1
|
Marciniak M, Stachowicz-Suhs M, Wagner M. The role of innate immune cells in modulating vascular dynamics in skin malignancies. Biochim Biophys Acta Rev Cancer 2025; 1880:189331. [PMID: 40280501 DOI: 10.1016/j.bbcan.2025.189331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 04/17/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
A developing tumor relies heavily on blood vessels to supply oxygen and nutrients. As a result, angiogenesis, the formation of new blood vessels, supports tumor growth and progression. Similarly, lymphangiogenesis, the formation of new lymphatic vessels, plays a critical role in metastatic dissemination by providing pathways for malignant cells to spread. The tumor microenvironment is crucial for establishing and maintaining these vascular networks, with innate immune cells playing a key regulatory role. Notably, immune cells are specifically enriched in barrier tissues, such as the skin, emphasizing their importance in skin malignancies. Therefore, understanding their role in regulating angiogenesis and lymphangiogenesis is essential for developing novel therapeutic strategies. This review article explores how innate immune cells influence tumor vasculature and highlights the therapeutic potential that may arise from this knowledge.
Collapse
Affiliation(s)
- Mateusz Marciniak
- Innate Immunity Research Group, Life Sciences and Biotechnology Center, Łukasiewicz Research Network - PORT Polish Center for Technology Development, Wrocław, Poland; Department of Biochemistry and Immunochemistry, Wrocław Medical University, Wrocław, Poland
| | - Martyna Stachowicz-Suhs
- Innate Immunity Research Group, Life Sciences and Biotechnology Center, Łukasiewicz Research Network - PORT Polish Center for Technology Development, Wrocław, Poland
| | - Marek Wagner
- Innate Immunity Research Group, Life Sciences and Biotechnology Center, Łukasiewicz Research Network - PORT Polish Center for Technology Development, Wrocław, Poland.
| |
Collapse
|
2
|
Kerkour T, Meijers RW, Hollestein LM, Jansen AM, Haanappel A, Atmodimedjo P, Blokx WA, van Brakel B, Nijsten TE, Mooyaart AL. Genetic concordance in melanoma: insights from primary tumors and their matched distant metastases. Melanoma Res 2025; 35:162-169. [PMID: 39912776 PMCID: PMC12043267 DOI: 10.1097/cmr.0000000000001024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/13/2025] [Indexed: 02/07/2025]
Abstract
Melanoma metastasis poses a significant challenge due to its aggressive nature and increasing incidence. Confirming the clonal relationship between the primary melanoma and its metastasis is essential to developing reliable prediction models. Here, we compared the genetic profile of primary melanoma and matched metastasis to assess their genetic clonal relationship. Using a targeted sequencing panel encompassing 330 amplicons, we targeted hotspot regions in 41 cancer genes and 154 single nucleotide polymorphisms. The clonal relation between primary and matched metastasis tumors was evaluated by comparing the mutational status and the copy number variations profile in 15 patients with primarily thin melanomas and distant metastases, or with a long latency between the primary melanoma and distant metastasis. Our findings revealed that only about 50% of the analyzed matched primaries and metastases were clonally or likely clonally related, while the remaining sets were either not clonally related or difficult to determine with certainty the clonal relatedness. The findings of our study illustrate the intricate clonal relationships between primary melanoma and metastasis and raise doubts if the metastatic potential is overestimated in the primary tumors. Further investigation with larger cohorts is needed to better understand this complexity of melanoma metastasis and clonality phenomenon, which should be carefully considered when using primary tumor molecular profiles for prognostic model building or therapeutic guidance in metastatic cases.
Collapse
Affiliation(s)
| | | | | | - Anne M.L. Jansen
- Department of Pathology, Division of Laboratories, Pharmacy and Biomedical Genetics, UMC Utrecht, Utrecht, the Netherlands
| | | | | | - Willeke A.M. Blokx
- Department of Pathology, Division of Laboratories, Pharmacy and Biomedical Genetics, UMC Utrecht, Utrecht, the Netherlands
| | | | | | | |
Collapse
|
3
|
Nazari M, Alikhani M, Nekooei S, Abnous K, Taghdisi SM, Saljooghi AS, Ramezani M, Alibolandi M. Synthesis of theranostic covalent organic framework for Tumor-targeted Chemo-photodynamic therapy. Int J Pharm 2025; 676:125621. [PMID: 40254192 DOI: 10.1016/j.ijpharm.2025.125621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/09/2025] [Accepted: 04/17/2025] [Indexed: 04/22/2025]
Abstract
Covalent organic frameworks (COFs) are a novel class of organic porous materials that, in recent years, have gained much attention for their applications as nanocarriers toward nanomedicine development. Inspired by this, we introduce for the first time a novel theranostic nanoplatform that combines iodine ligand 5-amino-2,4,6-triiodoisophthalic acid (ATIPA)-decorated porphyrin-based covalent organic frameworks (pCOF-I) designed for effective photodynamic therapy (PDT), doxorubicin (DOX) encapsulation, and computed tomography (CT) imaging toward melanoma treatment. In the design of this COF, we have successfully integrated the iodine ligand with porphyrin. The synthesized mesoporous nanoplatform was loaded with DOX and further modified by COOH-PEG-NH2, which was conjugated with the AS1411 aptamer to be targeted to B16F0 melanoma cells. Comprehensive characterizations verified the successful synthesis and controlled release of DOX from the synthesized COF. In vitro evaluation against B16F0 showed combined chemo-PDT therapy. In addition, higher cellular uptake and toxicity were observed for the targeted platform compared to the non-targeted one towards B16F0. The porphyrin molecules imparted to the pCOF-I nanoparticles (NPs) a significant capacity for light-induced reactive oxygen species (ROS) generation, demonstrating remarkable PDT efficacy in both in vivo and in vitro environments. An in vivo investigation on B16F0 ectopic tumor model of melanoma in mice confirmed the potential for showed combined chemo-PDT therapy chemo-PDT in preclinical stage while approving guided delivery and tumor accumulation of AS1411 aptamer-tagged systems. On the other hand, the prepared platform demonstrated desirable CT-scan imaging of B16F0 tumorized mice 6 and 24 h post-injection. Notably, this is the first report of an AS1411 aptamer-targeted pCOF-I system for CT imaging-guided combined chemo-PDT, marking a significant step forward in multimodal cancer treatment strategies.
Collapse
Affiliation(s)
- Mahsa Nazari
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mina Alikhani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sirous Nekooei
- Department of Radiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Sh Saljooghi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Dycha N, Michalak-Tomczyk M, Jachuła J, Okoń E, Jarząb A, Tokarczyk J, Koch W, Gaweł-Bęben K, Kukula-Koch W, Wawruszak A. Chemopreventive and Anticancer Activity of Selected Triterpenoids in Melanoma. Cancers (Basel) 2025; 17:1625. [PMID: 40427124 PMCID: PMC12109728 DOI: 10.3390/cancers17101625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 05/06/2025] [Accepted: 05/09/2025] [Indexed: 05/29/2025] Open
Abstract
Melanoma is one of the most aggressive forms of skin cancer, characterized by high metastatic potential and resistance to conventional therapies. Natural compounds, particularly terpenoids, have gained attention for their chemopreventive potential and anticancer properties. These plant-derived compounds exhibit diverse biological activities, e.g., cell viability and proliferation inhibition, apoptosis induction, cell cycle regulation, and immune system modulation. The review evaluates the current state of the art on the chemopreventive and anticancer activity of lupane- (betulinic acid), oleanane- (oleanolic acid, β-amyrin, escin, hederagenin, glycyrrhetinic acid), and ursane-type (ursolic acid, asiatic acid, madecassic acid, α-amyrin) triterpenoids in melanoma, highlighting their mechanisms of action, therapeutic potential, and challenges in clinical application.
Collapse
Affiliation(s)
- Natalia Dycha
- Department of Pharmacognosy with Medical Plants Garden, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland; (N.D.); (W.K.-K.)
| | - Magdalena Michalak-Tomczyk
- Department of Physiology and Toxicology, The John Paul II Catholic University of Lublin, 1I Konstantynów Str., 20-708 Lublin, Poland;
| | - Jacek Jachuła
- Department of Botany, Mycology and Ecology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 19 Akademicka Str., 20-033 Lublin, Poland;
| | - Estera Okoń
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland; (E.O.); (A.J.)
| | - Agata Jarząb
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland; (E.O.); (A.J.)
| | - Joanna Tokarczyk
- Department of Food and Nutrition, Medical University of Lublin, 4a Chodźki Str., 20-093 Lublin, Poland; (J.T.); (W.K.)
| | - Wojciech Koch
- Department of Food and Nutrition, Medical University of Lublin, 4a Chodźki Str., 20-093 Lublin, Poland; (J.T.); (W.K.)
| | - Katarzyna Gaweł-Bęben
- Department of Cosmetology, University of Information Technology and Management in Rzeszów, 2 Sucharskiego, 35-225 Rzeszów, Poland;
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy with Medical Plants Garden, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland; (N.D.); (W.K.-K.)
| | - Anna Wawruszak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland; (E.O.); (A.J.)
| |
Collapse
|
5
|
Chen J, Xu M, Wu F, Wu N, Li J, Xie Y, Wang R, Xi N, Zhu Y, Xu X, Liu Y. CRKL silencing inhibits melanoma growth and enhances its chemotherapy sensitivity through the PI3K/AKT and NLRP3/GSDMD pathways. Biochem Pharmacol 2025; 235:116840. [PMID: 40024349 DOI: 10.1016/j.bcp.2025.116840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/27/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
Great advances have been made in malignant melanoma treatments, whereas drug resistance still limits many drug applications. CRKL has been reported to be overexpressed in various tumors and showed poor prognosis. However, its specific function and mechanism in melanoma remain unclear. In the present study, we investigated the expression of CRKL and its clinical association by bioinformatics and clinical analysis, and then performed a series of in vitro and in vivo experiments to demonstrate its function and mechanism. Results showed that CRKL increased during melanoma progression and was strongly associated with poor prognosis. CRKL silencing effectively inhibited melanoma cell growth and invasion via ERK/MMP9 and PI3K/AKT signaling pathways both in vitro and in vivo. Moreover, CRKL silencing induced pyroptosis in melanoma cells by upregulating the levels of pyroptosis-associated proteins, such as NLRP3, cleaved Caspase-1, and GSDMD-N. Importantly, our study demonstrated that interfering with CRKL expression enhanced the chemotherapy sensitivity of melanoma cells to cisplatin by regulating PI3K/AKT and NLRP3/GSDMD signaling pathways. In conclusion, our study uncovers a novel molecular mechanism by which CRKL functions in melanoma and highlights potential therapeutic strategies for improving chemotherapy sensitivity in melanoma patients.
Collapse
Affiliation(s)
- Jiashe Chen
- Department of Pathology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Mingyuan Xu
- Department of Pathology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Fei Wu
- Department of Pathology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Nanhui Wu
- Department of Pathology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Jie Li
- Department of Pathology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Yongyi Xie
- Department of Pathology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Ruoqi Wang
- Department of Pathology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Ningyuan Xi
- Department of Pathology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Yueyi Zhu
- Department of Pathology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Xiaoxiang Xu
- Department of Pathology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China.
| | - Yeqiang Liu
- Department of Pathology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China.
| |
Collapse
|
6
|
Li X, Han S, Liang X, Liu J, Wang K, Jin Y, Zhang C, Xu M, Liu J, Ma L, Zhou L. PURPL Represses Radiation-Induced Apoptosis to Promote Radioresistance in Cutaneous Melanoma by Direct Interfering With BID Cleavage. Pigment Cell Melanoma Res 2025; 38:e70018. [PMID: 40229942 DOI: 10.1111/pcmr.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 02/19/2025] [Accepted: 04/01/2025] [Indexed: 04/16/2025]
Abstract
The rise of radioresistance in treating cutaneous melanoma challenges the efficacy of radiotherapy. Transcriptomic sequencing highlights PURPL as one of the top upregulated long noncoding RNAs in response to ionizing radiation (IR) treatment in melanoma cells, suggesting its role in radioresistance. To explore such hypothesis, loss-of-function experiments were conducted to assess the impact of PURPL on melanoma cell viability, colony formation, and migration. Mechanistic studies using RNA pulldown identified BID as the interacting protein partner of PURPL. Further analysis explored the relationship among PURPL, BID, and Caspase-8 in the context of IR-induced DNA damage and apoptosis through loss-of- and gain-of-function experiments. The findings demonstrated that silencing PURPL significantly repressed melanoma cell viability, colony formation, migration, and invasiveness, indicating its potential role in promoting radioresistance. Moreover, PURPL was shown to repress IR-induced DNA damage and apoptosis, supporting its involvement in melanoma radioresistance. Mechanistically, PURPL inhibited the interaction between BID and Caspase-8, thereby modulating the mitochondrial apoptosis pathway and promoting radioresistance. In conclusion, this study provides evidence supporting the pro-radioresistance role of PURPL in melanoma. In vivo assays further corroborated the in vitro findings, highlighting the potential clinical relevance of targeting PURPL in radioresistant melanoma. By interfering with the association between BID and Caspase-8, PURPL may serve as a novel therapeutic target for clinical radiotherapy during the treatment of melanoma.
Collapse
Affiliation(s)
- Xue Li
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
- Department of Clinical Medical Technology, Sichuan Vocational College of Health and Rehabilitation, Zigong, China
| | - Shuo Han
- Department of Toxicology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xiaoting Liang
- Department of Toxicology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jieyu Liu
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Ke Wang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Yi Jin
- Department of Toxicology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Chunting Zhang
- Department of Toxicology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Minna Xu
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Jiabin Liu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangdong, China
| | - Li Ma
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Liang Zhou
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| |
Collapse
|
7
|
Yourdkhani A, Esfandyari-Manesh M, Ranjbaran P, Amani M, Dinarvand R. Recent progress in topical and transdermal approaches for melanoma treatment. Drug Deliv Transl Res 2025; 15:1457-1495. [PMID: 39653958 DOI: 10.1007/s13346-024-01738-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2024] [Indexed: 04/04/2025]
Abstract
The global incidence of melanoma, the most lethal form of skin cancer, continues to escalate, emphasizing the urgent need for more effective therapeutic strategies. This review assesses the latest advancements in topical and transdermal drug delivery systems, positioning them as promising alternatives. These systems allow for the direct application of therapeutic agents to tumor sites, enhancing drug effectiveness, improving patient compliance, and reducing systemic toxicity. Specifically, innovations such as nanoparticles, microneedles, and vesicular systems are explored for their potential to optimize topical and localized drug delivery. By incorporating a graphical overview of these drug delivery vehicles, we visually underscore their roles in enhancing therapeutic outcomes across various treatment categories such as chemotherapy, immunotherapy, phototherapy, phytotherapy, and targeted therapy. This article critically evaluates recent breakthroughs, addresses the current challenges faced by researchers, and explores the future directions of topical and transdermal approaches in melanoma management. By presenting a summary of the latest research and predicting future trends, this review aims to inform ongoing developments and encourage further innovation in strategies for treating melanoma.
Collapse
Affiliation(s)
- Alaleh Yourdkhani
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Esfandyari-Manesh
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Paniz Ranjbaran
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdiyar Amani
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Rassoul Dinarvand
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
- Leicester School of Pharmacy, De Montfort University, Leicester, UK.
| |
Collapse
|
8
|
Drews MA, Baumgarten A, Zensen S, Opitz M, Bos D, Zimmer L, Ugurel S, Haubold J, Schadendorf D, Livingstone E, Schaarschmidt BM. Adverse effects of systemic advanced melanoma therapies-do BRAF/MEK inhibitors increase the incidence of mesenteric panniculitis? Eur Radiol 2025:10.1007/s00330-025-11642-w. [PMID: 40310541 DOI: 10.1007/s00330-025-11642-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/11/2025] [Accepted: 04/07/2025] [Indexed: 05/02/2025]
Abstract
OBJECTIVES BRAF/MEK inhibitors (BRAFi/MEKi) and PD-1 and CTLA-4 immune checkpoint inhibitors (ICI) have revolutionized malignant melanoma treatment and improved patients' clinical outcome significantly. However, these therapies are associated with substance class-specific side effects. Here, selected cases indicate a correlation between the incidence of mesenteric panniculitis (MP) and BRAFi/MEKi treatment. As MP can mimic or conceal underlying malignancy, the aim of the present study was to confirm a potential correlation with BRAFi/MEKi or ICI in a retrospective, observational analysis of melanoma patients. MATERIALS AND METHODS In a monocentric retrospective study, abdominal CTs of 490 melanoma patients receiving first-line treatment with ICI (nivolumab, ipilimumab, pembrolizumab, nivolumab/ipilimumab) or BRAFi/MEKi (dabrafenib/trametinib, vemurafenib/cobimetinib, encorafenib/binimetinib) in the adjuvant or advanced situation were evaluated for MP development comparing baseline imaging prior therapy start and follow-up imaging under therapy. MP was defined as an unilocular mesenteric mass characterized by small tissue nodules with increased density of the adjacent fat and a surrounding pseudo-capsule. RESULTS 384 melanoma patients with ICI (161 women, median age at therapy start: 62 years, IQR: 21 years) and 106 patients with BRAFi/MEKi first-line therapy (46 women, median age: 58 years, IQR: 18 years) were evaluated. MP incidence was significantly higher following BRAFi/MEKi treatment compared to ICI (7.5% vs. 2.9%, p = 0.04). No significance was detected comparing time until MP development from therapy start (174 days, IQR: 518 days [BRAFi/MEKi] vs. 207 days, IQR: 298 days [ICI], p > 0.05). CONCLUSION Our study demonstrates a significant increase in MP development following BRAFi/MEKi treatment compared to ICI in patients with melanoma. As this benign condition can mimic or even conceal malignancy, awareness of its appearance is important. KEY POINTS Question BRAF/MEK and immune checkpoint inhibitors have revolutionized melanoma treatment but are associated with various side effects, yet data regarding the development of mesenteric panniculitis are scarce. Findings BRAF/MEK inhibitor treatment is associated with a significantly higher rate of mesenteric panniculitis compared to immune checkpoint inhibitor treatment in advanced melanoma. Clinical relevance BRAF/MEK inhibitor-treated patients are at risk for development of mesenteric panniculitis. As this benign finding can mimic or conceal malignancy, awareness of it is important especially in these patients.
Collapse
Affiliation(s)
- Marcel Alexander Drews
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany.
| | - Alexander Baumgarten
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Sebastian Zensen
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Marcel Opitz
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Denise Bos
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Lisa Zimmer
- Department of Dermatology, University Hospital Essen, Essen, Germany
| | - Selma Ugurel
- Department of Dermatology, University Hospital Essen, Essen, Germany
| | - Johannes Haubold
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital Essen, Essen, Germany
| | | | - Benedikt M Schaarschmidt
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| |
Collapse
|
9
|
Eljilany I, Garcia JR, Jamal B, Tarhini AA. Monoclonal antibodies as adjuvant therapies for resected melanoma. Expert Opin Biol Ther 2025; 25:1-14. [PMID: 40125987 DOI: 10.1080/14712598.2025.2484305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/04/2025] [Accepted: 03/21/2025] [Indexed: 03/25/2025]
Abstract
INTRODUCTION Systemic adjuvant therapy is indicated in patients with high-risk, resected melanoma to reduce recurrence risk and potentially improve survival rates. Monoclonal antibodies (mAbs) target immune checkpoints and have made significant advances as systemic adjuvant therapies. AREAS COVERED This review discusses the main clinical trials that tested adjuvant mAbs in resected high-risk melanoma, including anti-cytotoxic T-lymphocyte antigen-4 (CTLA-4) and anti-programmed cell death-1 (PD-1); in addition to newer immunotherapies being tested in the adjuvant setting, including anti-lymphocyte activation gene 3 (LAG-3). We also briefly discuss targeted therapies as an alternative choice. Moreover, we highlight the pros and cons of using mAbs in the adjuvant setting, the reported adverse events (AEs), and the quality of life impact. Finally, we report data related to biomarker studies tested in the context of these clinical trials. EXPERT OPINION Immune checkpoint inhibitors (ICIs) have been shown to significantly improve relapse-free survival (RFS) as adjuvant therapy for high-risk melanoma. The long-term impact on overall survival (OS) was demonstrated in two trials that tested ipilimumab as compared to placebo (EORTC18071) and interferon-α (ECOG-ACRIN E1609). Furthermore, emerging data with neoadjuvant therapy followed by surgery and adjuvant therapy utilizing ICIs have demonstrated improved outcomes in the management of locoregionally advanced disease when compared to upfront surgery followed by adjuvant therapy alone.
Collapse
Affiliation(s)
- Islam Eljilany
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Julia R Garcia
- Department of Medical Oncology, Beneficência Portuguesa de São Paulo, São Paulo, Brazil
| | - Basmala Jamal
- Department of Health Sciences, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Ahmad A Tarhini
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| |
Collapse
|
10
|
Nemakhavhani L, Abrahamse H, Dhilip Kumar SS. Microneedles for Melanoma Therapy: Exploring Opportunities and Challenges. Pharmaceutics 2025; 17:579. [PMID: 40430871 PMCID: PMC12114660 DOI: 10.3390/pharmaceutics17050579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/22/2025] [Accepted: 04/23/2025] [Indexed: 05/29/2025] Open
Abstract
Melanoma is a type of skin cancer that originates in the melanocytes, the epidermis' basal layer. The skin has traditionally been an attractive administration location for drug delivery in tumor therapy, and it is composed of three layers: the outermost stratum corneum (SC), the middle epidermis, and the deepest layer, the dermis. Melanoma can be treated using a variety of methods, such as chemotherapy, surgery, radiotherapy, and biological therapy, but all are expensive and have side effects. Furthermore, the SC is the primary barrier that contributes to the impermeability of the skin, which is a limitation in epidermal drug transport and can aid in achieving effective drug concentration with minimal side effects at the target location. Microneedles (MNs) are tiny needles that are easy to use, inexpensive, and non-toxic. In recent years, MNs have been significantly studied for the treatment of melanoma due to their excellent biocompatibility, minimal invasion, high patient compliance, simple penetration process, and high SC penetration rate. Most notably, MNs can provide efficient and seldom unpleasant delivery carriers and synergistic effectiveness by combining multi-model techniques with immunotherapy, gene therapy, photodynamic therapy (PDT), and photothermal treatment (PTT). This review will focus on biocompatibility, biodegradability, limitations, fabrication materials, release mechanisms, and delivery of the therapeutics of MNs for melanoma treatment.
Collapse
|
11
|
Zeng Z, Tan Y, Luo T, Li Z, Hu G, Liu Y, He L, Wang H, Zhong L, Wang H, Liu T, Zhu J. Tyrosinase-Activated MRI and PET Probes for Selective Melanoma Imaging. ACS Sens 2025; 10:3023-3032. [PMID: 40131867 DOI: 10.1021/acssensors.5c00058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Melanoma is one of the most aggressive forms of skin cancer. Accurate and early diagnosis of melanoma is crucial for improving patient outcomes. This study develops two TYR-activatable molecular probes, Mn-TyrEDTA and Al-18F-TyrEDTA, for the selective detection of melanoma in vivo. In vitro studies reveal that Mn-TyrEDTA exhibits TYR activity-dependent relaxivity enhancement, undergoing TYR-mediated oxidative polymerization, resulting in the formation of paramagnetic oligomers. UV-vis analysis supports this mechanism, showing time- and TYR concentration-dependent increases in broad band absorbance in the UV-vis region, specifically around 475 nm, due to the formation of o-quinone intermediates and melanin-like oligomers. HPLC analysis further confirmed the presence of polar oligomeric products in Mn-TyrEDTA solutions incubated with TYR/O2. MRI studies demonstrate Mn-TyrEDTA's selective retention and signal enhancement in TYR-expressing melanoma tissues. Furthermore, PET imaging with Al-18F-TyrEDTA conducted using a dual-xenograft mouse model reveals significantly higher uptake and retention of Al-18F-TyrEDTA in TYR-expressing melanoma compared to TYR-negative tumors. This selective retention could be attributed to a TYR-mediated proximity labeling mechanism, where highly reactive quinones form covalent bonds with nearby tumor proteins. In summary, our findings establish Mn-TyrEDTA and Al-18F-TyrEDTA as promising TYR-activatable imaging probes, offering a novel strategy for the early diagnosis and prognosis of melanoma.
Collapse
Affiliation(s)
- Zuhua Zeng
- Department of Gynecology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China
- Medical Imaging Key Laboratory of Sichuan Province, North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Ying Tan
- Medical Imaging Key Laboratory of Sichuan Province, North Sichuan Medical College, Nanchong, Sichuan 637000, China
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Tiantian Luo
- Medical Imaging Key Laboratory of Sichuan Province, North Sichuan Medical College, Nanchong, Sichuan 637000, China
- School of Pharmacy, North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Zhengwei Li
- Medical Imaging Key Laboratory of Sichuan Province, North Sichuan Medical College, Nanchong, Sichuan 637000, China
- School of Basic Medical Sciences and Forensic Medicine, North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Guihao Hu
- Medical Imaging Key Laboratory of Sichuan Province, North Sichuan Medical College, Nanchong, Sichuan 637000, China
- School of Basic Medical Sciences and Forensic Medicine, North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Yao Liu
- Medical Imaging Key Laboratory of Sichuan Province, North Sichuan Medical College, Nanchong, Sichuan 637000, China
- School of Basic Medical Sciences and Forensic Medicine, North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Ling He
- Medical Imaging Key Laboratory of Sichuan Province, North Sichuan Medical College, Nanchong, Sichuan 637000, China
- School of Basic Medical Sciences and Forensic Medicine, North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Haiyu Wang
- Medical Imaging Key Laboratory of Sichuan Province, North Sichuan Medical College, Nanchong, Sichuan 637000, China
- Department of Nuclear Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Lei Zhong
- Medical Imaging Key Laboratory of Sichuan Province, North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Haiying Wang
- Medical Imaging Key Laboratory of Sichuan Province, North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Tianwei Liu
- Medical Imaging Key Laboratory of Sichuan Province, North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Jiang Zhu
- Medical Imaging Key Laboratory of Sichuan Province, North Sichuan Medical College, Nanchong, Sichuan 637000, China
- School of Pharmacy, North Sichuan Medical College, Nanchong, Sichuan 637000, China
- Department of Nuclear Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China
| |
Collapse
|
12
|
Liu YH, Wang ZY, Du YF, Liu XH, Niu JB, Song J, Jin CY, Zhang SY. Thienopyrimidine: A promising scaffold in the development of kinase inhibitors with anticancer activities. Bioorg Med Chem 2025; 121:118109. [PMID: 39955801 DOI: 10.1016/j.bmc.2025.118109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/23/2025] [Accepted: 02/10/2025] [Indexed: 02/18/2025]
Abstract
Protein kinases represent a highly promising drug target, with over 80 drugs that target about two dozen different protein kinases have been approved by the US FDA, particularly in cancer treatment. Over the past decades, the unique structural characteristics of the thienopyrimidine ring system provide an adaptive platform for designing potent anticancer agents, especially various kinase inhibitors, which has attracted widespread attention. Some of these thienopyrimidines as anticancer kinase inhibitors have already been marketed or are currently undergoing clinical/preclinical studies for the treatment of cancers, such as Olmutinib, Pictilisib, SNS-314, PF-03758309, and Fimepinostat, highlighting the substantial advantages of the thienopyrimidine scaffold in the discovery of anticancer agents. This article reviews the discovery, activity, and structure-activity relationships of antitumor kinase inhibitors based on the thienopyrimidine scaffold, and partially discusses the binding modes between thienopyrimidine derivatives and their kinase targets. By elucidating the application of thienopyrimidine derivatives as anticancer kinase inhibitors, this review aims to provide new perspectives for the development of more effective and novel kinase inhibitors.
Collapse
Affiliation(s)
- Yun-He Liu
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou 450001, China
| | - Zi-Yue Wang
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou 450001, China
| | - Yi-Fei Du
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xuan-Han Liu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jin-Bo Niu
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jian Song
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Cheng-Yun Jin
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou 450001, China.
| | - Sai-Yang Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
13
|
Wang M, Zhao JH, Tang MX, Li M, Zhao H, Li ZY, Liu AD. Cell Death Modalities in Therapy of Melanoma. Int J Mol Sci 2025; 26:3475. [PMID: 40331942 PMCID: PMC12026598 DOI: 10.3390/ijms26083475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/31/2025] [Accepted: 04/02/2025] [Indexed: 05/08/2025] Open
Abstract
Melanoma, one of the most lethal cancers, demands urgent and effective treatment strategies. However, a successful therapeutic approach requires a precise understanding of the mechanisms underlying melanoma initiation and progression. This review provides an overview of melanoma pathogenesis, identifies current pathogenic factors contributing to mortality, and explores targeted therapy and checkpoint inhibitor therapy. Furthermore, we examine melanoma classification and corresponding therapies, along with advancements in various cell death mechanisms for melanoma treatment. We also discuss the current treatment status along with some drawbacks encountered during research stages such as resistance and metastasis.
Collapse
Affiliation(s)
- Meng Wang
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.W.); (J.-H.Z.); (M.-X.T.); (M.L.); (H.Z.)
| | - Jia-Hui Zhao
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.W.); (J.-H.Z.); (M.-X.T.); (M.L.); (H.Z.)
| | - Ming-Xuan Tang
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.W.); (J.-H.Z.); (M.-X.T.); (M.L.); (H.Z.)
| | - Meng Li
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.W.); (J.-H.Z.); (M.-X.T.); (M.L.); (H.Z.)
| | - Hu Zhao
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.W.); (J.-H.Z.); (M.-X.T.); (M.L.); (H.Z.)
- National Demonstration Center for Experimental Basic Medical Education, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhong-Yu Li
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.W.); (J.-H.Z.); (M.-X.T.); (M.L.); (H.Z.)
- National Demonstration Center for Experimental Basic Medical Education, Huazhong University of Science and Technology, Wuhan 430030, China
| | - An-Dong Liu
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.W.); (J.-H.Z.); (M.-X.T.); (M.L.); (H.Z.)
- National Demonstration Center for Experimental Basic Medical Education, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
14
|
Alfei S, Torazza C, Bacchetti F, Signorello MG, Passalacqua M, Domenicotti C, Marengo B. Tri-Phenyl-Phosphonium-Based Nano Vesicles: A New In Vitro Nanomolar-Active Weapon to Eradicate PLX-Resistant Melanoma Cells. Int J Mol Sci 2025; 26:3227. [PMID: 40244045 PMCID: PMC11990052 DOI: 10.3390/ijms26073227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/18/2025] Open
Abstract
Cutaneous metastatic melanoma (CMM) is the most aggressive form of skin cancer, with characteristics including a poor prognosis, chemotherapy-induced secondary tumorigenesis, and the emergence of drug resistance. Our recent study demonstrated that triphenyl phosphonium (TPP)-based nanovesicles (BPPB), which have amphiphilic properties, exert potent ROS-dependent anticancer effect against PLX4032 (PLX)-sensitive MeOV BRAFV600E and MeTRAV BRAFV600D mutant cell lines, evidencing more marked efficacy on MeOV cells. Here, taking advantage of this in vitro model, the antitumoral effect of BPPB was tested on PLX-resistant (PLX-R) MeOV BRAFV600E and MeTRAV BRAFV600D mutant cell lines to find a new potential strategy to fight melanoma therapy resistance. Specifically, we investigated both its effects on cell viability in dose- and time-dependent experiments and those on ROS generation. Our results show that BPPB exerted strong antiproliferative effects, regardless of their acquired resistance of cells to PLX, that correlated with ROS overproduction for 24 h treatments only. Moreover, in terms of cell viability, PLX-R MeTRAV cells demonstrated a remarkably higher tolerance to 24 h BPPB treatment than PLX-R MeOV. On the contrary, BPPB exposure for longer periods induced similar responses in both cell lines (IC50 = 87.8-106.5 nM on MeOV and 81.0-140.6 nM on MeTRAV). Notably, BPPB cytotoxicity on non-tumorigenic human keratinocytes (HaCaT) was low, thus establishing that BPPB is appreciably selective for CMM cells, allowing for selectivity index values (SIs) up to 11.58. Furthermore, the BPPB concentration causing 50% hemolysis (HC50) was found to be 16-173 and 4-192-fold higher than the IC50 calculated for PLX-R MeOV and MeTRAV cells, respectively. Correlation studies established that BPPB exerts cytotoxic effects on PLX-R MeOV and MeTRAV cells by a time-dependent mechanism, while a concentration-dependent mechanism was observed only at 24 h of exposure. Finally, a ROS-dependent mechanism can be assumed only in PLX-R MeTRAV cells in 72 h treatment.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy, University of Genoa, Viale Cembrano, 16148 Genoa, Italy; (C.T.); (F.B.)
| | - Carola Torazza
- Department of Pharmacy, University of Genoa, Viale Cembrano, 16148 Genoa, Italy; (C.T.); (F.B.)
| | - Francesca Bacchetti
- Department of Pharmacy, University of Genoa, Viale Cembrano, 16148 Genoa, Italy; (C.T.); (F.B.)
| | - Maria Grazia Signorello
- Biochemistry Laboratory, Department of Pharmacy, University of Genoa, Viale Benedetto XV 3, 16132 Genova, Italy;
| | - Mario Passalacqua
- Biochemistry Section, Department of Experimental Medicine (DIMES), University of Genova, Via Alberti L.B., 16132 Genoa, Italy;
- Centro 3R, Department of Information Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy;
| | - Cinzia Domenicotti
- Centro 3R, Department of Information Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy;
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
- Department of Experimental Medicine (DIMES), University of Genova, Via Alberti L.B., 16132 Genoa, Italy
| | - Barbara Marengo
- Centro 3R, Department of Information Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy;
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
- Department of Experimental Medicine (DIMES), University of Genova, Via Alberti L.B., 16132 Genoa, Italy
| |
Collapse
|
15
|
Lim SY, Boyd SC, Diefenbach RJ, Rizos H. Circulating MicroRNAs: functional biomarkers for melanoma prognosis and treatment. Mol Cancer 2025; 24:99. [PMID: 40156012 PMCID: PMC11951542 DOI: 10.1186/s12943-025-02298-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 03/10/2025] [Indexed: 04/01/2025] Open
Abstract
MicroRNAs (miRNAs) hold significant promise as circulating cancer biomarkers and unlike many other molecular markers, they can provide valuable insights that extend beyond tumour biology. The expression of circulating miRNAs may parallel the cellular composition and dynamic activity within the tumour microenvironment and reveal systemic immune responses. The functional complexity of miRNAs-where a single miRNA can regulate multiple messenger RNAs (mRNAs) to fine tune fundamental processes, and a single mRNA can be targeted by multiple miRNAs-underscores their broad significance and impact. However, this complexity poses significant challenges for translating miRNA research into clinical practice. In melanoma, specific miRNA signatures have shown notable diagnostic, prognostic and predictive value, with lineage-specific and immune-related miRNAs frequently identified as valuable markers. In this review, we explore the role of circulating miRNAs as potential biomarkers in melanoma, and highlight the current status and advances required to translate miRNA research into therapeutic opportunities.
Collapse
Affiliation(s)
- Su Yin Lim
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
- Melanoma Institute of Australia, The University of Sydney, Sydney, NSW, Australia
| | - Suzanah C Boyd
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
- Melanoma Institute of Australia, The University of Sydney, Sydney, NSW, Australia
| | - Russell J Diefenbach
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
- Melanoma Institute of Australia, The University of Sydney, Sydney, NSW, Australia
| | - Helen Rizos
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia.
- Melanoma Institute of Australia, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
16
|
Zhang H, Xia M, Li H, Zeng X, Jia H, Zhang W, Zhou J. Implication of Immunobiological Function of Melanocytes in Dermatology. Clin Rev Allergy Immunol 2025; 68:30. [PMID: 40097884 DOI: 10.1007/s12016-025-09040-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2025] [Indexed: 03/19/2025]
Abstract
Melanocytes are essential for regulating pigmentation and providing photoprotection in human skin. Originating from neural crest cells, these cells migrate to the basal layer of the epidermis and hair follicles during embryogenesis. Melanosomes, the specialized, membrane-bound organelles are essential for melanin synthesis. Beyond their role in pigmentation, melanocytes exhibit complex immune functions, expressing a variety of immune-related markers and receptors, such as pattern recognition receptors (PRRs), major histocompatibility complex class II (MHC-II) molecules, CD40, intercellular adhesion molecule 1 (ICAM-1), and programmed death-ligand 1 (PD-L1). These receptors allow melanocytes to detect environmental signals and engage in the innate immune response. Furthermore, melanocytes release various immunomodulatory substances, including proinflammatory cytokines, chemokines, and damage-associated molecular patterns (DAMPs), contributing to immune regulation. The immune functions of melanocytes are significantly influenced by external factors such as ultraviolet radiation (UVR), the microbiome, and oxidative stress. In different skin diseases, these immune functions may vary. For example, vitiligo, a common hypopigmentary disorder, is primarily driven by an autoimmune response targeting melanocytes, giving rise to depigmentation and the appearance of white patches. In contrast, melanoma, a form of skin cancer that arises from melanocytes, is closely linked to UV exposure. This review highlights the diverse immunobiological functions of melanocytes and their implications in dermatology.
Collapse
Affiliation(s)
- Hejuan Zhang
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, 210042, China
| | - Maomei Xia
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Hongyang Li
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, 210042, China
| | - Xuesi Zeng
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, 210042, China
| | - Hong Jia
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, 210042, China
| | - Wei Zhang
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, 210042, China.
| | - Jia Zhou
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
17
|
Zhang Y, Liu C, Li Z, Liu Y, Zheng H, Lin Q, Yu L, Boo YJ, Chan BQY, Loh XJ, Wu YL, Song Q, Li P, Chan SY. Microneedle-Mediated Synergistic Photothermal and Chemotherapy for Targeted Melanoma Treatment. ACS APPLIED MATERIALS & INTERFACES 2025; 17:14952-14967. [PMID: 40029948 DOI: 10.1021/acsami.4c20844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Melanoma, a malignant skin tumor originating from melanocytes, is typically treated with surgery in its early stages. However, chemotherapy becomes the primary treatment as the disease progresses to intermediate and advanced stages. The parenteral administration of chemotherapy can cause anxiety, discomfort, and infection risks, especially in immunocompromised cancer patients. Additionally, the circulating drugs can lead to systemic toxicity and side effects. Microneedles (MNs) provide a safer, less invasive alternative to address these issues. Herein, we demonstrated the effectiveness of integrating antimicrobial MNs with combined photothermal and chemotherapy treatment modalities against melanoma, presenting a promising approach to improving cancer treatment outcomes while minimizing associated risks. By leveraging the unique properties of chitosan (CS) and the versatility of poly(vinyl alcohol) (PVA), we fabricated physically cross-linked MNs with inherent antibacterial and antiviral properties. The physical cross-linked network not only accommodated polypyrrole nanoparticles (PPy NPs) for photothermal capabilities but also facilitated drug [doxorubicin hydrochloride (DOX)] loading and release over an extended period. Interestingly, in vitro and in vivo studies revealed that the MNs possess intrinsic antimelanoma properties. Compared to monotherapies, the combination of photothermal therapy and chemotherapy exhibited enhanced effectiveness against melanoma. This research paves the way for safer, more effective cancer treatment strategies.
Collapse
Affiliation(s)
- Yanni Zhang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Chuyi Liu
- Xiamen University, School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen, Fujian 361102, China
| | - Zhiguo Li
- Xiamen University, School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen, Fujian 361102, China
| | - Yingjia Liu
- Xiamen University, School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen, Fujian 361102, China
| | - Hua Zheng
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, China
| | - Qianyu Lin
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Luofeng Yu
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Yi Jian Boo
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Benjamin Qi Yu Chan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Yun-Long Wu
- Xiamen University, School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen, Fujian 361102, China
| | - Qing Song
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, Fujian 350117, China
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Siew Yin Chan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| |
Collapse
|
18
|
Wu J, Ding Q, Zhang Q, Chen Q, Wen X, Ding Y, Li J, Chen Z, Zhang T, Wang J, Huang F, Jiang H, Chen L, Zhou Q, Li K, Zhang X, Li D. Addition of anti-PD-1 immunotherapy to BRAF inhibitor-based targeted therapy improves real-world survival and delays brain metastases in patients with BRAF V600-mutant advanced melanoma: a multicenter cohort study. MedComm (Beijing) 2025; 6:e70102. [PMID: 39968494 PMCID: PMC11832434 DOI: 10.1002/mco2.70102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 12/24/2024] [Accepted: 12/31/2024] [Indexed: 02/20/2025] Open
Abstract
Anti-PD-1 immunotherapy and targeted therapy (TT) represent two major therapeutic modalities for BRAFV600-mutant advanced melanoma, but the efficacy of combination therapy in Asian populations remains unknown. Asian melanoma patients differ significantly from Caucasians in tissue subtypes, pathogenesis and response to treatment. We retrospectively analyzed data of BRAFV600-mutant advanced melanoma patients treated with first-line vemurafenib (V) ± anti-PD-1 or dabrafenib+trametinib (D+T) ± anti-PD-1 between 2014 and 2023 from three centers in China. 178 patients were included, with V (n = 45), D+T (n = 51), V+anti-PD-1 (n = 39) and D+T+anti-PD-1 (n = 43). The median PFS (21.9 vs. 11.1 months, p < 0.001), OS (NR vs. 32.6 months, p = 0.027), and DoR (20.0 vs. 8.4 months, p = 0.002) were significantly prolonged with D+T+anti-PD-1 versus D+T. Addition of anti-PD-1 to V also significantly prolonged PFS, OS, and DoR (p < 0.001). V+anti-PD-1 was superior to D+T in terms of PFS (15.0 vs. 11.1 months, p = 0.007) and DoR (18.0 vs. 8.4 months, p = 0.013), and was comparable to D+T+anti-PD-1. Addition of anti-PD-1 to BRAF inhibitor-based TT was associated with lower incidence of brain metastases (p = 0.032). Addition of anti-PD-1 to BRAF inhibitor-based TT appears to be a safe and effective treatment option, conferring a survival benefit and delaying the onset brain metastases in patients with BRAFV600-mutant advanced melanoma.
Collapse
Affiliation(s)
- Junwan Wu
- Biotherapy Center, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer MedicineGuangzhouGuangdong ProvinceP. R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat‐sen University Cancer CenterGuangzhouGuangdong ProvinceP. R. China
| | - Qiuyue Ding
- Biotherapy Center, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer MedicineGuangzhouGuangdong ProvinceP. R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat‐sen University Cancer CenterGuangzhouGuangdong ProvinceP. R. China
| | - Qiong Zhang
- Biotherapy Center, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer MedicineGuangzhouGuangdong ProvinceP. R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat‐sen University Cancer CenterGuangzhouGuangdong ProvinceP. R. China
| | - Qianqi Chen
- Department of OncologyHuazhong University of Science and Technology Union Shenzhen HospitalShenzhenGuangdong ProvinceP. R. China
| | - Xizhi Wen
- Biotherapy Center, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer MedicineGuangzhouGuangdong ProvinceP. R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat‐sen University Cancer CenterGuangzhouGuangdong ProvinceP. R. China
| | - Ya Ding
- Biotherapy Center, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer MedicineGuangzhouGuangdong ProvinceP. R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat‐sen University Cancer CenterGuangzhouGuangdong ProvinceP. R. China
| | - Jingjing Li
- Biotherapy Center, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer MedicineGuangzhouGuangdong ProvinceP. R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat‐sen University Cancer CenterGuangzhouGuangdong ProvinceP. R. China
| | - Ziluan Chen
- Biotherapy Center, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer MedicineGuangzhouGuangdong ProvinceP. R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat‐sen University Cancer CenterGuangzhouGuangdong ProvinceP. R. China
| | - Tao Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat‐sen University Cancer CenterGuangzhouGuangdong ProvinceP. R. China
| | - Jiuhong Wang
- Biotherapy Center, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer MedicineGuangzhouGuangdong ProvinceP. R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat‐sen University Cancer CenterGuangzhouGuangdong ProvinceP. R. China
| | - Fuxue Huang
- Biotherapy Center, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer MedicineGuangzhouGuangdong ProvinceP. R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat‐sen University Cancer CenterGuangzhouGuangdong ProvinceP. R. China
| | - Hang Jiang
- Biotherapy Center, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer MedicineGuangzhouGuangdong ProvinceP. R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat‐sen University Cancer CenterGuangzhouGuangdong ProvinceP. R. China
| | - Linbin Chen
- Biotherapy Center, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer MedicineGuangzhouGuangdong ProvinceP. R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat‐sen University Cancer CenterGuangzhouGuangdong ProvinceP. R. China
| | - Qiming Zhou
- Department of OncologyHuazhong University of Science and Technology Union Shenzhen HospitalShenzhenGuangdong ProvinceP. R. China
| | - Ke Li
- Department of Cancer Biotherapy CenterYunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan ProvinceKunmingYunnan ProvinceP. R. China
| | - Xiaoshi Zhang
- Biotherapy Center, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer MedicineGuangzhouGuangdong ProvinceP. R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat‐sen University Cancer CenterGuangzhouGuangdong ProvinceP. R. China
| | - Dandan Li
- Biotherapy Center, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer MedicineGuangzhouGuangdong ProvinceP. R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat‐sen University Cancer CenterGuangzhouGuangdong ProvinceP. R. China
| |
Collapse
|
19
|
Tauch S, Hey J, Kast B, Gengenbacher N, Weiß L, Sator‐Schmitt M, Lohr S, Brobeil A, Schirmacher P, Utikal J, Augustin HG, Plass C, Angel P. A Unique Signature for Cancer-Associated Fibroblasts in Melanoma Metastases. Pigment Cell Melanoma Res 2025; 38:e70002. [PMID: 39924882 PMCID: PMC11808227 DOI: 10.1111/pcmr.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/27/2024] [Accepted: 01/16/2025] [Indexed: 02/11/2025]
Abstract
Cancer-associated fibroblasts (CAFs) represent a central cell population of the tumor microenvironment (TME). Recently, single-cell RNA-sequencing (scRNA-seq) analyses of primary tumors of different cancer entities yielded different classifications of CAF subsets underscoring the heterogeneity of CAFs within the TME. Here, we analyzed the transcriptional signatures of approximately 8400 CAFs and normal fibroblasts by scRNA-seq and compared genetic profiles of CAFs from murine melanoma primary tumors to CAFs from corresponding melanoma lung metastases. This revealed distinct subsets for primary tumor and metastasis-specific CAF populations, respectively. Combined with the spatial characterization of metastasis CAFs at the RNA and protein level, scRNA analyses indicate tumor-dependent crosstalk between neutrophils and CAFs, mediated via SAA3 and IL1b-related signaling pathways, which can be recapitulated in vitro. Analyzing tissue sections of human patient samples, this interaction was found to be present in human melanoma metastasis. Taken together, our data highlight unique characteristics of metastasis CAFs with potential therapeutic impact for melanoma metastasis.
Collapse
Affiliation(s)
- Saskia Tauch
- Division Signal Transduction and Growth ControlGerman Cancer Research Center (DKFZ‐ZMBH Alliance)HeidelbergGermany
- Faculty of BiosciencesHeidelberg UniversityHeidelbergGermany
| | - Joschka Hey
- Division of Cancer EpigenomicsGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Bettina Kast
- Division Signal Transduction and Growth ControlGerman Cancer Research Center (DKFZ‐ZMBH Alliance)HeidelbergGermany
| | - Nicolas Gengenbacher
- Division of Vascular Oncology and MetastasisGerman Cancer Research Center (DKFZ‐ZMBH Alliance)HeidelbergGermany
- European Center for Angioscience (ECAS), Medical Faculty MannheimHeidelberg UniversityMannheimGermany
- DKFZ‐Hector Cancer Institute, University Medical Centre MannheimMannheimGermany
| | - Lena Weiß
- Division Signal Transduction and Growth ControlGerman Cancer Research Center (DKFZ‐ZMBH Alliance)HeidelbergGermany
| | - Melanie Sator‐Schmitt
- Division Signal Transduction and Growth ControlGerman Cancer Research Center (DKFZ‐ZMBH Alliance)HeidelbergGermany
| | - Sabrina Lohr
- Division Signal Transduction and Growth ControlGerman Cancer Research Center (DKFZ‐ZMBH Alliance)HeidelbergGermany
| | - Alexander Brobeil
- Institute of PathologyUniversity Hospital HeidelbergHeidelbergGermany
| | - Peter Schirmacher
- Institute of PathologyUniversity Hospital HeidelbergHeidelbergGermany
| | - Jochen Utikal
- DKFZ‐Hector Cancer Institute, University Medical Centre MannheimMannheimGermany
- Skin Cancer UnitGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Department of Dermatology, Venereology and AllergologyUniversity Medical Center Mannheim, Ruprecht‐Karl University of HeidelbergMannheimGermany
| | - Hellmut G. Augustin
- Division of Vascular Oncology and MetastasisGerman Cancer Research Center (DKFZ‐ZMBH Alliance)HeidelbergGermany
- European Center for Angioscience (ECAS), Medical Faculty MannheimHeidelberg UniversityMannheimGermany
- DKFZ‐Hector Cancer Institute, University Medical Centre MannheimMannheimGermany
| | - Christoph Plass
- Division of Cancer EpigenomicsGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Peter Angel
- Division Signal Transduction and Growth ControlGerman Cancer Research Center (DKFZ‐ZMBH Alliance)HeidelbergGermany
| |
Collapse
|
20
|
Xu J, Jin M, Mu Z, Li Z, Qi R, Han X, Jiang H. Inhibiting melanoma tumor growth: the role of oxidative stress-associated LINC02132 and COPDA1 long non-coding RNAs. Front Immunol 2025; 16:1558292. [PMID: 40092985 PMCID: PMC11906686 DOI: 10.3389/fimmu.2025.1558292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 02/11/2025] [Indexed: 03/19/2025] Open
Abstract
Background Cutaneous melanoma is a type of malignant tumor that is challenging to predict and is readily stimulated by various factors. Oxidative stress can induce damage and alterations in melanocytes, subsequently triggering immune responses. Given that oxidative stress is a prevalent tumor stimulus, we aimed to enhance melanoma prediction by identifying lncRNA signatures associated with oxidative stress. Methods We screened for oxidative stress-related lncRNAs that could improve melanoma patient prognosis using the TCGA and GTEx databases. Utilizing differentially expressed oxidative stress-related lncRNAs (DE-OSlncRNAs), we constructed a Lasso regression model. The accuracy of the model was validated using univariate and multivariate regression, Kaplan-Meier (K-M) curves, and ROC curves. Subsequently, we conducted immune infiltration analysis, immune checkpoint differential analysis, IC50 pharmaceutical analysis, and gene set enrichment analysis. Investigating the effects of the target gene on melanoma using fluorescence in situ hybridization (FISH), quantitative real-time PCR (qRT-PCR), Edu assay, wound healing assay, transwell assay, flow cytometry, and reactive oxygen species (ROS) detection. Results Thirteen lncRNAs were identified as significant prognostic factors. Four oxidative stress-related lncRNAs (COPDA1, LINC02132, LINC02812, and MIR205HG) were further validated by fluorescence in situ hybridization (FISH), with results consistent with our data analysis. LINC02132 and COPDA1 can influence the proliferation, invasion, migration, and apoptosis of melanoma. Conclusion Our findings suggest that upregulation of the LINC02132 or COPDA1 genes elevates intracellular reactive oxygen species (ROS) levels in melanoma cells, suppresses tumor cell proliferation, migration, and invasion, and promotes apoptosis. These results suggest a novel therapeutic strategy for melanoma treatment.
Collapse
Affiliation(s)
- JingWen Xu
- Department of Dermatology, Shengjing Hospital of China Medical University, Shenyang, China
| | - MingZhu Jin
- Department of Dermatology, Shengjing Hospital of China Medical University, Shenyang, China
| | - ZhenZhen Mu
- Department of Dermatology, Shengjing Hospital of China Medical University, Shenyang, China
| | - ZhengXiu Li
- Department of Dermatology & Key Lab of Dermatology, Ministry of Education and Public Health, National Joint Engineering Research Center for Theranostics of Immunology Skin Diseases, The First Hospital of China Medical University, Shenyang, China
| | - RuiQun Qi
- Department of Dermatology & Key Lab of Dermatology, Ministry of Education and Public Health, National Joint Engineering Research Center for Theranostics of Immunology Skin Diseases, The First Hospital of China Medical University, Shenyang, China
| | - XiuPing Han
- Department of Dermatology, Shengjing Hospital of China Medical University, Shenyang, China
| | - HangHang Jiang
- Department of Dermatology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
21
|
Li J, Yang X, Yin C, Li S, Xu Y, Liu B. CDKN2A, a key gene in copper-induced cell death model, influencing melanoma invasion and apoptosis. Discov Oncol 2025; 16:246. [PMID: 40014167 PMCID: PMC11867994 DOI: 10.1007/s12672-025-01992-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 02/17/2025] [Indexed: 02/28/2025] Open
Abstract
Skin cutaneous melanoma (SKCM) is one of the most lethal cancers translating into 75% of skin cancer-related deaths. Despite the advances in SKCM management and treatment strategies, the overall survival of patients remains unsatisfactory due to the metastatic properties of SKCM as well as the absence of effective prognostic biomarkers. Recent studies have shown that overload copper renders accumulation of mitochondrial proteins and fuels a form of cell death at odds with known death mechanisms and is hinged on mitochondrial respiration, the so-called cuproptosis. However, the exact role of cuproptosis in SKCM development and progression is unknown, and painting a clear picture of its functions in SKCM is fraught with challenges. A more systematic investigation is justified. In this study, we were posed to dissect the clout and latent regulatory mechanisms of cuproptosis-related genes (CRGs) in reining in SKCM progression. Also, we identified three CRGs that stood out were used to construct a prognostic model, which could be employed to predict the prognosis of patients with SKCM. Finally, through pan-cancer analysis, we found that the four cuproptosis key genes play a role in multiple tumors, suggesting that cuproptosis may impact tumor progression at the pan-cancer level. Taken together, these findings may not only contribute to the development of treatment strategies but also provide clues for treatment decision-making.
Collapse
Affiliation(s)
- Jing Li
- Sichuan Cancer Hospital &Institute, School of Medicine, Sichuan Cancer Center, University of Electronic Science and Technology of China, People's South Road, Section 4, Number 55, Chengdu, 610041, China
| | - Xi Yang
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cunli Yin
- Department of Oncology Sichuan Cancer Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Siru Li
- Department of Oncology Sichuan Cancer Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yan Xu
- Genecast Biotechnology Co., Ltd., Wu Xi, 214105, China
| | - Bin Liu
- Sichuan Cancer Hospital &Institute, School of Medicine, Sichuan Cancer Center, University of Electronic Science and Technology of China, People's South Road, Section 4, Number 55, Chengdu, 610041, China.
| |
Collapse
|
22
|
Pan Y, Berkovska O, Marathe S, Mermelekas G, Gudoityte G, Wolide AD, Arslan T, Seashore-Ludlow B, Lehtiö J, Orre LM. Functional-proteomics-based investigation of the cellular response to farnesyltransferase inhibition in lung cancer. iScience 2025; 28:111864. [PMID: 39995872 PMCID: PMC11848503 DOI: 10.1016/j.isci.2025.111864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/16/2024] [Accepted: 01/17/2025] [Indexed: 02/26/2025] Open
Abstract
Farnesylation is a lipid post-translational modification of proteins crucial for protein membrane anchoring and cellular signaling. Farnesyltransferase inhibitors (FTIs), such as tipifarnib, are being tested in cancer therapy. However, the full impact of FTIs on farnesylation substrates remains poorly understood, thus limiting their use in precision medicine. In this study, we performed a global proteomics analysis to investigate farnesylation and the effects of tipifarnib in lung cancer cell lines. Using metabolic labeling and mass spectrometry, we identified farnesylated proteins and mapped their subcellular localization. We also analyzed tipifarnib-dependent protein relocalization and proteome-wide changes. Key findings include the potential therapeutic value of FTIs for NRAS-mutated melanoma and GNAQ/GNA11-mutated uveal melanoma by inhibiting INPP5A farnesylation. Additionally, we identified a synergistic drug combination involving tipifarnib and a ferroptosis inducer and discovered PTP4A1 as a regulator of interferon signaling. Our data, covering 15,080 proteins, offer valuable insights for future studies of farnesylation and FTIs.
Collapse
Affiliation(s)
- Yanbo Pan
- SciLifeLab, Department of Oncology and Pathology, Karolinska Institutet, 17165 Solna, Sweden
| | - Olena Berkovska
- SciLifeLab, Department of Oncology and Pathology, Karolinska Institutet, 17165 Solna, Sweden
| | - Soumitra Marathe
- SciLifeLab, Department of Oncology and Pathology, Karolinska Institutet, 17165 Solna, Sweden
| | - Georgios Mermelekas
- SciLifeLab, Department of Oncology and Pathology, Karolinska Institutet, 17165 Solna, Sweden
| | - Greta Gudoityte
- SciLifeLab, Department of Oncology and Pathology, Karolinska Institutet, 17165 Solna, Sweden
| | - Amare D. Wolide
- SciLifeLab, Department of Oncology and Pathology, Karolinska Institutet, 17165 Solna, Sweden
| | - Taner Arslan
- SciLifeLab, Department of Oncology and Pathology, Karolinska Institutet, 17165 Solna, Sweden
| | - Brinton Seashore-Ludlow
- SciLifeLab, Department of Oncology and Pathology, Karolinska Institutet, 17165 Solna, Sweden
| | - Janne Lehtiö
- SciLifeLab, Department of Oncology and Pathology, Karolinska Institutet, 17165 Solna, Sweden
| | - Lukas M. Orre
- SciLifeLab, Department of Oncology and Pathology, Karolinska Institutet, 17165 Solna, Sweden
| |
Collapse
|
23
|
Lin Y, Dervisevic M, Yoh HZ, Guo K, Voelcker NH. Tailoring Design of Microneedles for Drug Delivery and Biosensing. Mol Pharm 2025; 22:678-707. [PMID: 39813711 DOI: 10.1021/acs.molpharmaceut.4c01266] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Microneedles (MNs) are emerging as versatile tools for both therapeutic drug delivery and diagnostic monitoring. Unlike hypodermic needles, MNs achieve these applications with minimal or no pain and customizable designs, making them suitable for personalized medicine. Understanding the key design parameters and the challenges during contact with biofluids is crucial to optimizing their use across applications. This review summarizes the current fabrication techniques and design considerations tailored to meet the distinct requirements for drug delivery and biosensing applications. We further underscore the current state of theranostic MNs that integrate drug delivery and biosensing and propose future directions for advancing MNs toward clinical use.
Collapse
Affiliation(s)
- Yuexi Lin
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
| | - Muamer Dervisevic
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
| | - Hao Zhe Yoh
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Keying Guo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Faculty of Biotechnology and Food Engineering, Guangdong Technion-Israel Institute of Technology, Shantou 515063, China
- Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion (MATEC), Guangdong Technion-Israel Institute of Technology, Shantou 515063, China
| | - Nicolas H Voelcker
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
- Materials Science and Engineering, Monash University, Clayton, Victoria 3168, Australia
| |
Collapse
|
24
|
Luo X, Duan Y, He J, Huang C, Liu J, Liu Y, Xu M, Dai Q, Yang Z. Dihydrotanshinone I enhanced BRAF mutant melanoma treatment efficacy by inhibiting the STAT3/SOX2 signaling pathway. Front Oncol 2025; 15:1429018. [PMID: 39944829 PMCID: PMC11813777 DOI: 10.3389/fonc.2025.1429018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 01/13/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND The Food and Drug Administration has approved the Serine/threonine-protein kinase B-raf (BRAF) inhibitor and Mitogen-activated extracellular signal-regulated kinase (MEK) inhibitor combo as the first-line treatment for individuals with metastatic melanoma, although the majority of these patients exhibit primary or secondary drug resistance in the clinic. Dihydrotanshinone I (DHT) is a lipophilic compound extracted from the root of Salvia miltiorrhiza that has been linked to multiple antitumor activities. In this study, we investigated the effect of dihydrotanshinone I on the MAPK pathway inhibitor resistance of BRAF mutant malignant melanoma. METHOD After treating A375, A375R, and A2058 cells with DHT or a combination of DHT and BRAF/MEK inhibitors, WB and Real-Time RT-qPCR were used to confirm the activation of the MAPK and STAT3/SOX2 pathways. CCK-8 was used to assess cell viability, while flow cytometry was used to identify apoptosis. In addition, mice were inoculated with A375 cells to establish a model of tumour formation, and various drug groups and treatment models were utilized. The diameter and weight of tumours in each group were then measured, and IHC and HE staining were used to assess the expression of two pathways and cytotoxicity, respectively. RESULTS This study found that DHT directly interacts with STAT3 protein and it can stop the feedback activation of the STAT3/SOX2 pathway caused by the use of MAPK pathway inhibitors. In addition, the combination of DHT and BRAF/MEK inhibitors can inhibit the proliferation and growth of BRAF mutant melanoma cells and primary and secondary drug-resistant cells. Finally, we proved that the combined therapy of DHT and BRAF/MEK inhibitors is reliable and effective at animal and cell levels. CONCLUSION In BRAF mutant melanoma cells, DHT suppresses the STAT3/SOX2 signaling pathway. Combining DHT, BRAF inhibitors, and MEK inhibitors can help treat treatment-resistant BRAF mutant melanoma cells. Experimental results both in vitro and in vivo have shown that the combination of DHT and an inhibitor of the MAPK pathway is safer and more successful than using an inhibitor of the MAPK pathway alone when treating BRAF mutant melanoma.
Collapse
Affiliation(s)
- Xing Luo
- Department of Pathology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yi Duan
- Department of Pathology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Jinwei He
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - CongGai Huang
- Department of Pathology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Jun Liu
- Department of Pathology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yifan Liu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Mengdei Xu
- Clinical School of Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Qiong Dai
- Department of Human Anatomy, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Zhihui Yang
- Department of Pathology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
25
|
Azimizonuzi H, Ghayourvahdat A, Ahmed MH, Kareem RA, Zrzor AJ, Mansoor AS, Athab ZH, Kalavi S. A state-of-the-art review of the recent advances of theranostic liposome hybrid nanoparticles in cancer treatment and diagnosis. Cancer Cell Int 2025; 25:26. [PMID: 39871316 PMCID: PMC11773959 DOI: 10.1186/s12935-024-03610-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 12/10/2024] [Indexed: 01/29/2025] Open
Abstract
Theranostics is a way of treating illness that blends medicine with testing. Specific characteristics should be present in the best theranostic agents for cancer: (1) the drugs should be safe and non-toxic; (2) they should be able to treat cancer selectively; and (3) they should be able to build up only in the cancerous tissue. Liposomes (LPs) are one of the most efficient drug delivery methods based on nanotechnology. Stealth LPs and commercial LPs have recently had an impact on cancer treatment. Using the valuable information from each imaging technique, along with the multimodality imaging functionality of liposomal therapeutic agents, makes them very appealing for personalized monitoring of how well therapeutic drugs are working against cancer in vivo and for predicting how well therapies will work. On the other hand, their use as nanoparticle delivery systems is currently in the research and development phase. Nanoscale delivery system innovation has made LP-nanoparticle hybrid structures very useful for combining therapeutic and imaging methods. LP-hybrid nanoparticles are better at killing cancer cells than their LP counterparts, making them excellent options for in vivo and in vitro drug delivery applications. Hybrid liposomes (HLs) could be used in the future as theranostic carriers to find and treat cancer targets. This would combine the best features of synthetic and biological drug delivery systems. Overarchingly, this article provided a comprehensive overview of the many LP types used in cancer detection, therapy, and theranostic analysis. An evaluation of the pros and cons of the many HLs types used in cancer detection and treatment has also been conducted. The study also included recent and significant research on HLs for cancer theranostic applications. We conclude by outlining the potential benefits and drawbacks of this theranostic approach to the concurrent detection and treatment of different malignancies, as well as its prospects.
Collapse
Affiliation(s)
- Hannaneh Azimizonuzi
- Inventor Member of International Federation of Inventors Associations, Geneva, Switzerland
| | - Arman Ghayourvahdat
- Inventor Member of International Federation of Inventors Associations, Geneva, Switzerland
| | | | | | - Athmar Jaber Zrzor
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | | | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Shaylan Kalavi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Islamic Azad University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
26
|
Kaur R, GholamHosseini H, Lindén M. Advanced Deep Learning Models for Melanoma Diagnosis in Computer-Aided Skin Cancer Detection. SENSORS (BASEL, SWITZERLAND) 2025; 25:594. [PMID: 39943236 PMCID: PMC11821218 DOI: 10.3390/s25030594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/05/2025] [Accepted: 01/08/2025] [Indexed: 02/16/2025]
Abstract
The most deadly type of skin cancer is melanoma. A visual examination does not provide an accurate diagnosis of melanoma during its early to middle stages. Therefore, an automated model could be developed that assists with early skin cancer detection. It is possible to limit the severity of melanoma by detecting it early and treating it promptly. This study aims to develop efficient approaches for various phases of melanoma computer-aided diagnosis (CAD), such as preprocessing, segmentation, and classification. The first step of the CAD pipeline includes the proposed hybrid method, which uses morphological operations and context aggregation-based deep neural networks to remove hairlines and improve poor contrast in dermoscopic skin cancer images. An image segmentation network based on deep learning is then used to extract lesion regions for detailed analysis and calculate the optimized classification features. Lastly, a deep neural network is used to distinguish melanoma from benign lesions. The proposed approaches use a benchmark dataset named International Skin Imaging Collaboration (ISIC) 2020. In this work, two forms of evaluations are performed with the classification model. The first experiment involves the incorporation of the results from the preprocessing and segmentation stages into the classification model. The second experiment involves the evaluation of the classifier without employing these stages i.e., using raw images. From the study results, it can be concluded that a classification model using segmented and cleaned images contributes more to achieving an accurate classification rate of 93.40% with a 1.3 s test time on a single image.
Collapse
Affiliation(s)
- Ranpreet Kaur
- Department of Software Engineering & AI, Media Design School, Auckland 1010, New Zealand
| | - Hamid GholamHosseini
- School of Engineering, Computer, and Mathematical Sciences, Auckland University of Technology, Auckland 1010, New Zealand;
| | - Maria Lindén
- Division of Intelligent Future Technologies, Mälardalen University, 721 23 Västerås, Sweden;
| |
Collapse
|
27
|
Baptista da Mata D, Coelho S, Vilas Boas MI, Silva MJ, Marques D, Ferreira P. Inequalities in Drug Access for Advanced Melanoma: The Prognostic Impact Resulting From the Approval Delay of the Combined Ipilimumab/Nivolumab Treatment in Portugal. Cureus 2025; 17:e78185. [PMID: 40027067 PMCID: PMC11870778 DOI: 10.7759/cureus.78185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2025] [Indexed: 03/05/2025] Open
Abstract
Introduction A combination of ipilimumab/nivolumab has demonstrated a median overall survival (mOS) of 71.9 months in advanced melanoma, establishing it as the standard first-line (1L) therapy. However, the approval of this combination by the Portuguese Regulatory Authority occurred 76 months after its approval by the European Authority, leaving tyrosine kinase inhibitors as the only 1L option available for the BRAF-mutated melanoma population. Our study aims to evaluate real-world data from patients with advanced melanoma and assess the potential prognostic impact of the delayed availability of ipilimumab/nivolumab combination therapy on this population. Methods This was an observational, retrospective cohort study conducted at a Portuguese Comprehensive Cancer Center. The study included adult patients with melanoma who received innovative therapies in the 1L between May 2016 and December 2021 and who would meet the criteria for treatment with ipilimumab/nivolumab. The primary outcome measure was mOS; secondary outcome measures included median progression-free survival (mPFS), objective response rate (ORR), and safety data. Results Our study included 172 patients, of which 50% were male, and 32.6% (n = 56) had BRAF-mutated melanoma. In 1L setting, 70.9% received anti-programmed cell death protein 1 (anti-PD-1) monotherapy, while the rest were treated with targeted therapies. The median follow-up time was 57 months. Patients treated with anti-PD-1 had ORR of 36.0%, mPFS of seven months (95% CI 2.9-11.1), and mOS of 19 months (95% CI 7.5-30.4). Among patients treated with targeted therapies, the ORR was 56.0%, mPFS seven months (95% CI 5.1-8.9), and mOS 14 months (95% CI 5.9-22.1). In our population, 10% presented grade 3 or higher adverse events, with no drug-related deaths reported. Conclusion These findings underscore significant disparities in access to innovative therapies in Portugal, which may have adversely impacted patients' outcomes. The delay raises ethical concerns regarding equity in healthcare access and highlights the need for policy measures to expedite the approval and availability of life-extending treatments.
Collapse
Affiliation(s)
| | - Sara Coelho
- Medical Oncology, Instituto Português de Oncologia do Porto, Porto, PRT
| | | | - Maria João Silva
- Medical Oncology, Instituto Português de Oncologia do Porto, Porto, PRT
| | - Dânia Marques
- Medical Oncology, Instituto Português de Oncologia do Porto, Porto, PRT
| | - Paula Ferreira
- Medical Oncology, Instituto Português de Oncologia do Porto, Porto, PRT
| |
Collapse
|
28
|
Liu C, Liu X, Hu L, Li X, Xin H, Zhu S. Global, regional, and national burden of cutaneous malignant melanoma from 1990 to 2021 and prediction to 2045. Front Oncol 2024; 14:1512942. [PMID: 39777336 PMCID: PMC11703817 DOI: 10.3389/fonc.2024.1512942] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
Background Cutaneous Malignant Melanoma (CMM) is a significant global health challenge. Understanding regional differences in CMM prevalence and trends is crucial for developing targeted strategies. To address this, we analyzed epidemiological patterns and investigated risk factors for CMM-related mortality. Methods This study analyzed CMM using data from the 2021 Global Burden of Diseases survey, covering 204 countries and territories. We evaluated the number and age-standardized rates of prevalence (ASPR), mortality (ASMR), disability-adjusted life years (ASDR), and annual percentage changes (EAPCs). Trends were stratified by region, country, age, sex, and Sociodemographic Index (SDI). A Bayesian Age-Period-Cohort model projected future prevalence, mortality, and DALYs, while decomposition analysis identified key drivers of CMM burden. Frontier analysis further associated CMM outcomes with socio-demographic development. Results In 2021, the global prevalence of CMM reached 833,215 cases, a 161.3% increase since 1990. During this period, the ASPR rose from 19.13 to 25.37 per 100,000, while the ASMR declined from 0.84 to 0.73 per 100,000. DALYs increased by 60.5%, from 1,045,777 to 1,678,836. The high SDI region had the highest ASPR, ASMR, and ASDR. Decomposition analysis identified population growth, demographic aging, and epidemiological changes as equal drivers of CMM DALYs globally. Countries like New Zealand and Australia demonstrated the most significant effective differences, indicating potential for improvement in CMM management. By 2045, the global ASPR is projected to rise to 36.61, with ASMR and ASDR expected to decrease to 0.79 and 10.21 per 100,000. Conclusion CMM poses an increasing global health concern, with ASPR steadily rising. While this analysis shows a decline in global ASMR and ASDR overall, these rates are actually increasing in low SDI regions, and projections indicate that this trend will likely continue until 2045.
Collapse
Affiliation(s)
- Chengling Liu
- Center of Burns and Plastic Surgery and Dermatology, The 924th Hospital of Joint Logistics Support Force of the People’s Liberation Army (PLA), Guilin, China
| | - Xingchen Liu
- Department of Pathology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Li Hu
- Department of the Hematology and Oncology, The 924th Hospital of Joint Logistics Support Force of the Chinese People’s Liberation Army (PLA), Guilin, China
| | - Xin Li
- Center of Burns and Plastic Surgery and Dermatology, The 924th Hospital of Joint Logistics Support Force of the People’s Liberation Army (PLA), Guilin, China
| | - Haiming Xin
- Center of Burns and Plastic Surgery and Dermatology, The 924th Hospital of Joint Logistics Support Force of the People’s Liberation Army (PLA), Guilin, China
| | - Sailin Zhu
- Center of Burns and Plastic Surgery and Dermatology, The 924th Hospital of Joint Logistics Support Force of the People’s Liberation Army (PLA), Guilin, China
| |
Collapse
|
29
|
Gao W, Song Y, Wu F, Xu S, Liu B, Zeng L, Zheng E, Song H, Zhang Q. Tumor-Targeted Metal-Organic Framework for Improved Photodynamic Therapy and Inhibited Tumor Metastasis in Melanoma. ACS APPLIED MATERIALS & INTERFACES 2024; 16:69769-69788. [PMID: 39652639 DOI: 10.1021/acsami.4c18058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Tumor hypoxia and elevated intracellular glutathione (GSH) levels significantly compromise the effectiveness of photodynamic therapy (PDT) in treating melanoma. In this study, we synthesized positively charged nanoparticles through a self-assembly method, incorporating photosensitizer verteporfin (VER), mitochondrial respiratory inhibitor atovaquone (ATO), and Fe3+. Subsequently, the nanoparticles were modified with sodium hyaluronate (HA) to obtain HA-ATO-Fe3+-VER nanoparticles (HAFV NPs). The fabricated HAFV NPs demonstrated excellent stability and in vitro Fenton reaction activity. HA facilitated the cellular internalization of HAFV NPs by targeting CD44 receptors, hence relieving tumor hypoxia through the disruption of the mitochondrial respiratory chain and involvement in the Fenton reaction. Simultaneously, ATO directly impeded the biosynthesis of GSH by diminishing ATP levels, while Fe3+ was supposed to oxidate GSH to GSSG, thereby doubly depleting GSH. The integration of these multiple mechanisms markedly enhanced the PDT efficacy of VER. Following intravenous administration, HAFV NPs preferentially accumulated in tumor tissues with minimal accumulation in the skin, demonstrating favorable biocompatibility in vivo. Furthermore, HAFV NPs effectively inhibited tumor growth and lung metastasis, which presents a promising strategy for melanoma treatment.
Collapse
Affiliation(s)
- Wenhao Gao
- School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
- Department of Pharmacy, The 900th Hospital of Joint Logistic Support Force PLA, Fuzhou 350025, China
| | - Yutong Song
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Fei Wu
- School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
- Department of Pharmacy, The 900th Hospital of Joint Logistic Support Force PLA, Fuzhou 350025, China
| | - Shiting Xu
- School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
- Department of Pharmacy, The 900th Hospital of Joint Logistic Support Force PLA, Fuzhou 350025, China
| | - Bin Liu
- School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Lingjun Zeng
- Department of Pharmacy, The 900th Hospital of Joint Logistic Support Force PLA, Fuzhou 350025, China
| | - Enqin Zheng
- Department of Pharmacy, The 900th Hospital of Joint Logistic Support Force PLA, Fuzhou 350025, China
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Hongtao Song
- School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
- Department of Pharmacy, The 900th Hospital of Joint Logistic Support Force PLA, Fuzhou 350025, China
| | - Qian Zhang
- School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| |
Collapse
|
30
|
Yu L, Yan F, Qi J, Wang L, Zhou M, Yin P. Burden of melanoma in China and its provinces from 1990 to 2021: an analysis for the Global Burden of Disease Study 2021. Front Public Health 2024; 12:1486617. [PMID: 39717039 PMCID: PMC11663859 DOI: 10.3389/fpubh.2024.1486617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/13/2024] [Indexed: 12/25/2024] Open
Abstract
Background The incidence of melanoma in China has been increasing over the past few decades. This study aimed to investigate the burden of melanoma at both national and subnational level in China, where the population is rapidly aging. Methods The annual melanoma data from 1990 to 2021 was collected from the Global Burden of Disease (GBD) 2021 China subnational study. Number of cases and age-standardized rates were estimated for incidence, mortality, prevalence, disability-adjusted life-years (DALYs) of melanoma by age and sex at subnational level with 33 province-level administrative units. Joinpoint regression model was used to evaluate the trends in disease burdens attributable to melanoma across time. A decomposition method was used to attribute changes in total deaths and DALYs to three explanatory components: population growth, population aging, and change of age-specific rates. Results Over the past 30 years, the age-standardized incidence rate (ASIR) of melanoma in China has shown an upward trend. The ASIR of melanoma in 2021 was 0.7 per 100,000 (95%UI 0.4-0.9), representing an increase of 89.2% (95% UI: 14.7-157.9%) from 1990. Among younger adults aged <60 years, melanoma was more common in men, whereas among older adults who were aged >60 years, it was more common in women. The ASIR was higher in the coastal provinces in 2021 and the age-standardized rates (ASR) of DALYs was generally higher in the western provinces. Total numbers of death and DALYs of melanoma increased over the study period, mainly driven by population aging in China. Conclusion China has experienced a substantial increase in the burden of melanoma from 1990 to 2021. It is beneficial to develop more targeted strategies for older adults populations, especially for women, to reduce the melanoma burden throughout China, particularly in some coastal and western provinces.
Collapse
Affiliation(s)
| | | | | | | | | | - Peng Yin
- National Center for Chronic and Non-Communicable Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
31
|
Flórez MA, Moreno Gómez GA, Flórez MA, Bueno IL, Gómez JM, Gómez MM, Restrepo Gutiérrez JJ. Melanoma in a Colombian population: a survival study. Melanoma Manag 2024; 11:2382079. [PMID: 39869442 PMCID: PMC11318695 DOI: 10.1080/20450885.2024.2382079] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 07/11/2024] [Indexed: 01/29/2025] Open
Abstract
Background: Melanoma, the deadliest skin cancer, presents significant challenges globally. This study examines survival factors among patients treated at a high-complexity oncology center in Colombia's coffee-growing region. Methods: Records from 2010 to 2021 were analyzed, capturing socio-demographics, clinical variables and survival outcomes via Kaplan-Meier and Cox regression. Results: Among 766 patients, factors influencing survival included sex, TNM stage, diagnostic stage, ulceration, metastasis, Breslow thickness ≥1 mm and positive nodes. Age, ulceration, distant stage at diagnosis and Breslow thickness ≥1 mm were associated with mortality. Conclusion: Colombian melanoma patients exhibit lower survival rates compared with global trends. Key survival determinants align with international literature. Enhanced photoprotection and early detection initiatives are imperative.
Collapse
Affiliation(s)
- Mauricio Arias Flórez
- Dermatologist – Oncologist, Oncólogos del Occidente, Universidad Tecnológica de Pereira, 660004, Colombia.
| | - Germán Alberto Moreno Gómez
- Medical Doctor; Clinical Epidemiologist, Public Health PhD, Universidad Tecnológica de Pereira, 660004, Colombia.
| | | | - Isaac López Bueno
- Medical Doctor, Universidad Tecnológica de Pereira, 660004, Colombia.
| | - Juanita Moreno Gómez
- Faculty of Health Sciences, Universidad Tecnológica de Pereira, 660004, Colombia.
| | - Mateo Moreno Gómez
- Faculty of Health Sciences, Universidad Tecnológica de Pereira, 660004, Colombia.
| | | |
Collapse
|
32
|
Han H, Li Z, Feng Y, Song H, Fang Z, Zhang D, Yuan D, Shi J. Peptide Degrader-Based Targeting of METTL3/14 Improves Immunotherapy Response in Cutaneous Melanoma. Angew Chem Int Ed Engl 2024; 63:e202407381. [PMID: 39136347 DOI: 10.1002/anie.202407381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Indexed: 10/30/2024]
Abstract
METTL3 has emerged as a promising therapeutic target in cancer treatment, although its oncogenic functions in melanoma development and potential for therapeutic targeting drug have not been fully explored. In this study, we define the oncogenic role of METTL3 in melanoma development and progression. Building on this insight, we examine our recently designed peptide inhibitor RM3, which targets the binding interface of METTL3/14 complex for disruption and subsequent ubiquitin-mediated proteasomal degradation via the E3 ligase STUB1. RM3 treatment reduces proliferation, migration, and invasion, and induces apoptosis in melanoma cells in vitro and in vivo. Subsequent transcriptomic analysis identified changes in immuno-related genes following RM3-mediated suppression of METTL3/14 N6-methyladenosine (m6A) methyltransferase activity, suggesting a potential for interaction with immunotherapy. A combination treatment of RM3 with anti-PD-1 antibody results in significantly higher beneficial tumor response in vivo, with a good safety profile. Collectively, these findings not only delineate the oncogenic role of METTL3 in melanoma but also showcase RM3, acting as a peptide degrader, as a novel and promising strategy for melanoma treatment.
Collapse
Affiliation(s)
- Hong Han
- Affiliated Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha, P. R. China
| | - Zenghui Li
- Affiliated Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha, P. R. China
| | - Yuqing Feng
- Affiliated Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha, P. R. China
| | - He Song
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, P. R. China
| | - Zhixiong Fang
- Affiliated Hospital of Hunan University, Department of Infectious Disease and Public Health, Hunan province, P. R. China
| | - Dingxiao Zhang
- Affiliated Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha, P. R. China
- Shenzhen Research Institute, Hunan University, Shenzhen, Guangdong, 518000, P. R. China
| | - Dan Yuan
- Affiliated Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha, P. R. China
| | - Junfeng Shi
- Affiliated Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha, P. R. China
- Shenzhen Research Institute, Hunan University, Shenzhen, Guangdong, 518000, P. R. China
| |
Collapse
|
33
|
Gęgotek A, Conde T, Domingues MR, Domingues P, Skrzydlewska E. Impact of Nannochloropsis oceanica and Chlorococcum amblystomatis Extracts on UVA-Irradiated on 3D Cultured Melanoma Cells: A Proteomic Insight. Cells 2024; 13:1934. [PMID: 39682683 PMCID: PMC11640244 DOI: 10.3390/cells13231934] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/12/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Melanoma is one of the most malignant forms of skin cancer, characterised by the highest mortality rate among affected patients. This study aims to analyse and compare the effects of lipid extracts from the microalgae Nannochloropsis oceanica (N.o.) and Chlorococcum amblystomatis (C.a.) on the intra and extracellular proteome of UVA-irradiated melanoma cells using a three-dimensional model. Proteomic analysis revealed that UVA radiation significantly increases the levels of pro-inflammatory proteins in melanoma cells. Treatment with algae extracts reduced these protein levels in both non-irradiated and irradiated cells. Furthermore, untreated cells released proteins responsible for cell growth and proliferation into the medium, a process hindered by UVA radiation through the promotion of pro-inflammatory molecules secretion. The treatment with algae extracts effectively mitigated UVA-induced alterations. Notably, UVA radiation significantly induced the formation of 4-HNE and 15-PGJ2 protein adducts in both cells and the medium, while treatment with algae extracts stimulated the formation of 4-HNE-protein adducts and reduced the level of 15-PGJ2-protein adducts. However, both algae extracts successfully prevented these UVA-induced modifications. In conclusion, lipid extracts from N.o. and C.a. appear to be promising agents in supporting anti-melanoma therapy. However, their potent protective capacity may limit their applicability, particularly following cells exposure to UVA.
Collapse
Affiliation(s)
- Agnieszka Gęgotek
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok, Poland;
| | - Tiago Conde
- Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.C.); (M.R.D.)
| | - Maria Rosário Domingues
- Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.C.); (M.R.D.)
| | - Pedro Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal;
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok, Poland;
| |
Collapse
|
34
|
Datta D, Sulthana S, Strauss J, Puri A, Priyanka Bandi S, Singh S. Reconnoitring signaling pathways and exploiting innovative approaches tailoring multifaceted therapies for skin cancer. Int J Pharm 2024; 665:124719. [PMID: 39293575 DOI: 10.1016/j.ijpharm.2024.124719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/22/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024]
Abstract
Nowadays, skin cancer is widespread just like a varied malignant cancer which can cause serious health issues. Skin cancer, which encompasses malignant melanoma, basal cell carcinoma, and squamous cell carcinoma, is a prevalent form of cancer among humans. Due to its broad prevalence, financial burden, mortality rates, and cosmetic effects, it is a major public health issue. Skin cancer treatment involves surgery, chemotherapy, and radiation. Recently, personalized treatment in the fields of targeted therapies and precision medicine has been shown to diagnose early detection of every individual tumor by knowing their genetic and molecular characteristics. To target the molecular pathways responsible for tumor growth and reduce the damage to healthy tissue, new targeted therapies have emerged for melanoma, basal cell carcinoma, and squamous cell carcinoma. B-raf serine/threonine kinase (BRAF) and mitogen-activated protein kinase (MEK) inhibitors, immune checkpoint inhibitors, and precision medications have strong response rates to improve patient survival. Targeted therapeutics like nanocarriers have shown promising results by reducing skin irritation and protecting encapsulated therapeutics. These formulations have been shown to improve the transdermal permeability of anticancer drugs. The consideration of employing physical techniques to enhance the permeation of nanocarriers warrants attention to augment the dermal permeation of anticancer agents and facilitate targeted drug delivery within neoplastic cells. Targeted therapies face obstacles like resistance mechanisms and treatment strategy monitoring. Taken together, this review delves into the basic mechanisms of skin cancer, current treatment methods, drug resistance processes, and nano-based targeted techniques for cancer treatment. It will also delineate the challenges and perspectives in pre-clinical and clinical contexts.
Collapse
Affiliation(s)
- Deepanjan Datta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India.
| | - Safiya Sulthana
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Jordan Strauss
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN 37614
| | - Ashana Puri
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN 37614
| | - Sony Priyanka Bandi
- Loka Laboratories Private Limited, Technology Business Incubator, BITS Pilani Hyderabad Campus, Jawahar Nagar, Medchal 500078, Telangana, India.
| | - Sudarshan Singh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
35
|
Brito S, Baek M, Bin BH. Skin Structure, Physiology, and Pathology in Topical and Transdermal Drug Delivery. Pharmaceutics 2024; 16:1403. [PMID: 39598527 PMCID: PMC11597055 DOI: 10.3390/pharmaceutics16111403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Several industries are increasingly focused on enhancing the delivery of active ingredients through the skin to optimize therapeutic outcomes. By facilitating the penetration of active ingredients through the skin barrier, these enhancers can significantly improve the efficacy of various formulations, ranging from skincare products to therapeutic agents targeting systemic circulation. As the understanding of skin physiology and the mechanisms of drug absorption deepen, these industries are adopting permeation enhancers more widely, ultimately leading to better patient outcomes and expanded treatment options. However, the structure and physiological function of the skin can vary according to different factors, such as the area of the body and between individuals. These variations, along with external environmental exposures, aging and pathological conditions, introduce complexities that must be carefully considered when designing effective delivery systems. Considering the intricacies of skin structure and physiology, tailoring systems to account for regional differences, individual variability, and changes induced by environmental factors or disease is critical to optimizing therapeutic outcomes. This review discusses the features of skin structure, physiology, and pathologies, as well as the application of permeation enhancers in these contexts. Furthermore, it addresses the use of animal skin models in transdermal delivery and dermatological studies, along with the latest developments in this field.
Collapse
Affiliation(s)
- Sofia Brito
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea;
- Research Center for Advanced Materials Technology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Moonki Baek
- Department of Applied Biotechnology, Ajou University, Suwon 16499, Republic of Korea;
- Department of Biological Sciences, Ajou University, Suwon 16499, Republic of Korea
| | - Bum-Ho Bin
- Department of Applied Biotechnology, Ajou University, Suwon 16499, Republic of Korea;
- Department of Biological Sciences, Ajou University, Suwon 16499, Republic of Korea
| |
Collapse
|
36
|
Garbaz A, Oukdach Y, Charfi S, El Ansari M, Koutti L, Salihoun M. MLFA-UNet: A multi-level feature assembly UNet for medical image segmentation. Methods 2024; 232:52-64. [PMID: 39481818 DOI: 10.1016/j.ymeth.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/03/2024] [Accepted: 10/22/2024] [Indexed: 11/03/2024] Open
Abstract
Medical image segmentation is crucial for accurate diagnosis and treatment in medical image analysis. Among the various methods employed, fully convolutional networks (FCNs) have emerged as a prominent approach for segmenting medical images. Notably, the U-Net architecture and its variants have gained widespread adoption in this domain. This paper introduces MLFA-UNet, an innovative architectural framework aimed at advancing medical image segmentation. MLFA-UNet adopts a U-shaped architecture and integrates two pivotal modules: multi-level feature assembly (MLFA) and multi-scale information attention (MSIA), complemented by a pixel-vanishing (PV) attention mechanism. These modules synergistically contribute to the segmentation process enhancement, fostering both robustness and segmentation precision. MLFA operates within both the network encoder and decoder, facilitating the extraction of local information crucial for accurately segmenting lesions. Furthermore, the bottleneck MSIA module serves to replace stacking modules, thereby expanding the receptive field and augmenting feature diversity, fortified by the PV attention mechanism. These integrated mechanisms work together to boost segmentation performance by effectively capturing both detailed local features and a broader range of contextual information, enhancing both accuracy and resilience in identifying lesions. To assess the versatility of the network, we conducted evaluations of MFLA-UNet across a range of medical image segmentation datasets, encompassing diverse imaging modalities such as wireless capsule endoscopy (WCE), colonoscopy, and dermoscopic images. Our results consistently demonstrate that MFLA-UNet outperforms state-of-the-art algorithms, achieving dice coefficients of 91.42%, 82.43%, 90.8%, and 88.68% for the MICCAI 2017 (Red Lesion), ISIC 2017, PH2, and CVC-ClinicalDB datasets, respectively.
Collapse
Affiliation(s)
- Anass Garbaz
- Laboratory of Computer Systems and Vision, Faculty of Science, Ibn Zohr University, Agadir, 80000, Morocco.
| | - Yassine Oukdach
- Laboratory of Computer Systems and Vision, Faculty of Science, Ibn Zohr University, Agadir, 80000, Morocco
| | - Said Charfi
- Laboratory of Computer Systems and Vision, Faculty of Science, Ibn Zohr University, Agadir, 80000, Morocco
| | - Mohamed El Ansari
- Informatics and Applications Laboratory, Department of Computer Science Faculty of sciences, Moulay Ismail University, Meknes, 50000, Morocco
| | - Lahcen Koutti
- Laboratory of Computer Systems and Vision, Faculty of Science, Ibn Zohr University, Agadir, 80000, Morocco
| | - Mouna Salihoun
- Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, 10100, Morocco
| |
Collapse
|
37
|
Lu J, Feng Y, Guo K, Sun L, Zhang K. Association between inflammatory factors and melanoma: a bidirectional Mendelian randomization study. Cancer Causes Control 2024; 35:1333-1342. [PMID: 38842646 DOI: 10.1007/s10552-024-01890-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 05/13/2024] [Indexed: 06/07/2024]
Abstract
PURPOSE This study performed a bidirectional Mendelian randomization (MR) analysis to elucidate the causal relationships of C-reactive protein and 41 inflammatory regulators with melanoma, including data from UK Biobank, Cardiovascular Risk in Young Finns Study, and Cohorts for Inflammation Work Group. METHODS We selected the inverse variance weighting (IVW) to merge the estimated causal effects of multiple SNPs into a weighted average. To evaluate the heterogeneities of IVW, the Cochran Q statistic, and I2 index were used. What's more, several sensitivity analyses were employed, including IVW, MR-Egger, weighted median, and Mendelian Randomization Pleiotropy RESidual Sum and Outlier (MR-PRESSO). RESULTS With SNPs reaching P < 5 × 10-8, the analyses findings revealed that IL-16 had a significant positively association with genetically risk of melanoma (ORIVW: 1.05; 95% CI: 1.03-1.07; P < 0.001), and high levels of MCP1 (ORIVW: 1.13; 95% CI: 1.03-1.23; P = 0.01) were suggestively associated with melanoma susceptibility. What's more, TNF-β (ORIVW: 1.07; 95% CI: 1.01-1.13; P = 0.02) and IL-8 (ORIVW: 1.08, 95% CI: 1.01-1.16; P = 0.03) were demonstrated a positive association with the risk of melanoma under a less stringent cut-off (P < 5 × 10-6). Conversely, we found a facilitative effect of melanoma susceptibility on IP-10 and inhibitory effects on IL-6, IL-1b, and GRO-α. CONCLUSION The genetic evidence that we have uncovered indicates a potential association between the levels of specific inflammatory markers (IL-16, IL-8, MCP-1, and TNF-β) and the risk of melanoma. Further research is imperative to translate these findings into clinical applications.
Collapse
Affiliation(s)
- Jiamin Lu
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Yuqian Feng
- Hangzhou TCM Hospital of Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
| | - Kaibo Guo
- Department of Oncology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Oncology, The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Leitao Sun
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China.
| | - Kai Zhang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China.
- Anji Traditional Chinese Medical Hospital, Huzhou, Zhejiang, China.
| |
Collapse
|
38
|
Sat-Muñoz D, Balderas-Peña LMA, Gómez-Sánchez E, Martínez-Herrera BE, Trujillo-Hernández B, Quiroga-Morales LA, Salazar-Páramo M, Dávalos-Rodríguez IP, Nuño-Guzmán CM, Velázquez-Flores MC, Ochoa-Plascencia MR, Muciño-Hernández MI, Isiordia-Espinoza MA, Mireles-Ramírez MA, Hernández-Salazar E. Onco-Ontogeny of Squamous Cell Cancer of the First Pharyngeal Arch Derivatives. Int J Mol Sci 2024; 25:9979. [PMID: 39337467 PMCID: PMC11432412 DOI: 10.3390/ijms25189979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/06/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
Head and neck squamous cell carcinoma (H&NSCC) is an anatomic, biological, and genetic complex disease. It involves more than 1000 genes implied in its oncogenesis; for this review, we limit our search and description to the genes implied in the onco-ontogeny of the derivates from the first pharyngeal arch during embryo development. They can be grouped as transcription factors and signaling molecules (that act as growth factors that bind to receptors). Finally, we propose the term embryo-oncogenesis to refer to the activation, reactivation, and use of the genes involved in the embryo's development during the oncogenesis or malignant tumor invasion and metastasis events as part of an onco-ontogenic inverse process.
Collapse
Affiliation(s)
- Daniel Sat-Muñoz
- Departamento de Morfología, Centro Universitario de Ciencis de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
- Cuerpo Académico UDG-CA-874, Ciencias Morfológicas en el Diagnóstico y Tratamiento de la Enfermedad, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
- Unidad Médica de Alta Especialidad (UMAE), Departamento Clínico de Cirugía Oncológica, Hospital de Especialidades (HE), Centro Médico Nacional de Occidente (CMNO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Mexico
- Comité de Tumores de Cabeza y Cuello, Unidad Médica de Alta Especialidad (UMAE), Hospital de Especialidades (HE), Centro Médico Nacional de Occidente (CMNO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Mexico
| | - Luz-Ma-Adriana Balderas-Peña
- Departamento de Morfología, Centro Universitario de Ciencis de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
- Cuerpo Académico UDG-CA-874, Ciencias Morfológicas en el Diagnóstico y Tratamiento de la Enfermedad, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
- Comité de Tumores de Cabeza y Cuello, Unidad Médica de Alta Especialidad (UMAE), Hospital de Especialidades (HE), Centro Médico Nacional de Occidente (CMNO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Mexico
- Unidad de Investigación Biomédica 02, Unidad Médica de Alta Especialidad (UMAE), Hospital de Especialidades (HE), Centro Médico Nacional de Occidente (CMNO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Mexico
| | - Eduardo Gómez-Sánchez
- Cuerpo Académico UDG-CA-874, Ciencias Morfológicas en el Diagnóstico y Tratamiento de la Enfermedad, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
- División de Disciplinas Clínicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Brenda-Eugenia Martínez-Herrera
- Departamento de Nutrición y Dietética, Hospital General de Zona #1, Instituto Mexicano del Seguro Social, OOAD Aguascalientes, Boulevard José María Chavez #1202, Fracc, Lindavista, Aguascalientes 20270, Mexico
| | | | - Luis-Aarón Quiroga-Morales
- Unidad Académica de Ciencias de la Salud, Clínica de Rehabilitación y Alto Rendimiento ESPORTIVA, Universidad Autónoma de Guadalajara, Zapopan 45129, Mexico
| | - Mario Salazar-Páramo
- Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Academia de Inmunología, Guadalajara 44340, Mexico
| | - Ingrid-Patricia Dávalos-Rodríguez
- Departamento de Biología Molecular y Genómica, División de Genética, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social. Guadalajara 44340, Mexico
| | - Carlos M Nuño-Guzmán
- División de Disciplinas Clínicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
- Departamento Clínico de Cirugía General, Unidad Médica de Alta Especialidad (UMAE), Hospital de Especialidades, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico
| | - Martha-Cecilia Velázquez-Flores
- Departamento de Morfología, Centro Universitario de Ciencis de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
- Unidad Médica de Alta Especialidad (UMAE), Departamento Clínico de Anestesiología, División de Cirugía, Hospital de Especialidades, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico
| | - Miguel-Ricardo Ochoa-Plascencia
- Cuerpo Académico UDG-CA-874, Ciencias Morfológicas en el Diagnóstico y Tratamiento de la Enfermedad, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
- División de Disciplinas Clínicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - María-Ivette Muciño-Hernández
- Cuerpo Académico UDG-CA-874, Ciencias Morfológicas en el Diagnóstico y Tratamiento de la Enfermedad, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
- División de Disciplinas Clínicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Mario-Alberto Isiordia-Espinoza
- Departamento de Clínicas, División de Ciencias Biomédicas, Centro Universitario de los Altos, Instituto de Investigación en Ciencias Médicas, Cuerpo Académico Terapéutica y Biología Molecular (UDG-CA-973), Universidad de Guadalajara, Tepatitlán de Morelos 47620, Mexico
| | - Mario-Alberto Mireles-Ramírez
- División de Investigación en Salud, UMAE, Hospital de Especialidades, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico
| | - Eduardo Hernández-Salazar
- Departamento de Admisión Médica Continua, UMAE Hospital de Especialidades, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico
| |
Collapse
|
39
|
Wang Y, Chen SJ, Ma T, Long Q, Chen L, Xu KX, Cao Y. Promotion of apoptosis in melanoma cells by taxifolin through the PI3K/AKT signaling pathway: Screening of natural products using WGCNA and CMAP platforms. Int Immunopharmacol 2024; 138:112517. [PMID: 38924866 DOI: 10.1016/j.intimp.2024.112517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/26/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024]
Abstract
Melanoma is a skin cancer originating from melanocytes. The global incidence rate of melanoma is rapidly increasing, posing significant public health challenges. Identifying effective therapeutic agents is crucial in addressing this growing problem. Natural products have demonstrated promising anti-tumor activity. In this study, a plant flavonoid, taxifolin, was screened using Weighted Correlation Network Analysis (WGCNA) in combination with the Connectivity Map (CMAP) platform. Taxifolin was confirmed to inhibit the proliferation, migration, and invasion ability of melanoma A375 and MV-3 cells by promoting apoptosis. Additionally, it suppressed the Epithelial-Mesenchymal Transition (EMT) process of melanoma cells. Cyber pharmacological analysis revealed that taxifolin exerts its inhibitory effect on melanoma through the PI3K/AKT signaling pathway, specifically by downregulating the protein expression of p-PI3K and p-AKT. Notably, the addition of SC-79, an activator of the PI3K/AKT signaling pathway, reversed the effects of taxifolin on cell migration and apoptosis. Furthermore, in vivo experiments demonstrated that taxifolin treatment slowed tumor growth in mice without significant toxic effects. Based on these findings, taxifolin holds promise as a potential drug for melanoma treatment.
Collapse
Affiliation(s)
- Ye Wang
- School of Clinical Medicine, Guizhou Medical University, No.9 Beijing Road, Yunyan District, Guiyang 550004, Guizhou, China
| | - Shao-Jie Chen
- School of Clinical Medicine, Guizhou Medical University, No.9 Beijing Road, Yunyan District, Guiyang 550004, Guizhou, China; Department of Hepatobiliary Surgery, Affiliated Hospital of Guizhou Medical University, No.28 Gui Medical Street, Yunyan District, Guiyang 550004, Guizhou, China
| | - Ting Ma
- School of Clinical Medicine, Guizhou Medical University, No.9 Beijing Road, Yunyan District, Guiyang 550004, Guizhou, China
| | - Qiu Long
- School of Clinical Medicine, Guizhou Medical University, No.9 Beijing Road, Yunyan District, Guiyang 550004, Guizhou, China
| | - Lan Chen
- School of Clinical Medicine, Guizhou Medical University, No.9 Beijing Road, Yunyan District, Guiyang 550004, Guizhou, China
| | - Ke-Xin Xu
- School of Clinical Medicine, Guizhou Medical University, No.9 Beijing Road, Yunyan District, Guiyang 550004, Guizhou, China
| | - Yu Cao
- School of Clinical Medicine, Guizhou Medical University, No.9 Beijing Road, Yunyan District, Guiyang 550004, Guizhou, China; Department of Dermatology, Affiliated Hospital of Guizhou Medical University, No.28 Gui Medical Street, Yunyan District, Guiyang 550004, Guizhou, China.
| |
Collapse
|
40
|
Qu Y, Gao N, Zhang S, Gao L, He B, Wang C, Gong C, Shi Q, Li Z, Yang S, Xiao Y. Role of N6-methyladenosine RNA modification in cancer. MedComm (Beijing) 2024; 5:e715. [PMID: 39252821 PMCID: PMC11381670 DOI: 10.1002/mco2.715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024] Open
Abstract
N6-methyladenosine (m6A) is the most abundant modification of RNA in eukaryotic cells. Previous studies have shown that m6A is pivotal in diverse diseases especially cancer. m6A corelates with the initiation, progression, resistance, invasion, and metastasis of cancer. However, despite these insights, a comprehensive understanding of its specific roles and mechanisms within the complex landscape of cancer is still elusive. This review begins by outlining the key regulatory proteins of m6A modification and their posttranslational modifications (PTMs), as well as the role in chromatin accessibility and transcriptional activity within cancer cells. Additionally, it highlights that m6A modifications impact cancer progression by modulating programmed cell death mechanisms and affecting the tumor microenvironment through various cancer-associated immune cells. Furthermore, the review discusses how microorganisms can induce enduring epigenetic changes and oncogenic effect in microorganism-associated cancers by altering m6A modifications. Last, it delves into the role of m6A modification in cancer immunotherapy, encompassing RNA therapy, immune checkpoint blockade, cytokine therapy, adoptive cell transfer therapy, and direct targeting of m6A regulators. Overall, this review clarifies the multifaceted role of m6A modification in cancer and explores targeted therapies aimed at manipulating m6A modification, aiming to advance cancer research and improve patient outcomes.
Collapse
Affiliation(s)
- Yi Qu
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| | - Nannan Gao
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| | - Shengwei Zhang
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| | - Limin Gao
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| | - Bing He
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| | - Chao Wang
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| | - Chunli Gong
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| | - Qiuyue Shi
- Department of Gastroenterology the First Affiliated Hospital of Guangxi Medical University Nanning Guangxi China
| | - Zhibin Li
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| | - Shiming Yang
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| | - Yufeng Xiao
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| |
Collapse
|
41
|
Park HK, Choi YD, Shim HJ, Choi Y, Chung IJ, Yun SJ. Comparative Whole-Genome Sequencing Analysis of In-situ and Invasive Acral Lentiginous Melanoma: Markedly Increased Copy Number Gains of GAB2 , PAK1 , UCP2 , and CCND1 are Associated with Melanoma Invasion. Am J Surg Pathol 2024; 48:1061-1071. [PMID: 38916228 DOI: 10.1097/pas.0000000000002273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Acral lentiginous melanoma (ALM) is the most common subtype of acral melanoma. Even though recent genetic studies are reported in acral melanomas, the genetic differences between in-situ and invasive ALM remain unclear. We aimed to analyze specific genetic changes in ALM and compare genetic differences between in-situ and invasive lesions to identify genetic changes associated with the pathogenesis and progression of ALM. We performed whole genome sequencing of 71 tissue samples from 29 patients with ALM. Comparative analyses were performed, pairing in-situ ALMs with normal tissues and, furthermore, invasive ALMs with normal and in-situ tissues. Among 21 patients with in-situ ALMs, 3 patients (14.3%) had SMIM14 , SLC9B1 , FRG1 , FAM205A , ESRRA , and ESPN mutations, and copy number (CN) gains were identified in only 2 patients (9.5%). Comparing 13 invasive ALMs with in-situ tissues, CN gains were identified in GAB2 in 8 patients (61.5%), PAK1 in 6 patients (46.2%), and UCP2 and CCND1 in 5 patients (38.5%). Structural variants were frequent in in-situ and invasive ALM lesions. Both in-situ and invasive ALMs had very low frequencies of common driver mutations. Structural variants were common in both in-situ and invasive ALMs. Invasive ALMs had markedly increased CN gains, such as GAB2 , PAK1 , UCP2 , and CCND1 , compared with in-situ lesions. These results suggest that they are associated with melanoma invasion.
Collapse
Affiliation(s)
| | | | - Hyun Jeong Shim
- Internal medicine, Division of Hemato-Oncology, Chonnam National University Medical School, Gwangju
| | - Yoonjoo Choi
- Combinatorial Tumor Immunotherapy MRC, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Korea
| | - Ik Joo Chung
- Internal medicine, Division of Hemato-Oncology, Chonnam National University Medical School, Gwangju
| | | |
Collapse
|
42
|
Lu F, Wang L, Ma X, Li Y. A Mendelian randomization study of genetic liability to cutaneous melanoma and sunburns. Front Oncol 2024; 14:1393833. [PMID: 39281383 PMCID: PMC11392754 DOI: 10.3389/fonc.2024.1393833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/12/2024] [Indexed: 09/18/2024] Open
Abstract
Background Some studies have reported that sunburns and cutaneous melanoma (CM) risk is increasing, but a clear causal link has yet to be established. Methods This current study conducted a two-sample Mendelian randomization (MR) approach to clarify the association and causality between sunburn history and CM using large-scale genome-wide association study data. Results The inverse-variance weighted method result showed that sunburn might be associated with the risk of CM increasing (p = 2.21 × 10-23, OR = 1.034, 95% CI= 1.027-1.041), causally. The MR-Egger regression, weighted median method, simple mode method, and weighted mode method results showed similar results. Conclusion This study offers evidence of sunburn history and increased risk of CM, and it shows that there might be common genetic basics regarding sunburns and CM susceptibility in Caucasian, European, or British ethnic groups.
Collapse
Affiliation(s)
- Fengmin Lu
- Department of Dermatology, Clinical Medical Research Center of Dermatology and Venereal Disease in Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ling Wang
- Department of Dermatology, Clinical Medical Research Center of Dermatology and Venereal Disease in Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xixing Ma
- Department of Dermatology, Clinical Medical Research Center of Dermatology and Venereal Disease in Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yanling Li
- Department of Dermatology, Clinical Medical Research Center of Dermatology and Venereal Disease in Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
43
|
Janka EA, Szabó IL, Kollár S, Toka-Farkas T, Ványai B, Várvölgyi T, Kapitány A, Shabu H, Szegedi A, Emri G. Prognostic Role of Clinicopathological Characteristics and Serum Markers in Metastatic Melanoma Patients Treated with BRAF and MEK Inhibitors. Cancers (Basel) 2024; 16:2981. [PMID: 39272837 PMCID: PMC11393897 DOI: 10.3390/cancers16172981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Prognostic studies can provide important information about disease biology and improve the use of biomarkers to optimize treatment decisions. METHODS A total of 199 patients with advanced melanoma treated with BRAF + MEK inhibitors were included in our single-center retrospective study. We analyzed the risk of progression and death using multivariate Cox proportional hazard models. The predictive effect of prognostic factors on progression-free survival (PFS) was evaluated in ROC analysis. RESULTS We found that primary tumor localization, Clark level, pT category, baseline M stage and baseline serum S100B are independent and significant prognostic factors for PFS. The discriminative power of the combination of these factors was excellent for predicting 18 month PFS (AUC 0.822 [95% CI 0.727; 0.916], p < 0.001). Primary tumor localization on the extremities, Clark level V, baseline M1c stage or M1d stage, and elevated baseline serum S100B and LDH levels were independently and significantly associated with unfavorable overall survival (OS). CONCLUSION Baseline M stage and serum S100B appear to be independent prognostic factors for both PFS and OS in melanoma patients treated with BRAF + MEK inhibitors. We newly identified significant and independent prognostic effects of primary tumor localization and Clark level on survival that warrant further investigation.
Collapse
Affiliation(s)
- Eszter Anna Janka
- Department of Dermatology, MTA Centre of Excellence, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- HUN-REN-UD Allergology Research Group, University of Debrecen, 4032 Debrecen, Hungary
| | - Imre Lőrinc Szabó
- Department of Dermatology, MTA Centre of Excellence, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- HUN-REN-UD Allergology Research Group, University of Debrecen, 4032 Debrecen, Hungary
| | - Sándor Kollár
- Institute of Pathology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Doctoral School of Health Sciences, University of Debrecen, 4032 Debrecen, Hungary
| | - Tünde Toka-Farkas
- Department of Dermatology, MTA Centre of Excellence, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Beatrix Ványai
- Department of Dermatology, MTA Centre of Excellence, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Tünde Várvölgyi
- Department of Dermatology, MTA Centre of Excellence, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Anikó Kapitány
- Department of Dermatology, MTA Centre of Excellence, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- HUN-REN-UD Allergology Research Group, University of Debrecen, 4032 Debrecen, Hungary
| | - Hibah Shabu
- Department of Dermatology, MTA Centre of Excellence, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Andrea Szegedi
- Department of Dermatology, MTA Centre of Excellence, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- HUN-REN-UD Allergology Research Group, University of Debrecen, 4032 Debrecen, Hungary
| | - Gabriella Emri
- Department of Dermatology, MTA Centre of Excellence, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- HUN-REN-UD Allergology Research Group, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
44
|
Londhe S, Tripathy S, Saha S, Patel A, Chandra Y, Patra CR. Therapeutic Potential of Silver Nitroprusside Nanoparticles for Melanoma. ACS APPLIED BIO MATERIALS 2024; 7:5057-5075. [PMID: 39115261 DOI: 10.1021/acsabm.4c00597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Melanoma has gained considerable attention due to its high mortality and morbidity rate worldwide. The currently available treatment options are associated with several limitations such as nonspecificity, drug resistance, easy clearance, low efficacy, toxicity-related issues, etc. To this end, nanotechnology has garnered significant attention for the treatment of melanoma. In the present manuscript, we have demonstrated the in vitro and in vivo anticancer activity of silver nitroprusside nanoparticles (abbreviated as AgNNPs) against melanoma. The AgNNPs exhibit cytotoxicity against B16F10 cells, which has been investigated by several in vitro experiments including [methyl 3H]-thymidine incorporation assay, cell cycle and apoptosis analysis by flow cytometry, and ROS generation through DCFDA, DHE, and DAF2A reagents. Further, the internalization of nanoparticles was determined by ICPOES analysis, while their colocalization was analyzed by confocal microscopy. Additionally, JC-1 staining is performed to examine mitochondrial membrane potential (MMP). Cytoskeleton integrity was observed by phalloidin staining. Expression of different markers (Ki-67, cytochrome c, and E-cadherin) was checked using an immunofluorescence assay. The in vivo therapeutic efficacy of AgNNPs has been validated in the melanoma model established by inoculating B16F10 cells into the dorsal right abdomen of C57BL/6J mice. The intraperitoneal administration of AgNNPs reduced melanoma growth and increased the survivability of tumor-bearing mice. The in vivo immunofluorescence studies (Ki-67, CD31, and E-cadherin) and TUNEL assay support the inhibitory and apoptotic nature of AgNNPs toward melanoma, respectively. Furthermore, the various signaling pathways and molecular mechanisms involved in anticancer activity are evaluated by Western blot analysis. These findings altogether demonstrate the promising anticancer potential of AgNNPs toward melanoma.
Collapse
Affiliation(s)
- Swapnali Londhe
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana State, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Kamala Nehru Nagar, Gaziabad 201002, U.P., India
| | - Sanchita Tripathy
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana State, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Kamala Nehru Nagar, Gaziabad 201002, U.P., India
| | - Sudipta Saha
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana State, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Kamala Nehru Nagar, Gaziabad 201002, U.P., India
| | - Arti Patel
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana State, India
| | - Yogesh Chandra
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana State, India
| | - Chitta Ranjan Patra
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana State, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Kamala Nehru Nagar, Gaziabad 201002, U.P., India
| |
Collapse
|
45
|
Prkačin I, Šamija I, Filipović N, Vucić M, Vučić M, Ferara N, Šitum M. Frequency of BRAF Mutations in Dysplastic Nevi, Lentigo Maligna, and Melanoma In Situ. J Clin Med 2024; 13:4799. [PMID: 39200941 PMCID: PMC11355897 DOI: 10.3390/jcm13164799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 09/02/2024] Open
Abstract
Background: In melanomas, mutations in the BRAF gene are common and their occurrence represents an early oncogenic event. Our goal was to determine and compare the frequency of BRAF gene mutations in dysplastic nevi (ND) and melanomas in situ (MIS), as well as whether there is a correlation between the presence of BRAF gene mutations and various anamnestic, clinical, and histopathologic variables. Methods: A total of 175 patients-106 with ND, 41 with MIS, and 28 with lentigo maligna (LM) were included in the study. DNA was extracted from tissue samples and analyzed using the competitive allele-specific TaqMan chain reaction by polymerase in real time to detect the presence of BRAF V600E and V600K mutations. The data were compared with anamnestic, clinical, and histopathological data. Results: There is a statistically significant correlation between the presence of BRAF mutation and the diagnosis of melanoma in situ (χ2 test, χ2 = 29.17, p < 0.0001). Patients with LM had a significantly lower incidence of BRAF mutations compared to patients with ND and MIS. There was a significant correlation between the presence of a BRAF mutation and tumor localization, as well as the age of the patient, but no statistically significant correlation between the presence of a BRAF mutation and sex, tumor size, or previous melanoma diagnosis. Conclusions: BRAF mutations in ND are essentially required; however, they are an insufficient oncogenic trigger for the development of melanoma. This research contributes to a better understanding of the etiopathogenesis of melanoma and the role of ND as possible precursor lesions.
Collapse
Affiliation(s)
- Ivana Prkačin
- Department of Dermatovenereology, Sestre Milosrdnice University Hospital Center, HR-10000 Zagreb, Croatia; (I.P.); (M.Š.)
| | - Ivan Šamija
- Department of Oncology and Nuclear Medicine, Sestre Milosrdnice University Hospital Center, HR-10000 Zagreb, Croatia;
| | - Nika Filipović
- Department of Dermatovenereology, Sestre Milosrdnice University Hospital Center, HR-10000 Zagreb, Croatia; (I.P.); (M.Š.)
| | - Matej Vucić
- Department of Biology, Faculty of Science, University of Zagreb, HR-10000 Zagreb, Croatia;
| | - Majda Vučić
- Clinical Department of Pathology and Cytology Ljudevit Jurak, Sestre Milosrdnice University Hospital Center, HR-10000 Zagreb, Croatia;
| | - Nikola Ferara
- Department of Dermatovenereology, Sestre Milosrdnice University Hospital Center, HR-10000 Zagreb, Croatia; (I.P.); (M.Š.)
| | - Mirna Šitum
- Department of Dermatovenereology, Sestre Milosrdnice University Hospital Center, HR-10000 Zagreb, Croatia; (I.P.); (M.Š.)
- School of Dental Medicine, University of Zagreb, HR-10000 Zagreb, Croatia
| |
Collapse
|
46
|
Bozzuto G, Calcabrini A, Colone M, Condello M, Dupuis ML, Pellegrini E, Stringaro A. Phytocompounds and Nanoformulations for Anticancer Therapy: A Review. Molecules 2024; 29:3784. [PMID: 39202863 PMCID: PMC11357218 DOI: 10.3390/molecules29163784] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024] Open
Abstract
Cancer is a complex disease that affects millions of people and remains a major public health problem worldwide. Conventional cancer treatments, including surgery, chemotherapy, immunotherapy, and radiotherapy, have limited achievements and multiple drawbacks, among which are healthy tissue damage and multidrug-resistant phenotype onset. Increasing evidence shows that many plants' natural products, as well as their bioactive compounds, have promising anticancer activity and exhibit minimal toxicity compared to conventional anticancer drugs. However, their widespread use in cancer therapy is severely restricted by limitations in terms of their water solubility, absorption, lack of stability, bioavailability, and selective targeting. The use of nanoformulations for plants' natural product transportation and delivery could be helpful in overcoming these limitations, thus enhancing their therapeutic efficacy and providing the basis for improved anticancer treatment strategies. The present review is aimed at providing an update on some phytocompounds (curcumin, resveratrol, quercetin, and cannabinoids, among others) and their main nanoformulations showing antitumor activities, both in vitro and in vivo, against such different human cancer types as breast and colorectal cancer, lymphomas, malignant melanoma, glioblastoma multiforme, and osteosarcoma. The intracellular pathways underlying phytocompound anticancer activity and the main advantages of nanoformulation employment are also examined. Finally, this review critically analyzes the research gaps and limitations causing the limited success of phytocompounds' and nanoformulations' clinical translation.
Collapse
Affiliation(s)
- Giuseppina Bozzuto
- National Center for Drug Research and Evaluation, Italian National Institute of Health, 00161 Rome, Italy; (G.B.); (M.C.); (M.C.); (M.L.D.); (A.S.)
| | - Annarica Calcabrini
- National Center for Drug Research and Evaluation, Italian National Institute of Health, 00161 Rome, Italy; (G.B.); (M.C.); (M.C.); (M.L.D.); (A.S.)
| | - Marisa Colone
- National Center for Drug Research and Evaluation, Italian National Institute of Health, 00161 Rome, Italy; (G.B.); (M.C.); (M.C.); (M.L.D.); (A.S.)
| | - Maria Condello
- National Center for Drug Research and Evaluation, Italian National Institute of Health, 00161 Rome, Italy; (G.B.); (M.C.); (M.C.); (M.L.D.); (A.S.)
| | - Maria Luisa Dupuis
- National Center for Drug Research and Evaluation, Italian National Institute of Health, 00161 Rome, Italy; (G.B.); (M.C.); (M.C.); (M.L.D.); (A.S.)
| | - Evelin Pellegrini
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Annarita Stringaro
- National Center for Drug Research and Evaluation, Italian National Institute of Health, 00161 Rome, Italy; (G.B.); (M.C.); (M.C.); (M.L.D.); (A.S.)
| |
Collapse
|
47
|
Schörghofer D, Vock L, Mirea MA, Eckel O, Gschwendtner A, Neesen J, Richtig E, Hengstschläger M, Mikula M. Late stage melanoma is hallmarked by low NLGN4X expression leading to HIF1A accumulation. Br J Cancer 2024; 131:468-480. [PMID: 38902533 PMCID: PMC11300789 DOI: 10.1038/s41416-024-02758-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND Despite ongoing research and recent advances in therapy, metastatic melanoma remains one of the cancers with the worst prognosis. Here we studied the postsynaptic cell adhesion molecule Neuroligin 4X (NLGN4X) and investigated its role in melanoma progression. METHODS We analysed histologic samples to assess the expression and predictive value of NLGN4X in human melanoma. The oncogenic role of NLGN4X was determined by loss or gain-of-function experiments in vitro as well as by analysis of tumorspheres, which were grafted to human skin organoids derived from pluripotent stem cells. Whole genome expression analysis and validation experiments were performed to clarify the molecular mechanism. RESULTS We identified that suppression of NLGN4X down regulated the prefoldin member Von Hippel-Lindau binding protein 1 (VBP1). Moreover, loss of VBP1 was sufficient for accumulation of HIF1A and HIF1A signalling was further shown to be essential for the acquisition of migratory properties in melanoma. We re-established NLGN4X expression in late stage melanoma lines and observed decreased tumour growth after transplantation to human skin organoids generated from pluripotent stem cells. In line, we showed that high amounts of NLGN4X and its target VBP1 in human patient samples had a beneficial prognostic effect on patient survival. CONCLUSION In view of these findings, we propose that decreased amounts of NLGN4X are indicative of a metastatic melanoma phenotype and that loss of NLGN4X provides a novel mechanism for HIF induction.
Collapse
Affiliation(s)
- David Schörghofer
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, 1090, Austria
| | - Laurenz Vock
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, 1090, Austria
| | - Madalina A Mirea
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, 1090, Austria
| | - Oliver Eckel
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, 1090, Austria
| | - Anna Gschwendtner
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, 1090, Austria
| | - Jürgen Neesen
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, 1090, Austria
| | - Erika Richtig
- Department of Dermatology, Medical University of Graz, 8036, Graz, Austria
| | - Markus Hengstschläger
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, 1090, Austria
| | - Mario Mikula
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, 1090, Austria.
| |
Collapse
|
48
|
Taylor MM, Nelson KC, Dimitriou F. Skin Cancer Precursors: From Cancer Genomics to Early Diagnosis. Hematol Oncol Clin North Am 2024; 38:851-868. [PMID: 38782646 DOI: 10.1016/j.hoc.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Skin cancers, including melanoma and keratinocyte carcinomas, are responsible for increasing health care burden internationally. Risk stratification and early detection are paramount for prevention and less risky treatment to overall improve patient outcomes and disease morbidity. Here, the authors discuss the key concepts leading to skin cancer initiation and progression. The authors also outline precursor and progression models for melanoma and keratinocyte carcinomas, including discussion of genetic alterations associated with the various stages of progression. Finally, the authors discuss the significance of immunoediting and the drivers behind increased risk of cutaneous malignancy in the state of immune dysregulation.
Collapse
Affiliation(s)
- Madison M Taylor
- John P. and Kathrine G. McGovern Medical School, The University of Texas Health Science Center, 6431 Fannin Street, Houston, TX 77030, USA; Department of Dermatology, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Unit 1452, Houston, TX 77030, USA
| | - Kelly C Nelson
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Unit 1452, Houston, TX 77030, USA.
| | - Florentia Dimitriou
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Unit 1484, Houston, TX 77030, USA; Department of Dermatology, University Hospital of Zurich, University of Zurich, Rämistrasse 100, 8091 Zürich, Switzerland
| |
Collapse
|
49
|
Espelage L, Wagner N, Placke JM, Ugurel S, Tasdogan A. The Interplay between Metabolic Adaptations and Diet in Cancer Immunotherapy. Clin Cancer Res 2024; 30:3117-3127. [PMID: 38771898 DOI: 10.1158/1078-0432.ccr-22-3468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/07/2023] [Accepted: 04/15/2024] [Indexed: 05/23/2024]
Abstract
Over the past decade, cancer immunotherapy has significantly advanced through the introduction of immune checkpoint inhibitors and the augmentation of adoptive cell transfer to enhance the innate cancer defense mechanisms. Despite these remarkable achievements, some cancers exhibit resistance to immunotherapy, with limited patient responsiveness and development of therapy resistance. Metabolic adaptations in both immune cells and cancer cells have emerged as central contributors to immunotherapy resistance. In the last few years, new insights emphasized the critical role of cancer and immune cell metabolism in animal models and patients. During therapy, immune cells undergo important metabolic shifts crucial for their acquired effector function against cancer cells. However, cancer cell metabolic rewiring and nutrient competition within tumor microenvironment (TME) alters many immune functions, affecting their fitness, polarization, recruitment, and survival. These interactions have initiated the development of novel therapies targeting tumor cell metabolism and favoring antitumor immunity within the TME. Furthermore, there has been increasing interest in comprehending how diet impacts the response to immunotherapy, given the demonstrated immunomodulatory and antitumor activity of various nutrients. In conclusion, recent advances in preclinical and clinical studies have highlighted the capacity of immune-based cancer therapies. Therefore, further exploration into the metabolic requirements of immune cells within the TME holds significant promise for the development of innovative therapeutic approaches that can effectively combat cancer in patients.
Collapse
Affiliation(s)
- Lena Espelage
- Department of Dermatology, University Hospital Essen and German Cancer Consortium (DKTK), Essen, Germany
| | - Natalie Wagner
- Department of Dermatology, University Hospital Essen and German Cancer Consortium (DKTK), Essen, Germany
| | - Jan-Malte Placke
- Department of Dermatology, University Hospital Essen and German Cancer Consortium (DKTK), Essen, Germany
| | - Selma Ugurel
- Department of Dermatology, University Hospital Essen and German Cancer Consortium (DKTK), Essen, Germany
| | - Alpaslan Tasdogan
- Department of Dermatology, University Hospital Essen and German Cancer Consortium (DKTK), Essen, Germany
| |
Collapse
|
50
|
Wang L, Wu Q, Lyu Q, Lu D, Guo L, Zhong C, Wang M, Liu C, An B, Xu H, Huo M. Genetically Designed Living Bacteria with Melanogenesis for Tumor-Specific Pigmentation and Therapeutic Intervention. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402709. [PMID: 38889334 PMCID: PMC11336949 DOI: 10.1002/advs.202402709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/15/2024] [Indexed: 06/20/2024]
Abstract
Visual observation and therapeutic intervention against tumors hold significant appeal for tumor treatment, particularly in meeting the demands of intraoperative navigation. From a clinical perspective, the naked-eye visualization of tumors provides a direct and convenient approach to identifying tumors and navigating during surgery. Nevertheless, there is an ongoing need to develop effective solutions in this frontier. Genetically engineered microorganisms are promising as living therapeutics for combatting malignant tumors, leveraging precise tumor targeting and versatile programmed functionalities. Here, genetically modified Escherichia coli (E. coli) MG1655 bacterial cells are introduced, called MelaBac cells, designed to express tyrosinase continuously. This bioengineered melanogenesis produces melanin capable of pigmenting both subcutaneous CT26 xenografts and chemically induced colorectal cancer (CRC). Additionally, MelaBac cells demonstrate the initiation of photonic hyperthermia therapy and immunotherapy against tumors, offering promising selective therapeutic interventions with high biocompatibility.
Collapse
Affiliation(s)
- Liying Wang
- Department of Medical UltrasoundShanghai Tenth People's HospitalShanghai Frontiers Science Center of Nanocatalytic MedicineSchool of MedicineTongji University301 Middle Yanchang Rd.Shanghai200072P. R. China
| | - Qi Wu
- Department of Medical UltrasoundShanghai Tenth People's HospitalShanghai Frontiers Science Center of Nanocatalytic MedicineSchool of MedicineTongji University301 Middle Yanchang Rd.Shanghai200072P. R. China
| | - Qi Lyu
- Department of UltrasoundZhongshan HospitalInstitute of Ultrasound in Medicine and EngineeringFudan UniversityShanghai200032P. R. China
| | - Dan Lu
- Department of UltrasoundZhongshan HospitalInstitute of Ultrasound in Medicine and EngineeringFudan UniversityShanghai200032P. R. China
| | - Lehang Guo
- Department of Medical UltrasoundShanghai Tenth People's HospitalShanghai Frontiers Science Center of Nanocatalytic MedicineSchool of MedicineTongji University301 Middle Yanchang Rd.Shanghai200072P. R. China
| | - Chao Zhong
- Center for Materials Synthetic BiologyShenzhen Institute of Synthetic BiologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
| | - Min Wang
- Shanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P. R. China
| | - Chang Liu
- Department of Medical UltrasoundShanghai Tenth People's HospitalShanghai Frontiers Science Center of Nanocatalytic MedicineSchool of MedicineTongji University301 Middle Yanchang Rd.Shanghai200072P. R. China
| | - Bolin An
- Center for Materials Synthetic BiologyShenzhen Institute of Synthetic BiologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
| | - Huixiong Xu
- Department of UltrasoundZhongshan HospitalInstitute of Ultrasound in Medicine and EngineeringFudan UniversityShanghai200032P. R. China
| | - Minfeng Huo
- Department of Medical UltrasoundShanghai Tenth People's HospitalShanghai Frontiers Science Center of Nanocatalytic MedicineSchool of MedicineTongji University301 Middle Yanchang Rd.Shanghai200072P. R. China
| |
Collapse
|