 PMCID: PMC11178417 DOI: 10.1155/2024/7398473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/25/2024] [Accepted: 05/17/2024] [Indexed: 06/18/2024] Open
Abstract
Chronic nonhealing wounds significantly reduce patients' quality of life and are a major burden on healthcare systems. Over the past few decades, tissue engineering materials have emerged as a viable option for wound healing, with cell-derived extracellular matrix (CDM) showing remarkable results. The CDM's compatibility and resemblance to the natural tissue microenvironment confer distinct advantages to tissue-engineered scaffolds in wound repair. This review summarizes the current processes for CDM preparation, various cell decellularization protocols, and common characterization methods. Furthermore, it discusses the applications of CDM in wound healing, including skin defect and wound repair, angiogenesis, and engineered vessels, and offers perspectives on future developments.
Collapse
Affiliation(s)
- Yidan Xu
- Department of Plastic and Cosmetic Surgery Nanfang Hospital Southern Medical University, 1838 Guangzhou North Road, Guangzhou 510515, Guangdong, China
| | - Yao Yao
- Department of Plastic and Cosmetic Surgery Nanfang Hospital Southern Medical University, 1838 Guangzhou North Road, Guangzhou 510515, Guangdong, China
| | - Jianhua Gao
- Department of Plastic and Cosmetic Surgery Nanfang Hospital Southern Medical University, 1838 Guangzhou North Road, Guangzhou 510515, Guangdong, China
| |
Collapse
|
17
|
Tang W, Hu Y, Tu K, Gong Z, Zhu M, Yang T, Sarwar A, Dai B, Zhang D, Zhan Y, Zhang Y. Targeting Trop2 by Bruceine D suppresses breast cancer metastasis by blocking Trop2/β-catenin positive feedback loop. J Adv Res 2024; 58:193-210. [PMID: 37271476 PMCID: PMC10982870 DOI: 10.1016/j.jare.2023.05.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/28/2023] [Accepted: 05/28/2023] [Indexed: 06/06/2023] Open
Abstract
INTRODUCTION Tumor-associated calcium signal transducer 2 (Trop2) has been used as a transport gate for cytotoxic agents into cells in antibody-drug conjugate designs because of its expression in a wide range of solid tumors. However, the specific role of Trop2 itself in breast cancer progression remains unclear and small molecules targeting Trop2 have not yet been reported. OBJECTIVES To screen small molecules targeting Trop2, and to reveal its pharmacological effects and the molecular mechanisms of action. METHODS Small molecule targeting Trop2 was identified by cell membrane chromatography, and validated by cellular thermal shift assay and point mutation analyses. We investigated the pharmacological effects of Trop2 inhibitor using RNA-seq, human foreskin fibroblast (HFF)-derived extracellular matrix (ECM), Matrigel drop invasion assays, colony-forming assay, xenograft tumor model, 4T1 orthotopic metastasis model and 4T1 experimental metastasis model. The molecular mechanism was determined using immunoprecipitation, mass spectrometry, immunofluorescence, immunohistochemistry and Western blotting. RESULTS Here we identified Bruceine D (BD) as the inhibitor of Trop2, and demonstrated anti-metastasis effects of BD in breast cancer. Notably, Lys307 and Glu310 residues of Trop2 acted as critical sites for BD binding. Mechanistically, BD suppressed Trop2-induced cancer metastasis by blocking the formation of Trop2/β-catenin positive loop, in which the Trop2/β-catenin complex prevented β-catenin from being degraded via the ubiquitin-proteosome pathway. Destabilized β-catenin caused by BD reduced nucleus translocation, leading to the reduction of transcription of Trop2, the reversal of epithelial-mesenchymal transition (EMT) process, and the inhibition of ECM remodeling, further inhibiting cancer metastasis. Additionally, the inhibitory effects of BD on lung metastatic colonization and the beneficial effects of BD on prolongation of survival were validated in 4T1 experimental metastasis model. CONCLUSIONS These results support the tumor-promoting role of Trop2 in breast cancer by stabilizing β-catenin in Trop2/β-catenin positive loop, and suggest Bruceine D as a promising candidate for Trop2 inhibition.
Collapse
Affiliation(s)
- Wenjuan Tang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an 710061, China
| | - Yu Hu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an 710061, China
| | - Kaihui Tu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an 710061, China
| | - Zhengyan Gong
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an 710061, China
| | - Man Zhu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an 710061, China
| | - Tianfeng Yang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an 710061, China
| | - Ammar Sarwar
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an 710061, China
| | - Bingling Dai
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an 710061, China
| | - Dongdong Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an 710061, China
| | - Yingzhuan Zhan
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an 710061, China.
| | - Yanmin Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an 710061, China.
| |
Collapse
|
18
|
Priessner M, Gaboriau DCA, Sheridan A, Lenn T, Garzon-Coral C, Dunn AR, Chubb JR, Tousley AM, Majzner RG, Manor U, Vilar R, Laine RF. Content-aware frame interpolation (CAFI): deep learning-based temporal super-resolution for fast bioimaging. Nat Methods 2024; 21:322-330. [PMID: 38238557 PMCID: PMC10864186 DOI: 10.1038/s41592-023-02138-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 11/17/2023] [Indexed: 02/15/2024]
Abstract
The development of high-resolution microscopes has made it possible to investigate cellular processes in 3D and over time. However, observing fast cellular dynamics remains challenging because of photobleaching and phototoxicity. Here we report the implementation of two content-aware frame interpolation (CAFI) deep learning networks, Zooming SlowMo and Depth-Aware Video Frame Interpolation, that are highly suited for accurately predicting images in between image pairs, therefore improving the temporal resolution of image series post-acquisition. We show that CAFI is capable of understanding the motion context of biological structures and can perform better than standard interpolation methods. We benchmark CAFI's performance on 12 different datasets, obtained from four different microscopy modalities, and demonstrate its capabilities for single-particle tracking and nuclear segmentation. CAFI potentially allows for reduced light exposure and phototoxicity on the sample for improved long-term live-cell imaging. The models and the training and testing data are available via the ZeroCostDL4Mic platform.
Collapse
Affiliation(s)
- Martin Priessner
- Department of Chemistry, Imperial College London, London, UK.
- Centre of Excellence in Neurotechnology, Imperial College London, London, UK.
| | - David C A Gaboriau
- Facility for Imaging by Light Microscopy, NHLI, Imperial College London, London, UK
| | - Arlo Sheridan
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Tchern Lenn
- CRUK City of London Centre, UCL Cancer Institute, London, UK
| | - Carlos Garzon-Coral
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Institute of Human Biology, Roche Pharma Research & Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Alexander R Dunn
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Jonathan R Chubb
- Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Aidan M Tousley
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Robbie G Majzner
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Uri Manor
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA, USA
- Department of Cell & Developmental Biology, University of California, San Diego, CA, USA
| | - Ramon Vilar
- Department of Chemistry, Imperial College London, London, UK
| | - Romain F Laine
- Micrographia Bio, Translation and Innovation Hub, London, UK.
| |
Collapse
|
19
|
Jimenez-Vergara AC, Avina J, Block TJ, Sheldrake A, Koch C, Gonzalez A, Steele J, Díaz-Lasprilla AM, Munoz-Pinto DJ. A Bioinspired Astrocyte-Derived Coating Promotes the In Vitro Proliferation of Human Neural Stem Cells While Maintaining Their Stemness. Biomimetics (Basel) 2023; 8:589. [PMID: 38132528 PMCID: PMC10741944 DOI: 10.3390/biomimetics8080589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023] Open
Abstract
The repair of neuronal tissue is a challenging process due to the limited proliferative capacity of neurons. Neural stem cells (NSCs) can aid in the regeneration process of neural tissue due to their high proliferation potential and capacity to differentiate into neurons. The therapeutic potential of these cells can only be achieved if sufficient cells are obtained without losing their differentiation potential. Toward this end, an astrocyte-derived coating (HAc) was evaluated as a promising substrate to promote the proliferation of NSCs. Mass spectroscopy and scanning electron microscopy were used to characterize the HAc. The proliferation rate and the expression of stemness and differentiation markers in NSCs cultured on the HAc were evaluated and compared to the responses of these cells to commonly used coating materials including Poly-L-Ornithine (PLO), and a Human Induced Pluripotent Stem Cell (HiPSC)-based coating. The use of the HAc promotes the in vitro cell growth of NSCs. The expression of the stemness markers Sox2 and Nestin, and the differentiation marker DCX in the HAc group was akin to the expression of these markers in the controls. In summary, HAc supported the proliferation of NSCs while maintaining their stemness and neural differentiation potential.
Collapse
Affiliation(s)
- Andrea C. Jimenez-Vergara
- Engineering Science Department, Trinity University, San Antonio, TX 78212, USA; (A.C.J.-V.); (J.A.); (A.G.); (A.M.D.-L.)
| | - Jacob Avina
- Engineering Science Department, Trinity University, San Antonio, TX 78212, USA; (A.C.J.-V.); (J.A.); (A.G.); (A.M.D.-L.)
| | | | - Anne Sheldrake
- StemBioSys, San Antonio, TX 78229, USA; (T.J.B.); (A.S.)
| | - Carson Koch
- Neuroscience Program, Trinity University, San Antonio, TX 78212, USA;
| | - Anna Gonzalez
- Engineering Science Department, Trinity University, San Antonio, TX 78212, USA; (A.C.J.-V.); (J.A.); (A.G.); (A.M.D.-L.)
| | - Jennifer Steele
- Physics and Astronomy Department, Trinity University, San Antonio, TX 78212, USA;
| | - Ana M. Díaz-Lasprilla
- Engineering Science Department, Trinity University, San Antonio, TX 78212, USA; (A.C.J.-V.); (J.A.); (A.G.); (A.M.D.-L.)
| | - Dany J. Munoz-Pinto
- Engineering Science Department, Trinity University, San Antonio, TX 78212, USA; (A.C.J.-V.); (J.A.); (A.G.); (A.M.D.-L.)
- Neuroscience Program, Trinity University, San Antonio, TX 78212, USA;
| |
Collapse
|
20
|
Bashiri Z, Gholipourmalekabadi M, Khadivi F, Salem M, Afzali A, Cham TC, Koruji M. In vitro spermatogenesis in artificial testis: current knowledge and clinical implications for male infertility. Cell Tissue Res 2023; 394:393-421. [PMID: 37721632 DOI: 10.1007/s00441-023-03824-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 08/14/2023] [Indexed: 09/19/2023]
Abstract
Men's reproductive health exclusively depends on the appropriate maturation of certain germ cells known as sperm. Certain illnesses, such as Klinefelter syndrome, cryptorchidism, and syndrome of androgen insensitivity or absence of testis maturation in men, resulting in the loss of germ cells and the removal of essential genes on the Y chromosome, can cause non-obstructive azoospermia. According to laboratory research, preserving, proliferating, differentiating, and transplanting spermatogonial stem cells or testicular tissue could be future methods for preserving the fertility of children with cancer and men with azoospermia. Therefore, new advances in stem cell research may lead to promising therapies for treating male infertility. The rate of progression and breakthrough in the area of in vitro spermatogenesis is lower than that of SSC transplantation, but newer methods are also being developed. In this regard, tissue and cell culture, supplements, and 3D scaffolds have opened new horizons in the differentiation of stem cells in vitro, which could improve the outcomes of male infertility. Various 3D methods have been developed to produce cellular aggregates and mimic the organization and function of the testis. The production of an artificial reproductive organ that supports SSCs differentiation will certainly be a main step in male infertility treatment.
Collapse
Affiliation(s)
- Zahra Bashiri
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Shahid Hemmat Highway, Tehran, 1449614535, Iran.
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Shahid Hemmat Highway, Tehran, 1449614535, Iran.
- Omid Fertility & Infertility Clinic, Hamedan, Iran.
| | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farnaz Khadivi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Anatomy, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Maryam Salem
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Azita Afzali
- Hajar Hospital, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Tat-Chuan Cham
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada
| | - Morteza Koruji
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Shahid Hemmat Highway, Tehran, 1449614535, Iran.
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Shahid Hemmat Highway, Tehran, 1449614535, Iran.
| |
Collapse
|
21
|
Cohen N, Mundhe D, Deasy SK, Adler O, Ershaid N, Shami T, Levi-Galibov O, Wassermann R, Scherz-Shouval R, Erez N. Breast Cancer-Secreted Factors Promote Lung Metastasis by Signaling Systemically to Induce a Fibrotic Premetastatic Niche. Cancer Res 2023; 83:3354-3367. [PMID: 37548552 DOI: 10.1158/0008-5472.can-22-3707] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 06/12/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Metastatic cancer is largely incurable and is the main cause of cancer-related deaths. The metastatic microenvironment facilitates formation of metastases. Cancer-associated fibroblasts (CAF) are crucial players in generating a hospitable metastatic niche by mediating an inflammatory microenvironment. Fibroblasts also play a central role in modifying the architecture and stiffness of the extracellular matrix (ECM). Resolving the early changes in the metastatic niche could help identify approaches to inhibit metastatic progression. Here, we demonstrate in mouse models of spontaneous breast cancer pulmonary metastasis that fibrotic changes and rewiring of lung fibroblasts occurred at premetastatic stages, suggesting systemic influence by the primary tumor. Activin A (ActA), a TGFβ superfamily member, was secreted from breast tumors and its levels in the blood were highly elevated in tumor-bearing mice. ActA upregulated the expression of profibrotic factors in lung fibroblasts, leading to enhanced collagen deposition in the lung premetastatic niche. ActA signaling was functionally important for lung metastasis, as genetic targeting of ActA in breast cancer cells significantly attenuated lung metastasis and improved survival. Moreover, high levels of ActA in human patients with breast cancer were associated with lung metastatic relapse and poor survival. This study uncovers a novel mechanism by which breast cancer cells systemically rewire the stromal microenvironment in the metastatic niche to facilitate pulmonary metastasis. SIGNIFICANCE ActA mediates cross-talk between breast cancer cells and cancer-associated fibroblasts in the lung metastatic niche that enhances fibrosis and metastasis, implicating ActA as a potential therapeutic target to inhibit metastatic relapse.
Collapse
Affiliation(s)
- Noam Cohen
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dhanashree Mundhe
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sarah K Deasy
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Omer Adler
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nour Ershaid
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tamar Shami
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Oshrat Levi-Galibov
- Department of Biomolecular Sciences, Weizmann Institute of Science, Tel Aviv, Israel
| | - Rina Wassermann
- Department of Biomolecular Sciences, Weizmann Institute of Science, Tel Aviv, Israel
| | - Ruth Scherz-Shouval
- Department of Biomolecular Sciences, Weizmann Institute of Science, Tel Aviv, Israel
| | - Neta Erez
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
22
|
Orang A, Dredge BK, Liu CY, Bracken JM, Chen CH, Sourdin L, Whitfield HJ, Lumb R, Boyle ST, Davis MJ, Samuel MS, Gregory PA, Khew-Goodall Y, Goodall GJ, Pillman KA, Bracken CP. Basonuclin-2 regulates extracellular matrix production and degradation. Life Sci Alliance 2023; 6:e202301984. [PMID: 37536977 PMCID: PMC10400885 DOI: 10.26508/lsa.202301984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/16/2023] [Accepted: 07/20/2023] [Indexed: 08/05/2023] Open
Abstract
Epithelial-mesenchymal transition is essential for tissue patterning and organization. It involves both regulation of cell motility and alterations in the composition and organization of the ECM-a complex environment of proteoglycans and fibrous proteins essential for tissue homeostasis, signaling in response to chemical and biomechanical stimuli, and is often dysregulated under conditions such as cancer, fibrosis, and chronic wounds. Here, we demonstrate that basonuclin-2 (BNC2), a mesenchymal-expressed gene, that is, strongly associated with cancer and developmental defects across genome-wide association studies, is a novel regulator of ECM composition and degradation. We find that at endogenous levels, BNC2 controls the expression of specific collagens, matrix metalloproteases, and other matrisomal components in breast cancer cells, and in fibroblasts that are primarily responsible for the production and processing of the ECM within the tumour microenvironment. In so doing, BNC2 modulates the motile and invasive properties of cancers, which likely explains the association of high BNC2 expression with increasing cancer grade and poor patient prognosis.
Collapse
Affiliation(s)
- Ayla Orang
- Centre for Cancer Biology, An Alliance of SA Pathology and University of South Australia, Adelaide, Australia
| | - B Kate Dredge
- Centre for Cancer Biology, An Alliance of SA Pathology and University of South Australia, Adelaide, Australia
| | - Chi Yau Liu
- Centre for Cancer Biology, An Alliance of SA Pathology and University of South Australia, Adelaide, Australia
| | - Julie M Bracken
- Centre for Cancer Biology, An Alliance of SA Pathology and University of South Australia, Adelaide, Australia
| | - Chun-Hsien Chen
- Centre for Cancer Biology, An Alliance of SA Pathology and University of South Australia, Adelaide, Australia
| | - Laura Sourdin
- Centre for Cancer Biology, An Alliance of SA Pathology and University of South Australia, Adelaide, Australia
| | - Holly J Whitfield
- Division of Bioinformatics, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia
| | - Rachael Lumb
- Centre for Cancer Biology, An Alliance of SA Pathology and University of South Australia, Adelaide, Australia
| | - Sarah T Boyle
- Centre for Cancer Biology, An Alliance of SA Pathology and University of South Australia, Adelaide, Australia
| | - Melissa J Davis
- South Australian ImmunogGENomics Cancer Institute, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
- Division of Bioinformatics, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia
- Department of Clinical Pathology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia
- Fraser Institute, University of Queensland, Wooloongabba, Australia
| | - Michael S Samuel
- Centre for Cancer Biology, An Alliance of SA Pathology and University of South Australia, Adelaide, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
| | - Philip A Gregory
- Centre for Cancer Biology, An Alliance of SA Pathology and University of South Australia, Adelaide, Australia
- Department of Medicine and School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Yeesim Khew-Goodall
- Centre for Cancer Biology, An Alliance of SA Pathology and University of South Australia, Adelaide, Australia
- Department of Medicine and School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Gregory J Goodall
- Centre for Cancer Biology, An Alliance of SA Pathology and University of South Australia, Adelaide, Australia
- Department of Medicine and School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Katherine A Pillman
- Centre for Cancer Biology, An Alliance of SA Pathology and University of South Australia, Adelaide, Australia
- Department of Medicine and School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Cameron P Bracken
- Centre for Cancer Biology, An Alliance of SA Pathology and University of South Australia, Adelaide, Australia
- Department of Medicine and School of Biological Sciences, University of Adelaide, Adelaide, Australia
| |
Collapse
|
23
|
Hewitt RJ, Puttur F, Gaboriau DCA, Fercoq F, Fresquet M, Traves WJ, Yates LL, Walker SA, Molyneaux PL, Kemp SV, Nicholson AG, Rice A, Roberts E, Lennon R, Carlin LM, Byrne AJ, Maher TM, Lloyd CM. Lung extracellular matrix modulates KRT5 + basal cell activity in pulmonary fibrosis. Nat Commun 2023; 14:6039. [PMID: 37758700 PMCID: PMC10533905 DOI: 10.1038/s41467-023-41621-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Aberrant expansion of KRT5+ basal cells in the distal lung accompanies progressive alveolar epithelial cell loss and tissue remodelling during fibrogenesis in idiopathic pulmonary fibrosis (IPF). The mechanisms determining activity of KRT5+ cells in IPF have not been delineated. Here, we reveal a potential mechanism by which KRT5+ cells migrate within the fibrotic lung, navigating regional differences in collagen topography. In vitro, KRT5+ cell migratory characteristics and expression of remodelling genes are modulated by extracellular matrix (ECM) composition and organisation. Mass spectrometry- based proteomics revealed compositional differences in ECM components secreted by primary human lung fibroblasts (HLF) from IPF patients compared to controls. Over-expression of ECM glycoprotein, Secreted Protein Acidic and Cysteine Rich (SPARC) in the IPF HLF matrix restricts KRT5+ cell migration in vitro. Together, our findings demonstrate how changes to the ECM in IPF directly influence KRT5+ cell behaviour and function contributing to remodelling events in the fibrotic niche.
Collapse
Affiliation(s)
- Richard J Hewitt
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London, SW3 6NP, UK
| | - Franz Puttur
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
| | - David C A Gaboriau
- Facility for Imaging by Light Microscopy, National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
| | | | - Maryline Fresquet
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - William J Traves
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
| | - Laura L Yates
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
| | - Simone A Walker
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
| | - Philip L Molyneaux
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London, SW3 6NP, UK
| | - Samuel V Kemp
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London, SW3 6NP, UK
- Department of Respiratory Medicine, Nottingham University Hospitals NHS Trust, City Campus, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Andrew G Nicholson
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London, SW3 6NP, UK
| | - Alexandra Rice
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London, SW3 6NP, UK
| | - Edward Roberts
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Leo M Carlin
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Adam J Byrne
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
| | - Toby M Maher
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
- Keck Medicine of USC, 1510 San Pablo Street, Los Angeles, CA, 90033, USA
| | - Clare M Lloyd
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
24
|
Rafaeva M, Jensen ARD, Horton ER, Zornhagen KW, Strøbech JE, Fleischhauer L, Mayorca-Guiliani AE, Nielsen SR, Grønseth DS, Kuś F, Schoof EM, Arnes L, Koch M, Clausen-Schaumann H, Izzi V, Reuten R, Erler JT. Fibroblast-derived matrix models desmoplastic properties and forms a prognostic signature in cancer progression. Front Immunol 2023; 14:1154528. [PMID: 37539058 PMCID: PMC10395327 DOI: 10.3389/fimmu.2023.1154528] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/30/2023] [Indexed: 08/05/2023] Open
Abstract
The desmoplastic reaction observed in many cancers is a hallmark of disease progression and prognosis, particularly in breast and pancreatic cancer. Stromal-derived extracellular matrix (ECM) is significantly altered in desmoplasia, and as such plays a critical role in driving cancer progression. Using fibroblast-derived matrices (FDMs), we show that cancer cells have increased growth on cancer associated FDMs, when compared to FDMs derived from non-malignant tissue (normal) fibroblasts. We assess the changes in ECM characteristics from normal to cancer-associated stroma at the primary tumor site. Compositional, structural, and mechanical analyses reveal significant differences, with an increase in abundance of core ECM proteins, coupled with an increase in stiffness and density in cancer-associated FDMs. From compositional changes of FDM, we derived a 36-ECM protein signature, which we show matches in large part with the changes in pancreatic ductal adenocarcinoma (PDAC) tumor and metastases progression. Additionally, this signature also matches at the transcriptomic level in multiple cancer types in patients, prognostic of their survival. Together, our results show relevance of FDMs for cancer modelling and identification of desmoplastic ECM components for further mechanistic studies.
Collapse
Affiliation(s)
- Maria Rafaeva
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Adina R. D. Jensen
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Edward R. Horton
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Kamilla W. Zornhagen
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Jan E. Strøbech
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Lutz Fleischhauer
- Center for Applied Tissue Engineering and Regenerative Medicine-CANTER, Munich University of Applied Sciences, Munich, Germany
- Center for NanoScience – CsNS, Ludwig-Maximilians-University Munich, Munich, Germany
| | | | - Sebastian R. Nielsen
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Dina S. Grønseth
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Filip Kuś
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Erwin M. Schoof
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Centre for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Luis Arnes
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Manuel Koch
- Center for Biochemistry, Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Institute for Dental Research and Oral Musculoskeletal Biology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Hauke Clausen-Schaumann
- Center for Applied Tissue Engineering and Regenerative Medicine-CANTER, Munich University of Applied Sciences, Munich, Germany
- Center for NanoScience – CsNS, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Valerio Izzi
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
- Faculty of Medicine, University of Oulu, Oulu, Finland
- Foundation for the Finnish Cancer Institute, Helsinki, Finland
| | - Raphael Reuten
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty, University of Freiburg, Freiburg, Germany
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Janine T. Erler
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
25
|
Conway JRW, Dinç DD, Follain G, Paavolainen O, Kaivola J, Boström P, Hartiala P, Peuhu E, Ivaska J. IGFBP2 secretion by mammary adipocytes limits breast cancer invasion. SCIENCE ADVANCES 2023; 9:eadg1840. [PMID: 37436978 DOI: 10.1126/sciadv.adg1840] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 06/08/2023] [Indexed: 07/14/2023]
Abstract
The progression of noninvasive ductal carcinoma in situ to invasive ductal carcinoma for patients with breast cancer results in a significantly poorer prognosis and is the precursor to metastatic disease. In this work, we have identified insulin-like growth factor-binding protein 2 (IGFBP2) as a potent adipocrine factor secreted by healthy breast adipocytes that acts as a barrier against invasive progression. In line with this role, adipocytes differentiated from patient-derived stromal cells were found to secrete IGFBP2, which significantly inhibited breast cancer invasion. This occurred through binding and sequestration of cancer-derived IGF-II. Moreover, depletion of IGF-II in invading cancer cells using small interfering RNAs or an IGF-II-neutralizing antibody ablated breast cancer invasion, highlighting the importance of IGF-II autocrine signaling for breast cancer invasive progression. Given the abundance of adipocytes in the healthy breast, this work exposes the important role they play in suppressing cancer progression and may help expound upon the link between increased mammary density and poorer prognosis.
Collapse
Affiliation(s)
- James R W Conway
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
| | - Defne D Dinç
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
- Institute of Biomedicine, and Cancer Research Laboratory FICAN West, University of Turku, FI-20520 Turku, Finland
- Western Finnish Cancer Center (FICAN West), University of Turku and Turku University Hospital, FI-20520 Turku, Finland
| | - Gautier Follain
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
| | - Oona Paavolainen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
- Institute of Biomedicine, and Cancer Research Laboratory FICAN West, University of Turku, FI-20520 Turku, Finland
- Western Finnish Cancer Center (FICAN West), University of Turku and Turku University Hospital, FI-20520 Turku, Finland
| | - Jasmin Kaivola
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
| | - Pia Boström
- Department of Pathology, Turku University Hospital, 20520 Turku, Finland; University of Turku, 20520 Turku, Finland
| | - Pauliina Hartiala
- Department of Plastic and General Surgery, Turku University Hospital, 20520 Turku, Finland
- Medicity Research Laboratory, InFLAMES Research Flagship, University of Turku, Turku, Finland
| | - Emilia Peuhu
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
- Institute of Biomedicine, and Cancer Research Laboratory FICAN West, University of Turku, FI-20520 Turku, Finland
- Western Finnish Cancer Center (FICAN West), University of Turku and Turku University Hospital, FI-20520 Turku, Finland
| | - Johanna Ivaska
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
- Western Finnish Cancer Center (FICAN West), University of Turku and Turku University Hospital, FI-20520 Turku, Finland
- Department of Life Technologies, University of Turku, FI-20520 Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
- Foundation for the Finnish Cancer Institute, Tukholmankatu 8, FI-00014 Helsinki, Finland
| |
Collapse
|
26
|
de Paula AP, de Lima JD, Bastos TSB, Czaikovski AP, dos Santos Luz RB, Yuasa BS, Smanioto CCS, Robert AW, Braga TT. Decellularized Extracellular Matrix: The Role of This Complex Biomaterial in Regeneration. ACS OMEGA 2023; 8:22256-22267. [PMID: 37396215 PMCID: PMC10308580 DOI: 10.1021/acsomega.2c06216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/12/2023] [Indexed: 07/04/2023]
Abstract
Organ transplantation is understood as a technique where an organ from a donor patient is transferred to a recipient patient. This practice gained strength in the 20th century and ensured advances in areas of knowledge such as immunology and tissue engineering. The main problems that comprise the practice of transplants involve the demand for viable organs and immunological aspects related to organ rejection. In this review, we address advances in tissue engineering for reversing the current challenges of transplants, focusing on the possible use of decellularized tissues in tissue engineering. We address the interaction of acellular tissues with immune cells, especially macrophages and stem cells, due to their potential use in regenerative medicine. Our goal is to exhibit data that demonstrate the use of decellularized tissues as alternative biomaterials that can be applied clinically as partial or complete organ substitutes.
Collapse
Affiliation(s)
| | - Jordana Dinorá de Lima
- Department
of Pathology, Federal University of Parana, Curitiba, Parana 80060-000, Brazil
| | | | | | | | - Bruna Sadae Yuasa
- Department
of Pathology, Federal University of Parana, Curitiba, Parana 80060-000, Brazil
| | | | - Anny Waloski Robert
- Stem
Cells Basic Biology Laboratory, Carlos Chagas
Institute − FIOCRUZ/PR, Curitiba, Parana 81350-010, Brazil
| | - Tárcio Teodoro Braga
- Department
of Pathology, Federal University of Parana, Curitiba, Parana 80060-000, Brazil
- Graduate
Program in Biosciences and Biotechnology, Institute Carlos Chagas, Fiocruz, Parana 81310-020, Brazil
| |
Collapse
|
27
|
Urciuolo F, Imparato G, Netti PA. In vitro strategies for mimicking dynamic cell-ECM reciprocity in 3D culture models. Front Bioeng Biotechnol 2023; 11:1197075. [PMID: 37434756 PMCID: PMC10330728 DOI: 10.3389/fbioe.2023.1197075] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/01/2023] [Indexed: 07/13/2023] Open
Abstract
The extracellular microenvironment regulates cell decisions through the accurate presentation at the cell surface of a complex array of biochemical and biophysical signals that are mediated by the structure and composition of the extracellular matrix (ECM). On the one hand, the cells actively remodel the ECM, which on the other hand affects cell functions. This cell-ECM dynamic reciprocity is central in regulating and controlling morphogenetic and histogenetic processes. Misregulation within the extracellular space can cause aberrant bidirectional interactions between cells and ECM, resulting in dysfunctional tissues and pathological states. Therefore, tissue engineering approaches, aiming at reproducing organs and tissues in vitro, should realistically recapitulate the native cell-microenvironment crosstalk that is central for the correct functionality of tissue-engineered constructs. In this review, we will describe the most updated bioengineering approaches to recapitulate the native cell microenvironment and reproduce functional tissues and organs in vitro. We have highlighted the limitations of the use of exogenous scaffolds in recapitulating the regulatory/instructive and signal repository role of the native cell microenvironment. By contrast, strategies to reproduce human tissues and organs by inducing cells to synthetize their own ECM acting as a provisional scaffold to control and guide further tissue development and maturation hold the potential to allow the engineering of fully functional histologically competent three-dimensional (3D) tissues.
Collapse
Affiliation(s)
- F. Urciuolo
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, Naples, Italy
- Department of Chemical Materials and Industrial Production (DICMAPI), University of Naples Federico II, Naples, Italy
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Naples, Italy
| | - G. Imparato
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Naples, Italy
| | - P. A. Netti
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, Naples, Italy
- Department of Chemical Materials and Industrial Production (DICMAPI), University of Naples Federico II, Naples, Italy
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Naples, Italy
| |
Collapse
|
28
|
Arima Y, Matsueda S, Saya H. Significance of Cancer-Associated Fibroblasts in the Interactions of Cancer Cells with the Tumor Microenvironment of Heterogeneous Tumor Tissue. Cancers (Basel) 2023; 15:cancers15092536. [PMID: 37174001 PMCID: PMC10177529 DOI: 10.3390/cancers15092536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
The tumor microenvironment (TME) plays a key role in cancer development and progression, as well as contributes to the therapeutic resistance and metastasis of cancer cells. The TME is heterogeneous and consists of multiple cell types, including cancer-associated fibroblasts (CAFs), endothelial cells, and immune cells, as well as various extracellular components. Recent studies have revealed cross talk between cancer cells and CAFs as well as between CAFs and other TME cells, including immune cells. Signaling by transforming growth factor-β, derived from CAFs, has recently been shown to induce remodeling of tumor tissue, including the promotion of angiogenesis and immune cell recruitment. Immunocompetent mouse cancer models that recapitulate interactions of cancer cells with the TME have provided insight into the TME network and support the development of new anticancer therapeutic strategies. Recent studies based on such models have revealed that the antitumor action of molecularly targeted agents is mediated in part by effects on the tumor immune environment. In this review, we focus on cancer cell-TME interactions in heterogeneous tumor tissue, and we provide an overview of the basis for anticancer therapeutic strategies that target the TME, including immunotherapy.
Collapse
Affiliation(s)
- Yoshimi Arima
- Cancer Center, Fujita Health University, Toyoake 470-1192, Japan
| | - Satoko Matsueda
- Cancer Center, Fujita Health University, Toyoake 470-1192, Japan
| | - Hideyuki Saya
- Cancer Center, Fujita Health University, Toyoake 470-1192, Japan
| |
Collapse
|
29
|
Jones CL, Penney BT, Theodossiou SK. Engineering Cell-ECM-Material Interactions for Musculoskeletal Regeneration. Bioengineering (Basel) 2023; 10:bioengineering10040453. [PMID: 37106640 PMCID: PMC10135874 DOI: 10.3390/bioengineering10040453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/29/2023] Open
Abstract
The extracellular microenvironment regulates many of the mechanical and biochemical cues that direct musculoskeletal development and are involved in musculoskeletal disease. The extracellular matrix (ECM) is a main component of this microenvironment. Tissue engineered approaches towards regenerating muscle, cartilage, tendon, and bone target the ECM because it supplies critical signals for regenerating musculoskeletal tissues. Engineered ECM-material scaffolds that mimic key mechanical and biochemical components of the ECM are of particular interest in musculoskeletal tissue engineering. Such materials are biocompatible, can be fabricated to have desirable mechanical and biochemical properties, and can be further chemically or genetically modified to support cell differentiation or halt degenerative disease progression. In this review, we survey how engineered approaches using natural and ECM-derived materials and scaffold systems can harness the unique characteristics of the ECM to support musculoskeletal tissue regeneration, with a focus on skeletal muscle, cartilage, tendon, and bone. We summarize the strengths of current approaches and look towards a future of materials and culture systems with engineered and highly tailored cell-ECM-material interactions to drive musculoskeletal tissue restoration. The works highlighted in this review strongly support the continued exploration of ECM and other engineered materials as tools to control cell fate and make large-scale musculoskeletal regeneration a reality.
Collapse
Affiliation(s)
- Calvin L Jones
- Department of Mechanical and Biomedical Engineering, Boise State University, 1910 University Dr MS2085, Boise, ID 83725, USA
| | - Brian T Penney
- Department of Mechanical and Biomedical Engineering, Boise State University, 1910 University Dr MS2085, Boise, ID 83725, USA
| | - Sophia K Theodossiou
- Department of Mechanical and Biomedical Engineering, Boise State University, 1910 University Dr MS2085, Boise, ID 83725, USA
| |
Collapse
|
30
|
Voges HK, Foster SR, Reynolds L, Parker BL, Devilée L, Quaife-Ryan GA, Fortuna PRJ, Mathieson E, Fitzsimmons R, Lor M, Batho C, Reid J, Pocock M, Friedman CE, Mizikovsky D, Francois M, Palpant NJ, Needham EJ, Peralta M, Monte-Nieto GD, Jones LK, Smyth IM, Mehdiabadi NR, Bolk F, Janbandhu V, Yao E, Harvey RP, Chong JJH, Elliott DA, Stanley EG, Wiszniak S, Schwarz Q, James DE, Mills RJ, Porrello ER, Hudson JE. Vascular cells improve functionality of human cardiac organoids. Cell Rep 2023:112322. [PMID: 37105170 DOI: 10.1016/j.celrep.2023.112322] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/13/2023] [Accepted: 03/15/2023] [Indexed: 04/29/2023] Open
Abstract
Crosstalk between cardiac cells is critical for heart performance. Here we show that vascular cells within human cardiac organoids (hCOs) enhance their maturation, force of contraction, and utility in disease modeling. Herein we optimize our protocol to generate vascular populations in addition to epicardial, fibroblast, and cardiomyocyte cells that self-organize into in-vivo-like structures in hCOs. We identify mechanisms of communication between endothelial cells, pericytes, fibroblasts, and cardiomyocytes that ultimately contribute to cardiac organoid maturation. In particular, (1) endothelial-derived LAMA5 regulates expression of mature sarcomeric proteins and contractility, and (2) paracrine platelet-derived growth factor receptor β (PDGFRβ) signaling from vascular cells upregulates matrix deposition to augment hCO contractile force. Finally, we demonstrate that vascular cells determine the magnitude of diastolic dysfunction caused by inflammatory factors and identify a paracrine role of endothelin driving dysfunction. Together this study highlights the importance and role of vascular cells in organoid models.
Collapse
Affiliation(s)
- Holly K Voges
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia; Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC 3052, Australia; Department of Paediatrics, School of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3052, Australia; Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| | - Simon R Foster
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Liam Reynolds
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Benjamin L Parker
- Charles Perkins Centre, School of Life and Environmental Science, The University of Sydney, Sydney, NSW 2006, Australia; Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Lynn Devilée
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Gregory A Quaife-Ryan
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | - Ellen Mathieson
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | | | - Mary Lor
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Christopher Batho
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Janice Reid
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Mark Pocock
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Clayton E Friedman
- Institute for Molecular Bioscience, University of Queensland, Brisbane 4072, QLD, Australia
| | - Dalia Mizikovsky
- Institute for Molecular Bioscience, University of Queensland, Brisbane 4072, QLD, Australia
| | - Mathias Francois
- The Centenary Institute, David Richmond Program for Cardiovascular Research: Gene Regulation and Editing, Sydney Medical School, University of Sydney, Sydney, NSW 2050, Australia
| | - Nathan J Palpant
- Institute for Molecular Bioscience, University of Queensland, Brisbane 4072, QLD, Australia
| | - Elise J Needham
- Charles Perkins Centre, School of Life and Environmental Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Marina Peralta
- Australian Regenerative Medicine Institute. Monash University, Clayton, VIC 3800, Australia
| | | | - Lynelle K Jones
- Department of Anatomy and Developmental Biology, Development and Stem Cells Program, Monash Biomedical Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Ian M Smyth
- Department of Anatomy and Developmental Biology, Development and Stem Cells Program, Monash Biomedical Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Neda R Mehdiabadi
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC 3052, Australia; Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| | - Francesca Bolk
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC 3052, Australia; Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| | - Vaibhao Janbandhu
- Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia; School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Ernestene Yao
- Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia
| | - Richard P Harvey
- Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia; School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW 2052, Australia; School of Biotechnology and Biomolecular Science, UNSW Sydney, Sydney, NSW 2052, Australia
| | - James J H Chong
- Centre for Heart Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW 2145, Australia; Department of Cardiology, Westmead Hospital, Westmead, NSW 2145, Australia
| | - David A Elliott
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC 3052, Australia; Department of Paediatrics, School of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3052, Australia; Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| | - Edouard G Stanley
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC 3052, Australia; Department of Paediatrics, School of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3052, Australia; Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| | - Sophie Wiszniak
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5001, Australia
| | - Quenten Schwarz
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5001, Australia
| | - David E James
- Charles Perkins Centre, School of Life and Environmental Science, The University of Sydney, Sydney, NSW 2006, Australia; Sydney Medical School, The University of Sydney, Sydney, 2010 NSW, Australia
| | - Richard J Mills
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia; Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC 3052, Australia; Department of Paediatrics, School of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3052, Australia; Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| | - Enzo R Porrello
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC 3052, Australia; Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia; Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Melbourne, VIC 3052, Australia; Melbourne Centre for Cardiovascular Genomics and Regenerative Medicine, The Royal Children's Hospital, Melbourne, VIC 3052, Australia.
| | - James E Hudson
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
31
|
Margadant C. Cell Migration in Three Dimensions. Methods Mol Biol 2023; 2608:1-14. [PMID: 36653698 DOI: 10.1007/978-1-0716-2887-4_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cell migration plays an essential role in many pathophysiological processes, including embryonic development, wound healing, immunity, and cancer invasion, and is therefore a widely studied phenomenon in many different fields from basic cell biology to regenerative medicine. During the past decades, a multitude of increasingly complex methods have been developed to study cell migration. Here we compile a series of current state-of-the-art methods and protocols to investigate cell migration in a variety of model systems ranging from cells, organoids, tissue explants, and microfluidic systems to Drosophila, zebrafish, and mice. Together they cover processes as diverse as nuclear deformation, energy consumption, endocytic trafficking, and matrix degradation, as well as tumor vascularization and cancer cell invasion, sprouting angiogenesis, and leukocyte extravasation. Furthermore, methods to study developmental processes such as neural tube closure, germ layer specification, and branching morphogenesis are included, as well as scripts for the automated analysis of several aspects of cell migration. Together, this book constitutes a unique collection of methods of prime importance to those interested in the analysis of cell migration.
Collapse
Affiliation(s)
- Coert Margadant
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
32
|
Birjandi AA, Sharpe P. Potential of extracellular space for tissue regeneration in dentistry. Front Physiol 2022; 13:1034603. [DOI: 10.3389/fphys.2022.1034603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/24/2022] [Indexed: 11/19/2022] Open
Abstract
With the proven relationship between oral and general health and the growing aging population, it is pivotal to provide accessible therapeutic approaches to regenerate oral tissues and restore clinical function. However, despite sharing many core concepts with medicine, dentistry has fallen behind the progress in precision medicine and regenerative treatments. Stem cell therapies are a promising avenue for tissue regeneration, however, ethical, safety and cost issues may limit their clinical use. With the significance of paracrine signalling in stem cell and tissue regeneration, extracellular space comprising of the cell secretome, and the extracellular matrix can serve as a potent source for tissue regeneration. Extravesicles are secreted and naturally occurring vesicles with biologically active cargo that can be harvested from the extracellular space. These vesicles have shown great potential as disease biomarkers and can be used in regenerative medicine. As a cell free therapy, secretome and extracellular vesicles can be stored and transferred easily and pose less ethical and safety risks in clinical application. Since there are currently many reviews on the secretome and the biogenesis, characterization and function of extracellular vesicles, here we look at the therapeutic potential of extracellular space to drive oral tissue regeneration and the current state of the field in comparison to regenerative medicine.
Collapse
|
33
|
Fotsitzoudis C, Koulouridi A, Messaritakis I, Konstantinidis T, Gouvas N, Tsiaoussis J, Souglakos J. Cancer-Associated Fibroblasts: The Origin, Biological Characteristics and Role in Cancer-A Glance on Colorectal Cancer. Cancers (Basel) 2022; 14:cancers14184394. [PMID: 36139552 PMCID: PMC9497276 DOI: 10.3390/cancers14184394] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Tumor microenvironment is a major contributor to tumor growth, metastasis and resistance to therapy. It consists of many cancer-associated fibroblasts (CAFs), which derive from different types of cells. CAFs detected in different tumor types are linked to poor prognosis, as in the case of colorectal cancer. Although their functions differ according to their subtype, their detection is not easy, and there are no established markers for such detection. They are possible targets for therapeutic treatment. Many trials are ongoing for their use as a prognostic factor and as a treatment target. More research remains to be carried out to establish their role in prognosis and treatment. Abstract The therapeutic approaches to cancer remain a considerable target for all scientists around the world. Although new cancer treatments are an everyday phenomenon, cancer still remains one of the leading mortality causes. Colorectal cancer (CRC) remains in this category, although patients with CRC may have better survival compared with other malignancies. Not only the tumor but also its environment, what we call the tumor microenvironment (TME), seem to contribute to cancer progression and resistance to therapy. TME consists of different molecules and cells. Cancer-associated fibroblasts are a major component. They arise from normal fibroblasts and other normal cells through various pathways. Their role seems to contribute to cancer promotion, participating in tumorigenesis, proliferation, growth, invasion, metastasis and resistance to treatment. Different markers, such as a-SMA, FAP, PDGFR-β, periostin, have been used for the detection of cancer-associated fibroblasts (CAFs). Their detection is important for two main reasons; research has shown that their existence is correlated with prognosis, and they are already under evaluation as a possible target for treatment. However, extensive research is warranted.
Collapse
Affiliation(s)
- Charalampos Fotsitzoudis
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Asimina Koulouridi
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Ippokratis Messaritakis
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 70013 Heraklion, Greece
- Correspondence: ; Tel.: +30-2810-394926
| | | | | | - John Tsiaoussis
- Department of Anatomy, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - John Souglakos
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 70013 Heraklion, Greece
- Department of Medical Oncology, University Hospital of Heraklion, 71110 Heraklion, Greece
| |
Collapse
|
34
|
Shologu N, Gurdal M, Szegezdi E, FitzGerald U, Zeugolis DI. Macromolecular crowding in the development of a three-dimensional organotypic human breast cancer model. Biomaterials 2022; 287:121642. [PMID: 35724540 DOI: 10.1016/j.biomaterials.2022.121642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/31/2022] [Accepted: 06/14/2022] [Indexed: 11/02/2022]
Abstract
Although cell-derived matrices are at the forefront of scientific research and technological innovation for the development of in vitro tumour models, their two-dimensional structure and low extracellular matrix composition restrict their capacity to accurately predict toxicity of candidate molecules. Herein, we assessed the potential of macromolecular crowding (a biophysical phenomenon that significantly enhances and accelerates extracellular matrix deposition, resulting in three-dimensional tissue surrogates) in improving cell-derived matrices in vitro tumour models. Among the various decellularisation protocols assessed (NH4OH, DOC, SDS/EDTA, NP40), the NP40 appeared to be the most effective in removing cellular matter and the least destructive to the deposited matrix. Among the various cell types (mammary, skin, lung fibroblasts) used to produce the cell-derived matrices, the mammary fibroblast derived matrices produced under macromolecular crowding conditions and decellularised with NP40 resulted in significant increase in focal adhesion molecules, matrix metalloproteinases and proinflammatory cytokines, when seeded with MDA-MB-231 cells. Further, macromolecular crowding derived matrices significantly increased doxorubicin resistance and reduced the impact of intracellular reactive oxygen species mediated cell death. Collectively our data clearly illustrate the potential of macromolecular crowding in the development of cell-derived matrices-based in vitro tumour models that more accurately resemble the tumour microenvironment.
Collapse
Affiliation(s)
- Naledi Shologu
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Mehmet Gurdal
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), Dublin, Ireland
| | - Eva Szegezdi
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Apoptosis Research Centre, Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Una FitzGerald
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Galway Neuroscience Centre, Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Dimitrios I Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), Dublin, Ireland.
| |
Collapse
|
35
|
Tomasek K, Leithner A, Glatzova I, Lukesch MS, Guet CC, Sixt M. Type 1 piliated uropathogenic Escherichia coli hijack the host immune response by binding to CD14. eLife 2022; 11:e78995. [PMID: 35881547 PMCID: PMC9359703 DOI: 10.7554/elife.78995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
A key attribute of persistent or recurring bacterial infections is the ability of the pathogen to evade the host's immune response. Many Enterobacteriaceae express type 1 pili, a pre-adapted virulence trait, to invade host epithelial cells and establish persistent infections. However, the molecular mechanisms and strategies by which bacteria actively circumvent the immune response of the host remain poorly understood. Here, we identified CD14, the major co-receptor for lipopolysaccharide detection, on mouse dendritic cells (DCs) as a binding partner of FimH, the protein located at the tip of the type 1 pilus of Escherichia coli. The FimH amino acids involved in CD14 binding are highly conserved across pathogenic and non-pathogenic strains. Binding of the pathogenic strain CFT073 to CD14 reduced DC migration by overactivation of integrins and blunted expression of co-stimulatory molecules by overactivating the NFAT (nuclear factor of activated T-cells) pathway, both rate-limiting factors of T cell activation. This response was binary at the single-cell level, but averaged in larger populations exposed to both piliated and non-piliated pathogens, presumably via the exchange of immunomodulatory cytokines. While defining an active molecular mechanism of immune evasion by pathogens, the interaction between FimH and CD14 represents a potential target to interfere with persistent and recurrent infections, such as urinary tract infections or Crohn's disease.
Collapse
Affiliation(s)
- Kathrin Tomasek
- Institute of Science and Technology AustriaKlosterneuburgAustria
| | | | - Ivana Glatzova
- Institute of Science and Technology AustriaKlosterneuburgAustria
| | | | - Calin C Guet
- Institute of Science and Technology AustriaKlosterneuburgAustria
| | - Michael Sixt
- Institute of Science and Technology AustriaKlosterneuburgAustria
| |
Collapse
|
36
|
Ma B, Wang T, Li J, Wang Q. Extracellular matrix derived from Wharton's Jelly-derived mesenchymal stem cells promotes angiogenesis via integrin αVβ3/c-Myc/P300/VEGF. Stem Cell Res Ther 2022; 13:327. [PMID: 35851415 PMCID: PMC9290299 DOI: 10.1186/s13287-022-03009-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/17/2022] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND Angiogenesis is required in many physiological conditions, including bone regeneration, wound healing, and tissue regeneration. Mesenchymal stem cells-derived extracellular matrix (MSCs-ECM) could guide intricate cellular and tissue processes such as homeostasis, healing and regeneration. METHODS The purpose of this study is to explore the effect and mechanism of ECM derived from decellularized Wharton's Jelly-derived mesenchymal stem cells (WJ-MSCs) on endothelial cell viability and angiogenesis. The human umbilical vein endothelial cells (HUVECs) were pretreated with WJ-MSCs ECM for 2d/7d/14d, respectively. After pretreatment, the angiogenesis ability of HUVECs was detected. RESULTS In this study, we found for the first time that WJ-MSCs ECM could improve the angiogenesis ability of HUVECs with a time-dependent manner in vitro. Mechanically, WJ-MSCs ECM activated the focal adhesion kinase (FAK)/P38 signaling pathway via integrin αVβ3, which further promoted the expression of the cellular (c)-Myc. Further, c-Myc increased histone acetylation levels of the vascular endothelial growth factor (VEGF) promoter by recruiting P300, which ultimately promoting VEGF expression. CONCLUSIONS ECM derived from Wharton's Jelly-derived mesenchymal stem cells promotes angiogenesis via integrin αVβ3/c-Myc/P300/VEGF. This study is expected to provide a new approach to promote angiogenesis in bone and tissue regeneration.
Collapse
Affiliation(s)
- Beilei Ma
- Department of Clinical Laboratory, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Tengkai Wang
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Juan Li
- Department of Clinical Laboratory, Qilu Hospital of Shandong University (Qingdao), Qingdao, 266035, China
| | - Qian Wang
- Department of Clinical Laboratory, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
37
|
Xu Q, Bai Y, Misra RDK, Hou W, Wang Q, Zhang Z, Li S, Hao Y, Yang R, Li X, Zhang X. Improving Biological Functions of Three-Dimensional Printed Ti2448 Scaffolds by Decoration with Polydopamine and Extracellular Matrices. ACS APPLIED BIO MATERIALS 2022; 5:3982-3990. [PMID: 35822695 DOI: 10.1021/acsabm.2c00521] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Extracellular matrices (ECMs) provide important cues for cell proliferation and differentiation in the complex environment, which show a significant influence on cell functions. Herein, cell-derived ECMs were deposited on the polydopamine (PDA)-decorated porous Ti-24Nb-4Zr-8Sn (Ti2448) scaffolds fabricated by the electron beam melting method in order to improve biological functions. The influence of PDA-ECM coatings on cell functions was further investigated. The results demonstrated that the PDA-ECM coating facilitated adhesion, proliferation, and migration of MC3T3-E1 cells on Ti2448 scaffolds. Moreover, Ti2448-PDA-ECM scaffolds promoted osteogenesis differentiation of cells indicated by greater alkaline phosphatase activity and further mineralization, compared to the plain Ti2448 group. Meanwhile, Ti2448-PDA-ECM scaffolds enhanced bone growth after implantation for one month in rabbit femoral bone defects. Our findings suggest that the bioinspired PDA-ECM coating can be implemented on the porous Ti2448 scaffolds, which significantly improve the biological functions of orthopedic implants.
Collapse
Affiliation(s)
- Qian Xu
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang, Liaoning 110819, China.,Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
| | - Yun Bai
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China.,School of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - R Devesh Kumar Misra
- Department of Metallurgical, Materials, and Biomedical Engineering, The University of Texas at El Paso, 500 W University Avenue, El Paso, Texas 79968, United States
| | - Wentao Hou
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China.,School of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qiang Wang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, Liaoning 110001, China
| | - Zhuoqing Zhang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China.,School of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shujun Li
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China.,School of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yulin Hao
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China.,School of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Rui Yang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China.,School of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaowu Li
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang, Liaoning 110819, China
| | - Xing Zhang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China.,School of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
38
|
Almici E, Chiappini V, López-Márquez A, Badosa C, Blázquez B, Caballero D, Montero J, Natera-de Benito D, Nascimento A, Roldán M, Lagunas A, Jiménez-Mallebrera C, Samitier J. Personalized in vitro Extracellular Matrix Models of Collagen VI-Related Muscular Dystrophies. Front Bioeng Biotechnol 2022; 10:851825. [PMID: 35547158 PMCID: PMC9081367 DOI: 10.3389/fbioe.2022.851825] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/24/2022] [Indexed: 01/10/2023] Open
Abstract
Collagen VI-related dystrophies (COL6-RDs) are a group of rare congenital neuromuscular dystrophies that represent a continuum of overlapping clinical phenotypes that go from the milder Bethlem myopathy (BM) to the severe Ullrich congenital muscular dystrophy, for which there is no effective treatment. Mutations in one of the three Collagen VI genes alter the incorporation of this protein into the extracellular matrix (ECM), affecting the assembly and the structural integrity of the whole fibrillar network. Clinical hallmarks of COL6-RDs are secondary to the ECM disruption and include muscle weakness, proximal joint contractures, and distal hyperlaxity. Although some traits have been identified in patients’ ECMs, a correlation between the ECM features and the clinical phenotype has not been established, mainly due to the lack of predictive and reliable models of the pathology. Herein, we engineered a new personalized pre-clinical model of COL6-RDs using cell-derived matrices (CDMs) technology to better recapitulate the complexity of the native scenario. We found that CDMs from COL6-RD patients presented alterations in ECM structure and composition, showing a significantly decreased Collagen VI secretion, especially in the more severe phenotypes, and a decrease in Fibrillin-1 inclusion. Next, we examined the Collagen VI-mediated deposition of Fibronectin in the ECM, finding a higher alignment, length, width, and straightness than in patients with COL6-RDs. Overall, these results indicate that CDMs models are promising tools to explore the alterations that arise in the composition and fibrillar architecture due to mutations in Collagen VI genes, especially in early stages of matrix organization. Ultimately, CDMs derived from COL6-RD patients may become relevant pre-clinical models, which may help identifying novel biomarkers to be employed in the clinics and to investigate novel therapeutic targets and treatments.
Collapse
Affiliation(s)
- Enrico Almici
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Department of Electronic and Biomedical Engineering, University of Barcelona, Barcelona, Spain
- Biomedical Research Networking, Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Vanessa Chiappini
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Department of Electronic and Biomedical Engineering, University of Barcelona, Barcelona, Spain
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino, Italy
| | - Arístides López-Márquez
- Laboratorio de Investigación Aplicada en Enfermedades Neuromusculares, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Unidad de Patología Neuromuscular, Servicio de Neuropediatría, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Carmen Badosa
- Laboratorio de Investigación Aplicada en Enfermedades Neuromusculares, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Unidad de Patología Neuromuscular, Servicio de Neuropediatría, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Blanca Blázquez
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Biomedical Research Networking, Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - David Caballero
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Department of Electronic and Biomedical Engineering, University of Barcelona, Barcelona, Spain
- Biomedical Research Networking, Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Joan Montero
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Daniel Natera-de Benito
- Laboratorio de Investigación Aplicada en Enfermedades Neuromusculares, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Unidad de Patología Neuromuscular, Servicio de Neuropediatría, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Andrés Nascimento
- Laboratorio de Investigación Aplicada en Enfermedades Neuromusculares, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Unidad de Patología Neuromuscular, Servicio de Neuropediatría, Hospital Sant Joan de Déu, Barcelona, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Mònica Roldán
- Unitat de Microscòpia Confocal i Imatge Cel·lular, Servei de Medicina Genètica i Molecular, Institut Pediàtric de Malalties Rares (IPER), Hospital Sant Joan de Déu, Barcelona, Spain
| | - Anna Lagunas
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Biomedical Research Networking, Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Madrid, Spain
- *Correspondence: Anna Lagunas, ; Cecilia Jiménez-Mallebrera,
| | - Cecilia Jiménez-Mallebrera
- Laboratorio de Investigación Aplicada en Enfermedades Neuromusculares, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Unidad de Patología Neuromuscular, Servicio de Neuropediatría, Hospital Sant Joan de Déu, Barcelona, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barselona, Spain
- *Correspondence: Anna Lagunas, ; Cecilia Jiménez-Mallebrera,
| | - Josep Samitier
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Department of Electronic and Biomedical Engineering, University of Barcelona, Barcelona, Spain
- Biomedical Research Networking, Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Madrid, Spain
| |
Collapse
|
39
|
Wan HY, Shin RLY, Chen JCH, Assunção M, Wang D, Nilsson SK, Tuan RS, Blocki A. Dextran sulfate-amplified extracellular matrix deposition promotes osteogenic differentiation of mesenchymal stem cells. Acta Biomater 2022; 140:163-177. [PMID: 34875356 DOI: 10.1016/j.actbio.2021.11.049] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 12/21/2022]
Abstract
The development of bone-like tissues in vitro that exhibit key features similar to those in vivo is needed to produce tissue models for drug screening and the study of bone physiology and disease pathogenesis. Extracellular matrix (ECM) is a predominant component of bone in vivo; however, as ECM assembly is sub-optimal in vitro, current bone tissue engineering approaches are limited by an imbalance in ECM-to-cell ratio. We amplified the deposition of osteoblastic ECM by supplementing dextran sulfate (DxS) into osteogenically induced cultures of human mesenchymal stem cells (MSCs). DxS, previously implicated to act as a macromolecular crowder, was recently demonstrated to aggregate and co-precipitate major ECM components, including collagen type I, thereby amplifying its deposition. This effect was re-confirmed for MSC cultures undergoing osteogenic induction, where DxS supplementation augmented collagen type I deposition, accompanied by extracellular osteocalcin accumulation. The resulting differentiated osteoblasts exhibited a more mature osteogenic gene expression profile, indicated by a strong upregulation of the intermediate and late osteogenic markers ALP and OCN, respectively. The associated cellular microenvironment was also enriched in bone morphogenetic protein 2 (BMP-2). Interestingly, the resulting decellularized matrices exhibited the strongest osteo-inductive effects on re-seeded MSCs, promoted cell proliferation, osteogenic marker expression and ECM calcification. Taken together, these findings suggest that DxS-mediated enhancement of osteogenic differentiation by MSCs is mediated by the amplified ECM, which is enriched in osteo-inductive factors. We have thus established a simple and reproducible approach to generate ECM-rich bone-like tissue in vitro with sequestration of osteo-inductive factors. STATEMENT OF SIGNIFICANCE: As extracellular matrix (ECM) assembly is significantly retarded in vitro, the imbalance in ECM-to-cell ratio hampers current in vitro bone tissue engineering approaches in their ability to faithfully resemble their in vivo counterpart. We addressed this limitation by leveraging a poly-electrolyte mediated co-assembly and amplified deposition of ECM during osteogenic differentiation of human mesenchymal stem cells (MSCs). The resulting pericelluar space in culture was enriched in organic and inorganic bone ECM components, as well as osteo-inductive factors, which promoted the differentiation of MSCs towards a more mature osteoblastic phenotype. These findings thus demonstrated a simple and reproducible approach to generate ECM-rich bone-like tissue in vitro with a closer recapitulation of the in vivo tissue niche.
Collapse
|
40
|
Gardiner JC, Cukierman E. Meaningful connections: Interrogating the role of physical fibroblast cell-cell communication in cancer. Adv Cancer Res 2022; 154:141-168. [PMID: 35459467 PMCID: PMC9483832 DOI: 10.1016/bs.acr.2022.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
As part of the connective tissue, activated fibroblasts play an important role in development and disease pathogenesis, while quiescent resident fibroblasts are responsible for sustaining tissue homeostasis. Fibroblastic activation is particularly evident in the tumor microenvironment where fibroblasts transition into tumor-supporting cancer-associated fibroblasts (CAFs), with some CAFs maintaining tumor-suppressive functions. While the tumor-supporting features of CAFs and their fibroblast-like precursors predominantly function through paracrine chemical communication (e.g., secretion of cytokine, chemokine, and more), the direct cell-cell communication that occurs between fibroblasts and other cells, and the effect that the remodeled CAF-generated interstitial extracellular matrix has in these types of cellular communications, remain poorly understood. Here, we explore the reported roles fibroblastic cell-cell communication play within the cancer stroma context and highlight insights we can gain from other disciplines.
Collapse
Affiliation(s)
- Jaye C Gardiner
- Cancer Signaling and Epigenetics Program, Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Temple Health, Philadelphia, PA, United States
| | - Edna Cukierman
- Cancer Signaling and Epigenetics Program, Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Temple Health, Philadelphia, PA, United States.
| |
Collapse
|
41
|
Louisthelmy R, Burke BM, Cornelison RC. Brain Cancer Cell-Derived Matrices and Effects on Astrocyte Migration. Cells Tissues Organs 2022; 212:21-31. [PMID: 35168244 PMCID: PMC9376193 DOI: 10.1159/000522609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/11/2022] [Indexed: 11/19/2022] Open
Abstract
Cell-derived matrices are useful tools for studying the extracellular matrix (ECM) of different cell types and testing the effects on cell migration or wound repair. These matrices typically are generated using extended culture with ascorbic acid to boost ECM production. Applying this technique to cancer cell cultures could advance the study of cancer ECM and its effects on recruitment and training of the tumor microenvironment, but ascorbic acid is potently cytotoxic to cancer cells. Macromolecular crowding (MMC) agents can also be added to increase matrix deposition based on the excluded volume principle. We report the use of MMC alone as an effective strategy to generate brain cancer cell-derived matrices for downstream analyses and cell migration studies. We cultured the mouse glioblastoma cell line GL261 for 1 week in the presence of three previously reported MMC agents (carrageenan, Ficoll 70/400, and hyaluronic acid). We measured the resulting deposition of collagens and sulfated glycosaminoglycans using quantitative assays, as well as other matrix components by immunostaining. Both carrageenan and Ficoll promoted significantly more accumulation of total collagen content, sulfated glycosaminoglycan content, and fibronectin staining. Only Ficoll, however, also demonstrated a significant increase in collagen I staining. The results were more variable in 3D spheroid culture. We focused on Ficoll MMC matrices, which were isolated using the small molecule Raptinal to induce cancer cell apoptosis and matrix decellularization. The cancer cell-derived matrix promoted significantly faster migration of human astrocytes in a scratch wound assay, which may be explained by focal adhesion morphology and an increase in cellular metabolic activity. Ultimately, these data show MMC culture is a useful technique to generate cancer cell-derived matrices and study the effects on stromal cell migration related to wound repair.
Collapse
Affiliation(s)
- Rebecca Louisthelmy
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA 10002
| | - Brycen M Burke
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 10002
| | - R Chase Cornelison
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA 10002
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 10002
- Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst, MA 10002
| |
Collapse
|
42
|
Berestjuk I, Lecacheur M, Carminati A, Diazzi S, Rovera C, Prod'homme V, Ohanna M, Popovic A, Mallavialle A, Larbret F, Pisano S, Audebert S, Passeron T, Gaggioli C, Girard CA, Deckert M, Tartare-Deckert S. Targeting Discoidin Domain Receptors DDR1 and DDR2 overcomes matrix-mediated tumor cell adaptation and tolerance to BRAF-targeted therapy in melanoma. EMBO Mol Med 2021; 14:e11814. [PMID: 34957688 PMCID: PMC8819497 DOI: 10.15252/emmm.201911814] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 12/04/2022] Open
Abstract
Resistance to BRAF/MEK inhibitor therapy in BRAFV600‐mutated advanced melanoma remains a major obstacle that limits patient benefit. Microenvironment components including the extracellular matrix (ECM) can support tumor cell adaptation and tolerance to targeted therapy; however, the underlying mechanisms remain poorly understood. Here, we investigated the process of matrix‐mediated drug resistance (MMDR) in response to BRAFV600 pathway inhibition in melanoma. We demonstrate that physical and structural cues from fibroblast‐derived ECM abrogate anti‐proliferative responses to BRAF/MEK inhibition. MMDR is mediated by drug‐induced linear clustering of phosphorylated DDR1 and DDR2, two tyrosine kinase collagen receptors. Depletion and pharmacological targeting of DDR1 and DDR2 overcome ECM‐mediated resistance to BRAF‐targeted therapy. In xenografts, targeting DDR with imatinib enhances BRAF inhibitor efficacy, counteracts drug‐induced collagen remodeling, and delays tumor relapse. Mechanistically, DDR‐dependent MMDR fosters a targetable pro‐survival NIK/IKKα/NF‐κB2 pathway. These findings reveal a novel role for a collagen‐rich matrix and DDR in tumor cell adaptation and resistance. They also provide important insights into environment‐mediated drug resistance and a preclinical rationale for targeting DDR signaling in combination with targeted therapy in melanoma.
Collapse
Affiliation(s)
- Ilona Berestjuk
- Université Côte d'Azur, INSERM, C3M, Nice, France.,Equipe labellisée Ligue Contre le Cancer, Team MicroCan, Nice, France
| | - Margaux Lecacheur
- Université Côte d'Azur, INSERM, C3M, Nice, France.,Equipe labellisée Ligue Contre le Cancer, Team MicroCan, Nice, France
| | - Alexandrine Carminati
- Université Côte d'Azur, INSERM, C3M, Nice, France.,Equipe labellisée Ligue Contre le Cancer, Team MicroCan, Nice, France
| | - Serena Diazzi
- Université Côte d'Azur, INSERM, C3M, Nice, France.,Equipe labellisée Ligue Contre le Cancer, Team MicroCan, Nice, France
| | - Christopher Rovera
- Université Côte d'Azur, INSERM, C3M, Nice, France.,Equipe labellisée Ligue Contre le Cancer, Team MicroCan, Nice, France
| | - Virginie Prod'homme
- Université Côte d'Azur, INSERM, C3M, Nice, France.,Equipe labellisée Ligue Contre le Cancer, Team MicroCan, Nice, France
| | - Mickael Ohanna
- Université Côte d'Azur, INSERM, C3M, Nice, France.,Equipe labellisée Ligue Contre le Cancer, Team MicroCan, Nice, France
| | - Ana Popovic
- Université Côte d'Azur, INSERM, C3M, Nice, France.,Equipe labellisée Ligue Contre le Cancer, Team MicroCan, Nice, France
| | - Aude Mallavialle
- Université Côte d'Azur, INSERM, C3M, Nice, France.,Equipe labellisée Ligue Contre le Cancer, Team MicroCan, Nice, France
| | - Frédéric Larbret
- Université Côte d'Azur, INSERM, C3M, Nice, France.,Equipe labellisée Ligue Contre le Cancer, Team MicroCan, Nice, France
| | - Sabrina Pisano
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Nice, France
| | - Stéphane Audebert
- Aix-Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Thierry Passeron
- Université Côte d'Azur, INSERM, C3M, Nice, France.,Université Côte d'Azur, Centre Hospitalier Universitaire de Nice, Department of Dermatology, Nice, France
| | | | - Christophe A Girard
- Université Côte d'Azur, INSERM, C3M, Nice, France.,Equipe labellisée Ligue Contre le Cancer, Team MicroCan, Nice, France
| | - Marcel Deckert
- Université Côte d'Azur, INSERM, C3M, Nice, France.,Equipe labellisée Ligue Contre le Cancer, Team MicroCan, Nice, France
| | - Sophie Tartare-Deckert
- Université Côte d'Azur, INSERM, C3M, Nice, France.,Equipe labellisée Ligue Contre le Cancer, Team MicroCan, Nice, France
| |
Collapse
|
43
|
Chan WW, Yu F, Le QB, Chen S, Yee M, Choudhury D. Towards Biomanufacturing of Cell-Derived Matrices. Int J Mol Sci 2021; 22:ijms222111929. [PMID: 34769358 PMCID: PMC8585106 DOI: 10.3390/ijms222111929] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 12/16/2022] Open
Abstract
Cell-derived matrices (CDM) are the decellularised extracellular matrices (ECM) of tissues obtained by the laboratory culture process. CDM is developed to mimic, to a certain extent, the properties of the needed natural tissue and thus to obviate the use of animals. The composition of CDM can be tailored for intended applications by carefully optimising the cell sources, culturing conditions and decellularising methods. This unique advantage has inspired the increasing use of CDM for biomedical research, ranging from stem cell niches to disease modelling and regenerative medicine. However, while much effort is spent on extracting different types of CDM and exploring their utilisation, little is spent on the scale-up aspect of CDM production. The ability to scale up CDM production is essential, as the materials are due for clinical trials and regulatory approval, and in fact, this ability to scale up should be an important factor from the early stages. In this review, we first introduce the current CDM production and characterisation methods. We then describe the existing scale-up technologies for cell culture and highlight the key considerations in scaling-up CDM manufacturing. Finally, we discuss the considerations and challenges faced while converting a laboratory protocol into a full industrial process. Scaling-up CDM manufacturing is a challenging task since it may be hindered by technologies that are not yet available. The early identification of these gaps will not only quicken CDM based product development but also help drive the advancement in scale-up cell culture and ECM extraction.
Collapse
Affiliation(s)
- Weng Wan Chan
- Biomanufacturing Technology, Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, Singapore 138668, Singapore; (W.W.C.); (Q.B.L.); (S.C.); (M.Y.)
| | - Fang Yu
- Smart MicroFluidics, Singapore Institute of Manufacturing Technology (SIMTech), Agency for Science, Technology and Research (A*STAR), Fusionopolis Way, Singapore 138634, Singapore;
| | - Quang Bach Le
- Biomanufacturing Technology, Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, Singapore 138668, Singapore; (W.W.C.); (Q.B.L.); (S.C.); (M.Y.)
| | - Sixun Chen
- Biomanufacturing Technology, Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, Singapore 138668, Singapore; (W.W.C.); (Q.B.L.); (S.C.); (M.Y.)
| | - Marcus Yee
- Biomanufacturing Technology, Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, Singapore 138668, Singapore; (W.W.C.); (Q.B.L.); (S.C.); (M.Y.)
| | - Deepak Choudhury
- Biomanufacturing Technology, Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, Singapore 138668, Singapore; (W.W.C.); (Q.B.L.); (S.C.); (M.Y.)
- Correspondence:
| |
Collapse
|
44
|
Deasy SK, Erez N. A glitch in the matrix: organ-specific matrisomes in metastatic niches. Trends Cell Biol 2021; 32:110-123. [PMID: 34479765 DOI: 10.1016/j.tcb.2021.08.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/02/2021] [Accepted: 08/09/2021] [Indexed: 02/07/2023]
Abstract
Modification of the extracellular matrix (ECM) is a critical aspect of developing a metastasis-supportive organ niche. Recent work investigating ECM changes that facilitate metastasis has revealed ways in which different metastatic organ niches are similar as well as the distinct characteristics that make them unique. In this review, we present recent findings regarding how ECM modifications support metastasis in four frequent metastatic sites: the lung, liver, bone, and brain. We discuss ways in which these modifications are shared between metastatic organs as well as features specific to each location. We also discuss areas of technical innovation that could be advantageous to future research and areas of inquiry that merit further investigation.
Collapse
Affiliation(s)
- Sarah K Deasy
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Neta Erez
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
45
|
Stanton CM, Findlay AS, Drake C, Mustafa MZ, Gautier P, McKie L, Jackson IJ, Vitart V. A Mouse Model of Brittle Cornea Syndrome caused by mutation in Zfp469. Dis Model Mech 2021; 14:272230. [PMID: 34368841 PMCID: PMC8476817 DOI: 10.1242/dmm.049175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/28/2021] [Indexed: 11/20/2022] Open
Abstract
Brittle cornea syndrome (BCS) is a rare recessive condition characterised by extreme thinning of the cornea and sclera. BCS results from loss-of-function mutations in the poorly understood genes ZNF469 or PRDM5. In order to determine the function of ZNF469 and to elucidate pathogenic mechanisms, we used genome editing to recapitulate a human ZNF469 BCS mutation in the orthologous mouse gene Zfp469. Ophthalmic phenotyping showed that homozygous Zfp469 mutation causes significant central and peripheral corneal thinning arising from reduced stromal thickness. Expression of key components of the corneal stroma in primary keratocytes from Zfp469BCS/BCS mice is affected, including decreased Col1a1 and Col1a2 expression. This alters the collagen type I/collagen type V ratio and results in collagen fibrils with smaller diameter and increased fibril density in homozygous mutant corneas, correlating with decreased biomechanical strength in the cornea. Cell-derived matrices generated by primary keratocytes show reduced deposition of collagen type I, offering an in vitro model for stromal dysfunction. Work remains to determine whether modulating ZNF469 activity will have therapeutic benefit in BCS or in conditions such as keratoconus in which the cornea thins progressively. This article has an associated First Person interview with the first author of the paper. Summary: A mouse model of brittle cornea syndrome was created to elucidate molecular mechanisms underlying the pathology of this rare connective tissue disorder in which extremely thin corneas rupture, causing irreversible blindness.
Collapse
Affiliation(s)
- Chloe M Stanton
- MRC Human Genetics Unit, Institute of Genetics & Cancer, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Amy S Findlay
- MRC Human Genetics Unit, Institute of Genetics & Cancer, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Camilla Drake
- MRC Human Genetics Unit, Institute of Genetics & Cancer, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Mohammad Z Mustafa
- MRC Human Genetics Unit, Institute of Genetics & Cancer, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Philippe Gautier
- MRC Human Genetics Unit, Institute of Genetics & Cancer, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Lisa McKie
- MRC Human Genetics Unit, Institute of Genetics & Cancer, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Ian J Jackson
- MRC Human Genetics Unit, Institute of Genetics & Cancer, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Veronique Vitart
- MRC Human Genetics Unit, Institute of Genetics & Cancer, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| |
Collapse
|
46
|
Belhabib I, Zaghdoudi S, Lac C, Bousquet C, Jean C. Extracellular Matrices and Cancer-Associated Fibroblasts: Targets for Cancer Diagnosis and Therapy? Cancers (Basel) 2021; 13:3466. [PMID: 34298680 PMCID: PMC8303391 DOI: 10.3390/cancers13143466] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/25/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
Solid cancer progression is dictated by neoplastic cell features and pro-tumoral crosstalks with their microenvironment. Stroma modifications, such as fibroblast activation into cancer-associated fibroblasts (CAFs) and extracellular matrix (ECM) remodeling, are now recognized as critical events for cancer progression and as potential therapeutic or diagnostic targets. The recent appreciation of the key, complex and multiple roles of the ECM in cancer and of the CAF diversity, has revolutionized the field and raised innovative but challenging questions. Here, we rapidly present CAF heterogeneity in link with their specific ECM remodeling features observed in cancer, before developing each of the impacts of such ECM modifications on tumor progression (survival, angiogenesis, pre-metastatic niche, chemoresistance, etc.), and on patient prognosis. Finally, based on preclinical studies and recent results obtained from clinical trials, we highlight key mechanisms or proteins that are, or may be, used as potential therapeutic or diagnostic targets, and we report and discuss benefits, disappointments, or even failures, of recently reported stroma-targeting strategies.
Collapse
Affiliation(s)
| | | | | | | | - Christine Jean
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM U1037, Université Toulouse III Paul Sabatier, ERL5294 CNRS, 31037 Toulouse, France; (I.B.); (S.Z.); (C.L.); (C.B.)
| |
Collapse
|
47
|
Organ-Specific, Fibroblast-Derived Matrix as a Tool for Studying Breast Cancer Metastasis. Cancers (Basel) 2021; 13:cancers13133331. [PMID: 34283050 PMCID: PMC8269313 DOI: 10.3390/cancers13133331] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/05/2021] [Accepted: 06/25/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Cancer in the breast often spreads to other parts of the body, such as the lungs, which leads to poor outcomes for patients, as there are few effective treatments. Within organs such as the lungs, cancer cells are surrounded by a scaffold, made of proteins, which helps keeps the organs’ structure and maintains their function. This scaffold is produced by cells called fibroblasts, and we can reproduce this in the lab. We aim to investigate how cancer cells interact with the protein scaffold from different organs, where breast cancer cells spread to. This study hopes to reveal how breast cancer reacts to different organ environments and use this method to perform large-scale drug screening. Importantly, this study has shown that drug testing of breast cancer cells within a more physiological context, as opposed to testing on plastic, can lead to increased identification of targets to treat breast cancer. Abstract During the metastatic process, breast cancer cells must come into contact with the extra-cellular matrix (ECM) at every step. The ECM provides both structural support and biochemical cues, and cell–ECM interactions can lead to changes in drug response. Here, we used fibroblast-derived ECM (FDM) to perform high throughput drug screening of 4T1 breast cancer cells on metastatic organ ECM (lung), and we see that drug response differs from treatment on plastic. The FDMs that we can produce from different organs are abundant in and contains a complex mixture of ECM proteins. We also show differences in ECM composition between the primary site and secondary organ sites. Furthermore, we show that global kinase signalling of 4T1 cells on the ECM is relatively unchanged between organs, while changes in signalling compared to plastic are significant. Our study highlights the importance of context when testing drug response in vitro, showing that consideration of the ECM is critically important.
Collapse
|
48
|
Chiang C, Fang Y, Ho C, Assunção M, Lin S, Wang Y, Blocki A, Huang C. Bioactive Decellularized Extracellular Matrix Derived from 3D Stem Cell Spheroids under Macromolecular Crowding Serves as a Scaffold for Tissue Engineering. Adv Healthc Mater 2021; 10:e2100024. [PMID: 33890420 DOI: 10.1002/adhm.202100024] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/21/2021] [Indexed: 12/15/2022]
Abstract
Scaffolds for tissue engineering aim to mimic the native extracellular matrix (ECM) that provides physical support and biochemical signals to modulate multiple cell behaviors. However, the majority of currently used biomaterials are oversimplified and therefore fail to provide a niche required for the stimulation of tissue regeneration. In the present study, 3D decellularized ECM (dECM) scaffolds derived from mesenchymal stem cell (MSC) spheroids and with intricate matrix composition are developed. Specifically, application of macromolecular crowding (MMC) to MSC spheroid cultures facilitate ECM assembly in a 3D configuration, resulting in the accumulation of ECM and associated bioactive components. Decellularized 3D dECM constructs produced under MMC are able to adequately preserve the microarchitecture of structural ECM components and are characterized by higher retention of growth factors. This results in a stronger proangiogenic bioactivity as compared to constructs produced under uncrowded conditions. These dECM scaffolds can be homogenously populated by endothelial cells, which direct the macroassembly of the structures into larger cell-carrying constructs. Application of empty scaffolds enhances intrinsic revascularization in vivo, indicating that the 3D dECM scaffolds represent optimal proangiogenic bioactive blocks for the construction of larger engineered tissue constructs.
Collapse
Affiliation(s)
- Cheng‐En Chiang
- Institute of Biomedical Engineering National Tsing Hua University Hsinchu 30013 Taiwan
| | - Yi‐Qiao Fang
- Institute of Biomedical Engineering National Tsing Hua University Hsinchu 30013 Taiwan
| | - Chao‐Ting Ho
- Institute of Biomedical Engineering National Tsing Hua University Hsinchu 30013 Taiwan
| | - Marisa Assunção
- Institute for Tissue Engineering and Regenerative Medicine The Chinese University of Hong Kong Shatin Hong Kong
- School of Biomedical Sciences Faculty of Medicine The Chinese University of Hong Kong Shatin Hong Kong
| | - Sheng‐Ju Lin
- Institute of Biomedical Engineering National Tsing Hua University Hsinchu 30013 Taiwan
| | - Yu‐Chieh Wang
- Institute of Biomedical Engineering National Tsing Hua University Hsinchu 30013 Taiwan
- Interdisciplinary Program of Life Science National Tsing Hua University Hsinchu 30013 Taiwan
| | - Anna Blocki
- Institute for Tissue Engineering and Regenerative Medicine The Chinese University of Hong Kong Shatin Hong Kong
- School of Biomedical Sciences Faculty of Medicine The Chinese University of Hong Kong Shatin Hong Kong
- Department of Orthopaedics and Traumatology Faculty of Medicine The Chinese University of Hong Kong Shatin Hong Kong
| | - Chieh‐Cheng Huang
- Institute of Biomedical Engineering National Tsing Hua University Hsinchu 30013 Taiwan
| |
Collapse
|
49
|
Human placental villous stromal extracellular matrix regulates fetoplacental angiogenesis in severe fetal growth restriction. Clin Sci (Lond) 2021; 135:1127-1143. [PMID: 33904582 DOI: 10.1042/cs20201533] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/09/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023]
Abstract
Pregnancies complicated by severe, early-onset fetal growth restriction with abnormal Doppler velocimetry (FGRadv) have a sparse villous vascular tree secondary to impaired angiogenesis. As endothelial cell (EC) and stromal matrix interactions are key regulators of angiogenesis, we investigated the role of placental stromal villous matrix on fetoplacental EC angiogenesis. We have developed a novel model of generating placental fibroblast (FB) cell-derived matrices (CDMs), allowing us to interrogate placenta-specific human EC and stromal matrix interactions and their effects on fetoplacental angiogenesis. We found that as compared with control ECs plated on control matrix, FGRadv ECs plated on FGRadv matrix exhibited severe migrational defects, as measured by velocity, directionality, accumulated distance, and Euclidean distance in conjunction with less proliferation. However, control ECs, when interacting with FGRadv CDM, also demonstrated significant impairment in proliferation and migratory properties. Conversely several angiogenic attributes were rescued in FGRadv ECs subjected to control matrix, demonstrating the importance of placental villous stromal matrix and EC-stromal matrix interactions in regulation of fetoplacental angiogenesis.
Collapse
|
50
|
Yemanyi F, Baidouri H, Burns AR, Raghunathan V. Dexamethasone and Glucocorticoid-Induced Matrix Temporally Modulate Key Integrins, Caveolins, Contractility, and Stiffness in Human Trabecular Meshwork Cells. Invest Ophthalmol Vis Sci 2021; 61:16. [PMID: 33170205 PMCID: PMC7686803 DOI: 10.1167/iovs.61.13.16] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Purpose To determine the temporal effects of dexamethasone (DEX) and glucocorticoid-induced matrix (GIM) on integrins/integrin adhesomes, caveolins, cytoskeletal-related proteins, and stiffness in human trabecular meshwork (hTM) cells. Methods Primary hTM cells were plated on plastic dishes (TCP), treated with vehicle (Veh) or 100 nM DEX in 1% serum media for 1, 3, 5, and 7 day(s). Concurrently, hTM cells were also plated on vehicle control matrices (VehMs) and GIMs for similar time points; VehMs and GIMs had been generated from chronic cultures of Veh-/DEX-stimulated hTM cells and characterized biochemically. Subsets of cells prior to plating on TCP or VehMs / GIMs served as baseline. Protein expression of mechanoreceptors, cytoskeletal-related proteins, and elastic moduli of hTM cells were determined. Results Compared with Veh, DEX temporally overexpressed αV, β3, and β5 integrins from day 3 to day 7, and integrin linked kinase at day 7, in hTM cells. However, DEX decreased β1 integrin at day 1 and day 7, while increasing Cavin1 at day 7, in a time-independent manner. Further, DEX temporally upregulated α-smooth muscle actin(α-SMA) and RhoA at day 7 and day 5, respectively; while temporally downregulating Cdc42 at day 3 and day 7 in hTM cells. Conversely, GIM showed increased immunostaining of fibronectin extra-domain A and B isoforms. Compared with VehM, GIM temporally increased αV integrin, Cavin1, and RhoA from day 3 to day 7, at day 3 and day 7, and at day 5, respectively, in hTM cells. Further, GIM overexpressed α-SMA at day 3 and day 7, and stiffened hTM cells from day 1 to day 7, in a time-independent fashion. Conclusions Our data highlight crucial mechanoreceptors, integrin adhesomes, and actin-related proteins that may temporally sustain fibrotic phenotypes precipitated by DEX and/or GIM in hTM cells.
Collapse
Affiliation(s)
- Felix Yemanyi
- Department of Basic Sciences, University of Houston College of Optometry, Houston, Texas, United States
| | - Hasna Baidouri
- Department of Basic Sciences, University of Houston College of Optometry, Houston, Texas, United States
| | - Alan R Burns
- Department of Basic Sciences, University of Houston College of Optometry, Houston, Texas, United States
| | - VijayKrishna Raghunathan
- Department of Basic Sciences, University of Houston College of Optometry, Houston, Texas, United States.,Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, Houston, Texas, United States
| |
Collapse
|