1
|
Noma K, Asano T, Taniguchi M, Ashihara K, Okada S. Anti-cytokine autoantibodies in human susceptibility to infectious diseases: insights from Inborn errors of immunity. Immunol Med 2025; 48:124-140. [PMID: 40197228 DOI: 10.1080/25785826.2025.2488553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 02/12/2025] [Indexed: 04/10/2025] Open
Abstract
The study of Inborn Errors of Immunity (IEIs) is critical for understanding the complex mechanisms of the human immune response to infectious diseases. Specific IEIs, characterized by selective susceptibility to certain pathogens, have enhanced our understanding of the key molecular pathways and cellular subsets involved in host defense against pathogens. These insights revealed that patients with anti-cytokine autoantibodies exhibit phenotypes similar to those with pathogenic mutations in genes encoding signaling molecules. This new disease concept is currently categorized as 'Phenocopies of IEI'. This category includes anti-cytokine autoantibodies targeting IL-17/IL-22, IFN-γ, IL-6, GM-CSF, and type I IFNs. Abundant anti-cytokine autoantibodies deplete corresponding cytokines, impair signaling pathways, and increase susceptibility to specific pathogens. We herein demonstrate the clinical and etiological significance of anti-cytokine autoantibodies in human immunity to pathogens. Insights from studies of rare IEIs underscore the pathological importance of cytokine-targeting autoantibodies. Simultaneously, the diverse clinical phenotype of patients with these autoantibodies suggests that the influences of cytokine dysfunction are broader than previously recognized. Furthermore, comprehensive studies prompted by the COVID-19 pandemic highlighted the substantial clinical impact of autoantibodies and their potential role in shaping the outcomes of infectious disease.
Collapse
Affiliation(s)
- Kosuke Noma
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takaki Asano
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Department of Radiation Biophysics, Research Institute for Radiation Biology and Medicine, Hiroshima, Japan
| | - Maki Taniguchi
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kosuke Ashihara
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Satoshi Okada
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
2
|
Kucuka I, Iraji D, Braun S, Breivik L, Wolff ASB, Husebye ES, Oftedal BE. Longitudinal Immune Profiling in Autoimmune Polyendocrine Syndrome Type 1. Scand J Immunol 2025; 101:e70021. [PMID: 40166896 PMCID: PMC11959528 DOI: 10.1111/sji.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 02/24/2025] [Accepted: 03/22/2025] [Indexed: 04/02/2025]
Abstract
Autoimmune polyendocrine syndrome Type-1 (APS-1) is a rare, but severe organ-specific autoimmune disease caused by mutations in the autoimmune regulator (AIRE) gene. Lack of AIRE causes autoreactive T cells to escape negative selection and alters the T regulatory cell subset. However, little is known about how the immune cell subsets vary across the lifespan in APS-1. Here we analysed the peripheral distribution of 13 immune cell subsets along the lifespan using epigenetic quantification. We found the largest discrepancy in immune cells to appear early in APS-1 patients' lives, coinciding with the time point they obtained most of their clinical symptoms. We further revealed longitudinal changes in cell compositions both within the adaptive and the innate arms of the immune system. We found that cell frequencies of B cells, T-cell subgroups, nonclassical monocytes, and Natural Killer cells to be reduced in young APS-1 patients. We also found B-cell frequencies to decrease with ageing in both patients and healthy controls. Our results suggest that Tregs, follicular helper T, and natural killer cells have opposing trends of cell frequencies during life, indicating the importance of considering the age profiles of cohorts which could otherwise lead to conflicting conclusions.
Collapse
Affiliation(s)
- Isil Kucuka
- Department of Clinical Science, Department of MedicineUniversity of BergenBergenNorway
| | - Dorsa Iraji
- Department of Clinical Science, Department of MedicineUniversity of BergenBergenNorway
| | - Sarah Braun
- Department of Clinical Science, Department of MedicineUniversity of BergenBergenNorway
| | - Lars Breivik
- Department of Clinical Science, Department of MedicineUniversity of BergenBergenNorway
- Department of MedicineHaukeland University HospitalBergenNorway
| | - Anette S. B. Wolff
- Department of Clinical Science, Department of MedicineUniversity of BergenBergenNorway
- Department of MedicineHaukeland University HospitalBergenNorway
- Health Research Sogn Og Fjordane, Førde Hospital TrustFørdeNorway
| | - Eystein S. Husebye
- Department of Clinical Science, Department of MedicineUniversity of BergenBergenNorway
- Department of MedicineHaukeland University HospitalBergenNorway
| | - Bergithe E. Oftedal
- Department of Clinical Science, Department of MedicineUniversity of BergenBergenNorway
| |
Collapse
|
3
|
Cinicola BL, Uva A, Duse M, Zicari AM, Buonsenso D. Mucocutaneous Candidiasis: Insights Into the Diagnosis and Treatment. Pediatr Infect Dis J 2024; 43:694-703. [PMID: 38502882 PMCID: PMC11191067 DOI: 10.1097/inf.0000000000004321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/08/2024] [Indexed: 03/21/2024]
Abstract
Recent progress in the methods of genetic diagnosis of inborn errors of immunity has contributed to a better understanding of the pathogenesis of chronic mucocutaneous candidiasis (CMC) and potential therapeutic options. This review describes the latest advances in the understanding of the pathophysiology, diagnostic strategies, and management of chronic mucocutaneous candidiasis.
Collapse
Affiliation(s)
- Bianca Laura Cinicola
- From the Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Andrea Uva
- Pediatrics and Neonatology Unit, Maternal-Child Department, Santa Maria Goretti Hospital, Sapienza University of Rome, Latina, Italy
| | - Marzia Duse
- From the Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Anna Maria Zicari
- From the Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Danilo Buonsenso
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Center for Global Health Research and Studies, Università Cattolica del Sacro Cuore, Roma, Italia
| |
Collapse
|
4
|
Wu H, Mo Y, Yu S, Ye X, Lu Y, Wang C, Shan X. Novel homozygous mutations in AIRE leading to APS-1 and potential mechanisms based on bioinformatics analysis. Heliyon 2024; 10:e28037. [PMID: 38524621 PMCID: PMC10957416 DOI: 10.1016/j.heliyon.2024.e28037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 03/02/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024] Open
Abstract
BACKGROUND Autoimmune Poly-endocrine Syndrome Type 1 (APS-1), also known as autoimmune poly-endocrinopathy-candidiasis-ectodermal dystrophy (APECED), is a single-gene hereditary disorder usually characterized by chronic mucocutaneous candidiasis, hypoparathyroidism, and autoimmune adrenocortical insufficiency. This syndrome is very rare in China. METHODS For our reported patient, we employed clinical and laboratory examinations along with genetic identification. For previously reported cases, we summarized findings based on meta-analysis principles. To investigate the AIRE gene's role in disease, we utilized bioinformatics analysis with existing databases and R language processing. RESULTS Nucleotide sequence analysis revealed two novel homozygous missense mutations (c.74C > G; c.1612C > T) in the patient's AIRE gene, confirming APS-1 diagnosis. The 3D structure of these mutation sites was described for the first time, showing that altered side chains could affect AIRE protein function. We analyzed 16 genetically diagnosed APS-1 Chinese patients, summarized the AIRE genetic spectrum, and found that exons 1, 2, 3, and 5 were most commonly affected. Hypoparathyroidism and adrenal insufficiency were the most common clinical manifestations (56%-93%), followed by hypothyroidism (31.25%), hypogonadism (12.5%), type 2 diabetes (6.25%), and type 1 diabetes (6.25%). Bioinformatics analysis indicated that AIRE mutations cause antigen presentation abnormalities in immune cells, leading to excessive endogenous and reduced exogenous antigen presentation. CONCLUSIONS Our study summarized the clinical features of APS-1 caused by AIRE gene mutations and explored underlying mechanisms. For some patients, the prophylactic use of antimicrobial agents may be beneficial. These findings guide early genetic screening and inform potential research directions for treatment strategies.
Collapse
Affiliation(s)
- Huiping Wu
- Department of Pediatric Endocrine, Wenzhou Yuying Children's Hospital, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yiqi Mo
- Department of Pediatric Endocrine, Wenzhou Yuying Children's Hospital, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shiwen Yu
- Department of Pediatric Endocrine, Wenzhou Yuying Children's Hospital, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaojun Ye
- Department of Pediatric Endocrine, Wenzhou Yuying Children's Hospital, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yili Lu
- Department of Pediatric Endocrine, Wenzhou Yuying Children's Hospital, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chaoban Wang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xiaoou Shan
- Department of Pediatric Endocrine, Wenzhou Yuying Children's Hospital, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
5
|
Shirafkan F, Hensel L, Rattay K. Immune tolerance and the prevention of autoimmune diseases essentially depend on thymic tissue homeostasis. Front Immunol 2024; 15:1339714. [PMID: 38571951 PMCID: PMC10987875 DOI: 10.3389/fimmu.2024.1339714] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/11/2024] [Indexed: 04/05/2024] Open
Abstract
The intricate balance of immune reactions towards invading pathogens and immune tolerance towards self is pivotal in preventing autoimmune diseases, with the thymus playing a central role in establishing and maintaining this equilibrium. The induction of central immune tolerance in the thymus involves the elimination of self-reactive T cells, a mechanism essential for averting autoimmunity. Disruption of the thymic T cell selection mechanisms can lead to the development of autoimmune diseases. In the dynamic microenvironment of the thymus, T cell migration and interactions with thymic stromal cells are critical for the selection processes that ensure self-tolerance. Thymic epithelial cells are particularly significant in this context, presenting self-antigens and inducing the negative selection of autoreactive T cells. Further, the synergistic roles of thymic fibroblasts, B cells, and dendritic cells in antigen presentation, selection and the development of regulatory T cells are pivotal in maintaining immune responses tightly regulated. This review article collates these insights, offering a comprehensive examination of the multifaceted role of thymic tissue homeostasis in the establishment of immune tolerance and its implications in the prevention of autoimmune diseases. Additionally, the developmental pathways of the thymus are explored, highlighting how genetic aberrations can disrupt thymic architecture and function, leading to autoimmune conditions. The impact of infections on immune tolerance is another critical area, with pathogens potentially triggering autoimmunity by altering thymic homeostasis. Overall, this review underscores the integral role of thymic tissue homeostasis in the prevention of autoimmune diseases, discussing insights into potential therapeutic strategies and examining putative avenues for future research on developing thymic-based therapies in treating and preventing autoimmune conditions.
Collapse
|
6
|
Khan GJ, Imtiaz A, Wang W, Duan H, Cao H, Zhai K, He N. Thymus as Incontrovertible Target of Future Immune Modulatory Therapeutics. Endocr Metab Immune Disord Drug Targets 2024; 24:1587-1610. [PMID: 38347798 DOI: 10.2174/0118715303283164240126104109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/01/2023] [Accepted: 12/22/2023] [Indexed: 10/22/2024]
Abstract
Thymus plays a crucial role in cellular immunity by acting as a warehouse for proliferating and differentiating lymphocytes. Thymic stromal cells educate T-cells to differentiate self from non-self antigens while nurse cells and thymoproteasome play a major role in the maturation and differentiation of T-cells. The thymic conditions dictate T-cells to cope with the risk of cancer development. A study was designed to demonstrate potential mechanisms behind the failure to eliminate tumors and impaired immune surveillance as well as the impact of delay in thymus regression on cancer and autoimmune disorders. Scientific literature from Pubmed; Scopus; WOS; JSTOR; National Library of Medicine Bethesda, Maryland; The New York Academy of Medicine; Library of Speech Rehabilitation, NY; St. Thomas' Hospital Library; The Wills Library of Guys Hospital; Repository of Kings College London; and Oxford Academic repository was explored for pathological, physiological, immunological and toxicological studies of thymus. Studies have shown that systemic chemotherapy may lead to micro inflammatory environment within thymus where conventionally and dynamically metastasized dormant cells seek refuge. The malfunctioning of the thymus and defective T and Treg cells, bypassing negative selection, contributes to autoimmune disorders, while AIRE and Fezf2 play significant roles in thymic epithelial cell solidity. Different vitamins, TCM, and live cell therapy are effective therapeutics. Vitamin A, C, D, and E, selenium and zinc, cinobufagin and dietary polysaccharides, and glandular extracts and live cell injections have strong potential to restore immune system function and thymus health. Moreover, the relationship between different ages/ stages of thymus and their corresponding T-cell mediated anti-tumor immune response needs further exploration.
Collapse
Affiliation(s)
- Ghulam Jilany Khan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P.R. China
- Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| | - Abeeha Imtiaz
- Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| | - Wei Wang
- School of Biological and Food Engineering, Engineering Research Center for Development and High-value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui, 234000, China
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, Ourense E-32004, Spain
| | - Hong Duan
- School of Biological and Food Engineering, Engineering Research Center for Development and High-value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui, 234000, China
| | - Hui Cao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, Ourense E-32004, Spain
| | - Kefeng Zhai
- School of Biological and Food Engineering, Engineering Research Center for Development and High-value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui, 234000, China
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, Ourense E-32004, Spain
| | - Nongyue He
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P.R. China
| |
Collapse
|
7
|
Shen L, Wang X, Zhai C, Chen Y. Ferroptosis: A potential therapeutic target in autoimmune disease (Review). Exp Ther Med 2023; 26:368. [PMID: 37408857 PMCID: PMC10318600 DOI: 10.3892/etm.2023.12067] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/26/2023] [Indexed: 07/07/2023] Open
Abstract
Ferroptosis is a distinct type of regulated cell death characterized by iron overload and lipid peroxidation. Ferroptosis is regulated by numerous factors and controlled by several mechanisms. This cell death type has a relationship with the immune system, which may be regulated by damage-associated molecular patterns. Ferroptosis participates in the progression of autoimmune diseases, including autoimmune hepatitis, rheumatoid arthritis, systemic lupus erythematosus, inflammatory bowel disease, multiple sclerosis, Parkinson's Disease, psoriasis and insulin-dependent diabetes mellitus. The present review summarizes the role of ferroptosis in autoimmune disorders and discusses ferroptosis as a potential therapeutic target for autoimmune disease.
Collapse
Affiliation(s)
- Liang Shen
- Department of Cardiology, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Xiaohan Wang
- Department of Gastroenterology, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Changlin Zhai
- Department of Cardiology, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Yunqing Chen
- Department of Infectious Diseases, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| |
Collapse
|
8
|
Sun R, Wang Y, Abolhassani H. Cellular mechanisms and clinical applications for phenocopies of inborn errors of immunity: infectious susceptibility due to cytokine autoantibodies. Expert Rev Clin Immunol 2023:1-14. [PMID: 37114623 DOI: 10.1080/1744666x.2023.2208863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
INTRODUCTION With a growing knowledge of Inborn error immunity (IEI), immunological profiling and genetic predisposition to IEI phenocopies have been developed in recent years. AREAS COVERED Here we summarized the correlation between various pathogen invasions, autoantibody profiles, and corresponding clinical features in the context of patients with IEI phenocopies. It has been extensively evident that patients with anti-cytokine autoantibodies underly impaired anti-pathogen immune responses and lead to broad unregulated inflammation and tissue damage. Several hypotheses of anti-cytokine autoantibodies production were summarized here, including a defective negative selection of autoreactive T cells, abnormal germinal center formation, molecular mimicry, HLA class II allele region, lack of auto-reactive lymphocyte apoptosis, and other possible hypotheses. EXPERT OPINION Phenocopies of IEI associated with anti-cytokine autoantibodies are increasingly recognized as one of the causes of acquired immunodeficiency and susceptibility to certain pathogen infections, especially facing the current challenge of the COVID-19 pandemic. By investigating clinical, genetic, and pathogenesis autoantibodies profiles associated with various pathogens' susceptibilities, we could better understand the IEI phenocopies with anti-cytokine autoantibodies, especially for those that underlie life-threatening SARS-CoV-2.
Collapse
Affiliation(s)
- Rui Sun
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden
| | - Yating Wang
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden
| | - Hassan Abolhassani
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
9
|
Harsini S, Rezaei N. Autoimmune diseases. Clin Immunol 2023. [DOI: 10.1016/b978-0-12-818006-8.00001-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
10
|
Lacrimo-auriculo-dento-digital syndrome with AIRE mutation: A case report. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2022; 123:e988-e990. [PMID: 35870793 DOI: 10.1016/j.jormas.2022.07.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 11/20/2022]
Abstract
Congenital absence or hypoplasia of the major salivary glands is rarely observed and easily overlooked in the clinic. Lacrimo-auriculo-dento-digital syndrome (LADD) is a congenital anomaly disorder that is characterized by aplasia, atresia, or hypoplasia of the lacrimal and salivary glands and caused by FGFR2, FGFR3, or FGF10 gene mutation. Autoimmune polyendocrine syndrome type 1 (APS-I) caused by an AIRE gene mutation is a rare inherited autoimmune disease characterized by chronic mucocutaneous candidiasis, Addison disease, and hypoparathyroidism. However, simultaneous mutations in pathogenic genes of the two syndromes (LADD and APS-I) in one patient is rarely observed. Herein, we have presented a patient with main complaints of xerostomia and xerophthalmia that was diagnosed with LADD syndrome with AIRE mutation.
Collapse
|
11
|
Qian G, Yan X, Xuan J, Zheng D, He Z, Shen J. A novel AIRE mutation leads to autoimmune polyendocrine syndrome type-1. Front Cell Dev Biol 2022; 10:948350. [PMID: 36072346 PMCID: PMC9441485 DOI: 10.3389/fcell.2022.948350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Autoimmune polyendocrine syndrome type-1 (APS-1) is a rare inherited monogenic autoimmune disease characterized by the presence of at least two of three following major clinical features: chronic mucocutaneous candidiasis, hypoparathyroidism, and adrenal insufficiency. Mutations in autoimmune regulator (AIRE) gene have been found to contribute to APS-1. In the present study, we reported a 36-years-old male APS-1 patient who presented with hypoparathyroidism and Addison’s disease. The proband underwent complete clinical examinations and mutation screening was performed by Sanger sequencing on AIRE gene. A novel homozygous mutation in exon 9 of the AIRE gene (c.1024C>T) was identified. Based on sequencing findings, HEK293T cell-based assays were conducted to analyze the subcellular localization and mutant transcript processing. Our results revealed that p.Q342X mutant localized in nuclear speckles and exerted a dominant-negative effect on wildtype AIRE function. We reported the c.1024C>T mutation of AIRE gene for the first time, which enriched the AIRE mutation database and contributed to further understanding of APS-1.
Collapse
Affiliation(s)
- Guofeng Qian
- Department of Endocrinology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Guofeng Qian, ; Jianguo Shen,
| | - Xiaoyi Yan
- Department of Cell Biology, College of Medicine, Zhejiang University, Hangzhou, China
| | - Junli Xuan
- Imaging Facility of Core Facilities, College of Medicine, Zhejiang University, Hangzhou, China
| | - Danfeng Zheng
- Department of Laboratory Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zhiwen He
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jianguo Shen
- Department of Endocrinology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Guofeng Qian, ; Jianguo Shen,
| |
Collapse
|
12
|
Tenório JR, Tuma MM, Andrade NS, Santana T, Gallottini M. Oral manifestations of autoimmune polyglandular syndrome type 1. SPECIAL CARE IN DENTISTRY 2022; 42:531-535. [PMID: 35182449 DOI: 10.1111/scd.12703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 11/28/2022]
Abstract
AIMS Autoimmune polyglandular syndrome type I (APS-I) is a rare condition of autosomal recessive and monogenic inheritance, which is characterized clinically by at least two signs of the classic triad: mucocutaneous candidosis, hypoparathyroidism, and Addison's disease. This study aims to report the oral manifestations of APS-I in a 42-year-old woman, who attended the Special Care Dentistry Center. METHODS AND RESULTS The patient presented with hypoparathyroidism, diabetes mellitus, and autoimmune hepatitis. Chronic hyperplastic candidosis (CHC) was the main oral manifestation and it was diagnosed based on clinical and cytologic characteristics. Microstomia, angular cheilitis, xerostomia, enamel hypoplasia, and microdontia were also present. CONCLUSIONS CHC was treated with topical nystatin and oral fluconazole, resulting in a significant improvement of the lesions.
Collapse
Affiliation(s)
- Jefferson R Tenório
- Department of Oral Pathology and Diagnosis, School of Dentistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marina Maués Tuma
- Department of Oral Pathology, School of Dentistry, São Paulo University, São Paulo, Brazil
| | - Natália Silva Andrade
- Department of Dentistry, School of Dentistry, Federal University of Sergipe, Sergipe, Brazil
| | | | - Marina Gallottini
- Department of Stomatology, Special Care Dentistry Center, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
13
|
Karvonen E, Krohn KJE, Ranki A, Hau A. Generation and Characterization of iPS Cells Derived from APECED Patients for Gene Correction. Front Endocrinol (Lausanne) 2022; 13:794327. [PMID: 35432216 PMCID: PMC9010864 DOI: 10.3389/fendo.2022.794327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 03/08/2022] [Indexed: 12/20/2022] Open
Abstract
APECED (Autoimmune-Polyendocrinopathy-Candidiasis-Ectodermal-Dystrophy) is a severe and incurable multiorgan autoimmune disease caused by mutations in the AIRE (autoimmune regulator) gene. Without functional AIRE, the development of central and peripheral immune tolerance is severely impaired allowing the accumulation of autoreactive immune cells in the periphery. This leads to multiple endocrine and non-endocrine autoimmune disorders and mucocutaneous candidiasis in APECED patients. Recent studies have suggested that AIRE also has novel functions in stem cells and contributes to the regulatory network of pluripotency. In preparation of therapeutic gene correction, we generated and assessed patient blood cell-derived iPSCs, potentially suitable for cell therapy in APECED. Here, we describe APECED-patient derived iPSCs's properties, expression of AIRE as well as classical stem cell markers by qPCR and immunocytochemistry. We further generated self-aggregated EBs of the iPSCs. We show that APECED patient-derived iPSCs and EBs do not have any major proliferative or apoptotic defects and that they express all the classical pluripotency markers similarly to healthy person iPSCs. The results suggest that the common AIRE R257X truncation mutation does not affect stem cell properties and that APECED iPSCs can be propagated in vitro and used for subsequent gene-correction. This first study on APECED patient-derived iPSCs validates their pluripotency and confirms their ability for differentiation and potential therapeutic use.
Collapse
Affiliation(s)
- Eira Karvonen
- Department of Dermatology and Allergology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Clinical Research Institute Helsinki University Central Hospital (HUCH), Helsinki, Finland
| | - Kai J. E. Krohn
- Clinical Research Institute Helsinki University Central Hospital (HUCH), Helsinki, Finland
| | - Annamari Ranki
- Department of Dermatology and Allergology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Clinical Research Institute Helsinki University Central Hospital (HUCH), Helsinki, Finland
| | - Annika Hau
- Department of Dermatology and Allergology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Clinical Research Institute Helsinki University Central Hospital (HUCH), Helsinki, Finland
- *Correspondence: Annika Hau,
| |
Collapse
|
14
|
Motofei IG. Nobel Prize for immune checkpoint inhibitors, understanding the immunological switching between immunosuppression and autoimmunity. Expert Opin Drug Saf 2021; 21:599-612. [PMID: 34937484 DOI: 10.1080/14740338.2022.2020243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Immune checkpoint inhibitors (ICIs) are a revolutionary form of immunotherapy in cancer. However, the percentage of patients responding to therapy is relatively low, while adverse effects occur in a large number of patients. In addition, the therapeutic mechanisms of ICIs are not yet completely described. AREAS COVERED The initial view (articles published in PubMed, Scopus, Web of Science, etc.) was that ICIs increase tumor-specific immunity. Recent data (collected from the same databases) suggest that the ICIs pharmacotherapy actually extends beyond the topic of immune reactivity, including additional immune pathways, such as disrupting immunosuppression and increasing tumor-specific autoimmunity. Unfortunately, there is no clear delimitation between these specific autoimmune reactions that are therapeutically beneficial, and nonspecific autoimmune reactions/toxicity that can be extremely severe side effects. EXPERT OPINION Immune checkpoint mechanisms perform a non-selective immune regulation, maintaining a dynamic balance between immunosuppression and autoimmunity. By blocking these mechanisms, ICIs actually perform an immunological reset, decreasing immunosuppression and increasing tumor-specific immunity and predisposition to autoimmunity. The predisposition to autoimmunity induces both side effects and beneficial autoimmunity. Consequently, further studies are necessary to maximize the beneficial tumor-specific autoimmunity, while reducing the counterproductive effect of associated autoimmune toxicity.
Collapse
Affiliation(s)
- Ion G Motofei
- Department of Surgery/ Oncology, Carol Davila University, Bucharest, Romania.,Department of Surgery/ Oncology, St. Pantelimon Hospital, Bucharest, Romania
| |
Collapse
|
15
|
Warren BD, Ahn SH, Brittain KS, Nanjappa MK, Wang H, Wang J, Blanco G, Sanchez G, Fan Y, Petroff BK, Cooke PS, Petroff MG. Multiple Lesions Contribute to Infertility in Males Lacking Autoimmune Regulator. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1592-1609. [PMID: 34126085 PMCID: PMC8420865 DOI: 10.1016/j.ajpath.2021.05.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 04/21/2021] [Accepted: 05/18/2021] [Indexed: 11/15/2022]
Abstract
Male factors, including those of autoimmune origin, contribute to approximately 50% of infertility cases in humans. However, the mechanisms underlying autoimmune male infertility are poorly understood. Deficiency in autoimmune regulator (AIRE) impairs central immune tolerance because of diminished expression of self-antigens in the thymus. Humans with AIRE mutations and mice with engineered ablation of Aire develop multiorgan autoimmunity and infertility. To determine the immune targets contributing to infertility in male Aire-deficient (-/-) mice, Aire-/- or wild-type (WT) males were paired with WT females. Aire-/- males exhibited dramatically reduced mating frequency and fertility, hypogonadism, and reduced serum testosterone. Approximately 15% of mice exhibited lymphocytic infiltration into the testis, accompanied by atrophy, azoospermia, and reduced numbers of mitotically active germ cells; the remaining mice showed normal testicular morphology, sperm counts, and motility. However, spermatozoa from all Aire-/- mice were defective in their ability to fertilize WT oocytes in vitro. Lymphocytic infiltration into the epididymis, seminal vesicle, and prostate gland was evident. Aire-/- male mice generated autoreactive antibodies in an age-dependent manner against sperm, testis, epididymis, prostate gland, and seminal vesicle. Finally, expression of Aire was evident in the seminiferous epithelium in an age-dependent manner, as well as in the prostate gland. These findings suggest that Aire-dependent central tolerance plays a critical role in maintaining male fertility by stemming autoimmunity against multiple reproductive targets.
Collapse
Affiliation(s)
- Bryce D Warren
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - Soo H Ahn
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan
| | - Kathryn S Brittain
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan; Cell and Molecular Biology Graduate Program, College of Natural Sciences, Michigan State University, East Lansing, Michigan
| | - Manjunatha K Nanjappa
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - Hao Wang
- Department of Computational Mathematics, Science and Engineering, College of Engineering, Michigan State University, East Lansing, Michigan
| | - Jianrong Wang
- Department of Computational Mathematics, Science and Engineering, College of Engineering, Michigan State University, East Lansing, Michigan
| | - Gustavo Blanco
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
| | - Gladis Sanchez
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
| | - Yong Fan
- Institute of Cellular Therapeutics, Alleghany Health Network, Pittsburgh, Pennsylvania
| | - Brian K Petroff
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan
| | - Paul S Cooke
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - Margaret G Petroff
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas; Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan; Cell and Molecular Biology Graduate Program, College of Natural Sciences, Michigan State University, East Lansing, Michigan.
| |
Collapse
|
16
|
Halouani A, Michaux H, Jmii H, Trussart C, Chahbi A, Martens H, Renard C, Aouni M, Hober D, Geenen V, Jaïdane H. Coxsackievirus B4 Transplacental Infection Severely Disturbs Central Tolerogenic Mechanisms in the Fetal Thymus. Microorganisms 2021; 9:microorganisms9071537. [PMID: 34361972 PMCID: PMC8303261 DOI: 10.3390/microorganisms9071537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/10/2021] [Accepted: 07/16/2021] [Indexed: 01/09/2023] Open
Abstract
Thymus plays a fundamental role in central tolerance establishment, especially during fetal life, through the generation of self-tolerant T cells. This process consists in T cells education by presenting them tissue-restricted autoantigens promiscuously expressed by thymic epithelial cells (TECs), thus preventing autoimmunity. Thymus infection by Coxsackievirus B (CV-B) during fetal life is supposed to disturb thymic functions and, hence, to be an inducing or accelerating factor in the genesis of autoimmunity. To further investigate this hypothesis, in our current study, we analyzed thymic expression of autoantigens, at the transcriptional and protein level, following in utero infection by CV-B4. mRNA expression levels of Igf2 and Myo7, major autoantigens of pancreas and heart, respectively, were analyzed in whole thymus and in enriched TECs together along with both transcription factors, Aire and Fezf2, involved in autoantigens expression in the thymus. Results show that in utero infection by CV-B4 induces a significant decrease in Igf2 and Myo7 expression at both mRNA and protein level in whole thymus and in enriched TECs as well. Moreover, a correlation between viral load and autoantigens expression can be observed in the whole thymus, indicating a direct effect of in utero infection by CV-B4 on autoantigens expression. Together, these results indicate that an in utero infection of the thymus by CV-B4 may interfere with self-tolerance establishment in TECs by decreasing autoantigen expression at both mRNA and protein level and thereby increase the risk of autoimmunity onset.
Collapse
Affiliation(s)
- Aymen Halouani
- Laboratoire des Maladies Transmissibles et Substances Biologiquement Actives LR99ES27, Faculté de Pharmacie de Monastir, Université de Monastir, Monastir 5000, Tunisia; (A.H.); (H.J.); (M.A.)
- Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis 1068, Tunisia
- GIGA-I3 Immunoendocrinologie, Faculté de Médicine, Université de Liège, CHU-B34, Sart Tilman, 4000 Liège, Belgium; (H.M.); (C.T.); (H.M.); (C.R.); (V.G.)
| | - Hélène Michaux
- GIGA-I3 Immunoendocrinologie, Faculté de Médicine, Université de Liège, CHU-B34, Sart Tilman, 4000 Liège, Belgium; (H.M.); (C.T.); (H.M.); (C.R.); (V.G.)
| | - Habib Jmii
- Laboratoire des Maladies Transmissibles et Substances Biologiquement Actives LR99ES27, Faculté de Pharmacie de Monastir, Université de Monastir, Monastir 5000, Tunisia; (A.H.); (H.J.); (M.A.)
- Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis 1068, Tunisia
| | - Charlotte Trussart
- GIGA-I3 Immunoendocrinologie, Faculté de Médicine, Université de Liège, CHU-B34, Sart Tilman, 4000 Liège, Belgium; (H.M.); (C.T.); (H.M.); (C.R.); (V.G.)
| | - Ahlem Chahbi
- Laboratoire d’Hématologie, Faculté de Médecine de Tunis, Université de Tunis El Manar, Tunis 1007, Tunisia;
| | - Henri Martens
- GIGA-I3 Immunoendocrinologie, Faculté de Médicine, Université de Liège, CHU-B34, Sart Tilman, 4000 Liège, Belgium; (H.M.); (C.T.); (H.M.); (C.R.); (V.G.)
| | - Chantal Renard
- GIGA-I3 Immunoendocrinologie, Faculté de Médicine, Université de Liège, CHU-B34, Sart Tilman, 4000 Liège, Belgium; (H.M.); (C.T.); (H.M.); (C.R.); (V.G.)
| | - Mahjoub Aouni
- Laboratoire des Maladies Transmissibles et Substances Biologiquement Actives LR99ES27, Faculté de Pharmacie de Monastir, Université de Monastir, Monastir 5000, Tunisia; (A.H.); (H.J.); (M.A.)
| | - Didier Hober
- Laboratoire de Virologie EA3610, Faculté de Médecine, Université de Lille, CHU Lille, 59000 Lille, France;
| | - Vincent Geenen
- GIGA-I3 Immunoendocrinologie, Faculté de Médicine, Université de Liège, CHU-B34, Sart Tilman, 4000 Liège, Belgium; (H.M.); (C.T.); (H.M.); (C.R.); (V.G.)
| | - Hela Jaïdane
- Laboratoire des Maladies Transmissibles et Substances Biologiquement Actives LR99ES27, Faculté de Pharmacie de Monastir, Université de Monastir, Monastir 5000, Tunisia; (A.H.); (H.J.); (M.A.)
- Correspondence: ; Tel.: +216-98-677-174
| |
Collapse
|
17
|
Neefjes M, van Caam APM, van der Kraan PM. Transcription Factors in Cartilage Homeostasis and Osteoarthritis. BIOLOGY 2020; 9:biology9090290. [PMID: 32937960 PMCID: PMC7563835 DOI: 10.3390/biology9090290] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/07/2020] [Accepted: 09/07/2020] [Indexed: 12/13/2022]
Abstract
Osteoarthritis (OA) is the most common degenerative joint disease, and it is characterized by articular cartilage loss. In part, OA is caused by aberrant anabolic and catabolic activities of the chondrocyte, the only cell type present in cartilage. These chondrocyte activities depend on the intra- and extracellular signals that the cell receives and integrates into gene expression. The key proteins for this integration are transcription factors. A large number of transcription factors exist, and a better understanding of the transcription factors activated by the various signaling pathways active during OA can help us to better understand the complex etiology of OA. In addition, establishing such a profile can help to stratify patients in different subtypes, which can be a very useful approach towards personalized therapy. In this review, we discuss crucial transcription factors for extracellular matrix metabolism, chondrocyte hypertrophy, chondrocyte senescence, and autophagy in chondrocytes. In addition, we discuss how insight into these factors can be used for treatment purposes.
Collapse
|
18
|
Wang W, Thomas R, Sizova O, Su DM. Thymic Function Associated With Cancer Development, Relapse, and Antitumor Immunity - A Mini-Review. Front Immunol 2020; 11:773. [PMID: 32425946 PMCID: PMC7203483 DOI: 10.3389/fimmu.2020.00773] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/06/2020] [Indexed: 12/14/2022] Open
Abstract
The thymus is the central lymphoid organ for T cell development, a cradle of T cells, and for central tolerance establishment, an educator of T cells, maintaining homeostatic cellular immunity. T cell immunity is critical to control cancer occurrence, relapse, and antitumor immunity. Evidence on how aberrant thymic function influences cancer remains largely insufficient, however, there has been recent progress. For example, the involuted thymus results in reduced output of naïve T cells and a restricted T cell receptor (TCR) repertoire, inducing immunosenescence and potentially dampening immune surveillance of neoplasia. In addition, the involuted thymus relatively enhances regulatory T (Treg) cell generation. This coupled with age-related accumulation of Treg cells in the periphery, potentially provides a supportive microenvironment for tumors to escape T cell-mediated antitumor responses. Furthermore, acute thymic involution from chemotherapy can create a tumor reservoir, resulting from an inflammatory microenvironment in the thymus, which is suitable for disseminated tumor cells to hide, survive chemotherapy, and become dormant. This may eventually result in cancer metastatic relapse. On the other hand, if thymic involution is wisely taken advantage of, it may be potentially beneficial to antitumor immunity, since the involuted thymus increases output of self-reactive T cells, which may recognize certain tumor-associated self-antigens and enhance antitumor immunity, as demonstrated through depletion of autoimmune regulator (AIRE) gene in the thymus. Herein, we briefly review recent research progression regarding how altered thymic function modifies T cell immunity against tumors.
Collapse
Affiliation(s)
- Weikan Wang
- Cell Biology, Immunology, and Microbiology Graduate Program, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Rachel Thomas
- Cell Biology, Immunology, and Microbiology Graduate Program, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Olga Sizova
- Department of Hematopoietic Biology and Malignancy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Dong-Ming Su
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX, United States
| |
Collapse
|
19
|
Toraih EA, Ameen HM, Hussein MH, Youssef Elabd AA, Mohamed AM, Abdel-Gawad AR, Fawzy MS. Association of Autoimmune Regulator Gene Rs2075876 Variant, but Not Gene Expression with Alopecia Areata in Males: A Case-control Study. Immunol Invest 2020; 49:146-165. [PMID: 31601134 DOI: 10.1080/08820139.2019.1671450] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Alopecia areata (AA) is a non-scarring hair loss of autoimmune etiology. The autoimmune regulator (AIRE) gene is believed to be an important driver in AA pathogenesis. Genetic variants can alter mRNA expression levels which may provoke an autoimmune response. A total of 337 males (97 AA patients and 240 controls) were enrolled in the current case-control study. On screening of the most frequent variants in the gene, rs2075876 (A/G) polymorphism in intron 5 was selected and genotyped using Real-Time PCR (polymerase chain reaction) technology. Additionally, circulatory AIRE expression levels were quantified by quantitative reverse-transcription PCR (qRT-PCR). Allelic discrimination analysis revealed GG genotype to be more frequent in patients (90.7% in AA compared to 32.5% in controls, p < .001). G variant conferred increased risk to alopecia under homozygote comparison (GG versus AA: OR = 16.1, 95%CI = 5.57-46.3), dominant model (GG+AG versus AA: OR = 7.24, 95%CI = 2.5-20.5), recessive model (GG versus AG+AA: OR = 20.3, 95%CI = 9.7-42.4), and allelic model (G versus A: OR = 11.6, 95%CI = 6.47-21.1). The expression levels of AIRE gene did not differ significantly between patients and controls and were not related to rs2075876 variant. In conclusion, the intronic variant (rs2075876) is suggested to be a potent susceptibility variant for AA development in the studied population.Abbreviations: AA: Alopecia areata; AIRE: Autoimmune Regulator; APECED: Autoimmune, Polyendocrinopathy Candidiasis Ectodermal Dystrophy; DLQI: Dermatology life quality index questionnaire; MIQE: Minimum information for publication of quantitative real-time PCR experiments; mTEC: Medullary thymic epithelial cells; PHD: Plant homeodomain; qRT-PCR: Quantitative reversetranscription-polymerase chain reaction; RA: Rheumatoid arthritis.
Collapse
Affiliation(s)
- Eman A Toraih
- Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
- Center of Excellence of Molecular and Cellular Medicine, Suez Canal University, Ismailia, Egypt
| | - Hatem M Ameen
- Department of Dermatology, Al Qantara East Central Hospital, Ismailia, Egypt
| | - Mohammad H Hussein
- Department of Chest Diseases, Ministry of Health and Population, Cairo, Egypt
| | - Ahmed A Youssef Elabd
- Department of Dermatology, El-Sheikh Zaied Aal Nahyan hospital, Cairo, Egypt
- Department of Dermatology, Emirates Medical Center, Salalah Oman, Oman
| | - Abeer M Mohamed
- Department of Clinical Pathology and Clinical Chemistry, Faculty of Medicine, Sohag University, Sohag, Egypt
- Department of Clinical Laboratory Sciences, Al-Ghad International College for Applied Medical Sciences, Abha, Saudi Arabia
| | | | - Manal S Fawzy
- Deprtment of Biochemistry, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
20
|
Wang HX, Pan W, Zheng L, Zhong XP, Tan L, Liang Z, He J, Feng P, Zhao Y, Qiu YR. Thymic Epithelial Cells Contribute to Thymopoiesis and T Cell Development. Front Immunol 2020; 10:3099. [PMID: 32082299 PMCID: PMC7005006 DOI: 10.3389/fimmu.2019.03099] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/18/2019] [Indexed: 12/11/2022] Open
Abstract
The thymus is the primary lymphoid organ responsible for the generation and maturation of T cells. Thymic epithelial cells (TECs) account for the majority of thymic stromal components. They are further divided into cortical and medullary TECs based on their localization within the thymus and are involved in positive and negative selection, respectively. Establishment of self-tolerance in the thymus depends on promiscuous gene expression (pGE) of tissue-restricted antigens (TRAs) by TECs. Such pGE is co-controlled by the autoimmune regulator (Aire) and forebrain embryonic zinc fingerlike protein 2 (Fezf2). Over the past two decades, research has found that TECs contribute greatly to thymopoiesis and T cell development. In turn, signals from T cells regulate the differentiation and maturation of TECs. Several signaling pathways essential for the development and maturation of TECs have been discovered. New technology and animal models have provided important observations on TEC differentiation, development, and thymopoiesis. In this review, we will discuss recent advances in classification, development, and maintenance of TECs and mechanisms that control TEC functions during thymic involution and central tolerance.
Collapse
Affiliation(s)
- Hong-Xia Wang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China.,State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wenrong Pan
- Department of General Surgery, Taihe Branch of Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lei Zheng
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiao-Ping Zhong
- Division of Allergy and Immunology, Department of Pediatrics, Duke University Medical Center, Durham, NC, United States
| | - Liang Tan
- Department of Urological Organ Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhanfeng Liang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jing He
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Pingfeng Feng
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yu-Rong Qiu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
21
|
Huo F, Shi X, Zou X, Wang S, Zhang Y, Yang W, Li Y. Aire deficient dendritic cells promote the T follicular helper cells differentiation. Immunobiology 2019; 224:539-550. [PMID: 31023489 DOI: 10.1016/j.imbio.2019.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/12/2019] [Accepted: 04/17/2019] [Indexed: 01/11/2023]
Abstract
Autoimmune regulator (Aire), primarily expressed in medullary thymic epithelial cells (mTECs), maintains central immune tolerance through the clearance of self-reactive T cells. Aire can also be expressed in dendritic cells (DCs), and DCs can mediate T follicular helper (TFH) cell differentiation and self-reactive B cell activation through inducible costimulator molecule ligand (ICOSL) and interleukin 6 (IL-6), which can cause autoimmune diseases. To confirm whether Aire in DCs affects TFH cell differentiation and to determine the role of Aire in the maintenance of peripheral immune tolerance, this study observed the effects of Aire deficiency on TFH cells using Aire knockout mice. The results showed that Aire deficiency caused increased number of TFH cells, both in vivo and in vitro. Further studies showed that Aire deficiency promoted TFH differentiation through the upregulation of ICOSL and IL-6 in DCs. Thus Aire could suppress the expression of ICOSL and IL-6 to inhibit TFH cell differentiation.
Collapse
Affiliation(s)
- Feifei Huo
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, 130021, China; Department of Intensive Care Unit, First Hospital, Jilin University, Changchun, Jilin, 130021, China
| | - Xiaodong Shi
- Department of Rheumatology, First Hospital, Jilin University, Changchun, Jilin, 130021, China
| | - Xueyang Zou
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, 130021, China
| | - Shuang Wang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, 130021, China
| | - Yi Zhang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, 130021, China
| | - Wei Yang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, 130021, China.
| | - Yi Li
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, 130021, China.
| |
Collapse
|
22
|
Chun SH, Yuk JS, Um SH. Regulation of cellular gene expression by nanomaterials. NANO CONVERGENCE 2018; 5:34. [PMID: 30499017 PMCID: PMC6265357 DOI: 10.1186/s40580-018-0166-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 11/15/2018] [Indexed: 06/04/2023]
Abstract
Within a cell there are several mechanisms to regulate gene expression during cellular metabolism, growth, and differentiation. If these do not work properly, the cells will die or develop abnormally and, in some cases, even develop into tumors. Thus, a variety of exogenous and endogenous approaches have been developed that act on essential stages of transcription and translation by affecting the regulation of gene expression in an intended manner. To date, some anticancer strategies have focused on targeting abnormally overexpressed genes termed oncogenes, which have lost the ability to tune gene expression. With the rapid advent of nanotechnology, a few synthetic nanomaterials are being used as gene regulation systems. In many cases, these materials have been employed as nanocarriers to deliver key molecules such as silencing RNAs or antisense oligonucleotides into target cells, but some nanomaterials may be able to effectively modulate gene expression due to their characteristic properties, which include tunable physicochemical properties due to their malleable size and shape. This technology has improved the performance of existing approaches for regulating gene expression and led to the development of new types of advanced regulatory systems. In this short review, we will present some nanomaterials currently used in novel gene regulation systems, focusing on their basic features and practical applications. Based on these findings, it is further envisioned that next-generation gene expression regulation systems involving such nanomaterials will be developed.
Collapse
Affiliation(s)
- Sang Hun Chun
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746 South Korea
| | - Ji Soo Yuk
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746 South Korea
| | - Soong Ho Um
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746 South Korea
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, Gyeonggi-do 440-746 South Korea
| |
Collapse
|
23
|
Abstract
Calcium is vital for life, and extracellular calcium concentrations must constantly be maintained within a precise concentration range. Low serum calcium (hypocalcemia) occurs in conjunction with multiple disorders and can be life-threatening if severe. Symptoms of acute hypocalcemia include neuromuscular irritability, tetany, and seizures, which are rapidly resolved with intravenous administration of calcium gluconate. However, disorders that lead to chronic hypocalcemia often have more subtle manifestations. Hypoparathyroidism, characterized by impaired secretion of parathyroid hormone (PTH), a key regulatory hormone for maintaining calcium homeostasis, is a classic cause of chronic hypocalcemia. Disorders that disrupt the metabolism of vitamin D can also lead to chronic hypocalcemia, as vitamin D is responsible for increasing the gut absorption of dietary calcium. Treatment and management options for chronic hypocalcemia vary depending on the underlying disorder. For example, in patients with hypoparathyroidism, calcium and vitamin D supplementation must be carefully titrated to avoid symptoms of hypocalcemia while keeping serum calcium in the low-normal range to minimize hypercalciuria, which can lead to renal dysfunction. Management of chronic hypocalcemia requires knowledge of the factors that influence the complex regulatory axes of calcium homeostasis in a given disorder. This chapter discusses common and rare disorders of hypocalcemia, symptoms and workup, and management options including replacement of PTH in hypoparathyroidism.
Collapse
Affiliation(s)
- Erin Bove-Fenderson
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Thier 1101, 50 Blossom St, Boston, MA, 02114, USA
| | - Michael Mannstadt
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Thier 1101, 50 Blossom St, Boston, MA, 02114, USA.
| |
Collapse
|
24
|
Abstract
About two decades ago, cloning of the autoimmune regulator (AIRE) gene materialized one of the most important actors on the scene of self-tolerance. Thymic transcription of genes encoding tissue-specific antigens (ts-ags) is activated by AIRE protein and embodies the essence of thymic self-representation. Pathogenic AIRE variants cause the autoimmune polyglandular syndrome type 1, which is a rare and complex disease that is gaining attention in research on autoimmunity. The animal models of disease, although not identically reproducing the human picture, supply fundamental information on mechanisms and extent of AIRE action: thanks to its multidomain structure, AIRE localizes to chromatin enclosing the target genes, binds to histones, and offers an anchorage to multimolecular complexes involved in initiation and post-initiation events of gene transcription. In addition, AIRE enhances mRNA diversity by favoring alternative mRNA splicing. Once synthesized, ts-ags are presented to, and cause deletion of the self-reactive thymocyte clones. However, AIRE function is not restricted to the activation of gene transcription. AIRE would control presentation and transfer of self-antigens for thymic cellular interplay: such mechanism is aimed at increasing the likelihood of engagement of the thymocytes that carry the corresponding T-cell receptors. Another fundamental role of AIRE in promoting self-tolerance is related to the development of thymocyte anergy, as thymic self-representation shapes at the same time the repertoire of regulatory T cells. Finally, AIRE seems to replicate its action in the secondary lymphoid organs, albeit the cell lineage detaining such property has not been fully characterized. Delineation of AIRE functions adds interesting data to the knowledge of the mechanisms of self-tolerance and introduces exciting perspectives of therapeutic interventions against the related diseases.
Collapse
Affiliation(s)
- Roberto Perniola
- Department of Pediatrics, Neonatal Intensive Care, Vito Fazzi Regional Hospital, Lecce, Italy
| |
Collapse
|
25
|
The molecular basis of immune regulation in autoimmunity. Clin Sci (Lond) 2018; 132:43-67. [PMID: 29305419 DOI: 10.1042/cs20171154] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 11/21/2017] [Accepted: 11/27/2017] [Indexed: 12/11/2022]
Abstract
Autoimmune diseases can be triggered and modulated by various molecular and cellular characteristics. The mechanisms of autoimmunity and the pathogenesis of autoimmune diseases have been investigated for several decades. It is well accepted that autoimmunity is caused by dysregulated/dysfunctional immune susceptible genes and environmental factors. There are multiple physiological mechanisms that regulate and control self-reactivity, but which can also lead to tolerance breakdown when in defect. The majority of autoreactive T or B cells are eliminated during the development of central tolerance by negative selection. Regulatory cells such as Tregs (regulatory T) and MSCs (mesenchymal stem cells), and molecules such as CTLA-4 (cytotoxic T-lymphocyte associated antigen 4) and IL (interleukin) 10 (IL-10), help to eliminate autoreactive cells that escaped to the periphery in order to prevent development of autoimmunity. Knowledge of the molecular basis of immune regulation is needed to further our understanding of the underlying mechanisms of loss of tolerance in autoimmune diseases and pave the way for the development of more effective, specific, and safer therapeutic interventions.
Collapse
|
26
|
Zhu W, Hu Z, Liao X, Chen X, Huang W, Zhong Y, Zeng Z. A new mutation site in the AIRE gene causes autoimmune polyendocrine syndrome type 1. Immunogenetics 2017; 69:643-651. [PMID: 28540407 DOI: 10.1007/s00251-017-0995-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 04/26/2017] [Indexed: 01/07/2023]
Abstract
Autoimmune polyendocrine syndrome type 1 (APS-1, OMIM 2403000) is a rare autosomal recessive disease that is caused by autoimmune regulator (AIRE). The main symptoms of APS-1 are chronic mucocutaneous candidiasis, autoimmune adrenocortical insufficiency (Addison's disease) and hypoparathyroidism. We collected APS-1 cases and analysed them. The AIRE genes of the patient and his family members were sequenced to identify whether the APS-1 patient had an AIRE mutation. We discovered a mutation site (c.206A>C) that had never before been reported in the AIRE gene located in exon 2 of the AIRE gene. This homogyzous mutation caused a substitution of the 69th amino acid of the AIRE protein from glutamine to proline (p.Q69P). A yeast two-hybrid assay, which was used to analyse the homodimerization properties of the mutant AIRE protein, showed that the mutant AIRE protein could not interact with the normal AIRE protein. Flow cytometry and RT-qPCR analyses indicated that the new mutation site could decrease the expression levels of the AIRE, glutamic acid decarboxylase 65 (GAD65) and tryptophan hydroxylase-1 (TPH1) proteins to affect central immune tolerance. In conclusion, our research has shown that the new mutation site (c.206A>C) may influence the homodimerization and expression levels and other aspects of the AIRE protein. It may also impact the expression levels of tissue-restricted antigens (TRAs), leading to a series of autoimmune diseases.
Collapse
Affiliation(s)
- Wufei Zhu
- Department of Endocrinology, China Three Gorges University & Yichang Central People's Hospital, Yi Ling Road 181, Yichang, 443003, China.
| | - Zhen Hu
- Department of Endocrinology, China Three Gorges University & Yichang Central People's Hospital, Yi Ling Road 181, Yichang, 443003, China
| | - Xiangyu Liao
- Department of Endocrinology, China Three Gorges University & Yichang Central People's Hospital, Yi Ling Road 181, Yichang, 443003, China
| | - Xing Chen
- Department of Endocrinology, China Three Gorges University & Yichang Central People's Hospital, Yi Ling Road 181, Yichang, 443003, China
| | - Wenrong Huang
- Department of Endocrinology, China Three Gorges University & Yichang Central People's Hospital, Yi Ling Road 181, Yichang, 443003, China
| | - Yu Zhong
- Department of Endocrinology, China Three Gorges University & Yichang Central People's Hospital, Yi Ling Road 181, Yichang, 443003, China
| | - Zhaoyang Zeng
- Department of Endocrinology, China Three Gorges University & Yichang Central People's Hospital, Yi Ling Road 181, Yichang, 443003, China.
| |
Collapse
|
27
|
Sun J, Niu K, Fu H, Li H, Li Y, Yang W. Autoimmune Regulator Expression in DC2.4 Cells Regulates the NF-κB Signaling and Cytokine Expression of the Toll-Like Receptor 3 Pathway. Int J Mol Sci 2016; 17:E2002. [PMID: 27916941 PMCID: PMC5187802 DOI: 10.3390/ijms17122002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 11/18/2016] [Accepted: 11/24/2016] [Indexed: 12/13/2022] Open
Abstract
Autoimmune regulator (Aire) mutations result in autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED), which manifests as multi-organ autoimmunity and chronic mucocutaneous candidiasis (CMC). Indendritic cells (DCs), pattern recognition receptors (PRR), such as Toll-like receptors (TLRs), are closely involved in the recognition of various pathogens, activating the intercellular signaling pathway, followed by the activation of transcription factors and the expression of downstream genes, which take part in mediating the immune response and maintaining immune tolerance. In this study, we found that Aire up-regulated TLR3 expression and modulated the downstream cytokine expression and nuclear factor-κB (NF-κB) of the TLR3 signaling pathway.
Collapse
Affiliation(s)
- Jitong Sun
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Kunwei Niu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Haiying Fu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Haijun Li
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Yi Li
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Wei Yang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| |
Collapse
|
28
|
Sasson SC, Davies S, Chan R, Davies L, Garsia R. Cerebral toxoplasmosis in a patient with myasthenia gravis and thymoma with immunodeficiency/Good's syndrome: a case report. BMC Infect Dis 2016; 16:457. [PMID: 27576953 PMCID: PMC5004299 DOI: 10.1186/s12879-016-1801-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 08/23/2016] [Indexed: 01/01/2023] Open
Abstract
Background Patients with thymoma with immunodeficiency (TWI)/Good’s syndrome characteristically have evidence of combined immunodeficiency including low or absent B-cells, hypogammaglobulinemia and defects in T-cell mediated immunity. These patients can present with common or opportunistic infections. Case presentation A 54-year-old female was diagnosed with cerebral toxoplasmosis. This occurred on a background of metastatic thymoma previously treated with chemotherapy and myasthenia gravis (MG) treated with mycophenolate mofetil, monthly intravenous immunoglobulin (IVIG) and pyridostigmine. She reported recurrent herpes zoster infection. The patient had clinical and radiological progression of cerebral infection despite completing standard induction and maintenance therapy with sulfadiazine and pyrimethamine. Investigations found a complete absence of B-cells and evidence for hypogammaglobulinemia which, together with evidence of defects in T-cell mediated immunity and thymoma, lead to a diagnosis of TWI/Good’s Syndrome. The patient has undergone prolonged high-dose therapy for toxoplasmosis and a reduction in immunosuppression with no evidence of recurrent toxoplasmosis or flare of MG. Conclusions TWI/Good’s Syndrome should be suspected in patients with thymoma and recurrent, persistent or unusual infections. If suspected serum immunoglobulins and lymphocyte subsets should be measured. These patients may need closer monitoring, higher dose and prolonged treatment of infections, and weaning of concurrent immunosuppression may be considered.
Collapse
Affiliation(s)
- Sarah C Sasson
- Department of Clinical Immunology, Level 6 Laboratory Services Building, Royal Prince Alfred Hospital, Missenden Rd Camperdown, Sydney, NSW, Australia. .,Sydney Medical School, University of Sydney, Sydney, Australia.
| | - Sarah Davies
- Department of Infectious Diseases, Royal Prince Alfred Hospital, Camperdown, Australia
| | - Raymond Chan
- Department of Infectious Diseases, Royal Prince Alfred Hospital, Camperdown, Australia
| | - Leo Davies
- Department of Neurology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Roger Garsia
- Department of Clinical Immunology, Level 6 Laboratory Services Building, Royal Prince Alfred Hospital, Missenden Rd Camperdown, Sydney, NSW, Australia.,Sydney Medical School, University of Sydney, Sydney, Australia
| |
Collapse
|
29
|
Perry JSA, Hsieh CS. Development of T-cell tolerance utilizes both cell-autonomous and cooperative presentation of self-antigen. Immunol Rev 2016; 271:141-55. [PMID: 27088912 PMCID: PMC4837647 DOI: 10.1111/imr.12403] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The development of T-cell self-tolerance in the thymus is important for establishing immune homeostasis and preventing autoimmunity. Here, we review the components of T-cell tolerance, which includes T-cell receptor (TCR) self-reactivity, costimulation, cytokines, and antigen presentation by a variety of antigen-presenting cells (APCs) subsets. We discuss the current evidence on the process of regulatory T (Treg) cell and negative selection and the importance of TCR signaling. We then examine recent evidence showing unique roles for bone marrow (BM)-derived APCs and medullary thymic epithelial cells (mTECs) on the conventional and Treg TCR repertoire, as well as emerging data on the role of B cells in tolerance. Finally, we review the accumulating data that suggest that cooperative antigen presentation is a prominent component of T -ell tolerance. With the development of tools to interrogate the function of individual APC subsets in the medulla, we have gained greater understanding of the complex cellular and molecular events that determine T-cell tolerance.
Collapse
Affiliation(s)
- Justin S A Perry
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Chyi-Song Hsieh
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| |
Collapse
|
30
|
Machnes-Maayan D, Lev A, Katz U, Mishali D, Vardi A, Simon AJ, Somech R. Insight into normal thymic activity by assessment of peripheral blood samples. Immunol Res 2015; 61:198-205. [PMID: 25294167 DOI: 10.1007/s12026-014-8558-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The thymus is a highly specialized organ for T cell receptor (TCR) rearrangement and selection mechanisms that ensure the formation of functional and self-tolerant cells. Little is known about how peripheral blood assessment of thymic function reflects thymus activity during infancy. We compared thymic function-related markers in the thymus with those in peripheral blood in order to check their correlations. We concomitantly blood samples from immunocompetent infants who underwent cardiac surgery that involved thymectomy. The studied thymic markers included TCR excision circles (TRECs), four different TCRD (TCR delta chain) gene rearrangements, the TCR repertoire, regulatory T cells (Tregs, defined as the CD4+CD25+FOXP3+ cell population) and real-time quantitative polymerase chain reaction (RQ-PCR) mRNA expression of forkhead box P3 (FOXP3). Twenty patients were enrolled in this study. Their mean age at the time of the surgery was 3 months/5 days ± 3 months/18 days. There was a significant correlation between thymic and peripheral blood levels of TREC, all four TCRD gene rearrangements and the amount of Tregs. The levels of these parameters were significantly higher in the thymus than those detected in the peripheral blood. The TCR repertoire distribution in both samples was similar. FOXP3 mRNA levels in the thymus and peripheral blood correlated well. Our findings demonstrated a strong and significant correlation between peripheral blood and intra-thymic activity parameters during infancy. Assessment of these parameters in peripheral blood can be used to accurately estimate different intra-thymic capacities for assessing T cell function in health and disease.
Collapse
Affiliation(s)
- Diti Machnes-Maayan
- Pediatric Department B, Pediatric Immunology Service, Jeffrey Modell Foundation (JMF) Center, Edmond and Lily Safra Children's Hospital, Chaim Sheba Medical Center, 52621, Tel Hashomer, Israel
| | | | | | | | | | | | | |
Collapse
|
31
|
Takaba H, Morishita Y, Tomofuji Y, Danks L, Nitta T, Komatsu N, Kodama T, Takayanagi H. Fezf2 Orchestrates a Thymic Program of Self-Antigen Expression for Immune Tolerance. Cell 2015; 163:975-87. [PMID: 26544942 DOI: 10.1016/j.cell.2015.10.013] [Citation(s) in RCA: 281] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 08/19/2015] [Accepted: 09/21/2015] [Indexed: 01/02/2023]
Abstract
Self-tolerance to immune reactions is established via promiscuous expression of tissue-restricted antigens (TRAs) in medullary thymic epithelial cells (mTECs), leading to the elimination of T cells that respond to self-antigens. The transcriptional regulator Aire has been thought to be sufficient for the induction of TRAs, despite some indications that other factors may promote TRA expression in the thymus. Here, we show that the transcription factor Fezf2 directly regulates various TRA genes in mTECs independently of Aire. Mice lacking Fezf2 in mTECs displayed severe autoimmune symptoms, including the production of autoantibodies and inflammatory cell infiltration targeted to peripheral organs. These responses differed from those detected in Aire-deficient mice. Furthermore, Fezf2 expression and Aire expression are regulated by distinct signaling pathways and promote the expression of different classes of proteins. Thus, two independent factors, Fezf2 and Aire, permit the expression of TRAs in the thymus to ensure immune tolerance.
Collapse
Affiliation(s)
- Hiroyuki Takaba
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; Takayanagi Osteonetwork Project, Exploratory Research for Advanced Technology Program, Japan Science and Technology Agency (JST), Tokyo 113-0033, Japan
| | - Yasuyuki Morishita
- Department of Molecular Pathology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yoshihiko Tomofuji
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Lynett Danks
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; Takayanagi Osteonetwork Project, Exploratory Research for Advanced Technology Program, Japan Science and Technology Agency (JST), Tokyo 113-0033, Japan
| | - Takeshi Nitta
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Noriko Komatsu
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Tatsuhiko Kodama
- Research Center for Advanced Science and Technology, Department of Systems Biology and Medicine, The University of Tokyo, Tokyo 153-8904, Japan
| | - Hiroshi Takayanagi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; Takayanagi Osteonetwork Project, Exploratory Research for Advanced Technology Program, Japan Science and Technology Agency (JST), Tokyo 113-0033, Japan.
| |
Collapse
|
32
|
St-Pierre C, Trofimov A, Brochu S, Lemieux S, Perreault C. Differential Features of AIRE-Induced and AIRE-Independent Promiscuous Gene Expression in Thymic Epithelial Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 195:498-506. [PMID: 26034170 DOI: 10.4049/jimmunol.1500558] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 05/04/2015] [Indexed: 12/16/2023]
Abstract
Establishment of self-tolerance in the thymus depends on promiscuous expression of tissue-restricted Ags (TRA) by thymic epithelial cells (TEC). This promiscuous gene expression (pGE) is regulated in part by the autoimmune regulator (AIRE). To evaluate the commonalities and discrepancies between AIRE-dependent and -independent pGE, we analyzed the transcriptome of the three main TEC subsets in wild-type and Aire knockout mice. We found that the impact of AIRE-dependent pGE is not limited to generation of TRA. AIRE decreases, via non-cell autonomous mechanisms, the expression of genes coding for positive regulators of cell proliferation, and it thereby reduces the number of cortical TEC. In mature medullary TEC, AIRE-driven pGE upregulates non-TRA coding genes that enhance cell-cell interactions (e.g., claudins, integrins, and selectins) and are probably of prime relevance to tolerance induction. We also found that AIRE-dependent and -independent TRA present several distinctive features. In particular, relative to AIRE-induced TRA, AIRE-independent TRA are more numerous and show greater splicing complexity. Furthermore, we report that AIRE-dependent versus -independent TRA project nonredundant representations of peripheral tissues in the thymus.
Collapse
Affiliation(s)
- Charles St-Pierre
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec H3C 3J7, Canada; Department of Medicine, University of Montreal, Montreal, Quebec H3C 3J7, Canada; and
| | - Assya Trofimov
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec H3C 3J7, Canada; Department of Medicine, University of Montreal, Montreal, Quebec H3C 3J7, Canada; and Department of Computer Science and Operations Research, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| | - Sylvie Brochu
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec H3C 3J7, Canada; Department of Medicine, University of Montreal, Montreal, Quebec H3C 3J7, Canada; and
| | - Sébastien Lemieux
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec H3C 3J7, Canada; Department of Computer Science and Operations Research, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| | - Claude Perreault
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec H3C 3J7, Canada; Department of Medicine, University of Montreal, Montreal, Quebec H3C 3J7, Canada; and
| |
Collapse
|
33
|
Alexandropoulos K, Bonito AJ, Weinstein EG, Herbin O. Medullary thymic epithelial cells and central tolerance in autoimmune hepatitis development: novel perspective from a new mouse model. Int J Mol Sci 2015; 16:1980-2000. [PMID: 25603179 PMCID: PMC4307344 DOI: 10.3390/ijms16011980] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 01/07/2015] [Indexed: 02/07/2023] Open
Abstract
Autoimmune hepatitis (AIH) is an immune-mediated disorder that affects the liver parenchyma. Diagnosis usually occurs at the later stages of the disease, complicating efforts towards understanding the causes of disease development. While animal models are useful for studying the etiology of autoimmune disorders, most of the existing animal models of AIH do not recapitulate the chronic course of the human condition. In addition, approaches to mimic AIH-associated liver inflammation have instead led to liver tolerance, consistent with the high tolerogenic capacity of the liver. Recently, we described a new mouse model that exhibited spontaneous and chronic liver inflammation that recapitulated the known histopathological and immunological parameters of AIH. The approach involved liver-extrinsic genetic engineering that interfered with the induction of T-cell tolerance in the thymus, the very process thought to inhibit AIH induction by liver-specific expression of exogenous antigens. The mutation led to depletion of specialized thymic epithelial cells that present self-antigens and eliminate autoreactive T-cells before they exit the thymus. Based on our findings, which are summarized below, we believe that this mouse model represents a relevant experimental tool towards elucidating the cellular and molecular aspects of AIH development and developing novel therapeutic strategies for treating this disease.
Collapse
Affiliation(s)
- Konstantina Alexandropoulos
- Department of Medicine and Clinical Immunology, the Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1089, New York, NY 10029, USA.
| | - Anthony J Bonito
- Department of Medicine and Clinical Immunology, the Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1089, New York, NY 10029, USA.
| | - Erica G Weinstein
- Department of Medicine and Clinical Immunology, the Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1089, New York, NY 10029, USA
| | - Olivier Herbin
- Department of Medicine and Clinical Immunology, the Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1089, New York, NY 10029, USA.
| |
Collapse
|
34
|
Huibregtse KE, Wolfgram P, Winer KK, Connor EL. Polyglandular autoimmune syndrome type I - a novel AIRE mutation in a North American patient. J Pediatr Endocrinol Metab 2014; 27:1257-60. [PMID: 24945421 PMCID: PMC4407642 DOI: 10.1515/jpem-2013-0328] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 05/08/2014] [Indexed: 11/15/2022]
Abstract
Autoimmune polyglandular syndrome type 1 (APS-1), also referred to as autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED), is a rare autoimmune disease that results from autosomal recessive mutations of the human autoimmune regulatory (AIRE) gene. We present the case of a 17-year-old North American girl of primarily Norwegian descent with a novel AIRE gene mutation causing APS-1. In addition to the classic triad of chronic candidiasis, hypoparathyoidism and autoimmune adrenocortical insufficiency, she also has vitiligo, intestinal malabsorption, autoimmune hepatitis, autoimmune hypothyroidism, myositis, myalgias, chronic fatigue, and failure to thrive. Genetic testing revealed heterozygosity for c.20_115de196 and c.967_979del13 mutations in the AIRE gene. The AIRE gene c.20_115de196 mutation has not been previously reported.
Collapse
Affiliation(s)
| | - Peter Wolfgram
- Division of Pediatric Endocrinology, Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Karen K. Winer
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Ellen L. Connor
- Division of Pediatric Endocrinology, Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
35
|
Steed AL, Stappenbeck TS. Role of viruses and bacteria-virus interactions in autoimmunity. Curr Opin Immunol 2014; 31:102-7. [PMID: 25459001 DOI: 10.1016/j.coi.2014.10.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 10/13/2014] [Accepted: 10/14/2014] [Indexed: 12/16/2022]
Abstract
A potential role for viral and bacterial-viral interactions in the pathogenesis of autoimmune disease has been long recognized. Recently, intensive investigation has begun to decipher interactions between specific microbes with the host that contribute toward autoimmunity. This work has primarily focused on known viral and bacterial pathogens. A major challenge is to determine the role of bacteria that are typically considered as commensals as well as chronic viruses. Furthermore, equally challenging is to prove causality given the potential complexity of microbe-microbe interactions. Important initial contributions to this field have shown that specific interactions of microbes with hosts that contain a background of genetic susceptibility can play a role in autoimmune pathogenesis. In this review, we describe principles of immune tolerance with a focus on its breakdown during pathogenic as well as commensal relationships between the host and the microbial world.
Collapse
Affiliation(s)
- Ashley L Steed
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Thaddeus S Stappenbeck
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
36
|
Mora M, Hanzu FA, Pradas-Juni M, Aranda GB, Halperin I, Puig-Domingo M, Aguiló S, Fernández-Rebollo E. New splice site acceptor mutation in AIRE gene in autoimmune polyendocrine syndrome type 1. PLoS One 2014; 9:e101616. [PMID: 24988226 PMCID: PMC4079332 DOI: 10.1371/journal.pone.0101616] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 06/09/2014] [Indexed: 12/23/2022] Open
Abstract
Autoimmune polyglandular syndrome type 1 (APS-1, OMIM 240300) is a rare autosomal recessive disorder, characterized by the presence of at least two of three major diseases: hypoparathyroidism, Addison's disease, and chronic mucocutaneous candidiasis. We aim to identify the molecular defects and investigate the clinical and mutational characteristics in an index case and other members of a consanguineous family. We identified a novel homozygous mutation in the splice site acceptor (SSA) of intron 5 (c.653-1G>A) in two siblings with different clinical outcomes of APS-1. Coding DNA sequencing revealed that this AIRE mutation potentially compromised the recognition of the constitutive SSA of intron 5, splicing upstream onto a nearby cryptic SSA in intron 5. Surprisingly, the use of an alternative SSA entails the uncovering of a cryptic donor splice site in exon 5. This new transcript generates a truncated protein (p.A214fs67X) containing the first 213 amino acids and followed by 68 aberrant amino acids. The mutation affects the proper splicing, not only at the acceptor but also at the donor splice site, highlighting the complexity of recognizing suitable splicing sites and the importance of sequencing the intron-exon junctions for a more precise molecular diagnosis and correct genetic counseling. As both siblings were carrying the same mutation but exhibited a different APS-1 onset, and one of the brothers was not clinically diagnosed, our finding highlights the possibility to suspect mutations in the AIRE gene in cases of childhood chronic candidiasis and/or hypoparathyroidism otherwise unexplained, especially when the phenotype is associated with other autoimmune diseases.
Collapse
Affiliation(s)
- Mireia Mora
- Department of Endocrinology and Nutrition, Hospital Clinic, Barcelona, Spain
- Laboratory of Endocrine Disorders, Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Barcelona, Spain
| | - Felicia A. Hanzu
- Department of Endocrinology and Nutrition, Hospital Clinic, Barcelona, Spain
- Laboratory of Endocrine Disorders, Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Barcelona, Spain
| | - Marta Pradas-Juni
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Barcelona, Spain
- Diabetes and Obesity Research Laboratory - Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Gloria B. Aranda
- Department of Endocrinology and Nutrition, Hospital Clinic, Barcelona, Spain
- Laboratory of Endocrine Disorders, Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Barcelona, Spain
| | - Irene Halperin
- Department of Endocrinology and Nutrition, Hospital Clinic, Barcelona, Spain
- Laboratory of Endocrine Disorders, Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Manuel Puig-Domingo
- Department of Endocrinology and Nutrition, Hospital Germans Trias i Pujol Research Institut and Hospital, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Sira Aguiló
- Department of Internal Medicine, Hospital Clínic, Barcelona, Spain
| | - Eduardo Fernández-Rebollo
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Barcelona, Spain
- Diabetes and Obesity Research Laboratory - Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
37
|
Abstract
Adrenal insufficiency is the clinical manifestation of deficient production or action of glucocorticoids, with or without deficiency also in mineralocorticoids and adrenal androgens. It is a life-threatening disorder that can result from primary adrenal failure or secondary adrenal disease due to impairment of the hypothalamic-pituitary axis. Prompt diagnosis and management are essential. The clinical manifestations of primary adrenal insufficiency result from deficiency of all adrenocortical hormones, but they can also include signs of other concurrent autoimmune conditions. In secondary or tertiary adrenal insufficiency, the clinical picture results from glucocorticoid deficiency only, but manifestations of the primary pathological disorder can also be present. The diagnostic investigation, although well established, can be challenging, especially in patients with secondary or tertiary adrenal insufficiency. We summarise knowledge at this time on the epidemiology, causal mechanisms, pathophysiology, clinical manifestations, diagnosis, and management of this disorder.
Collapse
Affiliation(s)
- Evangelia Charmandari
- Division of Endocrinology, Metabolism, and Diabetes, First Department of Pediatrics, University of Athens Medical School, Aghia Sophia Children's Hospital, Athens, Greece; Division of Endocrinology and Metabolism, Clinical Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.
| | - Nicolas C Nicolaides
- Division of Endocrinology, Metabolism, and Diabetes, First Department of Pediatrics, University of Athens Medical School, Aghia Sophia Children's Hospital, Athens, Greece; Division of Endocrinology and Metabolism, Clinical Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - George P Chrousos
- Division of Endocrinology, Metabolism, and Diabetes, First Department of Pediatrics, University of Athens Medical School, Aghia Sophia Children's Hospital, Athens, Greece; Division of Endocrinology and Metabolism, Clinical Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| |
Collapse
|
38
|
Biomarkers of mercury exposure in the Amazon. BIOMED RESEARCH INTERNATIONAL 2014; 2014:867069. [PMID: 24895619 PMCID: PMC4020561 DOI: 10.1155/2014/867069] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Accepted: 04/08/2014] [Indexed: 11/22/2022]
Abstract
Mercury exposure in the Amazon has been studied since the 1980s decade and the assessment of human mercury exposure in the Amazon is difficult given that the natural occurrence of this metal is high and the concentration of mercury in biological samples of this population exceeds the standardized value of normality established by WHO. Few studies have focused on the discovery of mercury biomarkers in the region's population. In this way, some studies have used genetics as well as immunological and cytogenetic tools in order to find a molecular biomarker for assessing the toxicological effect of mercury in the Amazonian population. Most of those studies focused attention on the relation between mercury exposure and autoimmunity and, because of that, they will be discussed in more detail. Here we introduce the general aspects involved with each biomarker that was studied in the region in order to contextualize the reader and add information about the Amazonian life style and health that may be considered for future studies. We hope that, in the future, the toxicological studies in this field use high technological tools, such as the next generation sequencing and proteomics skills, in order to comprehend basic questions regarding the metabolic route of mercury in populations that are under constant exposure, such as in the Amazon.
Collapse
|
39
|
Ruddle NH. Lymphotoxin and TNF: how it all began-a tribute to the travelers. Cytokine Growth Factor Rev 2014; 25:83-9. [PMID: 24636534 PMCID: PMC4027955 DOI: 10.1016/j.cytogfr.2014.02.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 02/03/2014] [Indexed: 10/25/2022]
Abstract
The journey from the discoveries of lymphotoxin (LT) and tumor necrosis factor (TNF) to the present day age of cytokine inhibitors as therapeutics has been an exciting one with many participants and highs and lows; the saga is compared to that in "The Wizard of Oz". This communication summarizes the contributions of key players in the discovery of the cytokines and their receptors, the changes in nomenclature, and the discovery of the LT family's crucial role in secondary and tertiary lymphoid organs. The remarkable advances in therapeutics are detailed as are remaining problems. Finally, special tribute is paid to two pioneers in the field who have recently passed away: Byron H. Waksman and Lloyd Old.
Collapse
Affiliation(s)
- Nancy H Ruddle
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health 60 College St., New Haven, CT, 06510, USA.
| |
Collapse
|
40
|
Abstract
Loss-of-function mutations in the Autoimmune Regulator (AIRE) gene cause a rare inherited form of autoimmune disease, autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy, also known as autoimmune polyglandular syndrome type 1. The patients suffer from multiple endocrine deficiencies, the most common manifestations being hypoparathyroidism, Addison’s disease, hypogonadism, and secondary amenorrhea, usually accompanied by typical autoantibodies against the target tissues. Chronic mucocutaneous candidiasis is also a prominent part of the disease. The highest expression of AIRE is found in medullary thymic epithelial cells (mTECs). Murine studies suggest that it promotes ectopic transcription of self antigens in mTECs and is thus important for negative selection. However, failed negative selection alone is not enough to explain key findings in human patients, necessitating the search for alternative or additional pathogenetic mechanisms. A striking feature of the human AIRE-deficient phenotype is that all patients develop high titers of neutralizing autoantibodies against type I interferons, which have been shown to downregulate the expression of interferon-controlled genes. These autoantibodies often precede clinical symptoms and other autoantibodies, suggesting that they are a reflection of the pathogenetic process. Other cytokines are targeted as well, notably those produced by Th17 cells; these autoantibodies have been linked to the defect in anti-candida defenses. A defect in regulatory T cells has also been reported in several studies and seems to affect already the recent thymic emigrant population. Taken together, these findings in human patients point to a widespread disruption of T cell development and regulation, which is likely to have its origins in an abnormal thymic milieu. The absence of functional AIRE in peripheral lymphoid tissues may also contribute to the pathogenesis of the disease.
Collapse
Affiliation(s)
- T Petteri Arstila
- Department of Bacteriology and Immunology, Immunobiology Research Program, Haartman Institute, University of Helsinki , Helsinki , Finland
| | | |
Collapse
|
41
|
Bonito AJ, Aloman C, Fiel MI, Danzl NM, Cha S, Weinstein EG, Jeong S, Choi Y, Walsh MC, Alexandropoulos K. Medullary thymic epithelial cell depletion leads to autoimmune hepatitis. J Clin Invest 2013; 123:3510-24. [PMID: 23867620 DOI: 10.1172/jci65414] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 05/17/2013] [Indexed: 12/23/2022] Open
Abstract
TRAF6, an E3 ubiquitin protein ligase, plays a critical role in T cell tolerance by regulating medullary thymic epithelial cell (mTEC) development. mTECs regulate T cell tolerance by ectopically expressing self-antigens and eliminating autoreactive T cells in the thymus. Here we show that mice with mTEC depletion due to conditional deletion of Traf6 expression in murine thymic epithelial cells (Traf6ΔTEC mice) showed a surprisingly narrow spectrum of autoimmunity affecting the liver. The liver inflammation in Traf6ΔTEC mice exhibited all the histological and immunological characteristics of human autoimmune hepatitis (AIH). The role of T cells in AIH establishment was supported by intrahepatic T cell population changes and AIH development after transfer of liver T cells into immunodeficient mice. Despite a 50% reduction in natural Treg thymic output, peripheral tolerance in Traf6ΔTEC mice was normal, whereas compensatory T regulatory mechanisms were evident in the liver of these animals. These data indicate that mTECs exert a cell-autonomous role in central T cell tolerance and organ-specific autoimmunity, but play a redundant role in peripheral tolerance. These findings also demonstrate that Traf6ΔTEC mice are a relevant model with which to study the pathophysiology of AIH, as well as autoantigen-specific T cell responses and regulatory mechanisms underlying this disease.
Collapse
Affiliation(s)
- Anthony J Bonito
- Department of Medicine/Clinical Immunology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Lebovitz HE. Autoimmune polyglandular syndromes: interplay between the immune and the endocrine systems leading to a diverse set of clinical diseases and new insights into immune regulation. Diabetes Technol Ther 2013; 15 Suppl 2:S2-21-S2-28. [PMID: 23786295 DOI: 10.1089/dia.2013.0130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
During the last 50 years, three major classes of autoimmune polyglandular syndromes (APSs) have been defined, and their characteristics and heritability have been delineated. Simultaneously, studies of the immunologic bases of these syndromes provided fundamental information in understanding immune regulation. Genetic analyses of patients and their families with APS type 1 (autoimmune polyendocrinopathy candidiasis, ectodermal dystrophy) identified the autoimmune regulator (AIRE) gene, which drives the expression of peripheral tissue-specific antigens in thymic cells and is critical in the development of self-tolerance. Mutations in this gene cause APS type 1. In contrast, studies in APS type 2 have been instrumental in understanding the role of human leukocyte antigen type II and related molecules in the pathogenesis of polygenetic autoimmune diseases such as type 1A diabetes. Immune dysfunction polyendocrinopathy, enteropathy, X-linked syndrome, which is caused by mutations in the forkhead box P3 gene, has been a model for studying regulatory T cell biology. The APSs epitomize the synergies that the merger of clinical and basic science can achieve. This is the environment that George Eisenbarth was able to create at the Barbara Davis Center for Diabetes.
Collapse
Affiliation(s)
- Harold E Lebovitz
- Department of Medicine, State University of New York Health Science Center at Brooklyn, Brooklyn, New York 11203, USA.
| |
Collapse
|
43
|
Breunig A, Lee MS, Miller BS, Binstadt BA, Anderson MS, Montezuma S. Autoimmune retinopathy in a patient with autoimmune polyendocrine syndrome type I. Ocul Immunol Inflamm 2013; 21:153-7. [PMID: 23697860 DOI: 10.3109/09273948.2012.754906] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To present a case of autoimmune retinopathy resulting from a mutation in the autoimmune regulator (AIRE) gene. DESIGN Case study. METHODS Case review. RESULTS Mild improvement of goldmann visual field following treatment with systemic and local immunosuppression. CONCLUSIONS There are a limited number of cases linking autoimmune retinopathy with a mutation in the AIRE gene. Further research is needed to find more effective treatment and to prevent tissue damage.
Collapse
Affiliation(s)
- Adam Breunig
- Department of Ophthalmology, University of Minnesota, Minneapolis, Minnesota 55455-0501, USA
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
The gene expression programs that establish and maintain specific cell states in humans are controlled by thousands of transcription factors, cofactors, and chromatin regulators. Misregulation of these gene expression programs can cause a broad range of diseases. Here, we review recent advances in our understanding of transcriptional regulation and discuss how these have provided new insights into transcriptional misregulation in disease.
Collapse
Affiliation(s)
- Tong Ihn Lee
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Richard A. Young
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts
| |
Collapse
|
45
|
Revisiting the old link between infection and autoimmune disease with commensals and T helper 17 cells. Immunol Res 2013; 54:50-68. [PMID: 22460741 DOI: 10.1007/s12026-012-8311-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Genetic composition and major histocompatibility complex polymorphisms unequivocally predispose to autoimmune disease, but environmental factors also play a critical role in precipitating disease in susceptible individuals. Notorious among these has been microbial infection. Older studies describing associations between microbial infection and autoimmune disease are now followed by new studies demonstrating correlations between susceptibility to autoimmune disease and commensal colonization of the intestinal tract. T helper 17 (T(H)17) cells have gained a prominent role in autoimmune disease, and notably, their development within the intestine has been linked to colonization with specific commensal bacteria. Here, we consider current views on how microbes, T(H)17 cells, and autoimmunity are connected. We speculate on how the intricate relationships among commensal, pathogen, and the host might ultimately determine susceptibility to autoimmune disease.
Collapse
|
46
|
Abstract
Antibodies play an important role in autoimmune liver diseases, such as autoimmune hepatitis (AIH). On the one hand, they are essential diagnostic markers to identify not only the presentation of AIH, but also the AIH subtype characterized by the presence of particular antibodies to target autoantigens in the liver. On the other hand, such autoantibodies might be directly involved in the etiology and/or pathogenesis of AIH. This review will reflect on the evidence of how specific autoantibodies influence AIH and will further provide insight into the necessities for generating therapeutic antibodies to treat AIH in the future.
Collapse
Affiliation(s)
- Urs Christen
- Pharmazentrum Frankfurt/ZAFES, Goethe University Hospital Frankfurt, Theodor-Stern Kai 7, 60590 Frankfurt am Main, Germany
| |
Collapse
|
47
|
Zhang J, Liu H, Liu Z, Liao Y, Guo L, Wang H, He L, Zhang X, Xing Q. A functional alternative splicing mutation in AIRE gene causes autoimmune polyendocrine syndrome type 1. PLoS One 2013; 8:e53981. [PMID: 23342054 PMCID: PMC3540864 DOI: 10.1371/journal.pone.0053981] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 12/05/2012] [Indexed: 01/28/2023] Open
Abstract
Autoimmune polyendocrine syndrome type 1 (APS-1) is a rare autosomal recessive disease defined by the presence of two of the three conditions: mucocutaneous candidiasis, hypoparathyroidism, and Addison's disease. Loss-of-function mutations of the autoimmune regulator (AIRE) gene have been linked to APS-1. Here we report mutational analysis and functional characterization of an AIRE mutation in a consanguineous Chinese family with APS-1. All exons of the AIRE gene and adjacent exon-intron sequences were amplified by PCR and subsequently sequenced. We identified a homozygous missense AIRE mutation c.463G>A (p.Gly155Ser) in two siblings with different clinical features of APS-1. In silico splice-site prediction and minigene analysis were carried out to study the potential pathological consequence. Minigene splicing analysis and subsequent cDNA sequencing revealed that the AIRE mutation potentially compromised the recognition of the splice donor of intron 3, causing alternative pre-mRNA splicing by intron 3 retention. Furthermore, the aberrant AIRE transcript was identified in a heterozygous carrier of the c.463G>A mutation. The aberrant intron 3-retaining transcript generated a truncated protein (p.G155fsX203) containing the first 154 AIRE amino acids and followed by 48 aberrant amino acids. Therefore, our study represents the first functional characterization of the alternatively spliced AIRE mutation that may explain the pathogenetic role in APS-1.
Collapse
Affiliation(s)
- Junyu Zhang
- Children’s Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Hongbin Liu
- Henan Provincial Corps Hospital, Chinese’s Armed Police Forces, Zhengzhou, China
| | - Zhiyuan Liu
- Henan Provincial Corps Hospital, Chinese’s Armed Police Forces, Zhengzhou, China
| | - Yong Liao
- Chongqing Municipal Corps Hospital, Chinese’s Armed Police Forces, Chongqing, China
| | - Luo Guo
- Children’s Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Honglian Wang
- Children’s Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Lin He
- Children’s Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Xiaodong Zhang
- Neuroscience & Behavioral Disorders Program, Duke-NUS Graduate Medical School Singapore, Singapore
- Department of Physiology, National University of Singapore, Singapore
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, United States of America
| | - Qinghe Xing
- Children’s Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
48
|
Oliveira EH, Macedo C, Donate PB, Almeida RS, Pezzi N, Nguyen C, Rossi MA, Sakamoto-Hojo ET, Donadi EA, Passos GA. Expression profile of peripheral tissue antigen genes in medullary thymic epithelial cells (mTECs) is dependent on mRNA levels of autoimmune regulator (Aire). Immunobiology 2013; 218:96-104. [PMID: 22564670 DOI: 10.1016/j.imbio.2012.02.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 02/02/2012] [Accepted: 02/07/2012] [Indexed: 12/25/2022]
Abstract
In the thymus of non-obese diabetic (NOD) mice, the expression of the autoimmune regulator (Aire) gene varies with age, and its down-regulation in young mice precedes the later emergence of type 1 diabetes mellitus (T1D). In addition, the insulin (Ins2) peripheral tissue antigen (PTA) gene, which is Aire-dependent, is also deregulated in these mice. Based in these findings, we hypothesized that the imbalance in PTA gene expression in the thymus can be associated with slight variations in Aire transcript levels. To test this, we used siRNA to knockdown Aire by in vivo electro-transfection of the thymus of BALB/c mice. The efficiency of the electro-transfection was monitored by assessing the presence of irrelevant Cy3-labeled siRNA in the thymic stroma. Importantly, Aire-siRNA reached medullary thymic epithelial cells (mTECs) down-regulating Aire. As expected, the in vivo Aire knockdown was partial and transient; the maximum 59% inhibition occurred in 48 h. The Aire knockdown was sufficient to down-regulate PTA genes; however, surprisingly, several others, including Ins2, were up-regulated. The modulation of these genes after in vivo Aire knockdown was comparable to that observed in NOD mice before the emergence of T1D. The in vitro transfections of 3.10 mTEC cells with Aire siRNA resulted in samples featuring partial (69%) and complete (100%) Aire knockdown. In these Aire siRNA-transfected 3.10 mTECs, the expression of PTA genes, including Ins2, was down-regulated. This suggests that the expression profile of PTA genes in mTECs is affected by fine changes in the transcription level of Aire.
Collapse
Affiliation(s)
- Ernna H Oliveira
- Molecular Immunogenetics Group, Department of Genetics, Faculty of Medicine of Ribeirão Preto, University of São Paulo (USP), 14040-900 Ribeirão Preto, SP, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Spiliotopoulos D, Spitaleri A, Musco G. Exploring PHD fingers and H3K4me0 interactions with molecular dynamics simulations and binding free energy calculations: AIRE-PHD1, a comparative study. PLoS One 2012; 7:e46902. [PMID: 23077531 PMCID: PMC3471955 DOI: 10.1371/journal.pone.0046902] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 09/06/2012] [Indexed: 01/13/2023] Open
Abstract
PHD fingers represent one of the largest families of epigenetic readers capable of decoding post-translationally modified or unmodified histone H3 tails. Because of their direct involvement in human pathologies they are increasingly considered as a potential therapeutic target. Several PHD/histone-peptide structures have been determined, however relatively little information is available on their dynamics. Studies aiming to characterize the dynamic and energetic determinants driving histone peptide recognition by epigenetic readers would strongly benefit from computational studies. Herein we focus on the dynamic and energetic characterization of the PHD finger subclass specialized in the recognition of histone H3 peptides unmodified in position K4 (H3K4me0). As a case study we focused on the first PHD finger of autoimmune regulator protein (AIRE-PHD1) in complex with H3K4me0. PCA analysis of the covariance matrix of free AIRE-PHD1 highlights the presence of a "flapping" movement, which is blocked in an open conformation upon binding to H3K4me0. Moreover, binding free energy calculations obtained through Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) methodology are in good qualitative agreement with experiments and allow dissection of the energetic terms associated with native and alanine mutants of AIRE-PHD1/H3K4me0 complexes. MM/PBSA calculations have also been applied to the energetic analysis of other PHD fingers recognizing H3K4me0. In this case we observe excellent correlation between computed and experimental binding free energies. Overall calculations show that H3K4me0 recognition by PHD fingers relies on compensation of the electrostatic and polar solvation energy terms and is stabilized by non-polar interactions.
Collapse
Affiliation(s)
- Dimitrios Spiliotopoulos
- Dulbecco Telethon Institute c/o S. Raffaele Scientific Institute, Biomolecular NMR Laboratory, Center for Translational Genomics and Bioinformatics, Milano, Italy
| | - Andrea Spitaleri
- Dulbecco Telethon Institute c/o S. Raffaele Scientific Institute, Biomolecular NMR Laboratory, Center for Translational Genomics and Bioinformatics, Milano, Italy
| | - Giovanna Musco
- Dulbecco Telethon Institute c/o S. Raffaele Scientific Institute, Biomolecular NMR Laboratory, Center for Translational Genomics and Bioinformatics, Milano, Italy
| |
Collapse
|
50
|
|