1
|
Elhodaky M, Duckett D, Santana-Santos L, Oh TS, Abaza Y, Sukhanova M, Lu X, Vormittag-Nocito ER, Jennings LJ, Gao J. Clinicopathological and global methylation profiling of acute myeloid leukemia with mutations in NPM1 and clonal hematopoiesis-related genes. Leuk Lymphoma 2025:1-8. [PMID: 40276909 DOI: 10.1080/10428194.2025.2495105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 04/03/2025] [Accepted: 04/13/2025] [Indexed: 04/26/2025]
Abstract
Recent studies suggest that nucleophosmin 1 (NPM1)-mutated acute myeloid leukemia (NPM1-AML) often arises from clonal hematopoiesis (CH) involving mutations in DTA genes (DNMT3A, TET2, ASXL1), which can persist during remission. This research evaluates the clinical implications of molecular profiling of CH-related DTA genes in NPM1-AML by comparing clinical features, treatment outcomes, and methylation patterns with those of NPM1-AML lacking DTA mutations. Findings show NPM1-AML with DTA mutations exhibited higher WBC/peripheral blood blast counts, a lower incidence of extramedullary disease, more frequent IDH2 but less FLT3-TKD mutations. However, no significant differences in clinical characteristics such as age, treatment response, or disease outcome between the groups were seen. Additionally, despite variations in methylation profiles based on disease status, no distinct differences between DTA-positive and negative groups were observed. Notably, three probes, including one linked to the FAM65B promoter, effectively differentiated disease states, highlighting the potential role of FAM65B in leukemogenesis and patient survival.
Collapse
Affiliation(s)
- Mostafa Elhodaky
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Drew Duckett
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Lucas Santana-Santos
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Timothy S Oh
- Department of Hematology and Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Yasmin Abaza
- Department of Hematology and Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Madina Sukhanova
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Xinyan Lu
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Lawrence J Jennings
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Juehua Gao
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
2
|
Ghani F, Zubair AC. Possible impacts of cosmic radiation on leukemia development during human deep space exploration. Leukemia 2025:10.1038/s41375-025-02624-4. [PMID: 40275072 DOI: 10.1038/s41375-025-02624-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/14/2025] [Accepted: 04/14/2025] [Indexed: 04/26/2025]
Abstract
With the advent of deep space exploration and ambitious plans to return humans to the Moon and journey onward to Mars, humans will face exposure to ionizing radiation beyond Earth's atmosphere and magnetosphere. This is particularly concerning for the hematopoietic system that is sensitive to galactic cosmic rays (GCRs) during interplanetary missions. Epidemiological studies and animal studies implicate that exposure to ionizing radiation can cause leukemias, with recent consensus showing that almost all types of leukemias, even chronic lymphocytic leukemia, can be caused by ionizing radiation despite previous controversies. The possible deleterious effects of deep space travel on the formation, development, etiology, and pathophysiology of hematologic malignancies, specifically leukemias, remain largely unclear. The mechanism(s) by which ionizing radiations cause leukemia differs for different leukemia types and is poorly understood in the spaceflight environment, posing a serious health risk for future astronauts. This paper provides a comprehensive review of the various studies and evidence available on Earth and in space assessing the relationship between ionizing radiation and increased risk of leukemia. We also discuss the unique characteristics of leukemia in space, ethical considerations, risk assessments and potential challenges this may bring to astronauts and healthcare professionals as humanity continues to explore the cosmos.
Collapse
Affiliation(s)
- Fay Ghani
- Center for Regenerative Biotherapeutics and Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, FL, USA
| | - Abba C Zubair
- Center for Regenerative Biotherapeutics and Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
3
|
Assem M, El Leithy AA, Hassan NM, Al-Karmalawy AA, Abozaid M, Allam RM, Kamal MAM, Amer M, El-Sayyad GS, Ibrahim NH. A significant correlation exists between CREBBP and CEBPA gene expression in de Novo adult acute myeloid leukemia. Sci Rep 2025; 15:12473. [PMID: 40216811 PMCID: PMC11992167 DOI: 10.1038/s41598-025-93024-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 03/04/2025] [Indexed: 04/14/2025] Open
Abstract
CREBBP, CEBPA, and DNMT3A are tumor suppressor genes whose dysfunction has been reported in hematologic malignancies. Acute myeloid leukemia (AML) is the most common type of acute leukemia in adults. We aim to assess the expression level of CREBBP, CEBPA, and DNMT3A genes in an Egyptian cohort with AML. We investigated the correlation between the selected genes' mRNA levels and their association with clinical characteristics and survival. Herein, 53 adult participants diagnosed with AML were enrolled in the study. Quantitative RT-PCR was used, and computational analysis was added to analyze the relationship between the three genes. CREBBP expression influenced TLC negatively (r = -0.328, p = 0.017). DNMT3A gene expression was found to be significantly associated with CD117 positive (p = 0.028). There was no significant difference between males and females in the relative CREBBP, CEBPA, and DNMT3A expression. Remarkably, AML-M3 cases were devoid of CREBBP expression. The correlation matrix of the three genes detected a significant correlation only between CREBBP and CEBPA expression (r = 0.518, p < 0.0001), though the computational correlation analysis of these two genes was not significant. Our finding may suggest a complementary role of CREBBP and CEBPA in AML pathogenesis; however, further investigation on larger samples is still warranted to study the relationship of these genes with AML survival. We are also reporting here an adult AML case with an additional chromosome 19 as the sole cytogenetic abnormality.
Collapse
Affiliation(s)
- Magda Assem
- Clinical Pathology Department, National Cancer Institute, Cairo University, Giza, Egypt
| | - Asmaa A El Leithy
- College of Biotechnology, Misr University for Science and Technology, Giza, Egypt.
| | - Naglaa M Hassan
- Clinical Pathology Department, National Cancer Institute, Cairo University, Giza, Egypt
| | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Chemistry, College of Pharmacy, The University of Mashreq, Baghdad, 10023, Iraq
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, 34518, Egypt
| | - Mohamed Abozaid
- Hamilton Lab, School of Medicine, Dentistry and Nursing, Anderson College, University of Glasgow, Glasgow, Scotland, UK
| | - Rasha Mahmoud Allam
- Department of Cancer Epidemiology and Biostatistics, National Cancer Institute, Cairo University, Giza, Egypt
| | - Mohamed A M Kamal
- Clinical Pathology Department, El-Hussein University Hospital, Al-Azhar University, Cairo, Egypt
| | - Marwa Amer
- Bioinformatics and Functional Genomics Department, College of Biotechnology, Misr University for Science and Technology (MUST), Giza, Egypt
| | - Gharieb S El-Sayyad
- Medical Laboratory Technology Department, Faculty of Applied Health Sciences Technology, Badr University in Cairo (BUC), Badr City, Cairo, Egypt.
| | - Noha H Ibrahim
- Clinical Pathology Department, National Cancer Institute, Cairo University, Giza, Egypt
| |
Collapse
|
4
|
Haddadin L, Sun X. Stem Cells in Cancer: From Mechanisms to Therapeutic Strategies. Cells 2025; 14:538. [PMID: 40214491 PMCID: PMC11988674 DOI: 10.3390/cells14070538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 03/23/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025] Open
Abstract
Stem cells have emerged as a pivotal area of research in the field of oncology, offering new insights into the mechanisms of cancer initiation, progression, and resistance to therapy. This review provides a comprehensive overview of the role of stem cells in cancer, focusing on cancer stem cells (CSCs), their characteristics, and their implications for cancer therapy. We discuss the origin and identification of CSCs, their role in tumorigenesis, metastasis, and drug resistance, and the potential therapeutic strategies targeting CSCs. Additionally, we explore the use of normal stem cells in cancer therapy, focusing on their role in tissue regeneration and their use as delivery vehicles for anticancer agents. Finally, we highlight the challenges and future directions in stem cell research in cancer.
Collapse
Affiliation(s)
| | - Xueqin Sun
- Cancer Genome and Epigenetics Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| |
Collapse
|
5
|
Jeong SJ, Lee KH, Cho JY. Comparative epigenomics to clinical trials in human breast cancer and canine mammary tumor. Anim Cells Syst (Seoul) 2025; 29:12-30. [PMID: 40115961 PMCID: PMC11924266 DOI: 10.1080/19768354.2025.2477024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/09/2025] [Accepted: 02/12/2025] [Indexed: 03/23/2025] Open
Abstract
Epigenetics and epigenomics are captivating fields of molecular biology, dedicated to the exploration of heritable alterations in gene expression and cellular phenotypes, which transpire devoid of any discernible modifications to the fundamental DNA sequence. This intricate regulatory apparatus encompasses multiple mechanisms, prominently featuring DNA methylation, histone modifications, and the involvement of non-coding RNA molecules in pivotal roles. To achieve a comprehensive grasp of these diverse mechanisms, it is imperative to conduct research employing animal models as proxies for human studies. Since experimental animal models like mice and rats struggle to replicate the diverse environmental conditions experienced by humans, this review focuses on comparing common epigenetic alterations in naturally occurring tumors in canine models, which share the human environment, with those in humans. Through this, we emphasize the importance of an epigenetic regulation in the comparative medical approach to a deeper understanding of cancers and further development of cancer treatments. Additionally, we elucidate epigenetic modifications pertinent to specific developmental stages, the ageing process, and the progression of various diseases.
Collapse
Affiliation(s)
- Su-Jin Jeong
- Department of Biochemistry, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science, Seoul National University, Seoul, Republic of Korea
- Comparative Medicine Disease Research Center, Seoul National University, Seoul, Republic of Korea
| | - Kang-Hoon Lee
- Department of Biochemistry, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science, Seoul National University, Seoul, Republic of Korea
- Comparative Medicine Disease Research Center, Seoul National University, Seoul, Republic of Korea
| | - Je-Yoel Cho
- Department of Biochemistry, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science, Seoul National University, Seoul, Republic of Korea
- Comparative Medicine Disease Research Center, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
6
|
Yonezawa T, Rutter JC, Ramabadran R, Sundaramurthy V, Datar G, Slabicki M, Goodell MA. DNMT3A Stability Is Maintained by Ubiquitin-Specific Peptidase 11 (USP11) and Sumoylation Countering Degradation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.05.641683. [PMID: 40161590 PMCID: PMC11952362 DOI: 10.1101/2025.03.05.641683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
DNA methyltransferase 3A (DNMT3A) plays crucial roles in hematopoiesis and mammalian development. DNMT3A protein instability has been associated with several diseases such as MDS, AML and Tatton-Brown-Rahman syndrome. Here we report, DNMT3A stability is maintained by deubiquitinating enzyme USP11 countering degradation by CUL4-DCAF8 E3 ligase. DNMT3A localization changes caused by certain unstable DNMT3A mutations, which could be considered one of the losses of function of DNMT3A. The mislocalization is partially rescued by E1 enzyme inhibition or stable USP11 expression lines. Interestingly, we show that USP11 enhances DNMT3A SUMOylation by promoting the interaction between DNMT3A and SUMO E3 Ligases, and DNMT3A SUMOylation also essential for maintaining DNMT3A protein stability and DNMT3A DNA Mtase activity. Our results reveal the mechanism for DNMT3A protein turnover through USP11, and the mechanism essential for DNMT3A function, as well as a therapeutic approach for several diseases causing DNMT3A protein instability.
Collapse
Affiliation(s)
- Taishi Yonezawa
- Molecular and Cellular Biology Department; Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX
| | - Justine C. Rutter
- Department of Medical Oncology, Dana-Farber Cancer Institute, Division of Hematology, Brigham and Women’s Hospital, and Broad Institute of MIT and Harvard, Cambridge, MA
| | - Raghav Ramabadran
- Molecular and Cellular Biology Department; Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX
| | | | - Gandhar Datar
- Molecular and Cellular Biology Department; Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX
| | - Mikolaj Slabicki
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Boston, MA
| | - Margaret A. Goodell
- Molecular and Cellular Biology Department; Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX
| |
Collapse
|
7
|
Park J, Peña-Tauber A, Talozzi L, Greicius MD, Le Guen Y. Rare genetic associations with human lifespan in UK Biobank are enriched for oncogenic genes. Nat Commun 2025; 16:2064. [PMID: 40021682 PMCID: PMC11871019 DOI: 10.1038/s41467-025-57315-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 02/18/2025] [Indexed: 03/03/2025] Open
Abstract
Human lifespan is shaped by genetic and environmental factors. To enable precision health, understanding how genetic variants influence mortality is essential. We conducted a survival analysis in European ancestry participants of the UK Biobank, using age-at-death (N=35,551) and last-known-age (N=358,282). The associations identified were predominantly driven by cancer. We found lifespan-associated loci (APOE, ZSCAN23) for common variants and six genes where burden of loss-of-function variants were linked to reduced lifespan (TET2, ATM, BRCA2, CKMT1B, BRCA1, ASXL1). Additionally, eight genes with pathogenic missense variants were associated with reduced lifespan (DNMT3A, SF3B1, TET2, PTEN, SOX21, TP53, SRSF2, RLIM). Many of these genes are involved in oncogenic pathways and clonal hematopoiesis. Our findings highlight the importance of understanding genetic factors driving the most prevalent causes of mortality at a population level, highlighting the potential of early genetic testing to identify germline and somatic variants increasing one's susceptibility to cancer and/or early death.
Collapse
Affiliation(s)
- Junyoung Park
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA.
| | - Andrés Peña-Tauber
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Lia Talozzi
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Michael D Greicius
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Yann Le Guen
- Quantitative Sciences Unit, Department of Medicine, Stanford University, Stanford, CA, 94304, USA
| |
Collapse
|
8
|
Charette M, Rosenblum C, Shade O, Deiters A. Optogenetics with Atomic Precision─A Comprehensive Review of Optical Control of Protein Function through Genetic Code Expansion. Chem Rev 2025; 125:1663-1717. [PMID: 39928721 PMCID: PMC11869211 DOI: 10.1021/acs.chemrev.4c00224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 02/12/2025]
Abstract
Conditional control of protein activity is important in order to elucidate the particular functions and interactions of proteins, their regulators, and their substrates, as well as their impact on the behavior of a cell or organism. Optical control provides a perhaps optimal means of introducing spatiotemporal control over protein function as it allows for tunable, rapid, and noninvasive activation of protein activity in its native environment. One method of introducing optical control over protein activity is through the introduction of photocaged and photoswitchable noncanonical amino acids (ncAAs) through genetic code expansion in cells and animals. Genetic incorporation of photoactive ncAAs at key residues in a protein provides a tool for optical activation, or sometimes deactivation, of protein activity. Importantly, the incorporation site can typically be rationally selected based on structural, mechanistic, or computational information. In this review, we comprehensively summarize the applications of photocaged lysine, tyrosine, cysteine, serine, histidine, glutamate, and aspartate derivatives, as well as photoswitchable phenylalanine analogues. The extensive and diverse list of proteins that have been placed under optical control demonstrates the broad applicability of this methodology.
Collapse
Affiliation(s)
- Maura Charette
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Carolyn Rosenblum
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Olivia Shade
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
9
|
Shen Y, Fu S, Liu X, Liu J, Fu Y, Zhao Y, Wang X, Jiang X, Zhang J. Gene Mutation Characteristics and Prognostic Significance in Acute Myeloid Leukemia Patients From Northeast China. Hum Mutat 2025; 2025:7730186. [PMID: 40226311 PMCID: PMC11918257 DOI: 10.1155/humu/7730186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 12/18/2024] [Accepted: 01/17/2025] [Indexed: 04/15/2025]
Abstract
A great part of studies on the correlation between gene mutations and prognosis in acute myeloid leukemia (AML) patients are based on Western populations. To profile the genomic landscape of AML patients in Northeast China, we retrospectively analyzed the clinical data of 377 newly diagnosed AML patients in Shengjing Hospital of China Medical University from 2016 to 2022 and compared them with data from other populations with different genetic backgrounds. The mutation status of NPM1, FLT3-ITD, FLT3-TKD, CEBPA (CCAT enhancer binding protein alpha), ASXL1, TET2, KIT, DNMT3A (DNA methyltransferase 3A), IDH1, IDH2, EZH2 (enhancer of zeste 2), RUNX1, TP53, NRAS, and GATA2 was acquired by next-generation sequencing (NGS) technology; meanwhile, the clinical data of the patients were collected. The Cox regression model was used to analyze factors affecting patient survival and the impact of CEBPA and DNMT3A mutation on prognosis, and the results were different from those in other populations. Seventy-seven of 377 patients (20.4%) were detected with CEBPA mutations, which was higher than the 2%-6% in the Caucasian population. In the CEBPAdm patients who did not receive bone marrow transplantation, the prognosis of male patients (n = 18) was significantly better than that of female patients (n = 21) (p = 0.0242). Sixty-three of 377 patients (16.7%) carried the DNMT3A mutation, which was lower than the mutation frequency of 20.9% in the German-Austrian population, and the prognosis of these patients was significantly poorer (p = 0.0052). In addition, the prognostic evaluation value of the DNMT3A mutation in AML patients was not affected regardless of the presence of the NPM1 and FLT3-ITD comutation (p > 0.05), nor the mutation site of DNMT3A. In conclusion, for the Northeastern Chinese population, the prognosis of male patients with CEBPAdm was more favorable than that of female patients, and the DNMT3A mutation serves as an independent predictor of poor prognosis in AML. These results highlighted the central role of genetic background in precision medicine strategies and further emphasized the importance of the clinical characteristics of AML gene mutations in the Chinese population.
Collapse
Affiliation(s)
- Yiyang Shen
- Hematology Laboratory, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shuang Fu
- Hematology Laboratory, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xuan Liu
- Hematology Laboratory, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jianing Liu
- Hematology Laboratory, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu Fu
- Hematology Laboratory, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yue Zhao
- Hematology Laboratory, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xinxin Wang
- Hematology Laboratory, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xujian Jiang
- Hematology Laboratory, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jihong Zhang
- Hematology Laboratory, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
10
|
Kim DJ. The Role of the DNA Methyltransferase Family and the Therapeutic Potential of DNMT Inhibitors in Tumor Treatment. Curr Oncol 2025; 32:88. [PMID: 39996888 PMCID: PMC11854558 DOI: 10.3390/curroncol32020088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/02/2025] [Accepted: 02/03/2025] [Indexed: 02/26/2025] Open
Abstract
Members of the DNA methyltransferase (DNMT) family have been recognized as major epigenetic regulators of altered gene expression during tumor development. They establish and maintain DNA methylation of the CpG island of promoter and non-CpG region of the genome. The abnormal methylation status of tumor suppressor genes (TSGs) has been associated with tumorigenesis, leading to genomic instability, improper gene silence, and immune evasion. DNMT1 helps preserve methylation patterns during DNA replication, whereas the DNMT3 family is responsible for de novo methylation, creating new methylation patterns. Altered DNA methylation significantly supports tumor growth by changing gene expression patterns. FDA-approved DNMT inhibitors reverse hypermethylation-induced gene repression and improve therapeutic outcomes for cancer. Recent studies indicate that combining DNMT inhibitors with chemotherapies and immunotherapies can have synergistic effects, especially in aggressive metastatic tumors. Improving the treatment schedules, increasing isoform specificity, reducing toxicity, and utilizing genome-wide analyses of CRISPR-based editing to create personalized epigenetic therapies tailored to individual patient needs are promising strategies for enhancing therapeutic outcomes. This review discusses the interaction between DNMT regulators and DNMT1, its binding partners, the connection between DNA methylation and tumors, how these processes contribute to tumor development, and DNMT inhibitors' advancements and pharmacological properties.
Collapse
Affiliation(s)
- Dae Joong Kim
- Department of Microbiology, Immunology & Cancer Biology, The University of Virginia, Charlottesville, VA 20908, USA
| |
Collapse
|
11
|
Mohammed Ismail W, Fernandez JA, Binder M, Lasho TL, Kim M, Geyer SM, Mazzone A, Finke CM, Mangaonkar AA, Lee JH, Wang L, Kim KH, Simon VA, Rakhshan Rohakthar F, Munankarmy A, Byeon SK, Schwager SM, Harrington JJ, Snyder MR, Robertson KD, Pandey A, Wieben ED, Chia N, Gaspar-Maia A, Patnaik MM. Single-cell multiomics reveal divergent effects of DNMT3A- and TET2-mutant clonal hematopoiesis in inflammatory response. Blood Adv 2025; 9:402-416. [PMID: 39631069 PMCID: PMC11787483 DOI: 10.1182/bloodadvances.2024014467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/28/2024] [Accepted: 11/14/2024] [Indexed: 12/07/2024] Open
Abstract
ABSTRACT DNMT3A and TET2 are epigenetic regulator genes commonly mutated in age-related clonal hematopoiesis (CH). Despite having opposed epigenetic functions, these mutations are associated with increased all-cause mortality and a low risk for progression to hematologic neoplasms. Although individual impacts on the epigenome have been described using different model systems, the phenotypic complexity in humans remains to be elucidated. Here, we make use of a natural inflammatory response occurring during coronavirus disease 2019 (COVID-19), to understand the association of these mutations with inflammatory morbidity (acute respiratory distress syndrome [ARDS]) and mortality. We demonstrate the age-independent, negative impact of DNMT3A mutant (DNMT3Amt) CH on COVID-19-related ARDS and mortality. Using single-cell proteogenomics we show that DNMT3A mutations involve myeloid and lymphoid lineage cells. Using single-cell multiomics sequencing, we identify cell-specific gene expression changes associated with DNMT3A mutations, along with significant epigenomic deregulation affecting enhancer accessibility, resulting in overexpression of interleukin-32 (IL-32), a proinflammatory cytokine that can result in inflammasome activation in monocytes and macrophages. Finally, we show with single-cell resolution that the loss of function of DNMT3A is directly associated with increased chromatin accessibility in mutant cells. Hence, we demonstrate the negative prognostic impact of DNMT3Amt CH on COVID-19-related ARDS and mortality. DNMT3Amt CH in the context of COVID-19, was associated with inflammatory transcriptional priming, resulting in overexpression of IL32. This overexpression was secondary to increased chromatic accessibility, specific to DNMT3Amt CH cells. DNMT3Amt CH can thus serve as a potential biomarker for adverse outcomes in COVID-19.
Collapse
Affiliation(s)
- Wazim Mohammed Ismail
- Department of Laboratory Medicine and Pathology, Epigenomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Jenna A. Fernandez
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN
| | - Moritz Binder
- Department of Laboratory Medicine and Pathology, Epigenomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN
| | - Terra L. Lasho
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN
| | - Minsuk Kim
- Department of Laboratory Medicine and Pathology, Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN
| | - Susan M. Geyer
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN
| | - Amelia Mazzone
- Department of Laboratory Medicine and Pathology, Epigenomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Christy M. Finke
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN
| | | | - Jeong-Heon Lee
- Department of Laboratory Medicine and Pathology, Epigenomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN
| | - Liguo Wang
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN
| | - Kwan Hyun Kim
- Department of Laboratory Medicine and Pathology, Epigenomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN
| | | | | | - Amik Munankarmy
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Seul Kee Byeon
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Susan M. Schwager
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN
| | - Jonathan J. Harrington
- Department of Laboratory Medicine and Pathology, Epigenomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN
| | - Melissa R. Snyder
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Keith D. Robertson
- Department of Laboratory Medicine and Pathology, Epigenomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Eric D. Wieben
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN
| | - Nicholas Chia
- Department of Laboratory Medicine and Pathology, Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN
| | - Alexandre Gaspar-Maia
- Department of Laboratory Medicine and Pathology, Epigenomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Mrinal M. Patnaik
- Department of Laboratory Medicine and Pathology, Epigenomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN
| |
Collapse
|
12
|
Todorovski A, Wang TF, Carrier M, Xu Y. CHIP away at the marrow-clot connection: inflammation, clonal hematopoiesis, and thromboembolic disease. Blood Adv 2025; 9:343-353. [PMID: 39561373 PMCID: PMC11787476 DOI: 10.1182/bloodadvances.2024014430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/11/2024] [Accepted: 11/03/2024] [Indexed: 11/21/2024] Open
Abstract
ABSTRACT Both the incidence and prognosis of arterial atherothrombosis and venous thromboembolism are strongly correlated with increasing age. Over the past decade, clonal hematopoiesis of indeterminate potential (CHIP) has been identified as a novel biomarker for cardiovascular disease. Driven by somatic mutations in the hematopoietic system, the epidemiology of CHIP is highly age dependent: among individuals aged ≥70 years in the general population, estimated prevalence of CHIP exceeds 10%. Several additional risk factors for CHIP have emerged in recent years, including smoking, receipt of anticancer therapy, and germ line predispositions. CHIP carriers consistently have higher risk of incident arterial atherothrombosis, even after accounting for traditional cardiovascular risk factors. However, the magnitude of this association varies across studies. In addition, individuals with established cardiovascular disease and CHIP have higher risks of recurrence and all-cause mortality than their non-CHIP counterparts. An association between CHIP carriership and incident venous thromboembolism has recently been made, although additional studies are needed to confirm this finding. No approved therapy exists to modify the cardiovascular risk among CHIP carriers. However, canakinumab showed promise in a post-hoc analyses of patients with TET2-mutated CHIP, and other anti-inflammasome agents are actively under development or evaluation. In this review, we provide an overview of CHIP as a mediator of thromboembolic diseases and discuss emerging therapeutics aimed at intervening on this thrombo-inflammatory nexus.
Collapse
Affiliation(s)
- Angela Todorovski
- Department of Medicine, University of Ottawa and Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Tzu-Fei Wang
- Department of Medicine, University of Ottawa and Ottawa Hospital Research Institute, Ottawa, ON, Canada
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Marc Carrier
- Department of Medicine, University of Ottawa and Ottawa Hospital Research Institute, Ottawa, ON, Canada
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Yan Xu
- Department of Medicine, University of Ottawa and Ottawa Hospital Research Institute, Ottawa, ON, Canada
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
13
|
Lee D, Koo B, Kim S, Byun J, Hong J, Shin DY, Sun CH, Kim J, Song JJ, Jaiswal S, Yoon SS, Kim S, Koh Y. Increased local DNA methylation disorder in AMLs with DNMT3A-destabilizing variants and its clinical implication. Nat Commun 2025; 16:560. [PMID: 39794314 PMCID: PMC11724044 DOI: 10.1038/s41467-024-55691-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 12/21/2024] [Indexed: 01/13/2025] Open
Abstract
The mechanistic link between the complex mutational landscape of de novo methyltransferase DNMT3A and the pathology of acute myeloid leukemia (AML) has not been clearly elucidated so far. Motivated by a recent discovery of the significance of DNMT3A-destabilizing mutations (DNMT3AINS) in AML, we here investigate the common characteristics of DNMT3AINS AML methylomes through computational analyses. We present that methylomes of DNMT3AINS AMLs are considerably different from those of DNMT3AR882 AMLs in that they exhibit increased intratumor DNA methylation heterogeneity in bivalent chromatin domains. This epigenetic heterogeneity was associated with the transcriptional variability of developmental and membrane-associated factors shaping stem cell niche, and also was a predictor of the response of AML cells to hypomethylating agents, implying that the survival of AML cells depends on stochastic DNA methylations at bivalent domains. Altogether, our work provides a novel mechanistic model suggesting the genomic origin of the aberrant epigenomic heterogeneity in disease conditions.
Collapse
Affiliation(s)
- Dohoon Lee
- Bioinformatics Institute, Seoul National University, Seoul, Republic of Korea
- BK21 FOUR Intelligence Computing, Seoul National University, Seoul, Republic of Korea
| | - Bonil Koo
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
- AIGENDRUG Co. Ltd, Seoul, Republic of Korea
| | - Seokhyeon Kim
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Jamin Byun
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Center for Medical Innovation, Seoul National University Hospital, Seoul, Republic of Korea
| | - Junshik Hong
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Center for Medical Innovation, Seoul National University Hospital, Seoul, Republic of Korea
| | - Dong-Yeop Shin
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Center for Medical Innovation, Seoul National University Hospital, Seoul, Republic of Korea
| | | | - Jaesung Kim
- Department of Biological Sciences, KI for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Ji-Joon Song
- Department of Biological Sciences, KI for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | | | - Sung-Soo Yoon
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea.
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
- Center for Medical Innovation, Seoul National University Hospital, Seoul, Republic of Korea.
| | - Sun Kim
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea.
- Interdisciplinary Program in Artificial Intelligence, Seoul National University, Seoul, Republic of Korea.
- Department of Computer Science and Engineering, Seoul National University, Seoul, Republic of Korea.
- MOGAM Institute for Biomedical Research, Yong-in, Republic of Korea.
| | - Youngil Koh
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea.
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
- Center for Medical Innovation, Seoul National University Hospital, Seoul, Republic of Korea.
- Genome Opinion Inc, Seoul, Republic of Korea.
| |
Collapse
|
14
|
Phillips GS, Knapp M, Olsen KC, Martin W, Hayes-Lattin B, Chung J. Multisystem ALK-Positive Histiocytosis With DCTN1::ALK Fusion in an Adult, Responsive to Alectinib: Case Report and Literature Review. J Cutan Pathol 2025; 52:63-71. [PMID: 39403984 DOI: 10.1111/cup.14732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/09/2024] [Accepted: 10/01/2024] [Indexed: 12/19/2024]
Abstract
Anaplastic lymphoma kinase (ALK)-positive histiocytosis has emerged as a clinically relevant diagnosis featuring a wide span of clinical presentations, which are unified by the presence of ALK-positive histiocytes on histopathology and molecular drivers involving the ALK kinase gene. This report presents an adult case of multisystem ALK-positive histiocytosis with xanthogranuloma-like features on histopathology that was responsive to ALK inhibition, and includes a review of ALK-positive histiocytoses with cutaneous involvement reported in the literature. A 56-year-old male developed a widespread eruption of red-brown papules on the face, trunk, and upper extremities. Histopathological evaluation revealed a well-circumscribed, nodular dermal infiltrate of epithelioid histiocytes with Touton giant cells, rare bizarre multinucleated cells, and focal emperipolesis. The lesional cells were positive for CD68 and ALK1 immunohistochemical stains, and negative for CD1a. Next-generation sequencing identified a DCTN1::ALK fusion. On imaging, he was found to have bone, lung, soft tissue, and salivary gland involvement. ALK inhibition was initiated with alectinib, resulting in rapid improvement of cutaneous lesions and eventual complete resolution of abnormal imaging findings, which was sustained at 24 months of follow-up. This case adds to the spectrum of ALK-positive histiocytoses and further demonstrates the positive response with targeted therapy.
Collapse
Affiliation(s)
- Gregory S Phillips
- Department of Dermatology, Oregon Health & Science University, Portland, Oregon, USA
| | - Maxwell Knapp
- Department of Pathology, Oregon Health & Science University, Portland, Oregon, USA
| | | | | | - Brandon Hayes-Lattin
- Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Jina Chung
- Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
15
|
Nakanishi M. Cellular senescence as a source of chronic microinflammation that promotes the aging process. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2025; 101:224-237. [PMID: 40222899 DOI: 10.2183/pjab.101.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Why and how do we age? This physiological phenomenon that we all experience remains a great mystery, largely unexplained even in this age of scientific and technological progress. Aging is a significant risk factor for numerous diseases, including cancer. However, underlying mechanisms responsible for this association remain to be elucidated. Recent findings have elucidated the significance of the accumulation of senescent cells and other inflammatory cells in organs and tissues with age, and their deleterious effects, such as the induction of inflammation in the microenvironment, as underlying factors contributing to organ dysfunction and disease development. Cellular senescence is a cellular phenomenon characterized by a permanent cessation of cell proliferation and secretion of several proinflammatory cytokines (senescence associated secretory phenotypes). Notably, the elimination of senescent cells from aging individuals has been demonstrated to alleviate age-related organ and tissue dysfunction, as well as various geriatric diseases. This review summarizes the molecular mechanisms by which senescent cells are induced and contribute to age-related diseases, as well as the technologies that ameliorate them.
Collapse
Affiliation(s)
- Makoto Nakanishi
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| |
Collapse
|
16
|
Sezer A, Güneş ÖK, Kurucu B. DNMT3A-related overgrowth syndrome presenting with immune thrombocytopenic purpura. Curr Res Transl Med 2025; 73:103478. [PMID: 39579514 DOI: 10.1016/j.retram.2024.103478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/04/2024] [Accepted: 11/12/2024] [Indexed: 11/25/2024]
Abstract
Tatton-Brown-Rahman syndrome (TBRS) is characterized by overgrowth, cognitive deficiency, and distinctive facial features resulting from germline DNMT3A variants. This report describes a four-year-old female diagnosed with TBRS due to a de novo and novel heterozygous DNMT3A variant, NM_022552.5:c.1627G>C:p.(Gly543Arg). Alongside typical TBRS features, she had a history of hospitalization for immune thrombocytopenic purpura (ITP) at five months old. While ITP is clinically diagnosed and has multifactorial origins, studies have demonstrated its autoimmune and genetic components. DNMT3A protein, responsible for DNA methylation, regulates various cellular processes, including hematopoiesis and autoimmunity. It has been reported that ITP patients exhibit decreased expression of DNMT3A, and specific variants linked to decreased platelet counts have been identified in a murine model for TBRS. Additionally, some case reports have been described with multiple cytopenias and thrombocytopenia without hematologic malignancy. In conclusion, this report emphasizes for the first time the occurrence of ITP in a TBRS patient and suggests that autoimmune and hematologic disorders may need to be considered in the follow-up of these patients. However, further evidence is required to establish a direct correlation.
Collapse
Affiliation(s)
- Abdullah Sezer
- Department of Medical Genetics, Etlik City Hospital, Varlık Neighborhood, Halil Sezai Erkut Street, Ankara, Turkey.
| | - Öznur Kaya Güneş
- Department of Medical Genetics, Etlik City Hospital, Varlık Neighborhood, Halil Sezai Erkut Street, Ankara, Turkey
| | - Burçak Kurucu
- Division of Pediatric Hematology, Department of Pediatrics, Etlik City Hospital, Ankara, Yenimahalle CP 06170, Turkey
| |
Collapse
|
17
|
Zhang J, Zhao Y, Liang R, Zhou X, Wang Z, Yang C, Gao L, Zheng Y, Shao H, Su Y, Cui W, Jia L, Yang J, Wu C, Wang L. DNMT3A loss drives a HIF-1-dependent synthetic lethality to HDAC6 inhibition in non-small cell lung cancer. Acta Pharm Sin B 2024; 14:5219-5234. [PMID: 39807333 PMCID: PMC11725086 DOI: 10.1016/j.apsb.2024.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/18/2024] [Accepted: 07/26/2024] [Indexed: 01/16/2025] Open
Abstract
DNMT3A encodes a DNA methyltransferase involved in development, cell differentiation, and gene transcription, which is mutated and aberrant-expressed in cancers. Here, we revealed that loss of DNMT3A promotes malignant phenotypes in lung cancer. Based on the epigenetic inhibitor library synthetic lethal screening, we found that small-molecule HDAC6 inhibitors selectively killed DNMT3A-defective NSCLC cells. Knockdown of HDAC6 by siRNAs reduced cell growth and induced apoptosis in DNMT3A-defective NSCLC cells. However, sensitive cells became resistant when DNMT3A was rescued. Furthermore, the selectivity to HDAC6 inhibition was recapitulated in mice, where an HDAC6 inhibitor retarded tumor growth established from DNMT3A-defective but not DNMT3A parental NSCLC cells. Mechanistically, DNMT3A loss resulted in the upregulation of HDAC6 through decreasing its promoter CpG methylation and enhancing transcription factor RUNX1 binding. Notably, our results indicated that HIF-1 pathway was activated in DNMT3A-defective cells whereas inactivated by HDAC6 inhibition. Knockout of HIF-1 contributed to the elimination of synthetic lethality between DNMT3A and HDAC6. Interestingly, HIF-1 pathway inhibitors could mimic the selective efficacy of HDAC6 inhibition in DNMT3A-defective cells. These results demonstrated HDAC6 as a HIF-1-dependent vulnerability of DNMT3A-defective cancers. Together, our findings identify HDAC6 as a potential HIF-1-dependent therapeutic target for the treatment of DNMT3A-defective cancers like NSCLC.
Collapse
Affiliation(s)
- Jiayu Zhang
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yingxi Zhao
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ruijuan Liang
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xue Zhou
- Department of Biochemistry and Molecular Biology, School of Medical Devices, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhonghua Wang
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Cheng Yang
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lingyue Gao
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yonghao Zheng
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hui Shao
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yang Su
- Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Wei Cui
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lina Jia
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jingyu Yang
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chunfu Wu
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lihui Wang
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
18
|
Jafari PA, Bagheri R, Lavasani S, Goudarzi S. DNMT3A-R882: a mutation with many paradoxes. Ann Hematol 2024; 103:4981-4988. [PMID: 38969930 DOI: 10.1007/s00277-024-05874-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
Understanding the underlying mechanism of acute myeloid leukemia (AML) has led to the discovery of novel biomarkers to help predict, treat and monitor leukemia. DNA (cytosine-5)-methyltransferase 3 A (DNMT3A) is considered a prognostic and therapeutic epigenetic target in AML patients with a hotspot mutation of R882. R882 mutation is associated with impaired differentiation of Hematopoietic stem cells in the bone marrow and disease progression. The prevalence of R882 mutation varied in different ethnicities and countries, and similarly, its prognostic impact differed among numerous studies. Nevertheless, the co-occurrence of mutations in R882 with NPM1 and FLT3 has been reported more frequently and is associated with a worse prognosis. These studies also suggest diverse results regarding bone marrow transplantation response as a treatment, while chemoresistance is reached as a conclusive outcome These findings highlight the crucial need for an in-depth discussion on the significance of the R882 mutation in AML patients. Understanding its impact on leukemic transformation, prognosis, and treatment is vital for advancing clinical implications.
Collapse
Affiliation(s)
| | - Ramin Bagheri
- Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | |
Collapse
|
19
|
Dai W, Qiao X, Fang Y, Guo R, Bai P, Liu S, Li T, Jiang Y, Wei S, Na Z, Xiao X, Li D. Epigenetics-targeted drugs: current paradigms and future challenges. Signal Transduct Target Ther 2024; 9:332. [PMID: 39592582 PMCID: PMC11627502 DOI: 10.1038/s41392-024-02039-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/14/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Epigenetics governs a chromatin state regulatory system through five key mechanisms: DNA modification, histone modification, RNA modification, chromatin remodeling, and non-coding RNA regulation. These mechanisms and their associated enzymes convey genetic information independently of DNA base sequences, playing essential roles in organismal development and homeostasis. Conversely, disruptions in epigenetic landscapes critically influence the pathogenesis of various human diseases. This understanding has laid a robust theoretical groundwork for developing drugs that target epigenetics-modifying enzymes in pathological conditions. Over the past two decades, a growing array of small molecule drugs targeting epigenetic enzymes such as DNA methyltransferase, histone deacetylase, isocitrate dehydrogenase, and enhancer of zeste homolog 2, have been thoroughly investigated and implemented as therapeutic options, particularly in oncology. Additionally, numerous epigenetics-targeted drugs are undergoing clinical trials, offering promising prospects for clinical benefits. This review delineates the roles of epigenetics in physiological and pathological contexts and underscores pioneering studies on the discovery and clinical implementation of epigenetics-targeted drugs. These include inhibitors, agonists, degraders, and multitarget agents, aiming to identify practical challenges and promising avenues for future research. Ultimately, this review aims to deepen the understanding of epigenetics-oriented therapeutic strategies and their further application in clinical settings.
Collapse
Affiliation(s)
- Wanlin Dai
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xinbo Qiao
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuanyuan Fang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Renhao Guo
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Peng Bai
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Shuang Liu
- Shenyang Maternity and Child Health Hospital, Shenyang, China
| | - Tingting Li
- Department of General Internal Medicine VIP Ward, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Yutao Jiang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shuang Wei
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhijing Na
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China.
| | - Xue Xiao
- Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China.
| | - Da Li
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China.
- Key Laboratory of Reproductive Dysfunction Diseases and Fertility Remodeling of Liaoning Province, Shenyang, China.
| |
Collapse
|
20
|
Liu Y, Suryatenggara J, Wong H, Jayasinghe M, Tang J, Tan H, Kwon J, Zhou Q, Ummarino S, Ebralidze A, Le M, Doench J, Chai L, Benoukraf T, Hiwase D, Thomas D, Di Ruscio A, Tenen D, Bassal M. Methylation Mesa define functional regulatory elements for targeted gene activation. RESEARCH SQUARE 2024:rs.3.rs-4359582. [PMID: 39483908 PMCID: PMC11527235 DOI: 10.21203/rs.3.rs-4359582/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
DNA methylation and mRNA expression correlations are often presented with inconsistent evidence supporting causal regulation. We hypothesized that causal regulatory methylation elements would exhibit heightened demethylation sensitivity. To investigate, we analyzed 20 whole-genomic bisulfite sequenced samples before and after demethylation and identified narrow-width (45-294 bp) elements within a short plateau, termed Methylation Mesa (MM). The Mesa signature was conserved across species and was independent of CpG islands. Mesa also demonstrate high concordance with primed and active histone marks. To assess causality, we developed CRISPR-DiR, a highly precise targeted demethylation technology. Targeted demethylation of a Mesa triggers locus and distal chromatin rewiring events that initiate mRNA expression significantly greater than promoter-CpG island targeting. Thus, Mesa are self-sustaining epigenetic regulatory elements that maintain long-term gene activation through focused demethylation only within the Mesa core, resulting in subsequent histone modifications and chromatin rewiring events that interact with distal elements also marked as Mesas.
Collapse
Affiliation(s)
- Y.V. Liu
- Cancer Science Institute of Singapore, 117599, Singapore
- Genetic Perturbation Platform, Broad Institute, Cambridge, MA 02142, USA
| | | | - H. Wong
- Cancer Science Institute of Singapore, 117599, Singapore
| | - M.K. Jayasinghe
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 119077, Singapore
| | - J.P. Tang
- Cancer Science Institute of Singapore, 117599, Singapore
| | - H.K. Tan
- Cancer Science Institute of Singapore, 117599, Singapore
| | - J. Kwon
- Cancer Science Institute of Singapore, 117599, Singapore
| | - Q. Zhou
- Cancer Science Institute of Singapore, 117599, Singapore
| | - S. Ummarino
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115 USA
| | - A.K. Ebralidze
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115 USA
| | - M.T.N. Le
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 119077, Singapore
| | - J.G. Doench
- Genetic Perturbation Platform, Broad Institute, Cambridge, MA 02142, USA
| | - L. Chai
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - T. Benoukraf
- Cancer Science Institute of Singapore, 117599, Singapore
- Discipline of Genetics, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, A1B 3V6, Canada
| | - D. Hiwase
- Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, South Australia
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia
| | - D. Thomas
- Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, South Australia
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia
| | - A. Di Ruscio
- Department of Translational Medicine, University of Eastern Piedmont, Novara, 28100, Italy
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, 330 Brookline Avenue Boston, MA 02215
| | - D.G. Tenen
- Cancer Science Institute of Singapore, 117599, Singapore
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115 USA
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - M.A. Bassal
- Cancer Science Institute of Singapore, 117599, Singapore
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115 USA
| |
Collapse
|
21
|
Dunn WG, McLoughlin MA, Vassiliou GS. Clonal hematopoiesis and hematological malignancy. J Clin Invest 2024; 134:e180065. [PMID: 39352393 PMCID: PMC11444162 DOI: 10.1172/jci180065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024] Open
Abstract
Clonal hematopoiesis (CH), the expansion of hematopoietic stem cells and their progeny driven by somatic mutations in leukemia-associated genes, is a common phenomenon that rises in prevalence with advancing age to affect most people older than 70 years. CH remains subclinical in most carriers, but, in a minority, it progresses to a myeloid neoplasm, such as acute myeloid leukemia, myelodysplastic syndrome, or myeloproliferative neoplasm. Over the last decade, advances in our understanding of CH, its molecular landscape, and the risks associated with different driver gene mutations have culminated in recent developments that allow for a more precise estimation of myeloid neoplasia risk in CH carriers. In turn, this is leading to the development of translational and clinical programs to intercept and prevent CH from developing into myeloid neoplasia. Here, we give an overview of the spectrum of CH driver mutations, what is known about their pathophysiology, and how this informs the risk of incident myeloid malignancy.
Collapse
Affiliation(s)
- William G. Dunn
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Trust, Cambridge, United Kingdom
| | - Matthew A. McLoughlin
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - George S. Vassiliou
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Trust, Cambridge, United Kingdom
| |
Collapse
|
22
|
Kawashima N, Kubota Y, Bravo-Perez C, Guarnera L, Williams ND, Durmaz A, Witt M, Ahmed A, Gurnari C, Maciejewski JP, Visconte V. Landscape of biallelic DNMT3A mutant myeloid neoplasms. J Hematol Oncol 2024; 17:87. [PMID: 39334207 PMCID: PMC11438130 DOI: 10.1186/s13045-024-01607-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
DNA methyltransferase 3 A mutations (DNMT3AMT) are frequent in myeloid neoplasia (MN) and mostly heterozygous. However, cases with multiple DNMT3AMT can be also encountered but their clinical and genetic landscape remains unexplored. We retrospectively analyzed 533 cases with DNMT3AMT identified out of 5,603 consecutive MNs, of whom 8.4% had multiple DNMT3AMT hits. They were most frequent in acute myeloid leukemia (AML) with R882 variant accounting for 13.3% of the multi-hits. Multiple DNMT3AMT more likely coincided with IDH2 (P = 0.005) and ETV6 (P = 0.044) mutations compared to patients with single DNMT3AMT. When the sum of variant allele frequencies (VAFs) for multiple DNMT3AMT exceeded 60%, we found a significant positive clonal burden correlation of the two DNMT3A variants (P < 0.0001) suggesting that they occurred in biallelic configuration. AML patients with biallelic DNMT3A inactivation (n = 52) presented with older age (P = 0.029), higher leukocytes (P < 0.0001) and peripheral blast counts (P = 0.0001) and significantly poorer survival rate (5.6% vs. 47.6% at 2 years; P = 0.002) than monoallelic DNMT3AMT. Multivariate analysis identified biallelic DNMT3AMT (HR 2.65; P = 0.001), male gender (HR 2.05; P = 0.014) and adverse genetic alteration according to the European LeukemiaNet 2022 classification (HR 1.84; P = 0.028) as independent adverse factors for survival, whereas intensive chemotherapy (HR 0.47; P = 0.011) favorably influenced outcomes. Longitudinal molecular analysis of 12 cases with biallelic DNMT3AMT demonstrated that such clones persisted or expanded in 9 relapsed or transformed cases (75%) suggesting the early origin of biallelic hits with strong leukemogenic potential. Our study describes the likelihood that biallelic DNMT3AMT, while rare, are indeed compatible with clonal expansion and thus questions the applicability of synthetic lethality strategies.
Collapse
Affiliation(s)
- Naomi Kawashima
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, 9620 Carnegie Ave, Building NE6-312, Cleveland, OH, 44106, USA
| | - Yasuo Kubota
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, 9620 Carnegie Ave, Building NE6-312, Cleveland, OH, 44106, USA
| | - Carlos Bravo-Perez
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, 9620 Carnegie Ave, Building NE6-312, Cleveland, OH, 44106, USA
- Department of Hematology and Medical Oncology, Hospital Universitario Morales Meseguer, University of Murcia, IMIB-Pascual Parrilla, CIBERER - Instituto de Salud Carlos III, Murcia, Spain
| | - Luca Guarnera
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, 9620 Carnegie Ave, Building NE6-312, Cleveland, OH, 44106, USA
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Nakisha D Williams
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, 9620 Carnegie Ave, Building NE6-312, Cleveland, OH, 44106, USA
| | - Arda Durmaz
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, 9620 Carnegie Ave, Building NE6-312, Cleveland, OH, 44106, USA
| | - Michaela Witt
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, 9620 Carnegie Ave, Building NE6-312, Cleveland, OH, 44106, USA
| | - Arooj Ahmed
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, 9620 Carnegie Ave, Building NE6-312, Cleveland, OH, 44106, USA
| | - Carmelo Gurnari
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, 9620 Carnegie Ave, Building NE6-312, Cleveland, OH, 44106, USA
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Jaroslaw P Maciejewski
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, 9620 Carnegie Ave, Building NE6-312, Cleveland, OH, 44106, USA
| | - Valeria Visconte
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, 9620 Carnegie Ave, Building NE6-312, Cleveland, OH, 44106, USA.
| |
Collapse
|
23
|
Wang T, Cui S, Lyu C, Wang Z, Li Z, Han C, Liu W, Wang Y, Xu R. Molecular precision medicine: Multi-omics-based stratification model for acute myeloid leukemia. Heliyon 2024; 10:e36155. [PMID: 39263156 PMCID: PMC11388765 DOI: 10.1016/j.heliyon.2024.e36155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 08/01/2024] [Accepted: 08/11/2024] [Indexed: 09/13/2024] Open
Abstract
Acute myeloid leukemia (AML), as the most common malignancy of the hematopoietic system, poses challenges in treatment efficacy, relapse, and drug resistance. In this study, we have utilized 151 RNA sequencing datasets, 194 DNA methylation datasets, and 200 somatic mutation datasets from the AML cohort in the TCGA database to develop a multi-omics stratification model. This model enables comparison of prognosis, clinical features, gene mutations, immune microenvironment and drug sensitivity across subgroups. External validation datasets have been sourced from the GEO database, which includes 562 mRNA datasets and 136 miRNA datasets from 984 adult AML patients. Through multi-omics-based stratification model, we classified 126 AML patients into 4 clusters (CS). CS4 had the best prognosis, with the youngest age, highest M3 subtype proportion, fewest copy number alterations, and common mutations in WT1, FLT3, and KIT genes. It showed sensitivity to HDAC inhibitors and BCL-2 inhibitors. Both the M3 subtype and CS4 were identified as independent protective factors for survival. Conversely, CS3 had the worst prognosis due to older age, high copy number alterations, and frequent mutations in RUNX1, DNMT3A, and TP53 genes. Additionally, it showed higher proportions of cytotoxic cells and Tregs, suggesting potential sensitivity to mTOR inhibitors. CS1 had a better prognosis than CS2, with more copy number alterations, while CS2 had higher monocyte proportions. CS1 showed good sensitivity to cytarabine, while CS2 was sensitive to RXR agonists. Both CS1 and CS2, which predominantly featured mutations in FLT3, NPM1, and DNMT3A genes, benefited from FLT3 inhibitors. Using the Kappa test, our stratification model underwent robust validation in the miRNA and mRNA external validation datasets. With advancements in sequencing technology and machine learning algorithms, AML is poised to transition towards multi-omics precision medicine in the future. We aspire for our study to offer new perspectives on multi-drug combination clinical trials and multi-targeted precision medicine for AML.
Collapse
Affiliation(s)
- Teng Wang
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Siyuan Cui
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Hematology, Health Commission of Shandong Province, Shandong, 250014, China
- Institute of Hematology, Shandong University of Traditional Chinese Medicine, Shandong, 250014, China
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong, 250014, China
| | - Chunyi Lyu
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhenzhen Wang
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Hematology, Health Commission of Shandong Province, Shandong, 250014, China
- Institute of Hematology, Shandong University of Traditional Chinese Medicine, Shandong, 250014, China
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong, 250014, China
| | - Zonghong Li
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chen Han
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Weilin Liu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yan Wang
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Hematology, Health Commission of Shandong Province, Shandong, 250014, China
- Institute of Hematology, Shandong University of Traditional Chinese Medicine, Shandong, 250014, China
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong, 250014, China
| | - Ruirong Xu
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Hematology, Health Commission of Shandong Province, Shandong, 250014, China
- Institute of Hematology, Shandong University of Traditional Chinese Medicine, Shandong, 250014, China
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong, 250014, China
| |
Collapse
|
24
|
Park J, Peña-Tauber A, Talozzi L, Greicius MD, Guen YL. Genetic associations with human longevity are enriched for oncogenic genes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.30.24311226. [PMID: 39132489 PMCID: PMC11312667 DOI: 10.1101/2024.07.30.24311226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Human lifespan is shaped by both genetic and environmental exposures and their interaction. To enable precision health, it is essential to understand how genetic variants contribute to earlier death or prolonged survival. In this study, we tested the association of common genetic variants and the burden of rare non-synonymous variants in a survival analysis, using age-at-death (N = 35,551, median [min, max] = 72.4 [40.9, 85.2]), and last-known-age (N = 358,282, median [min, max] = 71.9 [52.6, 88.7]), in European ancestry participants of the UK Biobank. The associations we identified seemed predominantly driven by cancer, likely due to the age range of the cohort. Common variant analysis highlighted three longevity-associated loci: APOE, ZSCAN23, and MUC5B. We identified six genes whose burden of loss-of-function variants is significantly associated with reduced lifespan: TET2, ATM, BRCA2, CKMT1B, BRCA1 and ASXL1. Additionally, in eight genes, the burden of pathogenic missense variants was associated with reduced lifespan: DNMT3A, SF3B1, CHL1, TET2, PTEN, SOX21, TP53 and SRSF2. Most of these genes have previously been linked to oncogenic-related pathways and some are linked to and are known to harbor somatic variants that predispose to clonal hematopoiesis. A direction-agnostic (SKAT-O) approach additionally identified significant associations with C1orf52, TERT, IDH2, and RLIM, highlighting a link between telomerase function and longevity as well as identifying additional oncogenic genes. Our results emphasize the importance of understanding genetic factors driving the most prevalent causes of mortality at a population level, highlighting the potential of early genetic testing to identify germline and somatic variants increasing one's susceptibility to cancer and/or early death.
Collapse
Affiliation(s)
- Junyoung Park
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Andrés Peña-Tauber
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Lia Talozzi
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Michael D. Greicius
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Yann Le Guen
- Quantitative Sciences Unit, Department of Medicine, Stanford University, Stanford, CA, 94304, USA
| |
Collapse
|
25
|
Chen X, Guo Y, Zhao T, Lu J, Fang J, Wang Y, Wang GG, Song J. Structural basis for the H2AK119ub1-specific DNMT3A-nucleosome interaction. Nat Commun 2024; 15:6217. [PMID: 39043678 PMCID: PMC11266573 DOI: 10.1038/s41467-024-50526-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 07/12/2024] [Indexed: 07/25/2024] Open
Abstract
Isoform 1 of DNA methyltransferase DNMT3A (DNMT3A1) specifically recognizes nucleosome monoubiquitylated at histone H2A lysine-119 (H2AK119ub1) for establishment of DNA methylation. Mis-regulation of this process may cause aberrant DNA methylation and pathogenesis. However, the molecular basis underlying DNMT3A1-nucleosome interaction remains elusive. Here we report the cryo-EM structure of DNMT3A1's ubiquitin-dependent recruitment (UDR) fragment complexed with H2AK119ub1-modified nucleosome. DNMT3A1 UDR occupies an extensive nucleosome surface, involving the H2A-H2B acidic patch, a surface groove formed by H2A and H3, nucleosomal DNA, and H2AK119ub1. The DNMT3A1 UDR's interaction with H2AK119ub1 affects the functionality of DNMT3A1 in cells in a context-dependent manner. Our structural and biochemical analysis also reveals competition between DNMT3A1 and JARID2, a cofactor of polycomb repression complex 2 (PRC2), for nucleosome binding, suggesting the interplay between different epigenetic pathways. Together, this study reports a molecular basis for H2AK119ub1-dependent DNMT3A1-nucleosome association, with important implications in DNMT3A1-mediated DNA methylation in development.
Collapse
Affiliation(s)
- Xinyi Chen
- Department of Biochemistry, University of California, Riverside, CA, 92521, USA
| | - Yiran Guo
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Ting Zhao
- Environmental Toxicology Graduate Program, University of California, Riverside, CA, 92521, USA
| | - Jiuwei Lu
- Department of Biochemistry, University of California, Riverside, CA, 92521, USA
| | - Jian Fang
- Department of Biochemistry, University of California, Riverside, CA, 92521, USA
| | - Yinsheng Wang
- Environmental Toxicology Graduate Program, University of California, Riverside, CA, 92521, USA
- Department of Chemistry, University of California, Riverside, CA, 92521, USA
| | - Gang Greg Wang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA.
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA.
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA.
| | - Jikui Song
- Department of Biochemistry, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
26
|
Rogers JH, Rosen A, Reyes JM, Ketkar S, Conneely SE, Gupta R, Yang L, Miller MB, Medrano G, Aguilar R, Uchenda N, Goodell MA, Rau RE. Dose-dependent effects of Dnmt3a in an inducible murine model of Kras G12D-driven leukemia. Exp Hematol 2024; 135:104248. [PMID: 38834136 PMCID: PMC11288274 DOI: 10.1016/j.exphem.2024.104248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/06/2024]
Abstract
DNMT3A mutations are frequently found in clonal hematopoiesis and a variety of hematologic malignancies, including acute myeloid leukemia. An assortment of mouse models have been engineered to explore the tumorigenic potential and malignant lineage bias due to loss of function of DNMT3A in consort with commonly comutated genes in myeloid malignancies, such as Flt3, Nras, Kras, and c-Kit. We employed several tamoxifen-inducible Cre-ERT2 murine model systems to study the effects of constitutively active KrasG12D-driven myeloid leukemia (Kras) development together with heterozygous (3aHet) or homozygous Dnmt3a deletion (3aKO). Due to the rapid generation of diverse nonhematologic tumors appearing after tamoxifen induction, we employed a transplantation model. With pretransplant tamoxifen induction, most Kras mice died quickly of T-cell malignancies regardless of Dnmt3a status. Using posttransplant induction, we observed a dose-dependent effect of DNMT3A depletion that skewed the leukemic phenotype toward a myeloid lineage. Specifically, 64% of 3aKO/Kras mice had exclusively myeloid disease compared with 36% of 3aHet/Kras and only 13% of Kras mice. Here, 3aKO combined with Kras led to increased disease burden, multiorgan infiltration, and faster disease progression. DOT1L inhibition exerted profound antileukemic effects in malignant 3aKO/Kras cells, but not malignant cells with Kras mutation alone, consistent with the known sensitivity of DNMT3A-mutant leukemia to DOT1L inhibition. RNAseq from malignant myeloid cells revealed that biallelic Dnmt3a deletion was associated with loss of cell-cycle regulation, MYC activation, and TNF⍺ signaling. Overall, we developed a robust model system for mechanistic and preclinical investigations of acute myeloid leukemia with DNMT3A and Ras-pathway lesions.
Collapse
Affiliation(s)
- Jason H Rogers
- Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX
| | - Allison Rosen
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX
| | - Jaime M Reyes
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX; Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Shamika Ketkar
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Shannon E Conneely
- Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX; Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX
| | - Rohit Gupta
- Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX; Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Luibin Yang
- Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Matthew B Miller
- Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX
| | - Geraldo Medrano
- Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX
| | - Rogelio Aguilar
- Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX
| | - Nneka Uchenda
- Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX
| | - Margaret A Goodell
- Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX; Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Rachel E Rau
- Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX; Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Department of Pediatrics and the Ben Towne Center for Childhood Cancer Research, Seattle Children's Hospital, University of Washington, Seattle, WA..
| |
Collapse
|
27
|
Usart M, Stetka J, Luque Paz D, Hansen N, Kimmerlin Q, Almeida Fonseca T, Lock M, Kubovcakova L, Karjalainen R, Hao-Shen H, Börsch A, El Taher A, Schulz J, Leroux JC, Dirnhofer S, Skoda RC. Loss of Dnmt3a increases self-renewal and resistance to pegIFN-α in JAK2-V617F-positive myeloproliferative neoplasms. Blood 2024; 143:2490-2503. [PMID: 38493481 PMCID: PMC11208296 DOI: 10.1182/blood.2023020270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/19/2024] Open
Abstract
ABSTRACT Pegylated interferon alfa (pegIFN-α) can induce molecular remissions in patients with JAK2-V617F-positive myeloproliferative neoplasms (MPNs) by targeting long-term hematopoietic stem cells (LT-HSCs). Additional somatic mutations in genes regulating LT-HSC self-renewal, such as DNMT3A, have been reported to have poorer responses to pegIFN-α. We investigated whether DNMT3A loss leads to alterations in JAK2-V617F LT-HSC functions conferring resistance to pegIFN-α treatment in a mouse model of MPN and in hematopoietic progenitors from patients with MPN. Long-term treatment with pegIFN-α normalized blood parameters and reduced splenomegaly and JAK2-V617F chimerism in single-mutant JAK2-V617F (VF) mice. However, pegIFN-α in VF;Dnmt3aΔ/Δ (VF;DmΔ/Δ) mice worsened splenomegaly and failed to reduce JAK2-V617F chimerism. Furthermore, LT-HSCs from VF;DmΔ/Δ mice compared with VF were less prone to accumulate DNA damage and exit dormancy upon pegIFN-α treatment. RNA sequencing showed that IFN-α induced stronger upregulation of inflammatory pathways in LT-HSCs from VF;DmΔ/Δ than from VF mice, indicating that the resistance of VF;DmΔ/Δ LT-HSC was not due to failure in IFN-α signaling. Transplantations of bone marrow from pegIFN-α-treated VF;DmΔ/Δ mice gave rise to more aggressive disease in secondary and tertiary recipients. Liquid cultures of hematopoietic progenitors from patients with MPN with JAK2-V617F and DNMT3A mutation showed increased percentages of JAK2-V617F-positive colonies upon IFN-α exposure, whereas in patients with JAK2-V617F alone, the percentages of JAK2-V617F-positive colonies decreased or remained unchanged. PegIFN-α combined with 5-azacytidine only partially overcame resistance in VF;DmΔ/Δ mice. However, this combination strongly decreased the JAK2-mutant allele burden in mice carrying VF mutation only, showing potential to inflict substantial damage preferentially to the JAK2-mutant clone.
Collapse
Affiliation(s)
- Marc Usart
- Department of Biomedicine, Experimental Hematology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Jan Stetka
- Department of Biomedicine, Experimental Hematology, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Biology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Damien Luque Paz
- University of Angers, Nantes Université, Centre Hospitalier Universitaire Angers, INSERM, Centre National de la Recherche Scientifique, Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes Angers, Angers, France
| | - Nils Hansen
- Department of Biomedicine, Experimental Hematology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Quentin Kimmerlin
- Department of Biomedicine, Experimental Hematology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Tiago Almeida Fonseca
- Department of Biomedicine, Experimental Hematology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Melissa Lock
- Department of Biomedicine, Experimental Hematology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Lucia Kubovcakova
- Department of Biomedicine, Experimental Hematology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Riikka Karjalainen
- Department of Biomedicine, Experimental Hematology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Hui Hao-Shen
- Department of Biomedicine, Experimental Hematology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Anastasiya Börsch
- Department of Biomedicine, Bioinformatics, University of Basel and University Hospital Basel, Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Athimed El Taher
- Department of Biomedicine, Bioinformatics, University of Basel and University Hospital Basel, Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Jessica Schulz
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | | | - Stefan Dirnhofer
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Radek C. Skoda
- Department of Biomedicine, Experimental Hematology, University Hospital Basel and University of Basel, Basel, Switzerland
| |
Collapse
|
28
|
Patnaik MM, Tefferi A. Chronic myelomonocytic leukemia: 2024 update on diagnosis, risk stratification and management. Am J Hematol 2024; 99:1142-1165. [PMID: 38450850 PMCID: PMC11096042 DOI: 10.1002/ajh.27271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 03/08/2024]
Abstract
DISEASE OVERVIEW Chronic myelomonocytic leukemia (CMML) is a clonal hematopoietic stem cell disorder with overlapping features of myelodysplastic syndromes and myeloproliferative neoplasms, characterized by prominent monocytosis and an inherent risk for leukemic transformation (~15%-20% over 3-5 years). DIAGNOSIS Newly revised diagnostic criteria include sustained (>3 months) peripheral blood (PB) monocytosis (≥0.5 × 109/L; monocytes ≥10% of leukocyte count), consistent bone marrow (BM) morphology, <20% BM or PB blasts (including promonocytes), and cytogenetic or molecular evidence of clonality. Cytogenetic abnormalities occur in ~30% of patients, while >95% harbor somatic mutations: TET2 (~60%), SRSF2 (~50%), ASXL1 (~40%), RAS pathway (~30%), and others. The presence of ASXL1 and DNMT3A mutations and absence of TET2 mutations negatively impact overall survival (ASXL1WT/TET2MT genotype being favorable). RISK STRATIFICATION Several risk models serve similar purposes in identifying high-risk patients that are considered for allogeneic stem cell transplant (ASCT) earlier than later. Risk factors in the Mayo Molecular Model (MMM) include presence of truncating ASXL1 mutations, absolute monocyte count >10 × 109/L, hemoglobin <10 g/dL, platelet count <100 × 109/L, and the presence of circulating immature myeloid cells; the resulting 4-tiered risk categorization includes high (≥3 risk factors), intermediate-2 (2 risk factors), intermediate-1 (1 risk factor), and low (no risk factors); the corresponding median survivals were 16, 31, 59, and 97 months. CMML is also classified as being "myeloproliferative (MP-CMML)" or "myelodysplastic (MD-CMML)," based on the presence or absence of leukocyte count of ≥13 × 109/L. TREATMENT ASCT is the only treatment modality that secures cure or long-term survival and is appropriate for MMM high/intermediate-2 risk disease. Drug therapy is currently not disease-modifying and includes hydroxyurea and hypomethylating agents; a recent phase-3 study (DACOTA) comparing hydroxyurea and decitabine, in high-risk MP-CMML, showed similar overall survival at 23.1 versus 18.4 months, respectively, despite response rates being higher for decitabine (56% vs. 31%). UNIQUE DISEASE ASSOCIATIONS These include systemic inflammatory autoimmune diseases, leukemia cutis and lysozyme-induced nephropathy; the latter requires close monitoring of renal function during leukocytosis and is a potential indication for cytoreductive therapy.
Collapse
Affiliation(s)
- Mrinal M Patnaik
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Ayalew Tefferi
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
29
|
Jing Q, Zhou C, Zhang J, Zhang P, Wu Y, Zhou J, Tong X, Li Y, Du J, Wang Y. Role of reactive oxygen species in myelodysplastic syndromes. Cell Mol Biol Lett 2024; 29:53. [PMID: 38616283 PMCID: PMC11017617 DOI: 10.1186/s11658-024-00570-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/27/2024] [Indexed: 04/16/2024] Open
Abstract
Reactive oxygen species (ROS) serve as typical metabolic byproducts of aerobic life and play a pivotal role in redox reactions and signal transduction pathways. Contingent upon their concentration, ROS production not only initiates or stimulates tumorigenesis but also causes oxidative stress (OS) and triggers cellular apoptosis. Mounting literature supports the view that ROS are closely interwoven with the pathogenesis of a cluster of diseases, particularly those involving cell proliferation and differentiation, such as myelodysplastic syndromes (MDS) and chronic/acute myeloid leukemia (CML/AML). OS caused by excessive ROS at physiological levels is likely to affect the functions of hematopoietic stem cells, such as cell growth and self-renewal, which may contribute to defective hematopoiesis. We review herein the eminent role of ROS in the hematological niche and their profound influence on the progress of MDS. We also highlight that targeting ROS is a practical and reliable tactic for MDS therapy.
Collapse
Affiliation(s)
- Qiangan Jing
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
- HEALTH BioMed Research & Development Center, Health BioMed Co., Ltd, Ningbo, 315803, Zhejiang, China
| | - Chaoting Zhou
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Junyu Zhang
- Department of Hematology, Lishui Central Hospital, Lishui, 323000, Zhejiang, China
| | - Ping Zhang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Yunyi Wu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Junyu Zhou
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Xiangmin Tong
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, Zhejiang, China
| | - Yanchun Li
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, Zhejiang, China.
| | - Jing Du
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
| | - Ying Wang
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, Zhejiang, China.
| |
Collapse
|
30
|
Lu J, Guo Y, Yin J, Chen J, Wang Y, Wang GG, Song J. Structure-guided functional suppression of AML-associated DNMT3A hotspot mutations. Nat Commun 2024; 15:3111. [PMID: 38600075 PMCID: PMC11006857 DOI: 10.1038/s41467-024-47398-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 03/26/2024] [Indexed: 04/12/2024] Open
Abstract
DNA methyltransferases DNMT3A- and DNMT3B-mediated DNA methylation critically regulate epigenomic and transcriptomic patterning during development. The hotspot DNMT3A mutations at the site of Arg822 (R882) promote polymerization, leading to aberrant DNA methylation that may contribute to the pathogenesis of acute myeloid leukemia (AML). However, the molecular basis underlying the mutation-induced functional misregulation of DNMT3A remains unclear. Here, we report the crystal structures of the DNMT3A methyltransferase domain, revealing a molecular basis for its oligomerization behavior distinct to DNMT3B, and the enhanced intermolecular contacts caused by the R882H or R882C mutation. Our biochemical, cellular, and genomic DNA methylation analyses demonstrate that introducing the DNMT3B-converting mutations inhibits the R882H-/R882C-triggered DNMT3A polymerization and enhances substrate access, thereby eliminating the dominant-negative effect of the DNMT3A R882 mutations in cells. Together, this study provides mechanistic insights into DNMT3A R882 mutations-triggered aberrant oligomerization and DNA hypomethylation in AML, with important implications in cancer therapy.
Collapse
Affiliation(s)
- Jiuwei Lu
- Department of Biochemistry, University of California, Riverside, CA, USA
| | - Yiran Guo
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA
| | - Jiekai Yin
- Environmental Toxicology Graduate Program, University of California, Riverside, CA, USA
| | - Jianbin Chen
- Department of Biochemistry, University of California, Riverside, CA, USA
| | - Yinsheng Wang
- Environmental Toxicology Graduate Program, University of California, Riverside, CA, USA
- Department of Chemistry, University of California, Riverside, CA, USA
| | - Gang Greg Wang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA.
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA.
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA.
| | - Jikui Song
- Department of Biochemistry, University of California, Riverside, CA, USA.
- Environmental Toxicology Graduate Program, University of California, Riverside, CA, USA.
| |
Collapse
|
31
|
Demirkiran N, Aydin B, Pehlivan M, Yuce Z, Sercan HO. Study of the effect of sFRP1 protein on molecules involved in the regulation of DNA methylation in CML cell line. Med Oncol 2024; 41:109. [PMID: 38592567 DOI: 10.1007/s12032-024-02336-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/20/2024] [Indexed: 04/10/2024]
Abstract
Wnt-signaling pathway plays a crucial role in the pathogenesis and progression of Chronic Myeloid Leukemia (CML). sFRP1 is involved in the suppression of the Wnt-signaling pathway and has been shown to be epigenetically silenced by promoter hypermethylation during CML progression. DNMT3A plays a crucial role in promoter hypermethylation and is responsible for establishing methylation patterns. We aimed to analyze the relationship between sFRP1 expression and DNMT3A, TET1, TET2 and TET3 proteins that are responsible for maintaining cellular methylation patterns; along with miRNAs miR144-3p and miR-767-5p that are known to be associated with these proteins. CML cell lines K562 and K562S which stably expresses sFRP1, were used to compare the changes in miR144-3p and miR-767-5p expression. DNMT3A, TET1, TET2 and TET3 protein levels were analyzed by Western blot. In K562S cells the expression of miR-144-3p and miR-767-5p were decreased along with DNMT3A and TET1 protein levels. On the contrary, TET2 protein was increased. Our results support other reports involving sFRP1 and methylation dynamics; as well as opening new avenues of exploration. Our data supports the conclusion that re-expression of sFRP1 protein alters the expression of factors that play important roles in the overall methylation patterns in the leukemic cell line K562.
Collapse
Affiliation(s)
- Nazli Demirkiran
- Department of Medical Biology and Genetics, Dokuz Eylul University Faculty of Medicine, Inciralti, 35340, Izmir, Turkey
| | - Bengusu Aydin
- Department of Medical Biology and Genetics, Dokuz Eylul University Faculty of Medicine, Inciralti, 35340, Izmir, Turkey
| | - Melek Pehlivan
- Department of Medical Laboratory Techniques, Izmir Katip Celebi University, Vocational School of Health Services, Izmir, Turkey
| | - Zeynep Yuce
- Department of Medical Biology and Genetics, Dokuz Eylul University Faculty of Medicine, Inciralti, 35340, Izmir, Turkey
| | - H Ogun Sercan
- Department of Medical Biology and Genetics, Dokuz Eylul University Faculty of Medicine, Inciralti, 35340, Izmir, Turkey.
| |
Collapse
|
32
|
Xu S, Yuan Z, Jiang C, Chen W, Li Q, Chen T. DNMT3A Cooperates with YAP/TAZ to Drive Gallbladder Cancer Metastasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308531. [PMID: 38380551 PMCID: PMC11040361 DOI: 10.1002/advs.202308531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/07/2024] [Indexed: 02/22/2024]
Abstract
Gallbladder cancer (GBC) is an extremely lethal malignancy with aggressive behaviors, including liver or distant metastasis; however, the underlying mechanisms driving the metastasis of GBC remain poorly understood. In this study, it is found that DNA methyltransferase DNMT3A is highly expressed in GBC tumor tissues compared to matched adjacent normal tissues. Clinicopathological analysis shows that DNMT3A is positively correlated with liver metastasis and poor overall survival outcomes in patients with GBC. Functional analysis confirms that DNMT3A promotes the metastasis of GBC cells in a manner dependent on its DNA methyltransferase activity. Mechanistically, DNMT3A interacts with and is recruited by YAP/TAZ to recognize and access the CpG island within the CDH1 promoter and generates hypermethylation of the CDH1 promoter, which leads to transcriptional silencing of CDH1 and accelerated epithelial-to-mesenchymal transition. Using tissue microarrays, the association between the expression of DNMT3A, YAP/TAZ, and CDH1 is confirmed, which affects the metastatic ability of GBC. These results reveal a novel mechanism through which DNMT3A recruitment by YAP/TAZ guides DNA methylation to drive GBC metastasis and provide insights into the treatment of GBC metastasis by targeting the functional connection between DNMT3A and YAP/TAZ.
Collapse
Affiliation(s)
- Sunwang Xu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200125, China
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Zhiqing Yuan
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200125, China
| | - Cen Jiang
- Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Wei Chen
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200125, China
| | - Qiwei Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200125, China
| | - Tao Chen
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200125, China
| |
Collapse
|
33
|
Cox LA, Thompson WJ, Mundt KA. Interventional probability of causation (IPoC) with epidemiological and partial mechanistic evidence: benzene vs. formaldehyde and acute myeloid leukemia (AML). Crit Rev Toxicol 2024; 54:252-289. [PMID: 38753561 DOI: 10.1080/10408444.2024.2337435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/25/2024] [Indexed: 05/18/2024]
Abstract
INTRODUCTION Causal epidemiology for regulatory risk analysis seeks to evaluate how removing or reducing exposures would change disease occurrence rates. We define interventional probability of causation (IPoC) as the change in probability of a disease (or other harm) occurring over a lifetime or other specified time interval that would be caused by a specified change in exposure, as predicted by a fully specified causal model. We define the closely related concept of causal assigned share (CAS) as the predicted fraction of disease risk that would be removed or prevented by a specified reduction in exposure, holding other variables fixed. Traditional approaches used to evaluate the preventable risk implications of epidemiological associations, including population attributable fraction (PAF) and the Bradford Hill considerations, cannot reveal whether removing a risk factor would reduce disease incidence. We argue that modern formal causal models coupled with causal artificial intelligence (CAI) and realistically partial and imperfect knowledge of underlying disease mechanisms, show great promise for determining and quantifying IPoC and CAS for exposures and diseases of practical interest. METHODS We briefly review key CAI concepts and terms and then apply them to define IPoC and CAS. We present steps to quantify IPoC using a fully specified causal Bayesian network (BN) model. Useful bounds for quantitative IPoC and CAS calculations are derived for a two-stage clonal expansion (TSCE) model for carcinogenesis and illustrated by applying them to benzene and formaldehyde based on available epidemiological and partial mechanistic evidence. RESULTS Causal BN models for benzene and risk of acute myeloid leukemia (AML) incorporating mechanistic, toxicological and epidemiological findings show that prolonged high-intensity exposure to benzene can increase risk of AML (IPoC of up to 7e-5, CAS of up to 54%). By contrast, no causal pathway leading from formaldehyde exposure to increased risk of AML was identified, consistent with much previous mechanistic, toxicological and epidemiological evidence; therefore, the IPoC and CAS for formaldehyde-induced AML are likely to be zero. CONCLUSION We conclude that the IPoC approach can differentiate between likely and unlikely causal factors and can provide useful upper bounds for IPoC and CAS for some exposures and diseases of practical importance. For causal factors, IPoC can help to estimate the quantitative impacts on health risks of reducing exposures, even in situations where mechanistic evidence is realistically incomplete and individual-level exposure-response parameters are uncertain. This illustrates the strength that can be gained for causal inference by using causal models to generate testable hypotheses and then obtaining toxicological data to test the hypotheses implied by the models-and, where necessary, refine the models. This virtuous cycle provides additional insight into causal determinations that may not be available from weight-of-evidence considerations alone.
Collapse
Affiliation(s)
- Louis A Cox
- Cox Associates and University of Colorado, Denver, CO, USA
| | | | - Kenneth A Mundt
- Independent Consultants in Epidemiology, Amherst, MA, USA
- Adjunct Professor of Epidemiology, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
34
|
Reyes JM, Tovy A, Zhang L, Bortoletto AS, Rosas C, Chen CW, Waldvogel SM, Guzman AG, Aguilar R, Gupta S, Liu L, Buckley MT, Patel KR, Marcogliese AN, Li Y, Curry CV, Rando TA, Brunet A, Parchem RJ, Rau RE, Goodell MA. Hematologic DNMT3A reduction and high-fat diet synergize to promote weight gain and tissue inflammation. iScience 2024; 27:109122. [PMID: 38414863 PMCID: PMC10897855 DOI: 10.1016/j.isci.2024.109122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 12/11/2023] [Accepted: 01/31/2024] [Indexed: 02/29/2024] Open
Abstract
During aging, blood cell production becomes dominated by a limited number of variant hematopoietic stem cell (HSC) clones. Differentiated progeny of variant HSCs are thought to mediate the detrimental effects of such clonal hematopoiesis on organismal health, but the mechanisms are poorly understood. While somatic mutations in DNA methyltransferase 3A (DNMT3A) frequently drive clonal dominance, the aging milieu also likely contributes. Here, we examined in mice the interaction between high-fat diet (HFD) and reduced DNMT3A in hematopoietic cells; strikingly, this combination led to weight gain. HFD amplified pro-inflammatory pathways and upregulated inflammation-associated genes in mutant cells along a pro-myeloid trajectory. Aberrant DNA methylation during myeloid differentiation and in response to HFD led to pro-inflammatory activation and maintenance of stemness genes. These findings suggest that reduced DNMT3A in hematopoietic cells contributes to weight gain, inflammation, and metabolic dysfunction, highlighting a role for DNMT3A loss in the development of metabolic disorders.
Collapse
Affiliation(s)
- Jaime M. Reyes
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Ayala Tovy
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Linda Zhang
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
| | - Angelina S. Bortoletto
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
| | - Carina Rosas
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Chun-Wei Chen
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Sarah M. Waldvogel
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Cancer and Cell Biology Graduate Program, Baylor College of Medicine, Houston, TX, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
| | - Anna G. Guzman
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Rogelio Aguilar
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX, USA
| | - Sinjini Gupta
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Ling Liu
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Paul F. Glenn Center for the Biology of Aging, Stanford University, Palo Alto, CA, USA
| | | | - Kalyani R. Patel
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
| | | | - Yumei Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Choladda V. Curry
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Thomas A. Rando
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Paul F. Glenn Center for the Biology of Aging, Stanford University, Palo Alto, CA, USA
| | - Anne Brunet
- Department of Genetics, Stanford University, Palo Alto, CA, USA
- Paul F. Glenn Center for the Biology of Aging, Stanford University, Palo Alto, CA, USA
| | - Ronald J. Parchem
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Rachel E. Rau
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX, USA
| | - Margaret A. Goodell
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
35
|
Kumar V, Stewart JH. Obesity, bone marrow adiposity, and leukemia: Time to act. Obes Rev 2024; 25:e13674. [PMID: 38092420 DOI: 10.1111/obr.13674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/07/2023] [Accepted: 11/13/2023] [Indexed: 02/28/2024]
Abstract
Obesity has taken the face of a pandemic with less direct concern among the general population and scientific community. However, obesity is considered a low-grade systemic inflammation that impacts multiple organs. Chronic inflammation is also associated with different solid and blood cancers. In addition, emerging evidence demonstrates that individuals with obesity are at higher risk of developing blood cancers and have poorer clinical outcomes than individuals in a normal weight range. The bone marrow is critical for hematopoiesis, lymphopoiesis, and myelopoiesis. Therefore, it is vital to understand the mechanisms by which obesity-associated changes in BM adiposity impact leukemia development. BM adipocytes are critical to maintain homeostasis via different means, including immune regulation. However, obesity increases BM adiposity and creates a pro-inflammatory environment to upregulate clonal hematopoiesis and a leukemia-supportive environment. Obesity further alters lymphopoiesis and myelopoiesis via different mechanisms, which dysregulate myeloid and lymphoid immune cell functions mentioned in the text under different sequentially discussed sections. The altered immune cell function during obesity alters hematological malignancies and leukemia susceptibility. Therefore, obesity-induced altered BM adiposity, immune cell generation, and function impact an individual's predisposition and severity of leukemia, which should be considered a critical factor in leukemia patients.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Surgery, Laboratory of Tumor Immunology and Immunotherapy, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - John H Stewart
- Department of Surgery, Laboratory of Tumor Immunology and Immunotherapy, Morehouse School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
36
|
Jiménez de la Peña M, Rincón-Pérez I, López-Martín S, Albert J, Martín Fernández-Mayoralas D, Fernández-Perrone AL, Jiménez de Domingo A, Tirado P, Calleja-Pérez B, Porta J, Álvarez S, Fernández-Jaén A. Tatton-Brown-Rahman syndrome: Novel pathogenic variants and new neuroimaging findings. Am J Med Genet A 2024; 194:211-217. [PMID: 37795572 DOI: 10.1002/ajmg.a.63434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023]
Abstract
Tatton-Brown-Rahman syndrome (TBRS) or DNMT3A-overgrowth syndrome is characterized by overgrowth and intellectual disability associated with minor dysmorphic features, obesity, and behavioral problems. It is caused by variants of the DNMT3A gene. We report four patients with this syndrome due to de novo DNMT3A pathogenic variants, contributing to a deeper understanding of the genetic basis and pathophysiology of this autosomal dominant syndrome. Clinical and magnetic resonance imaging assessments were also performed. All patients showed corpus callosum anomalies, small posterior fossa, and a deep left Sylvian fissure; as well as asymmetry of the uncinate and arcuate fascicles and marked increased cortical thickness. These results suggest that structural neuroimaging anomalies have been previously overlooked, where corpus callosum and brain tract alterations might be unrecognized neuroimaging traits of TBRS syndrome caused by DNMT3A variants.
Collapse
Affiliation(s)
| | - Irene Rincón-Pérez
- Faculty of Psychology, Universidad Autónoma de Madrid, Madrid, Spain
- Universidad Complutense de Madrid, Madrid, Spain
| | - Sara López-Martín
- Faculty of Psychology, Universidad Autónoma de Madrid, Madrid, Spain
- Neuromottiva, Madrid, Spain
| | - Jacobo Albert
- Faculty of Psychology, Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | | - Pilar Tirado
- Department of Pediatric Neurology, Hospital Universitario La Paz, Madrid, Spain
| | | | - Javier Porta
- Department of Genomics, Genologica, Málaga, Spain
| | - Sara Álvarez
- Department of Genomics and Medicine, NIMGenetics, Madrid, Spain
| | - Alberto Fernández-Jaén
- Department of Pediatric Neurology, Hospital Universitario Quirónsalud, Madrid, Spain
- School of Medicine, Universidad Europea de Madrid, Madrid, Spain
| |
Collapse
|
37
|
Yan B, Yuan Q, Guryanova OA. Epigenetic Mechanisms in Hematologic Aging and Premalignant Conditions. EPIGENOMES 2023; 7:32. [PMID: 38131904 PMCID: PMC10743085 DOI: 10.3390/epigenomes7040032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/29/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
Hematopoietic stem cells (HSCs) are essential for maintaining overall health by continuously generating blood cells throughout an individual's lifespan. However, as individuals age, the hematopoietic system undergoes significant functional decline, rendering them more susceptible to age-related diseases. Growing research evidence has highlighted the critical role of epigenetic regulation in this age-associated decline. This review aims to provide an overview of the diverse epigenetic mechanisms involved in the regulation of normal HSCs during the aging process and their implications in aging-related diseases. Understanding the intricate interplay of epigenetic mechanisms that contribute to aging-related changes in the hematopoietic system holds great potential for the development of innovative strategies to delay the aging process. In fact, interventions targeting epigenetic modifications have shown promising outcomes in alleviating aging-related phenotypes and extending lifespan in various animal models. Small molecule-based therapies and reprogramming strategies enabling epigenetic rejuvenation have emerged as effective approaches for ameliorating or even reversing aging-related conditions. By acquiring a deeper understanding of these epigenetic mechanisms, it is anticipated that interventions can be devised to prevent or mitigate the rates of hematologic aging and associated diseases later in life. Ultimately, these advancements have the potential to improve overall health and enhance the quality of life in aging individuals.
Collapse
Affiliation(s)
- Bowen Yan
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, FL 32610, USA;
| | | | - Olga A. Guryanova
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, FL 32610, USA;
| |
Collapse
|
38
|
Lu J, Fang J, Zhu H, Liang KL, Khudaverdyan N, Song J. Structural basis for the allosteric regulation and dynamic assembly of DNMT3B. Nucleic Acids Res 2023; 51:12476-12491. [PMID: 37941146 PMCID: PMC10711551 DOI: 10.1093/nar/gkad972] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 09/08/2023] [Accepted: 10/14/2023] [Indexed: 11/10/2023] Open
Abstract
Oligomerization of DNMT3B, a mammalian de novo DNA methyltransferase, critically regulates its chromatin targeting and DNA methylation activities. However, how the N-terminal PWWP and ADD domains interplay with the C-terminal methyltransferase (MTase) domain in regulating the dynamic assembly of DNMT3B remains unclear. Here, we report the cryo-EM structure of DNMT3B under various oligomerization states. The ADD domain of DNMT3B interacts with the MTase domain to form an autoinhibitory conformation, resembling the previously observed DNMT3A autoinhibition. Our combined structural and biochemical study further identifies a role for the PWWP domain and its associated ICF mutation in the allosteric regulation of DNMT3B tetramer, and a differential functional impact on DNMT3B by potential ADD-H3K4me0 and PWWP-H3K36me3 bindings. In addition, our comparative structural analysis reveals a coupling between DNMT3B oligomerization and folding of its substrate-binding sites. Together, this study provides mechanistic insights into the allosteric regulation and dynamic assembly of DNMT3B.
Collapse
Affiliation(s)
- Jiuwei Lu
- Department of Biochemistry, University of California, Riverside, CA92521, USA
| | - Jian Fang
- Department of Biochemistry, University of California, Riverside, CA92521, USA
| | - Hongtao Zhu
- Vollum Institute, Oregon Health and Science University, Portland, OR, USA
| | | | - Nelli Khudaverdyan
- Department of Biochemistry, University of California, Riverside, CA92521, USA
| | - Jikui Song
- Department of Biochemistry, University of California, Riverside, CA92521, USA
| |
Collapse
|
39
|
Zhang C, He Y, Sun X, Wei W, Liu Y, Rao Y. PROTACs Targeting Epigenetic Proteins. ACTA MATERIA MEDICA 2023; 2:409-429. [PMID: 39221114 PMCID: PMC11364368 DOI: 10.15212/amm-2023-0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Epigenetics, a field that investigates alterations in gene function that can be inherited without changes in DNA sequence, encompasses molecular pathways such as histone variants, posttranslational modifications of amino acids, and covalent modifications of DNA bases. These pathways modulate the transformation of genotypes into specific phenotypes. Epigenetics plays a substantial role in cell growth, development, and differentiation by dynamically regulating gene transcription and ensuring genomic stability. This regulation is carried out by three key players: writers, readers, and erasers. In recent years, epigenetic proteins have played a crucial role in epigenetic regulation and have gradually become important targets in drug research and development. Targeted therapy is an essential strategy; however, the effectiveness of targeted drugs is often limited by drug resistance, posing a significant dilemma in clinical practice. Targeted protein degradation technologies, including proteolysis-targeting chimeras (PROTACs), have great potential in overcoming drug resistance and targeting undruggable targets. These areas of research are gaining increasing attention to various epigenetic related disease. In this review, we have provided a summary of the recently developed degraders targeting epigenetic readers, writers, and erasers. Additionally, we have outlined new applications for epigenetic protein degraders. Finally, we have addressed several unresolved challenges within the PROTAC field and offered potential solutions from our perspective. As the field continues to advance, the integration of these innovative methodologies holds great promise for addressing the challenges associated with PROTAC development.
Collapse
Affiliation(s)
- Chao Zhang
- Changping Laboratory, Beijing 102206, China
| | - Yuna He
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Xiuyun Sun
- Changping Laboratory, Beijing 102206, China
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Yanlong Liu
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Yu Rao
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
- Changping Laboratory, Beijing 102206, China
| |
Collapse
|
40
|
Jassim A, Rahrmann EP, Simons BD, Gilbertson RJ. Cancers make their own luck: theories of cancer origins. Nat Rev Cancer 2023; 23:710-724. [PMID: 37488363 DOI: 10.1038/s41568-023-00602-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/20/2023] [Indexed: 07/26/2023]
Abstract
Cancer has been a leading cause of death for decades. This dismal statistic has increased efforts to prevent the disease or to detect it early, when treatment is less invasive, relatively inexpensive and more likely to cure. But precisely how tissues are transformed continues to provoke controversy and debate, hindering cancer prevention and early intervention strategies. Various theories of cancer origins have emerged, including the suggestion that it is 'bad luck': the inevitable consequence of random mutations in proliferating stem cells. In this Review, we discuss the principal theories of cancer origins and the relative importance of the factors that underpin them. The body of available evidence suggests that developing and ageing tissues 'walk a tightrope', retaining adequate levels of cell plasticity to generate and maintain tissues while avoiding overstepping into transformation. Rather than viewing cancer as 'bad luck', understanding the complex choreography of cell intrinsic and extrinsic factors that characterize transformation holds promise to discover effective new ways to prevent, detect and stop cancer before it becomes incurable.
Collapse
Affiliation(s)
- Amir Jassim
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Eric P Rahrmann
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Ben D Simons
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge, UK
| | - Richard J Gilbertson
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK.
- Department of Oncology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
41
|
Rauch PJ, Gopakumar J, Silver AJ, Nachun D, Ahmad H, McConkey M, Nakao T, Bosse M, Rentz T, Vivanco Gonzalez N, Greenwald NF, McCaffrey EF, Khair Z, Gopakumar M, Rodrigues KB, Lin AE, Sinha E, Fefer M, Cohen DN, Vromman A, Shvartz E, Sukhova G, Bendall S, Angelo M, Libby P, Ebert BL, Jaiswal S. Loss-of-function mutations in Dnmt3a and Tet2 lead to accelerated atherosclerosis and concordant macrophage phenotypes. NATURE CARDIOVASCULAR RESEARCH 2023; 2:805-818. [PMID: 39196062 DOI: 10.1038/s44161-023-00326-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 07/27/2023] [Indexed: 08/29/2024]
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP) is defined by the presence of a cancer-associated somatic mutation in white blood cells in the absence of overt hematological malignancy. It arises most commonly from loss-of-function mutations in the epigenetic regulators DNMT3A and TET2. CHIP predisposes to both hematological malignancies and atherosclerotic cardiovascular disease in humans. Here we demonstrate that loss of Dnmt3a in myeloid cells increased murine atherosclerosis to a similar degree as previously seen with loss of Tet2. Loss of Dnmt3a enhanced inflammation in macrophages in vitro and generated a distinct adventitial macrophage population in vivo which merges a resident macrophage profile with an inflammatory cytokine signature. These changes surprisingly phenocopy the effect of loss of Tet2. Our results identify a common pathway promoting heightened innate immune cell activation with loss of either gene, providing a biological basis for the excess atherosclerotic disease burden in carriers of these two most prevalent CHIP mutations.
Collapse
Affiliation(s)
- Philipp J Rauch
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| | | | - Alexander J Silver
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Daniel Nachun
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Herra Ahmad
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Marie McConkey
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Tetsushi Nakao
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Marc Bosse
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Thiago Rentz
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | | | - Noah F Greenwald
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Erin F McCaffrey
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Zumana Khair
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Manu Gopakumar
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Kameron B Rodrigues
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Amy E Lin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Eti Sinha
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Maia Fefer
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Drew N Cohen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Amélie Vromman
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Eugenia Shvartz
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Galina Sukhova
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Sean Bendall
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael Angelo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Peter Libby
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Benjamin L Ebert
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - Siddhartha Jaiswal
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
42
|
Sobieralski P, Wasąg B, Leszczyńska A, Żuk M, Bieniaszewska M. The molecular profile in patients with polycythemia vera and essential thrombocythemia is dynamic and correlates with disease's phenotype. Front Oncol 2023; 13:1224590. [PMID: 37671053 PMCID: PMC10475996 DOI: 10.3389/fonc.2023.1224590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/02/2023] [Indexed: 09/07/2023] Open
Abstract
Introduction Polycythemia vera (PV) and essential thrombocythemia (ET) are diseases driven by canonical mutations in JAK2, CALR, or MPL gene. Previous studies revealed that in addition to driver mutations, patients with PV and ET can harbor other mutations in various genes, with no established impact on disease phenotype. We hypothesized that the molecular profile of patients with PV and ET is dynamic throughout the disease. Methods In this study, we performed a 37-gene targeted next-generation sequencing panel on the DNA samples collected from 49 study participants in two-time points, separated by 78-141 months. We identified 78 variants across 37 analyzed genes in the study population. Results By analyzing the change in variant allele frequencies and revealing the acquisition of new mutations during the disease, we confirmed the dynamic nature of the molecular profile of patients with PV and ET. We found connections between specific variants with the development of secondary myelofibrosis, thrombotic events, and response to treatment. We confronted our results with existing conventional and mutation-enhanced prognostic systems, showing the limited utility of available prognostic tools. Discussion The results of this study underline the significance of repeated molecular testing in patients with PV and ET and indicate the need for further research within this field to better understand the disease and improve available prognostic tools.
Collapse
Affiliation(s)
- Patryk Sobieralski
- Department of Hematology and Transplantology, Medical University of Gdansk, Gdansk, Poland
| | - Bartosz Wasąg
- Department of Biology and Medical Genetics, Faculty of Medicine, Medical University of Gdańsk, Gdansk, Poland
- Laboratory of Clinical Genetics, University Clinical Centre, Gdansk, Poland
| | - Aleksandra Leszczyńska
- Department of Hematology and Transplantology, Medical University of Gdansk, Gdansk, Poland
| | - Monika Żuk
- Department of Biology and Medical Genetics, Faculty of Medicine, Medical University of Gdańsk, Gdansk, Poland
- Laboratory of Clinical Genetics, University Clinical Centre, Gdansk, Poland
| | - Maria Bieniaszewska
- Department of Hematology and Transplantology, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
43
|
Noguera NI, Travaglini S, Scalea S, Catalanotto C, Reale A, Zampieri M, Zaza A, Ricciardi MR, Angelini DF, Tafuri A, Ottone T, Voso MT, Zardo G. YY1 Knockdown Relieves the Differentiation Block and Restores Apoptosis in AML Cells. Cancers (Basel) 2023; 15:4010. [PMID: 37568827 PMCID: PMC10417667 DOI: 10.3390/cancers15154010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
In this study we analyzed the expression of Yin and Yang 1 protein (YY1), a member of the noncanonical PcG complexes, in AML patient samples and AML cell lines and the effect of YY1 downregulation on the AML differentiation block. Our results show that YY1 is significantly overexpressed in AML patient samples and AML cell lines and that YY1 knockdown relieves the differentiation block. YY1 downregulation in two AML cell lines (HL-60 and OCI-AML3) and one AML patient sample restored the expression of members of the CEBP protein family, increased the expression of extrinsic growth factors/receptors and surface antigenic markers, induced morphological cell characteristics typical of myeloid differentiation, and sensitized cells to retinoic acid treatment and to apoptosis. Overall, our data show that YY1 is not a secondary regulator of myeloid differentiation but that, if overexpressed, it can play a predominant role in myeloid differentiation block.
Collapse
Affiliation(s)
- Nelida Ines Noguera
- Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy; (S.T.); (T.O.); (M.T.V.)
- Unit of Neuro-Oncoematologia, Santa Lucia Foundation IRCCS, 00143 Rome, Italy
| | - Serena Travaglini
- Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy; (S.T.); (T.O.); (M.T.V.)
- Unit of Neuro-Oncoematologia, Santa Lucia Foundation IRCCS, 00143 Rome, Italy
| | - Stefania Scalea
- Department of Experimental Medicine, Sapienza University, 00185 Rome, Italy;
| | - Caterina Catalanotto
- Department of Molecular Medicine, Sapienza University, 00185 Rome, Italy; (C.C.); (A.R.); (M.Z.)
| | - Anna Reale
- Department of Molecular Medicine, Sapienza University, 00185 Rome, Italy; (C.C.); (A.R.); (M.Z.)
| | - Michele Zampieri
- Department of Molecular Medicine, Sapienza University, 00185 Rome, Italy; (C.C.); (A.R.); (M.Z.)
| | - Alessandra Zaza
- Unit of Neuro-Oncoematologia, Santa Lucia Foundation IRCCS, 00143 Rome, Italy
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University, 00185 Rome, Italy
| | - Maria Rosaria Ricciardi
- Department of Clinical and Molecular Medicine, Sapienza University, 00185 Rome, Italy; (M.R.R.); (A.T.)
| | | | - Agostino Tafuri
- Department of Clinical and Molecular Medicine, Sapienza University, 00185 Rome, Italy; (M.R.R.); (A.T.)
| | - Tiziana Ottone
- Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy; (S.T.); (T.O.); (M.T.V.)
- Unit of Neuro-Oncoematologia, Santa Lucia Foundation IRCCS, 00143 Rome, Italy
| | - Maria Teresa Voso
- Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy; (S.T.); (T.O.); (M.T.V.)
- Unit of Neuro-Oncoematologia, Santa Lucia Foundation IRCCS, 00143 Rome, Italy
| | - Giuseppe Zardo
- Department of Experimental Medicine, Sapienza University, 00185 Rome, Italy;
| |
Collapse
|
44
|
Cui W, Huang Z, Jin SG, Johnson J, Lau KH, Hostetter G, Pfeifer GP. Deficiency of the Polycomb Protein RYBP and TET Methylcytosine Oxidases Promotes Extensive CpG Island Hypermethylation and Malignant Transformation. Cancer Res 2023; 83:2480-2495. [PMID: 37272752 PMCID: PMC10391329 DOI: 10.1158/0008-5472.can-23-0269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/24/2023] [Accepted: 05/31/2023] [Indexed: 06/06/2023]
Abstract
Hypermethylation of CpG islands (CGI) is a common feature of cancer cells and predominantly affects Polycomb-associated genomic regions. Elucidating the underlying mechanisms leading to DNA hypermethylation in human cancer could help identify chemoprevention strategies. Here, we evaluated the role of Polycomb complexes and 5-methylcytosine (5mC) oxidases in protecting CGIs from DNA methylation and observed that four genes coding for components of Polycomb repressive complex 1 (PRC1) are downregulated in tumors. Inactivation of RYBP, a key activator of variant PRC1 complexes, in combination with all three 5mC oxidases (TET proteins) in nontumorigenic bronchial epithelial cells led to widespread hypermethylation of Polycomb-marked CGIs affecting almost 4,000 target genes, which closely resembled the DNA hypermethylation landscape observed in human squamous cell lung tumors. The RYBP- and TET-deficient cells showed methylation-associated aberrant regulation of cancer-relevant pathways, including defects in the Hippo tumor suppressor network. Notably, the quadruple knockout cells acquired a transformed phenotype, including anchorage-independent growth and formation of squamous cell carcinomas in mice. This work provides a mechanism promoting hypermethylation of CGIs and shows that such hypermethylation can lead to cell transformation. The breakdown of a two-pronged protection mechanism can be a route towards genome-wide hypermethylation of CGIs in tumors. SIGNIFICANCE Dysfunction of the Polycomb component RYBP in combination with loss of 5-methylcytosine oxidases promotes widespread hypermethylation of CpG islands in bronchial cells and induces tumorigenesis, resembling changes seen in human lung tumors.
Collapse
Affiliation(s)
- Wei Cui
- Department of Epigenetics, Van Andel Institute, Grand Rapids, Michigan
| | - Zhijun Huang
- Department of Epigenetics, Van Andel Institute, Grand Rapids, Michigan
| | - Seung-Gi Jin
- Department of Epigenetics, Van Andel Institute, Grand Rapids, Michigan
| | - Jennifer Johnson
- Department of Epigenetics, Van Andel Institute, Grand Rapids, Michigan
| | - Kin H. Lau
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, Michigan
| | - Galen Hostetter
- Pathology and Biorepository Core, Van Andel Institute, Grand Rapids, Michigan
| | - Gerd P. Pfeifer
- Department of Epigenetics, Van Andel Institute, Grand Rapids, Michigan
| |
Collapse
|
45
|
Balandrán JC, Lasry A, Aifantis I. The Role of Inflammation in the Initiation and Progression of Myeloid Neoplasms. Blood Cancer Discov 2023; 4:254-266. [PMID: 37052531 PMCID: PMC10320626 DOI: 10.1158/2643-3230.bcd-22-0176] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 04/14/2023] Open
Abstract
Myeloid malignancies are devastating hematologic cancers with limited therapeutic options. Inflammation is emerging as a novel driver of myeloid malignancy, with important implications for tumor composition, immune response, therapeutic options, and patient survival. Here, we discuss the role of inflammation in normal and malignant hematopoiesis, from clonal hematopoiesis to full-blown myeloid leukemia. We discuss how inflammation shapes clonal output from hematopoietic stem cells, how inflammation alters the immune microenvironment in the bone marrow, and novel therapies aimed at targeting inflammation in myeloid disease. SIGNIFICANCE Inflammation is emerging as an important factor in myeloid malignancies. Understanding the role of inflammation in myeloid transformation, and the interplay between inflammation and other drivers of leukemogenesis, may yield novel avenues for therapy.
Collapse
Affiliation(s)
- Juan Carlos Balandrán
- Department of Pathology and Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, New York
| | - Audrey Lasry
- Department of Pathology and Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, New York
| | - Iannis Aifantis
- Department of Pathology and Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, New York
| |
Collapse
|
46
|
Cumbo C, Orsini P, Anelli L, Zagaria A, Iannò MF, De Cecco L, Minervini CF, Coccaro N, Tota G, Parciante E, Conserva MR, Redavid I, Tarantini F, Minervini A, Carluccio P, De Grassi A, Pierri CL, Specchia G, Musto P, Albano F. Case report: biallelic DNMT3A mutations in acute myeloid leukemia. Front Oncol 2023; 13:1205220. [PMID: 37448520 PMCID: PMC10336536 DOI: 10.3389/fonc.2023.1205220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/09/2023] [Indexed: 07/15/2023] Open
Abstract
DNMT3A gene mutations, detected in 20-25% of de novo acute myeloid leukemia (AML) patients, are typically heterozygous. Biallelic variants are uncommon, affecting ~3% of cases and identifying a worse prognosis. Indeed, two concomitant DNMT3A mutations were recently associated with shorter event-free survival and overall survival in AML. We present an AML case bearing an unusual DNMT3A molecular status, strongly affecting its function and strangely impacting the global genomic methylation profile. A 56-year-old Caucasian male with a diagnosis of AML not otherwise specified (NOS) presented a complex DNMT3A molecular profile consisting of four different somatic variants mapping on different alleles (in trans). 3D modelling analysis predicted the effect of the DNMT3A mutational status, showing that all the investigated mutations decreased or abolished DNMT3A activity. Although unexpected, DNMT3A's severe loss of function resulted in a global genomic hypermethylation in genes generally involved in cell differentiation. The mechanisms through which DNMT3A contributes to AML remain elusive. We present a unique AML case bearing multiple biallelic DNMT3A variants abolishing its activity and resulting in an unexpected global hypermethylation. The unusual DNMT3A behavior described requires a reflection on its role in AML development and persistence, highlighting the heterogeneity of its deregulation.
Collapse
Affiliation(s)
- Cosimo Cumbo
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Hematology and Stem Cell Transplantation Unit, University of Bari "Aldo Moro", Bari, Italy
| | - Paola Orsini
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Hematology and Stem Cell Transplantation Unit, University of Bari "Aldo Moro", Bari, Italy
| | - Luisa Anelli
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Hematology and Stem Cell Transplantation Unit, University of Bari "Aldo Moro", Bari, Italy
| | - Antonella Zagaria
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Hematology and Stem Cell Transplantation Unit, University of Bari "Aldo Moro", Bari, Italy
| | | | - Loris De Cecco
- Molecular Mechanisms Unit, Department of Research Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Crescenzio Francesco Minervini
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Hematology and Stem Cell Transplantation Unit, University of Bari "Aldo Moro", Bari, Italy
| | - Nicoletta Coccaro
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Hematology and Stem Cell Transplantation Unit, University of Bari "Aldo Moro", Bari, Italy
| | - Giuseppina Tota
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Hematology and Stem Cell Transplantation Unit, University of Bari "Aldo Moro", Bari, Italy
| | - Elisa Parciante
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Hematology and Stem Cell Transplantation Unit, University of Bari "Aldo Moro", Bari, Italy
| | - Maria Rosa Conserva
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Hematology and Stem Cell Transplantation Unit, University of Bari "Aldo Moro", Bari, Italy
| | - Immacolata Redavid
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Hematology and Stem Cell Transplantation Unit, University of Bari "Aldo Moro", Bari, Italy
| | - Francesco Tarantini
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Hematology and Stem Cell Transplantation Unit, University of Bari "Aldo Moro", Bari, Italy
| | - Angela Minervini
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Hematology and Stem Cell Transplantation Unit, University of Bari "Aldo Moro", Bari, Italy
| | - Paola Carluccio
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Hematology and Stem Cell Transplantation Unit, University of Bari "Aldo Moro", Bari, Italy
| | - Anna De Grassi
- Laboratory of Biochemistry, Molecular and Computational Biology, Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Ciro Leonardo Pierri
- Laboratory of Biochemistry, Molecular and Computational Biology, Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | | | - Pellegrino Musto
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Hematology and Stem Cell Transplantation Unit, University of Bari "Aldo Moro", Bari, Italy
| | - Francesco Albano
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Hematology and Stem Cell Transplantation Unit, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
47
|
Drieux F, Lemonnier F, Gaulard P. How molecular advances may improve the diagnosis and management of PTCL patients. Front Oncol 2023; 13:1202964. [PMID: 37427095 PMCID: PMC10328093 DOI: 10.3389/fonc.2023.1202964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 05/22/2023] [Indexed: 07/11/2023] Open
Abstract
Peripheral T-cell lymphomas (PTCL) comprised more than 30 rare heterogeneous entities, representing 10 to 15% of adult non-Hodgkin lymphomas. Although their diagnosis is still mainly based on clinical, pathological, and phenotypic features, molecular studies have allowed for a better understanding of the oncogenic mechanisms involved and the refinement of many PTCL entities in the recently updated classifications. The prognosis remains poor for most entities (5-year overall survival < 30%), with current conventional therapies based on anthracyclin-based polychemotherapy regimen, despite many years of clinical trials. The recent use of new targeted therapies appears to be promising for relapsed/refractory patients, such as demethylating agents in T-follicular helper (TFH) PTCL. However further studies are needed to evaluate the proper combination of these drugs in the setting of front-line therapy. In this review, we will summarize the oncogenic events for the main PTCL entities and report the molecular targets that have led to the development of new therapies. We will also discuss the development of innovative high throughput technologies that aid the routine workflow for the histopathological diagnosis and management of PTCL patients.
Collapse
Affiliation(s)
- Fanny Drieux
- Service d’Anatomie et de Cytologie Pathologiques, INSERM U1245, Centre Henri Becquerel, Rouen, France
| | - François Lemonnier
- Unité hémopathies Lymphoïdes, Hôpitaux Universitaires Henri Mondor, Assistance Publique des Hôpitaux de Paris, Créteil, France
- Institut Mondor de Recherche Biomédicale, INSERM U955, Université Paris Est Créteil, Créteil, France
| | - Philippe Gaulard
- Institut Mondor de Recherche Biomédicale, INSERM U955, Université Paris Est Créteil, Créteil, France
- Département de Pathologie, Hôpitaux Universitaires Henri Mondor, Assistance Publique des Hôpitaux de Paris, Créteil, France
| |
Collapse
|
48
|
Liu S, Su J, Xie X, Huang R, Li H, Luo R, Li J, Liu X, He J, Huang Y, Wu P. Detection of methyltransferase activity and inhibitor screening based on rGO-mediated silver enhancement signal amplification strategy. Anal Biochem 2023:115207. [PMID: 37290576 DOI: 10.1016/j.ab.2023.115207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/20/2023] [Accepted: 06/04/2023] [Indexed: 06/10/2023]
Abstract
DNA methylation refers to the chemical modification process of obtaining a methyl group by the covalent bonding of a specific base in DNA sequence with S-adenosyl methionine (SAM) as a methyl donor under the catalysis of methyltransferase (MTase), which is related to the occurrence of multiple diseases. Therefore, the detection of MTase activity is of great significance for disease diagnosis and drug screening. Because reduced graphene oxide (rGO) has a unique planar structure and remarkable catalytic performance, it is not clear whether rGO can rapidly catalyze silver deposition as an effective way of signal amplification. However, in this study, we were pleasantly surprised to find that using H2O2 as a reducing agent, rGO can rapidly catalyze silver deposition, and its catalytic efficiency of silver deposition is significantly better than that of GO. Therefore, based on further verifying the mechanism of catalytic properties of rGO, we constructed a novel electrochemical biosensor (rGO/silver biosensor) for the detection of dam MTase activity, which has high selectivity and sensitivity to MTase in the range of 0.1 U/mL to 10.0 U/mL, and the detection limit is as low as 0.07 U/mL. Besides, this study also used Gentamicin and 5-Fluorouracil as inhibitor models, confirming that the biosensor has a good application prospect in the high-throughput screening of dam MTase inhibitors.
Collapse
Affiliation(s)
- Shuyan Liu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, 410008, China; State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Jing Su
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China; College of Chemistry & Chemical Engineering, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - Xixiang Xie
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Rongping Huang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Haiping Li
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Ruiyu Luo
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Jinghua Li
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Xiyu Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Jian He
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| | - Yong Huang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| | - Pan Wu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| |
Collapse
|
49
|
Estes J, Malus M, Wilson L, Grayson PC, Maz M. A Case of VEXAS: Vacuoles, E1 Enzyme, X-linked, Autoinflammatory, Somatic Syndrome With Co-existing DNA (Cytosine-5)-Methyltransferase 3A Mutation Complicated by Localized Skin Reaction to Tocilizumab and Azacitidine. Cureus 2023; 15:e39906. [PMID: 37404435 PMCID: PMC10317045 DOI: 10.7759/cureus.39906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2023] [Indexed: 07/06/2023] Open
Abstract
Vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic (VEXAS) syndrome is a recently identified autoinflammatory condition with a correlating missense somatic mutation of the X chromosome. Here we present a unique case of a patient with VEXAS syndrome with coinciding ubiquitin-like modifier activating enzyme 1 (UBA1) and DNA (cytosine-5)-methyltransferase 3A (DNMT3A) mutations who developed cutaneous and systemic reactions to tocilizumab and azacitidine therapy, respectively.
Collapse
Affiliation(s)
- Jordan Estes
- Department of Medicine, University of Kansas Medical Center, Kansas City, USA
| | - Matthew Malus
- Department of Medicine, Division of Allergy, Clinical Immunology, and Rheumatology, University of Kansas Medical Center, Kansas City, USA
| | - Lorena Wilson
- National Human Genome Research Institute, National Institutes of Health, Bethesda, USA
| | - Peter C Grayson
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, USA
| | - Mehrdad Maz
- Department of Medicine, Division of Allergy, Clinical Immunology, and Rheumatology, University of Kansas Medical Center, Kansas City, USA
| |
Collapse
|
50
|
Carelock ME, Master RP, Kim MC, Jin Z, Wang L, Maharjan CK, Hua N, De U, Kolb R, Xiao Y, Liao D, Zheng G, Zhang W. Targeting intracellular proteins with cell type-specific functions for cancer immunotherapy. LIFE MEDICINE 2023; 2:lnad019. [PMID: 39872303 PMCID: PMC11749652 DOI: 10.1093/lifemedi/lnad019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/24/2023] [Indexed: 01/30/2025]
Abstract
Immune checkpoint inhibitors (ICIs) use antibodies that block cell surface immune checkpoint proteins with great efficacy in treating immunogenic or "immune hot" tumors such as melanoma, kidney, and lung adenocarcinoma. ICIs have limited response rates to other non-immunogenic cancers. The tumor microenvironment (TME) consists of many cell types that collectively promote tumor progression. Cancer therapeutics are commonly designed to target one molecule in one defined cell type. There is growing evidence that long-term therapeutic responses require the targeting of cancer cells and tumor-promoting populations within the TME. The question remains whether we can identify targetable molecules/pathways that are critical for multiple cell types. Here, we will discuss several molecular targets that may fit a "two or multiple birds, one stone" model, including the B-cell lymphoma-2 (BCL-2) family pro-survival factors, transcriptional factors including signal transducer and activator of transcription 3, the nuclear receptor 4A family (NR4A1, NR4A2, and NR4A3), as well as epigenetic regulators such as bromodomain and extra-terminal (BET) family proteins, histone deacetylase family, SET domain bifurcated histone lysine methyltransferase 1 (SETDB1), and lysine-specific demethylase 1 (LSD1/KDM1A). We will focus on the rationale of these targets in immune modulation, as well as the strategies for targeting these important proteins for cancer therapy.
Collapse
Affiliation(s)
- Madison E Carelock
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Cancer Biology Concentration, Biomedical Graduate Program, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Rohan P Master
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Myung-Chul Kim
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- UF Health Cancer Center, University of Florida, Gainesville, FL 32610, USA
- Diagnostic Laboratory Medicine, College of Veterinary Medicine, Jeju National University, Jeju 63243, Republic of Korea
- Research Institute of Veterinary Medicine, College of Veterinary Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Zeng Jin
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Cancer Biology Concentration, Biomedical Graduate Program, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Lei Wang
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Immunology Concentration, Biomedical Graduate Program, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Chandra K Maharjan
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Nan Hua
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Umasankar De
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Ryan Kolb
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- UF Health Cancer Center, University of Florida, Gainesville, FL 32610, USA
| | - Yufeng Xiao
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Daiqing Liao
- UF Health Cancer Center, University of Florida, Gainesville, FL 32610, USA
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Guangrong Zheng
- UF Health Cancer Center, University of Florida, Gainesville, FL 32610, USA
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Weizhou Zhang
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Cancer Biology Concentration, Biomedical Graduate Program, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- UF Health Cancer Center, University of Florida, Gainesville, FL 32610, USA
- Immunology Concentration, Biomedical Graduate Program, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|