1
|
Roskoski R. Properties of FDA-approved small molecule protein kinase inhibitors: A 2025 update. Pharmacol Res 2025; 216:107723. [PMID: 40252783 DOI: 10.1016/j.phrs.2025.107723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Revised: 03/31/2025] [Accepted: 03/31/2025] [Indexed: 04/21/2025]
Abstract
Because of the deregulation of protein kinase action in many inflammatory diseases and cancer, the protein kinase family has become one of the most significant drug targets in the 21st century. There are 85 FDA-approved protein kinase antagonists that target about two dozen different enzymes and four of these drugs were approved in 2024 and a fifth was approved in 2025. Of these drugs, five target dual specificity protein kinases (MEK1/2), fourteen inhibit protein-serine/threonine protein kinases, twenty-one block nonreceptor protein-tyrosine kinases, and 45 target receptor protein-tyrosine kinases. The data indicate that 75 of these drugs are prescribed for the treatment of neoplasms. Seven drugs (abrocitinib, baricitinib, deucravacitinib, deuruxolitinib, ritlecitinib, tofacitinib, upadacitinib) are prescribed for the management of inflammatory diseases (atopic dermatitis, rheumatoid arthritis, psoriasis, alopecia areata, and ulcerative colitis). Of the 85 FDA-approved agents, about two dozen are used in the treatment of multiple diseases. The following four drugs received FDA approval in 2024 - deuruxolitinib (alopecia areata), ensartinib and lazertinib (non-small cell lung cancer), and tovorafenib (pediatric glioma) while mirdametinib was approved in 2025 for the treatment of type I neurofibromatosis (von Recklinghausen disease). Apart from netarsudil, temsirolimus, and trilaciclib, the approved protein kinase blockers are orally bioavailable. This article summarizes the physicochemical properties of all 85 FDA-approved small molecule protein kinase inhibitors including the molecular weight, number of hydrogen bond donors/acceptors, ligand efficiency, lipophilic efficiency, polar surface area, and solubility. A total of 39 of the 85 FDA-approved drugs have a least one Lipinski rule of 5 violation.
Collapse
Affiliation(s)
- Robert Roskoski
- Blue Ridge Institute for Medical Research, 221 Haywood Knolls Drive, Hendersonville, NC 28791, United States.
| |
Collapse
|
2
|
Zhang Y, Zhang X, Shao W, Gao J, Xiang M, Wang Y, Liu M, Zhang W, Liang X. MEK inhibitors for the treatment of immunotherapy-resistant, AGK-BRAF fusion advanced acral melanoma: a case report and literature review. J Cancer Res Clin Oncol 2025; 151:133. [PMID: 40189647 PMCID: PMC11972992 DOI: 10.1007/s00432-025-06083-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 01/05/2025] [Indexed: 04/09/2025]
Abstract
PURPOSE Acral melanoma (AM), a rare and aggressive melanoma subtype with poor prognosis, presents unique challenges in treatment due to its distinct molecular and immune characteristics. This case report describes a patient with AM harboring an AGK-BRAF fusion mutation, aiming to explore potential mechanisms of resistance to current treatment modalities. METHODS We analyzed tumor tissue samples from the primary and metastatic lesions of the patient using next-generation sequencing (NGS) for genomic profiling and multiplex immunohistochemistry (mIHC) to assess the immune microenvironment. The patient underwent multiple lines of treatment, including immunotherapy, chemotherapy, and targeted therapy, with their clinical outcomes documented and evaluated. RESULTS The AGK-BRAF fusion mutation and its reciprocal BRAF-AGK rearrangement were identified in both primary and metastatic tumors. Immune profiling revealed abundant CD8 + T cells, PD-L1 + cells, and CD68 + macrophages localized predominantly in the tumor interstitial region, potentially explaining the poor response to immunotherapy. Despite initial disease stabilization with trametinib and lenvatinib, rapid progression occurred, highlighting tumor heterogeneity and limited efficacy of combined therapies. CONCLUSION This case underscores the need for personalized approaches in treating AM, especially those with rare molecular alterations like AGK-BRAF fusion. Insights from genomic and immune profiling may inform future therapeutic strategies to overcome resistance and improve outcomes in this challenging melanoma subtype.
Collapse
Affiliation(s)
- Yanling Zhang
- Department of Medical Oncology, The Third People's Hospital of Zhengzhou, Zhengzhou, 450000, Henan, China
| | - Xifeng Zhang
- Department of Medical Oncology, The Third People's Hospital of Zhengzhou, Zhengzhou, 450000, Henan, China
| | - Weikang Shao
- Genecast Biotechnology Co., Ltd, Wuxi, 214000, China
| | - Ji Gao
- Department of Orthopaedics, The Third People's Hospital of Zhengzhou, Zhengzhou, 450000, Henan, China
| | - Mei Xiang
- Department of Medical Oncology, The Third People's Hospital of Zhengzhou, Zhengzhou, 450000, Henan, China
| | - Yan Wang
- Department of Medical Oncology, The Third People's Hospital of Zhengzhou, Zhengzhou, 450000, Henan, China
| | - Mengmeng Liu
- Department of Pathology, The Third People's Hospital of Zhengzhou, Zhengzhou, 450000, Henan, China.
| | - Weizhen Zhang
- Department of Medical Oncology, The Third People's Hospital of Zhengzhou, Zhengzhou, 450000, Henan, China.
| | - Xianbin Liang
- Department of Medical Oncology, The Third People's Hospital of Zhengzhou, Zhengzhou, 450000, Henan, China.
| |
Collapse
|
3
|
Xu X, Luo S, Wang Q, Zhang E, Liu J, Duan L. Allosteric site engagement and cooperativity mechanism by PHI1 for BRAF V600E kinase inhibition. Int J Biol Macromol 2025; 302:140475. [PMID: 39884594 DOI: 10.1016/j.ijbiomac.2025.140475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/16/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
With the ability to reveal allosteric sites, Ponatinib and Ponatinib Hybrid Inhibitor 1 (PHI1) are novel inhibitors of BRAF, a potent oncogene that activates the MAPK pathway. PHI1 also exhibits unique positive cooperativity, with enhanced inhibition on the other monomer when one monomer of the BRAFV600E dimer bound to an inhibitor. The abovementioned properties lack rigorous theoretical verification, so this study compared the interaction mechanisms of four inhibitor types and explored the source of the cooperativity of PHI1 via various computational methods. Results revealed that residues on the αC-helix formed hydrogen bonds with inhibitors, shifting the position of the αC-helix. PHI1 induced binding pocket contraction through contact with allosteric sites. Entropy contributions were considerably weakened when both BRAFV600E monomers were occupied, thereby increasing the binding ability of PHI1, indicating that entropy contributions were the main source of PHI1 cooperativity. The change in overall motion intensity tightened the binding pocket, increasing the binding abilities of hotspot residues, including Arg575 and Leu567. Moreover, three key hydrogen bonds formed between PHI1 and BRAFV600E in the dimer system were conducive to the binding. The insights derived from this study are expected to advance the development of inhibitors targeting BRAFV600E kinase.
Collapse
Affiliation(s)
- Xiaole Xu
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Song Luo
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Qihang Wang
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Enhao Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Jinxin Liu
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Lili Duan
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
4
|
Rastogi S, Perino S, Lal-Nag M, Wang Y, Blackman SC, Venetsanakos E. Preclinical Activity of the Type II RAF Inhibitor Tovorafenib in Tumor Models Harboring Either a BRAF Fusion or an NF1 Loss-of-Function Mutation. CANCER RESEARCH COMMUNICATIONS 2025; 5:668-679. [PMID: 40111124 PMCID: PMC12015663 DOI: 10.1158/2767-9764.crc-24-0451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/18/2024] [Accepted: 03/04/2025] [Indexed: 03/22/2025]
Abstract
SIGNIFICANCE Tovorafenib demonstrated efficacy in BRAF fusion but not in NF1-LOF mutant tumor models. Vertical pathway inhibition by combining type II RAF plus MEK inhibitors may have clinical relevance in NF1-LOF mutant tumors.
Collapse
Affiliation(s)
| | | | - Madhu Lal-Nag
- Day One Biopharmaceuticals, Inc., Brisbane, California
| | - Yujin Wang
- Day One Biopharmaceuticals, Inc., Brisbane, California
| | | | | |
Collapse
|
5
|
Alfei S, Torazza C, Bacchetti F, Signorello MG, Passalacqua M, Domenicotti C, Marengo B. Tri-Phenyl-Phosphonium-Based Nano Vesicles: A New In Vitro Nanomolar-Active Weapon to Eradicate PLX-Resistant Melanoma Cells. Int J Mol Sci 2025; 26:3227. [PMID: 40244045 PMCID: PMC11990052 DOI: 10.3390/ijms26073227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/18/2025] Open
Abstract
Cutaneous metastatic melanoma (CMM) is the most aggressive form of skin cancer, with characteristics including a poor prognosis, chemotherapy-induced secondary tumorigenesis, and the emergence of drug resistance. Our recent study demonstrated that triphenyl phosphonium (TPP)-based nanovesicles (BPPB), which have amphiphilic properties, exert potent ROS-dependent anticancer effect against PLX4032 (PLX)-sensitive MeOV BRAFV600E and MeTRAV BRAFV600D mutant cell lines, evidencing more marked efficacy on MeOV cells. Here, taking advantage of this in vitro model, the antitumoral effect of BPPB was tested on PLX-resistant (PLX-R) MeOV BRAFV600E and MeTRAV BRAFV600D mutant cell lines to find a new potential strategy to fight melanoma therapy resistance. Specifically, we investigated both its effects on cell viability in dose- and time-dependent experiments and those on ROS generation. Our results show that BPPB exerted strong antiproliferative effects, regardless of their acquired resistance of cells to PLX, that correlated with ROS overproduction for 24 h treatments only. Moreover, in terms of cell viability, PLX-R MeTRAV cells demonstrated a remarkably higher tolerance to 24 h BPPB treatment than PLX-R MeOV. On the contrary, BPPB exposure for longer periods induced similar responses in both cell lines (IC50 = 87.8-106.5 nM on MeOV and 81.0-140.6 nM on MeTRAV). Notably, BPPB cytotoxicity on non-tumorigenic human keratinocytes (HaCaT) was low, thus establishing that BPPB is appreciably selective for CMM cells, allowing for selectivity index values (SIs) up to 11.58. Furthermore, the BPPB concentration causing 50% hemolysis (HC50) was found to be 16-173 and 4-192-fold higher than the IC50 calculated for PLX-R MeOV and MeTRAV cells, respectively. Correlation studies established that BPPB exerts cytotoxic effects on PLX-R MeOV and MeTRAV cells by a time-dependent mechanism, while a concentration-dependent mechanism was observed only at 24 h of exposure. Finally, a ROS-dependent mechanism can be assumed only in PLX-R MeTRAV cells in 72 h treatment.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy, University of Genoa, Viale Cembrano, 16148 Genoa, Italy; (C.T.); (F.B.)
| | - Carola Torazza
- Department of Pharmacy, University of Genoa, Viale Cembrano, 16148 Genoa, Italy; (C.T.); (F.B.)
| | - Francesca Bacchetti
- Department of Pharmacy, University of Genoa, Viale Cembrano, 16148 Genoa, Italy; (C.T.); (F.B.)
| | - Maria Grazia Signorello
- Biochemistry Laboratory, Department of Pharmacy, University of Genoa, Viale Benedetto XV 3, 16132 Genova, Italy;
| | - Mario Passalacqua
- Biochemistry Section, Department of Experimental Medicine (DIMES), University of Genova, Via Alberti L.B., 16132 Genoa, Italy;
- Centro 3R, Department of Information Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy;
| | - Cinzia Domenicotti
- Centro 3R, Department of Information Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy;
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
- Department of Experimental Medicine (DIMES), University of Genova, Via Alberti L.B., 16132 Genoa, Italy
| | - Barbara Marengo
- Centro 3R, Department of Information Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy;
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
- Department of Experimental Medicine (DIMES), University of Genova, Via Alberti L.B., 16132 Genoa, Italy
| |
Collapse
|
6
|
Li R, Grosskopf AK, Joslyn LR, Stefanich EG, Shivva V. Cellular Kinetics and Biodistribution of Adoptive T Cell Therapies: from Biological Principles to Effects on Patient Outcomes. AAPS J 2025; 27:55. [PMID: 40032717 DOI: 10.1208/s12248-025-01017-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/06/2025] [Indexed: 03/05/2025] Open
Abstract
Cell-based immunotherapy has revolutionized cancer treatment in recent years and is rapidly expanding as one of the major therapeutic options in immuno-oncology. So far ten adoptive T cell therapies (TCTs) have been approved by the health authorities for cancer treatment, and they have shown remarkable anti-tumor efficacy with potent and durable responses. While adoptive T cell therapies have shown success in treating hematological malignancies, they are lagging behind in establishing promising efficacy in treating solid tumors, partially due to our incomplete understanding of the cellular kinetics (CK) and biodistribution (including tumoral penetration) of cell therapy products. Indeed, recent clinical studies have provided ample evidence that CK of TCTs can influence clinical outcomes in both hematological malignancies and solid tumors. In this review, we will discuss the current knowledge on the CK and biodistribution of anti-tumor TCTs. We will first describe the typical CK and biodistribution characteristics of these "living" drugs, and the biological factors that influence these characteristics. We will then review the relationships between CK and pharmacological responses of TCT, and potential strategies in enhancing the persistence and tumoral penetration of TCTs in the clinic. Finally, we will also summarize bioanalytical methods, preclinical in vitro and in vivo tools, and in silico modeling approaches used to assess the CK and biodistribution of TCTs.
Collapse
Affiliation(s)
- Ran Li
- Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc, 1 DNA Way, South San Francisco, California, 94080, USA.
| | - Abigail K Grosskopf
- Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc, 1 DNA Way, South San Francisco, California, 94080, USA
| | - Louis R Joslyn
- Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc, 1 DNA Way, South San Francisco, California, 94080, USA
| | - Eric Gary Stefanich
- Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc, 1 DNA Way, South San Francisco, California, 94080, USA
| | - Vittal Shivva
- Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc, 1 DNA Way, South San Francisco, California, 94080, USA.
| |
Collapse
|
7
|
Chiwoneso TC, Luo Y, Xu Y, Chen X, Chen L, Sun J. Kinases and their derived inhibitors from natural products. Bioorg Chem 2025; 156:108196. [PMID: 39908736 DOI: 10.1016/j.bioorg.2025.108196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/03/2024] [Accepted: 01/18/2025] [Indexed: 02/07/2025]
Abstract
Protein kinase dysregulation is a hallmark of many cancers, yet their tumorigenic mechanisms remain elusive despite 60 years of study. Since learning that their mechanism includes catalyzing phosphorylation of amino acids in protein substrates, researchers began devising their inhibition strategies. Initially, protein kinase inhibitors (PKIs) derived from natural products were employed despite high cytotoxicity risks. While synthetic PKIs proved less toxic, they face significant drug resistance challenges. This review examines the progress in understanding protein kinases' role in cancer, their classification and modes of action since their discovery. To illuminate the path towards less toxic yet highly effective kinase inhibitors, this study analyzes the synthesis and modification of all FDA-approved natural product derived kinase inhibitors (NPDKIs) as well as those that failed clinical trials. By providing insights into successful and unsuccessful approaches, this review also aims to advance medicinal chemistry strategies for developing more effective and safer PKIs, potentially improving cancer treatment outcomes.
Collapse
Affiliation(s)
- Takudzwa Chipeperengo Chiwoneso
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198 China
| | - Yajing Luo
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198 China
| | - Yifan Xu
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198 China
| | - Xinyu Chen
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198 China
| | - Li Chen
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198 China.
| | - Jianbo Sun
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198 China.
| |
Collapse
|
8
|
Nussinov R, Yavuz BR, Jang H. Allostery in Disease: Anticancer Drugs, Pockets, and the Tumor Heterogeneity Challenge. J Mol Biol 2025:169050. [PMID: 40021049 DOI: 10.1016/j.jmb.2025.169050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 02/24/2025] [Indexed: 03/03/2025]
Abstract
Charting future innovations is challenging. Yet, allosteric and orthosteric anticancer drugs are undergoing a revolution and taxing unresolved dilemmas await. Among the imaginative innovations, here we discuss cereblon and thalidomide derivatives as a means of recruiting neosubstrates and their degradation, allosteric heterogeneous bifunctional drugs like PROTACs, drugging phosphatases, inducers of targeted posttranslational protein modifications, antibody-drug conjugates, exploiting membrane interactions to increase local concentration, stabilizing the folded state, and more. These couple with harnessing allosteric cryptic pockets whose discovery offers more options to modulate the affinity of orthosteric, active site inhibitors. Added to these are strategies to counter drug resistance through drug combinations co-targeting pathways to bypass signaling blockades. Here, we discuss on the molecular and cellular levels, such inspiring advances, provide examples of their applications, their mechanisms and rational. We start with an overview on difficult to target proteins and their properties-rarely, if ever-conceptualized before, discuss emerging innovative drugs, and proceed to the increasingly popular allosteric cryptic pockets-their advantages-and critically, issues to be aware of. We follow with drug resistance and in-depth discussion of tumor heterogeneity. Heterogeneity is a hallmark of highly aggressive cancers, the core of drug resistance unresolved challenge. We discuss potential ways to target heterogeneity by predicting it. The increase in experimental and clinical data, computed (cell-type specific) interactomes, capturing transient cryptic pockets, learned drug resistance, workings of regulatory mechanisms, heterogeneity, and resistance-based cell signaling drug combinations, assisted by AI-driven reasoning and recognition, couple with creative allosteric drug discovery, charting future innovations.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, the United States of America; Cancer Innovation Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, the United States of America; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Bengi Ruken Yavuz
- Cancer Innovation Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, the United States of America
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, the United States of America; Cancer Innovation Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, the United States of America
| |
Collapse
|
9
|
Cook SJ. Second MEK Inhibitor Shows Promise in Neurofibromatosis Type 1 With Symptomatic Plexiform Neurofibromas Signaling Hope for Other RASopathies. J Clin Oncol 2025; 43:730-734. [PMID: 39661912 DOI: 10.1200/jco-24-02375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 12/13/2024] Open
Affiliation(s)
- Simon J Cook
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| |
Collapse
|
10
|
Arter ZL, Shieh K, Nagasaka M, Ou SHI. Comprehensive Survey of AACR GENIE Database of Tumor Mutation Burden (TMB) Among All Three Classes (I, II, III) of BRAF Mutated ( BRAF+) NSCLC. LUNG CANCER (AUCKLAND, N.Z.) 2025; 16:1-9. [PMID: 39995769 PMCID: PMC11847431 DOI: 10.2147/lctt.s493835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 02/06/2025] [Indexed: 02/26/2025]
Abstract
Background BRAF mutations are generally divided into three classes based on the different altered mechanism of activation. Methods We queried the public AACR GENIE database (version 13.1), which includes tumor mutation burden (TMB) data, to explore potential molecular differences among the three classes of non-small cell lung cancer (NSCLC). Results Out of 20,713 unique NSCLC patients, 324 (1.6%) were BRAF mutations positive (BRAF+) class I, 260 (1.3%) class II, and 236 (1.1%) class III. The distribution of patient characteristics, including sex, age, and race, remains uniform across the three classes. The median TMB (mt/MB) was 6.5, 9.5, and 10.3 for class I, II, and III, respectively. The mean TMB was 61.5 ± 366.1 for class I, 40.5 ± 156.2 for class II, and 129.4 ± 914.8 for class III. About 30.5% of BRAF V600E+ patients had TMB ≥ 10; 47.7% of class II had TMB ≥ 10; and 52.5% of class III had TMB ≥ 10. For those patients with TMB ≥ 10, the median TMB was 45, 28.9, 18.4 for class I, II, and III, respectively. For TMB ≥ 10 patients, TP53 mutation was the most common co-alterations across all 3 classes. Conclusion A substantial proportion of BRAF+ NSCLC patients exhibited a TMB ≥ 10, among all three classes of BRAF mutation classification, including BRAF V600E+ NSCLC. Class III mutations appeared to have the highest median TMB, followed by class II, and then class I.
Collapse
Affiliation(s)
- Zhaohui Liao Arter
- Division of Hematology-Oncology, University of California Irvine School of Medicine, Orange, CA, USA
- Chao Family Comprehensive Cancer Center, Orange, CA, USA
| | - Kevin Shieh
- Division of Hematology-Oncology, University of California Irvine School of Medicine, Orange, CA, USA
- Chao Family Comprehensive Cancer Center, Orange, CA, USA
| | - Misako Nagasaka
- Division of Hematology-Oncology, University of California Irvine School of Medicine, Orange, CA, USA
- Chao Family Comprehensive Cancer Center, Orange, CA, USA
| | - Sai-Hong Ignatius Ou
- Division of Hematology-Oncology, University of California Irvine School of Medicine, Orange, CA, USA
- Chao Family Comprehensive Cancer Center, Orange, CA, USA
| |
Collapse
|
11
|
Elmer DP, Stockmaier G, Grund-Gröschke S, Strobl V, Dang HH, Wiederstein M, Licha D, Strobl A, Eglseer A, Sternberg C, Tesanovic S, Gruber W, Wolff F, Moriggl R, Risch A, Reischl R, Huber CG, Krenn PW, Fortelny N, Horejs-Hoeck J, Aberger F. Cooperative Hedgehog/GLI and JAK/STAT signaling drives immunosuppressive tryptophan/kynurenine metabolism via synergistic induction of IDO1 in skin cancer. Cell Commun Signal 2025; 23:91. [PMID: 39962447 PMCID: PMC11834474 DOI: 10.1186/s12964-025-02101-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 02/09/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Pharmacological targeting of Hedgehog (HH)/GLI has proven effective for certain blood, brain and skin cancers including basal cell carcinoma (BCC). However, limited response rates and the development of drug resistance call for improved anti-HH therapies that take synergistic crosstalk mechanisms and immune evasion strategies into account. In previous work, we demonstrated that cooperation of HH/GLI and Interleukin 6 (IL6)/STAT3 signaling drives BCC growth. Whether synergistic HH-IL6 signaling promotes BCC via the activation of immune evasion mechanisms remained unclear. METHODS HH-IL6 regulated immunosuppressive genes such as indoleamine 2,3-dioxygenase 1 (IDO1) were identified by gene expression profiling. IDO1 expression was evaluated in human BCC and melanoma models by qPCR and Western blot analyses. The cis-regulatory region of IDO1 was interrogated for HH-IL6-regulated GLI and STAT transcription factor binding and epigenetic modifications by targeted chromatin-immunoprecipitation and bisulfite pyrosequencing. Functional analyses of the immunosuppressive effects of IDO1 involved HPLC-MS measurements of its metabolites and the assessment of T cell proliferation via flow cytometry. Bioinformatic analyses of GLI-STAT cooperation were conducted on published bulk and single-cell RNA-seq data of human BCC and melanoma patients. RESULTS We identified IDO1 as a target gene of cooperative GLI-STAT activity in BCC and melanoma. GLI1 and STAT3 transcription factors synergistically enhanced IDO1 expression by jointly binding to the cis-regulatory region of IDO1 and by increasing active chromatin marks at the histone level. In human melanoma cells, inhibition of GLI1 expression prevented the induction of IDO1 expression in response to IL6/STAT3 and IFNγ/STAT1 signaling. Pharmacological targeting of HH/GLI signaling reduced IDO1 expression, resulting in decreased production of the immunosuppressive metabolite kynurenine. Further, inhibition of GLI1 enhanced the efficacy of the selective IDO1 inhibitor epacadostat and rescued T cell proliferation by attenuating IDO1/kynurenine-mediated immunosuppression. Elevated expression of IDO1 correlated with active HH/GLI and JAK/STAT signaling in skin cancer patients supporting the clinical relevance of the mechanistic data presented. CONCLUSIONS These results identify the immunosuppressive IDO1-kynurenine pathway as a novel pro-tumorigenic target of oncogenic GLI and STAT1/STAT3 cooperation. Our data suggest simultaneous pharmacological targeting of these signaling axes as rational combination therapy in melanoma and non-melanoma skin cancers.
Collapse
Affiliation(s)
- Dominik P Elmer
- Department of Biosciences and Medical Biology, Cancer Cluster Salzburg, Paris Lodron University of Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
| | - Georg Stockmaier
- Department of Biosciences and Medical Biology, Cancer Cluster Salzburg, Paris Lodron University of Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
| | - Sandra Grund-Gröschke
- Department of Biosciences and Medical Biology, Cancer Cluster Salzburg, Paris Lodron University of Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
| | - Victoria Strobl
- Department of Biosciences and Medical Biology, Cancer Cluster Salzburg, Paris Lodron University of Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
| | - Hieu-Hoa Dang
- Department of Biosciences and Medical Biology, Cancer Cluster Salzburg, Paris Lodron University of Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
| | - Markus Wiederstein
- Department of Biosciences and Medical Biology, Cancer Cluster Salzburg, Paris Lodron University of Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
| | - David Licha
- Department of Biosciences and Medical Biology, Cancer Cluster Salzburg, Paris Lodron University of Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
| | - Anna Strobl
- Department of Biosciences and Medical Biology, Cancer Cluster Salzburg, Paris Lodron University of Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
| | - Anna Eglseer
- Department of Biosciences and Medical Biology, Cancer Cluster Salzburg, Paris Lodron University of Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
| | - Christina Sternberg
- Department of Biosciences and Medical Biology, Cancer Cluster Salzburg, Paris Lodron University of Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, Austria
- Institute of Biochemistry, University of Kiel, Kiel, Germany
| | - Suzana Tesanovic
- Department of Biosciences and Medical Biology, Cancer Cluster Salzburg, Paris Lodron University of Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
| | - Wolfgang Gruber
- Department of Biosciences and Medical Biology, Cancer Cluster Salzburg, Paris Lodron University of Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
| | - Florian Wolff
- Department of Biosciences and Medical Biology, Cancer Cluster Salzburg, Paris Lodron University of Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
| | - Richard Moriggl
- Department of Biosciences and Medical Biology, Cancer Cluster Salzburg, Paris Lodron University of Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
- Center for Tumor Biology and Immunology, Paris Lodron University of Salzburg, Salzburg, Austria
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Angela Risch
- Department of Biosciences and Medical Biology, Cancer Cluster Salzburg, Paris Lodron University of Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
- Center for Tumor Biology and Immunology, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Roland Reischl
- Department of Biosciences and Medical Biology, Cancer Cluster Salzburg, Paris Lodron University of Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
| | - Christian G Huber
- Department of Biosciences and Medical Biology, Cancer Cluster Salzburg, Paris Lodron University of Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
- Center for Tumor Biology and Immunology, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Peter W Krenn
- Department of Biosciences and Medical Biology, Cancer Cluster Salzburg, Paris Lodron University of Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
| | - Nikolaus Fortelny
- Department of Biosciences and Medical Biology, Cancer Cluster Salzburg, Paris Lodron University of Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
- Center for Tumor Biology and Immunology, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Jutta Horejs-Hoeck
- Department of Biosciences and Medical Biology, Cancer Cluster Salzburg, Paris Lodron University of Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
- Center for Tumor Biology and Immunology, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Fritz Aberger
- Department of Biosciences and Medical Biology, Cancer Cluster Salzburg, Paris Lodron University of Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria.
- Center for Tumor Biology and Immunology, Paris Lodron University of Salzburg, Salzburg, Austria.
| |
Collapse
|
12
|
Lahr RG, Meyer M, Nelson L, Kottschade LA, Jannetto PJ, Yang YK. Performance Comparison of Liquid Chromatography and Paper Spray Ionization with Mass Spectrometry for Measuring Kinase Inhibitors in Human Plasma. ACS Pharmacol Transl Sci 2025; 8:557-565. [PMID: 39974637 PMCID: PMC11834250 DOI: 10.1021/acsptsci.4c00646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/24/2024] [Accepted: 01/06/2025] [Indexed: 02/21/2025]
Abstract
Kinase inhibitors are small-molecule drugs designed to target oncogenic mutations in cancer treatment. Although less toxic than conventional chemotherapy drugs, they can cause severe adverse effects in some patients, resulting in dose reduction and cessation. To evaluate if therapeutic drug monitoring of kinase inhibitors and their metabolites can improve toxicity assessment in patients, we developed and evaluated the analytical performance of two parallel methods utilizing liquid chromatography (LC) and paper spray (PS) ionization coupled with a triple quadrupole mass spectrometer (MS) for the measurement of dabrafenib, its major metabolite OH-dabrafenib, and trametinib in patient plasma samples. The PS-MS method yielded a faster sample analysis time (2 min) compared to the LC separation (9 min). The two methods shared the same analytical measurement range (AMR) for dabrafenib and OH-dabrafenib (10-3500 and 10-1250 ng/mL), but the AMR differed for trametinib (LC-MS: 0.5-50 ng/mL; PS-MS: 5.0-50 ng/mL). The imprecision across their respective AMR was 1.3-6.5% (dabrafenib), 3.0-9.7% (OH-dabrafenib), and 1.3-5.1% (trametinib) for the LC-MS method and 3.8-6.7% (dabrafenib), 4.0-8.9% (OH-dabrafenib), and 3.2-9.9% (trametinib) for the PS-MS method. Using authentic patient samples, the quantification results were comparable between the two methods: dabrafenib (correlation coefficient r = 0.9977), OH-dabrafenib (r = 0.885), and trametinib (r = 0.9807). Nonetheless, the PS-MS method displayed significantly higher variations compared with the LC-MS method. Based on the LC-MS method, we were able to profile the concentrations and metabolism patterns of dabrafenib and trametinib in patients who were receiving the drugs for BRAF V600 mutation-driven malignancies.
Collapse
Affiliation(s)
- Richard G. Lahr
- Department of Laboratory Medicine and Pathology,
Mayo Clinic, Rochester, Minnesota 55905, United
States
| | - Makenzie Meyer
- Department of Laboratory Medicine and Pathology,
Mayo Clinic, Rochester, Minnesota 55905, United
States
| | - Leah Nelson
- Mayo Clinic Comprehensive Cancer Center,
Mayo Clinic, Rochester, Minnesota 55905, United
States
| | - Lisa A. Kottschade
- Mayo Clinic Comprehensive Cancer Center,
Mayo Clinic, Rochester, Minnesota 55905, United
States
| | - Paul J. Jannetto
- Department of Laboratory Medicine and Pathology,
Mayo Clinic, Rochester, Minnesota 55905, United
States
| | - Yifei K. Yang
- Department of Laboratory Medicine and Pathology,
Mayo Clinic, Rochester, Minnesota 55905, United
States
| |
Collapse
|
13
|
Kızıl HE, Ulcay S, Ekincioğlu Y, Öğütçü H, Ağar G. An Integrated In Vitro and In Silico Investigation of the Bioactive Properties of Wild Glycyrrhiza glabra var. glandulifera. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2025; 80:64. [PMID: 39928187 PMCID: PMC11811428 DOI: 10.1007/s11130-025-01304-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/26/2025] [Indexed: 02/11/2025]
Abstract
This investigation examined methanol extracts obtained from the whole plant (encompassing all organs except roots), flowers, and fruits of wild Glycyrrhiza glabra var. glandulifera, a liquorice cultivar indigenous to the Cappadocia region of Türkiye, constituting the first comprehensive in vitro and in silico analysis of this species within the region. Anatomical identification revealed distinctive structural characteristics, including thick-walled epidermal cells in the stem, organized clusters of collenchyma cells, and well-defined sclerenchyma layers encompassing the vascular bundles. The petiole exhibited a characteristic heart-shaped morphology containing three vascular bundles, while foliar analysis demonstrated the presence of stomata on both adaxial and abaxial surfaces, accompanied by a bifacial mesophyll arrangement. The extracts demonstrated remarkable antimicrobial efficacy against both Gram-positive and Gram-negative bacteria, as well as various fungal species. Furthermore, significant cytotoxic activity was observed against non-small cell lung cancer (H460), with the whole plant extract exhibiting IC50 values of 117.8 µg/mL (24 h) and 105.6 µg/mL (48 h). Flower extracts demonstrated IC50 values of 116.8 µg/mL (24 h) and 112.7 µg/mL (48 h), while fruit extracts displayed superior potency with IC50 values of 104.4 µg/mL (24 h) and 63.09 µg/mL (48 h). Molecular docking analyses, conducted utilizing AutoDock Tools 1.5.6 and BIOVIA Discovery Studio Visualizer 4.5, revealed significant protein-ligand interactions, yielding optimal binding energy and inhibition constant values of -9.57 kcal/mol and 96.92 nM, respectively. The RMSD values were calculated based on structural variations between ligand-protein complexes during re-docking procedures. These findings underscore the substantial biological potential of Glycyrrhiza glabra var. glandulifera from Cappadocia, necessitating further comprehensive investigation.
Collapse
Affiliation(s)
- Hamit Emre Kızıl
- Vocational School of Health Services, Department of Medical Services and Techniques, Bayburt University, Bayburt, 69010, Türkiye.
| | - Sibel Ulcay
- Faculty of Agriculture, Department of Field Corps, Kırşehir Ahi Evran University, Kırşehir, 40100, Türkiye
| | - Yavuz Ekincioğlu
- Vocational School of Health Services, Department of Medical Services and Techniques, Bayburt University, Bayburt, 69010, Türkiye
| | - Hatice Öğütçü
- Faculty of Agriculture, Department of Field Corps, Kırşehir Ahi Evran University, Kırşehir, 40100, Türkiye
- Polatlı Faculty of Science and Letters, Department of Biology, Hacı Bayram Veli University, Ankara, 06100, Türkiye
| | - Güleray Ağar
- Faculty of Science, Department of Biology, Ataturk University, Erzurum, 25240, Türkiye
| |
Collapse
|
14
|
Martin-Liberal J, Márquez-Rodas I, Cerezuela-Fuentes P, Soria A, Garicano F, Medina J, García Galindo R, Oramas J, Luis Manzano J, Delgado M, Valdivia J, Sanchez P. Challenges and perspectives in the management of BRAF-mutated metastatic melanoma: Systemic treatment sequencing and brain metastases. Cancer Treat Rev 2025; 133:102886. [PMID: 39879863 DOI: 10.1016/j.ctrv.2025.102886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/27/2024] [Accepted: 01/13/2025] [Indexed: 01/31/2025]
Abstract
The global incidence of metastatic melanoma with BRAF mutations, characterized by aggressive behavior and poor prognosis, is rising. Recent treatment advances, including immune checkpoint inhibitors (ICI) and targeted therapies (TT) such as BRAF and MEK inhibitors, have significantly enhanced patient outcomes. Although guidelines recommend sequencing strategies, real-world implementation can be influenced by clinical scenarios. This article highlights the importance of tailored treatment strategies, emphasizing that the decision to initiate immunotherapy (IT) or TT hinges on multiple factors, including tumor burden, LDH levels, presence of brain metastases, and patient symptomatic status. Managing brain metastases also poses a challenge, as these patients are typically excluded from pivotal clinical trials. While insights from phase II studies provide some guidance, there is a critical need for more quality data to inform comprehensive recommendations. Furthermore, although triple therapy combining IT and TT was initially thought to be promising, it has failed to clearly demonstrate benefit over current treatments. For all these reasons, there is an imperative need for further research on biomarkers and predictive factors, as well as real-world studies, that will help tailor treatment strategies across diverse patient subsets, thereby refining therapeutic approaches for BRAF-mutated metastatic melanoma.
Collapse
Affiliation(s)
| | - Iván Márquez-Rodas
- Medical Oncology Department, Hospital General Universitario Gregorio Marañón, Universidad Complutense, Madrid, Spain
| | | | - Ainara Soria
- Ramón y Cajal University Hospital, Madrid, Spain
| | | | - Javier Medina
- General University Hospital of Toledo, Toledo, Spain
| | | | - Juana Oramas
- University Hospital of the Canary Islands, Tenerife, Spain
| | | | - Mayte Delgado
- San Cecilio Clinical University Hospital, Granada, Spain
| | - Javier Valdivia
- Medical Oncology, Virgen de las Nieves University Hospital, Granada, Spain
| | | |
Collapse
|
15
|
Pekarek L, Sánchez Cedra A, Jaudenes YDY, Ospino LR, Iglesias Pedrejón B, Bernier L, Roberts Cervantes ED, Sánchez Cendra C, Cassinello J, Trasobares L, Quesada-Cortés A, Sáez MA, Álvarez-Mon M, Ortega MA. Paradigm of biomarkers in metastatic melanoma (Review). Oncol Lett 2025; 29:78. [PMID: 39650232 PMCID: PMC11622106 DOI: 10.3892/ol.2024.14824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/15/2024] [Indexed: 12/11/2024] Open
Abstract
Metastatic melanoma is an aggressive and deadly form of skin cancer, known for its rapid ability to spread to other organs. Melanoma metastasis involves several steps: Local invasion, lymphovascular invasion and proliferation to new sites. This process is facilitated by genetic alterations, interactions with the tumor microenvironment and evasion of the immune system. Despite advances in therapies, the 5-year survival rate remains low at ~22.5%. Notably, current research is focused on identifying patients who may benefit from specific treatments, considering factors such as mutational load and programmed death ligand 1 expression. BRAF inhibitors and immune checkpoint inhibitors have improved survival, although numerous patients do not respond or develop resistance, underscoring the need for novel biomarkers to optimize treatment and monitoring of the disease. In summary, the purpose of the present article is to review the different serological, histological, microRNA and circulating tumor cell biomarkers that have proven useful in the diagnosis, follow-up and prognosis of metastatic melanoma. These biomarkers represent a promising area for research and clinical application, with the aim of offering more precise and personalized treatments.
Collapse
Affiliation(s)
- Leonel Pekarek
- Department of Medicine and Medical Specialties, Biomedical Network Research Center on Liver and Digestive Diseases, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Oncology Service, University Hospital of Guadalajara, 19002 Guadalajara, Spain
- Ramón y Cajal Institute for Health Research, 28034 Madrid, Spain
| | | | | | - Linda Rocío Ospino
- Oncology Service, University Hospital of Guadalajara, 19002 Guadalajara, Spain
| | | | - Loreto Bernier
- Oncology Service, University Hospital of Guadalajara, 19002 Guadalajara, Spain
| | | | | | - Javier Cassinello
- Oncology Service, University Hospital of Guadalajara, 19002 Guadalajara, Spain
| | - Lidia Trasobares
- Department of Medicine and Medical Specialties, Biomedical Network Research Center on Liver and Digestive Diseases, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Dermatology Service, Prince of Asturias University Hospital, 28806 Alcalá de Henares, Spain
| | - Alicia Quesada-Cortés
- Department of Medicine and Medical Specialties, Biomedical Network Research Center on Liver and Digestive Diseases, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Dermatology Service, Prince of Asturias University Hospital, 28806 Alcalá de Henares, Spain
| | - Miguel A. Sáez
- Department of Medicine and Medical Specialties, Biomedical Network Research Center on Liver and Digestive Diseases, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute for Health Research, 28034 Madrid, Spain
- Pathological Anatomy Service, Central University Defence Hospital-UAH Madrid, 28801 Alcalá de Henares, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialties, Biomedical Network Research Center on Liver and Digestive Diseases, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute for Health Research, 28034 Madrid, Spain
- Diseases of the Immune System-Service of Rheumatology, Oncology and Internal Medicine, Biomedical Network Research Center on Liver and Digestive Diseases, Hospital Universitario Príncipe de Asturias, 28806 Alcalá de Henares, Spain
| | - Miguel A. Ortega
- Department of Medicine and Medical Specialties, Biomedical Network Research Center on Liver and Digestive Diseases, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute for Health Research, 28034 Madrid, Spain
- Cancer Registry and Pathological Anatomy Service, Prince of Asturias University Hospital, 28806 Alcalá de Henares, Spain
| |
Collapse
|
16
|
Biersack B, Nitzsche B, Höpfner M. Histone deacetylases in the regulation of cell death and survival mechanisms in resistant BRAF-mutant cancers. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2025; 8:6. [PMID: 39935431 PMCID: PMC11810460 DOI: 10.20517/cdr.2024.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/16/2024] [Accepted: 01/14/2025] [Indexed: 02/13/2025]
Abstract
Small-molecule BRAF inhibitors (e.g., vemurafenib and dabrafenib) and MEK (MAPK/ERK) kinases inhibitors (e.g., trametinib) have distinctly improved the survival of patients suffering from BRAF-mutant cancers such as melanomas. However, the emergence of resistance to BRAF and MEK inhibitor-based melanoma therapy, as well as the reduced sensitivity of other BRAF-mutant cancers such as CRC, poses a considerable clinical problem. For instance, the reactivation of MAPK/ERK signaling hampering cell death induction mechanisms was responsible for BRAF inhibitor resistance, which can be correlated with distinct post-translational and epigenetic processes. Histone deacetylases (HDACs) are prominent epigenetic drug targets and some HDAC inhibitors have already been clinically approved for the therapy of various blood cancers. In addition, several HDACs were identified, which also play a crucial role in the drug resistance of BRAF-mutant cancers. Consequently, inhibition of HDACs was described as a promising approach to overcome resistance. This review summarizes the influence of HDACs (Zn2+-dependent HDACs and NAD+-dependent sirtuins) on BRAF-mutant cancers and BRAF inhibitor resistance based on upregulated survival mechanisms and the prevention of tumor cell death. Moreover, it outlines reasonable HDAC-based strategies to circumvent BRAF-associated resistance mechanisms based on downregulated cell death mechanisms.
Collapse
Affiliation(s)
- Bernhard Biersack
- Organic Chemistry Laboratory, University Bayreuth, Bayreuth 95440, Germany
| | - Bianca Nitzsche
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of the Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin 10117, Germany
| | - Michael Höpfner
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of the Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin 10117, Germany
| |
Collapse
|
17
|
Chen S, Zhang C, Huang H, Wang Y, Lian M, Hong G. Activation of the WNT4/ β-catenin/FOXO1 pathway by PDK1 promotes cervical cancer metastasis and EMT process. J Mol Histol 2025; 56:68. [PMID: 39779500 DOI: 10.1007/s10735-024-10342-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025]
Abstract
OBJECTIVE This study aimed to elucidate the role of pyruvate dehydrogenase kinase-1 (PDK1) in cervical cancer (CC) by investigating its impact on cell proliferation, migration, and epithelial-mesenchymal transition (EMT) under hypoxic conditions. METHODS PDK1-silenced CC cell lines were established using lentiviral shRNA technology. Cell migration and invasion were assessed through scratch and Transwell assays, respectively. Cellular activity and apoptosis-related protein expression levels were evaluated using MTT assays and western blotting. Transcriptome sequencing elucidates the regulatory pathways impacted by PDK1 silencing, and rescue experiments confirmed the underlying mechanisms. Xenograft models with nude mice were used to validate the effects of PDK1 silencing on CC progression. RESULTS PDK1 silencing reduced migration, invasion, and cellular activity under hypoxic conditions while promoting apoptosis. Transcriptomic analysis revealed that PDK1 suppression downregulated the WNT4/β-catenin/FOXO1 pathway, decreasing EMT-related protein expression. Mechanistically, PDK1 enhanced β-catenin stability by inhibiting its phosphorylation through AKT-mediated GSK3β inactivation, promoting EMT and anti-apoptotic gene transcription. CONCLUSIONS Targeting PDK1 may provide novel therapeutic strategies specifically for CC by modulating the WNT4/β-catenin/FOXO1 pathway and associated EMT and apoptotic processes.
Collapse
Affiliation(s)
- Shidong Chen
- Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 55 Zhenhai Road, Siming District, Xiamen, 361003, Fujian, China
| | - Cuixia Zhang
- Department of Pathology, Xiamen Pathology Quality Control Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Honglang Huang
- Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yuhuan Wang
- Department of Pathology, Xiamen Pathology Quality Control Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Mingjian Lian
- Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 55 Zhenhai Road, Siming District, Xiamen, 361003, Fujian, China
| | - Guolin Hong
- Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 55 Zhenhai Road, Siming District, Xiamen, 361003, Fujian, China.
| |
Collapse
|
18
|
Wan X, Yap J, Chen J, Li Y, Faruk R, Tan NCB, Ma Y, Lim Y, Jubri KB, Hu J, Yuan J, Zhang G, Li Q, Yap YS, Lam P, Wang M, Fu NY, Hu J. Oncogenic non-V600 mutations evade the regulatory machinery of RAF including the Cdc37/Hsp90 chaperone and the 14-3-3 scaffold. Theranostics 2025; 15:2035-2051. [PMID: 39897565 PMCID: PMC11780520 DOI: 10.7150/thno.103958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/24/2024] [Indexed: 02/04/2025] Open
Abstract
The Ser/Thr kinase RAF, particularly BRAF isoform is a dominant target of oncogenic mutations and many mutations have been identified in various cancers. However, how these mutations except V600E evade the regulatory machinery of RAF protein and hence trigger its oncogenicity remains unclear. Methods: In this study, we used mutagenesis, peptide affinity assay, immunoprecipitation, immunoblot, and complementary split luciferase assay as well as mouse xenograft tumour model to investigate how the function of RAF is cooperatively regulated by Cdc37/Hsp90 chaperones and 14-3-3 scaffolds and how this regulatory machinery is evaded by prevalent non-V600 mutations. Results: We found that Cdc37/Hsp90 chaperones engaged with mature BRAF proteins promoted together with 14-3-3 scaffolds a switch of BRAF proteins from active open dimers into inactive close monomers. Most non-V600 mutations were enriched on or around the Cdc37/Hsp90-binding segments of BRAF, which impair association of CDc37/Hsp90 chaperones with BRAF and hence trap BRAF in active open conformation favouring dimerization. These BRAF mutants with high dimer propensity sustained a prolonged ERK signaling, and were effectively targeted by RAF dimer breaker plx8394 in vitro and in vivo. In contrast, CRAF and ARAF existed as immature monomers highly packaged with Cdc37/Hsp90 chaperones, which will be released upon dimerization driven by RAS-GTP binding with their N-terminus as well as 14-3-3 scaffold association with their C-terminus. Mature CRAF and ARAF dimers also sustained a prolonged ERK signaling as non-V600 BRAF mutants by virtue of absence of the C-terminal Cdc37/Hsp90-binding segment. Conclusions: Cdc37/Hsp90 chaperones and 14-3-3 scaffolds cooperatively facilitate the switch of RAF proteins from open active dimers to close inactive monomers. Non-V600 mutations disrupt this regulatory machinery, and trap RAF in dimers, which could be targeted by RAF dimer breakers.
Collapse
Affiliation(s)
- Xiaoyu Wan
- The Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore General Hospital, 30 Hospital Boulevard, Singapore 168583
| | - Jiajun Yap
- The Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore General Hospital, 30 Hospital Boulevard, Singapore 168583
- The Cancer and Stem Cell Program, Duke-NUS Medical School, 8 College Road, Singapore 169857
| | - Junjun Chen
- The Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore General Hospital, 30 Hospital Boulevard, Singapore 168583
| | - Yifan Li
- The Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore General Hospital, 30 Hospital Boulevard, Singapore 168583
| | - Regina Faruk
- The Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore General Hospital, 30 Hospital Boulevard, Singapore 168583
| | - Nazereth Chor Boon Tan
- The Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore General Hospital, 30 Hospital Boulevard, Singapore 168583
| | - Yiying Ma
- The Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore General Hospital, 30 Hospital Boulevard, Singapore 168583
| | - Yiting Lim
- The Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore General Hospital, 30 Hospital Boulevard, Singapore 168583
| | - Karlina Bte Jubri
- The Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore General Hospital, 30 Hospital Boulevard, Singapore 168583
| | - Jingyi Hu
- The Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore General Hospital, 30 Hospital Boulevard, Singapore 168583
| | - Jimin Yuan
- The Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore General Hospital, 30 Hospital Boulevard, Singapore 168583
| | - Ge Zhang
- The Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore General Hospital, 30 Hospital Boulevard, Singapore 168583
| | - Quan Li
- The Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore General Hospital, 30 Hospital Boulevard, Singapore 168583
| | - Yoon Sim Yap
- The Division of Medical Oncology, National Cancer Centre Singapore, 30 Hospital Boulevard, Singapore 168583
- The Oncology Academic Clinical Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857
| | - Paula Lam
- The Cancer and Stem Cell Program, Duke-NUS Medical School, 8 College Road, Singapore 169857
- Department of Physiology, National University of Singapore, 2 Medical Drive, Singapore 117597
- Cellvec Pte. Ltd. 100 Pasir Panjang Road, Singapore 118518
| | - Mei Wang
- The Cancer and Stem Cell Program, Duke-NUS Medical School, 8 College Road, Singapore 169857
| | - Nai Yang Fu
- The Cancer and Stem Cell Program, Duke-NUS Medical School, 8 College Road, Singapore 169857
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Jiancheng Hu
- The Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore General Hospital, 30 Hospital Boulevard, Singapore 168583
- The Cancer and Stem Cell Program, Duke-NUS Medical School, 8 College Road, Singapore 169857
| |
Collapse
|
19
|
Hossain MA. A comprehensive review of targeting RAF kinase in cancer. Eur J Pharmacol 2025; 986:177142. [PMID: 39577552 DOI: 10.1016/j.ejphar.2024.177142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/11/2024] [Accepted: 11/17/2024] [Indexed: 11/24/2024]
Abstract
RAF kinases, particularly the BRAF isoform, play a crucial role in the MAPK/ERK signaling pathway, regulating key cellular processes such as proliferation, differentiation, and survival. Dysregulation of this pathway often caused by mutations in the BRAF gene or alterations in upstream regulators like Ras and receptor tyrosine kinases contributes significantly to cancer development. Mutations, such as BRAF-V600E, are present in a variety of malignancies, with the highest prevalence in melanoma. Targeted therapies against RAF kinases have achieved substantial success, especially in BRAF-V600E-mutant melanomas, where inhibitors like vemurafenib and dabrafenib have demonstrated remarkable efficacy, leading to improved patient outcomes. These inhibitors have also shown clinical benefits in cancers such as thyroid and colorectal carcinoma, although to a lesser extent. Despite these successes, therapeutic resistance remains a major hurdle. Resistance mechanisms, including RAF dimerization, feedback reactivation of the MAPK pathway, and paradoxical activation of ERK signaling, often lead to diminished efficacy over time, resulting in disease progression or even secondary malignancies. In response, current research is focusing on novel therapeutic strategies, including combination therapies that target multiple components of the pathway simultaneously, such as MEK inhibitors used in tandem with RAF inhibitors. Additionally, next-generation RAF inhibitors are being developed to address resistance and enhance therapeutic specificity. This review discusses the clinical advancements in RAF-targeted therapies, with a focus on ongoing efforts to overcome therapeutic resistance and enhance outcomes for cancer patients. It also underscores the persistent challenges in effectively targeting RAF kinase in oncology.
Collapse
Affiliation(s)
- Md Arafat Hossain
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh.
| |
Collapse
|
20
|
Kumar A, Kaushal A, Verma PK, Gupta MK, Chandra G, Kumar U, Yadav AK, Kumar D. An insight into recent developments in imidazole based heterocyclic compounds as anticancer agents: Synthesis, SARs, and mechanism of actions. Eur J Med Chem 2024; 280:116896. [PMID: 39366252 DOI: 10.1016/j.ejmech.2024.116896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 10/06/2024]
Abstract
Among all non-communicable diseases, cancer is ranked as the second most common cause of death and is rising constantly. While cancer treatments mainly include radiation therapy, chemotherapy, and surgery; chemotherapy is considered the most commonly employed and effective treatment. Most of the chemotherapeutic agents are azoles based compounds and imidazole is one such insightful azole. The anticancer properties of imidazole-based compounds have been thoroughly explored in recent years and all monosubstituted, disubstituted, trisubstituted, and tetrasubstituted imidazoles have been explored for their anticancer activities. Along with these compounds, other imidazole-based compounds like 1,3-dihydro-2H-imidazole-2-thiones, imidazolones, and poly imidazole compounds have also been explored for their anticancer activities. The activities of these compounds are heavily influenced by their structural resemblance to combretastatin 4A and ABI (2-aryl-4-benzoyl-imidazole). The lead compounds were highly active on breast, gastric, colon, ovarian, cervical, bone marrow, melanoma, prostate, lung, leukemic, neuroblastoma, liver, Ehrlich, melanoma, and pancreatic cancers. The targets of these leads like tubulin, heme oxygenases, VEGF, tyrosine kinases, EGFR, and others have also been explored. The exploration of the anticancer potential of substituted imidazole compounds is the main topic of this review including synthesis, SAR, and mechanism.
Collapse
Affiliation(s)
- Arun Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173 229, India
| | - Anjali Kaushal
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173 229, India; Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Parul University, Vadodara, Gujarat, 391760, India
| | - Prabhakar K Verma
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - Manoj K Gupta
- Department of Chemistry, Central University of Haryana, Mahendergarh, Haryana, 123031, India
| | - Girish Chandra
- Department of Chemistry, School of Physical and Chemical Sciences, Central University of South Bihar, Gaya, Bihar, 824236, India
| | - Umesh Kumar
- Catalysis and Bioinorganic Research Lab, Department of Chemistry, Deshbandhu College, University of Delhi, New Delhi, 110019, India
| | - Ashok K Yadav
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173 229, India.
| |
Collapse
|
21
|
Chen Z, Hong Y, Zhao Z, Wu N, Ma X, Chen L, Zhang R. Differences in BRAF V600E mutation between the epithelium and mesenchyme in classic ameloblastoma. Oral Surg Oral Med Oral Pathol Oral Radiol 2024; 138:753-762. [PMID: 39266397 DOI: 10.1016/j.oooo.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/15/2024] [Accepted: 08/02/2024] [Indexed: 09/14/2024]
Abstract
OBJECTIVE Laser capture microdissection (LCM) was used to pinpoint the mutated tissue in ameloblastoma and investigate whether B-Raf proto-oncogene, serine/threonine kinase (BRAF) mutation is the main pathogenic gene in classic ameloblastoma. STUDY DESIGN A total of 24 patients with ameloblastoma scheduled to undergo surgery between 2000 and 2024 were included in the study. LCM was used to isolate tumor cells. Oxford nanopore technology (ONT) was used to analyze the collected cells. GO and KEGG enrichment analyses were then performed on the 300 most highly expressed genes in the epithelial tissue and mesenchyme. RESULTS Mandibular follicular ameloblastoma showed BRAF V600E mutations in all epithelial cells but not in the mesenchyme. The mutation rate was significantly higher in mandibular ameloblastomas compared to the maxilla (P < .05). RNA-seq showed that traditional follicular ameloblastoma epithelium was enriched in "growth factor receptor binding" and "angiogenesis regulation," while the mesenchyme was enriched in "ECM receptor interaction." KEGG enrichment analysis showed differential gene expression, mainly in MAPK and PI3K-AKT pathways. CONCLUSION Classical follicular ameloblastoma shows the presence of BRAF V600E mutation in epithelial tissue, with a higher mutation rate in the mandible than in the maxilla. The signaling pathways of MAPK and PI3K may be significantly involved in epithelial signal transduction.
Collapse
Affiliation(s)
- Zhuoxuan Chen
- Department of Oral Pathology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, P.R. China; The Affiliated Stomatological Hospital, Jiangxi Medical College, Nanchang University, Jiangxi Province, P.R. China; Jiangxi Province Key Laboratory of Oral Diseases, Jiangxi Province, P.R. China; Jiangxi Provincial Clinical Research Center for Oral Diseases, Jiangxi Province, P.R. China; Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, P.R. China
| | - Yingying Hong
- First Clinical Division, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Peking, P.R. China
| | - Zhenni Zhao
- Department of Oral Pathology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, P.R. China; Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, P.R. China
| | - Ningxiang Wu
- The Affiliated Stomatological Hospital, Jiangxi Medical College, Nanchang University, Jiangxi Province, P.R. China; Jiangxi Province Key Laboratory of Oral Diseases, Jiangxi Province, P.R. China; Jiangxi Provincial Clinical Research Center for Oral Diseases, Jiangxi Province, P.R. China
| | - Xiaokun Ma
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Soochow University, Suzhou Stomatological Hospital, Jiangsu Province, P.R. China
| | - Linlin Chen
- The Affiliated Stomatological Hospital, Jiangxi Medical College, Nanchang University, Jiangxi Province, P.R. China; Jiangxi Province Key Laboratory of Oral Diseases, Jiangxi Province, P.R. China; Jiangxi Provincial Clinical Research Center for Oral Diseases, Jiangxi Province, P.R. China
| | - Ran Zhang
- Department of Oral Pathology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, P.R. China; Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, P.R. China.
| |
Collapse
|
22
|
Seyedi S, Harris VK, Kapsetaki SE, Narayanan S, Saha D, Compton Z, Yousefi R, May A, Fakir E, Boddy AM, Gerlinger M, Wu C, Mina L, Huijben S, Gouge DH, Cisneros L, Ellsworth PC, Maley CC. Resistance Management for Cancer: Lessons from Farmers. Cancer Res 2024; 84:3715-3727. [PMID: 39356625 PMCID: PMC11565176 DOI: 10.1158/0008-5472.can-23-3374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 06/29/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
One of the main reasons we have not been able to cure cancers is that treatments select for drug-resistant cells. Pest managers face similar challenges with pesticides selecting for pesticide-resistant insects, resulting in similar mechanisms of resistance. Pest managers have developed 10 principles that could be translated to controlling cancers: (i) prevent onset, (ii) monitor continuously, (iii) identify thresholds below which there will be no intervention, (iv) change interventions in response to burden, (v) preferentially select nonchemical control methods, (vi) use target-specific drugs, (vii) use the lowest effective dose, (viii) reduce cross-resistance, (ix) evaluate success based on long-term management, and (x) forecast growth and response. These principles are general to all cancers and cancer drugs and so could be employed broadly to improve oncology. Here, we review the parallel difficulties in controlling drug resistance in pests and cancer cells. We show how the principles of resistance management in pests might be applied to cancer. Integrated pest management inspired the development of adaptive therapy in oncology to increase progression-free survival and quality of life in patients with cancers where cures are unlikely. These pest management principles have the potential to inform clinical trial design.
Collapse
Affiliation(s)
- Sareh Seyedi
- Arizona Cancer Evolution Center, Arizona State University, Tempe, Arizona
- Center for Biocomputing, Security and Society, Biodesign Institute, Arizona State University, Tempe, Arizona
- School of Life Sciences, Arizona State University, Tempe, Arizona
| | - Valerie K. Harris
- Arizona Cancer Evolution Center, Arizona State University, Tempe, Arizona
- Center for Biocomputing, Security and Society, Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Stefania E. Kapsetaki
- Arizona Cancer Evolution Center, Arizona State University, Tempe, Arizona
- Center for Biocomputing, Security and Society, Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Shrinath Narayanan
- Center for Biocomputing, Security and Society, Biodesign Institute, Arizona State University, Tempe, Arizona
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Daniel Saha
- Arizona Cancer Evolution Center, Arizona State University, Tempe, Arizona
- Center for Biocomputing, Security and Society, Biodesign Institute, Arizona State University, Tempe, Arizona
- School of Life Sciences, Arizona State University, Tempe, Arizona
| | - Zachary Compton
- Arizona Cancer Evolution Center, Arizona State University, Tempe, Arizona
- Center for Biocomputing, Security and Society, Biodesign Institute, Arizona State University, Tempe, Arizona
- School of Life Sciences, Arizona State University, Tempe, Arizona
- University of Arizona Cancer Center, University of Arizona College of Medicine, Tucson, Arizona
| | - Rezvan Yousefi
- Arizona Cancer Evolution Center, Arizona State University, Tempe, Arizona
- Center for Biocomputing, Security and Society, Biodesign Institute, Arizona State University, Tempe, Arizona
- The Polytechnic School, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, Arizona
| | - Alexander May
- Research Casting International, Quinte West, Ontario, Canada
| | - Efe Fakir
- Istanbul University Cerrahpasa School of Medicine, Istanbul, Turkey
| | - Amy M. Boddy
- Arizona Cancer Evolution Center, Arizona State University, Tempe, Arizona
- Exotic Species Cancer Research Alliance, North Carolina State University, Raleigh, North Carolina
- Department of Anthropology, University of California Santa Barbara, Santa Barbara, California
| | - Marco Gerlinger
- Translational Oncogenomics Laboratory, Centre for Evolution and Cancer, The Institute of Cancer Research, London, United Kingdom
- Gastrointestinal Cancer Unit, The Royal Marsden Hospital, London, United Kingdom
| | - Christina Wu
- Division of Hematology and Medical Oncology, Department of Medicine, Mayo Clinic, Phoenix, Arizona
| | | | - Silvie Huijben
- School of Life Sciences, Arizona State University, Tempe, Arizona
- Center for Evolution and Medicine, Arizona State University, Tempe, Arizona
| | - Dawn H. Gouge
- Department of Entomology, University of Arizona, Tucson, Arizona
| | - Luis Cisneros
- Arizona Cancer Evolution Center, Arizona State University, Tempe, Arizona
- Center for Biocomputing, Security and Society, Biodesign Institute, Arizona State University, Tempe, Arizona
- School of Life Sciences, Arizona State University, Tempe, Arizona
| | | | - Carlo C. Maley
- Arizona Cancer Evolution Center, Arizona State University, Tempe, Arizona
- Center for Biocomputing, Security and Society, Biodesign Institute, Arizona State University, Tempe, Arizona
- School of Life Sciences, Arizona State University, Tempe, Arizona
- Center for Evolution and Medicine, Arizona State University, Tempe, Arizona
| |
Collapse
|
23
|
Mauramo M, Tarkkanen J, Skalova A, Leivo I. Oncocytic intraductal carcinoma of parotid gland with a novel AGK::BRAF gene fusion. Virchows Arch 2024; 485:925-929. [PMID: 39264473 DOI: 10.1007/s00428-024-03928-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/28/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Affiliation(s)
- M Mauramo
- Department of Pathology, University of Helsinki and Helsinki University Hospital, HUS Diagnostiikkakeskus, HUSLAB Patologia, PL 720, 00029 HUS Topeliuksenkatu 32, Helsinki, Finland.
| | - J Tarkkanen
- Department of Pathology, University of Helsinki and Helsinki University Hospital, HUS Diagnostiikkakeskus, HUSLAB Patologia, PL 720, 00029 HUS Topeliuksenkatu 32, Helsinki, Finland
| | - A Skalova
- Department of Pathology, Charles University, Faculty of Medicine in Pilsen, Pilsen, Czech Republic
- Bioptic Laboratory, Ltd., Pilsen, Czech Republic
| | - I Leivo
- Institute of Biomedicine, Pathology, University of Turku, and Turku University Hospital, Turku, Finland
| |
Collapse
|
24
|
Yoshida Y, Takahashi M, Taniguchi S, Numakura R, Komine K, Ishioka C. Tretinoin synergistically enhances the antitumor effect of combined BRAF, MEK, and EGFR inhibition in BRAF V600E colorectal cancer. Cancer Sci 2024; 115:3740-3754. [PMID: 39175203 PMCID: PMC11531965 DOI: 10.1111/cas.16280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 08/24/2024] Open
Abstract
Patients with BRAF-mutated colorectal cancer (BRAFV600E CRC) are currently treated with a combination of BRAF inhibitor and anti-EGFR antibody with or without MEK inhibitor. A fundamental problem in treating patients with BRAFV600E CRC is intrinsic and/or acquired resistance to this combination therapy. By screening 78 compounds, we identified tretinoin, a retinoid, as a compound that synergistically enhances the antiproliferative effect of a combination of BRAF inhibition and MEK inhibition with or without EGFR inhibition on BRAFV600E CRC cells. This synergistic effect was also exerted by other retinoids. Tretinoin, added to BRAF inhibitor and MEK inhibitor, upregulated PARP, BAK, and p-H2AX. When either RARα or RXRα was silenced, the increase in cleaved PARP expression by the addition of TRE to ENC/BIN or ENC/BIN/CET was canceled. Our results suggest that the mechanism of the synergistic antiproliferative effect involves modulation of the Bcl-2 family and the DNA damage response that affects apoptotic pathways, and this synergistic effect is induced by RARα- or RXRα-mediated apoptosis. Tretinoin also enhanced the antitumor effect of a combination of the BRAF inhibitor and anti-EGFR antibody with or without MEK inhibitor in a BRAFV600E CRC xenograft mouse model. Our data provide a rationale for developing retinoids as a new combination agent to overcome resistance to the combination therapy for patients with BRAFV600E CRC.
Collapse
Affiliation(s)
- Yuya Yoshida
- Department of Clinical OncologyTohoku University Graduate School of MedicineSendaiMiyagiJapan
| | - Masanobu Takahashi
- Department of Clinical OncologyTohoku University Graduate School of MedicineSendaiMiyagiJapan
- Department of Medical OncologyTohoku University HospitalSendaiMiyagiJapan
| | - Sakura Taniguchi
- Department of Clinical OncologyTohoku University Graduate School of MedicineSendaiMiyagiJapan
| | - Ryunosuke Numakura
- Department of Clinical OncologyTohoku University Graduate School of MedicineSendaiMiyagiJapan
| | - Keigo Komine
- Department of Medical OncologyTohoku University HospitalSendaiMiyagiJapan
| | - Chikashi Ishioka
- Department of Clinical OncologyTohoku University Graduate School of MedicineSendaiMiyagiJapan
- Department of Medical OncologyTohoku University HospitalSendaiMiyagiJapan
| |
Collapse
|
25
|
Anvar MT, Rashidan K, Arsam N, Rasouli-Saravani A, Yadegari H, Ahmadi A, Asgari Z, Vanan AG, Ghorbaninezhad F, Tahmasebi S. Th17 cell function in cancers: immunosuppressive agents or anti-tumor allies? Cancer Cell Int 2024; 24:355. [PMID: 39465401 PMCID: PMC11514949 DOI: 10.1186/s12935-024-03525-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/08/2024] [Indexed: 10/29/2024] Open
Abstract
T helper (Th) 17 cells, a distinct subset of Th lymphocytes, are known for their prominent interleukin (IL)-17 production and other pro-inflammatory cytokines. These cells exhibit remarkable plasticity, allowing them to exhibit different phenotypes in the cancer microenvironment. This adaptability enables Th17 cells to promote tumor progression by immunosuppressive activities and angiogenesis, but also mediate anti-tumor immune responses through employing immune cells in tumor setting or even by directly converting toward Th1 phenotype and producing interferon-gamma (IFN-γ). This dual role of Th17 cells in cancer makes it a double-edged sword in encountering cancer. In this review, we aim to elucidate the complexities of Th17 cell function in cancer by summarizing recent studies and, ultimately, to design novel therapeutic strategies, especially targeting Th17 cells in the tumor milieu, which could pave the way for more effective cancer treatments.
Collapse
Affiliation(s)
- Milad Taghizadeh Anvar
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kimiya Rashidan
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nima Arsam
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ashkan Rasouli-Saravani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamidreza Yadegari
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Ahmadi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeynab Asgari
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmad Ghorbani Vanan
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Farid Ghorbaninezhad
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Safa Tahmasebi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
26
|
Suryavanshi A, Vandana, Shukla YK, Kumar V, Gupta P, Asati V, Mahapatra DK, Keservani RK, Jain SK, Bharti SK. MEK inhibitors in oncology: a patent review and update (2016 - present). Expert Opin Ther Pat 2024; 34:963-1007. [PMID: 39275922 DOI: 10.1080/13543776.2024.2403634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/12/2024] [Accepted: 08/22/2024] [Indexed: 09/16/2024]
Abstract
INTRODUCTION Mitogen-activated protein kinase (MEK) is one of the important components of Ras/Raf/MEK/ERK signaling pathway, transduces signal for cell growth, differentiation, and development. Deregulation of MEK leads to a wide variety of cancer; hence, MEK is considered as potential therapeutic targets for the treatment of cancer. The MEK1/2 inhibitors in combination with other inhibitors showed better therapeutic outcomes in various malignancies including resistant or relapsed or refractory cancer. AREAS COVERED A comprehensive patent literature from the year 2016 to May 2024 on MEK inhibitors in oncology, their combination products and structural insights have been reviewed through searching relevant information in PubMed, Scopus, Espacenet, Web of Science, World Intellectual Property Organization and Google Patent databases. EXPERT OPINION Overexpression and mutation of MEK have been reported to cause a wide variety of cancers especially resistant cancers. The MEK1/2 inhibitors in combination with other kinase (BRaf/KRas/PI3K) inhibitors showed significant anti-proliferative activity. Other combination of MEK inhibitor with PD-1, DYRK1, EGFR, BTK and/or VEGF inhibitors, etc. showed promising results in many cancers including colorectal, pancreatic, gastrointestinal, solid tumor, breast cancer, melanoma and multiple myeloma, etc. The dual or multi-targeted approaches of these combinations showed better and precise treatment of patients with resistant cancer.
Collapse
Affiliation(s)
- Anjali Suryavanshi
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, India
| | - Vandana
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, India
| | - Yugal Kishor Shukla
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, India
| | - Vipul Kumar
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Pragya Gupta
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, India
| | - Vivek Asati
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, India
| | - Debarshi Kar Mahapatra
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, India
| | - Raj K Keservani
- Faculty of B. Pharmacy, CSM Group of Institutions, Prayagraj, India
| | - Sanmati Kumar Jain
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, India
| | - Sanjay Kumar Bharti
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, India
| |
Collapse
|
27
|
Hossain MA. Targeting the RAS upstream and downstream signaling pathway for cancer treatment. Eur J Pharmacol 2024; 979:176727. [PMID: 38866361 DOI: 10.1016/j.ejphar.2024.176727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024]
Abstract
Cancer often involves the overactivation of RAS/RAF/MEK/ERK (MAPK) and PI3K-Akt-mTOR pathways due to mutations in genes like RAS, RAF, PTEN, and PIK3CA. Various strategies are employed to address the overactivation of these pathways, among which targeted therapy emerges as a promising approach. Directly targeting specific proteins, leads to encouraging results in cancer treatment. For instance, RTK inhibitors such as imatinib and afatinib selectively target these receptors, hindering ligand binding and reducing signaling initiation. These inhibitors have shown potent efficacy against Non-Small Cell Lung Cancer. Other inhibitors, like lonafarnib targeting Farnesyltransferase and GGTI 2418 targeting geranylgeranyl Transferase, disrupt post-translational modifications of proteins. Additionally, inhibition of proteins like SOS, SH2 domain, and Ras demonstrate promising anti-tumor activity both in vivo and in vitro. Targeting downstream components with RAF inhibitors such as vemurafenib, dabrafenib, and sorafenib, along with MEK inhibitors like trametinib and binimetinib, has shown promising outcomes in treating cancers with BRAF-V600E mutations, including myeloma, colorectal, and thyroid cancers. Furthermore, inhibitors of PI3K (e.g., apitolisib, copanlisib), AKT (e.g., ipatasertib, perifosine), and mTOR (e.g., sirolimus, temsirolimus) exhibit promising efficacy against various cancers such as Invasive Breast Cancer, Lymphoma, Neoplasms, and Hematological malignancies. This review offers an overview of small molecule inhibitors targeting specific proteins within the RAS upstream and downstream signaling pathways in cancer.
Collapse
Affiliation(s)
- Md Arafat Hossain
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh.
| |
Collapse
|
28
|
Ueberroth BE, Lieu CH, Lentz RW. Prolonged Response to Dabrafenib/Trametinib in Grade 3 Metastatic Pancreatic Neuroendocrine Tumor (NET G3) with BRAF V600E Mutation. J Gastrointest Cancer 2024; 55:1448-1452. [PMID: 38814411 PMCID: PMC11347462 DOI: 10.1007/s12029-024-01072-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2024] [Indexed: 05/31/2024]
Abstract
PURPOSE Treatment of metastatic pancreatic neuroendocrine tumors (pancNETs), particularly grade 2 (G2) and grade 3 (G3), often presents a dilemma in choosing from multiple similarly efficacious therapies. Data on targeted therapies for these tumor types is limited, and this report presents BRAF-targeted therapy as a therapeutic option for metastatic pancNET G3. METHODS This is a case report of a patient with G3 pancNET metastatic to the liver, lung, lymph node, and scalp (soft tissue) treated with dabrafenib/trametinib (D/T) in the presence of a BRAF V600E mutation detected in tumor tissue. RESULTS This patient has demonstrated an ongoing partial response to therapy at all involved sites for nearly 15 months with minimal side effects attributable to D/T. CONCLUSION Dabrafenib/trametinib therapy for BRAF-mutated metastatic pancNETs provides a novel treatment option and, especially in the G3 setting, should be considered a first-line option. Tumor testing for actionable mutations should be undertaken at the time of diagnosis and/or progression to identify novel therapeutic avenues in these rare tumors.
Collapse
Affiliation(s)
- Benjamin E Ueberroth
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, 12801 E 17th Ave, MS 8117, Aurora, CO, 80045, USA.
| | - Christopher H Lieu
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, 12801 E 17th Ave, MS 8117, Aurora, CO, 80045, USA
| | - Robert W Lentz
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, 12801 E 17th Ave, MS 8117, Aurora, CO, 80045, USA
| |
Collapse
|
29
|
Sun Y, Zhou R, Hu J, Feng S, Hu Q. Reversible control of kinase signaling through chemical-induced dephosphorylation. Commun Biol 2024; 7:1073. [PMID: 39217250 PMCID: PMC11366001 DOI: 10.1038/s42003-024-06771-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
The coordination between kinases and phosphatases is crucial for regulating the phosphorylation levels of essential signaling molecules. Methods enabling precise control of kinase activities are valuable for understanding the kinase functions and for developing targeted therapies. Here, we use the abscisic acid (ABA)-induced proximity system to reversibly control kinase signaling by recruiting phosphatases. Using this method, we found that the oncogenic tyrosine kinase BCR::ABL1 can be inhibited by recruiting various cytoplasmic phosphatases. We also discovered that the oncogenic serine/threonine kinase BRAF(V600E), which has been reported to bypass phosphorylation regulation, can be positively regulated by protein phosphatase 1 (PP1) and negatively regulated by PP5. Additionally, we observed that the dual-specificity kinase MEK1 can be inhibited by recruiting PP5. This suggests that bifunctional molecules capable of recruiting PP5 to MEK or RAF kinases could be promising anticancer drug candidates. Thus, the ABA-induced dephosphorylation method enables rapid screening of phosphatases to precisely control kinase signaling.
Collapse
Affiliation(s)
- Ying Sun
- Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Rihong Zhou
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Jin Hu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Shan Feng
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Qi Hu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
- Westlake AI Therapeutics Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
30
|
Maji L, Teli G, Raghavendra NM, Sengupta S, Pal R, Ghara A, Matada GSP. An updated literature on BRAF inhibitors (2018-2023). Mol Divers 2024; 28:2689-2730. [PMID: 37470921 DOI: 10.1007/s11030-023-10699-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 07/10/2023] [Indexed: 07/21/2023]
Abstract
BRAF is the most common serine-threonine protein kinase and regulates signal transduction from RAS to MEK inside the cell. The BRAF is a highly active isoform of RAF kinase. BRAF has two domains such as regulatory and kinase domains. The BRAF inhibitors bind in the c-terminus of the kinase domain and inhibit the downstream pathways. The mutation occurs mainly in the A-loop of the kinase domain. The mutation occurs due to a conversion of valine to glutamate/lysine/arginine/aspartic acid at 600th position. Among the diverse mutations, BRAFV600E is the most common and responsible for numerous cancer such as melanoma, colorectal, ovarian, and thyroid cancer. Due to mutations in RAC1, loss of PTEN, NF1, CCND1, USP28-FBW7 complex, COT overexpression, and CCND1 amplification, the BRAF kinase enzyme developed resistance over the commercially available BRAF inhibitors. There is still unmute urgence for the development of BRAF inhibitors to overcome the persistent limitation such as resistance, mutation, and adverse effects of drugs. In the current study, we described the structure, activation, downstream signaling pathway, and mutation of BRAF. Our group also provided a detailed review of BRAF inhibitors from the last five years (2018-2023) highlighting the structure-activity relationship, mechanistic study, and molecular docking studies. We hope that the current analysis will be a useful resource for researchers and provide chemists a glimpse into the future as design and development of more effective and secure BRAF kinase inhibitors.
Collapse
Affiliation(s)
- Lalmohan Maji
- Department of Pharmaceutical Chemistry, Integrated Drug Discovery Centre, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | - Ghanshyam Teli
- Department of Pharmaceutical Chemistry, Integrated Drug Discovery Centre, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | | | - Sindhuja Sengupta
- Department of Pharmaceutical Chemistry, Integrated Drug Discovery Centre, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | - Rohit Pal
- Department of Pharmaceutical Chemistry, Integrated Drug Discovery Centre, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | - Abhishek Ghara
- Department of Pharmaceutical Chemistry, Integrated Drug Discovery Centre, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | | |
Collapse
|
31
|
Khan I, Kashani-Sabet M. Bromodomain inhibition targeting BPTF in the treatment of melanoma and other solid tumors. Clin Exp Metastasis 2024; 41:509-515. [PMID: 38683257 DOI: 10.1007/s10585-024-10265-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/06/2024] [Indexed: 05/01/2024]
Abstract
Epigenetic mechanisms have been shown to play an important role in the development of cancer. These include the activation of chromatin remodeling factors in various malignancies, including bromodomain plant homeodomain (PHD) finger transcription factor (BPTF), the largest component of the human nucleosome remodeling factor (NURF). In the last few years, BPTF has been identified as a pro-tumorigenic factor in melanoma, stimulated by research into the molecular mechanisms underlying BPTF function. Developing therapy targeting the BPTF bromodomain would represent a significant advance. Melanoma therapy has been revolutionized by the efficacy of immunotherapeutic and targeted strategies, but the development of drug resistance calls for alternative therapeutic approaches. Recent work has shown both a biomarker as well as functional role for BPTF in melanoma progression and as a possible target for its therapy. BPTF was shown to stimulate the mitogen-activated protein kinase pathway, which is targeted by selective BRAF inhibitors. The advent of small molecule inhibitors that target bromodomain motifs has shown that bromodomains are druggable. By combining the bromodomain inhibitor bromosporine with existing treatments that target mutant BRAF, BPTF targeting has emerged as a novel and promising therapeutic approach for metastatic melanoma. This article summarizes the functional role of BPTF in tumor progression, reviews the clinical experience to date with bromodomain inhibitors, and discusses the promise of BPTF targeting in melanoma and other solid tumors.
Collapse
Affiliation(s)
- Imran Khan
- California Pacific Medical Center Research Institute, 475 Brannan St, Suite 130, San Francisco, CA, 94107, USA
| | - Mohammed Kashani-Sabet
- California Pacific Medical Center Research Institute, 475 Brannan St, Suite 130, San Francisco, CA, 94107, USA.
| |
Collapse
|
32
|
Bromberger S, Zadorozhna Y, Ressler JM, Holzner S, Nawrocki A, Zila N, Springer A, Røssel Larsen M, Schossleitner K. Off-targets of BRAF inhibitors disrupt endothelial signaling and vascular barrier function. Life Sci Alliance 2024; 7:e202402671. [PMID: 38839106 PMCID: PMC11153892 DOI: 10.26508/lsa.202402671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/07/2024] Open
Abstract
Targeted therapies against mutant BRAF are effectively used in combination with MEK inhibitors (MEKi) to treat advanced melanoma. However, treatment success is affected by resistance and adverse events (AEs). Approved BRAF inhibitors (BRAFi) show high levels of target promiscuity, which can contribute to these effects. The blood vessel lining is in direct contact with high plasma concentrations of BRAFi, but effects of the inhibitors in this cell type are unknown. Hence, we aimed to characterize responses to approved BRAFi for melanoma in the vascular endothelium. We showed that clinically approved BRAFi induced a paradoxical activation of endothelial MAPK signaling. Moreover, phosphoproteomics revealed distinct sets of off-targets per inhibitor. Endothelial barrier function and junction integrity were impaired upon treatment with vemurafenib and the next-generation dimerization inhibitor PLX8394, but not with dabrafenib or encorafenib. Together, these findings provide insights into the surprisingly distinct side effects of BRAFi on endothelial signaling and functionality. Better understanding of off-target effects could help to identify molecular mechanisms behind AEs and guide the continued development of therapies for BRAF-mutant melanoma.
Collapse
Affiliation(s)
- Sophie Bromberger
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Yuliia Zadorozhna
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | | | - Silvio Holzner
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Arkadiusz Nawrocki
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Nina Zila
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- University of Applied Sciences FH Campus Wien, Division of Biomedical Science, Vienna, Austria
| | - Alexander Springer
- Department of Pediatric Surgery, Medical University of Vienna, Vienna, Austria
| | - Martin Røssel Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | | |
Collapse
|
33
|
Jeon H, Tkacik E, Eck MJ. Signaling from RAS to RAF: The Molecules and Their Mechanisms. Annu Rev Biochem 2024; 93:289-316. [PMID: 38316136 DOI: 10.1146/annurev-biochem-052521-040754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
RAF family protein kinases are a key node in the RAS/RAF/MAP kinase pathway, the signaling cascade that controls cellular proliferation, differentiation, and survival in response to engagement of growth factor receptors on the cell surface. Over the past few years, structural and biochemical studies have provided new understanding of RAF autoregulation, RAF activation by RAS and the SHOC2 phosphatase complex, and RAF engagement with HSP90-CDC37 chaperone complexes. These studies have important implications for pharmacologic targeting of the pathway. They reveal RAF in distinct regulatory states and show that the functional RAF switch is an integrated complex of RAF with its substrate (MEK) and a 14-3-3 dimer. Here we review these advances, placing them in the context of decades of investigation of RAF regulation. We explore the insights they provide into aberrant activation of the pathway in cancer and RASopathies (developmental syndromes caused by germline mutations in components of the pathway).
Collapse
Affiliation(s)
- Hyesung Jeon
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA;
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Emre Tkacik
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA;
- Systems, Synthetic, and Quantitative Biology PhD Program, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael J Eck
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA;
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
34
|
Lei R, Liu X, Wu J. Nutrition and melanoma: the contribution of trace elements in onset, progression, and treatment of melanoma. Nutr Rev 2024; 82:1138-1149. [PMID: 37702535 DOI: 10.1093/nutrit/nuad106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
Melanoma is a highly malignant and drug-resistant disease that imposes a substantial economic burden on the world. There are many studies linking trace elements to diverse types of cancers, including melanoma. This review elucidates the relationship between trace elements exposure and melanoma. It was identified that copper, manganese, selenium, zinc, iron, and many other trace elements were associated with melanoma in humans. In terms of epidemiology, different elements have different correlations with melanoma. These trace elements affect the occurrence and development of melanoma through various mechanisms, such as oxidative stress and the MAPK pathway. The literature on the role of trace elements in the pathogenesis and treatment of melanoma depicts promising prospects for this field.
Collapse
Affiliation(s)
- Rui Lei
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiao Liu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jinfeng Wu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
35
|
Mohammed A, Khan A, Zhang X. Oncogenic LINC00698 suppresses apoptosis of melanoma stem cells to promote tumorigenesis via LINC00698-miR-3132-TCF7/hnRNPM axis. Cancer Cell Int 2024; 24:269. [PMID: 39068483 PMCID: PMC11283696 DOI: 10.1186/s12935-024-03408-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 06/19/2024] [Indexed: 07/30/2024] Open
Abstract
Melanoma progression depends on melanoma stem cells (MSCs), which are distinguished by the distinct dysregulated genes. As the key factors in the dysregulation of genes, long non-coding RNAs (lncRNAs) take great effects on MSCs. However, the underlying mechanism of lncRNAs in MSCs has not been extensively characterized. To address the roles of lncRNAs in MSCs, LINC00698 was characterized in this study. The results revealed that LINC00698 was upregulated in MSCs, showing its important role in MSCs. The further data indicated that the LINC00698 silencing triggered cell cycle arrest in the G0/G1 phase and apoptosis of MSCs. LINC00698 could directly interact with miR-3132 to upregulate the expression of TCF7, which was required for sustaining the stemness and the tumorigenic potency of MSCs. At the same time, LINC00698 could bind to the hnRNPM protein to enhance the protein stability, thus suppressing apoptosis and promoting the stemness of MSCs. Furthermore, the in vivo data demonstrated that LINC00698 was essential for tumorigenesis of MSCs via the LINC00698-miR-3132-TCF7/hnRNPM axis. Therefore, our findings contributed novel insights into the underlying mechanism of melanoma progression.
Collapse
Affiliation(s)
- Anas Mohammed
- College of Life Sciences, Laboratory for Marine Biology and Biotechnology of Pilot National Laboratory for Marine Science and Technology (Qingdao), Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Ahmad Khan
- College of Life Sciences, Laboratory for Marine Biology and Biotechnology of Pilot National Laboratory for Marine Science and Technology (Qingdao), Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Xiaobo Zhang
- College of Life Sciences, Laboratory for Marine Biology and Biotechnology of Pilot National Laboratory for Marine Science and Technology (Qingdao), Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhejiang University, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
36
|
Steffen CL, Manoharan GB, Pavic K, Yeste-Vázquez A, Knuuttila M, Arora N, Zhou Y, Härmä H, Gaigneaux A, Grossmann TN, Abankwa DK. Identification of an H-Ras nanocluster disrupting peptide. Commun Biol 2024; 7:837. [PMID: 38982284 PMCID: PMC11233548 DOI: 10.1038/s42003-024-06523-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 06/28/2024] [Indexed: 07/11/2024] Open
Abstract
Hyperactive Ras signalling is found in most cancers. Ras proteins are only active in membrane nanoclusters, which are therefore potential drug targets. We previously showed that the nanocluster scaffold galectin-1 (Gal1) enhances H-Ras nanoclustering via direct interaction with the Ras binding domain (RBD) of Raf. Here, we establish that the B-Raf preference of Gal1 emerges from the divergence of the Raf RBDs at their proposed Gal1-binding interface. We then identify the L5UR peptide, which disrupts this interaction by binding with low micromolar affinity to the B- and C-Raf-RBDs. Its 23-mer core fragment is sufficient to interfere with H-Ras nanoclustering, modulate Ras-signalling and moderately reduce cell viability. These latter two phenotypic effects may also emerge from the ability of L5UR to broadly engage with several RBD- and RA-domain containing Ras interactors. The L5UR-peptide core fragment is a starting point for the development of more specific reagents against Ras-nanoclustering and -interactors.
Collapse
Affiliation(s)
- Candy Laura Steffen
- Cancer Cell Biology and Drug Discovery group, Department of Life Sciences and Medicine, University of Luxembourg, 4362, Esch-sur-Alzette, Luxembourg
| | - Ganesh Babu Manoharan
- Cancer Cell Biology and Drug Discovery group, Department of Life Sciences and Medicine, University of Luxembourg, 4362, Esch-sur-Alzette, Luxembourg
| | - Karolina Pavic
- Cancer Cell Biology and Drug Discovery group, Department of Life Sciences and Medicine, University of Luxembourg, 4362, Esch-sur-Alzette, Luxembourg
| | - Alejandro Yeste-Vázquez
- Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), VU University Amsterdam, Amsterdam, The Netherlands
| | - Matias Knuuttila
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland
| | - Neha Arora
- Department of Integrative Biology and Pharmacology, McGovern Medical School, UT Health, Houston, TX, 77030, USA
| | - Yong Zhou
- Department of Integrative Biology and Pharmacology, McGovern Medical School, UT Health, Houston, TX, 77030, USA
| | - Harri Härmä
- Chemistry of Drug Development, Department of Chemistry, University of Turku, 20500, Turku, Finland
| | - Anthoula Gaigneaux
- Bioinformatics Core, Department of Life Sciences and Medicine, University of Luxembourg, 4367, Esch-sur-Alzette, Luxembourg
| | - Tom N Grossmann
- Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), VU University Amsterdam, Amsterdam, The Netherlands
| | - Daniel Kwaku Abankwa
- Cancer Cell Biology and Drug Discovery group, Department of Life Sciences and Medicine, University of Luxembourg, 4362, Esch-sur-Alzette, Luxembourg.
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland.
| |
Collapse
|
37
|
Boutalaka M, El Bahi S, Alaqarbeh M, El Alaouy MA, Koubi Y, Khatabi KE, Maghat H, Bouachrine M, Lakhlifi T. Computational investigation of imidazo[2,1-b]oxazole derivatives as potential mutant BRAF kinase inhibitors: 3D-QSAR, molecular docking, molecular dynamics simulation, and ADMETox studies. J Biomol Struct Dyn 2024; 42:5268-5287. [PMID: 37424193 DOI: 10.1080/07391102.2023.2233629] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/09/2023] [Indexed: 07/11/2023]
Abstract
BRAF inhibitors are known to be an effective therapeutic target for treating melanoma and other types of cancer. Using 3D-QSAR, molecular docking, and MD simulations, this study evaluated various imidazo[2,1-b]oxazole derivatives that function as mutant BRAF kinase inhibitors. Comparative molecular field analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA) were used to create the 3D-QSAR models. CoMSIA/SEHA model has solid predictive power across several models (Q2 = 0.578; R2 = 0.828; R2pred = 0.74) and is the best model according to the numerous field models generated. The created model's predictive power was evaluated through external validation using a test set. CoMSIA/SEHA contour maps collect information that can be used to identify critical regions with solid anticancer activity. We developed four inhibitors with high predicted activity due to these observations. ADMET prediction was used to assess the toxicity of the proposed imidazo[2,1-b]oxazole compounds. The predictive molecules (T1-T4) demonstrated good ADMET properties, excluding the toxic active compounds 11r from the database. Molecular docking was also used to determine the patterns and modes of interactions between imidazo[2,1-b]oxazole ligands and receptors, which revealed that the proposed imidazo[2,1-b]oxazole scaffold was stable in the receptor's active site (PDB code: 4G9C). The suggested compounds (T1-T4) were subjected to molecular dynamics simulations lasting 100 ns to determine their binding free energies. The results showed that T2 had a more favorable binding free energy (-149.552 kJ/mol) than T1 (-112.556 kJ/mol), T3 (-115.503 kJ/mol), and T4 (-102.553 kJ/mol). The results suggest that the imidazo[2,1-b]oxazole compounds investigated in this study have potential as inhibitors of BRAF kinase and could be further developed as anticancer drugs. Highlights22 imidazo[2,1-b]oxazole compounds were subjected to research on three-dimensional quantitative conformational relationships.Using contour maps from 3D-QSAR models as a guide was used to figure out the areas and strategies for structural optimization.Combined molecular docking, molecular dynamics simulations, and binding free energy calculations to verify the inhibitor activity of the proposed 22 imidazo[2,1-b]oxazole compounds.Four potential B-RAF Kinase inhibitors were discovered, providing theoretical clues for developing a highly anticancer agent.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Meryem Boutalaka
- Department of Chemistry, Molecular Chemistry and Natural Substances Laboratory, Faculty of Science, University of Moulay Ismail, Meknes, Morocco
| | - Salma El Bahi
- Department of Chemistry, Molecular Chemistry and Natural Substances Laboratory, Faculty of Science, University of Moulay Ismail, Meknes, Morocco
| | | | - Moulay Ahfid El Alaouy
- Department of Chemistry, Molecular Chemistry and Natural Substances Laboratory, Faculty of Science, University of Moulay Ismail, Meknes, Morocco
| | - Yassine Koubi
- Department of Chemistry, Molecular Chemistry and Natural Substances Laboratory, Faculty of Science, University of Moulay Ismail, Meknes, Morocco
| | - Khalil El Khatabi
- Department of Chemistry, Molecular Chemistry and Natural Substances Laboratory, Faculty of Science, University of Moulay Ismail, Meknes, Morocco
| | - Hamid Maghat
- Department of Chemistry, Molecular Chemistry and Natural Substances Laboratory, Faculty of Science, University of Moulay Ismail, Meknes, Morocco
| | - Mohammed Bouachrine
- Department of Chemistry, Molecular Chemistry and Natural Substances Laboratory, Faculty of Science, University of Moulay Ismail, Meknes, Morocco
- EST Khenifra, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Tahar Lakhlifi
- Department of Chemistry, Molecular Chemistry and Natural Substances Laboratory, Faculty of Science, University of Moulay Ismail, Meknes, Morocco
| |
Collapse
|
38
|
Zhang AB, Zhang JY, Liu YP, Wang S, Bai JY, Sun LS, Li TJ. Clinicopathological characteristics and diagnostic accuracy of BRAF mutations in ameloblastoma: A Bayesian network analysis. J Oral Pathol Med 2024; 53:393-403. [PMID: 38777565 DOI: 10.1111/jop.13542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/13/2024] [Accepted: 04/27/2024] [Indexed: 05/25/2024]
Abstract
OBJECTIVE This Bayesian network meta-analysis was performed to analyze the associations between clinicopathological characteristics and BRAF mutations in ameloblastoma (AM) patients and to evaluate the diagnostic accuracy. MATERIALS AND METHODS Four electronic databases were searched from 2010 to 2024. The search terms used were specific to BRAF and AM. Observational studies or randomized controlled trials were considered eligible. The incidence of BRAF mutation and corresponding clinicopathological features in AM patients were subjected to Bayesian network analyses and diagnostic accuracy evaluation. RESULTS A total of 937 AM patients from 20 studies were included. The pooled prevalence of BRAF mutations in AM patients was 72%. According to the Bayesian network analysis, BRAF mutations are more likely to occur in younger (odds ratio [OR], 2.3; credible interval [CrI]: 1.2-4.5), mandible site (OR, 3.6; 95% CrI: 2.7-5.2), and unicystic (OR, 1.6; 95% CrI: 1.1-2.4) AM patients. Similarly, higher diagnostic accuracy was found in the younger, mandible, and unicystic AM groups. CONCLUSIONS The incidence, risk, and diagnostic accuracy of BRAF mutation in AM were greater in younger patients, those with mandible involvement, and those with unicystic AM than in patients with other clinicopathological features. In addition, there was a strong concordance in the diagnostic accuracy between molecular tests and immunohistochemical analysis.
Collapse
Affiliation(s)
- Ao-Bo Zhang
- Department of Oral Pathology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, China
| | - Jian-Yun Zhang
- Department of Oral Pathology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, China
| | - Yu-Ping Liu
- Department of Oral Pathology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, China
| | - Shuo Wang
- Department of stomatology, Shandong Public Health Clinical Center, Jinan, Shandong, China
| | - Jia-Ying Bai
- Department of Oral Pathology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Li-Sha Sun
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, China
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Tie-Jun Li
- Department of Oral Pathology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, China
| |
Collapse
|
39
|
Tamura A, Inaba Higashiyama R, Yoshida T, Satozono Y, Ohe Y. Response to dabrafenib plus trametinib on a rare BRAF mutation (V600_W604 deletion-insertion R) in an advanced non-small cell lung cancer patient. Thorac Cancer 2024; 15:1454-1456. [PMID: 38766698 PMCID: PMC11194117 DOI: 10.1111/1759-7714.15330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/23/2024] [Accepted: 04/30/2024] [Indexed: 05/22/2024] Open
Abstract
Although dabrafenib plus trametinib has been approved for BRAF V600E mutation positive advanced non-small cell lung cancer (NSCLC), data on its efficacy against uncommon BRAF mutations are still limited due to their rare frequency. We report a case of 70-year-old woman with BRAF V600_W604 deletion-insertion R-positive stage IVA lung adenocarcinoma, who was successfully treated with dabrafenib plus trametinib. Herein, we discuss the oncogenic role of uncommon BRAF mutations and highlight the importance of performing comprehensive genomic profiling on patients without any targetable gene alterations in companion diagnostics.
Collapse
Affiliation(s)
- Akiko Tamura
- Department of Thoracic OncologyNational Cancer Center HospitalTokyoJapan
| | | | - Tatsuya Yoshida
- Department of Thoracic OncologyNational Cancer Center HospitalTokyoJapan
| | - Yaya Satozono
- Department of Thoracic OncologyNational Cancer Center HospitalTokyoJapan
| | - Yuichiro Ohe
- Department of Thoracic OncologyNational Cancer Center HospitalTokyoJapan
| |
Collapse
|
40
|
Zhang L, Zhang S, Cao X, Shi J, Zhao S, Tian J, Xiao K, Wang M, Liu J, Wang C, Zhou L, Yu Y, Zhao H, Li S, Sun J. RAF1 facilitates KIT signaling and serves as a potential treatment target for gastrointestinal stromal tumor. Oncogene 2024; 43:2078-2091. [PMID: 38760447 DOI: 10.1038/s41388-024-03063-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/19/2024]
Abstract
The aberrant activation of RAS/RAF/MEK/ERK signaling is important for KIT mutation-mediated tumorigenesis of gastrointestinal stromal tumor (GIST). In this study, we found that inhibition of RAF1 suppresses the activation of both wild-type KIT and primary KIT mutations in GIST, with primary KIT mutations showing greater sensitivity. This suggests a positive feedback loop between KIT and RAF1, wherein RAF1 facilitates KIT signaling. We further demonstrated that RAF1 associates with KIT and the kinase activity of RAF1 is necessary for its contribution to KIT activation. Accordingly, inhibition of RAF1 suppressed cell survival, proliferation, and cell cycle progression in vitro mediated by both wild-type KIT and primary KIT mutations. Inhibition of RAF1 in vivo suppressed GIST growth in a transgenic mouse model carrying germline KIT/V558A mutation, showing a similar treatment efficiency as imatinib, the first-line targeted therapeutic drug of GIST, while the combination use of imatinib and RAF1 inhibitor further suppressed tumor growth. Acquisition of drug-resistant secondary mutation of KIT is a major cause of treatment failure of GIST following targeted therapy. Like wild-type KIT and primary KIT mutations, inhibition of RAF1 suppressed the activation of secondary KIT mutation, and the cell survival, proliferation, cell cycle progression in vitro, and tumor growth in vivo mediated by secondary KIT mutation. However, the activation of secondary KIT mutation is less dependent on RAF1 compared with that of primary KIT mutations. Taken together, our results revealed that RAF1 facilitates KIT signaling and KIT mutation-mediated tumorigenesis of GIST, providing a rationale for further investigation into the use of RAF1 inhibitors alone or in combination with KIT inhibitor in the treatment of GIST, particularly in cases resistant to KIT inhibitors.
Collapse
Affiliation(s)
- Liangying Zhang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Shaoting Zhang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Xu Cao
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Jun Shi
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Sien Zhao
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Jinhai Tian
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Kun Xiao
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Ming Wang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Jing Liu
- Department of Pediatrics, the General Hospital of Ningxia Medical University, Yinchuan, China
| | - Chengdong Wang
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong SAR, China
| | - Liangji Zhou
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yuanyuan Yu
- Department of Emergency, the General Hospital of Ningxia Medical University, Yinchuan, China
| | - Hui Zhao
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Shujing Li
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China.
- Department of Pediatrics, the General Hospital of Ningxia Medical University, Yinchuan, China.
| | - Jianmin Sun
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China.
| |
Collapse
|
41
|
Nwoga MC. The Case for Re-Classification of Solid and Ameloblastoma from Benign to Borderline Tumor. Niger J Clin Pract 2024; 27:804-805. [PMID: 38943308 DOI: 10.4103/njcp.njcp_63_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/28/2024] [Indexed: 07/01/2024]
Affiliation(s)
- M C Nwoga
- Department of Oral Pathology and Oral Medicine, Faculty of Dentistry, University of Nigeria, Ituku-Ozalla, Nigeria
| |
Collapse
|
42
|
Zhou Y, Tao L, Qiu J, Xu J, Yang X, Zhang Y, Tian X, Guan X, Cen X, Zhao Y. Tumor biomarkers for diagnosis, prognosis and targeted therapy. Signal Transduct Target Ther 2024; 9:132. [PMID: 38763973 PMCID: PMC11102923 DOI: 10.1038/s41392-024-01823-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 03/07/2024] [Accepted: 04/02/2024] [Indexed: 05/21/2024] Open
Abstract
Tumor biomarkers, the substances which are produced by tumors or the body's responses to tumors during tumorigenesis and progression, have been demonstrated to possess critical and encouraging value in screening and early diagnosis, prognosis prediction, recurrence detection, and therapeutic efficacy monitoring of cancers. Over the past decades, continuous progress has been made in exploring and discovering novel, sensitive, specific, and accurate tumor biomarkers, which has significantly promoted personalized medicine and improved the outcomes of cancer patients, especially advances in molecular biology technologies developed for the detection of tumor biomarkers. Herein, we summarize the discovery and development of tumor biomarkers, including the history of tumor biomarkers, the conventional and innovative technologies used for biomarker discovery and detection, the classification of tumor biomarkers based on tissue origins, and the application of tumor biomarkers in clinical cancer management. In particular, we highlight the recent advancements in biomarker-based anticancer-targeted therapies which are emerging as breakthroughs and promising cancer therapeutic strategies. We also discuss limitations and challenges that need to be addressed and provide insights and perspectives to turn challenges into opportunities in this field. Collectively, the discovery and application of multiple tumor biomarkers emphasized in this review may provide guidance on improved precision medicine, broaden horizons in future research directions, and expedite the clinical classification of cancer patients according to their molecular biomarkers rather than organs of origin.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lei Tao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiahao Qiu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Xu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinyu Yang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yu Zhang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
- School of Medicine, Tibet University, Lhasa, 850000, China
| | - Xinyu Tian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinqi Guan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaobo Cen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yinglan Zhao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
43
|
Rogalewicz B, Pitucha M, Świątkowski M, Humeniuk E, Adamczuk G, Drózd M, Karczmarzyk Z, Kuśmierek E, Strzelec K, Raducka A, Wysocki W, Olender A, Kozub A, Kowalczuk D, Poleszak E, Czylkowska A. Structure-activity relationship and cytotoxicity of the new thiosemicarbazide derivatives and their Cu(II) complexes against prostate and melanoma cancer cells. Arch Biochem Biophys 2024; 755:109955. [PMID: 38460659 DOI: 10.1016/j.abb.2024.109955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/15/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
In this study, eighteen new ligands (B1-B18) containing a thiosemicarbazide core were synthesized and characterized in terms of physicochemical properties, molecular docking and in vitro biological activity. The structures of eleven ligands were investigated using X-Ray diffraction and Hirschfeld Surface analysis. To study the structure-activity relationship, the organic ligands contained pyridin-2-ylmethyl, pyridin-3-ylmethyl or pyridin-4-ylmethyl moieties and various substituents. Their pharmakokinetic profiles and molecular docking results suggest high potential as new drug candidates. The complexing ability of the selected organic ligands was also evaluated, yielding five new Cu(II) complexes (Cu(B1)Cl2, Cu(B4)Cl2, Cu(B10)Cl2, Cu(B17)Cl2, Cu(B18)Cl2). The obtained results suggest the formation of the polymeric structures. All organic ligands and Cu(II) complexes were tested for anticancer activity against prostate and melanoma cancer cells (PC-3, DU-145, LNCaP, A375, G-361, SK-MEL-28) and normal fibroblasts (BJ), as well as antimicrobial activity against six selected bateria strains. Among B1-B18 compounds, B3, B5, B9, B10, B12 and B14 exhibited cytotoxic activity. The studied Cu(II) complexes were in general more active, with Cu(B1)Cl2 exhibiting antincancer activity agains all three prostate cancer cells and Cu(B10)Cl2 reaching the IC50 value equal to 88 μM against G-361 melanoma cells. Several compounds also exhibited antimicrobial activity against gram-positive and gram-negative bacteria. It was found that the type of specific substituents, especially the presence of -chloro and -dichloro substituents had a greated impact on the cytotoxicity than the position of the nitrogen atom in the pyridylacetyl moiety.
Collapse
Affiliation(s)
- Bartłomiej Rogalewicz
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924, Lodz, Poland.
| | - Monika Pitucha
- Independent Radiopharmacy Unit, Faculty of Pharmacy, Medical University of Lublin, Chodzki 4a, 20-093, Lublin, Poland
| | - Marcin Świątkowski
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924, Lodz, Poland
| | - Ewelina Humeniuk
- Independent Medical Biology Unit, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8b, 20-093, Lublin, Poland
| | - Grzegorz Adamczuk
- Independent Medical Biology Unit, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8b, 20-093, Lublin, Poland
| | - Monika Drózd
- Independent Radiopharmacy Unit, Faculty of Pharmacy, Medical University of Lublin, Chodzki 4a, 20-093, Lublin, Poland
| | - Zbigniew Karczmarzyk
- Department of Chemistry, University of Siedlce, 3 Maja 54, 08-110, Siedlce, Poland
| | - Elżbieta Kuśmierek
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924, Lodz, Poland
| | - Krzysztof Strzelec
- Institute of Polymer & Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 12/16, 90-924, Lodz, Poland
| | - Anita Raducka
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924, Lodz, Poland
| | - Waldemar Wysocki
- Department of Chemistry, University of Siedlce, 3 Maja 54, 08-110, Siedlce, Poland
| | - Alina Olender
- Chair and Department of Medical Microbiology, Medical University of Lublin, Chodzki 1, 20-093, Lublin, Poland
| | - Anna Kozub
- Department of Bioanalytics, Faculty of Biomedicine, Medical University of Lublin, Jaczewskiego 8b, 20-090, Lublin, Poland
| | - Dorota Kowalczuk
- Chair and Department of Medicinal Chemistry, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 4, 20-090, Lublin, Poland
| | - Ewa Poleszak
- Laboratory of Preclinical Testing, Chair and Department of Applied and Social Pharmacy, Medical University of Lublin, Chodzki 1, 20-093, Lublin, Poland
| | - Agnieszka Czylkowska
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924, Lodz, Poland.
| |
Collapse
|
44
|
Haugh A, Daud AI. Therapeutic Strategies in BRAF V600 Wild-Type Cutaneous Melanoma. Am J Clin Dermatol 2024; 25:407-419. [PMID: 38329690 DOI: 10.1007/s40257-023-00841-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 02/09/2024]
Abstract
There have been many recent advances in melanoma therapy. While 50% of melanomas have a BRAF mutation and are a target for BRAF inhibitors, the remaining 50% are BRAF wild-type. Immune checkpoint inhibitors targeting PD-1, cytotoxic T-lymphocyte-associated protein 4 (CTLA4) and lymphocyte activated gene-3 (Lag-3) are all approved for the treatment of patients with advanced BRAF wild-type melanoma; however, treatment of this patient population following initial immune checkpoint blockade is a current therapeutic challenge given the lack of other efficacious options. Here, we briefly review available US FDA-approved therapies for BRAF wild-type melanoma and focus on developing treatment avenues for this heterogeneous group of patients. We review the basics of genomic features of both BRAF mutant and BRAF wild-type melanoma as well as efforts underway to develop new targeted therapies involving the mitogen-activated protein kinase (MAPK) pathway for patients with BRAF wild-type tumors. We then focus on novel immunotherapies, including developing checkpoint inhibitors and agonists, cytokine therapies, oncolytic viruses and tumor-infiltrating lymphocytes, all of which represent potential therapeutic avenues for patients with BRAF wild-type melanoma who progress on currently approved immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Alexandra Haugh
- Department of Medicine, University of California San Francisco, 550 16th Street, 6809, San Francisco, CA, 94158, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Adil I Daud
- Department of Medicine, University of California San Francisco, 550 16th Street, 6809, San Francisco, CA, 94158, USA.
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
45
|
Grogan L, Shapiro P. Progress in the development of ERK1/2 inhibitors for treating cancer and other diseases. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2024; 100:181-207. [PMID: 39034052 DOI: 10.1016/bs.apha.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
The extracellular signal-regulated kinases-1 and 2 (ERK1/2) are ubiquitous regulators of many cellular functions, including proliferation, differentiation, migration, and cell death. ERK1/2 regulate cell functions by phosphorylating a diverse collection of protein substrates consisting of other kinases, transcription factors, structural proteins, and other regulatory proteins. ERK1/2 regulation of cell functions is tightly regulated through the balance between activating phosphorylation by upstream kinases and inactivating dephosphorylation by phosphatases. Disruption of homeostatic ERK1/2 regulation caused by elevated extracellular signals or mutations in upstream regulatory proteins leads to the constitutive activation of ERK1/2 signaling and uncontrolled cell proliferation observed in many types of cancer. Many inhibitors of upstream kinase regulators of ERK1/2 have been developed and are part of targeted therapeutic options to treat a variety of cancers. However, the efficacy of these drugs in providing sustained patient responses is limited by the development of acquired resistance often involving re-activation of ERK1/2. As such, recent drug discovery efforts have focused on the direct targeting of ERK1/2. Several ATP competitive ERK1/2 inhibitors have been identified and are being tested in cancer clinical trials. One drug, Ulixertinib (BVD-523), has received FDA approval for use in the Expanded Access Program for patients with no other therapeutic options. This review provides an update on ERK1/2 inhibitors in clinical trials, their successes and limitations, and new academic drug discovery efforts to modulate ERK1/2 signaling for treating cancer and other diseases.
Collapse
Affiliation(s)
- Lena Grogan
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, United States
| | - Paul Shapiro
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, United States.
| |
Collapse
|
46
|
Falkman L, Sundin A, Skogseid B, Botling J, Bernardo Y, Wallin G, Zhang L, Welin S, Lase I, Mollazadegan K, Crona J. Genetics-guided therapy in neuroendocrine carcinoma: response to BRAF- and MEK-inhibitors. Ups J Med Sci 2024; 129:10660. [PMID: 38716076 PMCID: PMC11075439 DOI: 10.48101/ujms.v129.10660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 06/04/2024] Open
Abstract
Background Metastatic neuroendocrine carcinoma (NEC) is associated with short survival. Other than platinum-based chemotherapy, there is no clear standard regimen. Current guidelines suggest that combination treatment with BRAF-inhibitors should be considered for patients with BRAF V600E-mutated NEC. However, since only eight such patients have been reported in the literature, our object was to confirm the validity of this recommendation. Methods This was a single-center retrospective cohort study conducted at Uppsala University Hospital. The included patients 1) had a histopathologically confirmed diagnosis of NEC, 2) were diagnosed between January 1st, 2018 and December 31st, 2023, 3) had tumor tissue genetically screened by a broad next-generation sequencing (NGS) panel, and 4) showed a tumor mutation for which there is a currently available targeted therapy. Results We screened 48 patients diagnosed with NEC between January 1st, 2018 and December 31st, 2023. Twelve had been analyzed with a broad NGS-panel, and two had a targetable mutation. Both these patients harbored a BRAF V600E-mutated colon-NEC and were treated with BRAF- and MEK-inhibitors dabrafenib and trametinib in second-line. At first radiological evaluation (RECIST 1.1), both patients had a reduction of tumor size, which decreased by 31 and 40%. Both had short response periods, and their overall survival was 12 and 9 months. Conclusions BRAF-mutated NEC is sensitive to treatment with BRAF- and MEK-inhibitor combination. These results further support that DNA sequencing should be considered as standard of care in NECs to screen for potential treatment targets.
Collapse
Affiliation(s)
- Lovisa Falkman
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Anders Sundin
- Department of Radiology, Uppsala University Hospital, Uppsala, Sweden
| | - Britt Skogseid
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Johan Botling
- Institute of Biomedicine, Department of Laboratory Medicine, Gothenburg University, Gothenburg, Sweden
| | - Yvette Bernardo
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Göran Wallin
- Department of Surgery, Örebro University Hospital, Örebro, Sweden
| | - Liang Zhang
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Staffan Welin
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Ieva Lase
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | | | - Joakim Crona
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
47
|
Weatherdon L, Stuart K, Cassidy M, de la Gándara AM, Okkenhaug H, Muellener M, Mckenzie G, Cook SJ, Gilley R. Reporter cell lines to screen for inhibitors or regulators of the KRAS-RAF-MEK1/2-ERK1/2 pathway. Biochem J 2024; 481:405-422. [PMID: 38381045 PMCID: PMC11088904 DOI: 10.1042/bcj20240015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 02/22/2024]
Abstract
The RAS-regulated RAF-MEK1/2-ERK1/2 signalling pathway is activated in cancer due to mutations in RAS proteins (especially KRAS), BRAF, CRAF, MEK1 and MEK2. Whilst inhibitors of KRASG12C (lung adenocarcinoma) and BRAF and MEK1/2 (melanoma and colorectal cancer) are clinically approved, acquired resistance remains a problem. Consequently, the search for new inhibitors (especially of RAS proteins), new inhibitor modalities and regulators of this pathway, which may be new drug targets, continues and increasingly involves cell-based screens with small molecules or genetic screens such as RNAi, CRISPR or protein interference. Here we describe cell lines that exhibit doxycycline-dependent expression KRASG12V or BRAFV600E and harbour a stably integrated EGR1:EmGFP reporter gene that can be detected by flow cytometry, high-content microscopy or immunoblotting. KRASG12V or BRAFV600E-driven EmGFP expression is inhibited by MEK1/2 or ERK1/2 inhibitors (MEKi and ERKi). BRAFi inhibit BRAFV600E-driven EmGFP expression but enhance the response to KRASG12V, recapitulating paradoxical activation of wild type RAF proteins. In addition to small molecules, expression of iDab6, encoding a RAS-specific antibody fragment inhibited KRASG12V- but not BRAFV600E-driven EmGFP expression. Finally, substitution of EmGFP for a bacterial nitroreductase gene allowed KRASG12V or BRAFV600E to drive cell death in the presence of a pro-drug, which may allow selection of pathway inhibitors that promote survival. These cell lines should prove useful for cell-based screens to identify new regulators of KRAS- or BRAF-dependent ERK1/2 signalling (drug target discovery) as well as screening or triaging 'hits' from drug discovery screens.
Collapse
Affiliation(s)
- Laura Weatherdon
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, U.K
| | - Kate Stuart
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, U.K
- Phoremost, Unit 7, The Works, Unity Campus, Pampisford, Cambridge CB22 3FT, U.K
| | - Megan Cassidy
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, U.K
| | | | - Hanneke Okkenhaug
- Imaging Facility, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, U.K
| | - Markus Muellener
- Phoremost, Unit 7, The Works, Unity Campus, Pampisford, Cambridge CB22 3FT, U.K
| | - Grahame Mckenzie
- Phoremost, Unit 7, The Works, Unity Campus, Pampisford, Cambridge CB22 3FT, U.K
| | - Simon J. Cook
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, U.K
| | - Rebecca Gilley
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, U.K
| |
Collapse
|
48
|
Timofeev O, Giron P, Lawo S, Pichler M, Noeparast M. ERK pathway agonism for cancer therapy: evidence, insights, and a target discovery framework. NPJ Precis Oncol 2024; 8:70. [PMID: 38485987 PMCID: PMC10940698 DOI: 10.1038/s41698-024-00554-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/16/2024] [Indexed: 03/18/2024] Open
Abstract
At least 40% of human cancers are associated with aberrant ERK pathway activity (ERKp). Inhibitors targeting various effectors within the ERKp have been developed and explored for over two decades. Conversely, a substantial body of evidence suggests that both normal human cells and, notably to a greater extent, cancer cells exhibit susceptibility to hyperactivation of ERKp. However, this vulnerability of cancer cells remains relatively unexplored. In this review, we reexamine the evidence on the selective lethality of highly elevated ERKp activity in human cancer cells of varying backgrounds. We synthesize the insights proposed for harnessing this vulnerability of ERK-associated cancers for therapeutical approaches and contextualize these insights within established pharmacological cancer-targeting models. Moreover, we compile the intriguing preclinical findings of ERK pathway agonism in diverse cancer models. Lastly, we present a conceptual framework for target discovery regarding ERKp agonism, emphasizing the utilization of mutual exclusivity among oncogenes to develop novel targeted therapies for precision oncology.
Collapse
Affiliation(s)
- Oleg Timofeev
- Institute of Molecular Oncology, Member of the German Center for Lung Research (DZL), Philipps University, 35043, Marburg, Germany
| | - Philippe Giron
- Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Clinical Sciences, Research group Genetics, Reproduction and Development, Centre for Medical Genetics, Laarbeeklaan 101, 1090, Brussels, Belgium
| | - Steffen Lawo
- CRISPR Screening Core Facility, Max Planck Institute for Biology of Ageing, 50931, Cologne, Germany
| | - Martin Pichler
- Translational Oncology, II. Med Clinics Hematology and Oncology, 86156, Augsburg, Germany
| | - Maxim Noeparast
- Translational Oncology, II. Med Clinics Hematology and Oncology, 86156, Augsburg, Germany.
| |
Collapse
|
49
|
Takasaki T, Hamabe Y, Touchi K, Khandakar GI, Ueda T, Okada H, Sakai K, Nishio K, Tanabe G, Sugiura R. ACA-28, an ERK MAPK Signaling Modulator, Exerts Anticancer Activity through ROS Induction in Melanoma and Pancreatic Cancer Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2024; 2024:7683793. [PMID: 38500550 PMCID: PMC10948229 DOI: 10.1155/2024/7683793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/19/2024] [Accepted: 02/27/2024] [Indexed: 03/20/2024]
Abstract
The extracellular signal-regulated kinase (ERK) MAPK pathway is dysregulated in various human cancers and is considered an attractive therapeutic target for cancer. Therefore, several inhibitors of this pathway are being developed, and some are already used in the clinic. We have previously identified an anticancer compound, ACA-28, with a unique property to preferentially induce ERK-dependent apoptosis in melanoma cells. To comprehensively understand the biological cellular impact induced by ACA-28, we performed a global gene expression analysis of human melanoma SK-MEL-28 cells exposed to ACA-28 using a DNA microarray. The transcriptome analysis identified nuclear factor erythroid 2-related factor 2 (Nrf2), a master transcription factor that combats oxidative stress, as the most upregulated genetic pathway after ACA-28 treatment. Consistently, ACA-28 showed properties to increase the levels of reactive oxygen species (ROS) as well as Nrf2 protein, which is normally repressed by proteasomal degradation and activated in response to oxidative stresses. Furthermore, the ROS scavenger N-acetyl cysteine significantly attenuated the anticancer activity of ACA-28. Thus, ACA-28 activates Nrf2 signaling and exerts anticancer activity partly via its ROS-stimulating property. Interestingly, human A549 cancer cells with constitutively high levels of Nrf2 protein showed resistance to ACA-28, as compared with SK-MEL-28. Transient overexpression of Nrf2 also increased the resistance of cells to ACA-28, while knockdown of Nrf2 exerted the opposite effect. Thus, upregulation of Nrf2 signaling protects cancer cells from ACA-28-mediated cell death. Notably, the Nrf2 inhibitor ML385 substantially enhanced the cell death-inducing property of ACA-28 in pancreatic cancer cells, T3M4 and PANC-1. Our data suggest that Nrf2 plays a key role in determining cancer cell susceptibility to ACA-28 and provides a novel strategy for cancer therapy to combine the Nrf2 inhibitor and ACA-28.
Collapse
Affiliation(s)
- Teruaki Takasaki
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, Osaka 577-8502, Japan
| | - Yasuyuki Hamabe
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, Osaka 577-8502, Japan
| | - Kenta Touchi
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, Osaka 577-8502, Japan
| | - Golam Iftakhar Khandakar
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, Osaka 577-8502, Japan
| | - Takeshi Ueda
- Department of Biochemistry, Faculty of Medicine, Kindai University, Osaka 589-8511, Japan
- Anti-Aging Center, Kindai University, Osaka 577-8502, Japan
| | - Hitoshi Okada
- Department of Biochemistry, Faculty of Medicine, Kindai University, Osaka 589-8511, Japan
- Anti-Aging Center, Kindai University, Osaka 577-8502, Japan
| | - Kazuko Sakai
- Department of Genome Biology, Faculty of Medicine, Kindai University, Osaka 589-8511, Japan
| | - Kazuto Nishio
- Department of Genome Biology, Faculty of Medicine, Kindai University, Osaka 589-8511, Japan
| | - Genzoh Tanabe
- Laboratory of Organic Chemistry, Department of Pharmacy, Faculty of Pharmacy, Kindai University, Osaka 577-8502, Japan
| | - Reiko Sugiura
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, Osaka 577-8502, Japan
- Anti-Aging Center, Kindai University, Osaka 577-8502, Japan
| |
Collapse
|
50
|
Gonzalez-Cárdenas M, Treviño V. The Impact of Mutational Hotspots on Cancer Survival. Cancers (Basel) 2024; 16:1072. [PMID: 38473427 DOI: 10.3390/cancers16051072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/11/2024] [Accepted: 02/15/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Cofactors, biomarkers, and the mutational status of genes such as TP53, EGFR, IDH1/2, or PIK3CA have been used for patient stratification. However, many genes exhibit recurrent mutational positions known as hotspots, specifically linked to varying degrees of survival outcomes. Nevertheless, few hotspots have been analyzed (e.g., TP53 and EGFR). Thus, many other genes and hotspots remain unexplored. METHODS We systematically screened over 1400 hotspots across 33 TCGA cancer types. We compared the patients carrying a hotspot against (i) all cases, (ii) gene-mutated cases, (iii) other mutated hotspots, or (iv) specific hotspots. Due to the limited number of samples in hotspots and the inherent group imbalance, besides Cox models and the log-rank test, we employed VALORATE to estimate their association with survival precisely. RESULTS We screened 1469 hotspots in 6451 comparisons, where 314 were associated with survival. Many are discussed and linked to the current literature. Our findings demonstrate associations between known hotspots and survival while also revealing more potential hotspots. To enhance accessibility and promote further investigation, all the Kaplan-Meier curves, the log-rank tests, Cox statistics, and VALORATE-estimated null distributions are accessible on our website. CONCLUSIONS Our analysis revealed both known and putatively novel hotspots associated with survival, which can be used as biomarkers. Our web resource is a valuable tool for cancer research.
Collapse
Affiliation(s)
- Melissa Gonzalez-Cárdenas
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, Monterrey 64710, Nuevo León, Mexico
- Tecnologico de Monterrey, The Institute for Obesity Research, Eugenio Garza Sada Avenue 2501, Monterrey 64849, Nuevo León, Mexico
| | - Víctor Treviño
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, Monterrey 64710, Nuevo León, Mexico
- Tecnologico de Monterrey, The Institute for Obesity Research, Eugenio Garza Sada Avenue 2501, Monterrey 64849, Nuevo León, Mexico
- Tecnologico de Monterrey, oriGen Project, Eugenio Garza Sada Avenue 2501, Monterrey 64849, Nuevo León, Mexico
| |
Collapse
|