1
|
Zhang X, Bi F, Yang Q. Mechanism underlying CDC20 affecting epithelial ovarian cancer biological behavior by regulating BAG6 ubiquitination. Cell Signal 2025; 127:111577. [PMID: 39710091 DOI: 10.1016/j.cellsig.2024.111577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 12/11/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024]
Abstract
Epithelial ovarian cancer (EOC) endangers women's life and health. It is reported that cell division cycle 20 (CDC20) plays a role in EOC, but its underlying mechanisms remain unclear. Additionally, the involvement of bcl-2-associated athanogen-6 (BAG6) in EOC has not been previously reported. This study demonstrated that CDC20 was highly expressed in EOC and exhibited oncogenic properties through both in vitro and in vivo molecular biology experiments. In contrast, BAG6 was low expressed and functioned as a tumor suppressor. Both CDC20 and BAG6 were found to correlate with patient stage. Notably, the degradation of BAG6, mediated by CDC20 via ubiquitin-proteasome pathway, was shown to enhance the malignant biological behavior of EOC. Furthermore, the interaction between CDC20 and BAG6 was dependent on the WD40 domain of CDC20 and the D-box of BAG6. These findings provided valuable insights into the molecular mechanisms of EOC and established a theoretical basis for novel therapeutic targets in clinical treatment.
Collapse
Affiliation(s)
- Xiaocui Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Fangfang Bi
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Qing Yang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| |
Collapse
|
2
|
Torghabe SY, Alavi P, Rostami S, Davies NM, Kesharwani P, Karav S, Sahebkar A. Modulation of the ubiquitin-proteasome system by curcumin: Therapeutic implications in cancer. Pathol Res Pract 2025; 265:155741. [PMID: 39612810 DOI: 10.1016/j.prp.2024.155741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/07/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024]
Abstract
By the ubiquitin-proteasomes, cellular proteins are structurally degraded and turnover. Many essential functions and regulations of cells are regulated and controlled by these proteins. Recent studies indicated that many cancer types have been associated with aberrations in the ubiquitination pathway, which involves three enzymatic steps. Dietary phytochemicals have been identified as having the potential to inhibit carcinogenesis recently. As part of this group of phytochemicals, curcumin can play a crucial role in suppressing carcinogenesis by changing many reactions affected by the ubiquitin-proteasome pathway. Due to its ability to change some biological processes such as NF-κB, inhibit some cyclins, and induce apoptosis, it can be used as a drug in cancer treatment.
Collapse
Affiliation(s)
- Shima Yahoo Torghabe
- Department of Basic Sciences, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Parisa Alavi
- Department of Biology, Faculty of Basic Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Sara Rostami
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Science and Culture University, Tehran, Iran
| | - Neal M Davies
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Canakkale 17100, Turkey
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Shi S, Ge Y, Yan Q, Wan S, Li M, Li M. Activating UCHL1 through the CRISPR activation system promotes cartilage differentiation mediated by HIF-1α/SOX9. J Cell Mol Med 2024; 28:e70051. [PMID: 39223923 PMCID: PMC11369205 DOI: 10.1111/jcmm.70051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/25/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
Developing strategies to enhance cartilage differentiation in mesenchymal stem cells and preserve the extracellular matrix is crucial for successful cartilage tissue reconstruction. Hypoxia-inducible factor-1α (HIF-1α) plays a pivotal role in maintaining the extracellular matrix and chondrocyte phenotype, thus serving as a key regulator in chondral tissue engineering strategies. Recent studies have shown that Ubiquitin C-terminal hydrolase L1 (UCHL1) is involved in the deubiquitylation of HIF-1α. However, the regulatory role of UCHL1 in chondrogenic differentiation has not been investigated. In the present study, we initially validated the promotive effect of UCHL1 expression on chondrogenesis in adipose-derived stem cells (ADSCs). Subsequently, a hybrid baculovirus system was designed and employed to utilize three CRISPR activation (CRISPRa) systems, employing dead Cas9 (dCas9) from three distinct bacterial sources to target UCHL1. Then UCHL1 and HIF-1α inhibitor and siRNA targeting SRY-box transcription factor 9 (SOX9) were used to block UCHL1, HIF-1α and SOX9, respectively. Cartilage differentiation and chondrogenesis were measured by qRT-PCR, immunofluorescence and histological staining. We observed that the CRISPRa system derived from Staphylococcus aureus exhibited superior efficiency in activating UCHL1 compared to the commonly used the CRISPRa system derived from Streptococcus pyogenes. Furthermore, the duration of activation was extended by utilizing the Cre/loxP-based hybrid baculovirus. Moreover, our findings show that UCHL1 enhances SOX9 expression by regulating the stability and localization of HIF-1α, which promotes cartilage production in ADSCs. These findings suggest that activating UCHL1 using the CRISPRa system holds significant potential for applications in cartilage regeneration.
Collapse
Affiliation(s)
- Shanwei Shi
- School of Stomatology, Stomatological HospitalSouthern Medical UniversityGuangzhouChina
- Guangdong Academy of StomatologyGuangzhouGuangdongChina
| | - Yang Ge
- School of Stomatology, Stomatological HospitalSouthern Medical UniversityGuangzhouChina
- Guangdong Academy of StomatologyGuangzhouGuangdongChina
| | - Qiqian Yan
- School of Stomatology, Stomatological HospitalSouthern Medical UniversityGuangzhouChina
- Guangdong Academy of StomatologyGuangzhouGuangdongChina
| | - Shuangquan Wan
- School of Stomatology, Stomatological HospitalSouthern Medical UniversityGuangzhouChina
- Guangdong Academy of StomatologyGuangzhouGuangdongChina
| | - Mingfei Li
- School of Stomatology, Stomatological HospitalSouthern Medical UniversityGuangzhouChina
- Guangdong Academy of StomatologyGuangzhouGuangdongChina
| | - Maoquan Li
- School of Stomatology, Stomatological HospitalSouthern Medical UniversityGuangzhouChina
- Guangdong Academy of StomatologyGuangzhouGuangdongChina
| |
Collapse
|
4
|
Suresh T, Nachiappan DM, Karthikeyan G, Vijayakumar V, P Jasinski J, Sarveswari S. An Efficient Synthesis of Novel Aminothiazolylacetamido-Substituted 3,5-Bis(arylidene)-4-piperidone Derivatives and Their Cytotoxicity Studies. ACS OMEGA 2024; 9:29244-29251. [PMID: 39005779 PMCID: PMC11238287 DOI: 10.1021/acsomega.4c00039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/08/2024] [Accepted: 06/12/2024] [Indexed: 07/16/2024]
Abstract
The expansion of 3,5-bis(arylidene)-4-piperidone derivatives with heterocyclic compounds such as 1,3-thiazole should take into account this correlation. The synthesized aminothiazolylacetamido-substituted 3,5-bis(arylidene)-4-piperidone derivatives 3a-j were found to have GI50 values in the range of 0.15-0.28 μM against HeLa and HCT116 cancer cell lines. In silico docking studies confirmed that the proteasome inhibition mechanism involves a nucleophilic attack from the N-terminal threonine residue of the β-subunits to the C=O group of compounds. A C=O group of amide was able to interact with the NH group of the alanine residue and the 5g NH group of amino thiazole, along with an OH group of the serine residue. These results strongly suggest that the synthesized compounds could be a potential candidate inhibitor of the 20S proteasome. These molecules have the potential to be developed as cytotoxic and anticancer agents, as revealed by this study.
Collapse
Affiliation(s)
- Thangaiyan Suresh
- Department of Chemistry, School of Advanced Sciences, VIT University, Vellore 632014, Tamil Nadu, India
| | | | - G Karthikeyan
- Amity Institute of Virology and Immunology, Amity University, Noida 201303, Uttar Pradesh, India
| | | | - Jerry P Jasinski
- Keene State College, 229 Main Street, Keene, New Hampshire 03435-200, United States
| | - Sundaramoorthy Sarveswari
- Department of Chemistry, School of Advanced Sciences, VIT University, Vellore 632014, Tamil Nadu, India
| |
Collapse
|
5
|
Ni D, Qi Z, Wang Y, Man Y, Pang J, Tang W, Chen J, Li J, Li G. KLF15-activated MARCH2 boosts cell proliferation and epithelial-mesenchymal transition and presents diagnostic significance for hepatocellular carcinoma. Exp Cell Res 2024; 440:114117. [PMID: 38848952 DOI: 10.1016/j.yexcr.2024.114117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/07/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024]
Abstract
PURPOSE Membrane associated ubiquitin ligase MARCH2 majorly involves in inflammation response and protein trafficking. However, its comprehensive role in hepatocellular carcinoma (HCC) is largely unknown. METHODS Firstly, multiple bioinformatic analyses were applied to determine MARCH2 mRNA level, its expression comparison in diverse molecular and immune subtypes, and diagnostic value in HCC. Subsequently, RNA-seq, real-time quantitative PCR, immunohistochemistry and cell proliferation assay are used to explore the epithelial-mesenchymal transition (EMT) and proliferation by gene-silencing or overexpressing in cultured HCC cells or in vivo xenograft. Moreover, dual luciferase reporter assay and immunoblotting are delved into verify the transcription factor that activating MARCH2 promoter. RESULTS Multiple bioinformatic analyses demonstrate that MARCH2 is upregulated in multiple cancer types and exhibits startling diagnostic value as well as distinct molecular and immune subtypes in HCC. RNA-seq analysis reveals MARCH2 may promote EMT, cell proliferation and migration in HepG2 cells. Furthermore, overexpression of MARCH2 triggers EMT and significantly enhances HCC cell migration, proliferation and colony formation in a ligase activity-dependent manner. Additionally, above observations are validated in the HepG2 mice xenografts. For up-stream mechanism, transcription factor KLF15 is highly expressed in HCC and activates MARCH2 expression. CONCLUSION KLF15 activated MARCH2 triggers EMT and serves as a fascinating biomarker for precise diagnosis of HCC. Consequently, MARCH2 emerges as a promising candidate for target therapy in cancer management.
Collapse
Affiliation(s)
- Dongsheng Ni
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, PR China; Graduate School of Peking Union Medical College, Beijing, 100730, PR China
| | - Zhaolai Qi
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, PR China; Graduate School of Peking Union Medical College, Beijing, 100730, PR China
| | - Yuefeng Wang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, PR China
| | - Yong Man
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, PR China
| | - Jing Pang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, PR China
| | - Weiqing Tang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, PR China
| | - Jingzhou Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China; National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Fuwai Central-China Hospital, Central-China Branch of National Center for Cardiovascular Diseases, Zhengzhou, PR China
| | - Jian Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, PR China
| | - Guoping Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, PR China; Graduate School of Peking Union Medical College, Beijing, 100730, PR China.
| |
Collapse
|
6
|
Huang SY, Gong S, Zhao Y, Ye ML, Li JY, He QM, Qiao H, Tan XR, Wang JY, Liang YL, Huang SW, He SW, Li YQ, Xu S, Li YQ, Liu N. PJA1-mediated suppression of pyroptosis as a driver of docetaxel resistance in nasopharyngeal carcinoma. Nat Commun 2024; 15:5300. [PMID: 38906860 PMCID: PMC11192944 DOI: 10.1038/s41467-024-49675-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 06/17/2024] [Indexed: 06/23/2024] Open
Abstract
Chemoresistance is a main reason for treatment failure in patients with nasopharyngeal carcinoma, but the exact regulatory mechanism underlying chemoresistance in nasopharyngeal carcinoma remains to be elucidated. Here, we identify PJA1 as a key E3 ubiquitin ligase involved in nasopharyngeal carcinoma chemoresistance that is highly expressed in nasopharyngeal carcinoma patients with nonresponse to docetaxel-cisplatin-5-fluorouracil induction chemotherapy. We find that PJA1 facilitates docetaxel resistance by inhibiting GSDME-mediated pyroptosis in nasopharyngeal carcinoma cells. Mechanistically, PJA1 promotes the degradation of the mitochondrial protein PGAM5 by increasing its K48-linked ubiquitination at K88, which further facilitates DRP1 phosphorylation at S637 and reduced mitochondrial reactive oxygen species production, resulting in suppression of GSDME-mediated pyroptosis and the antitumour immune response. PGAM5 knockdown fully restores the docetaxel sensitization effect of PJA1 knockdown. Moreover, pharmacological targeting of PJA1 with the small molecule inhibitor RTA402 enhances the docetaxel sensitivity of nasopharyngeal carcinoma in vitro and in vivo. Clinically, high PJA1 expression indicates inferior survival and poor clinical efficacy of TPF IC in nasopharyngeal carcinoma patients. Our study emphasizes the essential role of E3 ligases in regulating chemoresistance and provides therapeutic strategies for nasopharyngeal carcinoma based on targeting the ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Sheng-Yan Huang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Sha Gong
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Yin Zhao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Ming-Liang Ye
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Jun-Yan Li
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Qing-Mei He
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Han Qiao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Xi-Rong Tan
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Jing-Yun Wang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Ye-Lin Liang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Sai-Wei Huang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Shi-Wei He
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Ying-Qin Li
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Sha Xu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Ying-Qing Li
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China.
| | - Na Liu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China.
| |
Collapse
|
7
|
Yoon J, Hwang Y, Yun H, Chung JM, Kim S, Kim G, Lee Y, Lee B, Kang HC. LC3B drives transcription-associated homologous recombination via direct interaction with R-loops. Nucleic Acids Res 2024; 52:5088-5106. [PMID: 38412240 PMCID: PMC11109984 DOI: 10.1093/nar/gkae156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 02/29/2024] Open
Abstract
Exploring the connection between ubiquitin-like modifiers (ULMs) and the DNA damage response (DDR), we employed several advanced DNA damage and repair assay techniques and identified a crucial role for LC3B. Notably, its RNA recognition motif (RRM) plays a pivotal role in the context of transcription-associated homologous recombination (HR) repair (TA-HRR), a particular subset of HRR pathways. Surprisingly, independent of autophagy flux, LC3B interacts directly with R-loops at DNA lesions within transcriptionally active sites via its RRM, promoting TA-HRR. Using native RNA immunoprecipitation (nRIP) coupled with high-throughput sequencing (nRIP-seq), we discovered that LC3B also directly interacts with the 3'UTR AU-rich elements (AREs) of BRCA1 via its RRM, influencing its stability. This suggests that LC3B regulates TA-HRR both proximal to and distal from DNA lesions. Data from our LC3B depletion experiments showed that LC3B knockdown disrupts end-resection for TA-HRR, redirecting it towards the non-homologous end joining (NHEJ) pathway and leading to chromosomal instability, as evidenced by alterations in sister chromatid exchange (SCE) and interchromosomal fusion (ICF). Thus, our findings unveil autophagy-independent functions of LC3B in DNA damage and repair pathways, highlighting its importance. This could reshape our understanding of TA-HRR and the interaction between autophagy and DDR.
Collapse
Affiliation(s)
- Junghyun Yoon
- Department of Physiology, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea
| | - Yiseul Hwang
- Department of Physiology, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea
| | - Hansol Yun
- Department of Physiology, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea
| | - Jee Min Chung
- Department of Physiology, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea
| | - Soyeon Kim
- Department of Physiology, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea
| | - Gyeongmin Kim
- Department of Physiology, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea
| | - Yeji Lee
- Department of Physiology, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea
| | - Byoung Dae Lee
- Department of Neuroscience, Kyung Hee University, Seoul 02447; Department of Physiology, Kyung Hee University School of Medicine, Seoul 02447, Republic of Korea
| | - Ho Chul Kang
- Department of Physiology, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea
- Genomic Instability Research Center, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea
| |
Collapse
|
8
|
Peng Y, Xiao X, Ren B, Zhang Z, Luo J, Yang X, Zhu G. Biological activity and molecular mechanism of inactivation of Microcystis aeruginosa by ultrasound irradiation. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133742. [PMID: 38367436 DOI: 10.1016/j.jhazmat.2024.133742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 02/19/2024]
Abstract
Harmful algal blooms (HABs) significantly impact on water quality and ecological balance. Ultrasound irradiation has proven to be an effective method for algal control. Nevertheless, the molecular mechanisms underlying the inactivation of M. aeruginosa by ultrasound are still unknown. In this study, the physiological activity and molecular mechanism of algal cells exposed to different frequencies of ultrasound were studied. The results indicated a pronounced inhibition of algal cell growth by high-frequency, high-dose ultrasound. Moreover, with increasing ultrasound dosage, there was a higher percentage of algal cell membrane ruptures. SEM and TEM observed obvious disruptions in membrane structure and internal matrix. Hydroxyl radicals generated by high-frequency ultrasound inflicted substantial cell membrane damage, while increased antioxidant enzyme activities fortified cells against oxidative stress. Following 2 min of ultrasound irradiation at 740 kHz, significant differential gene expression occurred in various aspects, including energy metabolism, carbohydrate metabolism, and environmental information processing pathways. Moreover, ultrasound irradiation influenced DNA repair and cellular apoptosis, suggesting that the algal cells underwent biological stress to counteract the damage caused by ultrasound. These findings reveal that ultrasound irradiation inactivates algae by destroying their cell structures and metabolic pathways, thereby achieving the purpose of algal suppression.
Collapse
Affiliation(s)
- Yazhou Peng
- College of Civil Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Xiang Xiao
- College of Civil Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Bozhi Ren
- College of Civil Engineering, Hunan University of Science and Technology, Xiangtan 411201, China.
| | - Zhi Zhang
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Jun Luo
- Changsha Economic and Technical Development Zone Water Purification Engineering Co., Ltd, Changsha 410100, China
| | - Xiuzhen Yang
- College of Civil Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Guocheng Zhu
- College of Civil Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| |
Collapse
|
9
|
Hu Y, Luo M. Cinobufotalin regulates the USP36/c-Myc axis to suppress malignant phenotypes of colon cancer cells in vitro and in vivo. Aging (Albany NY) 2024; 16:5526-5544. [PMID: 38517383 PMCID: PMC11006458 DOI: 10.18632/aging.205661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 01/04/2024] [Indexed: 03/23/2024]
Abstract
Ubiquitin-specific protease 36 (USP36) has been reported to exhibit oncogenic effects in various malignancies, but the function of USP36 in colon cancer progression remains indefinite. Herein, we aimed to determine the role and mechanism of USP36 in malignant phenotypes of colon cancer cells and explore the potential drug targeting USP36. Bioinformatics analyses indicated that USP36 is highly expressed and significantly related to tumor stages in colon cancer. Besides, USP36 was further up-regulated in oxaliplatin (Oxa)-resistant colon cancer cells. Colony formation, Edu staining, Transwell, wound healing, sphere formation, and CCK-8 assays were conducted and showed that the proliferation, Oxa-resistance, migration, stemness, and invasion of HCT116 cells were promoted after overexpressing USP36, while suppressed by USP36 knockdown. Mechanically, USP36 enhances c-Myc protein stabilization in HCT116 cells via deubiquitination. AutoDock tool and ubiquitin-AMC hydrolysis assay identified cinobufotalin (CBF), an anti-tumor drug, maybe a USP36 inhibitor by inhibiting its deubiquitination activity. CBF significantly prohibited proliferation, migration, invasion, and stemness of HCT116 cells and reversed Oxa-resistance, whereas enforced expression of USP36 blocked these effects. Moreover, in vivo analyses confirmed the oncogenic role of USP36 and the therapeutic potential of CBF in the malignancy of colon cancer. In conclusion, CBF may be a promising therapeutic agent for colon cancer due to its regulation of the USP36/c-Myc axis.
Collapse
Affiliation(s)
- Yongjun Hu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Ming Luo
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| |
Collapse
|
10
|
Chen R, Zhang H, Li L, Li J, Xie J, Weng J, Tan H, Liu Y, Guo T, Wang M. Roles of ubiquitin-specific proteases in inflammatory diseases. Front Immunol 2024; 15:1258740. [PMID: 38322269 PMCID: PMC10844489 DOI: 10.3389/fimmu.2024.1258740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/02/2024] [Indexed: 02/08/2024] Open
Abstract
Ubiquitin-specific proteases (USPs), as one of the deubiquitinating enzymes (DUBs) families, regulate the fate of proteins and signaling pathway transduction by removing ubiquitin chains from the target proteins. USPs are essential for the modulation of a variety of physiological processes, such as DNA repair, cell metabolism and differentiation, epigenetic modulations as well as protein stability. Recently, extensive research has demonstrated that USPs exert a significant impact on innate and adaptive immune reactions, metabolic syndromes, inflammatory disorders, and infection via post-translational modification processes. This review summarizes the important roles of the USPs in the onset and progression of inflammatory diseases, including periodontitis, pneumonia, atherosclerosis, inflammatory bowel disease, sepsis, hepatitis, diabetes, and obesity. Moreover, we highlight a comprehensive overview of the pathogenesis of USPs in these inflammatory diseases as well as post-translational modifications in the inflammatory responses and pave the way for future prospect of targeted therapies in these inflammatory diseases.
Collapse
Affiliation(s)
- Rui Chen
- Center of Obesity and Metabolic Diseases, Department of General Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- Department of Stomatology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Hui Zhang
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
- College of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Linke Li
- Center of Obesity and Metabolic Diseases, Department of General Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- Department of Stomatology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Jinsheng Li
- College of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Jiang Xie
- Department of Pediatrics, Chengdu Third People's Hospital, Chengdu, Sichuan, China
| | - Jie Weng
- College of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Huan Tan
- Center of Obesity and Metabolic Diseases, Department of General Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Yanjun Liu
- Center of Obesity and Metabolic Diseases, Department of General Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Tailin Guo
- Center of Obesity and Metabolic Diseases, Department of General Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Mengyuan Wang
- Center of Obesity and Metabolic Diseases, Department of General Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- Department of Stomatology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| |
Collapse
|
11
|
Zhou SQ, Feng P, Ye ML, Huang SY, He SW, Zhu XH, Chen J, Zhang Q, Li YQ. The E3 ligase NEURL3 suppresses epithelial-mesenchymal transition and metastasis in nasopharyngeal carcinoma by promoting vimentin degradation. J Exp Clin Cancer Res 2024; 43:14. [PMID: 38191501 PMCID: PMC10775674 DOI: 10.1186/s13046-024-02945-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/30/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND Metastasis has emerged as the major reason of treatment failure and mortality in patients with nasopharyngeal carcinoma (NPC). Growing evidence links abnormal DNA methylation to the initiation and progression of NPC. However, the precise regulatory mechanism behind these processes remains poorly understood. METHODS Bisulfite pyrosequencing, RT-qPCR, western blot, and immunohistochemistry were used to test the methylation and expression level of NEURL3 and its clinical significance. The biological function of NEURL3 was examined both in vitro and in vivo. Mass spectrometry, co-immunohistochemistry, immunofluorescence staining, and ubiquitin assays were performed to explore the regulatory mechanism of NEURL3. RESULTS The promoter region of NEURL3, encoding an E3 ubiquitin ligase, was obviously hypermethylated, leading to its downregulated expression in NPC. Clinically, NPC patients with a low NEURL3 expression indicated an unfavorable prognosis and were prone to develop distant metastasis. Overexpression of NEURL3 could suppress the epithelial mesenchymal transition and metastasis of NPC cells in vitro and in vivo. Mechanistically, NEURL3 promoted Vimentin degradation by increasing its K48-linked polyubiquitination at lysine 97. Specifically, the restoration of Vimentin expression could fully reverse the tumor suppressive effect of NEURL3 overexpression in NPC cells. CONCLUSIONS Collectively, our study uncovers a novel mechanism by which NEURL3 inhibits NPC metastasis, thereby providing a promising therapeutic target for NPC treatment.
Collapse
Affiliation(s)
- Shi-Qing Zhou
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- Otorhinolaryngology Head and Neck Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Ping Feng
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Ming-Liang Ye
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Sheng-Yan Huang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Shi-Wei He
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Xun-Hua Zhu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Jun Chen
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Qun Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Second Road, Guangzhou, 510080, People's Republic of China.
| | - Ying-Qing Li
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China.
| |
Collapse
|
12
|
Wang T, Li X, Liao G, Wang Z, Han X, Gu J, Mu X, Qiu J, Qian Y. AFB1 Triggers Lipid Metabolism Disorders through the PI3K/Akt Pathway and Mediates Apoptosis Leading to Hepatotoxicity. Foods 2024; 13:163. [PMID: 38201191 PMCID: PMC10778638 DOI: 10.3390/foods13010163] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
As the most prevalent mycotoxin in agricultural products, aflatoxin B1 not only causes significant economic losses but also poses a substantial threat to human and animal health. AFB1 has been shown to increase the risk of hepatocellular carcinoma (HCC) but the underlying mechanism is not thoroughly researched. Here, we explored the toxicity mechanism of AFB1 on human hepatocytes following low-dose exposure based on transcriptomics and lipidomics. Apoptosis-related pathways were significantly upregulated after AFB1 exposure in all three hES-Hep, HepaRG, and HepG2 hepatogenic cell lines. By conducting a comparative analysis with the TCGA-LIHC database, four biomarkers (MTCH1, PPM1D, TP53I3, and UBC) shared by AFB1 and HCC were identified (hazard ratio > 1), which can be used to monitor the degree of AFB1-induced hepatotoxicity. Simultaneously, AFB1 induced abnormal metabolism of glycerolipids, sphingolipids, and glycerophospholipids in HepG2 cells (FDR < 0.05, impact > 0.1). Furthermore, combined analysis revealed strong regulatory effects between PIK3R1 and sphingolipids (correlation coefficient > 0.9), suggesting potential mediation by the phosphatidylinositol 3 kinase (PI3K) /protein kinase B (AKT) signaling pathway within mitochondria. This study revealed the dysregulation of lipid metabolism induced by AFB1 and found novel target genes associated with AFB-induced HCC development, providing reliable evidence for elucidating the hepatotoxicity of AFB as well as assessing food safety risks.
Collapse
Affiliation(s)
- Tiancai Wang
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (T.W.); (X.L.); (G.L.); (Z.W.); (J.G.); (X.M.); (J.Q.)
- Key Laboratory of Agri-Food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Xiabing Li
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (T.W.); (X.L.); (G.L.); (Z.W.); (J.G.); (X.M.); (J.Q.)
- Key Laboratory of Agri-Food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Guangqin Liao
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (T.W.); (X.L.); (G.L.); (Z.W.); (J.G.); (X.M.); (J.Q.)
- Key Laboratory of Agri-Food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Zishuang Wang
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (T.W.); (X.L.); (G.L.); (Z.W.); (J.G.); (X.M.); (J.Q.)
- Key Laboratory of Agri-Food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Xiaoxu Han
- National Center of Technology Innovation for Dairy, Hohhot 010100, China;
| | - Jingyi Gu
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (T.W.); (X.L.); (G.L.); (Z.W.); (J.G.); (X.M.); (J.Q.)
- Key Laboratory of Agri-Food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Xiyan Mu
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (T.W.); (X.L.); (G.L.); (Z.W.); (J.G.); (X.M.); (J.Q.)
- Key Laboratory of Agri-Food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Jing Qiu
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (T.W.); (X.L.); (G.L.); (Z.W.); (J.G.); (X.M.); (J.Q.)
- Key Laboratory of Agri-Food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Yongzhong Qian
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (T.W.); (X.L.); (G.L.); (Z.W.); (J.G.); (X.M.); (J.Q.)
- Key Laboratory of Agri-Food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| |
Collapse
|
13
|
Barchielli G, Capperucci A, Tanini D. Therapeutic cysteine protease inhibitors: a patent review (2018-present). Expert Opin Ther Pat 2024; 34:17-49. [PMID: 38445468 DOI: 10.1080/13543776.2024.2327299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/04/2024] [Indexed: 03/07/2024]
Abstract
INTRODUCTION Cysteine proteases are involved in a broad range of biological functions, ranging from extracellular matrix turnover to immunity. Playing an important role in the onset and progression of several diseases, including cancer, immune-related and neurodegenerative disease, viral and parasitic infections, cysteine proteases represent an attractive drug target for the development of therapeutic tools. AREAS COVERED Recent scientific and patent literature focusing on the design and study of cysteine protease inhibitors with potential therapeutic application has been reviewed. EXPERT OPINION The discovery of a number of effective structurally diverse cysteine protease inhibitors opened up new challenges and opportunities for the development of therapeutic tools. Mechanistic studies and the availability of X-ray crystal structures of some proteases, alone and in complex with inhibitors, provide crucial information for the rational design and development of efficient and selective cysteine protease inhibitors as preclinical candidates for the treatment of different diseases.
Collapse
Affiliation(s)
- Giulia Barchielli
- Department of Chemistry 'Ugo Schiff', University of Florence, Sesto Fiorentino FI, Italy
| | - Antonella Capperucci
- Department of Chemistry 'Ugo Schiff', University of Florence, Sesto Fiorentino FI, Italy
| | | |
Collapse
|
14
|
Le Clorennec C, Subramonian D, Huo Y, Zage PE. UBE4B interacts with the ITCH E3 ubiquitin ligase to induce Ku70 and c-FLIPL polyubiquitination and enhanced neuroblastoma apoptosis. Cell Death Dis 2023; 14:739. [PMID: 37957138 PMCID: PMC10643674 DOI: 10.1038/s41419-023-06252-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 10/22/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023]
Abstract
Expression of the UBE4B ubiquitin ligase is strongly associated with neuroblastoma patient outcomes, but the functional roles of UBE4B in neuroblastoma pathogenesis are not known. We evaluated interactions of UBE4B with the E3 ubiquitin ligase ITCH/AIP4 and the effects of UBE4B expression on Ku70 and c-FLIPL ubiquitination and proteasomal degradation by co-immunoprecipitation and Western blots. We also evaluated the role of UBE4B in apoptosis induced by histone deacetylase (HDAC) inhibition using Western blots. UBE4B binding to ITCH was mediated by WW domains in the ITCH protein. ITCH activation led to ITCH-UBE4B complex formation and recruitment of Ku70 and c-FLIPL via ITCH WW domains, followed by Ku70 and c-FLIPL Lys48/Lys63 branched polyubiquitination and proteasomal degradation. HDAC inhibition induced Ku70 acetylation, leading to release of c-FLIPL and Bax from Ku70, increased Ku70 and c-FLIPL Lys48/Lys63 branched polyubiquitination via the ITCH-UBE4B complex, and induction of apoptosis. UBE4B depletion led to reduced polyubiquitination and increased levels of Ku70 and c-FLIPL and to reduced apoptosis induced by HDAC inhibition via stabilization of c-FLIPL and Ku70 and inhibition of caspase 8 activation. Our results have identified novel interactions and novel targets for UBE4B ubiquitin ligase activity and a direct role for the ITCH-UBE4B complex in responses of neuroblastoma cells to HDAC inhibition, suggesting that the ITCH-UBE4B complex plays a critical role in responses of neuroblastoma to therapy and identifying a potential mechanism underlying the association of UBE4B expression with neuroblastoma patient outcomes.
Collapse
Affiliation(s)
- Christophe Le Clorennec
- Department of Pediatrics, Division of Hematology-Oncology, University of California San Diego, La Jolla, CA, USA
| | - Divya Subramonian
- Department of Pediatrics, Division of Hematology-Oncology, University of California San Diego, La Jolla, CA, USA
| | - Yuchen Huo
- Department of Pediatrics, Division of Hematology-Oncology, University of California San Diego, La Jolla, CA, USA
| | - Peter E Zage
- Department of Pediatrics, Division of Hematology-Oncology, University of California San Diego, La Jolla, CA, USA.
- Peckham Center for Cancer and Blood Disorders, Rady Children's Hospital, San Diego, CA, USA.
| |
Collapse
|
15
|
Celada SI, Li G, Celada LJ, Lu W, Kanagasabai T, Feng W, Cao Z, Salsabeel N, Mao N, Brown LK, Mark ZA, Izban MG, Ballard BR, Zhou X, Adunyah SE, Matusik RJ, Wang X, Chen Z. Lysosome-dependent FOXA1 ubiquitination contributes to luminal lineage of advanced prostate cancer. Mol Oncol 2023; 17:2126-2146. [PMID: 37491794 PMCID: PMC10552895 DOI: 10.1002/1878-0261.13497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 06/13/2023] [Accepted: 07/24/2023] [Indexed: 07/27/2023] Open
Abstract
Changes in FOXA1 (forkhead box protein A1) protein levels are well associated with prostate cancer (PCa) progression. Unfortunately, direct targeting of FOXA1 in progressive PCa remains challenging due to variations in FOXA1 protein levels, increased FOXA1 mutations at different stages of PCa, and elusive post-translational FOXA1 regulating mechanisms. Here, we show that SKP2 (S-phase kinase-associated protein 2) catalyzes K6- and K29-linked polyubiquitination of FOXA1 for lysosomal-dependent degradation. Our data indicate increased SKP2:FOXA1 protein ratios in stage IV human PCa compared to stages I-III, together with a strong inverse correlation (r = -0.9659) between SKP2 and FOXA1 levels, suggesting that SKP2-FOXA1 protein interactions play a significant role in PCa progression. Prostate tumors of Pten/Trp53 mice displayed increased Skp2-Foxa1-Pcna signaling and colocalization, whereas disruption of the Skp2-Foxa1 interplay in Pten/Trp53/Skp2 triple-null mice demonstrated decreased Pcna levels and increased expression of Foxa1 and luminal positive cells. Treatment of xenograft mice with the SKP2 inhibitor SZL P1-41 decreased tumor proliferation, SKP2:FOXA1 ratios, and colocalization. Thus, our results highlight the significance of the SKP2-FOXA1 interplay on the luminal lineage in PCa and the potential of therapeutically targeting FOXA1 through SKP2 to improve PCa control.
Collapse
Affiliation(s)
- Sherly I. Celada
- Department of Biochemistry, Cancer Biology, Neuroscience and PharmacologyMeharry Medical CollegeNashvilleTNUSA
- Department of Biological SciencesTennessee State UniversityNashvilleTNUSA
| | - Guoliang Li
- Department of Biochemistry, Cancer Biology, Neuroscience and PharmacologyMeharry Medical CollegeNashvilleTNUSA
| | | | - Wenfu Lu
- Department of Biochemistry, Cancer Biology, Neuroscience and PharmacologyMeharry Medical CollegeNashvilleTNUSA
| | - Thanigaivelan Kanagasabai
- Department of Biochemistry, Cancer Biology, Neuroscience and PharmacologyMeharry Medical CollegeNashvilleTNUSA
| | - Weiran Feng
- Human Oncology and Pathogenesis ProgramMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Zhen Cao
- Human Oncology and Pathogenesis ProgramMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
- Weill Cornell Graduate School of Medical SciencesWeill Cornell MedicineNew YorkNYUSA
| | - Nazifa Salsabeel
- Human Oncology and Pathogenesis ProgramMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Ninghui Mao
- Human Oncology and Pathogenesis ProgramMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - LaKendria K. Brown
- Department of Biochemistry, Cancer Biology, Neuroscience and PharmacologyMeharry Medical CollegeNashvilleTNUSA
| | - Zaniya A. Mark
- Department of Biochemistry, Cancer Biology, Neuroscience and PharmacologyMeharry Medical CollegeNashvilleTNUSA
| | - Michael G. Izban
- Department of Pathology, Anatomy and Cell BiologyMeharry Medical CollegeNashvilleTNUSA
| | - Billy R. Ballard
- Department of Pathology, Anatomy and Cell BiologyMeharry Medical CollegeNashvilleTNUSA
| | - Xinchun Zhou
- Department of PathologyUniversity of Mississippi Medical CenterJacksonMSUSA
| | - Samuel E. Adunyah
- Department of Biochemistry, Cancer Biology, Neuroscience and PharmacologyMeharry Medical CollegeNashvilleTNUSA
| | - Robert J. Matusik
- Department of UrologyVanderbilt University Medical CenterNashvilleTNUSA
| | - Xiaofei Wang
- Department of Biological SciencesTennessee State UniversityNashvilleTNUSA
| | - Zhenbang Chen
- Department of Biochemistry, Cancer Biology, Neuroscience and PharmacologyMeharry Medical CollegeNashvilleTNUSA
| |
Collapse
|
16
|
Long D, Zhang R, Du C, Tong J, Ni Y, Zhou Y, Zuo Y, Liao M. Integrated analysis of the ubiquitination mechanism reveals the specific signatures of tissue and cancer. BMC Genomics 2023; 24:523. [PMID: 37667177 PMCID: PMC10478310 DOI: 10.1186/s12864-023-09583-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/13/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Ubiquitination controls almost all cellular processes. The dysregulation of ubiquitination signals is closely associated with the initiation and progression of multiple diseases. However, there is little comprehensive research on the interaction and potential function of ubiquitination regulators (UBRs) in spermatogenesis and cancer. METHODS We systematically characterized the mRNA and protein expression of UBRs across tissues and further evaluated their roles in testicular development and spermatogenesis. Subsequently, we explored the genetic alterations, expression perturbations, cancer hallmark-related pathways, and clinical relevance of UBRs in pan-cancer. RESULTS This work reveals heterogeneity in the expression patterns of UBRs across tissues, and the expression pattern in testis is the most distinct. UBRs are dynamically expressed during testis development, which are critical for normal spermatogenesis. Furthermore, UBRs have widespread genetic alterations and expression perturbations in pan-cancer. The expression of 79 UBRs was identified to be closely correlated with the activity of 32 cancer hallmark-related pathways, and ten hub genes were screened for further clinical relevance analysis by a network-based method. More than 90% of UBRs can affect the survival of cancer patients, and hub genes have an excellent prognostic classification for specific cancer types. CONCLUSIONS Our study provides a comprehensive analysis of UBRs in spermatogenesis and pan-cancer, which can build a foundation for understanding male infertility and developing cancer drugs in the aspect of ubiquitination.
Collapse
Affiliation(s)
- Deyu Long
- Center of Bioinformatics, College of Life Sciences, Northwest A&F University, 712100, Yangling, Shaanxi, China
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, 010070, Hohhot, China
| | - Ruiqi Zhang
- Center of Bioinformatics, College of Life Sciences, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Changjian Du
- Center of Bioinformatics, College of Life Sciences, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Jiapei Tong
- College of Information Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Yu Ni
- Center of Bioinformatics, College of Life Sciences, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Yaqi Zhou
- Center of Bioinformatics, College of Life Sciences, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Yongchun Zuo
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, 010070, Hohhot, China.
| | - Mingzhi Liao
- Center of Bioinformatics, College of Life Sciences, Northwest A&F University, 712100, Yangling, Shaanxi, China.
| |
Collapse
|
17
|
Zhang Y, Li QS, Liu HL, Tang HT, Yang HL, Wu DQ, Huang YY, Li LC, Liu LH, Li MX. MKRN1 promotes colorectal cancer metastasis by activating the TGF-β signalling pathway through SNIP1 protein degradation. J Exp Clin Cancer Res 2023; 42:219. [PMID: 37620897 PMCID: PMC10464235 DOI: 10.1186/s13046-023-02788-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/03/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND The Makorin ring finger protein 1 (MKRN1) gene, also called RNF61, is located on the long arm of chromosome 7 and is a member of the RING finger protein family. The E3 ubiquitin ligase MKRN1 is closely linked to tumour development, but the exact mechanism needs to be elucidated. In this study, we aimed to investigate the specific mechanism and role of MKRN1 in colorectal cancer (CRC) development. METHODS MKRN1 expression in CRC was analysed using the Cancer Cell Line Encyclopaedia and the Cancer Genome Atlas (TCGA) databases. Rectal tumour tissues were frozen to explore the MKRN1 expression in CRC and its clinical significance. The impact of MKRN1 on CRC cell proliferation and migration was observed using CCK8, colony formation, wound healing, and transwell assays. A combination of MKRN1 quantitative proteomics, ubiquitination modification omics analysis, and a string of in vitro and in vivo experiments revealed the potential mechanisms by which MKRN1 regulates CRC metastasis. RESULTS MKRN1 expression was significantly elevated in CRC tissues compared to paracancerous tissues and was positively linked with prognosis (P < 0.01). MKRN1 downregulation inhibits CRC cell proliferation, migration, and invasion. Conversely, MKRN1 overexpression promotes the proliferation, migration, and invasion of CRC cells. Mechanistically, MKRN1 induces epithelial-mesenchymal transition (EMT) in CRC cells via ubiquitination and degradation of Smad nuclear-interacting protein 1 (SNIP1). Furthermore, SNIP1 inhibits transforming growth factor-β (TGF-β) signalling, and MKRN1 promotes TGF-β signalling by degrading SNIP1 to induce EMT in CRC cells. Finally, using conditional knockout mice, intestinal lesions and metastatic liver microlesions were greatly reduced in the intestinal knockout MKRN1 group compared to that in the control group. CONCLUSIONS High MKRN1 levels promote TGF-β signalling through ubiquitination and degradation of SNIP1, thereby facilitating CRC metastasis, and supporting MKRN1 as a CRC pro-cancer factor. The MKRN1/SNIP1/TGF-β axis may be a potential therapeutic target in CRC.
Collapse
Affiliation(s)
- Yi Zhang
- Guizhou Prenatal Diagnosis Center, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, People's Republic of China
- Department of Clinical Biochemistry, School of Medical Laboratory Science, Guizhou Medical University, Guizhou, Guiyang, 550004, People's Republic of China
| | - Qin-Shan Li
- Guizhou Prenatal Diagnosis Center, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, People's Republic of China.
- Department of Clinical Biochemistry, School of Medical Laboratory Science, Guizhou Medical University, Guizhou, Guiyang, 550004, People's Republic of China.
| | - Hong-Lin Liu
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100000, People's Republic of China
| | - Hong-Ting Tang
- Department of Clinical Biochemistry, School of Medical Laboratory Science, Guizhou Medical University, Guizhou, Guiyang, 550004, People's Republic of China
| | - Han-Lin Yang
- Department of Clinical Biochemistry, School of Medical Laboratory Science, Guizhou Medical University, Guizhou, Guiyang, 550004, People's Republic of China
| | - Dao-Qiu Wu
- Department of Clinical Biochemistry, School of Medical Laboratory Science, Guizhou Medical University, Guizhou, Guiyang, 550004, People's Republic of China
| | - Yu-Ying Huang
- Department of Clinical Biochemistry, School of Medical Laboratory Science, Guizhou Medical University, Guizhou, Guiyang, 550004, People's Republic of China
| | - Li-Cheng Li
- Clinical Medical College, Guizhou Medical University, Guizhou, Guiyang, 550004, People's Republic of China
- Department of HematologyGuizhou Province Laboratory of Hematopoietic Stem Cell Transplantation Centre, Affiliated Hospital of Guizhou Medical University, Guizhou Province Institute of Hematology, Guizhou, Guiyang, People's Republic of China
| | - Li-Hong Liu
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China.
| | - Meng-Xing Li
- Clinical Medical College, Guizhou Medical University, Guizhou, Guiyang, 550004, People's Republic of China.
- Department of HematologyGuizhou Province Laboratory of Hematopoietic Stem Cell Transplantation Centre, Affiliated Hospital of Guizhou Medical University, Guizhou Province Institute of Hematology, Guizhou, Guiyang, People's Republic of China.
- Department of Pathophysiology, Guizhou Medical University, Guizhou, Guiyang, 550004, People's Republic of China.
| |
Collapse
|
18
|
Chen S, Zhang J, Sun D, Wu Y, Fang J, Wan X, Li S, Zhang S, Gu Q, Shao Q, Dong J, Xu X, Wei F, Sun Q. SYVN1 Promotes STAT3 Protein Ubiquitination and Exerts Antiangiogenesis Effects in Retinopathy of Prematurity Development. Invest Ophthalmol Vis Sci 2023; 64:8. [PMID: 37540175 PMCID: PMC10408771 DOI: 10.1167/iovs.64.11.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/17/2023] [Indexed: 08/05/2023] Open
Abstract
PURPOSE SYVN1, a gene involved in endoplasmic reticulum-associated degradation, has been found to exert a protective effect by inhibiting inflammation in retinopathy. This study aimed to clarify whether SYVN1 is involved in the pathogenesis of retinopathy of prematurity (ROP) and its potential as a candidate for target therapy. METHODS Human retinal microvascular endothelial cells (hRMECs) and a mouse model of oxygen-induced retinopathy (OIR) were used to reveal the retinopathy development-associated protein expression and molecular mechanism. An adenovirus overexpressing SYVN1 or vehicle control was injected intravitreally at postnatal day 12 (P12), and the neovascular lesions were evaluated in retinal flatmounts with immunofluorescence staining, and hematoxylin and eosin staining at P17. Visual function was assessed by using electroretinogram (ERG). RESULTS Endogenous SYVN1 expression dramatically decreased in hRMECs under hypoxia and in ROP mouse retinas. SYVN1 regulated the signal transducer and activator of transcription 3 (STAT3)/vascular endothelial growth factor (VEGF) axis. SYVN1 overexpression promoted ubiquitination and degradation of STAT3, decreased the levels of phospho-STAT3, secretion of VEGF, and formation of neovascularization in hRMECs, which could be rescued by STAT3 activator treatment. In addition, SYVN1 overexpression prevented neovascularization and extended physiologic retinal vascular development in the retinal tissues of OIR mice without affecting retinal function. CONCLUSIONS SYVN1 has a protective effect against OIR, and the molecular mechanisms are partly through SYVN1-mediated ubiquitination of STAT3 and the subsequent downregulation of VEGF. These findings strongly support our assumption that SYVN1 confers ROP resistance and may be a potentially novel pharmaceutical target against proliferative retinopathy.
Collapse
Affiliation(s)
- Shimei Chen
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Jian Zhang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Dandan Sun
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Yidong Wu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Junwei Fang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Xiaoling Wan
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Shenping Li
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Shuchang Zhang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Qing Gu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Qing Shao
- Department of Ophthalmology, Shanghai Aier Eye Hospital, Xuhui District, Shanghai Aier Eye Institute, Shanghai, China
| | - Jun Dong
- Department of Ophthalmology, Shanghai Aier Eye Hospital, Xuhui District, Shanghai Aier Eye Institute, Shanghai, China
| | - Xun Xu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Fang Wei
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Qiao Sun
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
- Department of Ophthalmology, Shanghai Aier Eye Hospital, Xuhui District, Shanghai Aier Eye Institute, Shanghai, China
| |
Collapse
|
19
|
Xu T, Zhu C, Chen J, Song F, Ren X, Wang S, Yi X, Zhang Y, Zhang W, Hu Q, Qin H, Liu Y, Zhang S, Tan Z, Pan Z, Huang P, Ge M. ISG15 and ISGylation modulates cancer stem cell-like characteristics in promoting tumor growth of anaplastic thyroid carcinoma. J Exp Clin Cancer Res 2023; 42:182. [PMID: 37501099 PMCID: PMC10373324 DOI: 10.1186/s13046-023-02751-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/06/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND Anaplastic thyroid carcinoma (ATC) was a rare and extremely malignant endocrine cancer with the distinct hallmark of high proportion of cancer stem cell-like characteristics. Therapies aiming to cancer stem-like cells (CSCs) were emerging as a new direction in cancer treatment, but targeting ATC CSCs remained challenging, mainly due to incomplete insights of the regulatory mechanism of CSCs. Here, we unveiled a novel role of ISG15 in the modulation of ATC CSCs. METHODS The expression of ubiquitin-like proteins were detected by bioinformatics and immunohistochemistry. The correlation between ISG15 expression and tumor stem cells and malignant progression of ATC was analyzed by single-cell RNA sequence from the Gene Expression Omnibus. Flow cytometry combined with immunofluorescence were used to verify the enrichment of ISG15 and ISGyaltion in cancer stem cells. The effect and mechanism of ISG15 and KPNA2 on cancer stem cell-like characteristics of ATC cells were determined by molecular biology experiments. Mass spectrometry combined with immunoprecipitation to screen the substrates of ISG15 and validate its ISGylation modification. Nude mice and zebrafish xenograft models were utilized to demonstrate that ISG15 regulates stem cell characteristics and promotes malignant progression of ATC. RESULTS We found that among several ubiquitin proteins, only ISG15 was aberrantly expressed in ATC and enriched in CSCs. Single-cell sequencing analysis revealed that abnormal expression of ISG15 were intensely associated with stemness and malignant cells in ATC. Inhibition of ISG15 expression dramatically attenuated clone and sphere formation of ATC cells, and facilitated its sensitivity to doxorubicin. Notably, overexpression of ISGylation, but not the non-ISGylation mutant, effectively reinforced cancer stem cell-like characteristics. Mechanistically, ISG15 mediated the ISGylation of KPNA2 and impeded its ubiquitination to promote stability, further maintaining cancer stem cell-like characteristics. Finally, depletion of ISG15 inhibited ATC growth and metastasis in xenografted mouse and zebrafish models. CONCLUSION Our studies not only provided new insights into potential intervention strategies targeting ATC CSCs, but also uncovered the novel biological functions and mechanisms of ISG15 and ISGylation for maintaining ATC cancer stem cell-like characteristics.
Collapse
Affiliation(s)
- Tong Xu
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Chaozhuang Zhu
- Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Jinming Chen
- Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Feifeng Song
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xinxin Ren
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Shanshan Wang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiaofen Yi
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yiwen Zhang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Wanli Zhang
- Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Qing Hu
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Hui Qin
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yujia Liu
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Song Zhang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zhuo Tan
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Affiliated People's Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Zhejiang, Hangzhou, China
| | - Zongfu Pan
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Ping Huang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Minghua Ge
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Affiliated People's Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Zhejiang, Hangzhou, China.
| |
Collapse
|
20
|
Lamas-Maceiras M, Vizoso-Vázquez Á, Barreiro-Alonso A, Cámara-Quílez M, Cerdán ME. Thanksgiving to Yeast, the HMGB Proteins History from Yeast to Cancer. Microorganisms 2023; 11:microorganisms11040993. [PMID: 37110415 PMCID: PMC10142021 DOI: 10.3390/microorganisms11040993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Yeasts have been a part of human life since ancient times in the fermentation of many natural products used for food. In addition, in the 20th century, they became powerful tools to elucidate the functions of eukaryotic cells as soon as the techniques of molecular biology developed. Our molecular understandings of metabolism, cellular transport, DNA repair, gene expression and regulation, and the cell division cycle have all been obtained through biochemistry and genetic analysis using different yeasts. In this review, we summarize the role that yeasts have had in biological discoveries, the use of yeasts as biological tools, as well as past and on-going research projects on HMGB proteins along the way from yeast to cancer.
Collapse
Affiliation(s)
- Mónica Lamas-Maceiras
- Centro Interdisciplinar de Química y Biología (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
- Facultad de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
| | - Ángel Vizoso-Vázquez
- Centro Interdisciplinar de Química y Biología (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
- Facultad de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
| | - Aida Barreiro-Alonso
- Centro Interdisciplinar de Química y Biología (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
- Facultad de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
| | - María Cámara-Quílez
- Centro Interdisciplinar de Química y Biología (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
- Facultad de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
| | - María Esperanza Cerdán
- Centro Interdisciplinar de Química y Biología (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
- Facultad de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
| |
Collapse
|
21
|
Khazaal A, Zandavi SM, Smolnikov A, Fatima S, Vafaee F. Pan-Cancer Analysis Reveals Functional Similarity of Three lncRNAs across Multiple Tumors. Int J Mol Sci 2023; 24:ijms24054796. [PMID: 36902227 PMCID: PMC10003012 DOI: 10.3390/ijms24054796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are emerging as key regulators in many biological processes. The dysregulation of lncRNA expression has been associated with many diseases, including cancer. Mounting evidence suggests lncRNAs to be involved in cancer initiation, progression, and metastasis. Thus, understanding the functional implications of lncRNAs in tumorigenesis can aid in developing novel biomarkers and therapeutic targets. Rich cancer datasets, documenting genomic and transcriptomic alterations together with advancement in bioinformatics tools, have presented an opportunity to perform pan-cancer analyses across different cancer types. This study is aimed at conducting a pan-cancer analysis of lncRNAs by performing differential expression and functional analyses between tumor and non-neoplastic adjacent samples across eight cancer types. Among dysregulated lncRNAs, seven were shared across all cancer types. We focused on three lncRNAs, found to be consistently dysregulated among tumors. It has been observed that these three lncRNAs of interest are interacting with a wide range of genes across different tissues, yet enriching substantially similar biological processes, found to be implicated in cancer progression and proliferation.
Collapse
Affiliation(s)
- Abir Khazaal
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW 2052, Australia
- UNSW Data Science Hub, University of New South Wales, Sydney, NSW 2052, Australia
| | - Seid Miad Zandavi
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW 2052, Australia
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Andrei Smolnikov
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW 2052, Australia
| | - Shadma Fatima
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW 2052, Australia
- Ingham Institute of Applied Medical Research, Sydney, NSW 2170, Australia
| | - Fatemeh Vafaee
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW 2052, Australia
- UNSW Data Science Hub, University of New South Wales, Sydney, NSW 2052, Australia
- Correspondence:
| |
Collapse
|
22
|
Li JY, Zhao Y, Gong S, Wang MM, Liu X, He QM, Li YQ, Huang SY, Qiao H, Tan XR, Ye ML, Zhu XH, He SW, Li Q, Liang YL, Chen KL, Huang SW, Li QJ, Ma J, Liu N. TRIM21 inhibits irradiation-induced mitochondrial DNA release and impairs antitumour immunity in nasopharyngeal carcinoma tumour models. Nat Commun 2023; 14:865. [PMID: 36797289 PMCID: PMC9935546 DOI: 10.1038/s41467-023-36523-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 02/02/2023] [Indexed: 02/18/2023] Open
Abstract
Although radiotherapy can promote antitumour immunity, the mechanisms underlying this phenomenon remain unclear. Here, we demonstrate that the expression of the E3 ubiquitin ligase, tumour cell-intrinsic tripartite motif-containing 21 (TRIM21) in tumours, is inversely associated with the response to radiation and CD8+ T cell-mediated antitumour immunity in nasopharyngeal carcinoma (NPC). Knockout of TRIM21 modulates the cGAS/STING cytosolic DNA sensing pathway, potentiates the antigen-presenting capacity of NPC cells, and activates cytotoxic T cell-mediated antitumour immunity in response to radiation. Mechanistically, TRIM21 promotes the degradation of the mitochondrial voltage-dependent anion-selective channel protein 2 (VDAC2) via K48-linked ubiquitination, which inhibits pore formation by VDAC2 oligomers for mitochondrial DNA (mtDNA) release, thereby inhibiting type-I interferon responses following radiation exposure. In patients with NPC, high TRIM21 expression was associated with poor prognosis and early tumour relapse after radiotherapy. Our findings reveal a critical role of TRIM21 in radiation-induced antitumour immunity, providing potential targets for improving the efficacy of radiotherapy in patients with NPC.
Collapse
Affiliation(s)
- Jun-Yan Li
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, P.R. China
| | - Yin Zhao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, P.R. China
| | - Sha Gong
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, P.R. China
| | - Miao-Miao Wang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, P.R. China
| | - Xu Liu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, P.R. China
| | - Qing-Mei He
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, P.R. China
| | - Ying-Qin Li
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, P.R. China
| | - Sheng-Yan Huang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, P.R. China
| | - Han Qiao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, P.R. China
| | - Xi-Rong Tan
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, P.R. China
| | - Ming-Liang Ye
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, P.R. China
| | - Xun-Hua Zhu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, P.R. China
| | - Shi-Wei He
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, P.R. China
| | - Qian Li
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, P.R. China
| | - Ye-Lin Liang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, P.R. China
| | - Kai-Lin Chen
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, P.R. China
| | - Sai-Wei Huang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, P.R. China
| | - Qing-Jie Li
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, P.R. China
| | - Jun Ma
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, P.R. China. .,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
| | - Na Liu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, P.R. China.
| |
Collapse
|
23
|
Progress in targeting PTEN/PI3K/Akt axis in glioblastoma therapy: Revisiting molecular interactions. Biomed Pharmacother 2023; 158:114204. [PMID: 36916430 DOI: 10.1016/j.biopha.2022.114204] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/16/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023] Open
Abstract
Glioblastoma (GBM) is one of the most malignant cancers of central nervous system and due to its sensitive location, surgical resection has high risk and therefore, chemotherapy and radiotherapy are utilized for its treatment. However, chemoresistance and radio-resistance are other problems in GBM treatment. Hence, new therapies based on genes are recommended for treatment of GBM. PTEN is a tumor-suppressor operator in cancer that inhibits PI3K/Akt/mTOR axis in diminishing growth, metastasis and drug resistance. In the current review, the function of PTEN/PI3K/Akt axis in GBM progression is evaluated. Mutation or depletion of PTEN leads to increase in GBM progression. Low expression level of PTEN mediates poor prognosis in GBM and by increasing proliferation and invasion, promotes malignancy of tumor cells. Moreover, loss of PTEN signaling can result in therapy resistance in GBM. Activation of PTEN signaling impairs GBM metabolism via glycolysis inhibition. In contrast to PTEN, PI3K/Akt signaling has oncogenic function and during tumor progression, expression level of PI3K/Akt enhances. PI3K/Akt signaling shows positive association with oncogenic pathways and its expression similar to PTEN signaling, is regulated by non-coding RNAs. PTEN upregulation and PI3K/Akt signaling inhibition by anti-cancer agents can be beneficial in interfering GBM progression. This review emphasizes on the signaling networks related to PTEN/PI3K/Akt and provides new insights for targeting this axis in effective GBM treatment.
Collapse
|
24
|
Cao YF, Xie L, Tong BB, Chu MY, Shi WQ, Li X, He JZ, Wang SH, Wu ZY, Deng DX, Zheng YQ, Li ZM, Xu XE, Liao LD, Cheng YW, Li LY, Xu LY, Li EM. Targeting USP10 induces degradation of oncogenic ANLN in esophageal squamous cell carcinoma. Cell Death Differ 2023; 30:527-543. [PMID: 36526897 PMCID: PMC9950447 DOI: 10.1038/s41418-022-01104-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/17/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Anillin (ANLN) is a mitosis-related protein that promotes contractile ring formation and cytokinesis, but its cell cycle-dependent degradation mechanisms in cancer cells remain unclear. Here, we show that high expression of ANLN promotes cytokinesis and proliferation in esophageal squamous cell carcinoma (ESCC) cells and is associated with poor prognosis in ESCC patients. Furthermore, the findings of the study showed that the deubiquitinating enzyme USP10 interacts with ANLN and positively regulates ANLN protein levels. USP10 removes the K11- and K63-linked ubiquitin chains of ANLN through its deubiquitinase activity and prevents ANLN ubiquitin-mediated degradation. Importantly, USP10 promotes contractile ring assembly at the cytokinetic furrow as well as cytokinesis by stabilizing ANLN. Interestingly, USP10 and the E3 ubiquitin ligase APC/C co-activator Cdh1 formed a functional complex with ANLN in a non-competitive manner to balance ANLN protein levels. In addition, the macrolide compound FW-04-806 (F806), a natural compound with potential for treating ESCC, inhibited the mitosis of ESCC cells by targeting USP10 and promoting ANLN degradation. F806 selectively targeted USP10 and inhibited its catalytic activity but did not affect the binding of Cdh1 to ANLN and alters the balance of the USP10-Cdh1-ANLN complex. Additionally, USP10 expression was positively correlated with ANLN level and poor prognosis of ESCC patients. Overall, targeting the USP10-ANLN axis can effectively inhibit ESCC cell-cycle progression.
Collapse
Affiliation(s)
- Yu-Fei Cao
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong, PR China
| | - Lei Xie
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong, PR China
| | - Bei-Bei Tong
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong, PR China
| | - Man-Yu Chu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong, PR China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou, Guangdong, PR China
| | - Wen-Qi Shi
- Clinical Research Center, Shantou Central Hospital, Shantou, Guangdong, PR China
| | - Xiang Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong, PR China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou, Guangdong, PR China
| | - Jian-Zhong He
- Department of Pathology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, PR China
| | - Shao-Hong Wang
- Clinical Research Center, Shantou Central Hospital, Shantou, Guangdong, PR China
| | - Zhi-Yong Wu
- Clinical Research Center, Shantou Central Hospital, Shantou, Guangdong, PR China
| | - Dan-Xia Deng
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong, PR China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou, Guangdong, PR China
| | - Ya-Qi Zheng
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong, PR China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou, Guangdong, PR China
| | - Zhi-Mao Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong, PR China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou, Guangdong, PR China
| | - Xiu-E Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong, PR China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou, Guangdong, PR China
| | - Lian-Di Liao
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong, PR China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou, Guangdong, PR China
| | - Yin-Wei Cheng
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong, PR China
- Cancer Research Center, Shantou University Medical College, Shantou, Guangdong, PR China
| | - Li-Yan Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong, PR China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou, Guangdong, PR China
| | - Li-Yan Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong, PR China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou, Guangdong, PR China
- Cancer Research Center, Shantou University Medical College, Shantou, Guangdong, PR China
| | - En-Min Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong, PR China
| |
Collapse
|
25
|
PXR triggers YAP-TEAD binding and Sirt2-driven YAP deacetylation and polyubiquitination to promote liver enlargement and regeneration in mice. Pharmacol Res 2023; 188:106666. [PMID: 36657504 DOI: 10.1016/j.phrs.2023.106666] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/10/2023] [Accepted: 01/15/2023] [Indexed: 01/18/2023]
Abstract
Pregnane X receptor (PXR) plays an important role in the regulation of metabolic homeostasis. Yes-associated protein (YAP) is a critical regulator of liver size and liver regeneration. Recently, we reported that PXR-induced liver enlargement and regeneration depend on YAP signalling, but the underlying mechanisms remain unclear. This study aimed to reveal how PXR regulates or interacts with YAP signalling during PXR-induced hepatomegaly and liver regeneration. Immunoprecipitation (IP), Co-IP and GST pull-down assays were performed in vitro to reveal the regulatory mechanisms involved in the PXR-YAP interaction. The roles of YAP-TEAD binding and Sirt2-driven deacetylation and polyubiquitination of YAP were further investigated in vitro and in vivo. The results showed that the ligand-binding domain (LBD) of PXR and the WW domain of YAP were critical for the PXR-YAP interaction. Furthermore, disruption of the YAP-TEAD interaction using the binding inhibitor verteporfin significantly decreased PXR-induced liver enlargement and regeneration after 70 % partial hepatectomy (PHx). Mechanistically, PXR activation significantly decreased YAP acetylation, which was interrupted by the sirtuin inhibitor nicotinamide (NAM). In addition, p300-induced YAP acetylation contributed to K48-linked YAP ubiquitination. Interestingly, PXR activation remarkably inhibited K48-linked YAP ubiquitination while inducing K63-linked YAP polyubiquitination. Sirt2 interference abolished the deacetylation and K63-linked polyubiquitination of YAP, suggesting that the PXR-induced deacetylation and polyubiquitination of YAP are Sirt2 dependent. Taken together, this study demonstrates that PXR induce liver enlargement and regeneration via the regulation of YAP acetylation and ubiquitination and YAP-TEAD binding, providing evidences for using PXR as potential target to promote hepatic development and liver repair.
Collapse
|
26
|
Ni K, Hong L. Current Progress and Perspectives of CDC20 in Female Reproductive Cancers. Curr Mol Med 2023; 23:193-199. [PMID: 35319365 DOI: 10.2174/1573405618666220321130102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/30/2022] [Accepted: 01/31/2022] [Indexed: 02/08/2023]
Abstract
The cancers of the cervix, endometrium, ovary, and breast are great threats to women's health. Cancer is characterized by the uncontrolled proliferation of cells and deregulated cell cycle progression is one of the main causes of malignancy. Agents targeting cell cycle regulators may have potential anti-tumor effects. CDC20 (cell division cycle 20 homologue) is a co-activator of the anaphase-promoting complex/cyclosome (APC/C) and thus acts as a mitotic regulator. In addition, CDC20 serves as a subunit of the mitotic checkpoint complex (MCC) whose function is to inhibit APC/C. Recently, higher expression of CDC20 has been reported in these cancers and was closely associated with their clinicopathological parameters, indicating CDC20 a potential target for cancer treatment that is worth further study. In the present review, we summarized current progress and put forward perspectives of CDC20 in female reproductive cancers.
Collapse
Affiliation(s)
- Ke Ni
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Li Hong
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
27
|
Li W, Wang J, Luo Y, Bezabih TT. Multi-dimensional feature recognition model based on capsule network for ubiquitination site prediction. PeerJ 2022; 10:e14427. [PMID: 36523471 PMCID: PMC9745908 DOI: 10.7717/peerj.14427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/30/2022] [Indexed: 12/12/2022] Open
Abstract
Ubiquitination is an important post-translational modification of proteins that regulates many cellular activities. Traditional experimental methods for identification are costly and time-consuming, so many researchers have proposed computational methods for ubiquitination site prediction in recent years. However, traditional machine learning methods focus on feature engineering and are not suitable for large-scale proteomic data. In addition, deep learning methods are mostly based on convolutional neural networks and fuse multiple coding approaches to achieve classification prediction. This cannot effectively identify potential fine-grained features of the input data and has limitations in the representation of dependencies between low-level features and high-level features. A multi-dimensional feature recognition model based on a capsule network (MDCapsUbi) was proposed to predict protein ubiquitination sites. The proposed module consisting of convolution operations and channel attention was used to recognize coarse-grained features in the sequence dimension and the feature map dimension. The capsule network module consisting of capsule vectors was used to identify fine-grained features and classify ubiquitinated sites. With ten-fold cross-validation, the MDCapsUbi achieved 91.82% accuracy, 91.39% sensitivity, 92.24% specificity, 0.837 MCC, 0.918 F-Score and 0.97 AUC. Experimental results indicated that the proposed method outperformed other ubiquitination site prediction technologies.
Collapse
Affiliation(s)
- Weimin Li
- School of Computer Engineering and Science, Shanghai University, Shanghai, China
| | - Jie Wang
- School of Computer Engineering and Science, Shanghai University, Shanghai, China
| | - Yin Luo
- School of Life Sciences, East China Normal University, Shanghai, China
| | | |
Collapse
|
28
|
Jayaprakash S, Hegde M, BharathwajChetty B, Girisa S, Alqahtani MS, Abbas M, Sethi G, Kunnumakkara AB. Unraveling the Potential Role of NEDD4-like E3 Ligases in Cancer. Int J Mol Sci 2022; 23:ijms232012380. [PMID: 36293239 PMCID: PMC9604169 DOI: 10.3390/ijms232012380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/28/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022] Open
Abstract
Cancer is a deadly disease worldwide, with an anticipated 19.3 million new cases and 10.0 million deaths occurring in 2020 according to GLOBOCAN 2020. It is well established that carcinogenesis and cancer development are strongly linked to genetic changes and post-translational modifications (PTMs). An important PTM process, ubiquitination, regulates every aspect of cellular activity, and the crucial enzymes in the ubiquitination process are E3 ubiquitin ligases (E3s) that affect substrate specificity and must therefore be carefully regulated. A surfeit of studies suggests that, among the E3 ubiquitin ligases, neuronal precursor cell-expressed developmentally downregulated 4 (NEDD4)/NEDD4-like E3 ligases show key functions in cellular processes by controlling subsequent protein degradation and substrate ubiquitination. In addition, it was demonstrated that NEDD4 mainly acts as an oncogene in various cancers, but also plays a tumor-suppressive role in some cancers. In this review, to comprehend the proper function of NEDD4 in cancer development, we summarize its function, both its tumor-suppressive and oncogenic role, in multiple types of malignancies. Moreover, we briefly explain the role of NEDD4 in carcinogenesis and progression, including cell survival, cell proliferation, autophagy, cell migration, invasion, metastasis, epithelial-mesenchymal transition (EMT), chemoresistance, and multiple signaling pathways. In addition, we briefly explain the significance of NEDD4 as a possible target for cancer treatment. Therefore, we conclude that targeting NEDD4 as a therapeutic method for treating human tumors could be a practical possibility.
Collapse
Affiliation(s)
- Sujitha Jayaprakash
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India
| | - Bandari BharathwajChetty
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India
| | - Mohammed S. Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
- BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
- Electronics and Communications Department, College of Engineering, Delta University for Science and Technology, Gamasa 35712, Egypt
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Correspondence: (G.S.); (A.B.K.)
| | - Ajaikumar B. Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India
- Correspondence: (G.S.); (A.B.K.)
| |
Collapse
|
29
|
Chen M, Lingadahalli S, Narwade N, Lei KMK, Liu S, Zhao Z, Zheng Y, Lu Q, Tang AHN, Poon TCW, Cheung E. TRIM33 drives prostate tumor growth by stabilizing androgen receptor from Skp2-mediated degradation. EMBO Rep 2022; 23:e53468. [PMID: 35785414 DOI: 10.15252/embr.202153468] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 05/13/2022] [Accepted: 06/07/2022] [Indexed: 12/23/2022] Open
Abstract
Androgen receptor (AR) is a master transcription factor that drives prostate cancer (PCa) development and progression. Alterations in the expression or activity of AR coregulators significantly impact the outcome of the disease. Using a proteomics approach, we identified the tripartite motif-containing 33 (TRIM33) as a novel transcriptional coactivator of AR. We demonstrate that TRIM33 facilitates AR chromatin binding to directly regulate a transcription program that promotes PCa progression. TRIM33 further stabilizes AR by protecting it from Skp2-mediated ubiquitination and proteasomal degradation. We also show that TRIM33 is essential for PCa tumor growth by avoiding cell-cycle arrest and apoptosis, and TRIM33 knockdown sensitizes PCa cells to AR antagonists. In clinical analyses, we find TRIM33 upregulated in multiple PCa patient cohorts. Finally, we uncover an AR-TRIM33-coactivated gene signature highly expressed in PCa tumors and predict disease recurrence. Overall, our results reveal that TRIM33 is an oncogenic AR coactivator in PCa and a potential therapeutic target for PCa treatment.
Collapse
Affiliation(s)
- Mi Chen
- Cancer Centre, University of Macau, Taipa, Macau SAR.,Centre for Precision Medicine Research and Training, University of Macau, Taipa, Macau SAR.,MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR.,Faculty of Health Sciences, University of Macau, Taipa, Macau SAR
| | - Shreyas Lingadahalli
- Cancer Centre, University of Macau, Taipa, Macau SAR.,Centre for Precision Medicine Research and Training, University of Macau, Taipa, Macau SAR.,MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR.,Faculty of Health Sciences, University of Macau, Taipa, Macau SAR
| | - Nitin Narwade
- Cancer Centre, University of Macau, Taipa, Macau SAR.,Centre for Precision Medicine Research and Training, University of Macau, Taipa, Macau SAR.,MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR.,Faculty of Health Sciences, University of Macau, Taipa, Macau SAR
| | - Kate Man Kei Lei
- Cancer Centre, University of Macau, Taipa, Macau SAR.,Centre for Precision Medicine Research and Training, University of Macau, Taipa, Macau SAR.,MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR.,Pilot Laboratory, University of Macau, Taipa, Macau SAR.,Institute of Translational Medicine, University of Macau, Taipa, Macau SAR
| | | | - Zuxianglan Zhao
- Cancer Centre, University of Macau, Taipa, Macau SAR.,Centre for Precision Medicine Research and Training, University of Macau, Taipa, Macau SAR.,MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR.,Faculty of Health Sciences, University of Macau, Taipa, Macau SAR
| | - Yimin Zheng
- Cancer Centre, University of Macau, Taipa, Macau SAR.,Centre for Precision Medicine Research and Training, University of Macau, Taipa, Macau SAR.,MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR.,Faculty of Health Sciences, University of Macau, Taipa, Macau SAR
| | - Qian Lu
- Xuzhou Medical University, Xuzhou, China
| | | | - Terence Chuen Wai Poon
- Cancer Centre, University of Macau, Taipa, Macau SAR.,Centre for Precision Medicine Research and Training, University of Macau, Taipa, Macau SAR.,MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR.,Faculty of Health Sciences, University of Macau, Taipa, Macau SAR.,Pilot Laboratory, University of Macau, Taipa, Macau SAR.,Institute of Translational Medicine, University of Macau, Taipa, Macau SAR
| | - Edwin Cheung
- Cancer Centre, University of Macau, Taipa, Macau SAR.,Centre for Precision Medicine Research and Training, University of Macau, Taipa, Macau SAR.,MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR.,Faculty of Health Sciences, University of Macau, Taipa, Macau SAR
| |
Collapse
|
30
|
Ubiquitin-Specific Protease 6 n-Terminal-like Protein (USP6NL) and the Epidermal Growth Factor Receptor (EGFR) Signaling Axis Regulates Ubiquitin-Mediated DNA Repair and Temozolomide-Resistance in Glioblastoma. Biomedicines 2022; 10:biomedicines10071531. [PMID: 35884836 PMCID: PMC9312792 DOI: 10.3390/biomedicines10071531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/13/2022] [Accepted: 06/21/2022] [Indexed: 11/29/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most malignant glioma, with a 30–60% epidermal growth factor receptor (EGFR) mutation. This mutation is associated with unrestricted cell growth and increases the possibility of cancer invasion. Patients with EGFR-mutated GBM often develop resistance to the available treatment modalities and higher recurrence rates. The drug resistance observed is associated with multiple genetic or epigenetic factors. The ubiquitin-specific protease 6 N-terminal-like protein (USP6NL) is a GTPase-activating protein that functions as a deubiquitinating enzyme and regulates endocytosis and signal transduction. It is highly expressed in many cancer types and may promote the growth and proliferation of cancer cells. We hypothesized that USP6NL affects GBM chemoresistance and tumorigenesis, and that its inhibition may be a novel therapeutic strategy for GBM treatment. The USP6NL level, together with EGFR expression in human GBM tissue samples and cell lines associated with therapy resistance, tumor growth, and cancer invasion, were investigated. Its pivotal roles and potential mechanism in modulating tumor growth, and the key mechanism associated with therapy resistance of GBM cells, were studied, both in vitro and in vivo. Herein, we found that deubiquitinase USP6NL and growth factor receptor EGFR were strongly associated with the oncogenicity and resistance of GBM, both in vitro and in vivo, toward temozolomide, as evidenced by enhanced migration, invasion, and acquisition of a highly invasive and drug-resistant phenotype by the GBM cells. Furthermore, abrogation of USP6NL reversed the properties of GBM cells and resensitized them toward temozolomide by enhancing autophagy and reducing the DNA damage repair response. Our results provide novel insights into the probable mechanism through which USP6NL/EGFR signaling might suppress the anticancer therapeutic response, induce cancer invasiveness, and facilitate reduced sensitivity to temozolomide treatment in GBM in an autolysosome-dependent manner. Therefore, controlling the USP6NL may offer an alternative, but efficient, therapeutic strategy for targeting and eradicating otherwise resistant and recurrent phenotypes of aggressive GBM cells.
Collapse
|
31
|
Yu Z, Wei X, Liu L, Sun H, Fang T, Wang L, Li Y, Sui W, Wang K, He Y, Zhao Y, Huang W, An G, Meng F, Huang C, Yu T, Anderson KC, Cheng T, Qiu L, Hao M. Indirubin-3'-monoxime acts as proteasome inhibitor: Therapeutic application in multiple myeloma. EBioMedicine 2022; 78:103950. [PMID: 35344764 PMCID: PMC8958548 DOI: 10.1016/j.ebiom.2022.103950] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/26/2022] [Accepted: 03/07/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Multiple myeloma (MM) is still an incurable malignancy of plasma cells. Proteasome inhibitors (PIs) work as the backbone agent and have greatly improved the outcome in majority of newly diagnosed patients with myeloma. However, drug resistance remains the major obstacle causing treatment failure in clinical practice. Here, we investigated the effects of Indirubin-3'-monoxime (I3MO), one of the derivatives of Indirubin, in the treatment of MM. METHODS MM patient primary samples and human cell lines were examined. I3MO effects on myeloma treatment and the underling molecular mechanisms were investigated via in vivo and in vitro study. FINDINGS Our results demonstrated the anti-MM activity of I3MO in both drug- sensitive and -resistance MM cells. I3MO sensitizes MM cells to bortezomib-induced apoptosis. Mechanistically, I3MO acts as a multifaceted regulator of cell death, which induced DNA damage, cell cycle arrest, and abrogates NF-κB activation. I3MO efficiently down-regulated USP7 expression, promoted NEK2 degradation, and suppressed NF-κB signaling in MM. Our study reported that I3MO directly bound with and caused the down-regulation of PA28γ (PSME3), and PA200 (PSME4), the proteasome activators. Knockdown of PSME3 or PSME4 caused the inhibition of proteasome capacity and the overload of paraprotein, which sensitizes MM cells to bortezomib-mediated growth arrest. Clinical data demonstrated that PSME3 and PSME4 are over-expressed in relapsed/refractory MM (RRMM) and associated with inferior outcome. INTERPRETATION Altogether, our study indicates that I3MO is agent triggering proteasome inhibition and represents a promising therapeutic strategy to improve patient outcome in MM. FUNDINGS A full list of funding can be found in the acknowledgements.
Collapse
Affiliation(s)
- Zhen Yu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Xiaojing Wei
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Lanting Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Hao Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Teng Fang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Lu Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Ying Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Weiwei Sui
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Kefei Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Yi He
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Yaozhong Zhao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Wenyang Huang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Gang An
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Fancui Meng
- Tianjin Key Laboratory of Molecular Design and Drug Discovery, Tianjin Institute of Pharmaceutical Research, Tianjin 300301, PR China; State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin 300301, PR China
| | - Changjiang Huang
- Tianjin Key Laboratory of Molecular Design and Drug Discovery, Tianjin Institute of Pharmaceutical Research, Tianjin 300301, PR China; State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin 300301, PR China
| | - Tengteng Yu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Kenneth C Anderson
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Center for Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Lugui Qiu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China.
| | - Mu Hao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China.
| |
Collapse
|
32
|
The Next Frontier: Translational Development of Ubiquitination, SUMOylation, and NEDDylation in Cancer. Int J Mol Sci 2022; 23:ijms23073480. [PMID: 35408841 PMCID: PMC8999128 DOI: 10.3390/ijms23073480] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 01/01/2023] Open
Abstract
Post-translational modifications of proteins ensure optimized cellular processes, including proteostasis, regulated signaling, cell survival, and stress adaptation to maintain a balanced homeostatic state. Abnormal post-translational modifications are associated with cellular dysfunction and the occurrence of life-threatening diseases, such as cancer and neurodegenerative diseases. Therefore, some of the frequently seen protein modifications have been used as disease markers, while others are targeted for developing specific therapies. The ubiquitin and ubiquitin-like post-translational modifiers, namely, small ubiquitin-like modifier (SUMO) and neuronal precursor cell-expressed developmentally down-regulated protein 8 (NEDD8), share several features, such as protein structures, enzymatic cascades mediating the conjugation process, and targeted amino acid residues. Alterations in the regulatory mechanisms lead to aberrations in biological processes during tumorigenesis, including the regulation of tumor metabolism, immunological modulation of the tumor microenvironment, and cancer stem cell stemness, besides many more. Novel insights into ubiquitin and ubiquitin-like pathways involved in cancer biology reveal a potential interplay between ubiquitination, SUMOylation, and NEDDylation. This review outlines the current understandings of the regulatory mechanisms and assay capabilities of ubiquitination, SUMOylation, and NEDDylation. It will further highlight the role of ubiquitination, SUMOylation, and NEDDylation in tumorigenesis.
Collapse
|
33
|
Gong Y, Chen Y. UbE3-APA: a bioinformatic strategy to elucidate ubiquitin E3 ligase activities in quantitative proteomics study. Bioinformatics 2022; 38:2211-2218. [PMID: 35139152 PMCID: PMC9004656 DOI: 10.1093/bioinformatics/btac069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/09/2022] [Accepted: 02/01/2022] [Indexed: 02/04/2023] Open
Abstract
MOTIVATION Ubiquitination is widely involved in protein homeostasis and cell signaling. Ubiquitin E3 ligases are critical regulators of ubiquitination that recognize and recruit specific ubiquitination targets for the final rate-limiting step of ubiquitin transfer reactions. Understanding the ubiquitin E3 ligase activities will provide knowledge in the upstream regulator of the ubiquitination pathway and reveal potential mechanisms in biological processes and disease progression. Recent advances in mass spectrometry-based proteomics have enabled deep profiling of ubiquitylome in a quantitative manner. Yet, functional analysis of ubiquitylome dynamics and pathway activity remains challenging. RESULTS Here, we developed a UbE3-APA, a computational algorithm and stand-alone python-based software for Ub E3 ligase Activity Profiling Analysis. Combining an integrated annotation database with statistical analysis, UbE3-APA identifies significantly activated or suppressed E3 ligases based on quantitative ubiquitylome proteomics datasets. Benchmarking the software with published quantitative ubiquitylome analysis confirms the genetic manipulation of SPOP enzyme activity through overexpression and mutation. Application of the algorithm in the re-analysis of a large cohort of ubiquitination proteomics study revealed the activation of PARKIN and the co-activation of other E3 ligases in mitochondria depolarization-induced mitophagy process. We further demonstrated the application of the algorithm in the DIA (data-independent acquisition)-based quantitative ubiquitylome analysis. AVAILABILITY AND IMPLEMENTATION Source code and binaries are freely available for download at URL: https://github.com/Chenlab-UMN/Ub-E3-ligase-Activity-Profiling-Analysis, implemented in python and supported on Linux and MS Windows. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Yao Gong
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA,Bioinformatics and Computational Biology Program, University of Minnesota, Minneapolis, MN 55455, USA
| | - Yue Chen
- To whom correspondence should be addressed.
| |
Collapse
|
34
|
Klosner J, Agelopoulos K, Rohde C, Göllner S, Schliemann C, Berdel WE, Müller-Tidow C. Integrated RNAi screening identifies the NEDDylation pathway as a synergistic partner of azacytidine in acute myeloid leukemia. Sci Rep 2021; 11:23280. [PMID: 34857808 PMCID: PMC8639713 DOI: 10.1038/s41598-021-02695-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/08/2021] [Indexed: 11/09/2022] Open
Abstract
Treatment of acute myeloid leukemia (AML) remains challenging and novel targets and synergistic therapies still need to be discovered. We performed a high-throughput RNAi screen in three different AML cell lines and primary human leukemic blasts to identify genes that synergize with common antileukemic therapies. We used a pooled shRNA library that covered 5043 different genes and combined transfection with exposure to either azacytidine or cytarabine analog to the concept of synthetic lethality. Suppression of the chemokine CXCL12 ranked highly among the candidates of the cytarabine group. Azacytidine in combination with suppression of genes within the neddylation pathway led to synergistic results. NEDD8 and RBX1 inhibition by the small molecule inhibitor pevonedistat inhibited leukemia cell growth. These findings establish an in vitro synergism between NEDD8 inhibition and azacytidine in AML. Taken together, neddylation constitutes a suitable target pathway for azacytidine combination strategies.
Collapse
Affiliation(s)
- Justine Klosner
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany.
| | - Konstantin Agelopoulos
- Department of Dermatology and Center for Chronic Pruritus, University Hospital Münster, Münster, Germany
| | - Christian Rohde
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Stefanie Göllner
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Christoph Schliemann
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
| | - Wolfgang E Berdel
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
| | - Carsten Müller-Tidow
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
35
|
Tyagi A, Haq S, Ramakrishna S. Redox regulation of DUBs and its therapeutic implications in cancer. Redox Biol 2021; 48:102194. [PMID: 34814083 PMCID: PMC8608616 DOI: 10.1016/j.redox.2021.102194] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/19/2021] [Indexed: 02/06/2023] Open
Abstract
Reactive oxygen species (ROS) act as a double-edged sword in cancer, where low levels of ROS are beneficial but excessive accumulation leads to cancer progression. Elevated levels of ROS in cancer are counteracted by the antioxidant defense system. An imbalance between ROS generation and the antioxidant system alters gene expression and cellular signaling, leading to cancer progression or death. Post-translational modifications, such as ubiquitination, phosphorylation, and SUMOylation, play a critical role in the maintenance of ROS homeostasis by controlling ROS production and clearance. Recent evidence suggests that deubiquitinating enzymes (DUBs)-mediated ubiquitin removal from substrates is regulated by ROS. ROS-mediated oxidation of the catalytic cysteine (Cys) of DUBs, leading to their reversible inactivation, has emerged as a key mechanism regulating DUB-controlled cellular events. A better understanding of the mechanism by which DUBs are susceptible to ROS and exploring the ways to utilize ROS to pharmacologically modulate DUB-mediated signaling pathways might provide new insight for anticancer therapeutics. This review assesses the recent findings regarding ROS-mediated signaling in cancers, emphasizes DUB regulation by oxidation, highlights the relevant recent findings, and proposes directions of future research based on the ROS-induced modifications of DUB activity.
Collapse
Affiliation(s)
- Apoorvi Tyagi
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Saba Haq
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 04763, South Korea
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea; College of Medicine, Hanyang University, Seoul, 04763, South Korea.
| |
Collapse
|
36
|
Duan S, Moro L, Qu R, Simoneschi D, Cho H, Jiang S, Zhao H, Chang Q, de Stanchina E, Arbini AA, Pagano M. Loss of FBXO31-mediated degradation of DUSP6 dysregulates ERK and PI3K-AKT signaling and promotes prostate tumorigenesis. Cell Rep 2021; 37:109870. [PMID: 34686346 PMCID: PMC8577224 DOI: 10.1016/j.celrep.2021.109870] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/12/2021] [Accepted: 09/29/2021] [Indexed: 02/07/2023] Open
Abstract
FBXO31 is the substrate receptor of one of many CUL1-RING ubiquitin ligase (CRL1) complexes. Here, we show that low FBXO31 mRNA levels are associated with high pre-operative prostate-specific antigen (PSA) levels and Gleason grade in human prostate cancer. Mechanistically, the ubiquitin ligase CRL1FBXO31 promotes the ubiquitylation-mediated degradation of DUSP6, a dual specificity phosphatase that dephosphorylates and inactivates the extracellular-signal-regulated kinase-1 and -2 (ERK1/2). Depletion of FBXO31 stabilizes DUSP6, suppresses ERK signaling, and activates the PI3K-AKT signaling cascade. Moreover, deletion of FBXO31 promotes tumor development in a mouse orthotopic model of prostate cancer. Treatment with BCI, a small molecule inhibitor of DUSP6, suppresses AKT activation and prevents tumor formation, suggesting that the FBXO31 tumor suppressor activity is dependent on DUSP6. Taken together, our studies highlight the relevance of the FBXO31-DUSP6 axis in the regulation of ERK- and PI3K-AKT-mediated signaling pathways, as well as its therapeutic potential in prostate cancer.
Collapse
Affiliation(s)
- Shanshan Duan
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, The Alexandria Center for Life Science, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, The Alexandria Center for Life Science, New York, NY 10016, USA
| | - Loredana Moro
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, The Alexandria Center for Life Science, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, The Alexandria Center for Life Science, New York, NY 10016, USA
| | - Rui Qu
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, The Alexandria Center for Life Science, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, The Alexandria Center for Life Science, New York, NY 10016, USA
| | - Daniele Simoneschi
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, The Alexandria Center for Life Science, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, The Alexandria Center for Life Science, New York, NY 10016, USA
| | - Hyunwoo Cho
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, The Alexandria Center for Life Science, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, The Alexandria Center for Life Science, New York, NY 10016, USA
| | - Shaowen Jiang
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, The Alexandria Center for Life Science, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, The Alexandria Center for Life Science, New York, NY 10016, USA
| | - Huiyong Zhao
- Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Qing Chang
- Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Elisa de Stanchina
- Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Arnaldo A Arbini
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, The Alexandria Center for Life Science, New York, NY 10016, USA; Department of Pathology, NYU Grossman School of Medicine, The Alexandria Center for Life Science, New York, NY 10016, USA
| | - Michele Pagano
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, The Alexandria Center for Life Science, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, The Alexandria Center for Life Science, New York, NY 10016, USA; Howard Hughes Medical Institute, NYU Grossman School of Medicine, The Alexandria Center for Life Science, New York, NY 10016, USA.
| |
Collapse
|
37
|
Lu Y, Ji R, Ye Y, Hua X, Fan J, Xu Y, Shi J, Li YM. Efficient semi-synthesis of ubiquitin-fold modifier 1 (UFM1) derivatives. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
38
|
Ji F, Zhou M, Sun Z, Jiang Z, Zhu H, Xie Z, Ouyang X, Zhang L, Li L. Integrative proteomics reveals the role of E3 ubiquitin ligase SYVN1 in hepatocellular carcinoma metastasis. Cancer Commun (Lond) 2021; 41:1007-1023. [PMID: 34196494 PMCID: PMC8504139 DOI: 10.1002/cac2.12192] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/29/2020] [Accepted: 06/22/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Tumor metastasis is a major factor for poor prognosis of hepatocellular carcinoma (HCC), but the relationship between ubiquitination and metastasis need to be studied more systematically. We analyzed the ubiquitinome of HCC in this study to have a more comprehensive insight into human HCC metastasis. METHODS The protein ubiquitination levels in 15 HCC specimens with vascular invasion and 15 without vascular invasion were detected by ubiquitinome. Proteins with significantly different ubiquitination levels between HCCs with and without vascular invasion were used to predict E3 ubiquitin ligases associated with tumor metastasis. The topological network of protein substrates and corresponding E3 ubiquitin ligases was constructed to identify the key E3 ubiquitin ligase. Besides, the growth, migration and invasion ability of LM3 and HUH7 hepatoma cell lines with and without SYVN1 expression interference were measured by cell proliferation assay, subcutaneous tumor assay, umphal vein endothelium tube formation assay, transwell migration and invasion assays. Finally, the interacting proteins of SYVN1 were screened and verified by protein interaction omics, immunofluorescence, and immunoprecipitation. Ubiquitin levels of related protein substrates in LM3 and HUH7 cells were compared in negative control, SYVN1 knockdown, and SYVN1 overexpression groups. RESULTS In this study, our whole-cell proteomic dataset and ubiquitinomic dataset contained approximately 5600 proteins and 12,000 ubiquitinated sites. We discovered increased ubiquitinated sites with shorter ubiquitin chains during the progression of HCC metastasis. In addition, proteomic and ubiquitinomic analyses revealed that high expression of E3 ubiquitin-protein ligase SYVN1 is related with tumor metastasis. Furthermore, we found that SYVN1 interacted with heat shock protein 90 (HSP90) and impacted the ubiquitination of eukaryotic elongation factor 2 kinase (EEF2K). CONCLUSIONS The ubiquitination profiles of HCC with and without vascular invasion were significantly different. SYVN1 was the most important E3 ubiquitin-protein ligase responsible for this phenomenon, and it was related with tumor metastasis and growth. Therefore, SYVN1 might be a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Feiyang Ji
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiang310003P. R. China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesHangzhouZhejiang310003P. R. China
| | - Menghao Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiang310003P. R. China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesHangzhouZhejiang310003P. R. China
| | - Zeyu Sun
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiang310003P. R. China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesHangzhouZhejiang310003P. R. China
| | - Zhengyi Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiang310003P. R. China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesHangzhouZhejiang310003P. R. China
| | - Huihui Zhu
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiang310003P. R. China
| | - Zhongyang Xie
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiang310003P. R. China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesHangzhouZhejiang310003P. R. China
| | - Xiaoxi Ouyang
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiang310003P. R. China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesHangzhouZhejiang310003P. R. China
| | - Lingjian Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiang310003P. R. China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesHangzhouZhejiang310003P. R. China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiang310003P. R. China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesHangzhouZhejiang310003P. R. China
| |
Collapse
|
39
|
Luo M, Zhou Y. Comprehensive analysis of differentially expressed genes reveals the promotive effects of UBE2T on colorectal cancer cell proliferation. Oncol Lett 2021; 22:714. [PMID: 34457069 PMCID: PMC8358588 DOI: 10.3892/ol.2021.12975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 04/01/2021] [Indexed: 12/13/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignancies worldwide. Via analysis using The Cancer Genome Atlas database, the present study identified 1,835 genes that were differentially expressed in CRC, including 811 upregulated and 1,024 downregulated genes. Enrichment analyses using the Database for Annotation, Visualization and Integrated Discovery tool revealed that these differentially expressed genes were associated with the regulation of CRC progression by modulating multiple pathways, such as ‘Cell Cycle, Mitotic’, ‘DNA Replication’, ‘Mitotic M-M/G1 phases’ and ‘ATM pathway’. To identify the key genes in CRC, protein-protein interaction (PPI) network analysis was performed and the hub modules in upregulated and downregulated PPI networks were identified. Ubiquitin-conjugating enzyme E2 T (UBE2T), a member of the E2 family, was identified to be a key regulator in CRC. To the best of our knowledge, the present study was the first to demonstrate that UBE2T expression was upregulated in CRC samples compared with normal tissues. Kaplan-Meier analysis revealed that higher expression levels of UBE2T were associated with worse prognosis compared with lower UBE2T expression levels in CRC. Additionally, the present study demonstrated that knockdown of UBE2T inhibited CRC cell proliferation. Flow cytometry assays revealed that UBE2T knockdown induced cell cycle arrest at G1 phase and apoptosis in vitro. These results suggested that UBE2T may be a novel potential biomarker for CRC.
Collapse
Affiliation(s)
- Min Luo
- Department of Gastroenterology, The Second Xiangya Hospital, Changsha, Hunan 410011, P.R. China.,Research Center of Digestive Disease, Central South University, Changsha, Hunan 410011, P.R. China
| | - Yuqian Zhou
- Department of Gastroenterology, The Second Xiangya Hospital, Changsha, Hunan 410011, P.R. China.,Research Center of Digestive Disease, Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
40
|
Nag JK, Malka H, Appasamy P, Sedley S, Bar-Shavit R. GPCR Partners as Cancer Driver Genes: Association with PH-Signal Proteins in a Distinctive Signaling Network. Int J Mol Sci 2021; 22:8985. [PMID: 34445691 PMCID: PMC8396503 DOI: 10.3390/ijms22168985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/15/2021] [Accepted: 08/17/2021] [Indexed: 02/06/2023] Open
Abstract
The essential role of G-protein coupled receptors (GPCRs) in tumor growth is recognized, yet a GPCR based drug in cancer is rare. Understanding the molecular path of a tumor driver gene may lead to the design and development of an effective drug. For example, in members of protease-activated receptor (PAR) family (e.g., PAR1 and PAR2), a novel PH-binding motif is allocated as critical for tumor growth. Animal models have indicated the generation of large tumors in the presence of PAR1 or PAR2 oncogenes. These tumors showed effective inhibition when the PH-binding motif was either modified or were inhibited by a specific inhibitor targeted to the PH-binding motif. In the second part of the review we discuss several aspects of some cardinal GPCRs in tumor angiogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Rachel Bar-Shavit
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, POB 12000, Jerusalem 91120, Israel; (J.K.N.); (H.M.); (P.A.); (S.S.)
| |
Collapse
|
41
|
Jing T, Wang B, Yang Z, Liu Y, Xu G, Xu X, Jiao K, Chen Z, Xiang L, Zhang L, Liu Y. Deubiquitination of the repressor E2F6 by USP22 facilitates AKT activation and tumor growth in hepatocellular carcinoma. Cancer Lett 2021; 518:266-277. [PMID: 34339800 DOI: 10.1016/j.canlet.2021.07.044] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/16/2021] [Accepted: 07/28/2021] [Indexed: 01/20/2023]
Abstract
Dysregulated ubiquitination of tumor-related proteins plays a critical role in tumor development and progression. The deubiquitinase USP22 is aberrantly expressed in certain types of cancer and contributes to aggressive tumor progression. However, the precise mechanism underlying the pro-tumorigenic function of USP22 in hepatocellular carcinoma (HCC) remains unclear. Here, we report that E2F6, a pocket protein-independent transcription repressor, is essential for HCC cell growth, and that its activities are controlled by USP22-mediated deubiquitination. USP22 interacts with and stabilizes E2F6, resulting in the transcriptional repression of phosphatase DUSP1. Moreover, the process involving DUSP1 repression by E2F6 strengthens AKT activation in HCC cells. Therefore, these findings provide mechanistic insights into the USP22-mediated control of oncogenic AKT signaling, emphasizing the importance of USP22-E2F6 regulation in HCC development.
Collapse
Affiliation(s)
- Tiantian Jing
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, China
| | - Boshi Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, China
| | - Zhaojuan Yang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, China
| | - Yun Liu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, China
| | - Guiqin Xu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, China
| | - Xiaoli Xu
- Shanghai Jiao Tong University School of Biomedical Engineering, Shanghai, 200030, China
| | - Kun Jiao
- Shanghai Jiao Tong University School of Biomedical Engineering, Shanghai, 200030, China
| | - Zehong Chen
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, China
| | - Lvzhu Xiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, China
| | - Li Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, China.
| | - Yongzhong Liu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, China.
| |
Collapse
|
42
|
Liu Y, Jin S, Song L, Han Y, Yu B. Prediction of protein ubiquitination sites via multi-view features based on eXtreme gradient boosting classifier. J Mol Graph Model 2021; 107:107962. [PMID: 34198216 DOI: 10.1016/j.jmgm.2021.107962] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 05/03/2021] [Accepted: 06/02/2021] [Indexed: 01/29/2023]
Abstract
Ubiquitination is a common and reversible post-translational protein modification that regulates apoptosis and plays an important role in protein degradation and cell diseases. However, experimental identification of protein ubiquitination sites is usually time-consuming and labor-intensive, so it is necessary to establish effective predictors. In this study, we propose a ubiquitination sites prediction method based on multi-view features, namely UbiSite-XGBoost. Firstly, we use seven single-view features encoding methods to convert protein sequence fragments into digital information. Secondly, the least absolute shrinkage and selection operator (LASSO) is applied to remove the redundant information and get the optimal feature subsets. Finally, these features are inputted into the eXtreme gradient boosting (XGBoost) classifier to predict ubiquitination sites. Five-fold cross-validation shows that the AUC values of Set1-Set6 datasets are 0.8258, 0.7592, 0.7853, 0.8345, 0.8979 and 0.8901, respectively. The synthetic minority oversampling technique (SMOTE) is employed in Set4-Set6 unbalanced datasets, and the AUC values are 0.9777, 0.9782 and 0.9860, respectively. In addition, we have constructed three independent test datasets which the AUC values are 0.8007, 0.6897 and 0.7280, respectively. The results show that the proposed method UbiSite-XGBoost is superior to other ubiquitination prediction methods and it provides new guidance for the identification of ubiquitination sites. The source code and all datasets are available at https://github.com/QUST-AIBBDRC/UbiSite-XGBoost/.
Collapse
Affiliation(s)
- Yushuang Liu
- College of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao, 266061, China; Artificial Intelligence and Biomedical Big Data Research Center, Qingdao University of Science and Technology, Qingdao, 266061, China
| | - Shuping Jin
- College of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao, 266061, China; Artificial Intelligence and Biomedical Big Data Research Center, Qingdao University of Science and Technology, Qingdao, 266061, China
| | - Lili Song
- College of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao, 266061, China; Artificial Intelligence and Biomedical Big Data Research Center, Qingdao University of Science and Technology, Qingdao, 266061, China
| | - Yu Han
- College of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao, 266061, China; Artificial Intelligence and Biomedical Big Data Research Center, Qingdao University of Science and Technology, Qingdao, 266061, China
| | - Bin Yu
- College of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao, 266061, China; Artificial Intelligence and Biomedical Big Data Research Center, Qingdao University of Science and Technology, Qingdao, 266061, China; Key Laboratory of Computational Science and Application of Hainan Province, Haikou, 571158, China.
| |
Collapse
|
43
|
Yuan Y, Xiao WW, Xie WH, Li RZ, Gao YH. Prognostic value of ubiquitin E2 UBE2W and its correlation with tumor-infiltrating immune cells in breast cancer. BMC Cancer 2021; 21:479. [PMID: 33931024 PMCID: PMC8086329 DOI: 10.1186/s12885-021-08234-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/20/2021] [Indexed: 12/24/2022] Open
Abstract
Background Ubiquitin-conjugating enzyme E2W (UBE2W) is a protein-coding gene that has an important role in ubiquitination and may be vital in the repair of DNA damage. However, studies on the prognostic value of UBE2W and its correlation with tumor-infiltrating immune cells in multiple cancers have not been addressed. Methods We investigated UBE2W expression in the Oncomine database, the Tumor Immune Estimation Resource (TIMER), TNMplot database. Then, the clinical prognostic value of UBE2W was analyzed via online public databases. Meanwhile, we explored the correlation between UBE2W and DNA repair associate genes expression and DNA methyltransferase expression by TIMER and Gene Expression Profiling Interactive Analysis (GEPIA). By using the same method, the correlation between UBE2W and tumor-infiltrating immune cells was explored. Genomic Profiles of UBE2W in breast cancer (BRCA) were accessed in cBioPortal (v3.5.0). Functional proteins associated network was analyzed by STRING database (v11.0). Results UBE2W was abnormally expressed and significantly correlated with mismatch repair (MMR) gene mutation levels, DNA methyltransferase, and BRCA1/2 expression in breast cancer. High expression of UBE2W may promote the tumor immunosuppression and metastasis, induce endocrine therapy resistance and deteriorate outcomes of patients with breast cancer. These findings suggest that UBE2W could be a potential biomarker of prognosis and tumor-infiltrating immune cells. Besides, RBX1 may be a new E3 that was regulated by UBE2W. Conclusions Ubiquitin E2 UBE2W is a potential prognostic biomarker and is correlated with immune infiltration in BRCA. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08234-4.
Collapse
Affiliation(s)
- Yan Yuan
- State Key laboratory of Oncology in South China, Collaborative innovation Center for cancer Medicine, Guangzhou, P. R. China.,Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Wei-Wei Xiao
- State Key laboratory of Oncology in South China, Collaborative innovation Center for cancer Medicine, Guangzhou, P. R. China.,Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Wei-Hao Xie
- State Key laboratory of Oncology in South China, Collaborative innovation Center for cancer Medicine, Guangzhou, P. R. China.,Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Rong-Zhen Li
- State Key laboratory of Oncology in South China, Collaborative innovation Center for cancer Medicine, Guangzhou, P. R. China.,Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Yuan-Hong Gao
- State Key laboratory of Oncology in South China, Collaborative innovation Center for cancer Medicine, Guangzhou, P. R. China. .,Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.
| |
Collapse
|
44
|
Bryan L, Clynes M, Meleady P. The emerging role of cellular post-translational modifications in modulating growth and productivity of recombinant Chinese hamster ovary cells. Biotechnol Adv 2021; 49:107757. [PMID: 33895332 DOI: 10.1016/j.biotechadv.2021.107757] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023]
Abstract
Chinese hamster ovary (CHO) cells are one of the most commonly used host cell lines used for the production human therapeutic proteins. Much research over the past two decades has focussed on improving the growth, titre and cell specific productivity of CHO cells and in turn lowering the costs associated with production of recombinant proteins. CHO cell engineering has become of particular interest in recent years following the publication of the CHO cell genome and the availability of data relating to the proteome, transcriptome and metabolome of CHO cells. However, data relating to the cellular post-translational modification (PTMs) which can affect the functionality of CHO cellular proteins has only begun to be presented in recent years. PTMs are important to many cellular processes and can further alter proteins by increasing the complexity of proteins and their interactions. In this review, we describe the research presented from CHO cells to date related on three of the most important PTMs; glycosylation, phosphorylation and ubiquitination.
Collapse
Affiliation(s)
- Laura Bryan
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Martin Clynes
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Paula Meleady
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.
| |
Collapse
|
45
|
Wang X, Liu Y, Leng X, Cao K, Sun W, Zhu J, Ma J. UBE2T Contributes to the Prognosis of Esophageal Squamous Cell Carcinoma. Pathol Oncol Res 2021; 27:632531. [PMID: 34257599 PMCID: PMC8262217 DOI: 10.3389/pore.2021.632531] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/01/2021] [Indexed: 12/14/2022]
Abstract
Background: The ubiquitin-conjugating enzyme E2 T (UBE2T) has been shown to contribute to several types of cancer. However, no publication has reported its implication in esophageal squamous cell cancer (ESCC). Methods: We explored several public databases, including The Cancer Genome Atlas (TCGA), Oncomine, and gene expression Omnibus (GEO). Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, and gene set enrichment analysis (GSEA) were adopted to explore involved signaling pathways. We used R software to develop prognostic gene signatures with the LASSO and stepwise Cox regression analysis, separately. Immunohistochemistry staining was performed to detect UBE2T in 90 ESCC patients, followed by survival analysis. We also used an R package pRRophetic to evaluate chemotherapy sensitivity for the TCGA–ESCC cohort. Results: We found significantly increased UBE2T transcript levels and DNA copy numbers in ESCC tissues. UBE2T was associated with the p53 signaling pathway, cell cycle, Fanconi anemia pathway, and DNA replication, as indicated by Go, KEGG pathway enrichment analysis. These pathways were also upregulated in ESCC. The prognostic signatures with UBE2T-associated genes could stratify ESCC patients into low- and high-risk groups with significantly different overall survival in the TCGA–ESCC cohort. We also validated the association of UBE2T with unfavorable survival in 90 ESCC patients recruited for this study. Moreover, we found that the low-risk group was significantly more sensitive to chemotherapy than the high-risk group. Conclusions: UBE2T is involved in the development of ESCC, and gene signatures derived from UBE2T-associated genes are predictive of prognosis in ESCC.
Collapse
Affiliation(s)
- Xiaoyuan Wang
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yang Liu
- Department of Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xue Leng
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Kui Cao
- Department of Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Wentao Sun
- Department of Radiology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jinhong Zhu
- Department of Clinical Laboratory, Biobank, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jianqun Ma
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
46
|
CNOT4 suppresses non-small cell lung cancer progression and is required for effector cytolytic T lymphocytes cell responses to lung cancer cells. Mol Immunol 2021; 132:165-171. [PMID: 33592572 DOI: 10.1016/j.molimm.2020.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/03/2020] [Accepted: 12/11/2020] [Indexed: 12/09/2022]
Abstract
The therapeutic options of non-small cell lung cancer (NSCLC) are limited, although a combination of targeted therapy and immunotherapy is promising. To explore novel targets for immunotherapy, we explored the role of Ccr4-Not transcription complex subunit 4 (CNOT4) in NSCLC. The expression of CNOT4 in tumor tissues was determined by immunohistochemistry staining and western blotting. The cell lines that stably express CNOT4 were established in H1299 and A549 cells. Direct cell counting, MTT assay, and colony formation were used to determine the ability of cell proliferation. Cell apoptosis and cell cycle were next analyzed by PI/Annexin V staining. Cell invasion and migration were examined by transwell assays. To further explore the function of CNOT4 in cytotoxic T lymphocytes (CTLs) mediated cytotoxicity, an in vitro co-culture system of CNOT4 overexpressing and control H1299 cells with CTLs was developed. CNOT4 was down-regulated in tumor tissues compared with paired normal tissues from patients with lung cancers. CNOT4 overexpression significantly inhibited tumor cell proliferation, colony formation, cell migration, and invasion, but promoted cell apoptosis. Furthermore, overexpression of CNOT4 enhanced cytotoxicity of CTLs to H1299. CNOT4 functions as a potential tumor suppressor of NSCLC via inhibiting tumor cell function and increasing the sensitivity to CTLs.
Collapse
|
47
|
Hendriks IA, Akimov V, Blagoev B, Nielsen ML. MaxQuant.Live Enables Enhanced Selectivity and Identification of Peptides Modified by Endogenous SUMO and Ubiquitin. J Proteome Res 2021; 20:2042-2055. [PMID: 33539096 DOI: 10.1021/acs.jproteome.0c00892] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Small ubiquitin-like modifiers (SUMO) and ubiquitin are frequent post-translational modifications of proteins that play pivotal roles in all cellular processes. We previously reported mass spectrometry-based proteomics methods that enable profiling of lysines modified by endogenous SUMO or ubiquitin in an unbiased manner, without the need for genetic engineering. Here we investigated the applicability of precursor mass filtering enabled by MaxQuant.Live to our SUMO and ubiquitin proteomics workflows, which efficiently avoided sequencing of precursors too small to be modified but otherwise indistinguishable by mass-to-charge ratio. Using precursor mass filtering, we achieved a much higher selectivity of modified peptides, ultimately resulting in up to 30% more SUMO and ubiquitin sites identified from replicate samples. Real-time exclusion of unmodified peptides by MQL resulted in 90% SUMO-modified precursor selectivity from a 25% pure sample, demonstrating great applicability for digging deeper into ubiquitin-like modificomes. We adapted the precursor mass filtering strategy to the new Exploris 480 mass spectrometer, achieving comparable gains in SUMO precursor selectivity and identification rates. Collectively, precursor mass filtering via MQL significantly increased identification rates of SUMO- and ubiquitin-modified peptides from the exact same samples, without the requirement for prior knowledge or spectral libraries.
Collapse
Affiliation(s)
- Ivo A Hendriks
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Vyacheslav Akimov
- Center for Experimental Bioinformatics, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| | - Blagoy Blagoev
- Center for Experimental Bioinformatics, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| | - Michael L Nielsen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| |
Collapse
|
48
|
Wei F, Ba S, Jin M, Ci R, Wang X, E F, Long Z. RNF180 Inhibits Proliferation and Promotes Apoptosis of Colorectal Cancer Through Ubiquitination of WISP1. Front Cell Dev Biol 2021; 8:623455. [PMID: 33553163 PMCID: PMC7862563 DOI: 10.3389/fcell.2020.623455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer-related deaths globally and is biologically and clinically heterogeneous. Due to lack of gene expression signatures for risk and prognosis stratification of CRC, identifying novel molecular biomarkers and therapeutic targets may potentially improve CRC prognosis and treatment. RNF180 has been shown to play key contributions to the development of several types of cancers. In the current study, we investigate its role in CRC. In this study, we show that RNF180 expression was significantly downregulated in human CRC tumors and cell lines. Overexpression of RNF180 in CRC cells markedly inhibited cell viability and induced cell apoptosis, while depletion of RNF180 dramatically enhanced cell survival. Moreover, WISP1 was found to be the critical downstream molecule that mediated the tumor suppressive effects of RNF180. Mechanistically, RNF180 ubiquitinated WISP1, resulting in WISP1 downregulation and ultimately leading to suppression of CRC tumor growth in patient-derived xenograft (PDX) mouse models. Last, 5-FU and RNF180 had synergetic effect on the apoptosis induction and tumor growth inhibition. Our findings revealed a crucial role of RNF180 in suppressing tumor growth by ubiquitinating WISP1 in CRC.
Collapse
Affiliation(s)
- Feng Wei
- Department of Surgery, Shigatse People's Hospital, Shigatse, China
| | - Sang Ba
- Department of Surgery, Shigatse People's Hospital, Shigatse, China
| | - Mei Jin
- Department of Surgery, Shigatse People's Hospital, Shigatse, China
| | - Ren Ci
- Department of Surgery, Shigatse People's Hospital, Shigatse, China
| | - Xuelian Wang
- Department of Surgery, Shigatse People's Hospital, Shigatse, China
| | - Fusheng E
- Department of Surgery, Shigatse People's Hospital, Shigatse, China
| | - Ziwen Long
- Department of Gastric Cancer Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
49
|
Abstract
Post-translational modifications of cellular substrates with ubiquitin and ubiquitin-like proteins (UBLs), including ubiquitin, SUMOs, and neural precursor cell-expressed developmentally downregulated protein 8, play a central role in regulating many aspects of cell biology. The UBL conjugation cascade is initiated by a family of ATP-dependent enzymes termed E1 activating enzymes and executed by the downstream E2-conjugating enzymes and E3 ligases. Despite their druggability and their key position at the apex of the cascade, pharmacologic modulation of E1s with potent and selective drugs has remained elusive until 2009. Among the eight E1 enzymes identified so far, those initiating ubiquitylation (UBA1), SUMOylation (SAE), and neddylation (NAE) are the most characterized and are implicated in various aspects of cancer biology. To date, over 40 inhibitors have been reported to target UBA1, SAE, and NAE, including the NAE inhibitor pevonedistat, evaluated in more than 30 clinical trials. In this Review, we discuss E1 enzymes, the rationale for their therapeutic targeting in cancer, and their different inhibitors, with emphasis on the pharmacologic properties of adenosine sulfamates and their unique mechanism of action, termed substrate-assisted inhibition. Moreover, we highlight other less-characterized E1s-UBA6, UBA7, UBA4, UBA5, and autophagy-related protein 7-and the opportunities for targeting these enzymes in cancer. SIGNIFICANCE STATEMENT: The clinical successes of proteasome inhibitors in cancer therapy and the emerging resistance to these agents have prompted the exploration of other signaling nodes in the ubiquitin-proteasome system including E1 enzymes. Therefore, it is crucial to understand the biology of different E1 enzymes, their roles in cancer, and how to translate this knowledge into novel therapeutic strategies with potential implications in cancer treatment.
Collapse
Affiliation(s)
- Samir H Barghout
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada (S.H.B., A.D.S.); Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada (S.H.B., A.D.S.); and Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt (S.H.B.)
| | - Aaron D Schimmer
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada (S.H.B., A.D.S.); Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada (S.H.B., A.D.S.); and Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt (S.H.B.)
| |
Collapse
|
50
|
Shi M, Dai WQ, Jia RR, Zhang QH, Wei J, Wang YG, Xiang SH, Liu B, Xu L. APC CDC20-mediated degradation of PHD3 stabilizes HIF-1a and promotes tumorigenesis in hepatocellular carcinoma. Cancer Lett 2021; 496:144-155. [PMID: 33039559 DOI: 10.1016/j.canlet.2020.10.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/10/2020] [Accepted: 10/06/2020] [Indexed: 01/04/2023]
Abstract
CDC20 regulates cell cycle progression by targeting key substrates for destruction, but its role in hepatocellular carcinoma (HCC) tumorigenesis remains to be explored. Here, by using weighted gene co-expression network analysis (WGCNA), we identified CDC20 as a hub gene in HCC. We demonstrated that CDC20 expression is correlated with HIF-1 activity and overall survival (OS) of clinic HCC patients. The activity of HIF-1 is regulated by the stability of HIF-1a subunit, which is hydroxylated by oxygen-dependent prolyl hydroxylase enzymes, the PHDs. In addition, we show that genetic ablation or pharmacological inhibition of CDC20 can accelerate the degradation of HIF-1a and impair VEGF secretion in HCC cells. Mechanistically, we found that CDC20 binds to the destruction-box (D-box) motif present in the PHD3 protein to promote its polyubiquitination and degradation. The depletion of endogenous PHD3 in CDC20 knockdown HCC cells greatly attenuated the decline of HIF-1a protein and restored the secretion of VEGF. In contrast, overexpression of a non-degradable PHD3 mutant significantly inhibited the proliferation of HCC cells both in vitro and in vivo. Collectively, our findings indicate that CDC20 plays a crucial role in the development of HCC by governing PHD3 protein.
Collapse
MESH Headings
- Animals
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cdc20 Proteins/genetics
- Cdc20 Proteins/metabolism
- Cell Proliferation
- Gene Expression Regulation, Neoplastic
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/chemistry
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Hypoxia-Inducible Factor-Proline Dioxygenases/genetics
- Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Prognosis
- Protein Stability
- Proteolysis
- Survival Rate
- Tumor Cells, Cultured
- Ubiquitination
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Min Shi
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai, 200336, China
| | - Wei-Qi Dai
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai, 200336, China
| | - Rong-Rong Jia
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai, 200336, China
| | - Qing-Hui Zhang
- Department of Clinical Laboratory, Kunshan First People's Hospital, Jiangsu University, Kunshan, 215300, China
| | - Jue Wei
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai, 200336, China
| | - Yu-Gang Wang
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai, 200336, China
| | - Shi-Hao Xiang
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai, 200336, China
| | - Bin Liu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China.
| | - Ling Xu
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai, 200336, China.
| |
Collapse
|