1
|
Ren M, Shen Y, Yuan Y, Han Z, Zhong Y, Liu S. Association between cardiometabolic index and abdominal aortic calcification in US adults from the NHANES. Sci Rep 2025; 15:17831. [PMID: 40404691 PMCID: PMC12098828 DOI: 10.1038/s41598-025-01848-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 05/08/2025] [Indexed: 05/24/2025] Open
Abstract
Abdominal aortic calcification (AAC) and atherosclerosis are prevalent conditions among older adults, and recent research suggests that their association may extend beyond the effects of aging alone. An essential instrument for determining the possibility of cardiovascular disease (CVD) is the cardiometabolic index (CMI), a new lipid-based index sensitive to visceral obesity. However, little has been established about the relationship between CMI and AAC. We examined CMI and AAC data from the National Health and Nutrition Examination Survey (NHANES) conducted in 2013-2014 for this study. The relationship between AAC, severe abdominal aortic calcification (SAAC), and CMI was assessed using multiple linear and logistic regression models. The overall trend was visualized using smoothed curve modeling. Subgroup analyses were conducted to find possible moderating factors. Among the 2704 participants included, those with higher CMI levels exhibited much greater AAC scores and a higher prevalence of SAAC. In model 3, elevated CMI positively correlated with AAC (0.25 (0.09, 0.41)) and with the odds of SAAC (OR = 1.35 (1.09, 1.67)). Participants in the highest CMI quartile had an AAC score that was 0.65 units higher (β = 0.65 (0.26, 1.04)) and an 114% higher risk of SAAC (OR = 2.14 (1.29, 3.54)). Subgroup analyses indicated sex and smoking status significantly modified the relationship between CMI, AAC, and SAAC, while previously diagnosed with congestive heart failure (CHF) and heart attack significantly moderated the association between CMI and AAC. These results imply that greater AAC scores and a higher risk of SAAC are linked to heightened CMI, which represents visceral fat storage and disturbed lipid metabolism. Our findings indicate that CMI is correlated with AAC in certain demographic and cardiovascular subgroups, suggesting its potential as an exploratory indicator of elevated AAC risk in these populations.
Collapse
Affiliation(s)
- Minjiang Ren
- Department of Cardiology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
| | - Yifan Shen
- Department of Cardiology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
| | - Ye Yuan
- Department of Cardiology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
| | - Zhiyu Han
- Department of Cardiology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
| | - Yun Zhong
- Department of Cardiology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, Guangdong, China.
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, Guangdong, China.
| | - Shiming Liu
- Department of Cardiology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, Guangdong, China.
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, Guangdong, China.
| |
Collapse
|
2
|
Zierfuss B, Bojic M, Schernthaner GH, Höbaus C. FGF-23 and Long-term Outcome in Peripheral Artery Disease. Angiology 2025:33197251326637. [PMID: 40394833 DOI: 10.1177/00033197251326637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Atherosclerotic peripheral artery disease (PAD) and chronic kidney disease (CKD) are highly interconnected diseases, while causes for excess mortality are not well-defined. Fibroblast growth-factor 23 (FGF-23) is elevated in mineral bone disease of CKD and was shown to be associated with higher mortality. However, it is not known if this association extends to PAD. FGF-23 was measured by ELISA in serum samples of 298 patients with stable PAD (Fontaine stage I-II) with an estimated glomerular filtration rate (eGFR) of 72 (58-85) ml/min. Mortality was assessed after a long-term follow-up of up to 10 years. FGF-23 showed significant associations with markers of metabolic syndrome (triglycerides r = .25, P < .001, high-density lipoprotein cholesterol (HDL-C) r = -.28, P < .001, c-reactive protein (CRP) r = .14, P = .016). Multivariable Cox-regression outcome analyses showed significant associations between FGF-23 and all-cause mortality (hazard ratio 1.35, 95% confidence interval 1.05-1.74) in PAD patients even after adjustment for traditional cardiovascular risk factors and renal excretory function. FGF-23 is associated with higher mortality in patients with PAD. Our findings indicate that FGF-23 has detrimental effects on patients with PAD that are independent of renal excretory function.
Collapse
Affiliation(s)
- Bernhard Zierfuss
- Division of Angiology, Medicine II, Medical University of Vienna, Vienna, Austria
| | - Marija Bojic
- 1st Medical Department, Hanusch Hospital, Vienna, Austria
- Division of Nephrology and Dialysis, Medicine III, Medical University of Vienna, Vienna, Austria
| | | | - Clemens Höbaus
- Division of Angiology, Medicine II, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Chen W, Cui F, Fan J, Liu K, He Y. The Diagnostic and Prognostic Value of Circulating miR-126-3p and miR-145-5p in Coronary Artery Calcification Lesions. Catheter Cardiovasc Interv 2025. [PMID: 40394994 DOI: 10.1002/ccd.31616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2025] [Revised: 05/11/2025] [Accepted: 05/15/2025] [Indexed: 05/22/2025]
Abstract
BACKGROUND Arterial calcification and its associated major adverse cardiovascular events (MACEs) are significant contributors to rehospitalization and poor clinical outcomes. This study aims to evaluate the diagnostic utility of miR-126-3p and miR-145-5p in detecting arterial calcification, as well as their prognostic value in predicting the occurrence of MACEs. METHODS A total of 131 patients who underwent coronary artery intervention and intravascular imaging were enrolled. Among them, 88 were diagnosed with arterial calcification, while 33 showed no evidence of calcification. Plasma levels of miR-126-3p and miR-145-5p were quantified using qRT-PCR. Clinical and demographic data were also collected to identify potential risk factors with calcification. Patients with calcified lesions were followed for 12 months to document the incidence of MACEs and rehospitalizations, and to evaluate predictors of MACE occurrence. RESULTS Compared to patients without arterial calcification, those with calcification were older, and exhibited significantly lower plasma levels of miR-126-3p and miR-145-5p (p < 0.01). Among patients in the calcification group, those with low miR-126-3p expression [0 (0-0.223), p < 0.05] were more likely to experience MACEs within 12 months. Additionally, in the MACEs group, HDL-C levels were lower [0.081 (0.009-0.698), p < 0.05], while neutrophil ratio were higher [1.081 (1.022-1.143), p < 0.01]. CONCLUSION Circulating miR-126-3p and miR-145-5p demonstrate diagnostic value for arterial calcification. In particular, miR-126-3p could serve as a blood-based biomarker for predicting the risk of MACEs.
Collapse
Affiliation(s)
- Weiwei Chen
- Department of Cardiovascular Medicine, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Fengwen Cui
- Department of Cardiovascular Medicine, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jiwen Fan
- Department of Cardiovascular Medicine, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Kun Liu
- Department of Cardiovascular Medicine, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yuquan He
- Department of Cardiovascular Medicine, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Andre DP, Ruetten S, Rodríguez-Cabello JC, Jockenhoevel S, Schmitz-Rode T, Fernández-Colino A. Biohybrid Vascular Graft Made of Textile-Reinforced Elastin-Like Recombinamers and Its Preservation via Drying Processes. Adv Healthc Mater 2025:e2500482. [PMID: 40317912 DOI: 10.1002/adhm.202500482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/27/2025] [Indexed: 05/07/2025]
Abstract
Vascular grafts are crucial for treating cardiovascular diseases and providing vascular access for hemodialysis in end-stage renal disease, conditions that affect millions of people globally. To address the persisting clinical need for better therapy for these conditions, new designs involving novel materials and innovative tissue-engineered approaches are being developed. Successful clinical translation of such designs will require to ensure device safety, particularly sterility and mechanical integrity. The prevailing method for ensuring sterility is ethylene oxide sterilization, which requires a dry product. The challenge of drying biohybrid implants is substantial, as they contain multiple components (e.g., textile and hydrogel) with differing properties. To address this open question, the effects of different drying methods on the morphological and mechanical properties of biohybrid implants made from elastin-like recombinamers (ELRs) are investigated. For that, mechanical characteristics defined in ISO 7198, as well as the cell attachment behavior on biohybrid vascular grafts, treated either with lyophilization (LYO) or CO2-based critical point drying, are compared. The results show that the applied drying method can significantly influence the properties of the scaffolds and highlight the importance of developing implant-specific drying schemes that ensure its safety and functionality.
Collapse
Affiliation(s)
- Dominic Pascal Andre
- Department of Biohybrid and Medical Textiles (BioTex), AME-Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, 52074, Aachen, Germany
| | - Stephan Ruetten
- Electron Microscopy Facility, Uniklinik RWTH Aachen, 52074, Aachen, Germany
| | - José Carlos Rodríguez-Cabello
- Bioforge Lab, Group for Advanced Materials and Nanobiotechnology, Biomedical Networking Research Center of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Edificio LUCIA, Universidad de Valladolid, Valladolid, 47011, Spain
| | - Stefan Jockenhoevel
- Department of Biohybrid and Medical Textiles (BioTex), AME-Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, 52074, Aachen, Germany
| | - Thomas Schmitz-Rode
- AME-Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, 52074, Aachen, Germany
| | - Alicia Fernández-Colino
- Department of Biohybrid and Medical Textiles (BioTex), AME-Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, 52074, Aachen, Germany
| |
Collapse
|
5
|
Zhao P, Zhang Z, Li M, Hao J, Wang Y. Association between Hemoglobin-albumin-lymphocyte-platelet score and all-cause or cardiovascular mortality in patients with diabetes or prediabetes: mediated effects of renal function. BMC Cardiovasc Disord 2025; 25:331. [PMID: 40295902 PMCID: PMC12039058 DOI: 10.1186/s12872-025-04791-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 04/22/2025] [Indexed: 04/30/2025] Open
Abstract
OBJECTIVE Hemoglobin-albumin-lymphocyte-platelet (HALP) score is considered to be a comprehensive indicator of inflammation and nutrition. We aimed to investigate the relationship of HALP score and the risk of all-cause and cardiovascular disease (CVD) mortality in patients with diabetes (DM) or prediabetes (PDM). METHODS 6,869 participants with DM or PDM from the National Health and Nutrition Examination Survey (NHANES) 2005 to 2018 were enrolled. The colleration of HALP score with all-cause and CVD mortality was evaluated using Kaplan-Meier, Cox regression and restricted cubic spline (RCS) methods. The predictive value of HALP score for mortality was evaluated by time-dependent-receiver-operating-characteristic (ROC) curves. Finally, subgroup and interaction analysis were performed. RESULTS 1203 deaths from all-cause and 399 deaths from CVD were observed. Cox regression analyses showed that the HALP score was negatively correlated with both all-cause and CVD mortality risk. RCS curves showed a nonlinear relationship between HALP score and all-cause or CVD mortality risk, and both the dose-response curves are L-shaped. For all-cause mortality risk, the AUC was 0.805, 0.799, and 0.816 for 3, 5, and 10 years survival, respectively, and for CVD mortality risk, the AUC was 0.839, 0.850, and 0.837 for 3, 5, and 10 years of survival, respectively. Mediation analysis showed that serum creatinine and urea nitrogen partially mediate the relationship between HALP and mortality risk. CONCLUSION HALP score is negatively correlated with all-cause and CVD mortality risk, and serves as a valuable predictor of all-cause and CVD mortality risk in patients with DM or PDM. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Pingping Zhao
- Department of Endocrinology Genetic Metabolism, Gansu Provincial Maternity and Child-care Hospital, Gansu Provincial Central Hospital, Lanzhou, Gansu, 730000, China
- Lanzhou University, Lanzhou, Gansu, China
| | - Zhuang Zhang
- Qingdao Special Servicemen Recuperation Center of PLA Navy, Qingdao, China
| | - Ming Li
- Qingdao Special Servicemen Recuperation Center of PLA Navy, Qingdao, China
| | - Jingqi Hao
- Qingdao Special Servicemen Recuperation Center of PLA Navy, Qingdao, China
| | - Yirong Wang
- Department of Endocrinology Genetic Metabolism, Gansu Provincial Maternity and Child-care Hospital, Gansu Provincial Central Hospital, Lanzhou, Gansu, 730000, China.
- Lanzhou University, Lanzhou, Gansu, China.
| |
Collapse
|
6
|
You LL, Luo XB, Zhou WQ, Zhang RC, Li ZH, Xu JX, Ran J, Xu J. Aerobic exercise modulates aortic chondrogenesis and calcification via 5-methoxytryptophan and P38MAPK in atherosclerotic rats. Exp Gerontol 2025; 202:112722. [PMID: 40024450 DOI: 10.1016/j.exger.2025.112722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/24/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
BACKGROUND 5-Methoxytryptophan (5-MTP), a new endothelial factor with vasoprotective and anti-inflammatory effects, reduces aortic chondrogenesis and calcification during atherosclerosis. The aim of this study was to investigate the effects of aerobic exercise on aortic chondrogenesis and calcification during atherosclerosis in rats. To investigate the effect of aerobic exercise on the expression of 5-MTP/P38 MAPK signaling pathway. To lay a theoretical foundation for the therapeutic effect of exercise in rat atherosclerosis model. METHODS Establishment of a rat model of atherosclerosis using a high-fat diet combined with intraperitoneal injection of vitamin D3 (VD3). The aerobic exercise group underwent moderate-intensity aerobic exercise on an exercise treadmill for 8 weeks, while the atherosclerosis model group and the control group did not exercise. After exercise, blood and aortic samples were collected from all rats to evaluate the levels of serum triglyceride (TG), cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDLC), aortic chondrogenesis, calcification, 5-MTP level, collagen II, P38MAPK, pp38 MAPK, and IL-6 protein content. RESULTS (1)8 weeks of aerobic exercise significantly reduced aortic chondrogenesis, area of calcification, serum LDL-C, TC levels, atherosclerotic index and serum IL-6 levels in rats (p < 0.01), and lowered TG levels (p < 0.05);(2)8 weeks of aerobic exercise significantly increased aortic 5-MTP levels (p < 0.01) and decreased the content of aortic pp38MAPK, collagen II and IL-6 proteins significantly (p < 0.01). The pp38MAPK/P38MAPK ratio was also decreased (p < 0.01). CONCLUSION 8 weeks of aerobic exercise training improved dyslipidemia and reduced aortic chondrogenesis and calcification formation in AS rats. The mechanism may be related to increasing aortic 5-MTP levels and inhibiting the P38MAPK/ IL-6 signaling pathway.
Collapse
Affiliation(s)
| | - Xiao-Bing Luo
- Sichuan Orthopedic Hospital, Chengdu, Sichuan 610041, China.
| | - Wen-Qi Zhou
- Sichuan Orthopedic Hospital, Chengdu, Sichuan 610041, China.
| | - Rui-Chi Zhang
- Chengdu Sport University, School of Sports Medicine and Health, Chengdu, Sichuan 610041, China
| | - Zhong-Hao Li
- Chengdu Sport University, School of Sports Medicine and Health, Chengdu, Sichuan 610041, China
| | - Jia-Xin Xu
- Chengdu Sport University, School of Sports Medicine and Health, Chengdu, Sichuan 610041, China
| | - Jing Ran
- Sichuan Orthopedic Hospital, Chengdu, Sichuan 610041, China
| | - Jie Xu
- Sichuan Orthopedic Hospital, Chengdu, Sichuan 610041, China
| |
Collapse
|
7
|
Salera D, Merkel N, Bellasi A, de Borst MH. Pathophysiology of chronic kidney disease-mineral bone disorder (CKD-MBD): from adaptive to maladaptive mineral homeostasis. Clin Kidney J 2025; 18:i3-i14. [PMID: 40083952 PMCID: PMC11903091 DOI: 10.1093/ckj/sfae431] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Indexed: 03/16/2025] Open
Abstract
Chronic kidney disease-mineral bone disorder (CKD-MBD) is a multifaceted condition commonly seen in people with reduced kidney function. It involves a range of interconnected issues in mineral metabolism, bone health and cardiovascular calcification, which are linked to a lower quality of life and shorter life expectancy. Although various epidemiological studies show that the laboratory changes defining CKD-MBD become more common as the glomerular filtration rate declines, the pathophysiology of CKD-MBD is still largely unexplained. We herein review the current understanding of CKD-MBD, provide a conceptual framework to understand this syndrome, and review the genetic and environmental factors that may influence the clinical manifestation of CKD-MBD. However, a deeper understanding of the pathophysiology of CKD-MBD is needed to understand the phenotype variability and the relative contribution to organ damage of factors involved in CKD-MBD to develop more effective interventions to improve outcomes in patients with CKD.
Collapse
Affiliation(s)
- Davide Salera
- Service of Nephrology, Ospedale Regionale di Lugano, Ospedale Civico, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Nathalie Merkel
- Service of Nephrology, Ospedale Regionale di Lugano, Ospedale Civico, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Antonio Bellasi
- Service of Nephrology, Ospedale Regionale di Lugano, Ospedale Civico, Ente Ospedaliero Cantonale, Lugano, Switzerland
- Università della Svizzera italiana (USi), Faculty of Biomedical Sciences, Lugano, Switzerland
| | - Martin H de Borst
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
8
|
Kimura A, Taki N, Hayashi Y, Shiraishi Y, Ohmori T, Takeshita K. Possible involvement of vitamin K insufficiency in the progression of cervical ossification of the posterior longitudinal ligament. Sci Rep 2025; 15:2608. [PMID: 39838064 PMCID: PMC11751148 DOI: 10.1038/s41598-025-86847-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 01/14/2025] [Indexed: 01/23/2025] Open
Abstract
Ossification of the posterior longitudinal ligament of the vertebral column (OPLL) is a disease characterised by ectopic bone formation in the spinal ligament that causes progressive neurological impairment. However, there are no suitable treatments for OPLL. Here, we compared the general characteristics and haemostasis of patients with OPLL and those with cervical spondylotic myelopathy. Those with OPLL had significantly longer prothrombin times and lower plasma protein C concentrations, consistent with vitamin K deficiency. Therefore, we next characterised the effects of vitamin K supplementation on spinal hyperostosis in ttw mice, a model of cervical OPLL, by feeding them standard chow, vitamin K-deficient chow, or standard chow accompanied by biweekly vitamin K2 injections for 6 weeks. We found that vitamin K supplementation resulted in longer stride lengths and superior inter-limb coordination using footprint analysis. Furthermore, supplementation caused a significant reduction in ectopic calcification of the cervical ligaments of the mice, according to microcomputed tomography analysis. Finally, supplementation caused an increase in the number of osteochondrogenic cells expressing Gla-rich protein, an inhibitor of ectopic calcification, and increased the circulating concentration. Thus, vitamin K insufficiency may be involved in the pathogenesis of OPLL and supplementation may represent a novel treatment for this condition.
Collapse
Affiliation(s)
- Atsushi Kimura
- Department of Orthopaedics, Jichi Medical University School of Medicine, Tochigi, 329-0498, Japan.
| | - Naoya Taki
- Department of Orthopaedics, Jichi Medical University School of Medicine, Tochigi, 329-0498, Japan
| | - Yukinori Hayashi
- Department of Orthopaedics, Jichi Medical University School of Medicine, Tochigi, 329-0498, Japan
| | - Yasuyuki Shiraishi
- Department of Orthopaedics, Jichi Medical University School of Medicine, Tochigi, 329-0498, Japan
| | - Tsukasa Ohmori
- Department of Biochemistry, Jichi Medical University School of Medicine, Tochigi, 329-0498, Japan
| | - Katsushi Takeshita
- Department of Orthopaedics, Jichi Medical University School of Medicine, Tochigi, 329-0498, Japan
| |
Collapse
|
9
|
Rohrich RN, Li KR, Episalla NC, Atkinson K, Lin RP, Ferdousian S, Youn RC, Evans KK, Akbari CM, Attinger CE. Understanding the Prevalence of Medial Arterial Calcification Among Complex Reconstructive Patients: Insights from a Decade of Experience at a Tertiary Limb Salvage Center. J Clin Med 2025; 14:596. [PMID: 39860602 PMCID: PMC11765606 DOI: 10.3390/jcm14020596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/08/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Background: Medial arterial calcification (MAC), a distinct form of vascular pathology frequently coexisting with peripheral arterial disease (PAD), poses unique challenges in limb salvage among patients with diabetes, chronic kidney disease, and end-stage renal disease. This study examines the incidence of MAC and its impact on limb salvage outcomes over a decade of experience at a tertiary limb salvage center. Methods: A retrospective review of all complex lower extremity (LE) reconstructions using local flap (LF) or free tissue transfer (FTT), performed from July 2011 to September 2022, was conducted. Patients were classified into MAC and No MAC groups based on pedal radiography evaluations using the Ferraresi MAC scoring system. The primary outcomes were major lower extremity amputation (MLEA), the need for postoperative vascular intervention, major adverse limb events (MALE; defined as the composite of any unplanned reoperation, MLEA, or postoperative revascularization attempt), and mortality. Results: During the study period, a total of 430 LE reconstructions were performed with LF or FTT. A total of 323 cases (75.1%) demonstrated no MAC while the remaining 107 (24.9%) demonstrated MAC. The MAC group exhibited significantly higher rates of diabetes, PAD, and renal disease. With a follow-up duration of 17.0 (IQR: 33.9) months, the MAC group demonstrated a significantly higher rate of MLEA (24.3% vs. 13.0%, p = 0.006), postoperative vascular intervention (23.4% vs. 8.7%, p < 0.001), MALE (57.0% vs. 25.7%, p < 0.001), and mortality (28.0% vs. 9.9%, p < 0.001). Multivariate analysis identified MAC as independently predictive of MALE (OR: 1.8, CI: 1.1-3.0, p = 0.033). Conclusion: MAC is prevalent among surgical candidates for limb salvage. Patients with MAC represent a significant medical and reconstructive challenge. Radiographic screening for MAC should be considered in all limb salvage candidates with LE wounds, especially in those with diabetes and kidney disease. Assessing MAC is important for better evaluating risk factors and surgical options so as to optimize outcomes in this challenging population.
Collapse
Affiliation(s)
- Rachel N. Rohrich
- Department of Plastic and Reconstructive Surgery, MedStar Georgetown University Hospital, 3800 Reservoir Road, NW, Washington, DC 20007, USA; (R.N.R.); (S.F.)
| | - Karen R. Li
- Department of Plastic and Reconstructive Surgery, MedStar Georgetown University Hospital, 3800 Reservoir Road, NW, Washington, DC 20007, USA; (R.N.R.); (S.F.)
- Georgetown University School of Medicine, Washington, DC 20007, USA
| | - Nicole C. Episalla
- Department of Plastic and Reconstructive Surgery, MedStar Georgetown University Hospital, 3800 Reservoir Road, NW, Washington, DC 20007, USA; (R.N.R.); (S.F.)
| | - Khaleel Atkinson
- Georgetown University School of Medicine, Washington, DC 20007, USA
| | - Ryan P. Lin
- Department of Plastic and Reconstructive Surgery, MedStar Georgetown University Hospital, 3800 Reservoir Road, NW, Washington, DC 20007, USA; (R.N.R.); (S.F.)
| | - Sami Ferdousian
- Department of Plastic and Reconstructive Surgery, MedStar Georgetown University Hospital, 3800 Reservoir Road, NW, Washington, DC 20007, USA; (R.N.R.); (S.F.)
- Georgetown University School of Medicine, Washington, DC 20007, USA
| | - Richard C. Youn
- Department of Plastic and Reconstructive Surgery, MedStar Georgetown University Hospital, 3800 Reservoir Road, NW, Washington, DC 20007, USA; (R.N.R.); (S.F.)
| | - Karen K. Evans
- Department of Plastic and Reconstructive Surgery, MedStar Georgetown University Hospital, 3800 Reservoir Road, NW, Washington, DC 20007, USA; (R.N.R.); (S.F.)
| | - Cameron M. Akbari
- Department of Vascular Surgery, MedStar Georgetown University Hospital, Washington, DC 20007, USA
| | - Christopher E. Attinger
- Department of Plastic and Reconstructive Surgery, MedStar Georgetown University Hospital, 3800 Reservoir Road, NW, Washington, DC 20007, USA; (R.N.R.); (S.F.)
| |
Collapse
|
10
|
Wang Z, Gui Z, Zhang L, Wang Z. Advances in the mechanisms of vascular calcification in chronic kidney disease. J Cell Physiol 2025; 240:e31464. [PMID: 39392232 DOI: 10.1002/jcp.31464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024]
Abstract
Vascular calcification (VC) is common in patients with advanced chronic kidney disease (CKD).A series of factors, such as calcium and phosphorus metabolism disorders, uremic toxin accumulation, inflammation and oxidative stress and cellular senescence, cause osteoblast-like differentiation of vascular smooth muscle cells, secretion of extracellular vesicles, and imbalance of calcium regulatory factors, which together promote the development of VC in CKD. Recent advances in epigenetics have provided better tools for the investigation of VC etiology and new approaches for finding more accurate biomarkers. These advances have not only deepened our understanding of the pathophysiological mechanisms of VC in CKD, but also provided valuable clues for the optimization of clinical predictors and the exploration of potential therapeutic targets. The aim of this article is to provide a comprehensive overview of the pathogenesis of CKD VC, especially the new advances made in recent years, including the various key factors mentioned above. Through the comprehensive analysis, we expect to provide a solid theoretical foundation and research direction for future studies targeting the specific mechanisms of CKD VC, the establishment of clinical predictive indicators and the development of potential therapeutic strategies.
Collapse
Affiliation(s)
- Ziyang Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
- Institute of Cardiovascular Diseases, Jiangsu University, Zhenjiang, China
| | - Zebin Gui
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
- Institute of Cardiovascular Diseases, Jiangsu University, Zhenjiang, China
| | - Lirong Zhang
- Department of Radiology, Affliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
- Institute of Cardiovascular Diseases, Jiangsu University, Zhenjiang, China
| |
Collapse
|
11
|
Selig JI, Sugimura Y, Katahira S, Polidori M, Jacobi LA, Medovoj O, Betke S, Barth M, Lichtenberg A, Akhyari P, Minol JP. The Focal Induction of Reactive Oxygen Species in Rats as a Trigger of Aortic Valve Degeneration. Antioxidants (Basel) 2024; 13:1570. [PMID: 39765897 PMCID: PMC11673780 DOI: 10.3390/antiox13121570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/14/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Degenerative aortic valve disease (DAVD) is a multifactorial process. We developed an animal model to analyze the isolated, local effect of reactive oxygen species (ROS) on its pathophysiology. METHODS We utilized a photodynamic reaction (PDR) as a source of ROS in the aortic valve by aiming a laser at the aortic valve for 60 min after the administration of a photosensitizer 24 h prior. ROS, laser, and sham groups (n = 7 each) for every observation period (t = 0; t = 8 d; t = 84 d; t = 168 d) were established. The amount of ROS generation; morphological changes; inflammatory, immune, and apoptotic reactions; and hemodynamic changes in the aortic valves were assessed using appropriate histological, immunohistological, immunohistochemical, and echocardiographic methods. RESULTS The ROS group displayed an increased amount of ROS (p < 0.01) and increased inflammatory activation of the endothelium (p < 0.05) at t = 0. In the ROS group, aortic valves were calcified (p < 0.05) and the transvalvular gradient was increased (p < 0.01) at t = 168 d. CONCLUSION The small animal model employed here may serve as a platform for analyzing ROS's isolated role in the DAVD context.
Collapse
Affiliation(s)
- Jessica Isabel Selig
- Department of Cardiac Surgery, University of Dusseldorf, Moorenstrasse 5, 40225 Dusseldorf, Germany; (J.I.S.); (Y.S.); (S.K.); (M.P.); (L.A.J.); (O.M.); (S.B.); (M.B.); (A.L.)
| | - Yukiharu Sugimura
- Department of Cardiac Surgery, University of Dusseldorf, Moorenstrasse 5, 40225 Dusseldorf, Germany; (J.I.S.); (Y.S.); (S.K.); (M.P.); (L.A.J.); (O.M.); (S.B.); (M.B.); (A.L.)
- Department of Cardiac Surgery, University of Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Shintaro Katahira
- Department of Cardiac Surgery, University of Dusseldorf, Moorenstrasse 5, 40225 Dusseldorf, Germany; (J.I.S.); (Y.S.); (S.K.); (M.P.); (L.A.J.); (O.M.); (S.B.); (M.B.); (A.L.)
- Division of Cardiovascular Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryomachi, Aoba-ku, Sendai 980-8574, Japan
| | - Marco Polidori
- Department of Cardiac Surgery, University of Dusseldorf, Moorenstrasse 5, 40225 Dusseldorf, Germany; (J.I.S.); (Y.S.); (S.K.); (M.P.); (L.A.J.); (O.M.); (S.B.); (M.B.); (A.L.)
| | - Laura Alida Jacobi
- Department of Cardiac Surgery, University of Dusseldorf, Moorenstrasse 5, 40225 Dusseldorf, Germany; (J.I.S.); (Y.S.); (S.K.); (M.P.); (L.A.J.); (O.M.); (S.B.); (M.B.); (A.L.)
| | - Olga Medovoj
- Department of Cardiac Surgery, University of Dusseldorf, Moorenstrasse 5, 40225 Dusseldorf, Germany; (J.I.S.); (Y.S.); (S.K.); (M.P.); (L.A.J.); (O.M.); (S.B.); (M.B.); (A.L.)
| | - Sarah Betke
- Department of Cardiac Surgery, University of Dusseldorf, Moorenstrasse 5, 40225 Dusseldorf, Germany; (J.I.S.); (Y.S.); (S.K.); (M.P.); (L.A.J.); (O.M.); (S.B.); (M.B.); (A.L.)
| | - Mareike Barth
- Department of Cardiac Surgery, University of Dusseldorf, Moorenstrasse 5, 40225 Dusseldorf, Germany; (J.I.S.); (Y.S.); (S.K.); (M.P.); (L.A.J.); (O.M.); (S.B.); (M.B.); (A.L.)
- Department of Cardiac Surgery, University of Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Artur Lichtenberg
- Department of Cardiac Surgery, University of Dusseldorf, Moorenstrasse 5, 40225 Dusseldorf, Germany; (J.I.S.); (Y.S.); (S.K.); (M.P.); (L.A.J.); (O.M.); (S.B.); (M.B.); (A.L.)
- Cardiovascular Research Institute Dusseldorf (CARID), University of Dusseldorf, Moorenstrasse 5, 40225 Dusseldorf, Germany
| | - Payam Akhyari
- Department of Cardiac Surgery, University of Dusseldorf, Moorenstrasse 5, 40225 Dusseldorf, Germany; (J.I.S.); (Y.S.); (S.K.); (M.P.); (L.A.J.); (O.M.); (S.B.); (M.B.); (A.L.)
- Department of Cardiac Surgery, University of Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Jan-Philipp Minol
- Department of Cardiac Surgery, University of Dusseldorf, Moorenstrasse 5, 40225 Dusseldorf, Germany; (J.I.S.); (Y.S.); (S.K.); (M.P.); (L.A.J.); (O.M.); (S.B.); (M.B.); (A.L.)
| |
Collapse
|
12
|
Siracusa C, Carabetta N, Morano MB, Manica M, Strangio A, Sabatino J, Leo I, Castagna A, Cianflone E, Torella D, Andreucci M, Zicarelli MT, Musolino M, Bolignano D, Coppolino G, De Rosa S. Understanding Vascular Calcification in Chronic Kidney Disease: Pathogenesis and Therapeutic Implications. Int J Mol Sci 2024; 25:13096. [PMID: 39684805 DOI: 10.3390/ijms252313096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/04/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
Vascular calcification (VC) is a biological phenomenon characterized by an accumulation of calcium and phosphate deposits within the walls of blood vessels causing the loss of elasticity of the arterial walls. VC plays a crucial role in the incidence and progression of chronic kidney disease (CKD), leading to a significant increase in cardiovascular mortality in these patients. Different conditions such as age, sex, dyslipidemia, diabetes, and hypertension are the main risk factors in patients affected by chronic kidney disease. However, VC may occur earlier and faster in these patients if it is associated with new or non-traditional risk factors such as oxidative stress, anemia, and inflammation. In chronic kidney disease, several pathophysiological processes contribute to vascular calcifications, including osteochondrogenic differentiation of vascular cells, hyperphosphatemia and hypercalcemia, and the loss of specific vascular calcification inhibitors including pyrophosphate, fetuin-A, osteoprotegerin, and matrix GLA protein. In this review we discuss the main traditional and non-traditional risk factors that can promote VC in patients with kidney disease. In addition, we provide an overview of the main pathogenetic mechanisms responsible for VC that may be crucial to identify new prevention strategies and possible new therapeutic approaches to reduce cardiovascular risk in patients with kidney disease.
Collapse
Affiliation(s)
- Chiara Siracusa
- Department of Medical and Surgical Sciences, "Magna Grecia" University, 88100 Catanzaro, Italy
| | - Nicole Carabetta
- Department of Medical and Surgical Sciences, "Magna Grecia" University, 88100 Catanzaro, Italy
| | - Maria Benedetta Morano
- Department of Medical and Surgical Sciences, "Magna Grecia" University, 88100 Catanzaro, Italy
| | - Marzia Manica
- Department of Medical and Surgical Sciences, "Magna Grecia" University, 88100 Catanzaro, Italy
| | - Antonio Strangio
- Department of Experimental and Clinical Medicine, "Magna Grecia" University, 88100 Catanzaro, Italy
| | - Jolanda Sabatino
- Department of Experimental and Clinical Medicine, "Magna Grecia" University, 88100 Catanzaro, Italy
| | - Isabella Leo
- Department of Experimental and Clinical Medicine, "Magna Grecia" University, 88100 Catanzaro, Italy
| | - Alberto Castagna
- Department of Medical and Surgical Sciences, "Magna Grecia" University, 88100 Catanzaro, Italy
| | - Eleonora Cianflone
- Department of Medical and Surgical Sciences, "Magna Grecia" University, 88100 Catanzaro, Italy
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, "Magna Grecia" University, 88100 Catanzaro, Italy
| | - Michele Andreucci
- Department of Health Sciences, "Magna Grecia" University, 88100 Catanzaro, Italy
| | - Maria Teresa Zicarelli
- Department of Medical and Surgical Sciences, "Magna Grecia" University, 88100 Catanzaro, Italy
| | - Michela Musolino
- Department of Medical and Surgical Sciences, "Magna Grecia" University, 88100 Catanzaro, Italy
| | - Davide Bolignano
- Department of Medical and Surgical Sciences, "Magna Grecia" University, 88100 Catanzaro, Italy
| | - Giuseppe Coppolino
- Department of Health Sciences, "Magna Grecia" University, 88100 Catanzaro, Italy
| | - Salvatore De Rosa
- Department of Medical and Surgical Sciences, "Magna Grecia" University, 88100 Catanzaro, Italy
| |
Collapse
|
13
|
Zeng T, Lei GL, Yu ML, Zhang TY, Wang ZB, Wang SZ. The role and mechanism of various trace elements in atherosclerosis. Int Immunopharmacol 2024; 142:113188. [PMID: 39326296 DOI: 10.1016/j.intimp.2024.113188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024]
Abstract
Atherosclerosis is a slow and complex disease that involves various factors, including lipid metabolism disorders, oxygen-free radical production, inflammatory cell infiltration, platelet adhesion and aggregation, and local thrombosis. Trace elements play a crucial role in human health. Many trace elements, especially metallic ones, not only maintain the normal functions of organs but also participate in basic metabolic processes. The latest studies have revealed a close correlation between trace elements and the occurrence and progression of atherosclerosis. The imbalance of these trace elements can induce atherosclerosis or accelerate its progression through various mechanisms, which poses a significant threat to human health. Therefore, exploring the specific mechanism of trace elements on atherosclerosis is highly significant. In this review, we summarized the roles and mechanisms of iron, copper, zinc, magnesium, and selenium homeostasis and imbalance in atherosclerosis development, in order to identify novel targets and therapeutic strategies for treating atherosclerosis.
Collapse
Affiliation(s)
- Tao Zeng
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Guan-Lan Lei
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Mei-Ling Yu
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Ting-Yu Zhang
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Zong-Bao Wang
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China.
| | - Shu-Zhi Wang
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China.
| |
Collapse
|
14
|
Qi RQ, Chen YF, Cheng J, Song JW, Chen YH, Wang SY, Liu Y, Yan KX, Liu XY, Li J, Zhong JC. Elabela alleviates cuproptosis and vascular calcification in vitaminD3- overloaded mice via regulation of the PPAR-γ /FDX1 signaling. Mol Med 2024; 30:223. [PMID: 39567863 PMCID: PMC11577739 DOI: 10.1186/s10020-024-00997-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/12/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND Vascular calcification is a crucial pathophysiological process associated with age-related cardiovascular diseases. Elabela, a recently identified peptide, has emerged as a significant player in the regulation of cardiovascular function and homeostasis. However, the effects and underlying mechanisms of Elabela on age-related vascular calcification remain largely unexplored. METHODS In-vivo vascular calcifications of C57BL/6J mice (8-week-old) and young (8-week-old) or aged (72-week-old) SD rats were injected with vitamin D3 (VitD3) or saline, respectively. Furthermore, the VitD3-overloaded mice received Elabela (1 mg/kg/d), peroxisome proliferators-activated receptor-γ (PPAR-γ) activator Rosiglitazone (5 mg/kg/d) or copper-ionophore Elesclomol (20 mg/kg/d), respectively. As for in-vitro studies, primary rat vascular smooth muscle cells (VSMCs) were isolated from aortas and cultured for explore the role and underlying mechanism of Elabela in vascular calcification. RESULTS There were marked increases in FDX1 and Slc31a1 levels in both aortas and VSMCs during vascular calcification, coinciding with a rise in copper levels and a decrease in Elabela levels. Alizarin red and von-Kossa staining indicated that the administration of Elabela effectively hindered the progression of vascular cuproptosis and arterial calcification in VitD3-overloaded mice and rat arterial rings models. Moreover, Elabela significantly suppressed osteogenic differentiation and calcium deposition in VSMCs and strikingly reversed high phosphate-induced augmentation of FDX1 expression, DLAT aggregation as well as intracellular copper ion levels. More importantly, Elabela exhibited remarkable abilities to prevent mitochondrial dysfunctions in primary rat VSMCs by maintaining mitochondrial membrane potential, inhibiting mitochondrial division, reducing mitochondrial ROS production and increasing ATP levels. Interestingly, Elabela mitigated cellular senescence and production of pro-inflammatory cytokines including IL-1α, IL-1β, IL-6, IL-18 and TNF-α, respectively. Furthermore, Elabela upregulated the protein levels of PPAR-γ in VitD3-overloaded mice. Administrating PPAR-γ inhibitor GW9662 or blocking the efflux of intracellular copper abolished the protective effect of Elabela on vascular calcification by enhancing levels of FDX1, Slc31a1, Runx2, and BMP2. CONCLUSION Elabela plays a crucial role in protecting against vascular cuproptosis and arterial calcification by activating the PPAR-γ /FDX1 signaling. Elabela supplementation and cuproptosis suppression serve as effective therapeutic approaches for managing vascular calcification and related cardiovascular disorders.
Collapse
Affiliation(s)
- Rui-Qiang Qi
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital and Beijing Institute of Respiratory Medicine, Capital Medical University, Beijing, 100020, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Yu-Fei Chen
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital and Beijing Institute of Respiratory Medicine, Capital Medical University, Beijing, 100020, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Jing Cheng
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Jia-Wei Song
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital and Beijing Institute of Respiratory Medicine, Capital Medical University, Beijing, 100020, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Yi-Hang Chen
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital and Beijing Institute of Respiratory Medicine, Capital Medical University, Beijing, 100020, China
| | - Si-Yuan Wang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital and Beijing Institute of Respiratory Medicine, Capital Medical University, Beijing, 100020, China
| | - Ying Liu
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital and Beijing Institute of Respiratory Medicine, Capital Medical University, Beijing, 100020, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Kai-Xin Yan
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital and Beijing Institute of Respiratory Medicine, Capital Medical University, Beijing, 100020, China
| | - Xiao-Yan Liu
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital and Beijing Institute of Respiratory Medicine, Capital Medical University, Beijing, 100020, China
| | - Jing Li
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital and Beijing Institute of Respiratory Medicine, Capital Medical University, Beijing, 100020, China
| | - Jiu-Chang Zhong
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital and Beijing Institute of Respiratory Medicine, Capital Medical University, Beijing, 100020, China.
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China.
| |
Collapse
|
15
|
Cortiana V, Vaghela H, Bakhle R, Santhosh T, Kaiwan O, Tausif A, Goel A, Suhail MK, Patel N, Akram O, Kaka N, Sethi Y, Moinuddin A. Beyond the Heart: The Predictive Role of Coronary Artery Calcium Scoring in Non-Cardiovascular Disease Risk Stratification. Diagnostics (Basel) 2024; 14:2349. [PMID: 39518317 PMCID: PMC11545064 DOI: 10.3390/diagnostics14212349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Coronary artery calcium scoring (CACS), a non-invasive measure of coronary atherosclerosis, has significantly enhanced cardiovascular (CV) risk assessment and stratification in asymptomatic individuals. More recently, a higher score for CAC has been associated with an increased risk of non-CV diseases and all-cause mortality. This review consolidated evidence supporting the role of CAC in assessing non-CV diseases, emphasizing its potential in early diagnosis and prognosis. We observed a strong association between CACS and non-CV diseases, viz., chronic obstructive pulmonary disease, pulmonary embolism, pneumonia, diabetes, chronic kidney disease, osteoporosis, metabolic dysfunction-associated steatotic liver disease, nephrolithiasis, stroke, dementia, malignancies, and several autoimmune diseases. Also, CAC may aid in evaluating the risk of CV conditions developing secondary to the non-CV diseases mentioned earlier. Further evidence from prospective studies, intervention trials, and population-based behavioral studies is needed to establish CAC cutoff values and explore preventative care applications, facilitating their broader integration into healthcare practices.
Collapse
Affiliation(s)
- Viviana Cortiana
- PearResearch, Dehradun 248001, India; (V.C.); (H.V.); (R.B.); (T.S.); (A.T.); (N.P.); (N.K.); (A.M.)
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Hetvee Vaghela
- PearResearch, Dehradun 248001, India; (V.C.); (H.V.); (R.B.); (T.S.); (A.T.); (N.P.); (N.K.); (A.M.)
- Pandit Deendayal Upadhyay Medical College, Rajkot 360001, India
| | - Rahul Bakhle
- PearResearch, Dehradun 248001, India; (V.C.); (H.V.); (R.B.); (T.S.); (A.T.); (N.P.); (N.K.); (A.M.)
- Medical College Baroda, Maharaja Sayajirao University, Vadodara 390001, India
| | - Tony Santhosh
- PearResearch, Dehradun 248001, India; (V.C.); (H.V.); (R.B.); (T.S.); (A.T.); (N.P.); (N.K.); (A.M.)
- Dr. Somervell Memorial CSI Medical College, Thiruvananthapuram 695504, India
| | - Oroshay Kaiwan
- PearResearch, Dehradun 248001, India; (V.C.); (H.V.); (R.B.); (T.S.); (A.T.); (N.P.); (N.K.); (A.M.)
- Department of Medicine, MetroHealth Medical Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Aalia Tausif
- PearResearch, Dehradun 248001, India; (V.C.); (H.V.); (R.B.); (T.S.); (A.T.); (N.P.); (N.K.); (A.M.)
| | - Ashish Goel
- Department of Physiology, Graphic Era Institute of Medical Sciences, Dehradun 248008, India;
| | - Mohammed K. Suhail
- Department of Public Health & Community Medicine, International Medical University, Kuala Lumpur 57000, Malaysia;
| | - Neil Patel
- PearResearch, Dehradun 248001, India; (V.C.); (H.V.); (R.B.); (T.S.); (A.T.); (N.P.); (N.K.); (A.M.)
- Department of Medicine, GMERS Medical College, Himmatnagar 390021, India
| | - Omar Akram
- Department of Medicine, Highland Hospital, Alameda Health System, Oakland, CA 94602, USA
| | - Nirja Kaka
- PearResearch, Dehradun 248001, India; (V.C.); (H.V.); (R.B.); (T.S.); (A.T.); (N.P.); (N.K.); (A.M.)
- Department of Medicine, GMERS Medical College, Himmatnagar 390021, India
| | - Yashendra Sethi
- PearResearch, Dehradun 248001, India; (V.C.); (H.V.); (R.B.); (T.S.); (A.T.); (N.P.); (N.K.); (A.M.)
- Department of Medicine, Government Doon Medical College, HNB Uttarakhand Medical Education University, Dehradun 248001, India
| | - Arsalan Moinuddin
- PearResearch, Dehradun 248001, India; (V.C.); (H.V.); (R.B.); (T.S.); (A.T.); (N.P.); (N.K.); (A.M.)
- School of Sports and Exercise, University of Gloucestershire, Cheltenham GL50 2RH, UK
| |
Collapse
|
16
|
de Jong PA, Bos D, Mali WPTM. Calcification Formation for Development, Defense, and Repair of the Human Body? J Clin Med 2024; 13:5691. [PMID: 39407751 PMCID: PMC11477445 DOI: 10.3390/jcm13195691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024] Open
Abstract
Calcium deposits commonly occur in the human body in any type of tissue through an actively regulated process [...].
Collapse
Affiliation(s)
- Pim A. de Jong
- Department of Radiology, University Medical Center Utrecht, Utrecht University, 3584 CS Utrecht, The Netherlands;
| | - Daniel Bos
- Department of Epidemiology, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands;
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02138, USA
| | - W. P. Th. M. Mali
- Department of Radiology, University Medical Center Utrecht, Utrecht University, 3584 CS Utrecht, The Netherlands;
| |
Collapse
|
17
|
Tóth A, Balogh E, Jeney V. In Vitro Models of Cardiovascular Calcification. Biomedicines 2024; 12:2155. [PMID: 39335668 PMCID: PMC11429067 DOI: 10.3390/biomedicines12092155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/15/2024] [Accepted: 09/21/2024] [Indexed: 09/30/2024] Open
Abstract
Cardiovascular calcification, characterized by hydroxyapatite deposition in the arterial wall and heart valves, is associated with high cardiovascular morbidity and mortality. Cardiovascular calcification is a hallmark of aging but is frequently seen in association with chronic diseases, such as chronic kidney disease (CKD), diabetes, dyslipidemia, and hypertension in the younger population as well. Currently, there is no therapeutic approach to prevent or cure cardiovascular calcification. The pathophysiology of cardiovascular calcification is highly complex and involves osteogenic differentiation of various cell types of the cardiovascular system, such as vascular smooth muscle cells and valve interstitial cells. In vitro cellular and ex vivo tissue culture models are simple and useful tools in cardiovascular calcification research. These models contributed largely to the discoveries of the numerous calcification inducers, inhibitors, and molecular mechanisms. In this review, we provide an overview of the in vitro cell culture and the ex vivo tissue culture models applied in the research of cardiovascular calcification.
Collapse
Affiliation(s)
- Andrea Tóth
- MTA-DE Lendület Vascular Pathophysiology Research Group, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Enikő Balogh
- MTA-DE Lendület Vascular Pathophysiology Research Group, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Viktória Jeney
- MTA-DE Lendület Vascular Pathophysiology Research Group, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
18
|
Xie C, Luo D, Liu G, Chen J, Huang H. Ten-year trajectory of coronary artery calcification and risk of cardiovascular outcomes: the Multi-Ethnic Study of Atherosclerosis. Front Cardiovasc Med 2024; 11:1406216. [PMID: 39049953 PMCID: PMC11266147 DOI: 10.3389/fcvm.2024.1406216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/03/2024] [Indexed: 07/27/2024] Open
Abstract
Background Whether and how coronary artery calcium (CAC) progress contributes to cardiovascular outcomes has not been fully elucidated. The aim of this study was to identify different patterns of CAC change and evaluate the associations with different cardiovascular outcomes. Methods Data from the Multi-Ethnic Study of Atherosclerosis study were analyzed. Participants with at least three CT measurements were included. The main study outcome is hard cardiovascular disease (CVD). CAC scores were determined as phantom-adjusted Agatston scores. A group-based trajectory model was used to identify latent groups and estimated the hazard ratios (HR) and 95% confidence intervals (CI) using Cox proportional regression models. Results A total of 3,616 participants were finally enrolled [mean age 60.55 (SD 9.54) years, 47.76% men and 39.30% Caucasian]. Four distinct trajectories in CAC were identified: class 1, low-stable (24.17%); class 2, low-increasing (27.60%); class 3, moderate-increasing (30.56%); and class 4, elevated-increasing (17.67%). During 13.58 (SD 2.25) years of follow-up, 291 cases of hard CVD occurred. The event rates of hard CVD per 1,000 person-years were 2.23 (95% CI 1.53-3.25), 4.60 (95% CI 3.60-5.89), 7.67 (95% CI 6.38-9.21) and 10.37 (95% CI 8.41-12.80) for classes 1-4, respectively. Compared to participants assigned to class 1, the full-adjusted HRs of hard CVD for classes 2-4 were 2.10 (95% CI 1.33-3.01), 3.17 (95% CI 2.07-4.87), and 4.30 (95% CI 2.73-6.78), respectively. The graded positive associations with hard CVD were consistently observed in subgroups of age, sex, and race, with the presence or absence of hypertension or diabetes. By analyzing potential risk factors for distinctive CAC trajectories, risk factors for the onset and progression of CAC could possibly differ: age, male sex, history of hypertension, and diabetes are consistently associated with the low-, moderate-, and elevated-increasing trajectories. However, Caucasian race, cigarette smoking, and a higher body mass index was related only to risk of progression but not to incident CAC. Conclusion In this multi-ethnic population-based cohort, four unique trajectories in CAC change over a 10-year span were identified. These findings signal an underlying high-risk population and may inspire future studies on risk management.
Collapse
Affiliation(s)
- Changming Xie
- Department of Cardiology, The Eighth Affiliated Hospital, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Sun Yat-sen University, Shenzhen, China
| | - Dongling Luo
- Department of Cardiology, The Eighth Affiliated Hospital, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Sun Yat-sen University, Shenzhen, China
| | - Guodu Liu
- Department of Cardiology, The Eighth Affiliated Hospital, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Sun Yat-sen University, Shenzhen, China
| | - Jie Chen
- Department of Radiation Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hui Huang
- Department of Cardiology, The Eighth Affiliated Hospital, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
19
|
Kwon JH, Kim DK, Cho YE, Kwun IS. Zinc Action in Vascular Calcification. Prev Nutr Food Sci 2024; 29:118-124. [PMID: 38974586 PMCID: PMC11223917 DOI: 10.3746/pnf.2024.29.2.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 07/09/2024] Open
Abstract
Although zinc's involvement in bone calcification is well-established, its role in vascular calcification, characterized by abnormal calcium and phosphorus deposition in soft tissues and a key aspect of various vascular diseases, including atherosclerosis, remains unclear. This review focuses on zinc's action in vascular smooth muscle cell (VSMC) calcification, including the vascular calcification mechanism. Accumulated research has indicated that zinc deficiency induces calcification in VSMCs and the aorta, primarily through apoptosis accompanied by a downregulation of smooth muscle cell markers. Moreover, zinc deficiency-induced vascular calcification operates independently of the action of alkaline phosphatase (ALP) activity, typically associated with osteogenic processes, but is partly regulated via inorganic phosphate transporter-1 (Pit-1). To date, research has shown that zinc regulates vascular calcification through a mechanism distinct from that of osteogenic calcification, providing insight into its dual effects on physiological and pathological calcification and thereby explaining the "zinc paradox," wherein zinc simultaneously increases osteoblastic calcification and decreases VSMC calcification.
Collapse
Affiliation(s)
- Jae-Hee Kwon
- Department of Food and Nutrition, College of Life Science and Biotechnology, Andong National University, Andong 36729, Korea
| | - Do-Kyun Kim
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Korea
| | - Young-Eun Cho
- Department of Food and Nutrition, College of Life Science and Biotechnology, Andong National University, Andong 36729, Korea
| | - In-Sook Kwun
- Department of Food and Nutrition, College of Life Science and Biotechnology, Andong National University, Andong 36729, Korea
| |
Collapse
|
20
|
Ababneh H, Tóth A, Lente G, Balogh E, Csiki DM, Nagy B, Szöőr Á, Jeney V. High phosphate and calcium induce osteoblastic phenotype switching and calcification of corneal epithelial cells in a Runx2-dependent and synergistic manner; a possible mechanism of chronic kidney disease-associated corneal calcification. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167171. [PMID: 38631411 DOI: 10.1016/j.bbadis.2024.167171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/04/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
Patients with advanced chronic kidney disease (CKD) have elevated circulating calcium × phosphate product levels and exhibit soft tissue calcification. Besides the cardiovascular system, calcification is commonly observed in the cornea in CKD patients on hemodialysis. Cardiovascular calcification is a cell-mediated, highly regulated process, and we hypothesized that a similar regulatory mechanism is implicated in corneal calcification with the involvement of corneal epithelial cells (CECs). We established a mouse model of CKD-associated corneal calcification by inducing CKD in DBA/2J mice with an adenine and high phosphate diet. CKD was associated with aorta and corneal calcification as detected by OsteoSense staining and corneal Ca measurement (1.67-fold elevation, p < 0.001). In vitro, excess phosphate and Ca induced human CEC calcification in a dose-dependent and synergistic manner, without any influence on cell viability. High phosphate and Ca-containing osteogenic medium (OM; 2.5 mmol/L excess phosphate and 0.6 mmol/L excess Ca over control) increased the protein expression of Runx2 and induced its nuclear translocation. OM increased the expression of the bone-specific Ca-binding protein osteocalcin (130-fold increase, p < 0.001). Silencing of Runx2 attenuated OM-induced CEC calcification. Immunohistology revealed upregulation of Runx2 and overlapping between the Runx2 and the Alizarin red positive areas of calcification in the cornea of CKD mice. This work sheds light on the mechanism of CKD-induced corneal calcification and provides tools to test calcification inhibitors for the prevention of this detrimental process.
Collapse
Affiliation(s)
- Haneen Ababneh
- MTA-DE Lendület Vascular Pathophysiology Research Group, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Doctoral School of Molecular Cell and Immune Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Andrea Tóth
- MTA-DE Lendület Vascular Pathophysiology Research Group, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gréta Lente
- MTA-DE Lendület Vascular Pathophysiology Research Group, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Doctoral School of Molecular Cell and Immune Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Enikő Balogh
- MTA-DE Lendület Vascular Pathophysiology Research Group, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Dávid Máté Csiki
- MTA-DE Lendület Vascular Pathophysiology Research Group, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Doctoral School of Molecular Cell and Immune Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Béla Nagy
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Árpád Szöőr
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Viktória Jeney
- MTA-DE Lendület Vascular Pathophysiology Research Group, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
21
|
Yin C, Ge Z, Yuan J, Chen Y, Tang Y, Xiang Y, Zhang Y. NEAT1 regulates VSMC differentiation and calcification in as long noncoding RNA NEAT1 enhances phenotypic and osteogenic switching of vascular smooth muscle cells in atherosclerosis via scaffolding EZH2. Am J Physiol Cell Physiol 2024; 326:C1721-C1734. [PMID: 38646788 PMCID: PMC11371316 DOI: 10.1152/ajpcell.00587.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/27/2024] [Accepted: 04/11/2024] [Indexed: 04/23/2024]
Abstract
Atherosclerosis (AS) is a significant contributor to cardio-cerebrovascular ischemia diseases, resulting in high mortality rates worldwide. During AS, vascular smooth muscle cells (VSMCs) play a crucial role in plaque formation by undergoing phenotypic and osteogenic switching. Long noncoding RNA nuclear paraspeckle assembly transcript 1 (NEAT1) has previously been identified as a nuclear regulator that promotes tumorigenesis and metastasis, but its role in regulating VSMCs in AS remains unclear. Our study aimed to investigate the biological functions and specific mechanisms of NEAT1 in regulating VSMCs in AS. We found that NEAT1 was upregulated in the aortas of AS mouse models and dedifferentiated primary VSMCs. Silencing NEAT1 in vitro attenuated the proliferation, migration, and osteogenic differentiation of VSMCs, while NEAT1 overexpression had the opposite effect. Furthermore, NEAT1 promoted VSMC osteogenic differentiation and vascular calcification in both in vivo and in vitro vascular calcification models. We also discovered that NEAT1 directly activates enhancer of zeste homolog 2 (EZH2), an epigenetic enzyme that suppresses the expression of senescence- and antimigration-related genes, by translocating it into the nucleus. CUT&Tag assay revealed that NEAT1 guides EZH2 to the promoters of senescence-related genes (P16, P21, and TIMP3), methylating local histones to reduce their transcription. Our findings suggest that NEAT1 functions in AS by modulating the epigenetic function of EZH2, which enhances the proliferation, migration, and osteogenic differentiation of VSMCs. This study provides new insights into the molecular mechanisms underlying the pathogenesis of AS and highlights the potential of NEAT1 as a therapeutic target of AS.NEW & NOTEWORTHY Our study demonstrates that the upregulation of long noncoding RNA nuclear paraspeckle assembly transcript 1 (NEAT1) promotes proliferation and migration during phenotypic switching of vascular smooth muscle cells in atherosclerosis. We also provide in vivo and in vitro evidence that NEAT1 accelerates vascular calcification. Our findings identified the direct interaction between enhancer of zeste homolog 2 (EZH2) and NEAT1 during atherosclerosis. NEAT1 is necessary for EZH2 to translocate from the cytoplasm to the nucleus, where EZH2 epigenetically inhibits the expression of genes related to senescence and antimigration.
Collapse
MESH Headings
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Enhancer of Zeste Homolog 2 Protein/metabolism
- Enhancer of Zeste Homolog 2 Protein/genetics
- Animals
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Osteogenesis/genetics
- Atherosclerosis/genetics
- Atherosclerosis/pathology
- Atherosclerosis/metabolism
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Cell Differentiation
- Vascular Calcification/pathology
- Vascular Calcification/genetics
- Vascular Calcification/metabolism
- Mice
- Male
- Mice, Inbred C57BL
- Cell Proliferation
- Phenotype
- Cells, Cultured
- Humans
- Cell Movement
Collapse
Affiliation(s)
- Chengye Yin
- Department of Cardiology, Xinhua HospitalShanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Zhuowang Ge
- Department of Cardiology, Xinhua HospitalShanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jiali Yuan
- Department of Cardiology, Xinhua HospitalShanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yuhan Chen
- Department of Cardiology, Xinhua HospitalShanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yong Tang
- Department of Cardiology, Xinhua HospitalShanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yin Xiang
- Department of Cardiology, Xinhua HospitalShanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yachen Zhang
- Department of Cardiology, Xinhua HospitalShanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
22
|
Sheppard AJ, Theng EH, Paravastu SS, Wojnowski NM, Farhadi F, Morris MA, Hartley IR, Rachel IG, Roszko KL, Collins MT, Saboury B. Spatial Atlas for Mapping Vascular Microcalcification Using 18F-NaF PET/CT: Application in Hyperphosphatemic Familial Tumoral Calcinosis. Arterioscler Thromb Vasc Biol 2024; 44:1432-1446. [PMID: 38660800 PMCID: PMC11111330 DOI: 10.1161/atvbaha.123.320455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/28/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Vascular calcification causes significant morbidity and occurs frequently in diseases of calcium/phosphate imbalance. Radiolabeled sodium fluoride positron emission tomography/computed tomography has emerged as a sensitive and specific method for detecting and quantifying active microcalcifications. We developed a novel technique to quantify and map total vasculature microcalcification to a common space, allowing simultaneous assessment of global disease burden and precise tracking of site-specific microcalcifications across time and individuals. METHODS To develop this technique, 4 patients with hyperphosphatemic familial tumoral calcinosis, a monogenic disorder of FGF23 (fibroblast growth factor-23) deficiency with a high prevalence of vascular calcification, underwent radiolabeled sodium fluoride positron emission tomography/computed tomography imaging. One patient received serial imaging 1 year after treatment with an IL-1 (interleukin-1) antagonist. A radiolabeled sodium fluoride-based microcalcification score, as well as calcification volume, was computed at all perpendicular slices, which were then mapped onto a standardized vascular atlas. Segment-wise mCSmean and mCSmax were computed to compare microcalcification score levels at predefined vascular segments within subjects. RESULTS Patients with hyperphosphatemic familial tumoral calcinosis had notable peaks in microcalcification score near the aortic bifurcation and distal femoral arteries, compared with a control subject who had uniform distribution of vascular radiolabeled sodium fluoride uptake. This technique also identified microcalcification in a 17-year-old patient, who had no computed tomography-defined calcification. This technique could not only detect a decrease in microcalcification score throughout the patient treated with an IL-1 antagonist but it also identified anatomic areas that had increased responsiveness while there was no change in computed tomography-defined macrocalcification after treatment. CONCLUSIONS This technique affords the ability to visualize spatial patterns of the active microcalcification process in the peripheral vasculature. Further, this technique affords the ability to track microcalcifications at precise locations not only across time but also across subjects. This technique is readily adaptable to other diseases of vascular calcification and may represent a significant advance in the field of vascular biology.
Collapse
Affiliation(s)
- Aaron J Sheppard
- National Institutes of Dental and Craniofacial Research, NIH, Bethesda, MD, 20892
- Louisiana State University Health Shreveport, School of Medicine, Shreveport, LA, 71103
| | - Elizabeth H Theng
- National Institutes of Dental and Craniofacial Research, NIH, Bethesda, MD, 20892
- Department of Radiology, Stanford School of Medicine, Stanford, CA, 94304
| | - Sriram S Paravastu
- National Institutes of Dental and Craniofacial Research, NIH, Bethesda, MD, 20892
- University of Missouri – Kansas City School of Medicine, Kansas City, MO, 64108
| | - Natalia M Wojnowski
- National Institutes of Dental and Craniofacial Research, NIH, Bethesda, MD, 20892
- Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611
| | - Faraz Farhadi
- Radiology and Imaging Sciences, Clinical Center, NIH, Bethesda, MD, 20892
- Geisel School of Medicine, Dartmouth, Hanover, NH, 03755
- Institute of Nuclear Medicine, Bethesda, MD, USA
| | | | - Iris R Hartley
- National Institutes of Dental and Craniofacial Research, NIH, Bethesda, MD, 20892
| | - I Gafni Rachel
- National Institutes of Dental and Craniofacial Research, NIH, Bethesda, MD, 20892
| | - Kelly L Roszko
- National Institutes of Dental and Craniofacial Research, NIH, Bethesda, MD, 20892
| | - Michael T Collins
- National Institutes of Dental and Craniofacial Research, NIH, Bethesda, MD, 20892
| | - Babak Saboury
- Radiology and Imaging Sciences, Clinical Center, NIH, Bethesda, MD, 20892
- Institute of Nuclear Medicine, Bethesda, MD, USA
| |
Collapse
|
23
|
Zhai X, Cao S, Wang J, Qiao B, Liu X, Hua R, Zhao M, Sun S, Han Y, Wu S, Pang J, Yuan Q, Wang B, Xu F, Wei S, Chen Y. Carbonylation of Runx2 at K176 by 4-Hydroxynonenal Accelerates Vascular Calcification. Circulation 2024; 149:1752-1769. [PMID: 38348663 DOI: 10.1161/circulationaha.123.065830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 01/19/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND Vascular calcification, which is characterized by calcium deposition in arterial walls and the osteochondrogenic differentiation of vascular smooth muscle cells, is an actively regulated process that involves complex mechanisms. Vascular calcification is associated with increased cardiovascular adverse events. The role of 4-hydroxynonenal (4-HNE), which is the most abundant stable product of lipid peroxidation, in vascular calcification has been poorly investigated. METHODS Serum was collected from patients with chronic kidney disease and controls, and the levels of 4-HNE and 8-iso-prostaglandin F2α were measured. Sections of coronary atherosclerotic plaques from donors were immunostained to analyze calcium deposition and 4-HNE. A total of 658 patients with coronary artery disease who received coronary computed tomography angiography were recruited to analyze the relationship between coronary calcification and the rs671 mutation in aldehyde dehydrogenase 2 (ALDH2). ALDH2 knockout (ALDH2-/-) mice, smooth muscle cell-specific ALDH2 knockout mice, ALDH2 transgenic mice, and their controls were used to establish vascular calcification models. Primary mouse aortic smooth muscle cells and human aortic smooth muscle cells were exposed to medium containing β-glycerophosphate and CaCl2 to investigate cell calcification and the underlying molecular mechanisms. RESULTS Elevated 4-HNE levels were observed in the serum of patients with chronic kidney disease and model mice and were detected in calcified artery sections by immunostaining. ALDH2 knockout or smooth muscle cell-specific ALDH2 knockout accelerated the development of vascular calcification in model mice, whereas overexpression or activation prevented mouse vascular calcification and the osteochondrogenic differentiation of vascular smooth muscle cells. In patients with coronary artery disease, patients with ALDH2 rs671 gene mutation developed more severe coronary calcification. 4-HNE promoted calcification of both mouse aortic smooth muscle cells and human aortic smooth muscle cells and their osteochondrogenic differentiation in vitro. 4-HNE increased the level of Runx2 (runt-related transcription factor-2), and the effect of 4-HNE on promoting vascular smooth muscle cell calcification was ablated when Runx2 was knocked down. Mutation of Runx2 at lysine 176 reduced its carbonylation and eliminated the 4-HNE-induced upregulation of Runx2. CONCLUSIONS Our results suggest that 4-HNE increases Runx2 stabilization by directly carbonylating its K176 site and promotes vascular calcification. ALDH2 might be a potential target for the treatment of vascular calcification.
Collapse
MESH Headings
- Animals
- Aldehydes/metabolism
- Vascular Calcification/metabolism
- Vascular Calcification/genetics
- Vascular Calcification/pathology
- Humans
- Core Binding Factor Alpha 1 Subunit/metabolism
- Core Binding Factor Alpha 1 Subunit/genetics
- Aldehyde Dehydrogenase, Mitochondrial/genetics
- Aldehyde Dehydrogenase, Mitochondrial/metabolism
- Mice
- Mice, Knockout
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Myocytes, Smooth Muscle/drug effects
- Male
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Female
- Middle Aged
- Coronary Artery Disease/metabolism
- Coronary Artery Disease/genetics
- Coronary Artery Disease/pathology
- Cells, Cultured
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/genetics
- Renal Insufficiency, Chronic/pathology
- Aged
Collapse
Affiliation(s)
- Xiaoxuan Zhai
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China (X.Z., S.C., J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., S.W., J.P., Q.Y., F.X., S.W., Y.C.)
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China (X.Z., S.C., J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., S.W., J.P., Q.Y., F.X., S.W., Y.C.)
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, China (X.Z., S.C., J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., S.W., J.P., Q.Y., F.X., S.W., Y.C.)
| | - Shengchuan Cao
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China (X.Z., S.C., J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., S.W., J.P., Q.Y., F.X., S.W., Y.C.)
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China (X.Z., S.C., J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., S.W., J.P., Q.Y., F.X., S.W., Y.C.)
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, China (X.Z., S.C., J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., S.W., J.P., Q.Y., F.X., S.W., Y.C.)
| | - Jiali Wang
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China (X.Z., S.C., J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., S.W., J.P., Q.Y., F.X., S.W., Y.C.)
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China (X.Z., S.C., J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., S.W., J.P., Q.Y., F.X., S.W., Y.C.)
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, China (X.Z., S.C., J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., S.W., J.P., Q.Y., F.X., S.W., Y.C.)
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan (J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., J.P., Q.Y.)
| | - Bao Qiao
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China (X.Z., S.C., J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., S.W., J.P., Q.Y., F.X., S.W., Y.C.)
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China (X.Z., S.C., J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., S.W., J.P., Q.Y., F.X., S.W., Y.C.)
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, China (X.Z., S.C., J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., S.W., J.P., Q.Y., F.X., S.W., Y.C.)
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan (J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., J.P., Q.Y.)
| | - Xuehao Liu
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China (X.Z., S.C., J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., S.W., J.P., Q.Y., F.X., S.W., Y.C.)
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China (X.Z., S.C., J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., S.W., J.P., Q.Y., F.X., S.W., Y.C.)
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, China (X.Z., S.C., J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., S.W., J.P., Q.Y., F.X., S.W., Y.C.)
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan (J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., J.P., Q.Y.)
| | - Rui Hua
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China (X.Z., S.C., J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., S.W., J.P., Q.Y., F.X., S.W., Y.C.)
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China (X.Z., S.C., J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., S.W., J.P., Q.Y., F.X., S.W., Y.C.)
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, China (X.Z., S.C., J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., S.W., J.P., Q.Y., F.X., S.W., Y.C.)
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan (J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., J.P., Q.Y.)
| | - Menglin Zhao
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China (X.Z., S.C., J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., S.W., J.P., Q.Y., F.X., S.W., Y.C.)
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China (X.Z., S.C., J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., S.W., J.P., Q.Y., F.X., S.W., Y.C.)
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, China (X.Z., S.C., J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., S.W., J.P., Q.Y., F.X., S.W., Y.C.)
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan (J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., J.P., Q.Y.)
| | - Shukun Sun
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China (X.Z., S.C., J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., S.W., J.P., Q.Y., F.X., S.W., Y.C.)
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China (X.Z., S.C., J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., S.W., J.P., Q.Y., F.X., S.W., Y.C.)
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, China (X.Z., S.C., J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., S.W., J.P., Q.Y., F.X., S.W., Y.C.)
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan (J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., J.P., Q.Y.)
| | - Yu Han
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China (X.Z., S.C., J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., S.W., J.P., Q.Y., F.X., S.W., Y.C.)
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China (X.Z., S.C., J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., S.W., J.P., Q.Y., F.X., S.W., Y.C.)
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, China (X.Z., S.C., J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., S.W., J.P., Q.Y., F.X., S.W., Y.C.)
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan (J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., J.P., Q.Y.)
| | - Shuo Wu
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China (X.Z., S.C., J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., S.W., J.P., Q.Y., F.X., S.W., Y.C.)
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China (X.Z., S.C., J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., S.W., J.P., Q.Y., F.X., S.W., Y.C.)
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, China (X.Z., S.C., J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., S.W., J.P., Q.Y., F.X., S.W., Y.C.)
| | - Jiaojiao Pang
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China (X.Z., S.C., J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., S.W., J.P., Q.Y., F.X., S.W., Y.C.)
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China (X.Z., S.C., J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., S.W., J.P., Q.Y., F.X., S.W., Y.C.)
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, China (X.Z., S.C., J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., S.W., J.P., Q.Y., F.X., S.W., Y.C.)
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan (J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., J.P., Q.Y.)
| | - Qiuhuan Yuan
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China (X.Z., S.C., J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., S.W., J.P., Q.Y., F.X., S.W., Y.C.)
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China (X.Z., S.C., J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., S.W., J.P., Q.Y., F.X., S.W., Y.C.)
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, China (X.Z., S.C., J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., S.W., J.P., Q.Y., F.X., S.W., Y.C.)
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan (J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., J.P., Q.Y.)
| | - Bailu Wang
- National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Clinical Trial Center, Qilu Hospital of Shandong University, Jinan, China (B.W.)
| | - Feng Xu
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China (X.Z., S.C., J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., S.W., J.P., Q.Y., F.X., S.W., Y.C.)
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China (X.Z., S.C., J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., S.W., J.P., Q.Y., F.X., S.W., Y.C.)
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, China (X.Z., S.C., J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., S.W., J.P., Q.Y., F.X., S.W., Y.C.)
| | - Shujian Wei
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China (X.Z., S.C., J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., S.W., J.P., Q.Y., F.X., S.W., Y.C.)
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China (X.Z., S.C., J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., S.W., J.P., Q.Y., F.X., S.W., Y.C.)
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, China (X.Z., S.C., J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., S.W., J.P., Q.Y., F.X., S.W., Y.C.)
| | - Yuguo Chen
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China (X.Z., S.C., J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., S.W., J.P., Q.Y., F.X., S.W., Y.C.)
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China (X.Z., S.C., J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., S.W., J.P., Q.Y., F.X., S.W., Y.C.)
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, China (X.Z., S.C., J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., S.W., J.P., Q.Y., F.X., S.W., Y.C.)
| |
Collapse
|
24
|
Xu M, Wei X, Wang J, Li Y, Huang Y, Cheng A, He F, Zhang L, Zhang C, Liu Y. The NRF2/ID2 Axis in Vascular Smooth Muscle Cells: Novel Insights into the Interplay between Vascular Calcification and Aging. Aging Dis 2024; 16:1120-1140. [PMID: 38916733 PMCID: PMC11964430 DOI: 10.14336/ad.2024.0075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 05/20/2024] [Indexed: 06/26/2024] Open
Abstract
Vascular calcification (VC) increases with age and markedly exacerbates the risk of cardiovascular morbidity and mortality. However, effective pharmaceutical interventions are lacking and the molecular mechanisms linking aging to VC remain elusive. This study explored the role of nuclear factor erythroid 2-related factor 2 (NRF2) in age-associated VC, specifically focusing on vascular smooth muscle cell (VSMC) senescence. Using a chronologically aging mouse model, we noted a significant decline in the expression of NRF2 in the aged mice aortas, coinciding with increased VC. Administering NRF2 activators effectively reduced calcification. By establishing adenine-and vitamin D-induced VC models in VSMC-specific Nrf2 knockout (Nrf2SMCKO) mice, there was an increase in VC with increased VSMC senescence. Aortic rings and primary VSMCs from Nrf2SMCKO mice also showed increased VC under high-phosphate conditions. Furthermore, Nrf2 overexpression inhibited VSMC calcification with decreased VSMC senescence and an osteogenic phenotype, whereas Nrf2 silencing aggravated calcification. Transcriptome RNA-seq analysis of the aortas from Nrf2SMCKO and control mice revealed that inhibitor of DNA binding 2 (Id2) is a core downstream gene of NRF2. Id2 overexpression alleviated NRF2 knockdown-induced VC and VSMC senescence, while silencing Id2 negated the protective effects of NRF2. Moreover, results of a dual luciferase reporter assay indicated that NRF2 promotes the transcriptional activity of the Id2 gene promoter region. This study emphasizes the critical role of age-related NRF2 dysfunction in the nexus between VSMC senescence and VC. The NRF2-ID2 axis in VSMCs has been proposed as a promising therapeutic target for reducing VC and mitigating age-related cardiovascular diseases.
Collapse
Affiliation(s)
- Mulin Xu
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Department of General Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xiuxian Wei
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jinli Wang
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yi Li
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yi Huang
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Anying Cheng
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Fan He
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Department of Nephrology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, China.
| | - Le Zhang
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Cuntai Zhang
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yu Liu
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
25
|
Xie Y, Lin T, Jin Y, Berezowitz AG, Wang XL, Lu J, Cai Y, Guzman RJ. Smooth muscle cell-specific matrix metalloproteinase 3 deletion reduces osteogenic transformation and medial artery calcification. Cardiovasc Res 2024; 120:658-670. [PMID: 38454645 PMCID: PMC11074797 DOI: 10.1093/cvr/cvae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 11/30/2023] [Accepted: 12/12/2023] [Indexed: 03/09/2024] Open
Abstract
AIMS Vascular calcification is highly prevalent in atherosclerosis, diabetes, and chronic kidney disease. It is associated with increased morbidity and mortality in patients with cardiovascular disease. Matrix metalloproteinase 3 (MMP-3), also known as stromelysin-1, is part of the large matrix metalloproteinase family. It can degrade extracellular matrix components of the arterial wall including elastin, which plays a central role in medial calcification. In this study, we sought to determine the role of MMP-3 in medial calcification. METHODS AND RESULTS We found that MMP-3 was increased in rodent models of medial calcification as well as in vascular smooth muscle cells (SMCs) cultured in a phosphate calcification medium. It was also highly expressed in calcified tibial arteries in patients with peripheral arterial disease (PAD). Knockdown and inhibition of MMP-3 suppressed phosphate-induced SMC osteogenic transformation and calcification, whereas the addition of a recombinant MMP-3 protein facilitated SMC calcification. In an ex vivo organ culture model and a rodent model of medial calcification induced by vitamin D3, we found that MMP-3 deficiency significantly suppressed medial calcification in the aorta. We further found that medial calcification and osteogenic transformation were significantly reduced in SMC-specific MMP-3-deficient mice, suggesting that MMP-3 in SMCs is an important factor in this process. CONCLUSION These findings suggest that MMP-3 expression in vascular SMCs is an important regulator of medial calcification and that targeting MMP-3 could provide a therapeutic strategy to reduce it and address its consequences in patients with PAD.
Collapse
Affiliation(s)
- Yangzhouyun Xie
- Division of Vascular Surgery and Endovascular Therapy, Department of Surgery, Yale University School of Medicine, 330 Cedar St., BB 204, New Haven, CT 06510, USA
| | - Tonghui Lin
- Division of Vascular and Endovascular Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 0221, USA
| | - Ying Jin
- Division of Vascular Surgery and Endovascular Therapy, Department of Surgery, Yale University School of Medicine, 330 Cedar St., BB 204, New Haven, CT 06510, USA
| | - Alexa G Berezowitz
- Division of Vascular Surgery and Endovascular Therapy, Department of Surgery, Yale University School of Medicine, 330 Cedar St., BB 204, New Haven, CT 06510, USA
| | - Xue-Lin Wang
- Division of Vascular and Endovascular Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 0221, USA
| | - Jinny Lu
- Division of Vascular and Endovascular Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 0221, USA
| | - Yujun Cai
- Division of Vascular Surgery and Endovascular Therapy, Department of Surgery, Yale University School of Medicine, 330 Cedar St., BB 204, New Haven, CT 06510, USA
- Division of Vascular and Endovascular Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 0221, USA
| | - Raul J Guzman
- Division of Vascular Surgery and Endovascular Therapy, Department of Surgery, Yale University School of Medicine, 330 Cedar St., BB 204, New Haven, CT 06510, USA
- Division of Vascular and Endovascular Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 0221, USA
| |
Collapse
|
26
|
Jannasz I, Brzeziński J, Mańczak M, Sondej T, Targowski T, Rysz J, Olszewski R. Is the association between pulse wave velocity and bone mineral density the same for men and women? - A systematic review and meta-analysis. Arch Gerontol Geriatr 2024; 119:105309. [PMID: 38171030 DOI: 10.1016/j.archger.2023.105309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/30/2023] [Accepted: 12/09/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Brachial aortic Pulse Wave Velocity (baPWV) and bone mineral density (BMD) are important indicators of cardiovascular health and bone strength, respectively. However, the gender-specific association between baPWV and BMD remains unclear. The aim of our study is to evaluate the relationship between baPWV and BMD in men and women populations METHODS: A comprehensive search was conducted in electronic databases for relevant studies published between the 1th and 30rd of April 2023. Studies reporting the correlation between baPWV and BMD in both males and females were considered. A random-effects model was used to calculate pooled correlation coefficients (r). RESULTS Relevant data for both genders were found in six articles. In all publications included in the meta-analysis, the total number of studied individuals was 3800, with 2054 women and 1746 men. Pooled correlation coefficient was -0,24 (95 % CI: -0.34; -0.15) in women population, and -0.12 (95 %CI: -0.16, -0.06) in men. CONCLUSIONS Based on the published data, we found that baPWV is negatively correlated with bone density in women. However, in men we do not find such a relationship. These findings suggest the importance of considering gender-specific factors when assessing the cardiovascular and bone health relationship.
Collapse
Affiliation(s)
- Iwona Jannasz
- Department of Geriatrics, National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - Jakub Brzeziński
- Gerontology, Public Health and Education Department, National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland.
| | - Małgorzata Mańczak
- Gerontology, Public Health and Education Department, National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - Tadeusz Sondej
- Faculty of Electronics, Military University of Technology, Warsaw, Poland
| | - Tomasz Targowski
- Department of Geriatrics, National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, Poland
| | - Robert Olszewski
- Gerontology, Public Health and Education Department, National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland; Department of Ultrasound, Institute of Fundamental Technological Research, Polish Academy of Sciences, Poland
| |
Collapse
|
27
|
Cui HJ, Wu YF. Bioresorbable Scaffolds for Below-the-Knee Arterial Disease: A Literature Review of New Developments. Rev Cardiovasc Med 2024; 25:133. [PMID: 39076564 PMCID: PMC11264025 DOI: 10.31083/j.rcm2504133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 07/31/2024] Open
Abstract
This review aimed to explore the therapeutic effect of bioabsorbable stents in the inferior genicular artery, from the emergence of absorbable bare metal stents to the latest technology in polymer and anti-proliferative eluting drugs mixed with coated bioresorbable vascular stents (BVSs). Currently, there are conflicting data regarding the safety and effectiveness of BVSs in infrapopliteal artery interventions, especially compared to the current generation of drug-eluting stents (DESs). This review will cover the existing data on BVSs in reconstructing the infrapopliteal arterial blood flow and active clinical trials for future iterations of BVSs. In terms of primary patency rate and target lesion revascularization rate, the available research on the effectiveness of BVSs in reconstructing the infrapopliteal arterial blood flow suggests that a BVS is compatible with current DESs within 3-12 months; long-term data have not yet been reported. The ABSORB BVS is the most studied BVS in cardiovascular disease (CAD). Initially, the ABSORB BVS showed promising results. Managing intricate regions in peripheral artery disorders, such as branching or lengthy lesions, continues to be a formidable undertaking. In contrast to the advanced narrowing of arteries seen in standard permanent stent procedures, bioabsorbable stents have the potential to promote the expansion and beneficial merging of blood channels in the latter stages. Furthermore, incorporating stents and re-establishing the endothelial function can diminish the probability of restenosis or thrombosis. Nevertheless, the extent to which bioabsorbable stents may simultaneously preserve arterial patency and guarantee their structural integrity remains uncertain. The powerful and intricate mechanical stresses exerted by the blood in the superficial femoral artery and popliteal artery can cause negative consequences on any implant inserted into the vessel, regardless of its composition, even metal. Furthermore, incorporating stents is advantageous for treating persistent occlusive lesions since it does not impact later treatments, including corrective bypass operations. Evidence is scarce about the use of bioabsorbable stents in treating infrapopliteal lesions. Utilizing bioabsorbable stents in minor infrapopliteal lesions can successfully maintain the patency of the blood vessel lumen, whereas balloon angioplasty cannot offer this benefit. The primary focus of testing these materials is determining whether bioabsorbable scaffolds can provide adequate radial force in highly calcified elongated lesions. Indeed, using "-limus" medication elution technology in conjunction with bioabsorbable stents has previously offered clinical benefits in treating the popliteal artery, as evidenced by limited trials.BVSs for peripheral arterial disease (PAD) show promise and have the potential to offer a less inflammatory and more vessel-friendly option compared to permanent metallic stents. However, current evidence does not yet allow for a universal recommendation for their use. Thus, ongoing, and future studies, such as those examining the newer generation of bioresorbable scaffolds (BRSs) with improved mechanical properties and resorption profiles, will be crucial in defining the role of BRSs in managing PAD.
Collapse
Affiliation(s)
- Hong-Jie Cui
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical
University, 100053 Beijing, China
| | - Ying-Feng Wu
- Department of Vascular Surgery, Luhe Hospital Affiliated to Capital
Medical University, 101199 Beijing, China
| |
Collapse
|
28
|
Jin C, Li X, Luo Y, Zhang C, Zuo D. Associations between pan-immune-inflammation value and abdominal aortic calcification: a cross-sectional study. Front Immunol 2024; 15:1370516. [PMID: 38605946 PMCID: PMC11007162 DOI: 10.3389/fimmu.2024.1370516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/18/2024] [Indexed: 04/13/2024] Open
Abstract
Background Abdominal aortic calcification (AAC) pathogenesis is intricately linked with inflammation. The pan-immune-inflammation value (PIV) emerges as a potential biomarker, offering reflection into systemic inflammatory states and assisting in the prognosis of diverse diseases. This research aimed to explore the association between PIV and AAC. Methods Employing data from the National Health and Nutrition Examination Survey (NHANES), this cross-sectional analysis harnessed weighted multivariable regression models to ascertain the relationship between PIV and AAC. Trend tests probed the evolving relationship among PIV quartiles and AAC. The study also incorporated subgroup analysis and interaction tests to determine associations within specific subpopulations. Additionally, the least absolute shrinkage and selection operator (LASSO) regression and multivariable logistic regression were used for characteristics selection to construct prediction model. Nomograms were used for visualization. The receiver operator characteristic (ROC) curve, calibration plot and decision curve analysis were applied for evaluate the predictive performance. Results From the cohort of 3,047 participants, a distinct positive correlation was observed between PIV and AAC. Subsequent to full adjustments, a 100-unit increment in PIV linked to an elevation of 0.055 points in the AAC score (β=0.055, 95% CI: 0.014-0.095). Categorizing PIV into quartiles revealed an ascending trend: as PIV quartiles increased, AAC scores surged (β values in Quartile 2, Quartile 3, and Quartile 4: 0.122, 0.437, and 0.658 respectively; P for trend <0.001). Concurrently, a marked rise in SAAC prevalence was noted (OR values for Quartile 2, Quartile 3, and Quartile 4: 1.635, 1.842, and 2.572 respectively; P for trend <0.01). Individuals aged 60 or above and those with a history of diabetes exhibited a heightened association. After characteristic selection, models for predicting AAC and SAAC were constructed respectively. The AUC of AAC model was 0.74 (95%CI=0.71-0.77) and the AUC of SAAC model was 0.84 (95%CI=0.80-0.87). According to the results of calibration plots and DCA, two models showed high accuracy and clinical benefit. Conclusion The research findings illuminate the potential correlation between elevated PIV and AAC presence. Our models indicate the potential utility of PIV combined with other simple predictors in the assessment and management of individuals with AAC.
Collapse
Affiliation(s)
- Chen Jin
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xunjia Li
- Department of Nephrology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
- Chongqing Precision Medical Industry Technology Research Institute, Chongqing, China
| | - Yuxiao Luo
- University Medical Center Göttingen, University of Göttingen, Göttingen, Germany
| | - Cheng Zhang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Deyu Zuo
- Chongqing Precision Medical Industry Technology Research Institute, Chongqing, China
- Department of Rehabilitation Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| |
Collapse
|
29
|
Zhao Y, Yang Y, Wu X, Zhang L, Cai X, Ji J, Chen S, Vera A, Boström KI, Yao Y. CDK1 inhibition reduces osteogenesis in endothelial cells in vascular calcification. JCI Insight 2024; 9:e176065. [PMID: 38456502 PMCID: PMC10972591 DOI: 10.1172/jci.insight.176065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/19/2024] [Indexed: 03/09/2024] Open
Abstract
Vascular calcification is a severe complication of cardiovascular diseases. Previous studies demonstrated that endothelial lineage cells transitioned into osteoblast-like cells and contributed to vascular calcification. Here, we found that inhibition of cyclin-dependent kinase (CDK) prevented endothelial lineage cells from transitioning to osteoblast-like cells and reduced vascular calcification. We identified a robust induction of CDK1 in endothelial cells (ECs) in calcified arteries and showed that EC-specific gene deletion of CDK1 decreased the calcification. We found that limiting CDK1 induced E-twenty-six specific sequence variant 2 (ETV2), which was responsible for blocking endothelial lineage cells from undergoing osteoblast differentiation. We also found that inhibition of CDK1 reduced vascular calcification in a diabetic mouse model. Together, the results highlight the importance of CDK1 suppression and suggest CDK1 inhibition as a potential option for treating vascular calcification.
Collapse
Affiliation(s)
- Yan Zhao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Yang Yang
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Xiuju Wu
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Li Zhang
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Xinjiang Cai
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Jaden Ji
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Sydney Chen
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Abigail Vera
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Kristina I. Boström
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- The Molecular Biology Institute at UCLA, Los Angeles, California, USA
| | - Yucheng Yao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
30
|
Xue X, Li C, Chen D. A cross-sectional study investigating the relationship between urinary albumin creatinine ratio and abdominal aortic calcification in adults. Front Cardiovasc Med 2024; 11:1352921. [PMID: 38500760 PMCID: PMC10944970 DOI: 10.3389/fcvm.2024.1352921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/15/2024] [Indexed: 03/20/2024] Open
Abstract
Introduction The presence of abdominal aortic calcification (AAC) is strongly linked to the development of atherosclerosis and the incidence of morbidity and mortality related to cardiovascular diseases (CVD). Urinary albumin creatinine ratio (UACR) was found related with the increased risk of CVD. The aim of this study is to explore the relationship between the UACR and severe AAC (SAAC). Methods and Results This study included a total of 2,379 individuals aged over 40 years, and their information was obtained from the National Health and Nutrition Examination Survey conducted (NHANES) in 2013-2014. The measurement of AAC was conducted through dual-energy x-ray absorptiometry and assessed using the Kauppila scoring system. SAAC was characterized by a Kauppila score of 6 or higher. Multivariate regression models were used to analyze the relationship between UACR level and SAAC, with covariate adjustment. In the completely adapted model, the top third subgroup exhibits increased likelihood of SAAC (odds ratio 1.50; 95%CI: 0.98, 2.29; p = 0.030) in contrast to the bottom third subgroup. The subgroup analyses revealed a more pronounced correlation among the older participants (p-value for interaction = 0.013). Discussion In the United States, SAAC was more likely to occur in adults who had a higher probability of UACR. The use of UACR has the potential to be a valuable method for forecasting the likelihood of SAAC.
Collapse
Affiliation(s)
- Xian Xue
- Nanyang City Center Hospital, Nanyang, China
| | - Chen Li
- Nanyang Second General Hospital, Nanyang, China
| | - Dongping Chen
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
31
|
Dawood M, Elwany M, Abdelgawad H, Sanhoury M, Zaki M, Elsharkawy E, Nawar M. Coronary calcifications, the Achilles heel in coronary interventions. ADVANCES IN INTERVENTIONAL CARDIOLOGY 2024; 20:1-17. [PMID: 38616941 PMCID: PMC11008515 DOI: 10.5114/aic.2024.136415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/04/2023] [Indexed: 04/16/2024] Open
Abstract
Percutaneous coronary intervention in severely calcified coronaries has been associated with higher rates of procedural complications, including myocardial infarction and death in addition to increased frequency of coronary revascularization on an intermediate and long-term basis. The SYNTAX score, which is designed to assess the complexity of coronary artery disease and aids in choosing a revascularization method, allocates two points per lesion when there is heavy calcification present on fluoroscopy. With the advent of novel multimodality imaging technologies, the detection and evaluation of coronary calcifications improved significantly over the last decade. Several tools are now available for modifying calcified lesions including different types of dedicated balloons and atherectomy devices, which may create some degree of confusion regarding the suitable application of each instrument. The aim of this review is to cover this vital topic from different aspects. First, we tried to provide an overview on the pathophysiology and types of coronary calcification and its risk factors. Then, we outlined the available imaging modalities for the evaluation of calcified coronary lesions, highlighting the points of strength and weakness of each of them. A comprehensive discussion of calcium-modifying techniques was elaborated, summarizing their mechanism of action, pros and cons, and possible complications. Finally, an integrated algorithm was proposed for the best management of calcified coronary lesions.
Collapse
Affiliation(s)
- Moustafa Dawood
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Moustafa Elwany
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Hoda Abdelgawad
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
- King’s College Hospital NHS Trust, London, UK
| | | | - Moataz Zaki
- Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Eman Elsharkawy
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Moustafa Nawar
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
32
|
Turner ME, Beck L, Hill Gallant KM, Chen Y, Moe OW, Kuro-o M, Moe S, Aikawa E. Phosphate in Cardiovascular Disease: From New Insights Into Molecular Mechanisms to Clinical Implications. Arterioscler Thromb Vasc Biol 2024; 44:584-602. [PMID: 38205639 PMCID: PMC10922848 DOI: 10.1161/atvbaha.123.319198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Hyperphosphatemia is a common feature in patients with impaired kidney function and is associated with increased risk of cardiovascular disease. This phenomenon extends to the general population, whereby elevations of serum phosphate within the normal range increase risk; however, the mechanism by which this occurs is multifaceted, and many aspects are poorly understood. Less than 1% of total body phosphate is found in the circulation and extracellular space, and its regulation involves multiple organ cross talk and hormones to coordinate absorption from the small intestine and excretion by the kidneys. For phosphate to be regulated, it must be sensed. While mostly enigmatic, various phosphate sensors have been elucidated in recent years. Phosphate in the circulation can be buffered, either through regulated exchange between extracellular and cellular spaces or through chelation by circulating proteins (ie, fetuin-A) to form calciprotein particles, which in themselves serve a function for bulk mineral transport and signaling. Either through direct signaling or through mediators like hormones, calciprotein particles, or calcifying extracellular vesicles, phosphate can induce various cardiovascular disease pathologies: most notably, ectopic cardiovascular calcification but also left ventricular hypertrophy, as well as bone and kidney diseases, which then propagate phosphate dysregulation further. Therapies targeting phosphate have mostly focused on intestinal binding, of which appreciation and understanding of paracellular transport has greatly advanced the field. However, pharmacotherapies that target cardiovascular consequences of phosphate directly, such as vascular calcification, are still an area of great unmet medical need.
Collapse
Affiliation(s)
- Mandy E. Turner
- Division of Cardiovascular Medicine, Department of Medicine, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Laurent Beck
- Nantes Université, CNRS, Inserm, l’institut du thorax, F-44000 Nantes, France
| | - Kathleen M Hill Gallant
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, Minnesota, USA
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yabing Chen
- Department of Pathology, University of Alabama at Birmingham
- Research Department, Veterans Affairs Birmingham Medical Center, Birmingham, AL, USA
| | - Orson W Moe
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Makoto Kuro-o
- Division of Anti-aging Medicine, Center for Molecular Medicine, Jichi Medical University 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Sharon Moe
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Elena Aikawa
- Division of Cardiovascular Medicine, Department of Medicine, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Division of Cardiovascular Medicine, Department of Medicine, Center for Excellence in Vascular Biology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
33
|
Kisielewska M, Rakoczy K, Skowron I, Górczyńska J, Kacer J, Bocheńska A, Choromańska A. Utilizing Extracellular Vesicles for Eliminating 'Unwanted Molecules': Harnessing Nature's Structures in Modern Therapeutic Strategies. Molecules 2024; 29:948. [PMID: 38474460 DOI: 10.3390/molecules29050948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/09/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Extracellular vesicles (EVs) are small phospholipid bilayer-bond structures released by diverse cell types into the extracellular environment, maintaining homeostasis of the cell by balancing cellular stress. This article provides a comprehensive overview of extracellular vesicles, their heterogeneity, and diversified roles in cellular processes, emphasizing their importance in the elimination of unwanted molecules. They play a role in regulating oxidative stress, particularly by discarding oxidized toxic molecules. Furthermore, endoplasmic reticulum stress induces the release of EVs, contributing to distinct results, including autophagy or ER stress transmission to following cells. ER stress-induced autophagy is a part of unfolded protein response (UPR) and protects cells from ER stress-related apoptosis. Mitochondrial-derived vesicles (MDVs) also play a role in maintaining homeostasis, as they carry damaged mitochondrial components, thereby preventing inflammation. Moreover, EVs partake in regulating aging-related processes, and therefore they can potentially play a crucial role in anti-aging therapies, including the treatment of age-related diseases such as Alzheimer's disease or cardiovascular conditions. Overall, the purpose of this article is to provide a better understanding of EVs as significant mediators in both physiological and pathological processes, and to shed light on their potential for therapeutic interventions targeting EV-mediated pathways in various pathological conditions, with an emphasis on age-related diseases.
Collapse
Affiliation(s)
| | - Katarzyna Rakoczy
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Izabela Skowron
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Julia Górczyńska
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Julia Kacer
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Agata Bocheńska
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Anna Choromańska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| |
Collapse
|
34
|
Onnis C, Virmani R, Kawai K, Nardi V, Lerman A, Cademartiri F, Scicolone R, Boi A, Congiu T, Faa G, Libby P, Saba L. Coronary Artery Calcification: Current Concepts and Clinical Implications. Circulation 2024; 149:251-266. [PMID: 38227718 PMCID: PMC10794033 DOI: 10.1161/circulationaha.123.065657] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Coronary artery calcification (CAC) accompanies the development of advanced atherosclerosis. Its role in atherosclerosis holds great interest because the presence and burden of coronary calcification provide direct evidence of the presence and extent of coronary artery disease; furthermore, CAC predicts future events independently of concomitant conventional cardiovascular risk factors and to a greater extent than any other noninvasive biomarker of this disease. Nevertheless, the relationship between CAC and the susceptibility of a plaque to provoke a thrombotic event remains incompletely understood. This review summarizes the current understanding and literature on CAC. It outlines the pathophysiology of CAC and reviews laboratory, histopathological, and genetic studies, as well as imaging findings, to characterize different types of calcification and to elucidate their implications. Some patterns of calcification such as microcalcification portend increased risk of rupture and cardiovascular events and may improve prognosis assessment noninvasively. However, contemporary computed tomography cannot assess early microcalcification. Limited spatial resolution and blooming artifacts may hinder estimation of degree of coronary artery stenosis. Technical advances such as photon counting detectors and combination with nuclear approaches (eg, NaF imaging) promise to improve the performance of cardiac computed tomography. These innovations may speed achieving the ultimate goal of providing noninvasively specific and clinically actionable information.
Collapse
Affiliation(s)
- Carlotta Onnis
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), di Cagliari – Polo di Monserrato s.s. 554 Monserrato (Cagliari) 09045, ITALY
| | - Renu Virmani
- Department of Cardiovascular Pathology, CVPath Institute, 19 Firstfield Road, Gaithersburg, MD
| | - Kenji Kawai
- Department of Cardiovascular Pathology, CVPath Institute, 19 Firstfield Road, Gaithersburg, MD
| | - Valentina Nardi
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN
| | - Amir Lerman
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN
| | | | - Roberta Scicolone
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), di Cagliari – Polo di Monserrato s.s. 554 Monserrato (Cagliari) 09045, ITALY
| | - Alberto Boi
- Department of Cardiology, Azienda Ospedaliera Brotzu, Cagliari Italy
| | - Terenzio Congiu
- Department of Pathology, Azienda Ospedaliero Universitaria (A.O.U.), di Cagliari – Ospedale San Giovanni di Dio (Cagliari) 09100 ITALY
| | - Gavino Faa
- Department of Pathology, Azienda Ospedaliero Universitaria (A.O.U.), di Cagliari – Ospedale San Giovanni di Dio (Cagliari) 09100 ITALY
| | - Peter Libby
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), di Cagliari – Polo di Monserrato s.s. 554 Monserrato (Cagliari) 09045, ITALY
| |
Collapse
|
35
|
Yang Y, Liang W, Gong W, Li S, Chen S, Yang Z, Kuang C, Zhong Y, Yang D, Liu F. Establishment and evaluation of a nomogram prediction model for the risk of vascular calcification in stage 5 chronic kidney disease patients. Sci Rep 2024; 14:1025. [PMID: 38200088 PMCID: PMC10781805 DOI: 10.1038/s41598-023-48275-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 11/24/2023] [Indexed: 01/12/2024] Open
Abstract
Vascular calcification (VC) is a common complication of chronic kidney disease (CKD) that has a detrimental effect on patients' survival and prognosis. The aim of this study was to develop and validate a practical and reliable prediction model for VC in CKD5 patients. The medical records of 544 CKD5 patients were reviewed retrospectively. Multivariate logistic regression analysis was used to identify the independent risk factors for vascular calcification in patients with CKD5 and then created a nomogram prediction model. The area under the receiver operating characteristic curve (AUC), Hosmer-Lemeshow test, and decision curve analysis (DCA) were used to assess model performance. The patients were split into groups with normal and high serum uric acid levels, and the factors influencing these levels were investigated. Age, BUN, SUA, P and TG were independent risk factors for vascular calcification in CKD5 patients in the modeling group (P < 0.05). In the internal validation, the results of model showed that the AUC was 0.917. No significant divergence between the predicted probability of the nomogram and the actual incidence rate (x2 = 5.406, P = 0.753) was revealed by the calibration plot and HL test, thus confirming that the calibration was satisfactory. The external validation also showed good discrimination (AUC = 0.973). The calibration chart and HL test also demonstrated good consistency. Besides, the correlation analysis of serum uric acid levels in all CKD5 patients revealed that elevated uric acid levels may be related to gender, BUN, P, and TG.
Collapse
Affiliation(s)
- Yan Yang
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Jinan University, 613 W. Huangpu Avenue, Guangzhou, 510632, Guangdong, China
- Department of General Practice, Puning People's Hospital, Puning, 515300, Guangdong, China
| | - Wenxue Liang
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Jinan University, 613 W. Huangpu Avenue, Guangzhou, 510632, Guangdong, China
| | - Wenyu Gong
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Jinan University, 613 W. Huangpu Avenue, Guangzhou, 510632, Guangdong, China
| | - Shishi Li
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Jinan University, 613 W. Huangpu Avenue, Guangzhou, 510632, Guangdong, China
| | - Sining Chen
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Jinan University, 613 W. Huangpu Avenue, Guangzhou, 510632, Guangdong, China
| | - Zhiqian Yang
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Jinan University, 613 W. Huangpu Avenue, Guangzhou, 510632, Guangdong, China
| | - Chaoying Kuang
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Jinan University, 613 W. Huangpu Avenue, Guangzhou, 510632, Guangdong, China
| | - Yuzhen Zhong
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Jinan University, 613 W. Huangpu Avenue, Guangzhou, 510632, Guangdong, China
| | - Demao Yang
- Department of General Practice, Puning People's Hospital, Puning, 515300, Guangdong, China.
| | - Fanna Liu
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Jinan University, 613 W. Huangpu Avenue, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|
36
|
Hao N, Yong H, Zhang F, Liu C, Qiu Y, Shi Y, Li C, Wang F. Aortic calcification accelerates cardiac dysfunction via inducing apoptosis of cardiomyocytes. Int J Med Sci 2024; 21:306-318. [PMID: 38169576 PMCID: PMC10758138 DOI: 10.7150/ijms.90324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/17/2023] [Indexed: 01/05/2024] Open
Abstract
Vascular calcification (VC) is a known predictor of cardiovascular events in patients with atherosclerosis and chronic renal disease. However, the exact relationship between VC and cardiovascular mortality remains unclear. Herein, we investigated the underlying mechanisms between VC progression, arterial stiffness, and cardiac dysfunction. C57BL/6 mice were administered intraperitoneally vitamin D3 (VD3) at a dosage of 35×104 IU/day for 14 days. At day 42, VC extent, artery elasticity, carotid artery blood flow, aorta pulse propagation velocity, cardiac function, and pathological changes were evaluated. Heart apoptosis was detected using TUNEL and immunohistochemistry staining. In vitro, rat cardiomyocytes H9C2 were exposed to media from calcified rat vascular smooth muscle cells (VSMCs) cultured in calcification medium, and then H9C2 apoptosis and gene expression related to cardiac function were assessed. VD3-treated mice displayed a significant aortic calcification, increased pulse propagation velocity of aortae, and reduced cardiac function. Aortae showed increased calcification and elastolysis, with increased heart apoptosis. Hearts demonstrated higher levels of ANP, BNP, MMP2, and lower levels of bcl2/bax. Moreover, calcified rat VSMC media induced H9C2 apoptosis and upregulated genes expression linked to cardiac dysfunction. Our data provide evidence that VC accelerates cardiac dysfunction, partially by inducing cardiomyocytes apoptosis.
Collapse
Affiliation(s)
- Nannan Hao
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, China
| | - Hui Yong
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, China
| | - Feifei Zhang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, China
| | - Chang Liu
- Department of Rheumatology, the First Affiliated Hospital of Nanjing Medical University, China
| | - Yulu Qiu
- Department of Rheumatology, the First Affiliated Hospital of Nanjing Medical University, China
| | - Yumeng Shi
- Department of Rheumatology, the First Affiliated Hospital of Nanjing Medical University, China
| | - Chunjian Li
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, China
| | - Fang Wang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, China
| |
Collapse
|
37
|
Zisis V, Anastasiadou PA, Poulopoulos A, Vahtsevanos K, Paraskevopoulos K, Andreadis D. A Preliminary Study of the Role of Endothelial-Mesenchymal Transitory Factor SOX 2 and CD147 in the Microvascularization of Oral Squamous Cell Carcinoma. Cureus 2024; 16:e52265. [PMID: 38352102 PMCID: PMC10863931 DOI: 10.7759/cureus.52265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2024] [Indexed: 02/16/2024] Open
Abstract
INTRODUCTION The aim of this study was to detect the possible endothelial expression of embryonic-type cancer stem cells (CSC) marker SOX2 and the stemness-type CSC marker CD147 in oral potential malignant disorders (OPMDs), oral leukoplakia (OL) in particular, and oral squamous cell carcinoma (OSCC). METHODS This study focuses on the immunohistochemical pattern of expression of CSC protein-biomarkers SOX2 and CD147 in paraffin-embedded samples of 21 OSCCs of different grades of differentiation and 30 cases of OLs with different grades of dysplasia, compared to normal oral mucosa. RESULTS The protein biomarker SOX2 was expressed in the endothelial cells, but without establishing any statistically significant correlation among OSCC, OL, and normal tissue specimens. However, SOX endothelial staining was noticed in 7/30 (23.3%) cases of OL (one non-dysplastic, one mildly dysplastic, one moderately dysplastic, and four severely dysplastic cases) and 5/21 (23.8%) cases of OSCC (two well-differentiated, one moderately differentiated, and two poorly differentiated cases). Although CD147 is expressed in normal oral epithelium, OL, and OSCC neoplastic cells, its vascular-endothelial expression was noticed in only 2/5 (40%) cases of normal oral epithelium, 1/30 (3.3%) cases of OL (one severely dysplastic case), and 4/21 (19%) cases of OSCC (two well-differentiated, one moderately differentiated, and one poorly differentiated case). Therefore, no statistically significant correlation among OSCC, OL, and normal tissue specimens was established. CONCLUSION The endothelial presence of SOX2 both in oral potentially malignant and malignant lesions suggests that SOX2 may be implicated in the microvascularization process and associated with the degree of dysplasia in OL. The expression of CD147 may be attributed both to local inflammation and tumorigenesis. The implementation of CD147 in larger groups of tissue samples will shed some light on its role in cancer and inflammation. The evidence so far supports the need for more studies, which may support the clinical significance of these novel cancer stem cell biomarkers.
Collapse
Affiliation(s)
- Vasileios Zisis
- Oral Medicine and Pathology, Aristotle University of Thessaloniki, Thessaloniki, GRC
| | | | | | - Konstantinos Vahtsevanos
- Oral and Maxillofacial Surgery, Papanikolaou Hospital, Aristotle University of Thessaloniki, Thessaloniki, GRC
| | | | - Dimitrios Andreadis
- Oral Medicine and Pathology, Aristotle University of Thessaloniki, Thessaloniki, GRC
| |
Collapse
|
38
|
Wang K, Zhao C, Ma Y, Yang W. Yolk-Shell Encapsulation of Cells by Biomimetic Mineralization and Visible Light-Induced Surface Graft Polymerization. Biomacromolecules 2023; 24:6032-6040. [PMID: 37967289 DOI: 10.1021/acs.biomac.3c01143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
The pursuit of low-cytotoxicity modification strategies represents a prominent avenue in cell coating research, holding immense significance for the advancement of practical living cell-related technologies. Here, we presented a novel method to fabricate encapsulated yeast cells with a yolk-shell structure by biomimetic mineralization and visible-light-induced surface graft polymerization. In this approach, an amorphous calcium carbonate (ACC) shell was first deposited on the surface of a yeast cell (cell@ACC) modified with 4 layers of self-assembled poly(diallyl dimethylammonium chloride) (PDADMAC)/poly(acrylic acid) (PAA) film using a biomimetic mineralization technique. Subsequently, polyethylenimine (PEI) was absorbed on the surface of cell@ACC by electrostatic interaction. Then, a cross-linked shell was introduced by surface-initiated graft polymerization of poly(ethylene glycol) diacrylate (PEGDA) on cell@ACC under irradiation of visible light using thioxanthone catechol-O,O'-diacetic acid as the photosensitizer. After the removal of the inner ACC shell, the yolk-shell-structured yeast cells (cell@PHS) were obtained. Due to the mild conditions of the strategy, the cell@PHS could retain 98.81% of its original viability. The introduction of the shell layer significantly prolonged the lag phase of yeast cells, which could be tuned between 5 and 25 h by regulating the thickness of the shell. Moreover, the cell@PHS showed improved resistance against lyticase due to the presence of a protective shell. After 30 days of storage, the viability of cell@PHS was 81.09%, which is significantly higher than the 19.89% viability of native yeast cells.
Collapse
Affiliation(s)
- Kanglei Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Changwen Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Biomedical Materials of Natural Macromolecules, Ministry of Education Beijing, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuhong Ma
- Key Laboratory of Carbon Fiber and Functional Polymers Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wantai Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Biomedical Materials of Natural Macromolecules, Ministry of Education Beijing, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Carbon Fiber and Functional Polymers Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
39
|
Lian Y, Li Y, Liu A, Ghosh S, Shi Y, Huang H. Dietary antioxidants and vascular calcification: From pharmacological mechanisms to challenges. Biomed Pharmacother 2023; 168:115693. [PMID: 37844356 DOI: 10.1016/j.biopha.2023.115693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/01/2023] [Accepted: 10/09/2023] [Indexed: 10/18/2023] Open
Abstract
Vascular calcification (VC), an actively regulated process, has been recognized as an independent and strong predictor of cardiovascular disease (CVD) and mortality worldwide. Diet has been shown to have a major role in the progression of VC. Oxidative stress (OS), a common pro-calcification factor, is closely related to VC, and evidence strongly suggests that dietary antioxidants directly prevent VC. Herein, we provided an overview of OS and its key role in VC and underlined the mechanisms of harmful effects of OS on VC. Furthermore, we introduced dietary antioxidants, and discussed about surrounding the challenges of dietary antioxidants in VC management. This review will benefit future research about the effects of dietary antioxidants on cardiovascular health.
Collapse
Affiliation(s)
- Yaxin Lian
- The Eighth Affiliated Hospital, Sun Yat-sen University, No. 3025, Shennan Middle Rd, Futian District, 518033 Shenzhen, China
| | - Yue Li
- The Eighth Affiliated Hospital, Sun Yat-sen University, No. 3025, Shennan Middle Rd, Futian District, 518033 Shenzhen, China
| | - Aiting Liu
- The Eighth Affiliated Hospital, Sun Yat-sen University, No. 3025, Shennan Middle Rd, Futian District, 518033 Shenzhen, China
| | - Sounak Ghosh
- Department of Internal Medicine, AMRI Hospital, Kolkata, India
| | - Yuncong Shi
- The Eighth Affiliated Hospital, Sun Yat-sen University, No. 3025, Shennan Middle Rd, Futian District, 518033 Shenzhen, China
| | - Hui Huang
- The Eighth Affiliated Hospital, Sun Yat-sen University, No. 3025, Shennan Middle Rd, Futian District, 518033 Shenzhen, China.
| |
Collapse
|
40
|
Zhang YR, Liu SM, Chen Y, Zhang LS, Ji DR, Zhao J, Yu YR, Jia MZ, Tang CS, Huang W, Zhou YB, Chai SB, Qi YF. Intermedin alleviates diabetic vascular calcification by inhibiting GLUT1 through activation of the cAMP/PKA signaling pathway. Atherosclerosis 2023; 385:117342. [PMID: 37879153 DOI: 10.1016/j.atherosclerosis.2023.117342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/21/2023] [Accepted: 10/10/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND AND AIMS Vascular calcification (VC) is regarded as an independent risk factor for cardiovascular events in type 2 diabetic patients. Glucose transporter 1 (GLUT1) involves VC. Intermedin/Adrenomedullin-2 (IMD/ADM2) is a cardiovascular protective peptide that can inhibit multiple disease-associated VC. However, the role and mechanism of IMD in diabetic VC remain unclear. Here, we investigated whether IMD inhibits diabetic VC by inhibiting GLUT1. METHODS AND RESULTS It was found that plasma IMD concentration was significantly decreased in type 2 diabetic patients and in fructose-induced diabetic rats compared with that in controls. Plasma IMD content was inversely correlated with fasting blood glucose level and VC severity. IMD alleviated VC in fructose-induced diabetic rats. Deficiency of Adm2 aggravated and Adm2 overexpression attenuated VC in high-fat diet-induced diabetic mice. In vitro, IMD mitigated high glucose-induced calcification of vascular smooth muscle cells (VSMCs). Mechanistically, IMD reduced advanced glycation end products (AGEs) content and the level of receptor for AGEs (RAGE). IMD decreased glucose transporter 1 (GLUT1) levels. The inhibitory effect of IMD on RAGE protein level was blocked by GLUT1 knockdown. GLUT1 knockdown abolished the effect of IMD on alleviating VSMC calcification. IMD receptor antagonist IMD17-47 and cyclic adenosine monophosphate/protein kinase A (cAMP/PKA) inhibitor H89 abolished the inhibitory effects of IMD on GLUT1 and VSMC calcification. CONCLUSIONS These findings revealed that IMD exerted its anti-calcification effect by inhibiting GLUT1, providing a novel therapeutic target for diabetic VC.
Collapse
Affiliation(s)
- Ya-Rong Zhang
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing, 100083, China; StateKey Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100083, China; Department of Pathogen Biology, School of Basic Medical Science, Peking University, Beijing, 100083, China
| | - Shi-Meng Liu
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing, 100083, China; StateKey Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100083, China; Department of Pathogen Biology, School of Basic Medical Science, Peking University, Beijing, 100083, China
| | - Yao Chen
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing, 100083, China; StateKey Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100083, China; Department of Pathogen Biology, School of Basic Medical Science, Peking University, Beijing, 100083, China
| | - Lin-Shuang Zhang
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing, 100083, China; StateKey Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100083, China; Department of Pathogen Biology, School of Basic Medical Science, Peking University, Beijing, 100083, China
| | - Deng-Ren Ji
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing, 100083, China; StateKey Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100083, China; Department of Pathogen Biology, School of Basic Medical Science, Peking University, Beijing, 100083, China
| | - Jie Zhao
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing, 100083, China; StateKey Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100083, China; Department of Pathogen Biology, School of Basic Medical Science, Peking University, Beijing, 100083, China
| | - Yan-Rong Yu
- Department of Pathogen Biology, School of Basic Medical Science, Peking University, Beijing, 100083, China
| | - Mo-Zhi Jia
- Department of Pathogen Biology, School of Basic Medical Science, Peking University, Beijing, 100083, China
| | - Chao-Shu Tang
- StateKey Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100083, China
| | - Wei Huang
- StateKey Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100083, China
| | - Ye-Bo Zhou
- Department of Physiology, Nanjing Medical University, Nanjing, 211166, China.
| | - San-Bao Chai
- Department of Endocrinology and Metabolism, Peking University International Hospital, Beijing, 102206, China.
| | - Yong-Fen Qi
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing, 100083, China; StateKey Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100083, China; Department of Pathogen Biology, School of Basic Medical Science, Peking University, Beijing, 100083, China.
| |
Collapse
|
41
|
Kamei Y, Okumura Y, Adachi Y, Mori Y, Sakai M, Ohnishi K, Ohminami H, Masuda M, Yamanaka-Okumura H, Taketani Y. Humoral and cellular factors inhibit phosphate-induced vascular calcification during the growth period. J Clin Biochem Nutr 2023; 73:198-204. [PMID: 37970550 PMCID: PMC10636584 DOI: 10.3164/jcbn.23-11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 02/25/2023] [Indexed: 11/17/2023] Open
Abstract
Hyperphosphatemia is an independent and non-classical risk factor of cardiovascular disease and mortality in patients with chronic kidney disease (CKD). Increased levels of extracellular inorganic phosphate (Pi) are known to directly induce vascular calcification, but the detailed underlying mechanism has not been clarified. Although serum Pi levels during the growth period are as high as those observed in hyperphosphatemia in adult CKD, vascular calcification does not usually occur during growth. Here, we have examined whether the defence system against Pi-induced vascular calcification can exist during the growth period using mice model. We found that calcification propensity of young serum (aged 3 weeks) was significantly lower than that of adult serum (10 months), possibly due to high fetuin-A levels. In addition, when the aorta was cultured in high Pi medium in vitro, obvious calcification was observed in the adult aorta but not in the young aorta. Furthermore, culture in high Pi medium increased the mRNA level of tissue-nonspecific alkaline phosphatase (TNAP), which degrades pyrophosphate, only in the adult aorta. Collectively, our findings indicate that the aorta in growing mouse may be resistant to Pi-induced vascular calcification via a mechanism in which high serum fetuin-A levels and suppressed TNAP expression.
Collapse
Affiliation(s)
- Yuki Kamei
- Department of Clinical Nutrition and Food Management, Tokushima University Graduate School of Medical Nutrition, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
- Department of Food and Nutrition, Tokushima University Graduate School of Medical Nutrition, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Yosuke Okumura
- Department of Clinical Nutrition and Food Management, Tokushima University Graduate School of Medical Nutrition, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Yuichiro Adachi
- Department of Clinical Nutrition and Food Management, Tokushima University Graduate School of Medical Nutrition, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Yuki Mori
- Department of Clinical Nutrition and Food Management, Tokushima University Graduate School of Medical Nutrition, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Maiko Sakai
- Department of Clinical Nutrition and Food Management, Tokushima University Graduate School of Medical Nutrition, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Kohta Ohnishi
- Department of Clinical Nutrition and Food Management, Tokushima University Graduate School of Medical Nutrition, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Hirokazu Ohminami
- Department of Clinical Nutrition and Food Management, Tokushima University Graduate School of Medical Nutrition, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Masashi Masuda
- Department of Clinical Nutrition and Food Management, Tokushima University Graduate School of Medical Nutrition, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Hisami Yamanaka-Okumura
- Department of Clinical Nutrition and Food Management, Tokushima University Graduate School of Medical Nutrition, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
- Department of Food Science and Nutrition, Doshisha Women’s College of Liberal Arts, Teramachi Nishi-iru, Imadegawa-dori, Kamigyo-ku, Kyoto 602-0893, Japan
| | - Yutaka Taketani
- Department of Clinical Nutrition and Food Management, Tokushima University Graduate School of Medical Nutrition, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| |
Collapse
|
42
|
Yang S, Zeng Z, Yuan Q, Chen Q, Wang Z, Xie H, Liu J. Vascular calcification: from the perspective of crosstalk. MOLECULAR BIOMEDICINE 2023; 4:35. [PMID: 37851172 PMCID: PMC10584806 DOI: 10.1186/s43556-023-00146-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/20/2023] [Indexed: 10/19/2023] Open
Abstract
Vascular calcification (VC) is highly correlated with cardiovascular disease morbidity and mortality, but anti-VC treatment remains an area to be tackled due to the ill-defined molecular mechanisms. Regardless of the type of VC, it does not depend on a single cell but involves multi-cells/organs to form a complex cellular communication network through the vascular microenvironment to participate in the occurrence and development of VC. Therefore, focusing only on the direct effect of pathological factors on vascular smooth muscle cells (VSMCs) tends to overlook the combined effect of other cells and VSMCs, including VSMCs-VSMCs, ECs-VMSCs, Macrophages-VSMCs, etc. Extracellular vesicles (EVs) are a collective term for tiny vesicles with a membrane structure that are actively secreted by cells, and almost all cells secrete EVs. EVs docked on the surface of receptor cells can directly mediate signal transduction or transfer their contents into the cell to elicit a functional response from the receptor cells. They have been proven to participate in the VC process and have also shown attractive therapeutic prospects. Based on the advantages of EVs and the ability to be detected in body fluids, they may become a novel therapeutic agent, drug delivery vehicle, diagnostic and prognostic biomarker, and potential therapeutic target in the future. This review focuses on the new insight into VC molecular mechanisms from the perspective of crosstalk, summarizes how multi-cells/organs interactions communicate via EVs to regulate VC and the emerging potential of EVs as therapeutic methods in VC. We also summarize preclinical experiments on crosstalk-based and the current state of clinical studies on VC-related measures.
Collapse
Affiliation(s)
- Shiqi Yang
- Department of Metabolism and Endocrinology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
- Department of Clinical Laboratory Medicine, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Zhaolin Zeng
- Department of Metabolism and Endocrinology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Qing Yuan
- Department of Metabolism and Endocrinology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
- Department of Clinical Laboratory Medicine, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Qian Chen
- Department of Metabolism and Endocrinology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Zuo Wang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Hui Xie
- Department of Orthopaedics, Movement System Injury and Repair Research Centre, Xiangya Hospital, Central South University, Changsha, Hunan Province, China.
| | - Jianghua Liu
- Department of Metabolism and Endocrinology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
43
|
Cozzolino M, Maffei Faccioli F, Cara A, Boni Brivio G, Rivela F, Ciceri P, Magagnoli L, Galassi A, Barbuto S, Speciale S, Minicucci C, Cianciolo G. Future treatment of vascular calcification in chronic kidney disease. Expert Opin Pharmacother 2023; 24:2041-2057. [PMID: 37776230 DOI: 10.1080/14656566.2023.2266381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/29/2023] [Indexed: 10/02/2023]
Abstract
INTRODUCTION Cardiovascular disease (CVD) is one of the global leading causes of morbidity and mortality in chronic kidney disease (CKD) patients. Vascular calcification (VC) is a major cause of CVD in this population and is the consequence of complex interactions between inhibitor and promoter factors leading to pathological deposition of calcium and phosphate in soft tissues. Different pathological landscapes are associated with the development of VC, such as endothelial dysfunction, oxidative stress, chronic inflammation, loss of mineralization inhibitors, release of calcifying extracellular vesicles (cEVs) and circulating calcifying cells. AREAS COVERED In this review, we examined the literature and summarized the pathophysiology, biomarkers and focused on the treatments of VC. EXPERT OPINION Even though there is no consensus regarding specific treatment options, we provide the currently available treatment strategies that focus on phosphate balance, correction of vitamin D and vitamin K deficiencies, avoidance of both extremes of bone turnover, normalizing calcium levels and reduction of inflammatory response and the potential and promising therapeutic approaches liketargeting cellular mechanisms of calcification (e.g. SNF472, TNAP inhibitors).Creating novel scores to detect in advance VC and implementing targeted therapies is crucial to treat them and improve the future management of these patients.
Collapse
Affiliation(s)
- Mario Cozzolino
- Renal Division, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Federico Maffei Faccioli
- Renal Division, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Anila Cara
- Renal Division, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Giulia Boni Brivio
- Renal Division, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Francesca Rivela
- Renal Division, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Paola Ciceri
- Renal Division, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Lorenza Magagnoli
- Renal Division, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Andrea Galassi
- Renal Division, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Simona Barbuto
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS-Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Serena Speciale
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS-Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Carlo Minicucci
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS-Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Giuseppe Cianciolo
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS-Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum University of Bologna, Bologna, Italy
| |
Collapse
|
44
|
Murtada SI, Kawamura Y, Cavinato C, Wang M, Ramachandra AB, Spronck B, Li DS, Tellides G, Humphrey JD. Biomechanical and transcriptional evidence that smooth muscle cell death drives an osteochondrogenic phenotype and severe proximal vascular disease in progeria. Biomech Model Mechanobiol 2023; 22:1333-1347. [PMID: 37149823 PMCID: PMC10544720 DOI: 10.1007/s10237-023-01722-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 04/11/2023] [Indexed: 05/08/2023]
Abstract
Hutchinson-Gilford Progeria Syndrome results in rapid aging and severe cardiovascular sequelae that accelerate near end-of-life. We found a progressive disease process in proximal elastic arteries that was less evident in distal muscular arteries. Changes in aortic structure and function were then associated with changes in transcriptomics assessed via both bulk and single cell RNA sequencing, which suggested a novel sequence of progressive aortic disease: adverse extracellular matrix remodeling followed by mechanical stress-induced smooth muscle cell death, leading a subset of remnant smooth muscle cells to an osteochondrogenic phenotype that results in an accumulation of proteoglycans that thickens the aortic wall and increases pulse wave velocity, with late calcification exacerbating these effects. Increased central artery pulse wave velocity is known to drive left ventricular diastolic dysfunction, the primary diagnosis in progeria children. It appears that mechanical stresses above ~ 80 kPa initiate this progressive aortic disease process, explaining why elastic lamellar structures that are organized early in development under low wall stresses appear to be nearly normal whereas other medial constituents worsen progressively in adulthood. Mitigating early mechanical stress-driven smooth muscle cell loss/phenotypic modulation promises to have important cardiovascular implications in progeria patients.
Collapse
Affiliation(s)
- Sae-Il Murtada
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Yuki Kawamura
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA
| | - Cristina Cavinato
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Molly Wang
- Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| | | | - Bart Spronck
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Maastricht University, Maastricht, Netherlands
| | - David S Li
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - George Tellides
- Department of Surgery, Yale School of Medicine, New Haven, CT, USA
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
45
|
Cai X, Zhao Y, Yang Y, Wu X, Zhang L, Ma JA, Ji J, Boström KI, Yao Y. GSK3β Inhibition Ameliorates Atherosclerotic Calcification. Int J Mol Sci 2023; 24:11638. [PMID: 37511396 PMCID: PMC10380320 DOI: 10.3390/ijms241411638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/10/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Endothelial-mesenchymal transition (EndMT) drives endothelium to contribute to atherosclerotic calcification. In a previous study, we showed that glycogen synthase kinase-3β (GSK3β) inhibition induced β-catenin and reduced mothers against DPP homolog 1 (SMAD1) in order to redirect osteoblast-like cells towards endothelial lineage, thereby reducing vascular calcification in Matrix Gla Protein (Mgp) deficiency and diabetic Ins2Akita/wt mice. Here, we report that GSK3β inhibition or endothelial-specific deletion of GSK3β reduces atherosclerotic calcification. We also find that alterations in β-catenin and SMAD1 induced by GSK3β inhibition in the aortas of Apoe-/- mice are similar to Mgp-/- mice. Together, our results suggest that GSK3β inhibition reduces vascular calcification in atherosclerotic lesions through a similar mechanism to that in Mgp-/- mice.
Collapse
Affiliation(s)
- Xinjiang Cai
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679, USA
| | - Yan Zhao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679, USA
| | - Yang Yang
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679, USA
| | - Xiuju Wu
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679, USA
| | - Li Zhang
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679, USA
| | - Jocelyn A. Ma
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679, USA
| | - Jaden Ji
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679, USA
| | - Kristina I. Boström
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679, USA
- The Molecular Biology Institute at UCLA, Los Angeles, CA 90095-1570, USA
| | - Yucheng Yao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679, USA
| |
Collapse
|
46
|
Zuo P, Xu R, Hu L, Hu W, Tong S. Association between monocyte lymphocyte ratio and abdominal aortic calcification in US adults: A cross-sectional study. Clinics (Sao Paulo) 2023; 78:100232. [PMID: 37364352 DOI: 10.1016/j.clinsp.2023.100232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 05/09/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND This study aimed to evaluate the association between Monocyte Lymphocyte Ratio (MLR) and Abdominal Aortic Calcification (AAC) in adults over 40 years of age in the United States. METHODS Data were collected from the 2013-2014 National Health and Nutrition Examination Survey (NHANES). AAC was quantified by the Kauppila score system based on dual-energy X-Ray absorptiometry. Severe AAC was defined as a total AAC score > 6. The lymphocyte count and monocyte count can be directly obtained from laboratory data files. Multivariable logistic regression models were used to determine the association between MLR and the AAC score and severe AAC. RESULTS A total of 3,045 participants were included in the present study. After adjusting for multiple covariates, MLR was positively associated with higher AAC score (β = 0.21, 95% CI 0.07, 0.34, p = 0.0032) and the odds of severe AAC increased by 14% per 0.1 unit increase in the MLR (OR = 1.14, 95% CI 1.00, 1.31, p = 0.0541). The Odds Ratio (OR) (95% CI) of severe AAC for participants in MLR tertile 3 was 1.88 (1.02, 3.47) compared with those in tertile 1 (p for trend = 0.0341). Subgroup analyses showed that a stronger association was detected in the elderly compared with non-elderly (p for interaction = 0.0346) and diabetes compared with non-diabetes (borderline significant p for interaction = 0.0578). CONCLUSION In adults in the United States, MLR was associated with higher AAC scores and a higher probability of severe AAC. MLR may become a promising tool to predict the risk of AAC.
Collapse
Affiliation(s)
- Peiyuan Zuo
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ranran Xu
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liya Hu
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Hu
- Department of Pediatric, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Song Tong
- Department of Thoracic Surgery, Union Hospital Tongji Medical College Huazhong University of Science and Technology, China.
| |
Collapse
|
47
|
Bechelli C, Macabrey D, Deglise S, Allagnat F. Clinical Potential of Hydrogen Sulfide in Peripheral Arterial Disease. Int J Mol Sci 2023; 24:9955. [PMID: 37373103 DOI: 10.3390/ijms24129955] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Peripheral artery disease (PAD) affects more than 230 million people worldwide. PAD patients suffer from reduced quality of life and are at increased risk of vascular complications and all-cause mortality. Despite its prevalence, impact on quality of life and poor long-term clinical outcomes, PAD remains underdiagnosed and undertreated compared to myocardial infarction and stroke. PAD is due to a combination of macrovascular atherosclerosis and calcification, combined with microvascular rarefaction, leading to chronic peripheral ischemia. Novel therapies are needed to address the increasing incidence of PAD and its difficult long-term pharmacological and surgical management. The cysteine-derived gasotransmitter hydrogen sulfide (H2S) has interesting vasorelaxant, cytoprotective, antioxidant and anti-inflammatory properties. In this review, we describe the current understanding of PAD pathophysiology and the remarkable benefits of H2S against atherosclerosis, inflammation, vascular calcification, and other vasculo-protective effects.
Collapse
Affiliation(s)
- Clémence Bechelli
- Department of Vascular Surgery, Lausanne University Hospital, 1005 Lausanne, Switzerland
| | - Diane Macabrey
- Department of Vascular Surgery, Lausanne University Hospital, 1005 Lausanne, Switzerland
| | - Sebastien Deglise
- Department of Vascular Surgery, Lausanne University Hospital, 1005 Lausanne, Switzerland
| | - Florent Allagnat
- Department of Vascular Surgery, Lausanne University Hospital, 1005 Lausanne, Switzerland
| |
Collapse
|
48
|
Ding N, Lv Y, Su H, Wang Z, Kong X, Zhen J, Lv Z, Wang R. Vascular calcification in CKD: New insights into its mechanisms. J Cell Physiol 2023; 238:1160-1182. [PMID: 37269534 DOI: 10.1002/jcp.31021] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/28/2023] [Indexed: 06/05/2023]
Abstract
Vascular calcification (VC) is a common complication of chronic kidney disease (CKD) and contributes to an increased risk of cardiovascular morbidity and mortality. However, effective therapies are still unavailable at present. It has been well established that VC associated with CKD is not a passive process of calcium phosphate deposition, but an actively regulated and cell-mediated process that shares many similarities with bone formation. Additionally, numerous studies have suggested that CKD patients have specific risk factors and contributors to the development of VC, such as hyperphosphatemia, uremic toxins, oxidative stress and inflammation. Although research efforts in the past decade have greatly improved our knowledge of the multiple factors and mechanisms involved in CKD-related VC, many questions remain unanswered. Moreover, studies from the past decade have demonstrated that epigenetic modifications abnormalities, such as DNA methylation, histone modifications and noncoding RNAs, play an important role in the regulation of VC. This review seeks to provide an overview of the pathophysiological and molecular mechanisms of VC associated with CKD, mainly focusing on the involvement of epigenetic modifications in the initiation and progression of uremic VC, with the aim to develop promising therapies for CKD-related cardiovascular events in the future.
Collapse
Affiliation(s)
- Nannan Ding
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yaodong Lv
- Department of Neurology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Hong Su
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ziyang Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xianglei Kong
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Junhui Zhen
- Department of Pathology, Shandong University, Jinan, China
| | - Zhimei Lv
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Rong Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
49
|
Snijders BMG, Peters MJL, Koek HL. Ectopic Calcification: What Do We Know and What Is the Way Forward? J Clin Med 2023; 12:jcm12113687. [PMID: 37297880 DOI: 10.3390/jcm12113687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 06/12/2023] Open
Abstract
Ectopic calcification, or ectopic mineralization, is a pathologic condition in which calcifications develop in soft tissues [...].
Collapse
Affiliation(s)
- Birgitta M G Snijders
- Department of Geriatrics, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Mike J L Peters
- Department of Geriatrics, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
- Department of Internal Medicine, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Huiberdina L Koek
- Department of Geriatrics, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
50
|
Lu X, Liu X, Liang E, Yang R, Liu Y, Liu X, Yan F, Xing Y. Panax quinquefolius saponin inhibits vascular smooth muscle cell calcification via activation of nuclear factor-erythroid 2-related factor 2. BMC Complement Med Ther 2023; 23:129. [PMID: 37085826 PMCID: PMC10120105 DOI: 10.1186/s12906-023-03961-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 04/14/2023] [Indexed: 04/23/2023] Open
Abstract
BACKGROUND Panax quinquefolius saponin (PQS) is the main active component of Panax quinquefolius. Emerging evidence suggests that PQS exerts beneficial effects against cardiovascular diseases. However, the role and mechanism of PQS in vascular calcification are not unclear. The present study investigated the effects of PQS on the calcification of vascular smooth muscle cell (VSMCs). METHODS The present study used calcification medium containing 3 mM inorganic phosphate (Pi) to induce rat VSMCs calcification. We investigated the effects of PQS on VSMCs calcification using alizarin red staining and alkaline phosphatase (ALP) activity assays. The intracellular reactive oxygen species (ROS) levels and the transcriptional activity of nuclear factor-erythroid 2-related factor 2 (Nrf2) were determined. The mRNA and protein expression levels of Nrf2, the antioxidant gene heme oxygenase-1 (HO-1), osteogenic markers, including runt-related transcription factor 2 (Runx2) and bone morphogenetic protein 2 (BMP2), and Kelch-like ECH-associated protein 1 (Keap1) were also measured. RESULTS Treatment with Pi significantly increased intracellular calcium deposition and ALP activity, which were suppressed by PQS in a concentration-dependent manner. During VSMCs calcification, PQS inhibited the mRNA and protein expression of Runx2 and BMP2. PQS treatment reduced intracellular ROS production and significantly upregulated Nrf2 transcriptional activity and the expression of Nrf2 and its target antioxidant gene HO-1. PQS suppressed the Pi-induced protein expression of Keap1, which is an endogenous inhibitor of Nrf2. Keap1 siRNA treatment induced Nrf2 expression and downregulated Runx2 expression in the presence of Pi and PQS. CONCLUSION Taken together, these findings suggest that PQS could effectively inhibit VSMCs calcification by ameliorating oxidative stress and regulating osteogenic genes via the promotion of Nrf2 expression.
Collapse
Affiliation(s)
- Xiaoting Lu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Shandong, 250012, Jinan, China
| | - Xue Liu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Shandong, 250012, Jinan, China
| | - Ershun Liang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Shandong, 250012, Jinan, China
| | - Ruixue Yang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Shandong, 250012, Jinan, China
| | - Yan Liu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Shandong, 250012, Jinan, China
| | - Xiaoqiong Liu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Shandong, 250012, Jinan, China
| | - Fangfang Yan
- Department of Traditional Chinese Medicine, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Yifan Xing
- Department of Medical Insurance, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|