1
|
Huang C, Yang H, Wang H, Sheng S, Chen L. HDCA6 suppresses GATA6 expression to enhance cellular growth and migration in lung squamous cell carcinoma. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167757. [PMID: 40044063 DOI: 10.1016/j.bbadis.2025.167757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/12/2025] [Accepted: 02/26/2025] [Indexed: 03/09/2025]
Abstract
BACKGROUND Lung squamous cell carcinoma (LUSC) exhibits a significant mortality rate and lacks effective targeted therapies. The GATA-binding factor 6 (GATA6), a pivotal regulator of lung development, undergoes reduced expression in LUSC and correlates with its metastasis and prognosis. However, the regulatory mechanisms underlying the down-regulation of GATA6 in LUSC remain elusive. HDAC6 emerges as a promising therapeutic target in preclinical cancer models. Nevertheless, its role in LUSC progression remains unexplored. Furthermore, the regulatory impact of HDAC6 on GATA6 expression needs clarification. The purpose of this work is to investigate HDAC6's involvement and regulatory mechanisms on the expression of GATA6 in LUSC. METHODS The impacts of HDCA6 on the expression of GATA6 were assessed using qPCR, Western blot and CHIP assays. The tumorigenic capacity of HDAC6 in promoting the growth and migration of LUSC cell were determined through CCK8, EdU incorporation, Transwell, and xenograft tumor models. Immunohistochemistry assays were employed to detected expression of HDAC6 in tissue microarray of LUSC. RESULTS A pan-HDACs inhibitor Trichostatin A and an HDAC6-specific inhibitor CAY10603 up-regulate the expression of GATA6, whereas HDAC6 overexpression down-regulates GATA6 level. Overexpression of HDAC6 promotes cell proliferation and migration in LUSC, while inhibition of HDAC6 significantly suppresses LUSC cell growth. And, GATA6 overexpression reverses HDAC6-mediated elevated growth and migration of LUSC cells. Compared to normal tissues, LUSC tissues exhibit elevated levels of HDAC6 expression, which were correlated with poor prognosis of LUSC patients. CONCLUSION Targeting HDAC6/GATA6 pathway may offer promising prospects for developing of novel therapeutic strategies against LUSC.
Collapse
Affiliation(s)
- Changhua Huang
- Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Hua Yang
- Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Hailong Wang
- Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Shouyin Sheng
- Department of Surgery 2, Jiujiang Third People's Hospital, Jiujiang, Jiangxi 332099, China.
| | - Limin Chen
- Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China.
| |
Collapse
|
2
|
Hou B, Jia G, Li Z, Jiang Y, Chen Y, Li X. Discovery of hydrazide-based PI3K/HDAC dual inhibitors with enhanced pro-apoptotic activity in lymphoma cells. Eur J Med Chem 2025; 292:117658. [PMID: 40300459 DOI: 10.1016/j.ejmech.2025.117658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/08/2025] [Accepted: 04/18/2025] [Indexed: 05/01/2025]
Abstract
PI3K and HDAC are concurrently upregulated in a variety of cancers, and simultaneous inhibition of PI3K and HDAC may synergistically inhibit tumor proliferation and induce apoptosis, providing a rationale for the study of dual-target PI3K/HDAC inhibitors. In this study, we rationally designed and synthesized a series of novel PI3K/HDAC dual-target inhibitors by combining the morpholino-triazine pharmacophore of PI3K inhibitor ZSTK474 with the hydrazide moiety of HDAC1-3 selective inhibitor 11h. Representative compound 31f possessed both PI3K (IC50 = 2.5-80.5 nM for PI3Kα, β, γ, and δ) and HDAC1-3 inhibitory activities (IC50 = 1.9-75.5 nM for HDAC1-3). 31f showed potent antiproliferative activity against a variety of tumor cell lines. Meanwhile, we designed and synthesized tool molecule 39a, a HDAC inhibitor structurally similar to 31f. In the mantle cell lymphoma Jeko-1 cell line, 31f showed significantly greater efficacy than the single inhibitors in inducing apoptosis. In conclusion, this study provided insights into the development of novel hydrazide-based dual HDAC/PI3K inhibitors.
Collapse
Affiliation(s)
- Baogeng Hou
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Geng Jia
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Zhongqiang Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Yuqi Jiang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Yuxin Chen
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Xiaoyang Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Marine Biomedical Research Institute of Qingdao, Qingdao, Shandong 266071, China.
| |
Collapse
|
3
|
Fathy A, Allam A, ElHady AK, El-Gamil DS, Lin KC, Chang YH, Lee YH, Hilscher S, Schutkowski M, Ibrahim HS, Chen SH, Chen CH, Abadi AH, Sippl W, Chen PJ, Cheng YS, Abdel-Halim M. Development of potent and selective tetrahydro-β-carboline-based HDAC6 inhibitors with promising activity against triple-negative breast cancer. RSC Med Chem 2025:d5md00086f. [PMID: 40256307 PMCID: PMC12004265 DOI: 10.1039/d5md00086f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 03/26/2025] [Indexed: 04/22/2025] Open
Abstract
Overexpression of histone deacetylase 6 (HDAC6) is implicated in tumorigenesis, invasion, migration, survival, apoptosis, and growth of various malignancies, making it a promising target for cancer treatment. Building on our previous work, we report a novel series of tetrahydro-β-carboline-piperazinedione derivatives as HDAC6 inhibitors. Structural modifications were introduced at the 6-aryl group, with the m-bromophenyl derivative (9c) emerging as the most potent HDAC6 inhibitor, exhibiting an IC50 of 7 nM. Compound 9c demonstrated robust growth inhibitory activity across 60 cancer cell lines from the NCI panel, with a mean GI50 of 2.64 μM and a GI50 below 5 μM for nearly all tested lines, while exhibiting significantly lower cytotoxicity towards non-tumor cell lines. The triple-negative breast cancer cell line MDA-MB-231 was selected for further investigation of 9c's cellular effects. 9c selectively increased the acetylation of non-histone α-tubulin in MDA-MB-231 cells, confirming its HDAC6 selectivity. Furthermore, 9c effectively induced apoptosis, caused apoptotic sub-G1 phase accumulation, upregulated pro-apoptotic caspase-3, and downregulated anti-apoptotic Bcl-2. Notably, 9c reduced the expression of programmed death-ligand 1 (PD-L1), a key immune checkpoint protein that enables tumor cells to evade immune surveillance, highlighting its potential role in enhancing anti-tumor immunity. In addition, 9c inhibited phosphorylated extracellular signal-regulated kinase (ERK)1/2, a central signaling pathway that drives cell proliferation, survival, and migration, further highlighting its significance in suppressing tumor progression and growth. In migration assays, 9c impaired cell motility, achieving 80% gap closure inhibition in a wound-healing assay. Collectively, these findings underline compound 9c as a highly promising candidate for the treatment of triple-negative breast cancer, with the added benefits of PD-L1 and ERK inhibition for potential synergy in enhancing anti-tumor immunity and reducing tumor cell proliferation.
Collapse
Affiliation(s)
- Aya Fathy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo Cairo 11835 Egypt
| | - Amro Allam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo Cairo 11835 Egypt
| | - Ahmed K ElHady
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo Cairo 11835 Egypt
- School of Life & Medical Sciences, University of Hertfordshire hosted by Global Academic Foundation New Administrative Capital Cairo Egypt
| | - Dalia S El-Gamil
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo Cairo 11835 Egypt
- Department of Chemistry, Faculty of Pharmacy, Ahram Canadian University Cairo 12451 Egypt
| | - Kai-Chun Lin
- Institute of Plant Biology, College of Life Science, National Taiwan University Taipei 10617 Taiwan
| | - Yen-Hua Chang
- Institute of Plant Biology, College of Life Science, National Taiwan University Taipei 10617 Taiwan
| | - Yu-Hsuan Lee
- Department of Life Science, College of Life Science, National Taiwan University Taipei 10617 Taiwan
| | - Sebastian Hilscher
- Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg Halle (Saale) Germany
| | - Mike Schutkowski
- Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg Halle (Saale) Germany
| | - Hany S Ibrahim
- Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg Halle (Saale) Germany
| | - Shun-Hua Chen
- School of Nursing, Fooyin University Kaohsiung 831301 Taiwan
| | - Chun-Hong Chen
- Department of Medical Research, E-Da Hospital and Graduate Institute of Medicine, I-Shou University Kaohsiung 824410 Taiwan
| | - Ashraf H Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo Cairo 11835 Egypt
| | - Wolfgang Sippl
- Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg Halle (Saale) Germany
| | - Po-Jen Chen
- Department of Medical Research, E-Da Hospital and Graduate Institute of Medicine, I-Shou University Kaohsiung 824410 Taiwan
- Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University Kaohsiung 80708 Taiwan
| | - Yi-Sheng Cheng
- Institute of Plant Biology, College of Life Science, National Taiwan University Taipei 10617 Taiwan
- Department of Life Science, College of Life Science, National Taiwan University Taipei 10617 Taiwan
- Genome and Systems Biology Degree Program, College of Life Science, National Taiwan University Taipei 10617 Taiwan
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo Cairo 11835 Egypt
| |
Collapse
|
4
|
Onuscakova M, Kauerova T, Fialova E, Pizova H, Garaj V, Kemka M, Frecer V, Kollar P, Bobal P. New potent N-hydroxycinnamamide-based histone deacetylase inhibitors suppress proliferation and trigger apoptosis in THP-1 leukaemia cells. Arch Pharm (Weinheim) 2025; 358:e2400889. [PMID: 40165669 PMCID: PMC11959351 DOI: 10.1002/ardp.202400889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 04/02/2025]
Abstract
A new group of potent histone deacetylase inhibitors (HDACis) capable of inhibiting cell growth and affecting cell-cycle progression in Tohoku Hospital Pediatrics-1 (THP-1) monocytic leukaemia cells was synthesized. The inhibitors belong to a series of hydroxamic acid derivatives. We designed and synthesized a series of 22 N-hydroxycinnamamide derivatives, out of which 20 are new compounds. These compounds contain various substituted anilides as the surface recognition moiety (SRM), a p-hydroxycinnamate linker, and hydroxamic acids as the zinc-binding group (ZBG). The whole series of synthesized hydroxamic acids inhibited THP-1 cell proliferation. Compounds 7d and 7p, which belong to the category of derivatives with the most potent antiproliferative properties, exert a similar effect on cell-cycle progression as vorinostat and induce apoptosis in THP-1 cells. Furthermore, compounds 7d and 7p were demonstrated to inhibit HDAC class I and II in THP-1 cells with comparable potency to vorinostat and increase acetylation of histones H2a, H2b, H3, and H4. Molecular modelling was used to predict the probable binding mode of the studied HDACis in class I and II histone deacetylases in terms of Zn2+ ion chelation by the hydroxamate group.
Collapse
Affiliation(s)
- Magdalena Onuscakova
- Department of Chemical Drugs, Faculty of PharmacyMasaryk UniversityBrnoCzech Republic
| | - Tereza Kauerova
- Department of Pharmacology and Toxicology, Faculty of PharmacyMasaryk UniversityBrnoCzech Republic
| | - Eva Fialova
- Department of Chemical Drugs, Faculty of PharmacyMasaryk UniversityBrnoCzech Republic
| | - Hana Pizova
- Department of Chemical Drugs, Faculty of PharmacyMasaryk UniversityBrnoCzech Republic
| | - Vladimir Garaj
- Department of Pharmaceutical Chemistry, Faculty of PharmacyComenius University BratislavaBratislavaSlovakia
| | - Miroslav Kemka
- Department of Pharmaceutical Chemistry, Faculty of PharmacyComenius University BratislavaBratislavaSlovakia
| | - Vladimir Frecer
- Department of Physical Chemistry of Drugs, Faculty of PharmacyComenius University BratislavaBratislavaSlovakia
| | - Peter Kollar
- Department of Pharmacology and Toxicology, Faculty of PharmacyMasaryk UniversityBrnoCzech Republic
| | - Pavel Bobal
- Department of Chemical Drugs, Faculty of PharmacyMasaryk UniversityBrnoCzech Republic
| |
Collapse
|
5
|
Gu Z, Ye F, Luo H, Li X, Gong Y, Mao S, Jia X, Han X, Han B, Fu Y, Cheng X, Li J, Shao Z, Wen P, Hu X, Zhuang Z. Metformin sensitizes triple-negative breast cancer to histone deacetylase inhibitors by targeting FGFR4. J Biomed Sci 2025; 32:36. [PMID: 40091020 PMCID: PMC11912690 DOI: 10.1186/s12929-025-01129-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 02/25/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is characterized by high malignancy, strong invasiveness, and a propensity for distant metastasis, leading to poor prognosis and relatively limited treatment options. Metformin, as a first-line oral hypoglycemic agent, has garnered widespread research interest in recent years due to its potential in cancer prevention and treatment. However, its efficacy varies significantly across different tumor types. Histone deacetylase inhibitors (HDACi), such as SAHA, have demonstrated antitumor activity, but TNBC responds poorly to HDACi monotherapy, possibly due to feedback activation of the JAK-STAT pathway. Exploring the synergistic potential and underlying mechanisms of combining metformin with HDACi in TNBC treatment is crucial. METHODS We predicted the synergistic effects of metformin and SAHA in TNBC using multiple computational methods (CMap, DTsyn, and DrugComb). We also developed a cancer-specific compound mimic library (CDTSL) and applied a three-step strategy to identify genes fitting the "metformin sensitization" model. Subsequently, we evaluated the synergistic effects of metformin and SAHA in TNBC cell lines through cell proliferation, colony formation, and apoptosis assays. Furthermore, we investigated the molecular mechanisms of the combined treatment using techniques such as transcriptome sequencing, chromatin immunoprecipitation (ChIP), Western blotting, and measurement of extracellular acidification rate (ECAR). Additionally, we assessed the in vivo antitumor effects of the combined therapy in a nude mouse subcutaneous xenograft model. RESULTS CMap, DTsyn, and DrugComb all predicted the synergistic effects of SAHA and metformin in TNBC. The screening results revealed that HDAC10 played a key role in metformin sensitization. We found that the combination of metformin and SAHA exhibited synergistic antitumor effects (combination index CI < 0.9) in TNBC cell lines. Mechanistically, metformin inhibited histone acetylation on FGFR4, thereby blocking the feedback activation of FGFR4 downstream pathways induced by SAHA. Furthermore, metformin interfered with the glycolysis process induced by SAHA, altering the metabolic reprogramming of tumor cells. In in vivo experiments, the combined treatment of metformin and SAHA significantly inhibited the growth of subcutaneous tumors in nude mice. CONCLUSIONS Metformin enhances the sensitivity of TNBC to HDAC inhibitors by blocking the FGFR4 pathway and interfering with metabolic reprogramming. When used in combination with SAHA, metformin exhibits synergistic antitumor effects. Our study provides a theoretical basis for the combined application of HDAC inhibitors and metformin, potentially offering a new strategy for the treatment of TNBC.
Collapse
Affiliation(s)
- Zhangyuan Gu
- Department of Breast Surgery, Shanghai Key Laboratory of Maternal-Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, No. 2699 West Gao-Ke Road, Shanghai, 201204, China
| | - Fugui Ye
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, No.688 Hong-Qu Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Hong Luo
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, No.688 Hong-Qu Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xiaoguang Li
- Shanghai Henlius Biotech Inc., Shanghai, 200233, China
| | - Yue Gong
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, No.688 Hong-Qu Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Shiqi Mao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Cancer Institute, Tongji University School of Medicine, Shanghai, 200433, China
| | - Xiaoqing Jia
- Department of Breast Surgery, Shanghai Key Laboratory of Maternal-Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, No. 2699 West Gao-Ke Road, Shanghai, 201204, China
| | - Xiangchen Han
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, No.688 Hong-Qu Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Boyue Han
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, No.688 Hong-Qu Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yun Fu
- Department of Breast Surgery, Shanghai Key Laboratory of Maternal-Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, No. 2699 West Gao-Ke Road, Shanghai, 201204, China
| | - Xiaolin Cheng
- Department of Breast Surgery, Shanghai Key Laboratory of Maternal-Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, No. 2699 West Gao-Ke Road, Shanghai, 201204, China
| | - Jiejing Li
- Department of Breast Surgery, Shanghai Key Laboratory of Maternal-Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, No. 2699 West Gao-Ke Road, Shanghai, 201204, China
| | - Zhiming Shao
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, No.688 Hong-Qu Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Precision Cancer Medical Center, Affiliated to Fudan University Shanghai Cancer Center, No.688 Hong-Qu Road, Shanghai, 201315, China.
| | - Peizhen Wen
- Department of General Surgery, School of Medicine, Organ Transplantation Clinical Medical Center of Xiamen University, Xiang'an Hospital of Xiamen University, Xiamen University, No. 2000 Xiang'an East Road, Xiamen, 361005, Fujian, China.
- Xiamen Human Organ Transplantation Quality Control Center, Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Organ Transplantation Institute of Xiamen University, Xiamen University, Xiamen, 361005, Fujian, China.
| | - Xin Hu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, No.688 Hong-Qu Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Precision Cancer Medical Center, Affiliated to Fudan University Shanghai Cancer Center, No.688 Hong-Qu Road, Shanghai, 201315, China.
| | - Zhigang Zhuang
- Department of Breast Surgery, Shanghai Key Laboratory of Maternal-Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, No. 2699 West Gao-Ke Road, Shanghai, 201204, China.
| |
Collapse
|
6
|
Liu Y, Liu F, Li C, Zhang T, Han T, Dai Y, Huang N, Tang H, Wang X, Lin S, Xue L, Wu ZB. TRIM21-mediated ubiquitination and phosphorylation of ERK1/2 promotes cell proliferation and drug resistance in pituitary adenomas. Neuro Oncol 2025; 27:727-742. [PMID: 39533840 PMCID: PMC11889717 DOI: 10.1093/neuonc/noae241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Pituitary adenomas (PAs) are common intracranial tumors and the TRIM family plays a crucial role in cell proliferation and therapeutic resistance of tumors. However, the role of the TRIM family in PAs is not well recognized. METHODS CRISPR screening explored the role of the TRIM family in cell proliferation and drug resistance in PAs. In vitro and in vivo experiments were performed to evaluate the effects of Tripartite Motif Containing 21 (TRIM21). RNA-sequencing, mass spectrometry, immunoprecipitation, and ubiquitination experiments were performed to explore the molecular mechanism. NanoBiT assays were used to screen the drugs reducing TRIM21 expression. RESULTS CRISPR-Cas9 screens identified that TRIM21 facilitated cell proliferation and drug resistance in PAs. Mechanistically, TRIM21 interacted with ERK1/2 through PRY-SPRY domain, leading to ERK1/2 K27-linked ubiquitination. The ERK1/2 ubiquitination promotes the interaction between ERK1/2 and MEK1/2, thereby facilitating the phosphorylation of ERK1/2. However, an excess presence of TRIM21 suppressed the phosphorylation of ERK1/2 and cell proliferation via activating ERK1/2 negative feedback pathways. Importantly, TRIM21 was upregulated in dopamine-resistant prolactinomas and cabergoline-resistant MMQ cells. Furthermore, drug screening identified that Fimepinostat and Quisinostat, can reduce the protein levels of TRIM21, inhibit tumor progression, and increase drug sensitivity. CONCLUSIONS TRIM21 may represent a therapeutic target for tumors, and inhibiting TRIM21 could be a potential strategy for tumor treatment.
Collapse
Affiliation(s)
- Yanting Liu
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fang Liu
- Department of Biochemistry and Molecular Cell Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuanbao Li
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Zhang
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianyi Han
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuting Dai
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ning Huang
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Tang
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaobin Wang
- The First Affiliated Hospital, Henan University, Kaifeng, P.R. China
| | - Shaojian Lin
- Department of Neurosurgery, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Xue
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, China
- Department of Neurosurgery, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhe Bao Wu
- The First Affiliated Hospital, Henan University, Kaifeng, P.R. China
- Department of Neurosurgery, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Qureshi Z, Altaf F, Jamil A, Siddique R. Unlocking the Mysteries of Breast Cancer: The Role of Epigenetics in Diagnosis, Treatment, and Beyond. Am J Clin Oncol 2025:00000421-990000000-00264. [PMID: 40025834 DOI: 10.1097/coc.0000000000001177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
OBJECTIVES Breast cancer is an intricate and varied disease exhibiting a range of molecular subgroups and clinical consequences. Epigenetic alterations have become essential players in the pathophysiology of breast cancer because they control gene expression without changing the DNA sequence. This review provides a comprehensive overview of epigenetics' diagnostic, prognostic, and therapeutic implications in breast cancer. This review aims to present a comprehensive study of the function of epigenetics in breast cancer, emphasizing current developments and potential avenues for future research. METHODS A narrative review methodology involved an extensive literature search and selection to gather relevant studies and trial data. PubMed, Embase, and Web of Science databases were searched using relevant keywords such as "epigenetics," "breast cancer," "DNA methylation," "histone modification," "noncoding RNA," and "linical trials." Relevant studies and clinical trial data were selected and synthesized to summarize the topic comprehensively. RESULTS The review synthesizes critical findings from current research, underscoring the pivotal role of epigenetic mechanisms in breast cancer initiation, progression, and therapeutic response. It highlights the potential of epigenetic biomarkers for diagnosis and prognosis and the promise of epigenetic-targeted therapies in breast cancer management. Furthermore, the review outlines future directions for research, emphasizing the importance of elucidating the dynamic interplay between epigenetic alterations and tumor microenvironments in shaping breast cancer phenotypes. CONCLUSIONS Epigenetic modifications influence breast cancer progression, diagnosis, and therapy. Emerging biomarkers and targeted treatments hold promise, but further research is essential to refine their clinical application and improve personalized cancer management strategies.
Collapse
Affiliation(s)
- Zaheer Qureshi
- The Frank H. Netter M.D. School of Medicine at Quinnipiac University, Bridgeport, CT
| | - Faryal Altaf
- Department of Internal Medicine, Icahn School of Medicine at Mount Sinai/BronxCare Health System, Mount Sinai
| | - Abdur Jamil
- Department of Medicine, Samaritan Medical Centre
| | | |
Collapse
|
8
|
Liu T, Wang T, Qi L, Liu Y, Shan M, Wang F, Fang Y, Liu S, Wen L, Chen S, Wu D, Xu Y. CPSF6-RARγ interacts with histone deacetylase 3 to promote myeloid transformation in RARG-fusion acute myeloid leukemia. Nat Commun 2025; 16:616. [PMID: 39805830 PMCID: PMC11729889 DOI: 10.1038/s41467-024-54860-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 11/21/2024] [Indexed: 01/16/2025] Open
Abstract
Acute myeloid leukemia (AML) with retinoic acid receptor gamma (RARG) fusions, which exhibits clinical features resembling acute promyelocytic leukemia (APL), has been identified as a new subtype with poor clinical outcomes. The underlying mechanism of RARG-fusion leukemia remains poorly understood, and needs to be explored urgently to instruct developing effective therapeutic strategies. Here, using the most prevalent RARG fusion, CPSF6-RARG (CR), as a representative, we reveal that the CR fusion, enhances the expansion of myeloid progenitors, impairs their maturation and synergizes with RAS mutations to drive more aggressive myeloid malignancies. Mechanistically, CR fusion interacts with histone deacetylase 3 (HDAC3) to suppress expression of genes associated with myeloid differentiation including the myeloid transcription factor PU.1. Disrupting CR-HDAC3 interaction, restores PU.1 expression and myeloid differentiation. Furthermore, HDAC inhibitors effectively suppress CR-driven leukemia in vitro and in vivo. Hence, our data reveals the molecular bases of oncogenic CR fusion and provides a potential therapeutic approach against AML with CR fusion.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/drug therapy
- Histone Deacetylases/metabolism
- Histone Deacetylases/genetics
- Animals
- Oncogene Proteins, Fusion/metabolism
- Oncogene Proteins, Fusion/genetics
- Mice
- Retinoic Acid Receptor gamma
- Receptors, Retinoic Acid/metabolism
- Receptors, Retinoic Acid/genetics
- Cell Differentiation/genetics
- Histone Deacetylase Inhibitors/pharmacology
- Cell Line, Tumor
- Cell Transformation, Neoplastic/genetics
Collapse
Affiliation(s)
- Tianhui Liu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215000, China
| | - Tanzhen Wang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215000, China
| | - Lijuan Qi
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215000, China
| | - Yujie Liu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215000, China
| | - Meng Shan
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215000, China
| | - Fuqiang Wang
- Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, China
| | - Yanglan Fang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215000, China
| | - Sining Liu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215000, China
| | - Lijun Wen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, 215006, China
| | - Suning Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, 215006, China.
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215000, China.
| | - Yang Xu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215000, China.
| |
Collapse
|
9
|
Cao Y, Yu T, Zhu Z, Zhang Y, Sun S, Li N, Gu C, Yang Y. Exploring the landscape of post-translational modification in drug discovery. Pharmacol Ther 2025; 265:108749. [PMID: 39557344 DOI: 10.1016/j.pharmthera.2024.108749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/11/2024] [Accepted: 11/04/2024] [Indexed: 11/20/2024]
Abstract
Post-translational modifications (PTMs) play a crucial role in regulating protein function, and their dysregulation is frequently associated with various diseases. The emergence of epigenetic drugs targeting factors such as histone deacetylases (HDACs) and histone methyltransferase enhancers of zeste homolog 2 (EZH2) has led to a significant shift towards precision medicine, offering new possibilities to overcome the limitations of traditional therapeutics. In this review, we aim to systematically explore how small molecules modulate PTMs. We discuss the direct targeting of enzymes involved in PTM pathways, the modulation of substrate proteins, and the disruption of protein-enzyme interactions that govern PTM processes. Additionally, we delve into the emerging strategy of employing multifunctional molecules to precisely regulate the modification levels of proteins of interest (POIs). Furthermore, we examine the specific characteristics of these molecules, evaluating their therapeutic benefits and potential drawbacks. The goal of this review is to provide a comprehensive understanding of PTM-targeting strategies and their potential for personalized medicine, offering a forward-looking perspective on the evolution of precision therapeutics.
Collapse
Affiliation(s)
- Yuhao Cao
- Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing 210022, China; School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tianyi Yu
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ziang Zhu
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuanjiao Zhang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shanliang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Nianguang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Chunyan Gu
- Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing 210022, China; School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Ye Yang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
10
|
Wu A, Liu F, Zhou L, Jiang R, Yu S, Zhou Z, Zhang Q, Zhang Q, Jiang D, He S, Wei H. A novel histone acetylation-associated gene signature with prognostic value in Ewing sarcoma. Discov Oncol 2024; 15:848. [PMID: 39738986 DOI: 10.1007/s12672-024-01689-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 12/09/2024] [Indexed: 01/02/2025] Open
Abstract
Histone acetylation is an important epigenetic modification, modulating the development of many tumors. However, the functions of most histone acetylation-related genes (HARGs) and their prognostic values in Ewing sarcoma (EWS) remain unclear. The current study aimed to investigate the prognostic values and potential functions of HARGs in EWS. After collecting EWS patients with mRNA sequencing data from the Gene Expression Omnibus (GEO) database and a list of HARGs from previous studies, Cox regression and Least Absolute Shrinkage and Selection Operator (LASSO) regression were performed to construct a prognostic gene signature based on HARGs. Then, four HARGs (TAF4, ATF2, HDAC2 and OGA) composed a formula to calculate risk score for each patient in the training cohort. Based on median risk score, all patients were classified into low- and high-risk group, and patients with high-risk score had a poor survival outcome (p < 0.001). The 1-, 2-,3- and 5-year AUC (0.853, 0.886,0.909and 0.833, respectively) showed the good ability of this signature to predict the prognoses of EWS patients. In addition, distinct functional enrichment and immune-related pathways were also observed in two risk groups. All results were validated in an external cohort from two dataset in GEO database. Moreover, it was found that silencing HDAC2 expression in EWS cells significantly suppressed the cell viability and migration capability. In conclusion, this is the first study to detect the prognostic values of HARGs in EWS patients, further developing a good prognostic signature based on HARGs, and HDAC2 might be an oncogene in the development of EWS.
Collapse
Affiliation(s)
- Anshun Wu
- Clinical Medical College, North China University of Science and Technology, Tangshan, 063210, China
| | - Fayin Liu
- Department of Orthopedics, Zibo Orthopaedics Hospital, Zibo, 255000, China
| | - Lei Zhou
- Department of Orthopaedic Oncology, Spinal Tumor Center, No. 905 Hospital of PLA Navy, Second Affiliated Hospital of Naval Medical University, Naval Medical University, Shanghai, 200003, China
| | - Runyi Jiang
- Department of Orthopaedic Oncology, Spinal Tumor Center, No. 905 Hospital of PLA Navy, Second Affiliated Hospital of Naval Medical University, Naval Medical University, Shanghai, 200003, China
| | - Shangjiang Yu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Zihuan Zhou
- Department of Orthopaedic Oncology, Spinal Tumor Center, No. 905 Hospital of PLA Navy, Second Affiliated Hospital of Naval Medical University, Naval Medical University, Shanghai, 200003, China
| | - Qi Zhang
- Department of Orthopaedic Oncology, Spinal Tumor Center, No. 905 Hospital of PLA Navy, Second Affiliated Hospital of Naval Medical University, Naval Medical University, Shanghai, 200003, China
| | - Qian Zhang
- Department of Orthopaedic Oncology, Spinal Tumor Center, No. 905 Hospital of PLA Navy, Second Affiliated Hospital of Naval Medical University, Naval Medical University, Shanghai, 200003, China
| | - Dongjie Jiang
- Department of Orthopaedic Oncology, Spinal Tumor Center, No. 905 Hospital of PLA Navy, Second Affiliated Hospital of Naval Medical University, Naval Medical University, Shanghai, 200003, China.
| | - Shaohui He
- Department of Orthopaedic Oncology, Spinal Tumor Center, No. 905 Hospital of PLA Navy, Second Affiliated Hospital of Naval Medical University, Naval Medical University, Shanghai, 200003, China.
| | - Haifeng Wei
- Clinical Medical College, North China University of Science and Technology, Tangshan, 063210, China.
- Department of Orthopaedic Oncology, Spinal Tumor Center, No. 905 Hospital of PLA Navy, Second Affiliated Hospital of Naval Medical University, Naval Medical University, Shanghai, 200003, China.
| |
Collapse
|
11
|
Chen X, Augello MA, Liu D, Lin K, Hakansson A, Sjöström M, Khani F, Deonarine LD, Liu Y, Travascio-Green J, Wu J, Chan UI, Owiredu J, Loda M, Feng FY, Robinson BD, Davicioni E, Sboner A, Barbieri CE. Canonical androgen response element motifs are tumor suppressive regulatory elements in the prostate. Nat Commun 2024; 15:10675. [PMID: 39672812 PMCID: PMC11645413 DOI: 10.1038/s41467-024-53734-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/18/2024] [Indexed: 12/15/2024] Open
Abstract
The androgen receptor (AR) is central in prostate tissue identity and differentiation, and controls normal growth-suppressive, prostate-specific gene expression. It also drives prostate tumorigenesis when hijacked for oncogenic transcription. The execution of growth-suppressive AR transcriptional programs in prostate cancer (PCa) and the potential for reactivation remain unclear. Here, we use a genome-wide approach to modulate canonical androgen response element (ARE) motifs-the classic DNA binding elements for AR-to delineate distinct AR transcriptional programs. We find that activating these AREs promotes differentiation and growth-suppressive transcription, potentially leading to AR+ PCa cell death, while ARE repression is tolerated by PCa cells but deleterious to normal prostate cells. Gene signatures driven by ARE activity correlate with improved prognosis and luminal phenotypes in PCa patients. Canonical AREs maintain a normal, lineage-specific transcriptional program that can be reengaged in PCa cells, offering therapeutic potential and clinical relevance.
Collapse
Affiliation(s)
- Xuanrong Chen
- Department of Urology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Michael A Augello
- Department of Urology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Deli Liu
- Department of Urology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Kevin Lin
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | | | - Martin Sjöström
- Department of Radiation Oncology, University of California, San Francisco, CA, USA
| | - Francesca Khani
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Lesa D Deonarine
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Yang Liu
- Veracyte, Inc., South San Francisco, CA, USA
| | | | - Jiansheng Wu
- Department of Urology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Un In Chan
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Jude Owiredu
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Biochemistry, Cellular, Developmental and Molecular Biology Program, Weill Cornell Medicine, New York, NY, USA
| | - Massimo Loda
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Felix Y Feng
- Department of Radiation Oncology, University of California, San Francisco, CA, USA
- Departments of Urology and Medicine, University of California, San Francisco, CA, USA
| | - Brian D Robinson
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | | | - Andrea Sboner
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Christopher E Barbieri
- Department of Urology, Weill Cornell Medicine, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
12
|
Ritika, Liao ZY, Chen PY, Rao NV, Mathew J, Sharma R, Grewal AS, Singh G, Mehan S, Liou JP, Pan CH, Nepali K. Rationally designed febuxostat-based hydroxamic acid and its pH-Responsive nanoformulation elicits anti-tumor activity. Eur J Med Chem 2024; 279:116866. [PMID: 39293244 DOI: 10.1016/j.ejmech.2024.116866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/29/2024] [Accepted: 09/08/2024] [Indexed: 09/20/2024]
Abstract
Attempts to furnish antitumor structural templates that can prevent the occurrence of drug-induced hyperuricemia spurred us to generate xanthine oxidase inhibitor-based hydroxamic acids and anilides. Specifically, the design strategy involved the insertion of febuxostat (xanthine oxidase inhibitor) as a surface recognition part of the HDAC inhibitor pharmacophore model. Investigation outcomes revealed that hydroxamic acid 4 elicited remarkable antileukemic effects mediated via HDAC isoform inhibition. Delightfully, the adduct retained xanthine oxidase inhibitory activity, though xanthine oxidase inhibition was not the underlying mechanism of its cell growth inhibitory effects. Also, compound 4 demonstrated significant in-vivo anti-hyperuricemic (PO-induced hyperuricemia model) and antitumor activity in an HL-60 xenograft mice model. Compound 4 was conjugated with poly (ethylene glycol) poly(aspartic acid) block copolymer to furnish pH-responsive nanoparticles (NPs) in pursuit of circumventing its cytotoxicity towards the normal cell lines. SEM analysis revealed that NPs had uniform size distributions, while TEM analysis ascertained the spherical shape of NPs, indicating their ability to undergo self-assembly. HDAC inhibitor 4 was liberated from the matrix due to the polymeric nanoformulation's pH-responsiveness, and the NPs demonstrated selective cancer cell targeting ability.
Collapse
Affiliation(s)
- Ritika
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taiwan
| | - Zi-Yi Liao
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110031, Taiwan
| | - Pin-Yu Chen
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110031, Taiwan
| | - N Vijayakamasewara Rao
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taiwan
| | - Jacob Mathew
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 106335, Taiwan
| | - Ram Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110031, Taiwan
| | - Ajmer Singh Grewal
- Department of Pharmaceutical Sciences, Guru Gobind Singh College of Pharmacy, Near Guru Nanak Khalsa College, Yamuna Nagar, 135001, Haryana, India
| | - Gurpreet Singh
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Sidharth Mehan
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India; Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Jing Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110031, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taiwan
| | - Chun Hsu Pan
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taiwan.
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110031, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taiwan.
| |
Collapse
|
13
|
Kim N, Yang C. Butyrate as a Potential Modulator in Gynecological Disease Progression. Nutrients 2024; 16:4196. [PMID: 39683590 DOI: 10.3390/nu16234196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 11/30/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
This review investigates the therapeutic potential of butyrate, a short-chain fatty acid (SCFA) produced by gut microbiota, in the prevention and treatment of various gynecological diseases, including polycystic ovary syndrome (PCOS), endometriosis, and gynecologic cancers like cervical and ovarian cancer. These conditions often pose treatment challenges, with conventional therapies offering limited and temporary relief, significant side effects, and a risk of recurrence. Emerging evidence highlights butyrate's unique biological activities, particularly its role as a histone deacetylase (HDAC) inhibitor, which allows it to modulate gene expression, immune responses, and inflammation. In PCOS, butyrate aids in restoring hormonal balance, enhancing insulin sensitivity, and reducing chronic inflammation. For endometriosis, butyrate appears to suppress immune dysregulation and minimize lesion proliferation. Additionally, in cervical and ovarian cancers, butyrate demonstrates anticancer effects through mechanisms such as cell cycle arrest, apoptosis induction, and suppression of tumor progression. Dietary interventions, particularly high-fiber and Mediterranean diets, that increase butyrate production are proposed as complementary approaches, supporting natural microbiota modulation to enhance therapeutic outcomes. However, butyrate's short half-life limits its clinical application, spurring interest in butyrate analogs and probiotics to maintain stable levels and extend its benefits. This review consolidates current findings on butyrate's multifaceted impact across gynecological health, highlighting the potential for microbiota-centered therapies in advancing treatment strategies and improving women's reproductive health.
Collapse
Affiliation(s)
- Nayeon Kim
- Department of Science Education, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Changwon Yang
- Department of Science Education, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
14
|
Chowdhary S, Preeti, Shekhar, Gupta N, Kumar R, Kumar V. Advances in chalcone-based anticancer therapy: mechanisms, preclinical advances, and future perspectives. Expert Opin Drug Discov 2024; 19:1417-1437. [PMID: 39621431 DOI: 10.1080/17460441.2024.2436908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 11/28/2024] [Indexed: 12/06/2024]
Abstract
INTRODUCTION Cancer remains a leading cause of death worldwide with traditional treatments like chemotherapy, and radiotherapy becoming less effective due to multidrug resistance (MDR). This highlights the necessity for novel chemotherapeutics like chalcone-based compounds, which demonstrate broad anti-cancer properties and target multiple pathways. These compounds hold promise for improving cancer treatment outcomes compared to existing therapies. AREAS COVERED This review provides a comprehensive synopsis of the recent literature (2018-2024) for anti-proliferative/anti-cancer activity of chalcones. It includes the identification of potential targets, their mechanisms of action, and possible modes of binding. Additionally, chalcone derivatives in preclinical trials are also discussed. EXPERT OPINION Chalcones mark a significant stride in anticancer therapies due to their multifaceted approach in targeting various cellular pathways. Their ability to simultaneously target multiple pathways enables them to overcome drug resistance as compared to traditional therapies. With well-defined mechanisms of action, these compounds can serve as lead molecules for designing new, more promising treatments. Continued progress in synthesis and structural optimization, along with promising results from preclinical trials, offers hope for the development of more potent molecules, heralding a new era in cancer therapeutics.
Collapse
Affiliation(s)
| | - Preeti
- Department of Chemistry, Guru Nanak Dev University, Amritsar, India
| | - Shekhar
- Department of Chemistry, Guru Nanak Dev University, Amritsar, India
| | - Nikita Gupta
- Department of Chemistry, Guru Nanak Dev University, Amritsar, India
| | - Rajesh Kumar
- Department of Physics, Lovely Professional University, Phagwara, India
| | - Vipan Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
15
|
Wu C, Sun X, Liu L, Cheng L. A Live-Cell Epigenome Manipulation by Photo-Stimuli-Responsive Histone Methyltransferase Inhibitor. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404608. [PMID: 39250325 PMCID: PMC11538670 DOI: 10.1002/advs.202404608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/23/2024] [Indexed: 09/11/2024]
Abstract
Post-translational modifications on the histone H3 tail regulate chromatin structure, impact epigenetics, and hence the gene expressions. Current chemical modulation tools, such as unnatural amino acid incorporation, protein splicing, and sortase-based editing, have allowed for the modification of histones with various PTMs in cellular contexts, but are not applicable for editing native chromatin. The use of small organic molecules to manipulate histone-modifying enzymes alters endogenous histone PTMs but lacks precise temporal and spatial control. To date, there has been no achievement in modulating histone methylation in living cells with spatiotemporal resolution. In this study, a new method is presented for temporally manipulating histone dimethylation H3K9me2 using a photo-responsive inhibitor that specifically targets the methyltransferase G9a on demand. The photo-caged molecule is stable under physiological conditions and cellular environments, but rapidly activated upon exposure to light, releasing the bioactive component that can immediately inhibit the catalytic ability of the G9a in vitro. Besides, this masked compound could also efficiently reactivate the inhibition of methyltransferase activity in living cells, subsequently suppress H3K9me2, a mark that regulates various chromatin functions. Therefore, the chemical system will be a valuable tool for manipulating the epigenome for therapeutic purposes and furthering the understanding of epigenetic mechanisms.
Collapse
Affiliation(s)
- Chuan‐Shuo Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS)CAS Key Laboratory of Molecular Recognition and FunctionCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Xin Sun
- Beijing National Laboratory for Molecular Sciences (BNLMS)CAS Key Laboratory of Molecular Recognition and FunctionCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Li Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS)CAS Key Laboratory of Molecular Recognition and FunctionCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Liang Cheng
- Beijing National Laboratory for Molecular Sciences (BNLMS)CAS Key Laboratory of Molecular Recognition and FunctionCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
- State Key Laboratory of Elemento‐Organic ChemistryNankai UniversityTianjin300071China
| |
Collapse
|
16
|
Liang T, Liu S, Dang B, Luan X, Guo Y, Steimbach RR, Hu J, Lu L, Yue P, Wang R, Zheng M, Gao J, Yin X, Chen X. Multimechanism biological profiling of tetrahydro-β-carboline analogues as selective HDAC6 inhibitors for the treatment of Alzheimer's disease. Eur J Med Chem 2024; 275:116624. [PMID: 38925015 DOI: 10.1016/j.ejmech.2024.116624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/08/2024] [Accepted: 06/22/2024] [Indexed: 06/28/2024]
Abstract
With the intensive research on the pathogenesis of Alzheimer's disease (AD), inhibition of HDAC6 appears to be a potential therapeutic approach for AD. In this paper, a series of tetrahydro-β-carboline derivatives with hydroxamic acid group were fast synthesized. Among all, the most potent 15 selectively inhibited HDAC6 with IC50 of 15.2 nM and markedly increased acetylated alpha-tubulin levels. In cellular assay, 15 showed excellent neurotrophic effect by increasing the expression of GAP43 and Beta-3 tubulin markers. Besides, 15 showed neuroprotective effects in PC12 or SH-SY5Y cells against H2O2 and 6-OHDA injury through activation of Nrf2, catalase and Prx II, and significantly reduced H2O2-induced reactive oxygen species (ROS) production. In vivo, 15 significantly attenuated zebrafish anxiety-like behaviour and memory deficits in a SCOP-induced zebrafish model of AD. To sum up, multifunctional 15 might be a good lead to develop novel tetrahydrocarboline-based agents for the treatment of AD.
Collapse
Affiliation(s)
- Ting Liang
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, PR China
| | - Shiru Liu
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, PR China
| | - Baiyun Dang
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, PR China
| | - Xiaofa Luan
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, PR China
| | - Yifan Guo
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, PR China
| | - Raphael R Steimbach
- Cancer Drug Development Group, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany; Biosciences Faculty, University of Heidelberg, 69120, Heidelberg, Germany
| | - Jiadong Hu
- School of Medicinal and Chemical Engineering, Yangling Vocational & Technical College, Yangling, 712100, PR China
| | - Long Lu
- School of Medicinal and Chemical Engineering, Yangling Vocational & Technical College, Yangling, 712100, PR China
| | - Peiyu Yue
- School of Medicinal and Chemical Engineering, Yangling Vocational & Technical College, Yangling, 712100, PR China
| | - Ruotian Wang
- School of Medicinal and Chemical Engineering, Yangling Vocational & Technical College, Yangling, 712100, PR China
| | - Meng Zheng
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, PR China
| | - Jinming Gao
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, PR China.
| | - Xia Yin
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, PR China.
| | - Xin Chen
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, PR China.
| |
Collapse
|
17
|
Rocha MA, Cardoso AL, Martins C, Mello MLS. Sodium valproate affects the expression of p16 INK4a and p21 WAFI/Cip1 cyclin‑dependent kinase inhibitors in HeLa cells. Oncol Lett 2024; 28:432. [PMID: 39049983 PMCID: PMC11268092 DOI: 10.3892/ol.2024.14563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/14/2024] [Indexed: 07/27/2024] Open
Abstract
p16INK4a and p21WAF1/Cip1 are cyclin-dependent kinase inhibitors involved in cell cycle control, which can function as oncogenes or tumor suppressors, depending on the context of various extracellular and intracellular signals, and cell type. In human papillomavirus-induced cervical cancer, p16 INK4a shows oncogenic activity and functions as a diagnostic marker of cervical neoplasia, whereas p21 WAF1/Cip1 acts as a tumor suppressor and its downregulation is associated with the progression of malignant transformation. Several histone deacetylase (HDAC) inhibitors promote the positive and negative regulation of a number of genes, including p16 INK4a and p21 WAF1/Cip1; however, the effects of sodium valproate (VPA) on these genes and on the proteins they encode remain uncertain in HeLa cervical cancer cells. In the present study, these effects were investigated in HeLa cells treated with 0.5 or 2 mM VPA for 24 h, using reverse transcription-quantitative PCR, confocal microscopy and western blotting. The results revealed a decrease in the mRNA expression levels of p16 INK4a and a tendency for p16INK4a protein abundance to decrease in the presence of 2 mM VPA. By contrast, an increase in the protein expression levels of p21WAF1/Cip1 was detected in the presence of 0.5 and 2 mM VPA. Furthermore, VPA was confirmed to inhibit HDAC activity and induce global hyperacetylation of histone H3. Notably, VPA was shown to suppress p16 INK4a, a biomarker gene of cervical carcinoma, and to increase the abundance of the tumor suppressor protein p21WAF1/Cip1, thus contributing to the basic knowledge regarding the antitumorigenic potential of VPA. Exploration of epigenetic changes associated with the promoters of p16 INK4a and p21 WAF1/Cip1, such as histone H3 methylation, may provide further information and improve the understanding of these findings.
Collapse
Affiliation(s)
- Marina Amorim Rocha
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, São Paulo 13083-862, Brazil
| | - Adauto Lima Cardoso
- Department of Structural and Functional Biology, Institute of Biosciences at Botucatu, São Paulo State University, Botucatu, São Paulo 18618-689, Brazil
| | - Cesar Martins
- Department of Structural and Functional Biology, Institute of Biosciences at Botucatu, São Paulo State University, Botucatu, São Paulo 18618-689, Brazil
| | - Maria Luiza S. Mello
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, São Paulo 13083-862, Brazil
| |
Collapse
|
18
|
Li X, Guo W, Chen J, Tan G. The Bioequivalence of Abexinostat (CRA-024781) Tosylate Tablets (20 mg) in Chinese Healthy Subjects Under Fasting Conditions. Clin Pharmacol Drug Dev 2024; 13:1061-1070. [PMID: 39023505 DOI: 10.1002/cpdd.1448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024]
Abstract
This study aimed to investigate the pharmacokinetic parameters of single oral administration of postchange and prechange abexinostat (CRA-024781) tosylate tablets in Chinese healthy subjects under fasting conditions, and assess the bioequivalence (BE) of the 2 formulations (Test [T1] and Reference [T2]). This study was a randomized, open-label, 2-formulation, fasting administration, single-dose, 2-sequence, 2-cycle, crossover BE study. Thirty-six subjects were enrolled in the study and 33 subjects completed 2 cycles. The plasma concentrations were determined by liquid chromatography-tandem mass spectrometry. The 90% confidence intervals (CIs) for the Cmax, AUC0-t, and AUC0-∞ of CRA-024781 and its 2 major metabolites (PCI-27789 and PCI-27887, both metabolites are pharmacologically inactive on HDAC1) fell within the acceptable range of 80%-125%. The results suggest that the CRA-024781 test preparation (Test [T1]) is bioequivalent to the reference preparation (Reference [T2]) in healthy Chinese subjects under fasting conditions.
Collapse
Affiliation(s)
- Xiang Li
- Department of Oncology, Tianjin Union Medical Center, Nankai University, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center, Nankai University, Tianjin, China
- Tianjin Cancer Institute of lntegrative Traditional Chinese and Western Medicine, Tianjin, China
| | - Wenqiang Guo
- Xynomic Pharmaceuticals (Nanjing) Co., Ltd., Nanjing, China
| | - Jian Chen
- Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, China
| | - Gewen Tan
- Xynomic Pharmaceuticals (Nanjing) Co., Ltd., Nanjing, China
| |
Collapse
|
19
|
Valdez BC, Tsimberidou AM, Yuan B, Baysal MA, Chakraborty A, Andersen CR, Andersson BS. Synergistic Cytotoxicity of Histone Deacetylase and Poly-ADP Ribose Polymerase Inhibitors and Decitabine in Breast and Ovarian Cancer Cells: Implications for Novel Therapeutic Combinations. Int J Mol Sci 2024; 25:9241. [PMID: 39273190 PMCID: PMC11394699 DOI: 10.3390/ijms25179241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/15/2024] Open
Abstract
Breast and ovarian cancers pose significant therapeutic challenges. We explored the synergistic cytotoxicity of histone deacetylase inhibitors (HDACis), poly(ADP-ribose) polymerase inhibitors (PARPis), and decitabine in breast (MDA-MB-231 and MCF-7) and ovarian (HEY-T30 and SKOV-3) cancer cell lines that were exposed to HDACi (panobinostat or vorinostat), PARPi (talazoparib or olaparib), decitabine, or their combinations. HDACi, PARPi, and decitabine combinations had synergistic cytotoxicity (assessed by MTT and clonogenic assays) in all cell lines (combination index < 1). Clonogenic assays confirmed the sensitivity of breast and ovarian cancer cell lines to the three-drug combinations (panobinostat, talazoparib, and decitabine; panobinostat, olaparib, and decitabine; vorinostat, talazoparib, and decitabine; vorinostat, olaparib, and decitabine). Cell proliferation was inhibited by 48-70%, and Annexin V positivity was 42-59% in all cell lines exposed to the three-drug combinations. Western blot analysis showed protein PARylation inhibition, caspase 3 and PARP1 cleavage, and c-MYC down-regulation. The three-drug combinations induced more DNA damage (increased phosphorylation of histone 2AX) than the individual drugs, impaired the DNA repair pathways, and altered the epigenetic regulation of gene expression. These results indicate that HDACi, PARPi, and decitabine combinations should be further explored in these tumor types. Further clinical validation is warranted to assess their safety and efficacy.
Collapse
Affiliation(s)
- Benigno C. Valdez
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Apostolia M. Tsimberidou
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA (A.C.)
| | - Bin Yuan
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Mehmet A. Baysal
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA (A.C.)
| | - Abhijit Chakraborty
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA (A.C.)
| | - Clark R. Andersen
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Borje S. Andersson
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| |
Collapse
|
20
|
Joshi DC, Sharma A, Prasad S, Singh K, Kumar M, Sherawat K, Tuli HS, Gupta M. Novel therapeutic agents in clinical trials: emerging approaches in cancer therapy. Discov Oncol 2024; 15:342. [PMID: 39127974 PMCID: PMC11317456 DOI: 10.1007/s12672-024-01195-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Novel therapeutic agents in clinical trials offer a paradigm shift in the approach to battling this prevalent and destructive disease, and the area of cancer therapy is on the precipice of a trans formative revolution. Despite the importance of tried-and-true cancer treatments like surgery, radiation, and chemotherapy, the disease continues to evolve and adapt, making new, more potent methods necessary. The field of cancer therapy is currently witnessing the emergence of a wide range of innovative approaches. Immunotherapy, including checkpoint inhibitors, CAR-T cell treatment, and cancer vaccines, utilizes the host's immune system to selectively target and eradicate malignant cells while minimizing harm to normal tissue. The development of targeted medicines like kinase inhibitors and monoclonal antibodies has allowed for more targeted and less harmful approaches to treating cancer. With the help of genomics and molecular profiling, "precision medicine" customizes therapies to each patient's unique genetic makeup to maximize therapeutic efficacy while minimizing unwanted side effects. Epigenetic therapies, metabolic interventions, radio-pharmaceuticals, and an increasing emphasis on combination therapy with synergistic effects further broaden the therapeutic landscape. Multiple-stage clinical trials are essential for determining the safety and efficacy of these novel drugs, allowing patients to gain access to novel treatments while also furthering scientific understanding. The future of cancer therapy is rife with promise, as the integration of artificial intelligence and big data has the potential to revolutionize early detection and prevention. Collaboration among researchers, and healthcare providers, and the active involvement of patients remain the bedrock of the ongoing battle against cancer. In conclusion, the dynamic and evolving landscape of cancer therapy provides hope for improved treatment outcomes, emphasizing a patient-centered, data-driven, and ethically grounded approach as we collectively strive towards a cancer-free world.
Collapse
Affiliation(s)
- Deepak Chandra Joshi
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandar Sindri, Dist., Ajmer, Rajasthan, India.
| | - Anurag Sharma
- Invertis Institute of Pharmacy, Invertis University Bareilly Uttar Pradesh, Bareilly, India
| | - Sonima Prasad
- Chandigarh University, Ludhiana-Chandigarh State Highway, Gharuan, Mohali, Punjab, 140413, India
| | - Karishma Singh
- Institute of Pharmaceutical Sciences, Faculty of Engineering and Technology, University of Lucknow, Lucknow, India
| | - Mayank Kumar
- Himalayan Institute of Pharmacy, Road, Near Suketi Fossil Park, Kala Amb, Hamidpur, Himachal Pradesh, India
| | - Kajal Sherawat
- Meerut Institute of Technology, Meerut, Uttar Pradesh, India
| | - Hardeep Singh Tuli
- Department of Bio-Sciences & Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, India
| | - Madhu Gupta
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India.
| |
Collapse
|
21
|
Algranati D, Oren R, Dassa B, Fellus-Alyagor L, Plotnikov A, Barr H, Harmelin A, London N, Ron G, Furth N, Shema E. Dual targeting of histone deacetylases and MYC as potential treatment strategy for H3-K27M pediatric gliomas. eLife 2024; 13:RP96257. [PMID: 39093942 PMCID: PMC11296706 DOI: 10.7554/elife.96257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024] Open
Abstract
Diffuse midline gliomas (DMGs) are aggressive and fatal pediatric tumors of the central nervous system that are highly resistant to treatments. Lysine to methionine substitution of residue 27 on histone H3 (H3-K27M) is a driver mutation in DMGs, reshaping the epigenetic landscape of these cells to promote tumorigenesis. H3-K27M gliomas are characterized by deregulation of histone acetylation and methylation pathways, as well as the oncogenic MYC pathway. In search of effective treatment, we examined the therapeutic potential of dual targeting of histone deacetylases (HDACs) and MYC in these tumors. Treatment of H3-K27M patient-derived cells with Sulfopin, an inhibitor shown to block MYC-driven tumors in vivo, in combination with the HDAC inhibitor Vorinostat, resulted in substantial decrease in cell viability. Moreover, transcriptome and epigenome profiling revealed synergistic effect of this drug combination in downregulation of prominent oncogenic pathways such as mTOR. Finally, in vivo studies of patient-derived orthotopic xenograft models showed significant tumor growth reduction in mice treated with the drug combination. These results highlight the combined treatment with PIN1 and HDAC inhibitors as a promising therapeutic approach for these aggressive tumors.
Collapse
Affiliation(s)
- Danielle Algranati
- Department of Immunology and Regenerative Biology, Weizmann Institute of ScienceRehovotIsrael
| | - Roni Oren
- Department of Veterinary Resources, Weizmann Institute of ScienceRehovotIsrael
| | - Bareket Dassa
- Bioinformatics Unit, Department of Life Sciences Core Facilities, Faculty of Biochemistry, Weizmann Institute of ScienceRehovotIsrael
| | - Liat Fellus-Alyagor
- Department of Veterinary Resources, Weizmann Institute of ScienceRehovotIsrael
| | - Alexander Plotnikov
- Wohl Institute for Drug Discovery of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of ScienceRehovotIsrael
| | - Haim Barr
- Wohl Institute for Drug Discovery of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of ScienceRehovotIsrael
| | - Alon Harmelin
- Department of Veterinary Resources, Weizmann Institute of ScienceRehovotIsrael
| | - Nir London
- Department of Chemical and Structural Biology, Weizmann Institute of ScienceRehovotIsrael
| | - Guy Ron
- Racah Institute of Physics, Hebrew UniversityJerusalemIsrael
| | - Noa Furth
- Department of Immunology and Regenerative Biology, Weizmann Institute of ScienceRehovotIsrael
| | - Efrat Shema
- Department of Immunology and Regenerative Biology, Weizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
22
|
Gao J, Liu W, Pei J, Li J, Hao N, Yang S, Yang X, Zou D, Xu K, Zhang L. The Role of Histone H2B Acetylation Modification in Aluminum-Induced Cognitive Dysfunction. Biol Trace Elem Res 2024; 202:3731-3739. [PMID: 37979070 DOI: 10.1007/s12011-023-03959-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
Aluminum (Al) is a low toxic trace element that can accumulate in the nervous system and induce cognitive disorders characterized by reduced learning and memory ability. Neuroepigenetic effects are structural changes in cellular function by the brain in response to environmental stimuli by altering the expression of specific genes and repressing normal cellular transcription, leading to abnormalities in a variety of biological processes within the nervous system and affecting neurobehavioral responses. One of the most important mechanisms of epigenetic control on chromatin shape is histone modification. In the present study, we established an offspring rat model of Al intoxication to investigate the changes in spatial learning and memory retention abilities and the relationship with histone H2B acetylation modification in rats exposed to different doses of Al over a long period of time. The results demonstrated that long-term AlCl3 staining resulted in decreased CBP gene and protein expression, increased HDAC3 gene and protein levels, as well as decreased histone H2B and acH2BK20 protein expression levels in the hippocampus of rats. In conclusion, long-term exposure to Al may vary the expression of histone H2B and acH2BK20 through the regulation of enzymes that specifically regulate histone acetylation, hence hastening the deterioration of the nervous system that impairs cognitive function.
Collapse
Grants
- 2015225025 The Science and Technology Project of Liaoning Providence, China
- F15-139-9-09 The Science and Technology Project of Shenyang, China
- 81673226 National Natural Science Foundation of China
- 201601226 Initiated Research Foundation for the Doctoral Program of Science and Technology Department of Liaoning Province, China
- L2015544, LJKZ1146 Natural Science Foundation of Education Department of Liaoning Province, China
- 201710164000038 Natural Science Foundation for Innovation and Entrepreneurship Training Program of Education Department of Liaoning Province, China
- 17-231-1-44 Natural Science Foundation of Science and Technology Department of Shenyang City, China
- 20153043 Natural Science Foundation of Shenyang Medical College, China
- Y20180512 Natural Science Foundation for graduate students of Shenyang Medical College, China
- 20179028, X202310164036 Natural Science Foundation for undergraduate students of Shenyang Medical College, China
Collapse
Affiliation(s)
- Jie Gao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Shenyang Medical College, No.146 Yellow River North Street, Shenyang, Liaoning Province, 110034, People's Republic of China
| | - Wei Liu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Shenyang Medical College, No.146 Yellow River North Street, Shenyang, Liaoning Province, 110034, People's Republic of China
| | - Jing Pei
- Department of Maternal, Child and Adolescent Health, School of Public Health, Shenyang Medical College, No.146 Yellow River North Street, Shenyang, Liaoning Province, 110034, People's Republic of China
| | - Jing Li
- Department of Shenyang Maternity and Child Health Hospital, No. 41 Shenzhou Road, Shenhe District, Shenyang, Liaoning Province, 110034, People's Republic of China
| | - Niping Hao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Shenyang Medical College, No.146 Yellow River North Street, Shenyang, Liaoning Province, 110034, People's Republic of China
| | - Shuo Yang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Shenyang Medical College, No.146 Yellow River North Street, Shenyang, Liaoning Province, 110034, People's Republic of China
| | - Xiaoming Yang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Shenyang Medical College, No.146 Yellow River North Street, Shenyang, Liaoning Province, 110034, People's Republic of China
| | - Danfeng Zou
- Department of Maternal, Child and Adolescent Health, School of Public Health, Shenyang Medical College, No.146 Yellow River North Street, Shenyang, Liaoning Province, 110034, People's Republic of China
| | - Kebin Xu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Shenyang Medical College, No.146 Yellow River North Street, Shenyang, Liaoning Province, 110034, People's Republic of China.
| | - Lifeng Zhang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Shenyang Medical College, No.146 Yellow River North Street, Shenyang, Liaoning Province, 110034, People's Republic of China.
| |
Collapse
|
23
|
Chen Y, Zhang L, Fang L, Chen C, Zhang D, Peng T. Modular Development of Enzyme-Activatable Proteolysis Targeting Chimeras for Selective Protein Degradation and Cancer Targeting. JACS AU 2024; 4:2564-2577. [PMID: 39055140 PMCID: PMC11267540 DOI: 10.1021/jacsau.4c00298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/10/2024] [Accepted: 05/10/2024] [Indexed: 07/27/2024]
Abstract
As an emerging therapeutic modality, proteolysis targeting chimeras (PROTACs) indiscriminately degrade proteins in both healthy and diseased cells, posing a risk of on-target off-site toxicity in normal tissues. Herein, we present the modular development of enzyme-activatable PROTACs, which utilize enzyme-recognition moieties to block protein degradation activities and can be specifically activated by elevated enzymes in cancer cells to enable cell-selective protein degradation and cancer targeting. We identified the methylene alkoxy carbamate (MAC) unit as an optimal self-immolative linker, possessing high stability and release efficiency for conjugating enzyme-recognition moieties with PROTACs. Leveraging the MAC linker, we developed a series of enzyme-activatable PROTACs, harnessing distinct enzymes for cancer-cell-selective protein degradation. Significantly, we introduced the first dual-enzyme-activatable PROTAC that requires the presence of two cancer-associated enzymes for activation, demonstrating highly selective protein degradation in cancer cells over nonmalignant cells, potent in vivo antitumor efficacy, and no off-tumor toxicity to normal tissues. The broad applicability of enzyme-activatable PROTACs was further demonstrated by caging other PROTACs via the MAC linker to target different proteins and E3 ligases. Our work underscores the substantial potential of enzyme-activatable PROTACs in overcoming the off-site toxicity associated with conventional PROTACs and offers new opportunities for targeted cancer treatment.
Collapse
Affiliation(s)
- Yanchi Chen
- State
Key Laboratory of Chemical Oncogenomics, School of Chemical Biology
and Biotechnology, Peking University Shenzhen
Graduate School, Shenzhen 518055, China
- National
Key Laboratory of Non-Food Biomass Energy Technology, National Engineering
Research Center for Non-Food Biorefinery, Institute of Grand Health, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China
| | - Lina Zhang
- State
Key Laboratory of Chemical Oncogenomics, School of Chemical Biology
and Biotechnology, Peking University Shenzhen
Graduate School, Shenzhen 518055, China
| | - Lincheng Fang
- State
Key Laboratory of Chemical Oncogenomics, School of Chemical Biology
and Biotechnology, Peking University Shenzhen
Graduate School, Shenzhen 518055, China
| | - Chengjie Chen
- State
Key Laboratory of Chemical Oncogenomics, School of Chemical Biology
and Biotechnology, Peking University Shenzhen
Graduate School, Shenzhen 518055, China
| | - Dong Zhang
- State
Key Laboratory of Chemical Oncogenomics, School of Chemical Biology
and Biotechnology, Peking University Shenzhen
Graduate School, Shenzhen 518055, China
| | - Tao Peng
- State
Key Laboratory of Chemical Oncogenomics, School of Chemical Biology
and Biotechnology, Peking University Shenzhen
Graduate School, Shenzhen 518055, China
- Institute
of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
24
|
Zhou C, Zhao D, Wu C, Wu Z, Zhang W, Chen S, Zhao X, Wu S. Role of histone deacetylase inhibitors in non-neoplastic diseases. Heliyon 2024; 10:e33997. [PMID: 39071622 PMCID: PMC11283006 DOI: 10.1016/j.heliyon.2024.e33997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024] Open
Abstract
Background Epigenetic dysregulation has been implicated in the development and progression of a variety of human diseases, but epigenetic changes are reversible, and epigenetic enzymes and regulatory proteins can be targeted using small molecules. Histone deacetylase inhibitors (HDACis), as a class of epigenetic drugs, are widely used to treat various cancers and other diseases involving abnormal gene expression. Results Specially, HDACis have emerged as a promising strategy to enhance the therapeutic effect of non-neoplastic conditions, including neurological disorders, cardiovascular diseases, renal diseases, autoimmune diseases, inflammatory diseases, infectious diseases and rare diseases, along with their related mechanisms. However, their clinical efficacy has been limited by drug resistance and toxicity. Conclusions To date, most clinical trials of HDAC inhibitors have been related to the treatment of cancer rather than the treatment of non-cancer diseases, for which experimental studies are gradually underway. Discussions regarding non-neoplastic diseases often concentrate on specific disease types. Therefore, this review highlights the development of HDACis and their potential therapeutic applications in non-neoplastic diseases, either as monotherapy or in combination with other drugs or therapies.
Collapse
Affiliation(s)
- Chunxiao Zhou
- College of Medicine, Qingdao University, Qingdao, 266000, China
| | - Dengke Zhao
- Harbin Medical University, Harbin, 150000, China
| | - Chunyan Wu
- College of Medicine, Qingdao University, Qingdao, 266000, China
| | - Zhimin Wu
- College of Medicine, Qingdao University, Qingdao, 266000, China
| | - Wen Zhang
- College of Medicine, Qingdao University, Qingdao, 266000, China
| | - Shilv Chen
- College of Medicine, Qingdao University, Qingdao, 266000, China
| | - Xindong Zhao
- College of Medicine, Qingdao University, Qingdao, 266000, China
| | - Shaoling Wu
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| |
Collapse
|
25
|
Hayatigolkhatmi K, Valzelli R, El Menna O, Minucci S. Epigenetic alterations in AML: Deregulated functions leading to new therapeutic options. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 387:27-75. [PMID: 39179348 DOI: 10.1016/bs.ircmb.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
Acute myeloid leukemia (AML) results in disruption of the hematopoietic differentiation process. Crucial progress has been made, and new therapeutic strategies for AML have been developed. Induction chemotherapy, however, remains the main option for the majority of AML patients. Epigenetic dysregulation plays a central role in AML pathogenesis, supporting leukemogenesis and maintenance of leukemic stem cells. Here, we provide an overview of the intricate interplay of altered epigenetic mechanisms, including DNA methylation, histone modifications, and chromatin remodeling, in AML development. We explore the role of epigenetic regulators, such as DNMTs, HMTs, KDMs, and HDACs, in mediating gene expression patterns pushing towards leukemic cell transformation. Additionally, we discuss the impact of cytogenetic lesions on epigenomic remodeling and the potential of targeting epigenetic vulnerabilities as a therapeutic strategy. Understanding the epigenetic landscape of AML offers insights into novel therapeutic avenues, including epigenetic modifiers and particularly their use in combination therapies, to improve treatment outcomes and overcome drug resistance.
Collapse
Affiliation(s)
- Kourosh Hayatigolkhatmi
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy.
| | - Riccardo Valzelli
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Oualid El Menna
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Saverio Minucci
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy; Department of Hemato-Oncology, Università Statale di Milano, Milan, Italy.
| |
Collapse
|
26
|
Agarwal R, Pattarawat P, Duff MR, Wang HCR, Baudry J, Smith JC. Structure-Based Identification of Novel Histone Deacetylase 4 (HDAC4) Inhibitors. Pharmaceuticals (Basel) 2024; 17:867. [PMID: 39065718 PMCID: PMC11279411 DOI: 10.3390/ph17070867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Histone deacetylases (HDACs) are important cancer drug targets. Existing FDA-approved drugs target the catalytic pocket of HDACs, which is conserved across subfamilies (classes) of HDAC. However, engineering specificity is an important goal. Herein, we use molecular modeling approaches to identify and target potential novel pockets specific to Class IIA HDAC-HDAC4 at the interface between HDAC4 and the transcriptional corepressor component protein NCoR. These pockets were screened using an ensemble docking approach combined with consensus scoring to identify compounds with a different binding mechanism than the currently known HDAC modulators. Binding was compared in experimental assays between HDAC4 and HDAC3, which belong to a different family of HDACs. HDAC4 was significantly inhibited by compound 88402 but not HDAC3. Two other compounds (67436 and 134199) had IC50 values in the low micromolar range for both HDACs, which is comparable to the known inhibitor of HDAC4, SAHA (Vorinostat). However, both of these compounds were significantly weaker inhibitors of HDAC3 than SAHA and thus more selective, albeit to a limited extent. Five compounds exhibited activity on human breast carcinoma and/or urothelial carcinoma cell lines. The present result suggests potential mechanistic and chemical approaches for developing selective HDAC4 modulators.
Collapse
Affiliation(s)
- Rupesh Agarwal
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA;
| | - Pawat Pattarawat
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA; (P.P.); (H.-C.R.W.)
| | - Michael R. Duff
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA;
| | - Hwa-Chain Robert Wang
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA; (P.P.); (H.-C.R.W.)
| | - Jerome Baudry
- Department of Biological Sciences, The University of Alabama in Huntsville, Huntsville, AL 35899, USA;
| | - Jeremy C. Smith
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA;
| |
Collapse
|
27
|
Khatun S, Bhagat RP, Amin SA, Jha T, Gayen S. Density functional theory (DFT) studies in HDAC-based chemotherapeutics: Current findings, case studies and future perspectives. Comput Biol Med 2024; 175:108468. [PMID: 38657469 DOI: 10.1016/j.compbiomed.2024.108468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024]
Abstract
Density Functional Theory (DFT) is a quantum chemical computational method used to predict and analyze the electronic properties of atoms, molecules, and solids based on the density of electrons rather than wavefunctions. It provides insights into the structure, bonding, and behavior of different molecules, including those involved in the development of chemotherapeutic agents, such as histone deacetylase inhibitors (HDACis). HDACs are a wide group of metalloenzymes that facilitate the removal of acetyl groups from acetyl-lysine residues situated in the N-terminal tail of histones. Abnormal HDAC recruitment has been linked to several human diseases, especially cancer. Therefore, it has been recognized as a prospective target for accelerating the development of anticancer therapies. Researchers have studied HDACs and its inhibitors extensively using a combination of experimental methods and diverse in-silico approaches such as machine learning and quantitative structure-activity relationship (QSAR) methods, molecular docking, molecular dynamics, pharmacophore mapping, and more. In this context, DFT studies can make significant contribution by shedding light on the molecular properties, interactions, reaction pathways, transition states, reactivity and mechanisms involved in the development of HDACis. This review attempted to elucidate the scope in which DFT methodologies may be used to enhance our comprehension of the molecular aspects of HDAC inhibitors, aiding in the rational design and optimization of these compounds for therapeutic applications in cancer and other ailments. The insights gained can guide experimental efforts toward developing more potent and selective HDAC inhibitors.
Collapse
Affiliation(s)
- Samima Khatun
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Rinki Prasad Bhagat
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Sk Abdul Amin
- Department of Pharmaceutical Technology, JIS University, 81, Nilgunj Road, Agarpara, Kolkata, West Bengal, India
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Shovanlal Gayen
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
28
|
Curcio A, Rocca R, Alcaro S, Artese A. The Histone Deacetylase Family: Structural Features and Application of Combined Computational Methods. Pharmaceuticals (Basel) 2024; 17:620. [PMID: 38794190 PMCID: PMC11124352 DOI: 10.3390/ph17050620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Histone deacetylases (HDACs) are crucial in gene transcription, removing acetyl groups from histones. They also influence the deacetylation of non-histone proteins, contributing to the regulation of various biological processes. Thus, HDACs play pivotal roles in various diseases, including cancer, neurodegenerative disorders, and inflammatory conditions, highlighting their potential as therapeutic targets. This paper reviews the structure and function of the four classes of human HDACs. While four HDAC inhibitors are currently available for treating hematological malignancies, numerous others are undergoing clinical trials. However, their non-selective toxicity necessitates ongoing research into safer and more efficient class-selective or isoform-selective inhibitors. Computational techniques have greatly facilitated the discovery of HDAC inhibitors that achieve the desired potency and selectivity. These techniques encompass ligand-based strategies such as scaffold hopping, pharmacophore modeling, three-dimensional quantitative structure–activity relationships (3D-QSAR), and structure-based virtual screening (molecular docking). Additionally, advancements in molecular dynamics simulations, along with Poisson–Boltzmann/molecular mechanics generalized Born surface area (PB/MM-GBSA) methods, have enhanced the accuracy of predicting ligand binding affinity. In this review, we delve into the ways in which these methods have contributed to designing and identifying HDAC inhibitors.
Collapse
Affiliation(s)
- Antonio Curcio
- Dipartimento di Scienze della Salute, Campus “S. Venuta”, Università degli Studi “Magna Græcia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (A.C.); (S.A.); (A.A.)
| | - Roberta Rocca
- Dipartimento di Scienze della Salute, Campus “S. Venuta”, Università degli Studi “Magna Græcia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (A.C.); (S.A.); (A.A.)
- Net4Science S.r.l., Università degli Studi “Magna Græcia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Campus “S. Venuta”, Università degli Studi “Magna Græcia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (A.C.); (S.A.); (A.A.)
- Net4Science S.r.l., Università degli Studi “Magna Græcia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Anna Artese
- Dipartimento di Scienze della Salute, Campus “S. Venuta”, Università degli Studi “Magna Græcia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (A.C.); (S.A.); (A.A.)
- Net4Science S.r.l., Università degli Studi “Magna Græcia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| |
Collapse
|
29
|
Guan D, Men Y, Bartlett A, Hernández MAS, Xu J, Yi X, Li HS, Kong D, Mazitschek R, Ozcan U. Central inhibition of HDAC6 re-sensitizes leptin signaling during obesity to induce profound weight loss. Cell Metab 2024; 36:857-876.e10. [PMID: 38569472 DOI: 10.1016/j.cmet.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/02/2023] [Accepted: 02/13/2024] [Indexed: 04/05/2024]
Abstract
Leptin resistance during excess weight gain significantly contributes to the recidivism of obesity to leptin-based pharmacological therapies. The mechanisms underlying the inhibition of leptin receptor (LepR) signaling during obesity are still elusive. Here, we report that histone deacetylase 6 (HDAC6) interacts with LepR, reducing the latter's activity, and that pharmacological inhibition of HDAC6 activity disrupts this interaction and augments leptin signaling. Treatment of diet-induced obese mice with blood-brain barrier (BBB)-permeable HDAC6 inhibitors profoundly reduces food intake and leads to potent weight loss without affecting the muscle mass. Genetic depletion of Hdac6 in Agouti-related protein (AgRP)-expressing neurons or administration with BBB-impermeable HDAC6 inhibitors results in a lack of such anti-obesity effect. Together, these findings represent the first report describing a mechanistically validated and pharmaceutically tractable therapeutic approach to directly increase LepR activity as well as identifying centrally but not peripherally acting HDAC6 inhibitors as potent leptin sensitizers and anti-obesity agents.
Collapse
Affiliation(s)
- Dongxian Guan
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yuqin Men
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexander Bartlett
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Jie Xu
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xinchi Yi
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hu-Song Li
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Dong Kong
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ralph Mazitschek
- Massachusetts General Hospital, Center for Systems Biology, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Umut Ozcan
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
30
|
Dang Z, Li H, Xue S, Shao B, Ning Y, Su G, Zhang F, Yu W, Leng S. Histone deacetylase 9-mediated phenotypic transformation of vascular smooth muscle cells is a potential target for treating aortic aneurysm/dissection. Biomed Pharmacother 2024; 173:116396. [PMID: 38460370 DOI: 10.1016/j.biopha.2024.116396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/29/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024] Open
Abstract
Aortic aneurysm/dissection (AAD) is a serious cardiovascular condition characterized by rapid onset and high mortality rates. Currently, no effective drug treatment options are known for AAD. AAD pathogenesis is associated with the phenotypic transformation and abnormal proliferation of vascular smooth muscle cells (VSMCs). However, endogenous factors that contribute to AAD progression remain unclear. We aimed to investigate the role of histone deacetylase 9 (HDAC9) in AAD pathogenesis. HDAC9 expression was considerably increased in human thoracic aortic dissection specimens. Using RNA-sequencing (RNA-seq) and chromatin immunoprecipitation, we demonstrated that HDAC9 transcriptionally inhibited the expression of superoxide dismutase 2 and insulin-like growth factor-binding protein-3, which are critically involved in various signaling pathways. Furthermore, HDAC9 triggered the transformation of VSMCs from a systolic to synthetic phenotype, increasing their proliferation and migration abilities and suppressing their apoptosis. Consistent with these results, in vivo experiments revealed that TMP195, a pharmacological inhibitor of HDAC9, suppressed the formation of the β-aminopropionitrile-induced AAD phenotype in mice. Our findings indicate that HDAC9 may be a novel endogenous risk factor that promotes the onset of AAD by mediating the phenotypic transformation of VSMCs. Therefore, HDAC9 may serve as a potential therapeutic target for drug-based AAD treatment. Furthermore, TMP195 holds potential as a therapeutic agent for AAD treatment.
Collapse
Affiliation(s)
- Zhiqiao Dang
- Department of Cardiac Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China
| | - Haijie Li
- Department of Cardiac Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China
| | - Shishan Xue
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China
| | - Baowei Shao
- Department of Cardiac Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China
| | - Yansong Ning
- Department of Cardiac Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China
| | - Guohai Su
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China
| | - Fengquan Zhang
- Department of Cardiac Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China.
| | - Wenqian Yu
- Department of Cardiac Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China; Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China.
| | - Shuai Leng
- Department of Cardiac Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China; Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China.
| |
Collapse
|
31
|
Khathayer F, Mikael M. Mocetinostat as a novel selective histone deacetylase (HDAC) inhibitor in the promotion of apoptosis in glioblastoma cell line C6 and T98G. RESEARCH SQUARE 2024:rs.3.rs-4170668. [PMID: 38645087 PMCID: PMC11030514 DOI: 10.21203/rs.3.rs-4170668/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Histon deacetylase (HDAC) enzyme is one of the enzymes involved in regulating gene expression and epigenetic alternation of cells by removing acetyl groups from lysine residue on a histone, allowing the histones to wrap the DNA more tightly and suppressing a tumor-suppressing gene. HDAC inhibitors play an important role in inhibiting the proliferation of tumor cells by restricting the mechanism of action of HDAC enzyme, leading to the addition of acetyl groups to lysine. Mocetinostat, also known by its chemical name (MGCD0103), is a novel isotype selective HDAC enzyme that explicitly targets HDAC isoforms inhibiting Class1(HDAC 1,2,3,8) and Class IV (HDAC11) enzymes. It was approved for treating the phase II trial of Hodgkin's lymphoma in 2010. Our study revealed that different doses of Mocetinostat inhibit the growth of glioblastoma cells, metastasis, and angiogenesis and induce the apoptosis and differentiation of glioblastoma cells C6 and T98G. Western blot has shown that MGCD0103 has many biological activities to control glioblastoma cancer cells. MGCD0103 can modulate the molecular mechanism for several pathways in cells, such as inhibition of the PI3K/AKT pathway and suppression of HDAC1 enzyme activity in charge of many biological processes in the initiation and progression of cancer. The high doses of Mocetinostat drug significantly induce apoptosis and suppress cancer cell proliferation through increased pro-apoptotic proteins (BAX) and a down level of anti-apoptotic proteins(Bid, Bcl2). Also, the mocetinostat upregulated the expression of the tumor suppressor gene and downregulated the gene expression of the E2f1 transcription factor. Additionally, MGCDO103-induced differentiation was facilitated by activating the differentiation marker GFAP and preventing the undifferentiation marker from expression (Id2, N-Myc). The MGCD0103 is a potent anticancer drug crucial in treating glioblastoma cells.
Collapse
|
32
|
Damiescu R, Efferth T, Dawood M. Dysregulation of different modes of programmed cell death by epigenetic modifications and their role in cancer. Cancer Lett 2024; 584:216623. [PMID: 38246223 DOI: 10.1016/j.canlet.2024.216623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/19/2023] [Accepted: 01/07/2024] [Indexed: 01/23/2024]
Abstract
Modifications of epigenetic factors affect our lives and can give important information regarding one's state of health. In cancer, epigenetic modifications play a crucial role, as they influence various programmed cell death types. The purpose of this review is to investigate how epigenetic modifications, such as DNA methylation, histone modifications, and non-coding RNAs, influence various cell death processes in suppressing or promoting cancer development. Autophagy and apoptosis are the most investigated programmed cell death modes, as based on the tumor stage these cell death types can either promote or prevent cancer evolution. Therefore, our discussion focuses on how epigenetic modifications affect autophagy and apoptosis, as well as their diagnostic and therapeutical potential in combination with available chemotherapeutics. Additionally, we summarize the available data regarding the role of epigenetic modifications on other programmed cell death modes, such as ferroptosis, necroptosis, and parthanatos in cancer and discuss current advancements.
Collapse
Affiliation(s)
- R Damiescu
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, Mainz, Germany
| | - T Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, Mainz, Germany
| | - M Dawood
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, Mainz, Germany.
| |
Collapse
|
33
|
Haga-Yamanaka S, Nunez-Flores R, Scott CA, Perry S, Chen ST, Pontrello C, Nair MG, Ray A. Plasticity of gene expression in the nervous system by exposure to environmental odorants that inhibit HDACs. eLife 2024; 12:RP86823. [PMID: 38411140 PMCID: PMC10942631 DOI: 10.7554/elife.86823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
Eukaryotes respond to secreted metabolites from the microbiome. However, little is known about the effects of exposure to volatiles emitted by microbes or in the environment that we are exposed to over longer durations. Using Drosophila melanogaster, we evaluated a yeast-emitted volatile, diacetyl, found at high levels around fermenting fruits where they spend long periods of time. Exposure to the diacetyl molecules in headspace alters gene expression in the antenna. In vitro experiments demonstrated that diacetyl and structurally related volatiles inhibited conserved histone deacetylases (HDACs), increased histone-H3K9 acetylation in human cells, and caused changes in gene expression in both Drosophila and mice. Diacetyl crosses the blood-brain barrier and exposure caused modulation of gene expression in the mouse brain, therefore showing potential as a neuro-therapeutic. Using two separate disease models previously known to be responsive to HDAC inhibitors, we evaluated the physiological effects of volatile exposure. Diacetyl exposure halted proliferation of a neuroblastoma cell line in culture. Exposure to diacetyl vapors slowed progression of neurodegeneration in a Drosophila model for Huntington's disease. These changes strongly suggest that certain volatiles in the surroundings can have profound effects on histone acetylation, gene expression, and physiology in animals.
Collapse
Affiliation(s)
- Sachiko Haga-Yamanaka
- Department of Molecular, Cell and Systems Biology, University of CaliforniaRiversideUnited States
| | - Rogelio Nunez-Flores
- Department of Molecular, Cell and Systems Biology, University of CaliforniaRiversideUnited States
- Division of Biomedical Sciences, University of CaliforniaRiversideUnited States
| | - Christi A Scott
- Cell, Molecular and Developmental Biology Program, University of CaliforniaRiversideUnited States
| | - Sarah Perry
- Genetics, Genomics and Bioinformatics Program, University of CaliforniaRiversideUnited States
| | - Stephanie Turner Chen
- Cell, Molecular and Developmental Biology Program, University of CaliforniaRiversideUnited States
| | - Crystal Pontrello
- Department of Molecular, Cell and Systems Biology, University of CaliforniaRiversideUnited States
| | - Meera G Nair
- Division of Biomedical Sciences, University of CaliforniaRiversideUnited States
| | - Anandasankar Ray
- Department of Molecular, Cell and Systems Biology, University of CaliforniaRiversideUnited States
- Cell, Molecular and Developmental Biology Program, University of CaliforniaRiversideUnited States
- Genetics, Genomics and Bioinformatics Program, University of CaliforniaRiversideUnited States
| |
Collapse
|
34
|
Cheng B, Pan W, Xiao Y, Ding Z, Zhou Y, Fei X, Liu J, Su Z, Peng X, Chen J. HDAC-targeting epigenetic modulators for cancer immunotherapy. Eur J Med Chem 2024; 265:116129. [PMID: 38211468 DOI: 10.1016/j.ejmech.2024.116129] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/26/2023] [Accepted: 01/05/2024] [Indexed: 01/13/2024]
Abstract
HDAC inhibitors, which can inhibit the activity of HDAC enzymes, have been extensively studied in tumor immunotherapy and have shown potential therapeutic effects in cancer immunotherapy. To date, numerous small molecule HDAC inhibitors have been identified, but many of them suffer from limited clinical efficacy and serious toxicity. Hence, HDAC inhibitor-based combination therapies, and other HDAC modulators (e.g. PROTAC degraders, dual-acting agents) have attracted great attention with significant advancements achieved in the past few years due to their superior efficacy compared to single-target HDAC inhibitors. In this review, we overviewed the recent progress on HDAC-based drug discovery with a focus on HDAC inhibitor-based drug combination therapy and other HDAC-targeting strategies (e.g. selective HDAC inhibitors, HDAC-based dual-target inhibitors, and PROTAC HDAC degraders) for cancer immunotherapy. In addition, we also summarized the reported co-crystal structures of HDAC inhibitors in complex with their target proteins and the binding interactions. Finally, the challenges and future directions for HDAC-based drug discovery in cancer immunotherapy are also discussed in detail.
Collapse
Affiliation(s)
- Binbin Cheng
- School of Medicine, Hubei Polytechnic University, Huangshi, 435003, PR China; Key Laboratory of Joint Diagnosis and Treatment of Chronic Liver Disease and Liver Cancer of Lishui, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui, Zhejiang, 323000, PR China; Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Wei Pan
- CardioIogy Department, Geriatric Department, Foshan Women and Children Hospital, Foshan, Guangdong, 528000, PR China
| | - Yao Xiao
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan Wuchang Hospital, Wuchang, 430063, PR China
| | - Zongbao Ding
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519041, PR China
| | - Yingxing Zhou
- School of Medicine, Hubei Polytechnic University, Huangshi, 435003, PR China
| | - Xiaoting Fei
- School of Medicine, Hubei Polytechnic University, Huangshi, 435003, PR China
| | - Jin Liu
- School of Medicine, Hubei Polytechnic University, Huangshi, 435003, PR China
| | - Zhenhong Su
- School of Medicine, Hubei Polytechnic University, Huangshi, 435003, PR China.
| | - Xiaopeng Peng
- College of Pharmacy, Gannan Medical University, Ganzhou, 314000, PR China.
| | - Jianjun Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 510515, PR China.
| |
Collapse
|
35
|
Tseng YW, Yang TJ, Hsu YL, Liu JH, Tseng YC, Hsu TW, Lu Y, Pan SH, Cheng TJR, Fang JM. Dual-targeting compounds possessing enhanced anticancer activity via microtubule disruption and histone deacetylase inhibition. Eur J Med Chem 2024; 265:116042. [PMID: 38141287 DOI: 10.1016/j.ejmech.2023.116042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/29/2023] [Accepted: 12/09/2023] [Indexed: 12/25/2023]
Abstract
Dual-targeting anticancer agents 4-29 are designed by combining the structural features of purine-type microtubule-disrupting compounds and HDAC inhibitors. A library of the conjugate compounds connected by appropriate linkers was synthesized and found to possess HDACs inhibitory activity and render microtubule fragmentation by activating katanin, a microtubule-severing protein. Among various zinc-binding groups, hydroxamic acid shows the highest inhibitory activity of Class I HDACs, which was also reconfirmed by three-dimensional quantitative structure-activity relationship (3D-QSAR) pharmacophore prediction. The purine-hydroxamate conjugates exhibit enhanced cytotoxicity against MDA-MB231 breast cancer cells, H1975 lung cancer cells, and various clinical isolated non-small-cell lung cancer cells with different epidermal growth factor receptor (EGFR) status. Pyridyl substituents could be used to replace the C2 and N9 phenyl moieties in the purine-type scaffold, which can help to improve the solubility under physiological conditions, thus increasing cytotoxicity. In mice treated with the purine-hydroxamate conjugates, the tumor growth rate was significantly reduced without causing toxic effects. Our study demonstrates the potential of the dual-targeting purine-hydroxamate compounds for cancer monotherapy.
Collapse
Affiliation(s)
- Yu-Wei Tseng
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan
| | - Tsung-Jung Yang
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan
| | - Yuan-Ling Hsu
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Jyung-Hurng Liu
- Graduate Institute of Genomics and Bioinformatics, College of Life Sciences, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Yin-Chen Tseng
- The Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Tse-Wei Hsu
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan
| | - Yueh Lu
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan
| | - Szu-Hua Pan
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, 100, Taiwan; Doctoral Degree Program of Translational Medicine, National Taiwan University, Taipei, 100, Taiwan; Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, 100, Taiwan.
| | | | - Jim-Min Fang
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan; The Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan.
| |
Collapse
|
36
|
Demir S, Razizadeh N, Indersie E, Branchereau S, Cairo S, Kappler R. Targeting G9a/DNMT1 methyltransferase activity impedes IGF2-mediated survival in hepatoblastoma. Hepatol Commun 2024; 8:e0378. [PMID: 38285887 PMCID: PMC10830081 DOI: 10.1097/hc9.0000000000000378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/12/2023] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND As the variable clinical outcome of patients with hepatoblastoma (HB) cannot be explained by genetics alone, the identification of drugs with the potential to effectively reverse epigenetic alterations is a promising approach to overcome poor therapy response. The gene ubiquitin like with PHD and ring finger domains 1 (UHRF1) represents an encouraging epigenetic target due to its regulatory function in both DNA methylation and histone modifications and its clinical relevance in HB. METHODS Patient-derived xenograft in vitro and in vivo models were used to study drug response. The mechanistic basis of CM-272 treatment was elucidated using RNA sequencing and western blot experiments. RESULTS We validated in comprehensive data sets that UHRF1 is highly expressed in HB and associated with poor outcomes. The simultaneous pharmacological targeting of UHRF1-dependent DNA methylation and histone H3 methylation by the dual inhibitor CM-272 identified a selective impact on HB patient-derived xenograft cell viability while leaving healthy fibroblasts unaffected. RNA sequencing revealed downregulation of the IGF2-activated survival pathway as the main mode of action of CM-272 treatment, subsequently leading to loss of proliferation, hindered colony formation capability, reduced spheroid growth, decreased migration potential, and ultimately, induction of apoptosis in HB cells. Importantly, drug response depended on the level of IGF2 expression, and combination assays showed a strong synergistic effect of CM-272 with cisplatin. Preclinical testing of CM-272 in a transplanted patient-derived xenograft model proved its efficacy but also uncovered side effects presumably caused by its strong antitumor effect in IGF2-driven tumors. CONCLUSIONS The inhibition of UHRF1-associated epigenetic traces, such as IGF2-mediated survival, is an attractive approach to treat high-risk HB, especially when combined with the standard-of-care therapeutic cisplatin.
Collapse
Affiliation(s)
- Salih Demir
- Department of Pediatric Surgery, Dr. von Hauner Children’s Hospital, LMU University Hospital, LMU Munich, Germany
| | - Negin Razizadeh
- Department of Pediatric Surgery, Dr. von Hauner Children’s Hospital, LMU University Hospital, LMU Munich, Germany
| | | | - Sophie Branchereau
- Department of Pediatric Surgery, Bicêtre Hospital, AP-HP Paris Saclay University, France
| | - Stefano Cairo
- XenTech, Evry, France
- Champions Oncology, Inc., Rockville, Maryland, USA
| | - Roland Kappler
- Department of Pediatric Surgery, Dr. von Hauner Children’s Hospital, LMU University Hospital, LMU Munich, Germany
| |
Collapse
|
37
|
Moutayakine A, Burke AJ. Metal-catalyzed coupling/carbonylative cyclizations for accessing dibenzodiazepinones: an expedient route to clozapine and other drugs. Beilstein J Org Chem 2024; 20:193-204. [PMID: 38318460 PMCID: PMC10840530 DOI: 10.3762/bjoc.20.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 01/17/2024] [Indexed: 02/07/2024] Open
Abstract
A sequential strategy to access 10,11-dihydro-5H-dibenzo[b,e][1,4]diazepinones (DBDAPs) is disclosed in this article through a palladium and copper-catalyzed amination (Buchwald-Hartwig (B-H) or Chan-Lam (C-L)) followed by a palladium-catalyzed intramolecular aminocarbonylation with Mo(CO)6 as CO surrogate (to avoid toxic CO handling) of readily available o-phenylenediamines and either 1,2-dibromobenzene or 2-bromophenylboronic acid. The 10,11-dihydro-5H-dibenzo[b,e][1,4]diazepinone could be synthezised in good yield using a sequential catalytic procedure, using both C-L and B-H approaches. Gratifingly, the use of the C-L reaction was more impressive, and afforded the dibenzodiazepinones in good yields (up to 45%; 2 steps) and much milder conditions using copper as the catalyst. The synthetic utility of this novel strategy was showcased by demonstrating a formal synthesis for the antipsychotic drug clozapine and to an anticancer triazole-DBDAP hybrid.
Collapse
Affiliation(s)
- Amina Moutayakine
- Instituto Universitario de Bio-Orgánica “Antonio González” (IUBO-AG), University of la Laguna, 38206 San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain
- LAQV-REQUIMTE, University of Évora, Rua Romão Ramalho, 59, 7000 Évora, Portugal
| | - Anthony J Burke
- LAQV-REQUIMTE, University of Évora, Rua Romão Ramalho, 59, 7000 Évora, Portugal
- University of Évora, Department of Chemistry Rua Romão Ramalho, 59, 7000 Évora, Portugal,
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
38
|
Pina PSS, Jang Y, Emerick C, Scarini JF, Sousa SCOM, Squarize CH, Castilho RM. Novel Epigenetic Modifiers of Histones Presenting Potent Inhibitory Effects on Adenoid Cystic Carcinoma Stemness and Invasive Properties. Int J Mol Sci 2024; 25:1646. [PMID: 38338924 PMCID: PMC10855771 DOI: 10.3390/ijms25031646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Adenoid cystic carcinoma (ACC) is a rare neoplasm known for its indolent clinical course, risk of perineural invasion, and late onset of distant metastasis. Due to the scarcity of samples and the tumor's rarity, progress in developing effective treatments has been historically limited. To tackle this issue, a high-throughput screening of epigenetic drugs was conducted to identify compounds capable of disrupting the invasive properties of the tumor and its cancer stem cells (CSCs). ACC cells were screened for changes in tumor viability, chromatin decondensation, Snail inhibition along tumor migration, and disruption of cancer stem cells. Seven compounds showed potential clinical interest, and further validation showed that Scriptaid emerged as a promising candidate for treating ACC invasion. Scriptaid demonstrated a favorable cellular toxicity index, effectively inhibited Snail expression, induced hyperacetylation of histone, reduced cell migration, and effectively disrupted tumorspheres. Additionally, LMK235 displayed encouraging results in four out of five validation assays, further highlighting its potential in combating tumor invasion in ACC. By targeting the invasive properties of the tumor and CSCs, Scriptaid and LMK235 hold promise as potential treatments for ACC, with the potential to improve patient outcomes and pave the way for further research in this critical area.
Collapse
Affiliation(s)
- Paulo S. S. Pina
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; (P.S.S.P.); (Y.J.); (C.E.); (J.F.S.); (C.H.S.)
- Department of Stomatology, School of Dentistry, University of São Paulo, Sao Paulo 05508-270, Brazil;
| | - Yeejin Jang
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; (P.S.S.P.); (Y.J.); (C.E.); (J.F.S.); (C.H.S.)
| | - Carolina Emerick
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; (P.S.S.P.); (Y.J.); (C.E.); (J.F.S.); (C.H.S.)
- Oral Diagnosis Department, Piracicaba School of Dentistry, State University of Campinas, Piracicaba 13414-903, Brazil
| | - João Figueira Scarini
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; (P.S.S.P.); (Y.J.); (C.E.); (J.F.S.); (C.H.S.)
- Oral Diagnosis Department, Piracicaba School of Dentistry, State University of Campinas, Piracicaba 13414-903, Brazil
| | - Suzana C. O. M. Sousa
- Department of Stomatology, School of Dentistry, University of São Paulo, Sao Paulo 05508-270, Brazil;
| | - Cristiane H. Squarize
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; (P.S.S.P.); (Y.J.); (C.E.); (J.F.S.); (C.H.S.)
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rogerio M. Castilho
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; (P.S.S.P.); (Y.J.); (C.E.); (J.F.S.); (C.H.S.)
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
39
|
Sun BW, Zhang PP, Wang ZH, Yao X, He ML, Bai RT, Che H, Lin J, Xie T, Hui Z, Ye XY, Wang LW. Prevention and Potential Treatment Strategies for Respiratory Syncytial Virus. Molecules 2024; 29:598. [PMID: 38338343 PMCID: PMC10856762 DOI: 10.3390/molecules29030598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Respiratory syncytial virus (RSV) is a significant viral pathogen that causes respiratory infections in infants, the elderly, and immunocompromised individuals. RSV-related illnesses impose a substantial economic burden worldwide annually. The molecular structure, function, and in vivo interaction mechanisms of RSV have received more comprehensive attention in recent times, and significant progress has been made in developing inhibitors targeting various stages of the RSV replication cycle. These include fusion inhibitors, RSV polymerase inhibitors, and nucleoprotein inhibitors, as well as FDA-approved RSV prophylactic drugs palivizumab and nirsevimab. The research community is hopeful that these developments might provide easier access to knowledge and might spark new ideas for research programs.
Collapse
Affiliation(s)
- Bo-Wen Sun
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (B.-W.S.); (P.-P.Z.); (Z.-H.W.); (X.Y.); (M.-L.H.); (R.-T.B.); (H.C.); (T.X.); (Z.H.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Peng-Peng Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (B.-W.S.); (P.-P.Z.); (Z.-H.W.); (X.Y.); (M.-L.H.); (R.-T.B.); (H.C.); (T.X.); (Z.H.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Zong-Hao Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (B.-W.S.); (P.-P.Z.); (Z.-H.W.); (X.Y.); (M.-L.H.); (R.-T.B.); (H.C.); (T.X.); (Z.H.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Xia Yao
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (B.-W.S.); (P.-P.Z.); (Z.-H.W.); (X.Y.); (M.-L.H.); (R.-T.B.); (H.C.); (T.X.); (Z.H.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Meng-Lan He
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (B.-W.S.); (P.-P.Z.); (Z.-H.W.); (X.Y.); (M.-L.H.); (R.-T.B.); (H.C.); (T.X.); (Z.H.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Rui-Ting Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (B.-W.S.); (P.-P.Z.); (Z.-H.W.); (X.Y.); (M.-L.H.); (R.-T.B.); (H.C.); (T.X.); (Z.H.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Hao Che
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (B.-W.S.); (P.-P.Z.); (Z.-H.W.); (X.Y.); (M.-L.H.); (R.-T.B.); (H.C.); (T.X.); (Z.H.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Jing Lin
- Drug Discovery, Hangzhou Haolu Pharma Co., Hangzhou 311121, China;
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (B.-W.S.); (P.-P.Z.); (Z.-H.W.); (X.Y.); (M.-L.H.); (R.-T.B.); (H.C.); (T.X.); (Z.H.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Zi Hui
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (B.-W.S.); (P.-P.Z.); (Z.-H.W.); (X.Y.); (M.-L.H.); (R.-T.B.); (H.C.); (T.X.); (Z.H.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiang-Yang Ye
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (B.-W.S.); (P.-P.Z.); (Z.-H.W.); (X.Y.); (M.-L.H.); (R.-T.B.); (H.C.); (T.X.); (Z.H.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Li-Wei Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (B.-W.S.); (P.-P.Z.); (Z.-H.W.); (X.Y.); (M.-L.H.); (R.-T.B.); (H.C.); (T.X.); (Z.H.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
40
|
Asfaha Y, Bollmann LM, Skerhut AJ, Fischer F, Horstick N, Roth D, Wecker M, Mammen C, Smits SHJ, Fluegen G, Kassack MU, Kurz T. 5-(Trifluoromethyl)-1,2,4-oxadiazole (TFMO)-based highly selective class IIa HDAC inhibitors exhibit synergistic anticancer activity in combination with bortezomib. Eur J Med Chem 2024; 263:115907. [PMID: 37979441 DOI: 10.1016/j.ejmech.2023.115907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/18/2023] [Accepted: 10/21/2023] [Indexed: 11/20/2023]
Abstract
Clinically used pan and class I HDACi cause severe side effects, whereas class IIa HDACi are less cytotoxic. Here, we present the synthesis and anticancer effects of a series of 5-(trifluoromethyl)-1,2,4-oxadiazole (TFMO)-based amides and alkoxyamides derived from the previously reported class IIa HDACi YAK540. The most active class IIa inhibitor 1a showed nanomolar inhibition of the class IIa enzymes 4, 5, 7 (IC50 HDAC4: 12 nM) and high selectivity (selectivity index >318 for HDAC4) over non-class IIa HDACs. Instead of a hydroxamic acid group, 1a has a trifluoromethyloxadiazolyl (TFMO) moiety as a non-chelating Zinc-binding group (ZBG). Applying the Chou-Talalay-method we found an increased synergistic cytotoxic effect of 1a in combination with bortezomib in THP1 cells. 1a in combination with bortezomib enhanced expression of p21 leading to increased caspase-induced apoptosis. Eventually, growth inhibition by 1a of the head-neck cancer cell line Cal27 was increased upon HDAC4 overexpression in Cal27 in cell culture and using the in vivo chorioallantoic membrane model. The class IIa HDACi 1a outperforms previously described HDAC class IIa inhibitor YAK540 regarding anticancer effects and may constitute a novel option compared to pan and class I HDACi in anticancer combination treatments.
Collapse
Affiliation(s)
- Yodita Asfaha
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Lukas M Bollmann
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Alexander J Skerhut
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Fabian Fischer
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Nadine Horstick
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Dennis Roth
- Department of Surgery (A), Medical Faculty, University Hospital of the Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Maria Wecker
- Department of Surgery (A), Medical Faculty, University Hospital of the Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Christian Mammen
- Institute of Biochemistry I, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Sander H J Smits
- Institute of Biochemistry I, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany; Center for Structural Studies, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Georg Fluegen
- Department of Surgery (A), Medical Faculty, University Hospital of the Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Matthias U Kassack
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Thomas Kurz
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany.
| |
Collapse
|
41
|
Patel R, Modi A, Vekariya H. Discovery and Development of HDAC Inhibitors: Approaches for the Treatment of Cancer a Mini-review. Curr Drug Discov Technol 2024; 21:e230224227378. [PMID: 38415493 DOI: 10.2174/0115701638286941240217102948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 02/29/2024]
Abstract
Histone deacetylase (HDAC) inhibitors have emerged as promising cancer therapeutics due to their ability to induce differentiation, cell cycle arrest, and apoptosis in cancer cells. In the present review, we have described the systemic discovery and development of HDAC inhibitors. Researchers across the globe have identified various small molecules like benzo[d][1,3]dioxol derivatives, belinostat analogs, pyrazine derivatives, quinazolin-4-one-based derivatives, 2,4-imidazolinedione derivatives, acridine hydroxamic acid derivatives, coumarin derivatives, tetrahydroisoquinoline derivatives, thiazole-5-carboxamide, salicylamide derivatives, β-peptoid-capped HDAC inhibitors, quinazoline derivatives, benzimidazole and benzothiazole derivatives, and β- elemene scaffold containing HDAC inhibitors. Most of the scaffolds have shown attractive IC50 (μM) in various cell lines like HDAC1, HDAC2, HDAC6, PI3K, HeLa, MDA-MB-231, MCF-10A, MCF-7, U937, K562 and Bcr-Abl cell lines.
Collapse
Affiliation(s)
- Roshani Patel
- Department of Pharmaceutical Chemistry, R K University, Rajkot, 360020, Gujarat, India
| | - Arjun Modi
- Department of Pharmaceutical Chemistry, R K University, Rajkot, 360020, Gujarat, India
| | - Hitesh Vekariya
- Department of Pharmaceutical Chemistry, School of Pharmacy, R K University, Rajkot, 360020, Gujarat, India
| |
Collapse
|
42
|
Han H, Feng X, He T, Wu Y, He T, Yue Z, Zhou W. Discussion on structure classification and regulation function of histone deacetylase and their inhibitor. Chem Biol Drug Des 2024; 103:e14366. [PMID: 37776270 DOI: 10.1111/cbdd.14366] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 10/02/2023]
Abstract
Epigenetic regulation of genes through posttranslational regulation of proteins is a well-explored approach for disease treatment, particularly in cancer chemotherapy. Histone deacetylases have shown significant potential as effective drug targets in therapeutic studies aiming to restore epigenetic normality in oncology. Besides their role in modifying histones, histone deacetylases can also catalyze the deacetylation of various nonhistone proteins and participate in the regulation of multiple biological processes. This paper provides a review of the classification, structure, and functional characteristics of the four classes of human histone deacetylases. The increasing abundance of structural information on HDACs has led to the gradual elucidation of structural differences among subgroups and subtypes. This has provided a reasonable explanation for the selectivity of certain HDAC inhibitors. Currently, the US FDA has approved a total of six HDAC inhibitors for marketing, primarily for the treatment of various hematological tumors and a few solid tumors. These inhibitors all have a common pharmacodynamic moiety consisting of three parts: CAP, ZBG, and Linker. In this paper, the structure-effect relationship of HDAC inhibitors is explored by classifying the six HDAC inhibitors into three main groups: isohydroxamic acids, benzamides, and cyclic peptides, based on the type of inhibitor ZBG. However, there are still many questions that need to be answered in this field. In this paper, the structure-functional characteristics of HDACs and the structural information of the pharmacophore model and enzyme active region of HDAC is are considered, which can help to understand the inhibition mechanism of the compounds as well as the rational design of HDACs. This paper integrates the structural-functional characteristics of HDACs as well as the pharmacophore model of HDAC is and the structural information of the enzymatic active region, which not only contributes to the understanding of the inhibition mechanism of the compounds, but also provides a basis for the rational design of HDAC inhibitors.
Collapse
Affiliation(s)
- Han Han
- Department of Biochemistry and Molecular Biology, Shenyang Medical College, Shenyang City, P. R. China
| | - Xue Feng
- Department of Pathogen Biology, Shenyang Medical College, Shenyang City, P. R. China
| | - Ting He
- Department of Pathogen Biology, Shenyang Medical College, Shenyang City, P. R. China
| | - Yingfan Wu
- Department of Pathogen Biology, Shenyang Medical College, Shenyang City, P. R. China
| | - Tianmei He
- Department of Pathogen Biology, Shenyang Medical College, Shenyang City, P. R. China
| | - Ziwen Yue
- Department of Pathogen Biology, Shenyang Medical College, Shenyang City, P. R. China
| | - Weiqiang Zhou
- Department of Pathogen Biology, Shenyang Medical College, Shenyang City, P. R. China
| |
Collapse
|
43
|
Zeuner S, Vollmer J, Sigaud R, Oppermann S, Peterziel H, ElHarouni D, Oehme I, Witt O, Milde T, Ecker J. Combination drug screen identifies synergistic drug interaction of BCL-XL and class I histone deacetylase inhibitors in MYC-amplified medulloblastoma cells. J Neurooncol 2024; 166:99-112. [PMID: 38184819 PMCID: PMC10824805 DOI: 10.1007/s11060-023-04526-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/27/2023] [Indexed: 01/08/2024]
Abstract
PURPOSE Patients with MYC-amplified Group 3 medulloblastoma (MB) (subtype II) show poor progression-free survival rates. Class I histone deacetylase inhibitors (HDACi) are highly effective for the treatment of MYC-amplified MB in vitro and in vivo. Drug combination regimens including class I HDACi may represent an urgently needed novel treatment approach for this high risk disease. METHODS A medium-throughput in vitro combination drug screen was performed in three MYC-amplified and one non-MYC-amplified MB cell line testing 75 clinically relevant drugs alone and in combination with entinostat. The drug sensitivity score (DSS) was calculated based on metabolic inhibition quantified by CellTiter-Glo. The six top synergistic combination hits were evaluated in a 5 × 5 combination matrix and a seven-ray design. Synergy was validated and characterized by cell counts, caspase-3-like-activity and poly-(ADP-ribose)-polymerase-(PARP)-cleavage. On-target activity of drugs was validated by immunoprecipitation and western blot. BCL-XL dependency of the observed effect was explored with siRNA mediated knockdown of BCL2L1, and selective inhibition with targeted compounds (A-1331852, A-1155463). RESULTS 20/75 drugs effectively reduced metabolic activity in combination with entinostat in all three MYC-amplified cell lines (DSS ≥ 10). The combination entinostat and navitoclax showed the strongest synergistic interaction across all MYC-amplified cell lines. siRNA mediated knockdown of BCL2L1, as well as targeted inhibition with selective inhibitors showed BCL-XL dependency of the observed effect. Increased cell death was associated with increased caspase-3-like-activity. CONCLUSION Our study identifies the combination of class I HDACi and BCL-XL inhibitors as a potential new approach for the treatment of MYC-amplified MB cells.
Collapse
Affiliation(s)
- Simon Zeuner
- Hopp Children's Cancer Center Heidelberg (KiTZ), Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Im Neuenheimer Feld 460, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Johanna Vollmer
- Hopp Children's Cancer Center Heidelberg (KiTZ), Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Im Neuenheimer Feld 460, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Romain Sigaud
- Hopp Children's Cancer Center Heidelberg (KiTZ), Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Im Neuenheimer Feld 460, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Sina Oppermann
- Hopp Children's Cancer Center Heidelberg (KiTZ), Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Im Neuenheimer Feld 460, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Heike Peterziel
- Hopp Children's Cancer Center Heidelberg (KiTZ), Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Im Neuenheimer Feld 460, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Dina ElHarouni
- Department of Bioinformatics and Omics Data Analytics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ina Oehme
- Hopp Children's Cancer Center Heidelberg (KiTZ), Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Im Neuenheimer Feld 460, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Olaf Witt
- Hopp Children's Cancer Center Heidelberg (KiTZ), Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Im Neuenheimer Feld 460, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Till Milde
- Hopp Children's Cancer Center Heidelberg (KiTZ), Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Im Neuenheimer Feld 460, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Jonas Ecker
- Hopp Children's Cancer Center Heidelberg (KiTZ), Im Neuenheimer Feld 430, 69120, Heidelberg, Germany.
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Im Neuenheimer Feld 460, 69120, Heidelberg, Germany.
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany.
| |
Collapse
|
44
|
Duda J, Thomas SN. Interactions of Histone Deacetylase 6 with DNA Damage Repair Factors Strengthen its Utility as a Combination Drug Target in High-Grade Serous Ovarian Cancer. ACS Pharmacol Transl Sci 2023; 6:1924-1933. [PMID: 38107255 PMCID: PMC10723650 DOI: 10.1021/acsptsci.3c00215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 12/19/2023]
Abstract
High-grade serous ovarian cancer (HGSOC) is the deadliest gynecologic malignancy in women. The low survival rate is largely due to drug resistance. Approximately 80% of patients who initially respond to treatment relapse and become drug-resistant. The lack of effective second-line therapeutics remains a substantial challenge for BRCA-1/2 wild-type HGSOC patients. Histone Deacetylases (HDACs) are promising targets in HGSOC treatment; however, the mechanism and efficacy of HDAC inhibitors are understudied in HGSOC. In order to consider HDACs as a treatment target, an improved understanding of their function within HGSOC is required. This includes elucidating HDAC6-specific protein-protein interactions. In this study, we carried out substrate trapping followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) to elucidate HDAC6 catalytic domain (CD)-specific interactors in the context of BRCA-1/2 wild-type HGSOC. Overall, this study identified new HDAC6 substrates that may be unique to HGSOC. The HDAC6-CD1 mutant condition contained the largest number of significant proteins compared to the CD2 mutant and the CD1/2 mutant conditions, suggesting the HDAC6-CD1 domain has catalytic activity that is independent of CD2. Among the identified substrates were proteins involved in DNA damage repair including PARP proteins. These findings further justify the use of HDAC inhibitors as a combination treatment with platinum chemotherapy agents and PARP inhibitors in HGSOC.
Collapse
Affiliation(s)
- Jolene
M. Duda
- Department
of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Stefani N. Thomas
- Department
of Laboratory Medicine and Pathology, University
of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
45
|
Haga-Yamanaka S, Nuñez-Flores R, Scott CA, Perry S, Chen ST, Pontrello C, Nair MG, Ray A. Plasticity of gene expression in the nervous system by exposure to environmental odorants that inhibit HDACs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.21.529339. [PMID: 36865229 PMCID: PMC9980067 DOI: 10.1101/2023.02.21.529339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Eukaryotes are often exposed to microbes and respond to their secreted metabolites, such as the microbiome in animals or commensal bacteria in roots. Little is known about the effects of long-term exposure to volatile chemicals emitted by microbes, or other volatiles that we are exposed to over a long duration. Using the model system Drosophila melanogaster, we evaluate a yeast emitted volatile, diacetyl, found in high levels around fermenting fruits where they spend long periods of time. We find that exposure to just the headspace containing the volatile molecules can alter gene expression in the antenna. Experiments showed that diacetyl and structurally related volatile compounds inhibited human histone-deacetylases (HDACs), increased histone-H3K9 acetylation in human cells, and caused wide changes in gene expression in both Drosophila and mice. Diacetyl crosses the blood-brain barrier and exposure causes modulation of gene expression in the brain, therefore has potential as a therapeutic. Using two separate disease models known to be responsive to HDAC-inhibitors, we evaluated physiological effects of volatile exposure. First, we find that the HDAC inhibitor also halts proliferation of a neuroblastoma cell line in culture as predicted. Next, exposure to vapors slows progression of neurodegeneration in a Drosophila model for Huntington's disease. These changes strongly suggest that unbeknown to us, certain volatiles in the surroundings can have profound effects on histone acetylation, gene expression and physiology in animals.
Collapse
Affiliation(s)
- Sachiko Haga-Yamanaka
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA
| | - Rogelio Nuñez-Flores
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA
- Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA
| | - Christi Ann Scott
- Cell, Molecular and Developmental Biology Program, University of California, Riverside, CA 92521, USA
| | - Sarah Perry
- Genetics, Genomics and Bioinformatics Program, University of California, Riverside, CA 92521, USA
| | - Stephanie Turner Chen
- Cell, Molecular and Developmental Biology Program, University of California, Riverside, CA 92521, USA
| | - Crystal Pontrello
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA
| | - Meera Goh Nair
- Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA
| | - Anandasankar Ray
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA
- Cell, Molecular and Developmental Biology Program, University of California, Riverside, CA 92521, USA
- Genetics, Genomics and Bioinformatics Program, University of California, Riverside, CA 92521, USA
| |
Collapse
|
46
|
Guzmán Ramírez JE, Mancilla Percino T. Synthesis of N-aminophalimides derived from α-amino acids: Theoretical study to find them as HDAC8 inhibitors by docking simulations and in vitro assays. Chem Biol Drug Des 2023; 102:1367-1386. [PMID: 37641461 DOI: 10.1111/cbdd.14323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/31/2023]
Abstract
Phthalimides are valuable for synthesis and biological properties. New acetamides 3(a-c) and 4(a-c) were synthesized and characterized as precursors for novel N-aminophalimides 5(a-c) and 6(a-c). Structures of 4a, 5(a-b), and 6(a-b) were confirmed by single crystal X-ray. Docking studies identified compounds with favorable Gibbs free energy values for binding to histone deacetylase 8 (HDAC8), an enzyme targeted for anticancer drug development. These compounds bound to both the orthosteric and allosteric pockets of HDAC8, similar to Trichostatin A (TSA), an HDAC8 inhibitor. 6(a-c) contain hydroxyacetamide moiety as a zinc-binding group, a phthalimide moiety as a capping group, and aminoacetamide moiety as a linker group, which are important for ligand-receptor binding. ΔG values indicated that compounds 5b, 6b, and 6c had higher affinity for HDAC8 in the allosteric pocket compared to TSA. In vitro evaluation of inhibitory activities on HDAC8 revealed that compounds 3(a-c) and 5(a-c) showed similar inhibitory effects (IC50 ) ranging from 0.445 to 0.751 μM. Compounds 6(a-c) showed better affinity, with 6a (IC50 = 28 nM) and 6b (IC50 = 0.18 μM) showing potent inhibitory effects slightly lower than TSA (IC50 = 26 nM). These findings suggest that the studied compounds hold promise as potential candidates for further biological investigations.
Collapse
Affiliation(s)
- José Eduardo Guzmán Ramírez
- Departamento de Química, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Teresa Mancilla Percino
- Departamento de Química, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| |
Collapse
|
47
|
Rubatto M, Borriello S, Sciamarrelli N, Pala V, Tonella L, Ribero S, Quaglino P. Exploring the role of epigenetic alterations and non-coding RNAs in melanoma pathogenesis and therapeutic strategies. Melanoma Res 2023; 33:462-474. [PMID: 37788101 DOI: 10.1097/cmr.0000000000000926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Melanoma is a rare but highly lethal type of skin cancer whose incidence is increasing globally. Melanoma is characterized by high resistance to therapy and relapse. Despite significant advances in the treatment of metastatic melanoma, many patients experience progression due to resistance mechanisms. Epigenetic changes, including alterations in chromatin remodeling, DNA methylation, histone modifications, and non-coding RNA rearrangements, contribute to neoplastic transformation, metastasis, and drug resistance in melanoma. This review summarizes current research on epigenetic mechanisms in melanoma and their therapeutic potential. Specifically, we discuss the role of histone acetylation and methylation in gene expression regulation and melanoma pathobiology, as well as the promising results of HDAC inhibitors and DNMT inhibitors in clinical trials. We also examine the dysregulation of non-coding RNA, particularly miRNAs, and their potential as targets for melanoma therapy. Finally, we highlight the challenges of epigenetic therapies, such as the complexity of epigenetic mechanisms combined with immunotherapies and the need for combination therapies to overcome drug resistance. In conclusion, epigenetic changes may be reversible, and the use of combination therapy between traditional therapies and epigenetically targeted drugs could be a viable solution to reverse the increasing number of patients who develop treatment resistance or even prevent it. While several clinical trials are underway, the complexity of these mechanisms presents a significant challenge to the development of effective therapies. Further research is needed to fully understand the role of epigenetic mechanisms in melanoma and to develop more effective and targeted therapies.
Collapse
Affiliation(s)
- Marco Rubatto
- Department of Medical Sciences, Dermatologic Clinic, University of Turin Medical School, Turin, Italy
| | | | | | | | | | | | | |
Collapse
|
48
|
Zhou X, He Y, Quan H, Pan X, Zhou Y, Zhang Z, Yuan X, Li J. HDAC1-Mediated lncRNA Stimulatory Factor of Follicular Development to Inhibit the Apoptosis of Granulosa Cells and Regulate Sexual Maturity through miR-202-3p- COX1 Axis. Cells 2023; 12:2734. [PMID: 38067162 PMCID: PMC10706290 DOI: 10.3390/cells12232734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Abnormal sexual maturity exhibits significant detrimental effects on adult health outcomes, and previous studies have indicated that targeting histone acetylation might serve as a potential therapeutic approach to regulate sexual maturity. However, the mechanisms that account for it remain to be further elucidated. Using the mouse model, we showed that Trichostatin A (TSA), a histone deacetylase (HDAC) inhibitor, downregulated the protein level of Hdac1 in ovaries to promote the apoptosis of granulosa cells (GCs), and thus arrested follicular development and delayed sexual maturity. Using porcine GCs as a cell model, a novel sexual maturity-associated lncRNA, which was named as the stimulatory factor of follicular development (SFFD), transcribed from mitochondrion and mediated by HDAC1, was identified using RNA sequencing. Mechanistically, HDAC1 knockdown significantly reduced the H3K27ac level at the -953/-661 region of SFFD to epigenetically inhibit its transcription. SFFD knockdown released miR-202-3p to reduce the expression of cyclooxygenase 1 (COX1), an essential rate-limited enzyme involved in prostaglandin synthesis. This reduction inhibited the proliferation and secretion of 17β-estradiol (E2) while promoting the apoptosis of GCs. Consequently, follicular development was arrested and sexual maturity was delayed. Taken together, HDAC1 knockdown-mediated SFFD downregulation promoted the apoptosis of GCs through the miR-202-3p-COX1 axis and lead to delayed sexual maturity. Our findings reveal a novel regulatory network modulated by HDAC1, and HDAC1-mediated SFFD may be a promising new therapeutic target to treat delayed sexual maturity.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiaolong Yuan
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (Y.H.); (H.Q.); (X.P.); (Y.Z.); (Z.Z.)
| | - Jiaqi Li
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (Y.H.); (H.Q.); (X.P.); (Y.Z.); (Z.Z.)
| |
Collapse
|
49
|
Wu Y, Hou J, Ren R, Chen Z, Yue M, Li L, Hou H, Zheng X, Li L. DNA methylation and lipid metabolism are involved in GA-induced maize aleurone layers PCD as revealed by transcriptome analysis. BMC PLANT BIOLOGY 2023; 23:584. [PMID: 37993774 PMCID: PMC10664605 DOI: 10.1186/s12870-023-04565-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/27/2023] [Indexed: 11/24/2023]
Abstract
BACKGROUND The aleurone layer is a part of many plant seeds, and during seed germination, aleurone cells undergo PCD, which is promoted by GA from the embryo. However, the numerous components of the GA signaling pathway that mediate PCD of the aleurone layers remain to be identified. Few genes and transcriptomes have been studied thus far in aleurone layers to improve our understanding of how PCD occurs and how the regulatory mechanism functions during PCD. Our previous studies have shown that histone deacetylases (HDACs) are required in GA-induced PCD of aleurone layer. To further explore the molecular mechanisms by which epigenetic modifications regulate aleurone PCD, we performed a global comparative transcriptome analysis of embryoless aleurones treated with GA or histone acetylase (HAT) inhibitors. RESULTS In this study, a total of 7,919 differentially expressed genes (DEGs) were analyzed, 2,554 DEGs of which were found to be common under two treatments. These identified DEGs were involved in various biological processes, including DNA methylation, lipid metabolism and ROS signaling. Further investigations revealed that inhibition of DNA methyltransferases prevented aleurone PCD, suggesting that active DNA methylation plays a role in regulating aleurone PCD. GA or HAT inhibitor induced lipoxygenase gene expression, leading to lipid degradation, but this process was not affected by DNA methylation. However, DNA methylation inhibitor could regulate ROS-related gene expression and inhibit GA-induced production of hydrogen peroxide (H2O2). CONCLUSION Overall, linking of lipoxygenase, DNA methylation, and H2O2 may indicate that GA-induced higher HDAC activity in aleurones causes breakdown of lipids via regulating lipoxygenase gene expression, and increased DNA methylation positively mediates H2O2 production; thus, DNA methylation and lipid metabolism pathways may represent an important and complex signaling network in maize aleurone PCD.
Collapse
Affiliation(s)
- Yequn Wu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jiaqi Hou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Ruifei Ren
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhenfei Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Mengxia Yue
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Le Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Haoli Hou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Xueke Zheng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
- College of Food, Xinyang Agriculture and Forestry University, Xinyang, 464000, China.
| | - Lijia Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
50
|
Deng Y, Cheng Q, He J. HDAC inhibitors: Promising agents for leukemia treatment. Biochem Biophys Res Commun 2023; 680:61-72. [PMID: 37722346 DOI: 10.1016/j.bbrc.2023.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023]
Abstract
The essential role of epigenetic modification in the pathogenesis of a series of cancers have gradually been recognized. Histone deacetylase (HDACs), as well-known epigenetic modulators, are responsible for DNA repair, cell proliferation, differentiation, apoptosis and angiogenesis. Studies have shown that aberrant expression of HDACs is found in many cancer types. Thus, inhibition of HDACs has provided a promising therapeutic approach alternative for these patients. Since HDAC inhibitor (HDACi) vorinostat was first approved by the Food and Drug Administration (FDA) for treating cutaneous T-cell lymphoma (CTCL) in 2006, the combination of HDAC inhibitors with other molecules such as chemotherapeutic drugs has drawn much attention in current cancer treatment, especially in hematological malignancies therapy. Up to now, there have been more than twenty HDAC inhibitors investigated in clinic trials with five approvals being achieved. Indeed, Histone deacetylase inhibitors promote or enhance several different anticancer mechanisms and therefore are in evidence as potential antileukemia agents. In this review, we will focus on possible mechanisms by how HDAC inhibitors exert therapeutic benefit and their clinical utility in leukemia.
Collapse
Affiliation(s)
- Yun Deng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Cheng
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jing He
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|