1
|
Giram P, Md Mahabubur Rahman K, Aqel O, You Y. In Situ Cancer Vaccines: Redefining Immune Activation in the Tumor Microenvironment. ACS Biomater Sci Eng 2025; 11:2550-2583. [PMID: 40223683 DOI: 10.1021/acsbiomaterials.5c00121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Cancer is one of the leading causes of mortality worldwide. Nanomedicines have significantly improved life expectancy and survival rates for cancer patients in current standard care. However, recurrence of cancer due to metastasis remains a significant challenge. Vaccines can provide long-term protection and are ideal for preventing bacterial and viral infections. Cancer vaccines, however, have shown limited therapeutic efficacy and raised safety concerns despite extensive research. Cancer vaccines target and stimulate responses against tumor-specific antigens and have demonstrated great potential for cancer treatment in preclinical studies. However, tumor-associated immunosuppression and immune tolerance driven by immunoediting pose significant challenges for vaccine design. In situ vaccination represents an alternative approach to traditional cancer vaccines. This strategy involves the intratumoral administration of immunostimulants to modulate the growth and differentiation of innate immune cells, such as dendritic cells, macrophages, and neutrophils, and restore T-cell activity. Currently approved in situ vaccines, such as T-VEC, have demonstrated clinical promise, while ongoing clinical trials continue to explore novel strategies for broader efficacy. Despite these advancements, failures in vaccine research highlight the need to address tumor-associated immune suppression and immune escape mechanisms. In situ vaccination strategies combine innate and adaptive immune stimulation, leveraging tumor-associated antigens to activate dendritic cells and cross-prime CD8+ T cells. Various vaccine modalities, such as nucleotide-based vaccines (e.g., RNA and DNA vaccines), peptide-based vaccines, and cell-based vaccines (including dendritic, T-cell, and B-cell approaches), show significant potential. Plant-based viral approaches, including cowpea mosaic virus and Newcastle disease virus, further expand the toolkit for in situ vaccination. Therapeutic modalities such as chemotherapy, radiation, photodynamic therapy, photothermal therapy, and Checkpoint blockade inhibitors contribute to enhanced antigen presentation and immune activation. Adjuvants like CpG-ODN and PRR agonists further enhance immune modulation and vaccine efficacy. The advantages of in situ vaccination include patient specificity, personalization, minimized antigen immune escape, and reduced logistical costs. However, significant barriers such as tumor heterogeneity, immune evasion, and logistical challenges remain. This review explores strategies for developing potent cancer vaccines, examines ongoing clinical trials, evaluates immune stimulation methods, and discusses prospects for advancing in situ cancer vaccination.
Collapse
Affiliation(s)
- Prabhanjan Giram
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York 14214, United States
| | - Kazi Md Mahabubur Rahman
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York 14214, United States
| | - Osama Aqel
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York 14214, United States
| | - Youngjae You
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York 14214, United States
| |
Collapse
|
2
|
Yaraghi P, Kheyri A, Mikaeili N, Boroumand A, Abbasifard M, Farhangnia P, Rezagholizadeh F, Khorramdelazad H. Nanoparticle-mediated enhancement of DNA Vaccines: Revolutionizing immunization strategies. Int J Biol Macromol 2025; 302:140558. [PMID: 39900152 DOI: 10.1016/j.ijbiomac.2025.140558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/25/2025] [Accepted: 01/30/2025] [Indexed: 02/05/2025]
Abstract
DNA vaccines are a novel form of vaccination that aims to harness genetic material to produce targeted immune responses. Nevertheless, their therapeutic application is hampered by low transfection efficacy, immunogenicity, and instability. Nanoparticle (NP) - based delivery systems are beneficial in enhancing DNA stability, increasing DNA uptake by antigen-presenting cells (APCs), and controlling antigen release. Some key progress includes the polymeric, lipid-based, and hybrid NPs and biocompatible carriers with inherent adjuvant effects. These systems have helped to enhance the antigen cross-presentation and T-cell activation significantly. In addition, biocompatible hybrid nanocarriers, antigen cross-presentation strategies, and next-generation sequencing (NGS) technologies are speeding up the identification of new antigens, while AI and machine learning are facilitating the development of efficient delivery systems. This review aims to assess how NPs have contributed to improving the effectiveness of DNA vaccines for treating diseases, cancer, and emerging diseases, as well as advancing the next generation of DNA vaccines.
Collapse
Affiliation(s)
- Pegah Yaraghi
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Abbas Kheyri
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Narges Mikaeili
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Armin Boroumand
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mitra Abbasifard
- Department of Internal Medicine, School of Medicine, Ali-Ibn Abi-Talib Hospital, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | - Pooya Farhangnia
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fereshteh Rezagholizadeh
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
3
|
Liu J, Liu J, Wang Y, Chen F, He Y, Xie X, Zhong Y, Yang C. Bioactive mesoporous silica materials-assisted cancer immunotherapy. Biomaterials 2025; 315:122919. [PMID: 39481339 DOI: 10.1016/j.biomaterials.2024.122919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/12/2024] [Accepted: 10/23/2024] [Indexed: 11/02/2024]
Abstract
Immunotherapy is initially envisioned as a powerful approach to train immune cells within the tumor microenvironment (TME) and lymphoid tissues to elicit strong anti-tumor responses. However, clinical cancer immunotherapy still faces challenges, such as limited immunogenicity and insufficient immune response. Leveraging the advantages of mesoporous silica (MS) materials in controllable drug and immunomodulator release, recent efforts have focused on engineering MS with intrinsic immunoregulatory functions to promote robust, systemic, and safe anti-tumor responses. This review discusses advances in bioactive MS materials that address the challenges of immunotherapy. Beyond their role in on-demand delivery and drug release in response to the TME, we highlight the intrinsic functions of bioactive MS in orchestrating localized immune responses by inducing immunogenic cell death in tumor cells, modulating immune cell activity, and facilitating tumor-immune cell interactions. Additionally, we emphasize the advantages of bioactive MS in recruiting and activating immune cells within lymphoid tissues to initiate anti-tumor vaccination. The review also covers the challenges of MS-assisted immunotherapy, potential solutions, and future outlooks. With a deeper understanding of material-bio interactions, the rational design of MS with sophisticated bioactivities and controllable responsiveness holds great promise for enhancing the outcomes of personalized immunotherapy.
Collapse
Affiliation(s)
- Jiali Liu
- Department of Orthopedics, Academy of Orthopedics-Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China; School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, 511442, China
| | - Jiying Liu
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yaxin Wang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, 511442, China
| | - Fangman Chen
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangdong, 510006, China
| | - Yan He
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, 511442, China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangdong, 510006, China
| | - Xiaochun Xie
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangdong, 510006, China
| | - Yiling Zhong
- College of Pharmacy, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, Guangdong, 511443, China.
| | - Chao Yang
- Department of Orthopedics, Academy of Orthopedics-Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China.
| |
Collapse
|
4
|
Mihaylova NM, Manoylov IK, Nikolova MH, Prechl J, Tchorbanov AI. DNA and protein-generated chimeric molecules for delivery of influenza viral epitopes in mouse and humanized NSG transfer models. Hum Vaccin Immunother 2024; 20:2292381. [PMID: 38193304 PMCID: PMC10793685 DOI: 10.1080/21645515.2023.2292381] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/05/2023] [Indexed: 01/10/2024] Open
Abstract
Purified subunit viral antigens are weakly immunogenic and stimulate only the antibody but not the T cell-mediated immune response. An alternative approach to inducing protective immunity with small viral peptides may be the targeting of viral epitopes to immunocompetent cells by DNA and protein-engineered vaccines. This review will focus on DNA and protein-generated chimeric molecules carrying engineered fragments specific for activating cell surface co-receptors for inducing protective antiviral immunity. Adjuvanted protein-based vaccine or DNA constructs encoding simultaneously T- and B-cell peptide epitopes from influenza viral hemagglutinin, and scFvs specific for costimulatory immune cell receptors may induce a significant increase of anti-influenza antibody levels and strong CTL activity against virus-infected cells in a manner that mimics the natural infection. Here we summarize the development of several DNA and protein chimeric constructs carrying influenza virus HA317-41 fragment. The generated engineered molecules were used for immunization in intact murine and experimentally humanized NSG mouse models.
Collapse
Affiliation(s)
- Nikolina M. Mihaylova
- Laboratory of Experimental Immunology, Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Iliyan K. Manoylov
- Laboratory of Experimental Immunology, Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Maria H. Nikolova
- National Reference Laboratory of Immunology, National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria
| | | | - Andrey I. Tchorbanov
- Laboratory of Experimental Immunology, Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
- National Institute of Immunology, Sofia, Bulgaria
| |
Collapse
|
5
|
Fayyaz A, Haqqi A, Khan R, Irfan M, Khan K, Reiner Ž, Sharifi-Rad J, Calina D. Revolutionizing cancer treatment: the rise of personalized immunotherapies. Discov Oncol 2024; 15:756. [PMID: 39692978 DOI: 10.1007/s12672-024-01638-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 11/26/2024] [Indexed: 12/19/2024] Open
Abstract
Interest in biological therapy for cancer has surged due to its precise targeting of cancer cells and minimized impact on surrounding healthy tissues. This review discusses various biological cancer therapies, highlighting advanced alternatives over conventional chemotherapy alone. It explores DNA and RNA-based vaccines, T-cell modifications, adoptive cell transfer, CAR T cell therapy, angiogenesis inhibitors, and the combination of immunotherapy with chemotherapy, offering a holistic view of the potential in cancer treatment. Additionally, it discusses the role of nanotechnology in increasing the efficacy of cancer-targeting drugs, as well as cytokine and immunoconjugate therapies for bolstering immune system effectiveness against neoplastic cells. The potential of gene potential for precise targeting of cancer-linked genes and the application of oncolytic viruses against virus-associated cancers are also discussed. The review identifies significant advancements in the targeted treatment of cancer by biological methods. It acknowledges the challenges, including drug resistance and the need for high specificity in certain therapies, while also highlighting the effectiveness of cancer vaccines, modified T-cells, and oncolytic viruses. Biological therapies are a promising frontier in cancer treatment, offering the potential for more personalized and effective therapeutic strategies. Despite existing challenges, ongoing research and clinical trials are fundamental for overcoming current limitations and enhancing the efficacy of biological therapies in cancer care.
Collapse
Affiliation(s)
- Amna Fayyaz
- Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Aleena Haqqi
- School of Medical Laboratory Technology, Faculty of Allied Health Sciences, Minhaj University Lahore (MUL), Lahore, 54000, Pakistan
| | - Rashid Khan
- Department of Pharmacy, Punjab University College of Pharmacy University of Punjab Lahore, Lahore, 54000, Pakistan
| | - Muhammad Irfan
- Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Khushbukhat Khan
- Cancer Clinical Research Unit, Trials360, Lahore, 54000, Pakistan.
| | - Željko Reiner
- Department for Metabolic Diseases, University Hospital Center Zagreb, Zagreb, Croatia
- Polish Mother's Memorial Hospital Research Institute, Lodz, Poland
| | - Javad Sharifi-Rad
- Universidad Espíritu Santo, Samborondón, 092301, Ecuador.
- Centro de Estudios Tecnológicos, Universitarios del Golfo, Veracruz, Mexico.
- Department of Medicine, College of Medicine, Korea University, Seoul, 02841, Republic of Korea.
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| |
Collapse
|
6
|
Suzuki N, Shindo Y, Nakajima M, Tsunedomi R, Nagano H. Current status of vaccine immunotherapy for gastrointestinal cancers. Surg Today 2024; 54:1279-1291. [PMID: 38043066 DOI: 10.1007/s00595-023-02773-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/14/2023] [Indexed: 12/05/2023]
Abstract
Recent advances in tumor immunology and molecular drug development have ushered in a new era of cancer immunotherapy. Immunotherapy has shown promising results for several types of tumors, such as advanced melanoma, non-small cell lung cancer, renal cell carcinoma, bladder cancers, and refractory Hodgkin's lymphoma. Similarly, efforts have been made to develop immunotherapies such as adoptive T-cell transplantation, peptide vaccines, and dendritic cell vaccines, specifically for gastrointestinal tumors. However, before the advent of immune checkpoint inhibitors, immunotherapy did not work as well as expected. In this article, we review immunotherapy, focusing on cancer vaccines for gastrointestinal tumors, which generally target eliciting tumor-specific CD8 + cytotoxic T lymphocytes (CTLs). We also review various vaccine therapies and describe the relationship between vaccines and adjuvants. Finally, we discuss prospects for the combination of immunotherapy with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Nobuaki Suzuki
- Department of Gastroenterological, Breast, and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Yoshitaro Shindo
- Department of Gastroenterological, Breast, and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Masao Nakajima
- Department of Gastroenterological, Breast, and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Ryouichi Tsunedomi
- Department of Gastroenterological, Breast, and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Hiroaki Nagano
- Department of Gastroenterological, Breast, and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan.
| |
Collapse
|
7
|
Wang Y, Qu J, Xiong C, Chen B, Xie K, Wang M, Liu Z, Yue Z, Liang Z, Wang F, Zhang T, Zhu G, Kuang YB, Shi P. Transdermal microarrayed electroporation for enhanced cancer immunotherapy based on DNA vaccination. Proc Natl Acad Sci U S A 2024; 121:e2322264121. [PMID: 38865265 PMCID: PMC11194603 DOI: 10.1073/pnas.2322264121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/14/2024] [Indexed: 06/14/2024] Open
Abstract
Despite the tremendous clinical potential of nucleic acid-based vaccines, their efficacy to induce therapeutic immune response has been limited by the lack of efficient local gene delivery techniques in the human body. In this study, we develop a hydrogel-based organic electronic device (μEPO) for both transdermal delivery of nucleic acids and in vivo microarrayed cell electroporation, which is specifically oriented toward one-step transfection of DNAs in subcutaneous antigen-presenting cells (APCs) for cancer immunotherapy. The μEPO device contains an array of microneedle-shaped electrodes with pre-encapsulated dry DNAs. Upon a pressurized contact with skin tissue, the electrodes are rehydrated, electrically triggered to release DNAs, and then electroporate nearby cells, which can achieve in vivo transfection of more than 50% of the cells in the epidermal and upper dermal layer. As a proof-of-concept, the μEPO technique is employed to facilitate transdermal delivery of neoantigen genes to activate antigen-specific immune response for enhanced cancer immunotherapy based on a DNA vaccination strategy. In an ovalbumin (OVA) cancer vaccine model, we show that high-efficiency transdermal transfection of APCs with OVA-DNAs induces robust cellular and humoral immune responses, including antigen presentation and generation of IFN-γ+ cytotoxic T lymphocytes with a more than 10-fold dose sparing over existing intramuscular injection (IM) approach, and effectively inhibits tumor growth in rodent animals.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region999077, China
| | - Jin Qu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region999077, China
| | - Chuxiao Xiong
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region999077, China
| | - Bing Chen
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region999077, China
| | - Kai Xie
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region999077, China
| | - Mingxue Wang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region999077, China
| | - Zhen Liu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region999077, China
| | - Zhao Yue
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region999077, China
| | - Zhenghua Liang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong Special Administrative Region999077, China
| | - Feng Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region999077, China
| | - Tianlong Zhang
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong Special Administrative Region999077, China
| | - Guangyu Zhu
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region999077, China
| | - Yi Becki Kuang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong Special Administrative Region999077, China
| | - Peng Shi
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region999077, China
- Center of Super-Diamond and Advanced Films, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region999077, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering, Hong Kong Special Administrative Region999077, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen518000, China
| |
Collapse
|
8
|
Wang Y, Song W, Xu Q, Liu Y, Liu H, Guo R, Chiou CJ, Gao K, Jin B, Chen C, Li Z, Yan J, Yu J. Adjuvant DNA vaccine pNMM promotes enhanced specific immunity and anti-tumor effects. Hum Vaccin Immunother 2023; 19:2202127. [PMID: 37128699 PMCID: PMC10142307 DOI: 10.1080/21645515.2023.2202127] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023] Open
Abstract
DNA vaccines containing only antigenic components have limited efficacy and may fail to induce effective immune responses. Consequently, adjuvant molecules are often added to enhance immunogenicity. In this study, we generated a tumor vaccine using a plasmid encoding NMM (NY-ESO-1/MAGE-A3/MUC1) target antigens and immune-associated molecules. The products of the vaccine were analyzed in 293 T cells by western blotting, flow cytometry, and meso-scale discovery electrochemiluminescence. To assess the immunogenicity obtained, C57BL/6 mice were immunized using the DNA vaccine. The results revealed that following immunization, this DNA vaccine induced cellular immune responses in C57BL/6 mice, as evaluated by the release of IFN-γ, and we also detected increases in the percentages of nonspecific lymphocytes, as well as those of antigen-specific T cells. Furthermore, immunization with the pNMM vaccine was found to significantly inhibit tumor growth and prolonged the survival of mice with B16-NMM+-tumors. Our data revealed that pNMM DNA vaccines not only confer enhanced immunity against tumors but also provide a potentially novel approach for vaccine design. Moreover, our findings provide a basis for further studies on vaccine pharmacodynamics and pharmacology, and lay a solid foundation for clinical application.
Collapse
Affiliation(s)
| | | | | | - Yachao Liu
- Gu'an Dingtai Haigui Biotechnology Co., Ltd., Peptide Valley Biomedical Incubation Port, Gu'an County, Hebei, China
| | - Hezhong Liu
- Gu'an Dingtai Haigui Biotechnology Co., Ltd., Peptide Valley Biomedical Incubation Port, Gu'an County, Hebei, China
| | - Runzi Guo
- Gu'an Dingtai Haigui Biotechnology Co., Ltd., Peptide Valley Biomedical Incubation Port, Gu'an County, Hebei, China
| | - Chuang-Jiun Chiou
- Gu'an Dingtai Haigui Biotechnology Co., Ltd., Peptide Valley Biomedical Incubation Port, Gu'an County, Hebei, China
| | - Kun Gao
- Gu'an Dingtai Haigui Biotechnology Co., Ltd., Peptide Valley Biomedical Incubation Port, Gu'an County, Hebei, China
| | - Baofeng Jin
- Gu'an Dingtai Haigui Biotechnology Co., Ltd., Peptide Valley Biomedical Incubation Port, Gu'an County, Hebei, China
| | - Changfeng Chen
- Gu'an Dingtai Haigui Biotechnology Co., Ltd., Peptide Valley Biomedical Incubation Port, Gu'an County, Hebei, China
| | - Zhongming Li
- Gu'an Dingtai Haigui Biotechnology Co., Ltd., Peptide Valley Biomedical Incubation Port, Gu'an County, Hebei, China
| | - Jinqi Yan
- Gu'an Dingtai Haigui Biotechnology Co., Ltd., Peptide Valley Biomedical Incubation Port, Gu'an County, Hebei, China
| | - Jiyun Yu
- Gu'an Dingtai Haigui Biotechnology Co., Ltd., Peptide Valley Biomedical Incubation Port, Gu'an County, Hebei, China
| |
Collapse
|
9
|
Shi Y, Weng W, Chen M, Huang H, Chen X, Peng Y, Hu Y. Improving DNA vaccination performance through a new microbubble design and an optimized sonoporation protocol. ULTRASONICS SONOCHEMISTRY 2023; 101:106685. [PMID: 37976565 PMCID: PMC10692915 DOI: 10.1016/j.ultsonch.2023.106685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/23/2023] [Accepted: 11/05/2023] [Indexed: 11/19/2023]
Abstract
As a non-viral transfection method, ultrasound and microbubble-induced sonoporation can achieve spatially targeted gene delivery with synergistic immunostimulatory effects. Here, we report for the first time the application of sonoporation for improving DNA vaccination performance. This study developed a new microbubble design with nanoscale DNA/PEI complexes loaded onto cationic microbubbles to attain significant increases in DNA-loading capacity (0.25 pg per microbubble) and in vitro transfection efficiency. Using live-cell imaging, we revealed the membrane perforation and cellular delivery characteristics of sonoporation. Using luciferase reporter gene for in vivo transfection, we showed that sonoporation increased the transfection efficiency by 40.9-fold when compared with intramuscular injection. Moreover, we comprehensively optimized the sonoporation protocol and further increased the transfection efficiency by 43.6-fold. Immunofluorescent staining results showed that sonoporation effectively activated the MHC-II+ immune cells. Using a hepatitis B DNA vaccine, sonoporation induced significantly higher serum antibody levels when compared with intramuscular injection, and the antibodies sustained for 56 weeks. In addition, we recorded the longest reported expression period (400 days) of the sonoporation-delivered gene. Whole genome resequencing confirmed that the gene with stable expression existed in an extrachromosomal state without integration. Our results demonstrated the potential of sonoporation for efficient and safe DNA vaccination.
Collapse
Affiliation(s)
- Yuanchao Shi
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, Guangdong, China; National-regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen University, Shenzhen 518055, Guangdong, China
| | - Weixiong Weng
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, Guangdong, China; National-regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen University, Shenzhen 518055, Guangdong, China
| | - Mengting Chen
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, Guangdong, China; National-regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen University, Shenzhen 518055, Guangdong, China
| | - Haoqiang Huang
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, Guangdong, China; National-regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen University, Shenzhen 518055, Guangdong, China
| | - Xin Chen
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, Guangdong, China; National-regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen University, Shenzhen 518055, Guangdong, China
| | - Yin Peng
- School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, Guangdong, China
| | - Yaxin Hu
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, Guangdong, China; National-regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen University, Shenzhen 518055, Guangdong, China.
| |
Collapse
|
10
|
Wu M, Luo Z, Cai Z, Mao Q, Li Z, Li H, Zhang C, Zhang Y, Zhong A, Wu L, Liu X. Spleen-targeted neoantigen DNA vaccine for personalized immunotherapy of hepatocellular carcinoma. EMBO Mol Med 2023; 15:e16836. [PMID: 37552209 PMCID: PMC10565630 DOI: 10.15252/emmm.202216836] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/09/2023] Open
Abstract
Neoantigens are emerging as attractive targets to develop personalized cancer vaccines, but their immunization efficacy is severely hampered by their restricted accessibility to lymphoid tissues where immune responses are initiated. Leveraging the capability of red blood cells (RBCs) to capture and present pathogens in peripheral blood to the antigen-presenting cells (APCs) in spleen, we developed a RBC-driven spleen targeting strategy to deliver DNA vaccine encoding hepatocellular carcinoma (HCC) neoantigen. The DNA vaccine-encapsulating polymeric nanoparticles that were intentionally hitchhiked on the preisolated RBCs could preferentially accumulate in the spleen to promote the neoantigen expression by APCs, resulting in the burst of neoantigen-specific T-cell immunity to prevent tumorigenesis in a personalized manner, and slow down tumor growth in the established aggressively growing HCC. Remarkably, when combined with anti-PD-1, the vaccine achieved complete tumor regression and generated a robust systemic immune response with long-term tumor-specific immunological memory, which thoroughly prevented tumor recurrence and spontaneous lung metastasis. This study offers a prospective strategy to develop personalized neoantigen vaccines for augmenting cancer immunotherapy efficiency in immune "cold" HCC.
Collapse
Affiliation(s)
- Ming Wu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhouChina
- The Liver Center of Fujian ProvinceFujian Medical UniversityFuzhouChina
- Mengchao Med‐X CenterFuzhou UniversityFuzhouChina
| | - Zijin Luo
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhouChina
| | - Zhixiong Cai
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhouChina
- The Liver Center of Fujian ProvinceFujian Medical UniversityFuzhouChina
- Mengchao Med‐X CenterFuzhou UniversityFuzhouChina
| | - Qianqian Mao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhouChina
| | - Zhenli Li
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhouChina
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang Provincial Key Laboratory of Pancreatic Disease, School of MedicineZhejiang UniversityHangzhouChina
| | - Hao Li
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhouChina
- Mengchao Med‐X CenterFuzhou UniversityFuzhouChina
| | - Cao Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhouChina
- Mengchao Med‐X CenterFuzhou UniversityFuzhouChina
| | - Yuting Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhouChina
- Mengchao Med‐X CenterFuzhou UniversityFuzhouChina
| | - Aoxue Zhong
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhouChina
- Mengchao Med‐X CenterFuzhou UniversityFuzhouChina
| | - Liming Wu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhouChina
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang Provincial Key Laboratory of Pancreatic Disease, School of MedicineZhejiang UniversityHangzhouChina
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhouChina
- The Liver Center of Fujian ProvinceFujian Medical UniversityFuzhouChina
- Mengchao Med‐X CenterFuzhou UniversityFuzhouChina
| |
Collapse
|
11
|
Barui S, Saha S, Venu Y, Moku GK, Chaudhuri A. In vivo targeting of a tumor-antigen encoded DNA vaccine to dendritic cells in combination with tumor-selective chemotherapy eradicates established mouse melanoma. Biomater Sci 2023; 11:6135-6148. [PMID: 37555308 DOI: 10.1039/d3bm00702b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Despite remarkable progress during the past decade, eradication of established tumors by targeted cancer therapy and cancer immunotherapy remains an uphill task. Herein, we report on a combination approach for eradicating established mouse melanoma. Our approach employs the use of tumor selective chemotherapy in combination with in vivo dendritic cell (DC) targeted DNA vaccination. Liposomes of a newly synthesized lipopeptide containing a previously reported tumor-targeting CGKRK-ligand covalently grafted in its polar head-group region were used for tumor selective delivery of cancer therapeutics. Liposomally co-loaded STAT3siRNA and WP1066 (a commercially available inhibitor of the JAK2/STAT3 pathway) were used as cancer therapeutics. In vivo targeting of a melanoma antigen (MART-1) encoded DNA vaccine (p-CMV-MART1) to dendritic cells was accomplished by complexing it with a previously reported mannose-receptor selective in vivo DC-targeting liposome. Liposomes of the CGKRK-lipopeptide containing encapsulated FITC-labeled siRNA, upon intravenous administration in B16F10 melanoma bearing mice, showed remarkably higher accumulation in tumors 24 h post i.v. treatment, compared to their degree of accumulation in other body tissues including the lungs, liver, kidneys, spleen and heart. Importantly, the findings in tumor growth inhibition studies revealed that only in vivo DC-targeted genetic immunization or only tumor-selective chemotherapy using the presently described systems failed to eradicate the established mouse melanoma. The presently described combination approach is expected to find future applications in combating various malignancies (with well-defined surface antigens).
Collapse
Affiliation(s)
- Sugata Barui
- Biomaterials Group, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad-500007, Telangana, India.
| | - Soumen Saha
- Biomaterials Group, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad-500007, Telangana, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh-201002, India
| | - Yakati Venu
- Biomaterials Group, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad-500007, Telangana, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh-201002, India
| | - Gopi Krishna Moku
- Biomaterials Group, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad-500007, Telangana, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh-201002, India
- Department of Physical Sciences, Kakatiya Institute of Technology and Science, Yerragattu Gutta, Warangal 506 015, Telangana, India
| | - Arabinda Chaudhuri
- Biomaterials Group, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad-500007, Telangana, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh-201002, India
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia-74126, West Bengal, India
| |
Collapse
|
12
|
Schunke J, Mailänder V, Landfester K, Fichter M. Delivery of Immunostimulatory Cargos in Nanocarriers Enhances Anti-Tumoral Nanovaccine Efficacy. Int J Mol Sci 2023; 24:12174. [PMID: 37569548 PMCID: PMC10419017 DOI: 10.3390/ijms241512174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/21/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Finding a long-term cure for tumor patients still represents a major challenge. Immunotherapies offer promising therapy options, since they are designed to specifically prime the immune system against the tumor and modulate the immunosuppressive tumor microenvironment. Using nucleic-acid-based vaccines or cellular vaccines often does not achieve sufficient activation of the immune system in clinical trials. Additionally, the rapid degradation of drugs and their non-specific uptake into tissues and cells as well as their severe side effects pose a challenge. The encapsulation of immunomodulatory molecules into nanocarriers provides the opportunity of protected cargo transport and targeted uptake by antigen-presenting cells. In addition, different immunomodulatory cargos can be co-delivered, which enables versatile stimulation of the immune system, enhances anti-tumor immune responses and improves the toxicity profile of conventional chemotherapeutic agents.
Collapse
Affiliation(s)
- Jenny Schunke
- Department of Dermatology, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- Max Planck Insitute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Volker Mailänder
- Department of Dermatology, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- Max Planck Insitute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | | | - Michael Fichter
- Department of Dermatology, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- Max Planck Insitute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
13
|
Neoantigens: promising targets for cancer therapy. Signal Transduct Target Ther 2023; 8:9. [PMID: 36604431 PMCID: PMC9816309 DOI: 10.1038/s41392-022-01270-x] [Citation(s) in RCA: 397] [Impact Index Per Article: 198.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/14/2022] [Accepted: 11/27/2022] [Indexed: 01/07/2023] Open
Abstract
Recent advances in neoantigen research have accelerated the development and regulatory approval of tumor immunotherapies, including cancer vaccines, adoptive cell therapy and antibody-based therapies, especially for solid tumors. Neoantigens are newly formed antigens generated by tumor cells as a result of various tumor-specific alterations, such as genomic mutation, dysregulated RNA splicing, disordered post-translational modification, and integrated viral open reading frames. Neoantigens are recognized as non-self and trigger an immune response that is not subject to central and peripheral tolerance. The quick identification and prediction of tumor-specific neoantigens have been made possible by the advanced development of next-generation sequencing and bioinformatic technologies. Compared to tumor-associated antigens, the highly immunogenic and tumor-specific neoantigens provide emerging targets for personalized cancer immunotherapies, and serve as prospective predictors for tumor survival prognosis and immune checkpoint blockade responses. The development of cancer therapies will be aided by understanding the mechanism underlying neoantigen-induced anti-tumor immune response and by streamlining the process of neoantigen-based immunotherapies. This review provides an overview on the identification and characterization of neoantigens and outlines the clinical applications of prospective immunotherapeutic strategies based on neoantigens. We also explore their current status, inherent challenges, and clinical translation potential.
Collapse
|
14
|
Polymeric Microneedle-Based Drug Delivery Platforms for Application in Cancer Therapy. Cancer Nanotechnol 2023. [DOI: 10.1007/978-3-031-17831-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
15
|
A Brief Overview of Cancer Vaccines. Cancer J 2023; 29:34-37. [PMID: 36693156 DOI: 10.1097/ppo.0000000000000640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
ABSTRACT Vaccine strategies for cancer differ from infectious disease in focusing mainly on clearing rather than preventing disease. Here we survey general vaccine strategies and combination therapy concepts being investigated for cancer treatment, with a focus on tumor antigens rather than cancer-inducing viruses or microorganisms. Many tumor antigens are "altered-self" and tend to arouse weaker immune responses than "foreign" antigens expressed by infectious agents. Further, unlike an infectious disease patient, a cancer patient's immune system is damaged, suppressed, or senescent and mainly tolerant of their disease. Thus, vaccine efficacy in a cancer patient will rely upon adjuvant or combination treatments that correct the inflammatory tumor microenvironment and degrade tumoral immunosuppression that dominates patient immunity. This brief overview is aimed at new researchers in cancer immunology seeking an overview of vaccine concepts to eradicate malignancy by provoking a selective immune attack.
Collapse
|
16
|
Jiang S, Wu S, Zhao G, He Y, Bao L, Liu J, Qin C, Hou J, Ding Y, Cheng A, Jiang B, Wu J, Yan J, Humeau L, Patella A, Weiner DB, Broderick K, Wang B. Comparison of Wild Type DNA Sequence of Spike Protein from SARS-CoV-2 with Optimized Sequence on The Induction of Protective Responses Against SARS-Cov-2 Challenge in Mouse Model. Hum Vaccin Immunother 2022; 18:2016201. [PMID: 35061975 PMCID: PMC8986195 DOI: 10.1080/21645515.2021.2016201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Genetic optimization of Nucleic Acid immunogens is important for potentially improving their immune potency. A COVID-19 DNA vaccine is in phase III clinical trial which is based on a promising highly developable technology platform. Here, we show optimization in mice generating a pGX-9501 DNA vaccine encoding full-length spike protein, which results in induction of potent humoral and cellular immune responses, including neutralizing antibodies, that block hACE2-RBD binding of live CoV2 virus in vitro. Optimization resulted in improved induction of cellular immunity by pGX-9501 as demonstrated by increased IFN-γ expression in both CD8+ and CD4 + T cells and this was associated with more robust antiviral CTL responses compared to unoptimized constructs. Vaccination with pGX-9501 induced subsequent protection against virus challenge in a rigorous hACE2 transgenic mouse model. Overall, pGX-9501 is a promising optimized COVID-19 DNA vaccine candidate inducing humoral and cellular immunity contributing to the vaccine's protective effects.
Collapse
Affiliation(s)
- Sheng Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College (SHMC), Fudan University, Shanghai, China,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Shuting Wu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College (SHMC), Fudan University, Shanghai, China
| | - Gan Zhao
- Biomedical Research Institute of Advaccine (BRIA), Advaccine Biopharmaceutics (Suzhou) Co. LTD, Suzhou City, Jiangsu
| | - Yue He
- Biomedical Research Institute of Advaccine (BRIA), Advaccine Biopharmaceutics (Suzhou) Co. LTD, Suzhou City, Jiangsu
| | - Linlin Bao
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, China
| | - Jiangning Liu
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, China
| | - Chuan Qin
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, China
| | - Jiawang Hou
- Biomedical Research Institute of Advaccine (BRIA), Advaccine Biopharmaceutics (Suzhou) Co. LTD, Suzhou City, Jiangsu
| | - Yuan Ding
- Biomedical Research Institute of Advaccine (BRIA), Advaccine Biopharmaceutics (Suzhou) Co. LTD, Suzhou City, Jiangsu
| | - Alex Cheng
- Biomedical Research Institute of Advaccine (BRIA), Advaccine Biopharmaceutics (Suzhou) Co. LTD, Suzhou City, Jiangsu
| | - Brian Jiang
- Biomedical Research Institute of Advaccine (BRIA), Advaccine Biopharmaceutics (Suzhou) Co. LTD, Suzhou City, Jiangsu
| | - John Wu
- Biomedical Research Institute of Advaccine (BRIA), Advaccine Biopharmaceutics (Suzhou) Co. LTD, Suzhou City, Jiangsu
| | - Jian Yan
- Inovio Pharmaceuticals, Plymouth Meeting, PA, USA
| | | | - Ami Patella
- Inovio Pharmaceuticals, Plymouth Meeting, PA, USA
| | | | | | - Bin Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College (SHMC), Fudan University, Shanghai, China,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China,CONTACT Bin Wang School of Basic Medical Sciences, Fudan University, 131 Dong’an Road, 409 Fuxing Building, Shanghai200032, China
| |
Collapse
|
17
|
Rahdan S, Razavi SA, Shojaeian S, Shokri F, Amiri MM, Zarnani AH. Immunization with placenta-specific 1 (plac1) induces potent anti-tumor responses and prolongs survival in a mouse model of melanoma. Adv Med Sci 2022; 67:338-345. [PMID: 36084365 DOI: 10.1016/j.advms.2022.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/07/2022] [Accepted: 08/16/2022] [Indexed: 12/30/2022]
Abstract
PURPOSE Melanoma is a malignant and metastatic form of skin cancer, which is not diagnosed in early stages of the disease. Nowadays, immunotherapy is changing the treatment landscape for metastatic melanoma. Placenta-specific1 (PLAC1) is a cancer-testis-placenta (CTP) antigen with differential expression in melanoma tissues. Here, we evaluated the potential of plac1 to induce anti-cancer immune responses as well as to prevent cancer development in a mouse model of melanoma. METHODS Two proteins containing full extracellular domain (ED) of mouse plac1+KDEL3 and full ED of mouse plac1+ tetanus toxin P2 and P30+ pan DR epitope (PADRE) + KDEL3 were produced and injected in mice to evaluate their capacity to induce anti-cancer immune responses as well as their potential to prevent melanoma development. Induction of plac1-specific humoral and cellular responses as well as tumor-associated parameters were tested in a series of 36 mice. RESULTS Sera of mice immunized with ED + P2P30+PADRE + KDEL3 contained antibodies able to react with surface plac1 in B16F10 cells. Both proteins induced proliferative cellular immune responses against B16F10 cells and plac1-specific cytotoxic T cells (CTL) and CD107a + CTL responses, which was higher in mice immunized with ED + P2P30+PADRE + KDEL3. Splenocytes of mice vaccinated with ED + P2P30+PADRE + KDEL3 exerted a significant cytotoxicity against B16F10 cells. Vaccination with ED + P2P30+PADRE + KDEL3 significantly delayed B16F10-induced tumor onset, reduced tumor growth, and increased survival. Tumors induced by B16F10 expressed plac1 in vivo. CONCLUSION Our results pave the way for development of effective melanoma preventive vaccine in humans, although further studies are needed.
Collapse
Affiliation(s)
- Shaghayegh Rahdan
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Alireza Razavi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sorour Shojaeian
- Department of Biochemistry, School of Medical Sciences, Alborz University of Medical Sciences, Karaj, Iran
| | - Fazel Shokri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mehdi Amiri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir-Hassan Zarnani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| |
Collapse
|
18
|
Sobhani N, Scaggiante B, Morris R, Chai D, Catalano M, Tardiel-Cyril DR, Neeli P, Roviello G, Mondani G, Li Y. Therapeutic cancer vaccines: From biological mechanisms and engineering to ongoing clinical trials. Cancer Treat Rev 2022; 109:102429. [PMID: 35759856 PMCID: PMC9217071 DOI: 10.1016/j.ctrv.2022.102429] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 12/01/2022]
Abstract
Therapeutic vaccines are currently at the forefront of medical innovation. Various endeavors have been made to develop more consolidated approaches to producing nucleic acid-based vaccines, both DNA and mRNA vaccines. These innovations have continued to propel therapeutic platforms forward, especially for mRNA vaccines, after the successes that drove emergency FDA approval of two mRNA vaccines against SARS-CoV-2. These vaccines use modified mRNAs and lipid nanoparticles to improve stability, antigen translation, and delivery by evading innate immune activation. Simple alterations of mRNA structure- such as non-replicating, modified, or self-amplifying mRNAs- can provide flexibility for future vaccine development. For protein vaccines, the use of long synthetic peptides of tumor antigens instead of short peptides has further enhanced antigen delivery success and peptide stability. Efforts to identify and target neoantigens instead of antigens shared between tumor cells and normal cells have also improved protein-based vaccines. Other approaches use inactivated patient-derived tumor cells to elicit immune responses, or purified tumor antigens are given to patient-derived dendritic cells that are activated in vitro prior to reinjection. This review will discuss recent developments in therapeutic cancer vaccines such as, mode of action and engineering new types of anticancer vaccines, in order to summarize the latest preclinical and clinical data for further discussion of ongoing clinical endeavors in the field.
Collapse
Affiliation(s)
- Navid Sobhani
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Bruna Scaggiante
- Department of Life Sciences, University of Trieste, Trieste 34127, Italy.
| | - Rachel Morris
- Thunder Biotech, 395 Cougar Blvd, Provo, UT 84604, USA.
| | - Dafei Chai
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX 77030, USA; Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China.
| | - Martina Catalano
- School of Human Health Sciences, University of Florence, Largo Brambilla 3, Florence 50134, Italy.
| | - Dana Rae Tardiel-Cyril
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Praveen Neeli
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Giandomenico Roviello
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, Florence 50139, Italy.
| | - Giuseppina Mondani
- Royal Infirmary Hospital, Foresterhill Health Campus, Foresterhill Rd, Aberdeen AB25 2ZN, United Kingdom.
| | - Yong Li
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
19
|
Shi Y, Lu Y, You J. Antigen transfer and its effect on vaccine-induced immune amplification and tolerance. Am J Cancer Res 2022; 12:5888-5913. [PMID: 35966588 PMCID: PMC9373810 DOI: 10.7150/thno.75904] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/15/2022] [Indexed: 12/13/2022] Open
Abstract
Antigen transfer refers to the process of intercellular information exchange, where antigenic components including nucleic acids, antigen proteins/peptides and peptide-major histocompatibility complexes (p-MHCs) are transmitted from donor cells to recipient cells at the thymus, secondary lymphoid organs (SLOs), intestine, allergic sites, allografts, pathological lesions and vaccine injection sites via trogocytosis, gap junctions, tunnel nanotubes (TNTs), or extracellular vesicles (EVs). In the context of vaccine inoculation, antigen transfer is manipulated by the vaccine type and administration route, which consequently influences, even alters the immunological outcome, i.e., immune amplification and tolerance. Mainly focused on dendritic cells (DCs)-based antigen receptors, this review systematically introduces the biological process, molecular basis and clinical manifestation of antigen transfer.
Collapse
Affiliation(s)
- Yingying Shi
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, Zhejiang, China
| | - Yichao Lu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, Zhejiang, China
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, Zhejiang, China
| |
Collapse
|
20
|
Davodabadi F, Sarhadi M, Arabpour J, Sargazi S, Rahdar A, Díez-Pascual AM. Breast cancer vaccines: New insights into immunomodulatory and nano-therapeutic approaches. J Control Release 2022; 349:844-875. [PMID: 35908621 DOI: 10.1016/j.jconrel.2022.07.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 10/16/2022]
Abstract
Breast cancer (BC) is known to be a highly heterogeneous disease that is clinically subdivided into four primary molecular subtypes, each having distinct morphology and clinical implications. These subtypes are principally defined by hormone receptors and other proteins involved (or not involved) in BC development. BC therapeutic vaccines [including peptide-based vaccines, protein-based vaccines, nucleic acid-based vaccines (DNA/RNA vaccines), bacterial/viral-based vaccines, and different immune cell-based vaccines] have emerged as an appealing class of cancer immunotherapeutics when used alone or combined with other immunotherapies. Employing the immune system to eliminate BC cells is a novel therapeutic modality. The benefit of active immunotherapies is that they develop protection against neoplastic tissue and readjust the immune system to an anti-tumor monitoring state. Such immunovaccines have not yet shown effectiveness for BC treatment in clinical trials. In recent years, nanomedicines have opened new windows to increase the effectiveness of vaccinations to treat BC. In this context, some nanoplatforms have been designed to efficiently deliver molecular, cellular, or subcellular vaccines to BC cells, increasing the efficacy and persistence of anti-tumor immunity while minimizing undesirable side effects. Immunostimulatory nano-adjuvants, liposomal-based vaccines, polymeric vaccines, virus-like particles, lipid/calcium/phosphate nanoparticles, chitosan-derived nanostructures, porous silicon microparticles, and selenium nanoparticles are among the newly designed nanostructures that have been used to facilitate antigen internalization and presentation by antigen-presenting cells, increase antigen stability, enhance vaccine antigenicity and remedial effectivity, promote antigen escape from the endosome, improve cytotoxic T lymphocyte responses, and produce humoral immune responses in BC cells. Here, we summarized the existing subtypes of BC and shed light on immunomodulatory and nano-therapeutic strategies for BC vaccination. Finally, we reviewed ongoing clinical trials on BC vaccination and highlighted near-term opportunities for moving forward.
Collapse
Affiliation(s)
- Fatemeh Davodabadi
- Department of Biology, Faculty of Basic Science, Payame Noor University, Tehran, Iran
| | - Mohammad Sarhadi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran
| | - Javad Arabpour
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran.
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol 98613-35856, Iran.
| | - Ana M Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
21
|
Kole C, Charalampakis N, Tsakatikas S, Frountzas M, Apostolou K, Schizas D. Immunotherapy in Combination with Well-Established Treatment Strategies in Pancreatic Cancer: Current Insights. Cancer Manag Res 2022; 14:1043-1061. [PMID: 35300059 PMCID: PMC8921671 DOI: 10.2147/cmar.s267260] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/11/2022] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic cancer and fourth most common cause of death in developed countries. Despite improved survival rates after resection combined with adjuvant chemotherapy or neoadjuvant chemotherapy, recurrence still occurs in a high percentage of patients within the first 2 years after resection. Immunotherapy aims to improve antitumor immune responses and reduce toxicity providing a more specific, targeted therapy compared to chemotherapy and has been proved an efficient therapeutic tool for many solid tumors. In this work, we present the latest advances in PDAC treatment using a combination of immunotherapy with other interventions such as chemotherapy and/or radiation both at neoadjuvant and adjuvant setting. Moreover, we outline the role of the tumor microenvironment as a key barrier to immunotherapy efficacy and examine how immunotherapy biomarkers may be used to detect immunotherapy’s response.
Collapse
Affiliation(s)
- Christo Kole
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, 115 27, Greece
| | | | - Sergios Tsakatikas
- Department of Medical Oncology, Metaxa Cancer Hospital, Athens, 185 37, Greece
| | - Maximos Frountzas
- First Department of Propaedeutic Surgery, National and Kapodistrian University of Athens, Hippocration General Hospital, Athens, 115 27, Greece
| | - Konstantinos Apostolou
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, 115 27, Greece
| | - Dimitrios Schizas
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, 115 27, Greece
- Correspondence: Dimitrios Schizas, First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, 115 27, Greece, Tel +306944505917, Fax +302132061766, Email
| |
Collapse
|
22
|
Tang J, Cai L, Xu C, Sun S, Liu Y, Rosenecker J, Guan S. Nanotechnologies in Delivery of DNA and mRNA Vaccines to the Nasal and Pulmonary Mucosa. NANOMATERIALS 2022; 12:nano12020226. [PMID: 35055244 PMCID: PMC8777913 DOI: 10.3390/nano12020226] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/03/2022] [Accepted: 01/05/2022] [Indexed: 02/07/2023]
Abstract
Recent advancements in the field of in vitro transcribed mRNA (IVT-mRNA) vaccination have attracted considerable attention to such vaccination as a cutting-edge technique against infectious diseases including COVID-19 caused by SARS-CoV-2. While numerous pathogens infect the host through the respiratory mucosa, conventional parenterally administered vaccines are unable to induce protective immunity at mucosal surfaces. Mucosal immunization enables the induction of both mucosal and systemic immunity, efficiently removing pathogens from the mucosa before an infection occurs. Although respiratory mucosal vaccination is highly appealing, successful nasal or pulmonary delivery of nucleic acid-based vaccines is challenging because of several physical and biological barriers at the airway mucosal site, such as a variety of protective enzymes and mucociliary clearance, which remove exogenously inhaled substances. Hence, advanced nanotechnologies enabling delivery of DNA and IVT-mRNA to the nasal and pulmonary mucosa are urgently needed. Ideal nanocarriers for nucleic acid vaccines should be able to efficiently load and protect genetic payloads, overcome physical and biological barriers at the airway mucosal site, facilitate transfection in targeted epithelial or antigen-presenting cells, and incorporate adjuvants. In this review, we discuss recent developments in nucleic acid delivery systems that target airway mucosa for vaccination purposes.
Collapse
Affiliation(s)
- Jie Tang
- Department of Pediatrics, Ludwig-Maximilians University of Munich, 80337 Munich, Germany;
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, Australia;
| | - Larry Cai
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, Australia;
| | - Chuanfei Xu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, Third Military Medical University, Chongqing 400038, China; (C.X.); (S.S.); (Y.L.)
| | - Si Sun
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, Third Military Medical University, Chongqing 400038, China; (C.X.); (S.S.); (Y.L.)
| | - Yuheng Liu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, Third Military Medical University, Chongqing 400038, China; (C.X.); (S.S.); (Y.L.)
| | - Joseph Rosenecker
- Department of Pediatrics, Ludwig-Maximilians University of Munich, 80337 Munich, Germany;
- Correspondence: (J.R.); (S.G.); Tel.: +49-89-440057713 (J.R.); +86-23-68771645 (S.G.)
| | - Shan Guan
- Department of Pediatrics, Ludwig-Maximilians University of Munich, 80337 Munich, Germany;
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, Third Military Medical University, Chongqing 400038, China; (C.X.); (S.S.); (Y.L.)
- Correspondence: (J.R.); (S.G.); Tel.: +49-89-440057713 (J.R.); +86-23-68771645 (S.G.)
| |
Collapse
|
23
|
Wang J, Yang J, Kopeček J. Nanomedicines in B cell-targeting therapies. Acta Biomater 2022; 137:1-19. [PMID: 34687954 PMCID: PMC8678319 DOI: 10.1016/j.actbio.2021.10.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/29/2021] [Accepted: 10/14/2021] [Indexed: 02/08/2023]
Abstract
B cells play multiple roles in immune responses related to autoimmune diseases as well as different types of cancers. As such, strategies focused on B cell targeting attracted wide interest and developed intensively. There are several common mechanisms various B cell targeting therapies have relied on, including direct B cell depletion, modulation of B cell antigen receptor (BCR) signaling, targeting B cell survival factors, targeting the B cell and T cell costimulation, and immune checkpoint blockade. Nanocarriers, used as drug delivery vehicles, possess numerous advantages to low molecular weight drugs, reducing drug toxicity, enhancing blood circulation time, as well as augmenting targeting efficacy and improving therapeutic effect. Herein, we review the commonly used targets involved in B cell targeting approaches and the utilization of various nanocarriers as B cell-targeted delivery vehicles. STATEMENT OF SIGNIFICANCE: As B cells are engaged significantly in the development of many kinds of diseases, utilization of nanomedicines in B cell depletion therapies have been rapidly developed. Although numerous studies focused on B cell targeting have already been done, there are still various potential receptors awaiting further investigation. This review summarizes the most relevant studies that utilized nanotechnologies associated with different B cell depletion approaches, providing a useful tool for selection of receptors, agents and/or nanocarriers matching specific diseases. Along with uncovering new targets in the function map of B cells, there will be a growing number of candidates that can benefit from nanoscale drug delivery.
Collapse
Affiliation(s)
- Jiawei Wang
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT, United States; Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, United States
| | - Jiyuan Yang
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT, United States; Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, United States
| | - Jindřich Kopeček
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT, United States; Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, United States; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States.
| |
Collapse
|
24
|
Wang Y, Tan H, Yu T, Chen X, Jing F, Shi H. Potential Immune Biomarker Candidates and Immune Subtypes of Lung Adenocarcinoma for Developing mRNA Vaccines. Front Immunol 2021; 12:755401. [PMID: 34917077 PMCID: PMC8670181 DOI: 10.3389/fimmu.2021.755401] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 11/11/2021] [Indexed: 12/21/2022] Open
Abstract
mRNA vaccines against cancer have advantages in safety, improved therapeutic efficacy, and large-scale production. Therefore, our purpose is to identify immune biomarkers and to analyze immune status for developing mRNA vaccines and selecting appropriate patients for vaccination. We downloaded clinical information and RNA-seq data of 494 LUAD patients from TCGA. LUAD mutational information was hierarchically clustered by NMF package (Version 0.23.0). DeconstructSigs package (Version 1.8.0) and NMF consistency clustering were used to identify mutation signatures. Maftools package (Version 2.6.05) was used to select LUAD-related immune biomarkers. TIMER was used to discuss the correlation between genetic mutations and cellular components. Unsupervised clustering Pam method was used to identify LUAD immune subtypes. Log-rank test and univariate/multivariate cox regression were used to predict the prognosis of immune subtypes. Dimensionality reduction analysis was dedicated to the description of LUAD immune landscape. LUAD patients are classified into four signatures: T >C, APOBEC mutation, age, and tobacco. Then, GPRIN1, MYRF, PLXNB2, SLC9A4, TRIM29, UBA6, and XDH are potential LUAD-related immune biomarker candidates to activate the immune response. Next, we clustered five LUAD-related immune subtypes (IS1–IS5) by prognostic prediction. IS3 showed prolonged survival. The reliability of our five immune subtypes was validated by Thorsson’s results. IS2 and IS4 patients had high tumor mutation burden and large number of somatic mutations. Besides, we identified that immune subtypes of cold immunity (patients with IS2 and IS4) are ideal mRNA vaccination recipients. Finally, LUAD immune landscape revealed immune cells and prognostic conditions, which provides important information to select patients for vaccination. GPRIN1, MYRF, PLXNB2, SLC9A4, TRIM29, UBA6, and XDH are potential LUAD-related immune biomarker candidates to activate the immune response. Patients with IS2 and IS4 might potentially be immunization-sensitive patients for vaccination.
Collapse
Affiliation(s)
- Yang Wang
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Huaicheng Tan
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ting Yu
- Department of Pathology and Laboratory of Pathology, State Key Laboratory of Biotherapy, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Xiaoxuan Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fangqi Jing
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Huashan Shi
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Department of Radiotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Huashan Shi,
| |
Collapse
|
25
|
Li S, Wang B, Jiang S, Pan Y, Shi Y, Kong W, Shan Y. Surface-Functionalized Silica-Coated Calcium Phosphate Nanoparticles Efficiently Deliver DNA-Based HIV-1 Trimeric Envelope Vaccines against HIV-1. ACS APPLIED MATERIALS & INTERFACES 2021; 13:53630-53645. [PMID: 34735127 DOI: 10.1021/acsami.1c16989] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Human immunodeficiency virus type 1 (HIV-1) infection remains one of the worst crises in global health. The prevention of HIV-1 infection is a crucial task that needs to be addressed due to the absence of a licensed vaccine against HIV-1. DNA vaccines present a promising alternative approach to combat HIV-1 infection due to their excellent safety profile, lack of severe side effects, and relatively rapid fabrication. Traditional vaccines composed of a monomeric envelope or peptide fragments have been indicated to lack protective efficacy mediated by inducing HIV-1-specific neutralizing antibodies in clinical trials. The immunogenicity and protection against HIV-1 induced by DNA vaccines are limited due to the poor uptake of these vaccines by antigen-presenting cells and their ready degradation by DNases and lysosomes. To address these issues of naked DNA vaccines, we described the feasibility of CpG-functionalized silica-coated calcium phosphate nanoparticles (SCPs) for efficiently delivering DNA-based HIV-1 trimeric envelope vaccines against HIV-1. Vaccines comprising the soluble BG505 SOSIP.664 trimer fused to the GCN4-based isoleucine zipper or bacteriophage T4 fibritin foldon motif with excellent simulation of the native HIV-1 envelope were chosen as trimer-based vaccine platforms. Our results showed that SCP-based DNA immunization could significantly induce both broad humoral immune responses and potent cellular immune responses compared to naked DNA vaccination in vivo. To the best of our knowledge, this study is the first to assess the feasibility of CpG-functionalized SCPs for efficiently delivering DNA vaccines expressing a native-like HIV-1 trimer. These CpG-functionalized SCPs for delivering DNA-based HIV-1 trimeric envelope vaccines may lead to the development of promising vaccine candidates against HIV-1.
Collapse
Affiliation(s)
- Shuang Li
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, China
| | - Bo Wang
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, Jilin 130012, China
| | - Shun Jiang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, China
| | - Yi Pan
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, China
| | - Yuhua Shi
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, China
| | - Wei Kong
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, China
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin 130012, China
| | - Yaming Shan
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, China
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin 130012, China
| |
Collapse
|
26
|
Kole C, Charalampakis N, Tsakatikas S, Kouris NI, Papaxoinis G, Karamouzis MV, Koumarianou A, Schizas D. Immunotherapy for gastric cancer: a 2021 update. Immunotherapy 2021; 14:41-64. [PMID: 34784774 DOI: 10.2217/imt-2021-0103] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Gastric cancer, the fifth most frequent cancer and the fourth leading cause of cancer deaths, accounts for a devastating death rate worldwide. Since the majority of patients with gastric cancer are diagnosed at advanced stages, they are not suitable for surgery and present with locally advanced or metastatic disease. Recent advances in immunotherapy have elicited a considerable amount of attention as viable therapeutic options for several cancer types. This work presents a summary of the currently ongoing clinical trials and critically addresses the efficacy of a large spectrum of immunotherapy approaches in the general population for gastric cancer as well as in relation to tumor genetic profiling.
Collapse
Affiliation(s)
- Christo Kole
- First Department of Surgery, National & Kapodistrian University of Athens, Laikon General Hospital, Athens, 115 27, Greece
| | | | - Sergios Tsakatikas
- Department of Medical Oncology, Metaxa Cancer Hospital, Athens, 185 37, Greece
| | - Nikolaos-Iasonas Kouris
- First Department of Surgery, National & Kapodistrian University of Athens, Laikon General Hospital, Athens, 115 27, Greece
| | - George Papaxoinis
- Second Department of Medical Oncology, Agios Savas Anticancer Hospital, Athens, 115 22, Greece
| | - Michalis V Karamouzis
- Molecular Oncology Unit, Department of Biological Chemistry, National & Kapodistrian University of Athens, Athens, 115 27, Greece
| | - Anna Koumarianou
- Hematology Oncology Unit, Fourth Department of Internal Medicine, National & Kapodistrian University of Athens, Attikon University Hospital, Athens, 124 62, Greece
| | - Dimitrios Schizas
- First Department of Surgery, National & Kapodistrian University of Athens, Laikon General Hospital, Athens, 115 27, Greece
| |
Collapse
|
27
|
Eldershaw SA, Pearce H, Inman CF, Piper KP, Abbotts B, Stephens C, Nicol S, Croft W, Powell R, Begum J, Taylor G, Nunnick J, Walsh D, Sirovica M, Saddique S, Nagra S, Ferguson P, Moss P, Malladi R. DNA and modified vaccinia Ankara prime-boost vaccination generates strong CD8 + T cell responses against minor histocompatibility antigen HA-1. Br J Haematol 2021; 195:433-446. [PMID: 34046897 DOI: 10.1111/bjh.17495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 03/27/2021] [Indexed: 11/29/2022]
Abstract
Allogeneic immune responses underlie the graft-versus-leukaemia effect of stem cell transplantation, but disease relapse occurs in many patients. Minor histocompatibility antigen (mHAg) peptides mediate alloreactive T cell responses and induce graft-versus-leukaemia responses when expressed on patient haematopoietic tissue. We vaccinated nine HA-1-negative donors against HA-1 with a 'prime-boost' protocol of either two or three DNA 'priming' vaccinations prior to 'boost' with modified vaccinia Ankara (MVA). HA-1-specific CD8+ T cell responses were observed in seven donors with magnitude up to 1·5% of total CD8+ T cell repertoire. HA-1-specific responses peaked two weeks post-MVA challenge and were measurable in most donors after 12 months. HA-1-specific T cells demonstrated strong cytotoxic activity and lysed target cells with endogenous HA-1 protein expression. The pattern of T cell receptor (TCR) usage by HA-1-specific T cells revealed strong conservation of T cell receptor beta variable 7-9 (TRBV7-9) usage between donors. These findings describe one of the strongest primary peptide-specific CD8+ T cell responses yet recorded to a DNA-MVA prime-boost regimen and this may reflect the strong immunogenicity of mHAg peptides. Prime-boost vaccination in donors or patients may prove of substantial benefit in boosting graft-versus-leukaemia responses.
Collapse
MESH Headings
- Adult
- Aged
- Allografts
- Antigens, Neoplasm/immunology
- Cytotoxicity, Immunologic
- Epitopes/immunology
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor
- Graft vs Leukemia Effect/immunology
- HLA-A2 Antigen/immunology
- Hematopoietic Stem Cell Transplantation
- Humans
- Immunogenicity, Vaccine
- Immunologic Memory
- Male
- Middle Aged
- Minor Histocompatibility Antigens/immunology
- Oligopeptides/immunology
- Peptides/immunology
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- T-Lymphocytes, Cytotoxic/immunology
- Vaccination
- Vaccines, Attenuated
- Vaccines, DNA/immunology
- Vaccines, DNA/therapeutic use
- Vaccinia virus/immunology
- Viral Vaccines/immunology
- Viral Vaccines/therapeutic use
Collapse
Affiliation(s)
- Suzy A Eldershaw
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, Birmingham, UK
| | - Hayden Pearce
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, Birmingham, UK
| | - Charlotte F Inman
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, Birmingham, UK
| | - Karen P Piper
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, Birmingham, UK
| | - Ben Abbotts
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, Birmingham, UK
| | - Christine Stephens
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, Birmingham, UK
| | - Samantha Nicol
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, Birmingham, UK
| | - Wayne Croft
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, Birmingham, UK
| | - Richard Powell
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, Birmingham, UK
| | - Jusnara Begum
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, Birmingham, UK
| | - Graham Taylor
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, Birmingham, UK
| | - Jane Nunnick
- Cancer Research UK Clinical Trials Unit, University of Birmingham, Birmingham, UK
| | - Donna Walsh
- Cancer Research UK Clinical Trials Unit, University of Birmingham, Birmingham, UK
| | - Mirjana Sirovica
- Cancer Research UK Clinical Trials Unit, University of Birmingham, Birmingham, UK
| | - Shamyla Saddique
- Cancer Research UK Clinical Trials Unit, University of Birmingham, Birmingham, UK
| | - Sandeep Nagra
- Department of Haematology, Birmingham Health Partners, Queen Elizabeth Hospital, Birmingham, UK
| | - Paul Ferguson
- Department of Haematology, Birmingham Health Partners, Queen Elizabeth Hospital, Birmingham, UK
| | - Paul Moss
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, Birmingham, UK
- Department of Haematology, Birmingham Health Partners, Queen Elizabeth Hospital, Birmingham, UK
| | - Ram Malladi
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, Birmingham, UK
- Department of Haematology, Birmingham Health Partners, Queen Elizabeth Hospital, Birmingham, UK
| |
Collapse
|
28
|
Sartorius R, Trovato M, Manco R, D'Apice L, De Berardinis P. Exploiting viral sensing mediated by Toll-like receptors to design innovative vaccines. NPJ Vaccines 2021; 6:127. [PMID: 34711839 PMCID: PMC8553822 DOI: 10.1038/s41541-021-00391-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/01/2021] [Indexed: 12/12/2022] Open
Abstract
Toll-like receptors (TLRs) are transmembrane proteins belonging to the family of pattern-recognition receptors. They function as sensors of invading pathogens through recognition of pathogen-associated molecular patterns. After their engagement by microbial ligands, TLRs trigger downstream signaling pathways that culminate into transcriptional upregulation of genes involved in immune defense. Here we provide an updated overview on members of the TLR family and we focus on their role in antiviral response. Understanding of innate sensing and signaling of viruses triggered by these receptors would provide useful knowledge to prompt the development of vaccines able to elicit effective and long-lasting immune responses. We describe the mechanisms developed by viral pathogens to escape from immune surveillance mediated by TLRs and finally discuss how TLR/virus interplay might be exploited to guide the design of innovative vaccine platforms.
Collapse
Affiliation(s)
- Rossella Sartorius
- Institute of Biochemistry and Cell Biology, C.N.R., Via Pietro Castellino 111, 80131, Naples, Italy.
| | - Maria Trovato
- Institute of Biochemistry and Cell Biology, C.N.R., Via Pietro Castellino 111, 80131, Naples, Italy
| | - Roberta Manco
- Institute of Biochemistry and Cell Biology, C.N.R., Via Pietro Castellino 111, 80131, Naples, Italy
| | - Luciana D'Apice
- Institute of Biochemistry and Cell Biology, C.N.R., Via Pietro Castellino 111, 80131, Naples, Italy.
| | | |
Collapse
|
29
|
Schaap-Johansen AL, Vujović M, Borch A, Hadrup SR, Marcatili P. T Cell Epitope Prediction and Its Application to Immunotherapy. Front Immunol 2021; 12:712488. [PMID: 34603286 PMCID: PMC8479193 DOI: 10.3389/fimmu.2021.712488] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/12/2021] [Indexed: 12/13/2022] Open
Abstract
T cells play a crucial role in controlling and driving the immune response with their ability to discriminate peptides derived from healthy as well as pathogenic proteins. In this review, we focus on the currently available computational tools for epitope prediction, with a particular focus on tools aimed at identifying neoepitopes, i.e. cancer-specific peptides and their potential for use in immunotherapy for cancer treatment. This review will cover how these tools work, what kind of data they use, as well as pros and cons in their respective applications.
Collapse
Affiliation(s)
| | - Milena Vujović
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Annie Borch
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Sine Reker Hadrup
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Paolo Marcatili
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
30
|
Sun B, Zhao X, Gu W, Cao P, Movahedi F, Wu Y, Xu ZP, Gu W. ATP stabilised and sensitised calcium phosphate nanoparticles as effective adjuvants for a DNA vaccine against cancer. J Mater Chem B 2021; 9:7435-7446. [PMID: 34551058 DOI: 10.1039/d1tb01408k] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cancer vaccines based on DNA encoding oncogenes have shown great potential in preclinical studies. However, the efficacy of DNA vaccines is limited by their weak immunogenicity because of low cellular internalisation and insufficient activation of dendritic cells (DCs). Calcium phosphate (CP) nanoparticles (NPs) are biodegradable vehicles with low toxicity and high loading capacity of DNA but suffer from stability issues. Here we employed adenosine triphosphate (ATP) as a dual functional agent, i.e. stabiliser for CP and immunological adjuvant, and applied the ATP-modified CP (ACP) NPs to the DNA vaccine. ACP NP-enhanced cellular uptake and improved transfection efficiency of DNA vaccine, and further showed the ability to activate DCs that are critical for them to prime T cells in cancer immunotherapy. As a result, a higher level of antigen-specific antibody with stronger tumour growth inhibition was achieved in mice immunised with the ACP-DNA vaccine. Overall, this one-step synthesised ACP NPs are an efficient nano-delivery system and nano-adjuvant for cancer DNA vaccines.
Collapse
Affiliation(s)
- Bing Sun
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Building 75, Corner of Cooper Road & College Road, St Lucia, QLD 4072, Australia.
| | - Xiaohui Zhao
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Building 75, Corner of Cooper Road & College Road, St Lucia, QLD 4072, Australia. .,GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Wenxi Gu
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Building 75, Corner of Cooper Road & College Road, St Lucia, QLD 4072, Australia. .,Institute of Veterinary Medicine, Xinjiang Academy of Animal Science, Urumqi, 830011, China
| | - Pei Cao
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Building 75, Corner of Cooper Road & College Road, St Lucia, QLD 4072, Australia.
| | - Fatemeh Movahedi
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Building 75, Corner of Cooper Road & College Road, St Lucia, QLD 4072, Australia.
| | - Yanheng Wu
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Building 75, Corner of Cooper Road & College Road, St Lucia, QLD 4072, Australia. .,Gillion ITM Research Institute, Guangzhou Hongkeyuan, Guangzhou, 510530, China
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Building 75, Corner of Cooper Road & College Road, St Lucia, QLD 4072, Australia.
| | - Wenyi Gu
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Building 75, Corner of Cooper Road & College Road, St Lucia, QLD 4072, Australia. .,Gillion ITM Research Institute, Guangzhou Hongkeyuan, Guangzhou, 510530, China
| |
Collapse
|
31
|
Key considerations in formulation development for gene therapy products. Drug Discov Today 2021; 27:292-303. [PMID: 34500102 DOI: 10.1016/j.drudis.2021.08.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/13/2021] [Accepted: 08/31/2021] [Indexed: 12/20/2022]
Abstract
Gene therapy emerged as an important area of research and led to the success of multiple product approvals in the clinic. The number of clinical trials for this class of therapeutics is expected to grow over the next decade. Gene therapy products are complex and heterogeneous, employ different types of vectors and are susceptible to degradation. The product development process for commercially viable gene-based pharmaceuticals remains challenging. In this review, challenges, stability, and drug product formulation development strategies using viral or non-viral vectors, as well as accelerated regulatory approval pathways for gene therapy products are discussed.
Collapse
|
32
|
Immunotherapy for gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs): a 2021 update. Cancer Immunol Immunother 2021; 71:761-768. [PMID: 34471940 DOI: 10.1007/s00262-021-03046-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/24/2021] [Indexed: 12/31/2022]
Abstract
Neuroendocrine neoplasms (NENs) are a group of heterogeneous malignancies, arising from the neuroendocrine system. These neoplasms are divided into two distinct groups, the low-proliferating, well-differentiated neuroendocrine tumors (NETs), and the highly-proliferating, poorly-differentiated neuroendocrine carcinomas (NECs). Recent data demonstrate that the incidence of gastroenteropancreatic (GEP) neuroendocrine neoplasms, GEP-NETs and GEP-NECs, has increased exponentially over the last three decades. Although surgical resection is considered the best treatment modality, patients with GEP-NETs often present with advanced disease at diagnosis associated with a 5-year survival rate of 57% for well-differentiated tumors, and only 5.2% for small-cell tumors. Immunotherapy is a novel treatment approach, which has demonstrated effective and promising therapeutic results against several types of cancers. In the present study, we review the current ongoing clinical trials and to evaluate the efficacy of immunotherapy in GEP-NENs. Furthermore, we analyze the importance of tumor genetic profiling and its clinical implications in immunotherapy response.
Collapse
|
33
|
Lee D, Huntoon K, Wang Y, Jiang W, Kim BYS. Harnessing Innate Immunity Using Biomaterials for Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007576. [PMID: 34050699 DOI: 10.1002/adma.202007576] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/29/2021] [Indexed: 06/12/2023]
Abstract
The discovery of immune checkpoint blockade has revolutionized the field of immuno-oncology and established the foundation for developing various new therapies that can surpass conventional cancer treatments. Most recent immunotherapeutic strategies have focused on adaptive immune responses by targeting T cell-activating pathways, genetic engineering of T cells with chimeric antigen receptors, or bispecific antibodies. Despite the unprecedented clinical success, these T cell-based treatments have only benefited a small proportion of patients. Thus, the need for the next generation of cancer immunotherapy is driven by identifying novel therapeutic molecules or new immunoengineered cells. To maximize the therapeutic potency via innate immunogenicity, the convergence of innate immunity-based therapy and biomaterials is required to yield an efficient index in clinical trials. This review highlights how biomaterials can efficiently reprogram and recruit innate immune cells in tumors and ultimately initiate activation of T cell immunity against advanced cancers. Moreover, the design and specific biomaterials that improve innate immune cells' targeting ability to selectively activate immunogenicity with minimal adverse effects are discussed.
Collapse
Affiliation(s)
- DaeYong Lee
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Kristin Huntoon
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yifan Wang
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Wen Jiang
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Betty Y S Kim
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| |
Collapse
|
34
|
Abedalthagafi M, Mobark N, Al-Rashed M, AlHarbi M. Epigenomics and immunotherapeutic advances in pediatric brain tumors. NPJ Precis Oncol 2021; 5:34. [PMID: 33931704 PMCID: PMC8087701 DOI: 10.1038/s41698-021-00173-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 04/05/2021] [Indexed: 12/15/2022] Open
Abstract
Brain tumors are the leading cause of childhood cancer-related deaths. Similar to adult brain tumors, pediatric brain tumors are classified based on histopathological evaluations. However, pediatric brain tumors are often histologically inconsistent with adult brain tumors. Recent research findings from molecular genetic analyses have revealed molecular and genetic changes in pediatric tumors that are necessary for appropriate classification to avoid misdiagnosis, the development of treatment modalities, and the clinical management of tumors. As many of the molecular-based therapies developed from clinical trials on adults are not always effective against pediatric brain tumors, recent advances have improved our understanding of the molecular profiles of pediatric brain tumors and have led to novel epigenetic and immunotherapeutic treatment approaches currently being evaluated in clinical trials. In this review, we focus on primary malignant brain tumors in children and genetic, epigenetic, and molecular characteristics that differentiate them from brain tumors in adults. The comparison of pediatric and adult brain tumors highlights the need for treatments designed specifically for pediatric brain tumors. We also discuss the advancements in novel molecularly targeted drugs and how they are being integrated with standard therapy to improve the classification and outcomes of pediatric brain tumors in the future.
Collapse
Affiliation(s)
- Malak Abedalthagafi
- Genomics Research Department, Saudi Human Genome Project, King Fahad Medical City and King Abdulaziz City for Science and Technology, Riyadh, Kingdom of Saudi Arabia.
| | - Nahla Mobark
- Department of Paediatric Oncology Comprehensive Cancer Centre, King Fahad Medical City, Riyadh, Kingdom of Saudi Arabia
| | - May Al-Rashed
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
- Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Musa AlHarbi
- Department of Paediatric Oncology Comprehensive Cancer Centre, King Fahad Medical City, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
35
|
Sun B, Zhao X, Wu Y, Cao P, Movahedi F, Liu J, Wang J, Xu ZP, Gu W. Mannose-Functionalized Biodegradable Nanoparticles Efficiently Deliver DNA Vaccine and Promote Anti-tumor Immunity. ACS APPLIED MATERIALS & INTERFACES 2021; 13:14015-14027. [PMID: 33751882 DOI: 10.1021/acsami.1c01401] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cancer vaccines have attracted increasing attention for their application in tumor immunotherapy. DNA vaccines are one of them that have been proven very promising with the advantages of safety, rapid design, and low cost. However, the low stability, ineffective cell internalization, and low immunostimulation hinder their wide application. Thus, developing targeted and safe systems to effectively deliver DNA vaccines becomes a vital step. In this study, we report the development of mannose- and bisphosphonate (BP)-modified calcium phosphate (CP) nanoparticles (NPs) as efficient vaccine delivery vehicles by targeting C-type lectin receptors (CLRs) on antigen-presenting cells (APCs). Using a model antigen ovalbumin (OVA)-encoded plasmid DNA (pOVA) as a model vaccine, we demonstrate that mannose-modified and BP-stabilized CP (MBCP) nanoparticles are mono-dispersed for enhanced uptake by APCs and subsequently induce OVA antigen presentation and immunostimulation. Mice immunized with MBCP-pOVA nanovaccines show a significantly stronger anti-OVA antibody response with a quicker IgG1 and IgG2a antibody production than unmodified NPs. Moreover, MBCP-pOVA immunization significantly inhibits the growth of OVA-expressing E.G7 tumor cells in C57BL/6J mice. Our data collectively suggest that the modifications to enhance the stability and targeting ability of MBCP NPs are essential for effective delivery of DNA vaccines and promote robust anti-tumor immunity.
Collapse
Affiliation(s)
- Bing Sun
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Xiaohui Zhao
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Yanheng Wu
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia
- Gillion ITM Research Institute, Guangzhou Hongkeyuan, Guangzhou 510530, China
| | - Pei Cao
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Fatemeh Movahedi
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Jie Liu
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Jingjing Wang
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Wenyi Gu
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|
36
|
Shetty K, Ott PA. Personal Neoantigen Vaccines for the Treatment of Cancer. ANNUAL REVIEW OF CANCER BIOLOGY 2021. [DOI: 10.1146/annurev-cancerbio-060820-111701] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cancer vaccines can generate and amplify tumor-specific T cell responses with the promise to provide long-term control of cancer. All cancer cells harbor genetic alterations encoding neoantigens that are specific to the tumor and not present in normal tissue. Similar to foreign antigens targeted by T cells in infectious disease settings, neoantigens represent the long elusive immunogens for cancer vaccination. Since the vast majority of mutations are unique to individual tumors, neoantigen vaccines require custom design for each patient. The availability of rapid and cost-effective genome sequencing, along with advanced bioinformatics tools, now allows neoantigen-target discovery and vaccine manufacturing in sufficient time for the treatment of cancer patients. Clinical trials in melanoma and glioblastoma have demonstrated the feasibility, immunogenicity, and signals of efficacy of this personalized immunotherapy approach. Key unresolved areas include identification of the most effective vaccine delivery platforms, validation and consensus of neoantigen target selection, and optimal strategies for partnering immunotherapies. Given the universal presence of mutations in cancer and the patient-tailored paradigm, personalized neoantigen vaccines have potential applicability for all cancer patients.
Collapse
Affiliation(s)
- Keerthi Shetty
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Patrick A. Ott
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
- Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
37
|
Gregg JR, Thompson TC. Considering the potential for gene-based therapy in prostate cancer. Nat Rev Urol 2021; 18:170-184. [PMID: 33637962 DOI: 10.1038/s41585-021-00431-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2021] [Indexed: 01/31/2023]
Abstract
Therapeutic gene manipulation has been at the forefront of popular scientific discussion and basic and clinical research for decades. Basic and clinical research applications of CRISPR-Cas9-based technologies and ongoing clinical trials in this area have demonstrated the potential of genome editing to cure human disease. Evaluation of research and clinical trials in gene therapy reveals a concentration of activity in prostate cancer research and practice. Multiple aspects of prostate cancer care - including anatomical considerations that enable direct tumour injections and sampling, the availability of preclinical immune-competent models and the delineation of tumour-related antigens that might provide targets for an induced immune system - make gene therapy an appealing treatment option for this common malignancy. Vaccine-based therapies that induce an immune response and new technologies exploiting CRISPR-Cas9-assisted approaches, including chimeric antigen receptor (CAR) T cell therapies, are very promising and are currently under investigation both in the laboratory and in the clinic. Although laboratory and preclinical advances have, thus far, not led to oncologically relevant outcomes in the clinic, future studies offer great promise for gene therapy to become established in prostate cancer care.
Collapse
Affiliation(s)
- Justin R Gregg
- Department of Urology and Health Disparities Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Timothy C Thompson
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
38
|
Majid S, Khan MS, Rashid S, Niyaz A, Farooq R, Bhat SA, Wani HA, Qureshi W. COVID-19: Diagnostics, Therapeutic Advances, and Vaccine Development. CURRENT CLINICAL MICROBIOLOGY REPORTS 2021; 8:152-166. [PMID: 33614398 PMCID: PMC7883962 DOI: 10.1007/s40588-021-00157-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Human race is currently facing the wrath of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a highly transmittable and pathogenic RNA virus, causing coronavirus disease 2019 (COVID-19), the worst ever global pandemic. Coronaviruses (CoVs) have emerged as a major public health concern. Urgent global response to COVID-19 outbreak has been to limit spread of SARS-CoV-2 via extensive monitoring and containment. Various treatment regimens have been adopted to manage COVID-19, with known drugs and drug combinations used to decrease the morbidity and mortality associated with COVID-19. Intensive research on various fronts including studying molecular and structural aspects of these viruses and unraveling the pathophysiology and mechanistic basis of COVID-19 aimed at developing effective prophylactic, therapeutic agents and vaccines has been carried out globally. RECENT FINDINGS No approved antiviral treatment except remdesivir exists for SARS-CoV-2 till date though novel drug targets have been identified. However, worldwide frantic and competitive vaccine development pharmaceutical race has borne fruit in the form of a number of promising candidate vaccines, out of which few have already received emergency use authorization by regulatory bodies in record time. SUMMARY This review highlights the painstaking efforts of healthcare workers and scientific community to successfully address the COVID-19 pandemic-though damage in the form of severe illness, loss of lives, and livelihood has left a serious mark. Focusing on extensive research on various therapeutic options and antiviral strategies including neutralizing antibodies, potential drugs, and drug targets, light has been shed on various diagnostic options and the amazing vaccine development process as well.
Collapse
Affiliation(s)
- Sabhiya Majid
- Department of Biochemistry, Government Medical College Srinagar and Associated SMHS and Super Speciality Hospital and Research Centre, University of Kashmir Srinagar, Srinagar, J&K 190010 India
| | - Mosin S. Khan
- Department of Biochemistry, Government Medical College Srinagar and Associated SMHS and Super Speciality Hospital and Research Centre, University of Kashmir Srinagar, Srinagar, J&K 190010 India
| | - Samia Rashid
- Department of Medicine, Government Medical College Srinagar and Associated SMHS and Super Speciality Hospital, Srinagar, J&K 190010 India
| | - Ayesha Niyaz
- SHKM Government Medical College, Mewat, Haryana India
| | - Rabia Farooq
- Department of Basic Medical Sciences, College of Medicine, University of Bisha, Bisha, 67714 Saudi Arabia
| | - Showkat A. Bhat
- Department of Biochemistry, Government Medical College Doda, Doda, J&K 182202 India
| | - Hilal A. Wani
- Department of Higher Education, Government of Jammu & Kashmir, Jammu, India
| | - Waseem Qureshi
- Registrar Academics, Government Medical College Srinagar, Srinagar, J&K 190010 India
| |
Collapse
|
39
|
Iezzi M, Quaglino E, Amici A, Lollini PL, Forni G, Cavallo F. DNA vaccination against oncoantigens: A promise. Oncoimmunology 2021; 1:316-325. [PMID: 22737607 PMCID: PMC3382874 DOI: 10.4161/onci.19127] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The emerging evidence that DNA vaccines elicit a protective immune response in rodents, dogs and cancer patients, coupled with the US Food and Drug Administration (FDA) approval of an initial DNA vaccine to treat canine tumors is beginning to close the gap between the optimistic experimental data and their difficult application in a clinical setting. Here we review a series of conceptual and biotechnological advances that are working together to make DNA vaccines targeting molecules that play important roles during cancer progression (oncoantigens) a promise with near-term clinical impact.
Collapse
Affiliation(s)
- Manuela Iezzi
- Aging Research Centre; G. d'Annunzio University; Chieti, Italy
| | | | | | | | | | | |
Collapse
|
40
|
Pierini S, Mishra A, Perales-Linares R, Uribe-Herranz M, Beghi S, Giglio A, Pustylnikov S, Costabile F, Rafail S, Amici A, Facciponte JG, Koumenis C, Facciabene A. Combination of vasculature targeting, hypofractionated radiotherapy, and immune checkpoint inhibitor elicits potent antitumor immune response and blocks tumor progression. J Immunother Cancer 2021; 9:jitc-2020-001636. [PMID: 33563772 PMCID: PMC7875275 DOI: 10.1136/jitc-2020-001636] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2020] [Indexed: 02/06/2023] Open
Abstract
Background Tumor endothelial marker 1 (TEM1) is a protein expressed in the tumor-associated endothelium and/or stroma of various types of cancer. We previously demonstrated that immunization with a plasmid-DNA vaccine targeting TEM1 reduced tumor progression in three murine cancer models. Radiation therapy (RT) is an established cancer modality used in more than 50% of patients with solid tumors. RT can induce tumor-associated vasculature injury, triggering immunogenic cell death and inhibition of the irradiated tumor and distant non-irradiated tumor growth (abscopal effect). Combination treatment of RT with TEM1 immunotherapy may complement and augment established immune checkpoint blockade. Methods Mice bearing bilateral subcutaneous CT26 colorectal or TC1 lung tumors were treated with a novel heterologous TEM1-based vaccine, in combination with RT, and anti-programmed death-ligand 1 (PD-L1) antibody or combinations of these therapies, tumor growth of irradiated and abscopal tumors was subsequently assessed. Analysis of tumor blood perfusion was evaluated by CD31 staining and Doppler ultrasound imaging. Immunophenotyping of peripheral and tumor-infiltrating immune cells as well as functional analysis was analyzed by flow cytometry, ELISpot assay and adoptive cell transfer (ACT) experiments. Results We demonstrate that addition of RT to heterologous TEM1 vaccination reduces progression of CT26 and TC1 irradiated and abscopal distant tumors as compared with either single treatment. Mechanistically, RT increased major histocompatibility complex class I molecule (MHCI) expression on endothelial cells and improved immune recognition of the endothelium by anti-TEM1 T cells with subsequent severe vascular damage as measured by reduced microvascular density and tumor blood perfusion. Heterologous TEM1 vaccine and RT combination therapy boosted tumor-associated antigen (TAA) cross-priming (ie, anti-gp70) and augmented programmed cell death protein 1 (PD-1)/PD-L1 signaling within CT26 tumor. Blocking the PD-1/PD-L1 axis in combination with dual therapy further increased the antitumor effect and gp70-specific immune responses. ACT experiments show that anti-gp70 T cells are required for the antitumor effects of the combination therapy. Conclusion Our findings describe novel cooperative mechanisms between heterologous TEM1 vaccination and RT, highlighting the pivotal role that TAA cross-priming plays for an effective antitumor strategy. Furthermore, we provide rationale for using heterologous TEM1 vaccination and RT as an add-on to immune checkpoint blockade as triple combination therapy into early-phase clinical trials.
Collapse
Affiliation(s)
- Stefano Pierini
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Abhishek Mishra
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Renzo Perales-Linares
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mireia Uribe-Herranz
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Silvia Beghi
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Andrea Giglio
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sergei Pustylnikov
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Francesca Costabile
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stavros Rafail
- Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Augusto Amici
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Marche, Italy
| | - John G Facciponte
- Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Costantinos Koumenis
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Andrea Facciabene
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA .,Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
41
|
Nguyen-Hoai T, Kobelt D, Hohn O, Vu MD, Schlag PM, Dörken B, Norley S, Lipp M, Walther W, Pezzutto A, Westermann J. HER2/neu DNA vaccination by intradermal gene delivery in a mouse tumor model: Gene gun is superior to jet injector in inducing CTL responses and protective immunity. Oncoimmunology 2021; 1:1537-1545. [PMID: 23264900 PMCID: PMC3525609 DOI: 10.4161/onci.22563] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
DNA vaccines are potential tools for the induction of immune responses against both infectious disease and cancer. The dermal application of DNA vaccines is of particular interest since the epidermal and dermal layers of the skin are characterized by an abundance of antigen-presenting cells (APCs). The aim of our study was to compare tumor protection as obtained by two different methods of intradermal DNA delivery (gene gun and jet injector) in a well-established HER2/neu mouse tumor model. BALB/c mice were immunized twice with a HER2/neu-coding plasmid by gene gun or jet injector. Mice were then subcutaneously challenged with HER2/neu+ syngeneic D2F2/E2 tumor cells. Protection against subsequent challenges with tumor cells as well as humoral and T-cell immune responses induced by the vaccine were monitored. Gene gun immunization was far superior to jet injector both in terms of tumor protection and induction of HER2/neu-specific immune responses. After gene gun immunization, 60% of the mice remained tumor-free until day 140 as compared with 25% after jet injector immunization. Furthermore, gene gun vaccination was able to induce both a strong TH1-polarized T-cell response with detectable cytotoxic T-lymphocyte (CTL) activity and a humoral immune response against HER2/neu, whereas the jet injector was not. Although the disadvantages that were associated with the use of the jet injector in our model may be overcome with methodological modifications and/or in larger animals, which exhibit a thicker skin and/or subcutaneous muscle tissue, we conclude that gene gun delivery constitutes the method of choice for intradermal DNA delivery in preclinical mouse models and possibly also for the clinical development of DNA-based vaccines.
Collapse
Affiliation(s)
- Tam Nguyen-Hoai
- Deptartment of Hematology, Oncology, and Tumor Immunology Charité; University Medicine Berlin; Campus Berlin-Buch, Campus Benjamin Franklin and Campus Virchow-Klinikum; Berlin, Germany ; Max Delbrück Center for Molecular Medicine; Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Kim YC, Hsueh HT, Kim N, Rodriguez J, Leo KT, Rao D, West NE, Hanes J, Suk JS. Strategy to enhance dendritic cell-mediated DNA vaccination in the lung. ADVANCED THERAPEUTICS 2021; 4:2000228. [PMID: 33709020 PMCID: PMC7941873 DOI: 10.1002/adtp.202000228] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We here introduce a new paradigm to promote pulmonary DNA vaccination. Specifically, we demonstrate that nanoparticles designed to rapidly penetrate airway mucus (mucus-penetrating particle or MPP) enhance the delivery of inhaled model DNA vaccine (i.e. ovalbumin-expressing plasmids) to pulmonary dendritic cells (DC), leading to robust and durable local and trans-mucosal immunity. In contrast, mucus-impermeable particles were poorly taken up by pulmonary DC following inhalation, despite their superior ability to mediate DC uptake in vitro compared to MPP. In addition to the enhanced immunity achieved in mucosal surfaces, inhaled MPP unexpectedly provided significantly greater systemic immune responses compared to gold-standard approaches applied in the clinic for systemic vaccination, including intradermal injection and intramuscular electroporation. We also showed here that inhaled MPP significantly enhanced the survival of an orthotopic mouse model of aggressive lung cancer compared to the gold-standard approaches. Importantly, we discovered that MPP-mediated pulmonary DNA vaccination induced memory T-cell immunity, particularly the ready-to-act effector memory-biased phenotype, both locally and systemically. The findings here underscore the importance of breaching the airway mucus barrier to facilitate DNA vaccine uptake by pulmonary DC and thus to initiate full-blown immune responses.
Collapse
Affiliation(s)
- Yoo C. Kim
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - Henry T. Hsueh
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218
| | - Namho Kim
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218
| | - Jason Rodriguez
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - Kirby T. Leo
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218
| | - Divya Rao
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218
| | - Natalie E. West
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Justin Hanes
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218
| | - Jung Soo Suk
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218
| |
Collapse
|
43
|
Zhu Y, Li J, Pang Z. Recent insights for the emerging COVID-19: Drug discovery, therapeutic options and vaccine development. Asian J Pharm Sci 2021; 16:4-23. [PMID: 32837565 PMCID: PMC7335243 DOI: 10.1016/j.ajps.2020.06.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/29/2020] [Accepted: 06/21/2020] [Indexed: 01/08/2023] Open
Abstract
SARS-CoV-2 has been marked as a highly pathogenic coronavirus of COVID-19 disease into the human population, causing over 5.5 million confirmed cases worldwide. As COVID-19 has posed a global threat with significant human casualties and severe economic losses, there is a pressing demand to further understand the current situation and develop rational strategies to contain the drastic spread of the virus. Although there are no specific antiviral therapies that have proven effective in randomized clinical trials, currently, the rapid detection technology along with several promising therapeutics for COVID-19 have mitigated its drastic transmission. Besides, global institutions and corporations have commenced to parse out effective vaccines for the prevention of COVID-19. Herein, the present review will give exhaustive details of extensive researches concerning the drug discovery and therapeutic options for COVID-19 as well as some insightful discussions of the status of COVID-19.
Collapse
Affiliation(s)
- Yuefei Zhu
- Department of Biomedical Engineering, Columbia University, New York 10027, USA
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jia Li
- Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney NSW 2109, Australia
| | - Zhiqing Pang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
44
|
Ye X, Li W, Huang J, Zhang L, Zhang Y. Cytotoxic T Cell Responses Induced by CS1/CRT Fusion DNA Vaccine in a Human Plasmacytoma Model. Front Oncol 2020; 10:587237. [PMID: 33330069 PMCID: PMC7714938 DOI: 10.3389/fonc.2020.587237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 10/23/2020] [Indexed: 11/18/2022] Open
Abstract
To date, multiple myeloma remains an incurable disease. Immunotherapy is an encouraging option in the development of multiple myeloma (MM) therapy. CS1 is a specific myeloma antigen, which is highly expressed in myeloma cells. Calreticulin (CRT) is a key determinant of cell death, which can influence antigen presentation and promote cellular phagocytic uptake. In the current study, we constructed a DNA vaccine encoding both CS1 and CRT. Our results show that the PcDNA3.1-CS1/CRT vaccine was able to induce cytotoxic T cell responses against myeloma cells in vivo, and the tumor growth was significantly suppressed in mice immunized with this vaccine. Therefore, our findings indicate that the CS1/CRT fusion DNA vaccine may represent a promising novel myeloma therapy, and the potential for combining the CS1/CRT vaccine with other myeloma treatments.
Collapse
Affiliation(s)
- Xueshi Ye
- Department of Hematology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wanli Li
- Department of Orthopedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jinwen Huang
- Department of Hematology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lifei Zhang
- Department of Hematology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ye Zhang
- Department of Hematology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
45
|
Yu Y, Zhao Y, Zhou G, Wang X. Therapeutic Efficacy of Delta-Like Ligand 4 Gene Vaccine Overexpression on Liver Cancer in Mice. Technol Cancer Res Treat 2020; 19:1533033820942205. [PMID: 33191858 PMCID: PMC7672725 DOI: 10.1177/1533033820942205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Delta-like ligand 4 is a notch ligand that is predominantly expressed in the endothelial tip cells and plays essential roles in the regulation of angiogenesis. In this study, we explored the therapeutic effects of delta-like ligand 4 gene vaccine overexpression on the syngeneic model mouse model of liver cancer and the underlying mechanisms. Mouse hepatocellular carcinoma cell line H22-H8D8 was used to generate subcutaneous syngeneic model liver cancer in Kunming mice, and the effects of recombinant plasmid pVAX1 containing delta-like ligand 4 vaccine on tumor growth was examined. Compared to controls, delta-like ligand 4 vaccination reduced syngeneic model tumor size by 70.31% (from 17.11 ± 9.30 cm3 to 5.08 ± 2.75 cm3, P = .035) and tumor weight by 34.19% (from 6.26 ± 3.01 g to 4.12 ± 2.52 g, P = .102), while the mouse survival was significantly increased (from 27.7 ± 6.0 days to 33.1 ± 6.1 days, P = .047). High level of delta-like ligand 4 antibody, together with a significantly increased number of CD4+ and decreased CD8+ cells were identified in the mouse peripheral blood serum samples after delta-like ligand 4 immunization. In addition, elevated serum levels of interleukin 2, interleukin 4, and interferon γ were detected in the delta-like ligand 4-vaccinated mice when compared to the controls. Further studies have revealed increased CD31 and decreased Ki67 expression in the syngeneic model tumor tissues of vaccinated mice. Taken together, our studies suggest that delta-like ligand 4 gene vaccine can inhibit the growth of hepatocellular carcinoma in mice through inhibiting tumor angiogenesis and boosting antitumor immune responses. Hence, delta-like ligand 4 gene vaccination may be a promising strategy for the treatment of transplanted liver cancer.
Collapse
Affiliation(s)
- Yi Yu
- Key Laboratory of Digestive Disease, Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Yang Zhao
- Key Laboratory of Digestive System Tumors, Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Guangming Zhou
- Department of Space Radiobiology, Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modem Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Xiang Wang
- Key Laboratory of Digestive Disease, Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
- Xiang Wang, Key Laboratory of Digestive Disease, Department of Gastroenterology, Lanzhou University Second Hospital, 82 Cuiyingmen, Lanzhou 730030, China.
| |
Collapse
|
46
|
Guo Q, Wang L, Xu P, Geng F, Guo J, Dong L, Bao X, Zhou Y, Feng M, Wu J, Wu H, Yu B, Zhang H, Yu X, Kong W. Heterologous prime-boost immunization co-targeting dual antigens inhibit tumor growth and relapse. Oncoimmunology 2020; 9:1841392. [PMID: 33224629 PMCID: PMC7657584 DOI: 10.1080/2162402x.2020.1841392] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Therapeutic cancer vaccines aim to induce an effective immune response against cancer, and the effectiveness of these vaccines is influenced by the choice of immunogen, vaccine type, and immunization strategy. Although treatment with cancer vaccines can improve tumor burden and survival, in most animal studies, it is challenging to achieve a complete response against tumor growth and recurrence, without the use of other therapies in combination. Here, we present a novel approach where dual antigens (survivin and MUC1) are co-targeted using three DNA vaccines, followed by a single booster of a recombinant modified vaccinia Ankara (MVA) vaccine. This heterologous vaccination strategy induced higher levels of interferon (IFN)-γ-secretion and stronger antigen-specific T-cell responses than those induced individually by the DNA vaccines and the MVA vaccine in mice. This strategy also increased the number of active tumor-infiltrating T cells that efficiently inhibit tumor growth in tumor-bearing mice. Heterologous DNA prime-MVA boost immunization was capable of inducing a robust antigen-specific immune-memory, as seen from the resistance to subsequent survivin- and MUC1-expressing tumors. Moreover, the therapeutic effects of DNA prime-MVA boost and DNA prime-adenovirus boost strategies were compared. DNA prime-MVA boost immunization performed better, as indicated by the T effector ratio and the induction of Th1 immunity. This study provides the basis for the use of heterologous DNA prime-MVA boost vaccination regime targeting two antigens simultaneously as a promising immunotherapeutic strategy against cancer.
Collapse
Affiliation(s)
- Qianqian Guo
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Lizheng Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Ping Xu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Fei Geng
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Jie Guo
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Ling Dong
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Xin Bao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Yi Zhou
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Mengfan Feng
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Jiaxin Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Hui Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Bin Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Haihong Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Xianghui Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China.,Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Wei Kong
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China.,Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| |
Collapse
|
47
|
Nguyen TL, Yin Y, Choi Y, Jeong JH, Kim J. Enhanced Cancer DNA Vaccine via Direct Transfection to Host Dendritic Cells Recruited in Injectable Scaffolds. ACS NANO 2020; 14:11623-11636. [PMID: 32808762 DOI: 10.1021/acsnano.0c04188] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Deoxyribonucleic acid (DNA) vaccines are a promising cancer immunotherapy approach. However, effective delivery of DNA to antigen-presenting cells (e.g., dendritic cells (DCs)) for the induction of an adaptive immune response is limited. Conventional DNA delivery via intramuscular, intradermal, and subcutaneous injection by hypodermal needles shows a low potency and immunogenicity. Here, we propose the enhanced cancer DNA vaccine by direct transfection to the high number of DCs recruited into the chemoattractant-loaded injectable mesoporous silica microrods (MSRs). Subcutaneous administration of the MSRs mixed with tumor-antigen coding DNA polyplexes resulted in DC recruitment in the macroporous space of the scaffold formed by the spontaneous assembly of high-aspect-ratio MSRs, thereby allowing for enhanced cellular uptake of antigen-coded DNA by host DCs. The MSR scaffolds delivering the DNA vaccine trigger a more robust DC activation, antigen-specific CD8+ T cell response, and Th1 immune response compared to the bolus DNA vaccine. Additionally, the immunological memory can be induced with a single administration of the vaccine. The combination of the vaccination and antiprogrammed cell death-1 antibody significantly eliminates established lung metastasis. These results indicate that MSRs serve as a powerful platform for DNA vaccine delivery to DCs for effective cancer immunotherapy.
Collapse
Affiliation(s)
- Thanh Loc Nguyen
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Yue Yin
- School of Pharmacy, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Youngjin Choi
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Ji Hoon Jeong
- School of Pharmacy, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jaeyun Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Institute of Quantum Biophysics (IQB), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| |
Collapse
|
48
|
Pierini S, Tanyi JL, Simpkins F, George E, Uribe-Herranz M, Drapkin R, Burger R, Morgan MA, Facciabene A. Ovarian granulosa cell tumor characterization identifies FOXL2 as an immunotherapeutic target. JCI Insight 2020; 5:136773. [PMID: 32814714 PMCID: PMC7455139 DOI: 10.1172/jci.insight.136773] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 07/02/2020] [Indexed: 12/13/2022] Open
Abstract
Granulosa cell tumors (GCT) are rare ovarian malignancies. Due to the lack of effective treatment in late relapse, there is a clear unmet need for novel therapies. Forkhead Box L2 (FOXL2) is a protein mainly expressed in granulosa cells (GC) and therefore is a rational therapeutic target. Since we identified tumor infiltrating lymphocytes (TILs) as the main immune population within GCT, TILs from 11 GCT patients were expanded, and their phenotypes were interrogated to determine that T cells acquired late antigen-experienced phenotypes and lower levels of PD1 expression. Importantly, TILs maintained their functionality after ex vivo expansion as they vigorously reacted against autologous tumors (100% of patients) and against FOXL2 peptides (57.1% of patients). To validate the relevance of FOXL2 as a target for immune therapy, we developed a plasmid DNA vaccine (FoxL2–tetanus toxin; FoxL2-TT) by fusing Foxl2 cDNA with the immune-enhancing domain of TT. Mice immunization with FoxL2-TT controlled growth of FOXL2-expressing ovarian (BR5) and breast (4T1) cancers in a T cell–mediated manner. Combination of anti–PD-L1 with FoxL2-TT vaccination further reduced tumor progression and improved mouse survival without affecting the female reproductive system and pregnancy. Together, our results suggest that FOXL2 immune targeting can produce substantial long-term clinical benefits. Our study can serve as a foundation for trials testing immunotherapeutic approaches in patients with ovarian GCT. FOXL2 may serve as a immunotherapeutic target for tumor infiltrating lymphocytes in ovarian granulosa cell tumors.
Collapse
Affiliation(s)
- Stefano Pierini
- Department of Radiation Oncology and.,Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Janos L Tanyi
- Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Fiona Simpkins
- Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Erin George
- Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mireia Uribe-Herranz
- Department of Radiation Oncology and.,Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ronny Drapkin
- Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Robert Burger
- Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mark A Morgan
- Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Andrea Facciabene
- Department of Radiation Oncology and.,Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
49
|
Stegantseva MV, Shinkevich VA, Tumar EM, Meleshko AN. Multi-antigen DNA vaccine delivered by polyethylenimine and Salmonella enterica in neuroblastoma mouse model. Cancer Immunol Immunother 2020; 69:2613-2622. [PMID: 32594197 DOI: 10.1007/s00262-020-02652-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 06/23/2020] [Indexed: 12/13/2022]
Abstract
Neuroblastoma is an example of a difficult-to-treat tumor with high incidence of relapse. DNA vaccination could be applied as a relapse prophylactic option for patients with high-risk neuroblastoma. Its efficacy depends directly on a target antigen of choice and a delivery method. Three neuroblastoma-associated antigens (tyrosine hydroxylase, Survivin, PHOX2B) and two delivery methods were investigated. Our data suggest that antigen PHOX2B is a more immunogenic target that induces cellular immune response and tumor regression more effectively than tyrosine hydroxylase and Survivin. Immunogenicity testing revealed that the delivery of DNA vaccine by Salmonella enterica was accompanied by a stronger immune response (cytotoxicity and IFNγ production) than that by DNA-polyethylenimine conjugate. Nevertheless, intramuscular immunization with PEI led to higher decrease of tumor volume compared to that after oral gavage with Salmonella vaccine.
Collapse
MESH Headings
- Animals
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- Cancer Vaccines/administration & dosage
- Cancer Vaccines/genetics
- Cancer Vaccines/immunology
- Cell Line, Tumor/transplantation
- Disease Models, Animal
- Drug Carriers/chemistry
- Homeodomain Proteins/genetics
- Homeodomain Proteins/immunology
- Humans
- Immunogenicity, Vaccine
- Injections, Subcutaneous
- Mice
- Neoplasm Recurrence, Local/immunology
- Neoplasm Recurrence, Local/prevention & control
- Neuroblastoma/immunology
- Neuroblastoma/pathology
- Neuroblastoma/therapy
- Polyethyleneimine/chemistry
- Salmonella Vaccines/administration & dosage
- Salmonella Vaccines/immunology
- Salmonella typhimurium/immunology
- Survivin/genetics
- Survivin/immunology
- Transcription Factors/genetics
- Transcription Factors/immunology
- Tyrosine 3-Monooxygenase/genetics
- Tyrosine 3-Monooxygenase/immunology
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/immunology
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
Collapse
Affiliation(s)
- Maria V Stegantseva
- Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, v. Borovlyani, Minsk, 220053, Belarus.
| | - Veronika A Shinkevich
- Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, v. Borovlyani, Minsk, 220053, Belarus
| | - Elena M Tumar
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Minsk, 220141, Belarus
| | - Alexander N Meleshko
- Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, v. Borovlyani, Minsk, 220053, Belarus
| |
Collapse
|
50
|
Dermol-Černe J, Batista Napotnik T, Reberšek M, Miklavčič D. Short microsecond pulses achieve homogeneous electroporation of elongated biological cells irrespective of their orientation in electric field. Sci Rep 2020; 10:9149. [PMID: 32499601 PMCID: PMC7272635 DOI: 10.1038/s41598-020-65830-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 04/27/2020] [Indexed: 12/21/2022] Open
Abstract
In gene electrotransfer and cardiac ablation with irreversible electroporation, treated muscle cells are typically of elongated shape and their orientation may vary. Orientation of cells in electric field has been reported to affect electroporation, and hence electrodes placement and pulse parameters choice in treatments for achieving homogeneous effect in tissue is important. We investigated how cell orientation influences electroporation with respect to different pulse durations (ns to ms range), both experimentally and numerically. Experimentally detected electroporation (evaluated separately for cells parallel and perpendicular to electric field) via Ca2+ uptake in H9c2 and AC16 cardiomyocytes was numerically modeled using the asymptotic pore equation. Results showed that cell orientation affects electroporation extent: using short, nanosecond pulses, cells perpendicular to electric field are significantly more electroporated than parallel (up to 100-times more pores formed), and with long, millisecond pulses, cells parallel to electric field are more electroporated than perpendicular (up to 1000-times more pores formed). In the range of a few microseconds, cells of both orientations were electroporated to the same extent. Using pulses of a few microseconds lends itself as a new possible strategy in achieving homogeneous electroporation in tissue with elongated cells of different orientation (e.g. electroporation-based cardiac ablation).
Collapse
Affiliation(s)
- Janja Dermol-Černe
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, 1000, Ljubljana, Slovenia
| | - Tina Batista Napotnik
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, 1000, Ljubljana, Slovenia
| | - Matej Reberšek
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, 1000, Ljubljana, Slovenia
| | - Damijan Miklavčič
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, 1000, Ljubljana, Slovenia.
| |
Collapse
|