1
|
Zuo X. Mitochondrial Imbalance in Down Syndrome: A Driver of Accelerated Brain Aging? Aging Dis 2025:AD.2025.0189. [PMID: 40249934 DOI: 10.14336/ad.2025.0189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 04/06/2025] [Indexed: 04/20/2025] Open
Abstract
Down syndrome (DS), caused by trisomy of chromosome 21 (HSA21), is a complex condition associated with neurodevelopmental impairments and accelerated brain aging, often culminating in early-onset Alzheimer's disease (AD). Central to this accelerated aging is mitochondrial imbalance, characterized by disrupted energy metabolism, increased oxidative stress, impaired dynamics, and defective quality control mechanisms like mitophagy. These abnormalities exacerbate neuronal vulnerability, driving cognitive decline and neurodegeneration. This review examines the genetic and biochemical underpinnings of mitochondrial dysfunction in DS, with a focus on the role of HSA21-encoded genes. We also highlight how mitochondrial dysfunction, amplified by oxidative stress and HSA21 gene dosage effects, converges with cellular senescence and neuroinflammation to accelerate Alzheimer-like pathology and brain aging in DS. Finally, we discuss emerging therapeutic strategies targeting mitochondrial pathways, which hold promise for mitigating neurodegenerative phenotypes and improving outcomes in DS.
Collapse
|
2
|
Jin J, Doan J, Fernandez C, Nguyen S, Spencer C, Kleschevnikov AM. Early postnatal GABAB antagonist treatment normalizes inhibitory/excitatory balance in neonatal Ts65Dn mice, a genetic model of down syndrome. Exp Neurol 2025; 386:115171. [PMID: 39889878 DOI: 10.1016/j.expneurol.2025.115171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/16/2025] [Accepted: 01/27/2025] [Indexed: 02/03/2025]
Abstract
Brain abnormalities in Down syndrome (DS) most rapidly accumulate during the third trimester, a critical period for the formation of neural circuits in the hippocampus and neocortex. In mice, this stage roughly corresponds to the first 2.5 weeks after birth. We hypothesized that enhanced Girk2 channel signaling during this critical period profoundly contributes to the formation of faulty neural circuits in mouse genetic models of DS, with a key feature being an imbalance of excitatory and inhibitory neurotransmission favoring inhibition. Major predictions of this hypothesis were tested. We observed that hippocampal Girk2 levels are enhanced, GABAB/Girk2 signaling efficiency is increased, and intrinsic neuronal excitability of dentate gyrus (DG) granule cells is reduced in neonatal Ts65Dn mice. Given this, we tested if suppressing the enhanced GABAB/Girk2 signaling in the early postnatal period would affect the inhibitory/excitatory (I/E) balance in Ts65Dn mice. Remarkably, GABAB antagonist treatment from postnatal day 2 (P2) to P17 normalized the exaggerated IPSC/EPSC ratio in DG granule cells in Ts65Dn mice. Our findings show that GABAB/Girk2 signaling is increased in neonatal Ts65Dn mice, and that pharmacological suppression of GABAB receptors during the early postnatal period normalizes the I/E balance. These results suggest that early intervention targeting GABAB/Girk2 signaling could be a promising therapeutic approach to mitigate cognitive impairment in DS.
Collapse
Affiliation(s)
- Joshua Jin
- University of California San Diego, La Jolla, CA, United States
| | - James Doan
- University of California San Diego, La Jolla, CA, United States
| | | | - Samuel Nguyen
- University of California San Diego, La Jolla, CA, United States
| | - Cole Spencer
- University of California San Diego, La Jolla, CA, United States
| | | |
Collapse
|
3
|
Su D, Peters M, Soltys V, Chan YF. Copy number normalization distinguishes differential signals driven by copy number differences in ATAC-seq and ChIP-seq. BMC Genomics 2025; 26:306. [PMID: 40155863 PMCID: PMC11951689 DOI: 10.1186/s12864-025-11442-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 03/04/2025] [Indexed: 04/01/2025] Open
Abstract
A common objective across ATAC-seq and ChIP-seq analyses is to identify differential signals across contrasted conditions. However, in differential analyses, the impact of copy number variation is often overlooked. Here, we demonstrated copy number differences among samples could drive, if not dominate, differential signals. To address this, we propose a pipeline featuring copy number normalization. By comparing the averaged signal per gene copy, it effectively segregates differential signals driven by copy number from other factors. Further applying it to Down syndrome unveiled distinct dosage-dependent and -independent changes on chromosome 21. Thus, we recommend copy number normalization as a general approach.
Collapse
Affiliation(s)
- Dingwen Su
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, 72076, Germany.
| | - Moritz Peters
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, 72076, Germany
| | - Volker Soltys
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, 72076, Germany
| | - Yingguang Frank Chan
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, 72076, Germany.
- University of Groningen, Groningen Institute of Evolutionary Life Sciences (GELIFES), Groningen, 9747 AG, The Netherlands.
| |
Collapse
|
4
|
Zhang X, Qi M, Fu Q. Molecular genetics of congenital heart disease. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2861-9. [PMID: 40163266 DOI: 10.1007/s11427-024-2861-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 02/08/2025] [Indexed: 04/02/2025]
Abstract
Congenital heart disease (CHD) is the most prevalent human birth defect and remains a leading cause of mortality in childhood. Although advancements in surgical and medical interventions have significantly reduced mortality rates among infants with critical CHDs, many survivors experience substantial cardiac and extracardiac comorbidities that affect their quality of life. The etiology of CHD is multifactorial, involving both genetic and environmental factors, yet a definitive cause remains unidentified in many cases. Recent advancements in genetic testing technologies have improved our ability to identify the genetic causes of CHD. This review presents an updated summary of the established genetic contributions to CHD, including chromosomal aberrations and mutations in genes associated with transcription factors, cardiac structural proteins, chromatin modifiers, cilia-related proteins, and cell signaling pathways. Furthermore, we discuss recent findings that support the roles of non-coding mutations and complex inheritance in the etiology of CHD.
Collapse
Affiliation(s)
- Xiaoqing Zhang
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Molecular Diagnosis for Pediatrics, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Ming Qi
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Molecular Diagnosis for Pediatrics, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Qihua Fu
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
- Key Laboratory of Molecular Diagnosis for Pediatrics, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
- Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences, Chengdu, 610072, China.
| |
Collapse
|
5
|
Leskur M, Leskur D, Marijan S, Minarik L, Lozić B. Congenital Anomalies of the Kidney and Urinary Tract in Down Syndrome: Prevalence, Phenotypes, Genetics and Clinical Management. Genes (Basel) 2025; 16:245. [PMID: 40149397 PMCID: PMC11942544 DOI: 10.3390/genes16030245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 03/29/2025] Open
Abstract
Down syndrome (DS), the most common survivable autosomal aneuploidy, is associated with a high prevalence of congenital anomalies of the kidney and urinary tract (CAKUT), significantly increasing the risk of chronic kidney disease (CKD). This review examines the diversity of CAKUT phenotypes reported in individuals with DS, focusing on anomalies affecting the kidney, ureter, bladder, and urethra. According to available literature, hydronephrosis is the most common renal anomaly, often secondary to other CAKUT phenotypes, followed by renal hypoplasia and glomerulocystic disease. Furthermore, obstructive uropathies are also frequent but usually lack detailed characterization in the literature. Key features of CAKUT in DS, including reduced kidney size, renal cystic diseases, acquired glomerulopathies, reduced nephron number, and immature glomeruli heighten the risk of CKD. Also, early detection of lower urinary tract dysfunction (LUTD) is critical to prevent progressive upper urinary tract damage and CKD. Despite the prevalence of CAKUT in DS, reported between 0.22% and 21.16%, there is a lack of standardized diagnostic criteria, consistent terminology, and extended follow-up studies. Systematic screening from infancy, including regular renal monitoring via urinalysis and ultrasound, plays a critical role in the timely diagnosis and intervention of CAKUT. To further enhance diagnostic accuracy and develop effective therapeutic strategies, increased awareness and focused research into the genetic factors underlying these anomalies are essential. Moreover, a multidisciplinary approach is indispensable for managing CAKUT and its associated complications, ultimately ensuring better long-term outcomes and an improved quality of life for individuals with DS.
Collapse
Affiliation(s)
- Mirela Leskur
- Department of Biochemistry and Medical Chemistry, University of Split School of Medicine, 21000 Split, Croatia;
| | - Dario Leskur
- Department of Pharmacy, University of Split School of Medicine, 21000 Split, Croatia
| | - Sandra Marijan
- Department of Biochemistry and Medical Chemistry, University of Split School of Medicine, 21000 Split, Croatia;
| | - Luka Minarik
- Institute of Emergency Medicine, 10000 Zagreb, Croatia
- Department of Paediatrics, University of Split School of Medicine, 21000 Split, Croatia;
| | - Bernarda Lozić
- Department of Paediatrics, University of Split School of Medicine, 21000 Split, Croatia;
- Department of Pediatric Disease, Division of Haematology, Oncology, Clinical Immunology and Genetics, University Hospital of Split, 21000 Split, Croatia
| |
Collapse
|
6
|
Cozzolino KA, Sanford L, Hunter S, Molison K, Erickson B, Courvan MCS, Jones T, Ajit D, Galbraith MD, Espinosa JM, Bentley D, Allen MA, Dowell RD, Taatjes DJ. Mediator kinase inhibition suppresses hyperactive interferon signaling in Down syndrome. eLife 2025; 13:RP100197. [PMID: 39928031 PMCID: PMC11810109 DOI: 10.7554/elife.100197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025] Open
Abstract
Hyperactive interferon (IFN) signaling is a hallmark of Down syndrome (DS), a condition caused by Trisomy 21 (T21); strategies that normalize IFN signaling could benefit this population. Mediator-associated kinases CDK8 and CDK19 drive inflammatory responses through incompletely understood mechanisms. Using sibling-matched cell lines with/without T21, we investigated Mediator kinase function in the context of hyperactive IFN in DS over a 75 min to 24 hr timeframe. Activation of IFN-response genes was suppressed in cells treated with the CDK8/CDK19 inhibitor cortistatin A (CA), via rapid suppression of IFN-responsive transcription factor (TF) activity. We also discovered that CDK8/CDK19 affect splicing, a novel means by which Mediator kinases control gene expression. To further probe Mediator kinase function, we completed cytokine screens and metabolomics experiments. Cytokines are master regulators of inflammatory responses; by screening 105 different cytokine proteins, we show that Mediator kinases help drive IFN-dependent cytokine responses at least in part through transcriptional regulation of cytokine genes and receptors. Metabolomics revealed that Mediator kinase inhibition altered core metabolic pathways in cell type-specific ways, and broad upregulation of anti-inflammatory lipid mediators occurred specifically in kinase-inhibited cells during hyperactive IFNγ signaling. A subset of these lipids (e.g. oleamide, desmosterol) serve as ligands for nuclear receptors PPAR and LXR, and activation of these receptors occurred specifically during hyperactive IFN signaling in CA-treated cells, revealing mechanistic links between Mediator kinases, lipid metabolism, and nuclear receptor function. Collectively, our results establish CDK8/CDK19 as context-specific metabolic regulators, and reveal that these kinases control gene expression not only via TFs, but also through metabolic changes and splicing. Moreover, we establish that Mediator kinase inhibition antagonizes IFN signaling through transcriptional, metabolic, and cytokine responses, with implications for DS and other chronic inflammatory conditions.
Collapse
Affiliation(s)
- Kira A Cozzolino
- Department of Biochemistry, University of ColoradoBoulderUnited States
| | - Lynn Sanford
- Department of Molecular, Cellular, and Developmental Biology, University of ColoradoBoulderUnited States
- BioFrontiers Institute, University of ColoradoBoulderUnited States
| | - Samuel Hunter
- Department of Molecular, Cellular, and Developmental Biology, University of ColoradoBoulderUnited States
- BioFrontiers Institute, University of ColoradoBoulderUnited States
| | - Kayla Molison
- Department of Biochemistry, University of ColoradoBoulderUnited States
| | - Benjamin Erickson
- Department of Biochemistry and Molecular Genetics, University of Colorado School of MedicineAuroraUnited States
- UC-Denver RNA Bioscience InitiativeAuroraUnited States
| | - Meaghan CS Courvan
- Department of Biochemistry, University of ColoradoBoulderUnited States
- Department of Molecular, Cellular, and Developmental Biology, University of ColoradoBoulderUnited States
- BioFrontiers Institute, University of ColoradoBoulderUnited States
- Crnic Institute Boulder BranchBoulderUnited States
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Taylor Jones
- Department of Biochemistry, University of ColoradoBoulderUnited States
| | - Deepa Ajit
- Metabolon Inc, DurhamMorrisvilleUnited States
| | - Matthew D Galbraith
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical CampusAuroraUnited States
- Department of Pharmacology, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Joaquín M Espinosa
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical CampusAuroraUnited States
- Department of Pharmacology, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - David Bentley
- Department of Biochemistry and Molecular Genetics, University of Colorado School of MedicineAuroraUnited States
- UC-Denver RNA Bioscience InitiativeAuroraUnited States
| | - Mary Ann Allen
- BioFrontiers Institute, University of ColoradoBoulderUnited States
| | - Robin D Dowell
- Department of Molecular, Cellular, and Developmental Biology, University of ColoradoBoulderUnited States
- BioFrontiers Institute, University of ColoradoBoulderUnited States
| | - Dylan J Taatjes
- Department of Biochemistry, University of ColoradoBoulderUnited States
| |
Collapse
|
7
|
Lepagnol-Bestel AM, Haziza S, Viard J, Salin PA, Duchon A, Herault Y, Simonneau M. DYRK1A Up-Regulation Specifically Impairs a Presynaptic Form of Long-Term Potentiation. Life (Basel) 2025; 15:149. [PMID: 40003558 PMCID: PMC11856406 DOI: 10.3390/life15020149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/12/2025] [Accepted: 01/17/2025] [Indexed: 02/27/2025] Open
Abstract
Chromosome 21 DYRK1A kinase is associated with a variety of neuronal diseases including Down syndrome. However, the functional impact of this kinase at the synapse level remains unclear. We studied a mouse model that incorporated YAC 152F7 (570 kb), encoding six chromosome 21 genes including DYRK1A. The 152F7 mice displayed learning difficulties but their N-methyl-D-aspartate (NMDA)-dependent synaptic long-term potentiation is indistinguishable from non-transgenic animals. We have demonstrated that a presynaptic form of NMDA-independent long-term potentiation (LTP) at the hippocampal mossy fiber was impaired in the 152F7 animals. To obtain insights into the molecular mechanisms involved in such synaptic changes, we analyzed the Dyrk1a interactions with chromatin remodelers. We found that the number of DYRK1A-EP300 and DYRK1A-CREBPP increased in 152F7 mice. Moreover, we observed a transcriptional decrease in genes encoding presynaptic proteins involved in glutamate vesicle exocytosis, namely Rims1, Munc13-1, Syn2 and Rab3A.To refine our findings, we used a mouse BAC 189N3 (152 kb) line that only triplicates the gene Dyrk1a. Again, we found that this NMDA-independent form of LTP is impaired in this mouse line. Altogether, our results demonstrate that Dyrk1a up-regulation is sufficient to specifically inhibit the NMDA-independent form of LTP and suggest that this inhibition is linked to chromatin changes that deregulate genes encoding proteins involved in glutamate synaptic release.
Collapse
Affiliation(s)
| | - Simon Haziza
- Centre Psychiatrie & Neurosciences, INSERM U894, 75014 Paris, France; (A.-M.L.-B.); (S.H.); (J.V.)
- Centre National de la Recherche Scientifique, Université Paris-Saclay, CentraleSupélec, École Normale Supérieure Paris-Saclay, LuMIn, 91190 Gif-sur-Yvette, France
| | - Julia Viard
- Centre Psychiatrie & Neurosciences, INSERM U894, 75014 Paris, France; (A.-M.L.-B.); (S.H.); (J.V.)
| | - Paul A. Salin
- Centre de Recherche en Neuroscience de Lyon CRNL (INSERM U1028), Université Claude-Bernard Lyon 1, 69100 Lyon, France;
| | - Arnaud Duchon
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, CNRS UMR7104, INSERM, U964, 67404 Illkirch, France; (A.D.); (Y.H.)
- Phenomin, Institut Clinique de la Souris (ICS), GIE CERBM, CNRS, INSERM, Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Yann Herault
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, CNRS UMR7104, INSERM, U964, 67404 Illkirch, France; (A.D.); (Y.H.)
- Phenomin, Institut Clinique de la Souris (ICS), GIE CERBM, CNRS, INSERM, Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Michel Simonneau
- Centre Psychiatrie & Neurosciences, INSERM U894, 75014 Paris, France; (A.-M.L.-B.); (S.H.); (J.V.)
- Centre National de la Recherche Scientifique, Université Paris-Saclay, CentraleSupélec, École Normale Supérieure Paris-Saclay, LuMIn, 91190 Gif-sur-Yvette, France
- Département d’Enseignement et de Recherche en Biologie, École Normale Supérieure Paris-Saclay, 91190 Gif-sur-Yvette, France
| |
Collapse
|
8
|
Huang T, Fakurazi S, Cheah PS, Ling KH. Dysregulation of REST and its target genes impacts the fate of neural progenitor cells in down syndrome. Sci Rep 2025; 15:2818. [PMID: 39843579 PMCID: PMC11754635 DOI: 10.1038/s41598-025-87314-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/17/2025] [Indexed: 01/30/2025] Open
Abstract
Increasing shreds of evidence suggest that neurogenic-to-gliogenic shift may be critical to the abnormal neurodevelopment observed in individuals with Down syndrome (DS). REST, the Repressor Element-1 Silencing Transcription factor, regulates the differentiation and development of neural cells. Downregulation of REST may lead to defects in post-differentiation neuronal morphology in the brain of the DS fetal. This study aims to elucidate the role of REST in DS-derived NPCs using bioinformatics analyses and laboratory validations. We identified and validated vital REST-targeted DEGs: CD44, TGFB1, FN1, ITGB1, and COL1A1. Interestingly, these genes are involved in neurogenesis and gliogenesis in DS-derived NPCs. Furthermore, we identified nuclear REST loss and the neuroblast marker, DCX, was downregulated in DS human trisomic induced pluripotent stem cells (hiPSCs)-derived NPCs, whereas the glioblast marker, NFIA, was upregulated. Our findings indicate that the loss of REST is critical in the neurogenic-to-gliogenic shift observed in DS-derived NPCs. REST and its target genes may collectively regulate the NPC phenotype.
Collapse
Affiliation(s)
- Tan Huang
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
| | - Sharida Fakurazi
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
| | - Pike-See Cheah
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
- Brain and Mental Health Research Advancement and Innovation Networks (PUTRA® BRAIN), Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
- Malaysian Research Institute on Ageing (MyAgeing®), Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
| | - King-Hwa Ling
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia.
- Brain and Mental Health Research Advancement and Innovation Networks (PUTRA® BRAIN), Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia.
- Malaysian Research Institute on Ageing (MyAgeing®), Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia.
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia.
| |
Collapse
|
9
|
Szybiak-Skora W, Cyna W, Lacka K. Autoimmune Thyroid Disease in Patients with Down Syndrome-Review. Int J Mol Sci 2024; 26:29. [PMID: 39795885 PMCID: PMC11720553 DOI: 10.3390/ijms26010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/14/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
Down syndrome develops due to the presence of supernumerary chromosome 21. This diagnosis is made in approximately 1:800 live births. The tendency to develop autoimmune disorders like idiopathic arthritis, celiac disease, diabetes mellitus type 1, vitiligo and autoimmune thyroid disease is strongly expressed in patients with Down syndrome. Autoimmune thyroid diseases consisting of Hashimoto's thyroiditis and Graves' disease are specifically prevalent in patients with Down syndrome. The aim of our study is to collect available data connecting the pathogenesis and clinical course of autoimmune thyroid diseases in patients with Down syndrome of different ages and compare them to control groups. According to published data, the incidence ratio of Hashimoto's thyroiditis diagnosis in patients with Down syndrome is elevated compared to in age-matched controls without this chromosomal aberration, similarly to Graves' disease risk, which is also increased in a group of patients with Down syndrome. What is more, both Hashimoto's thyroiditis and Graves' disease are diagnosed at an earlier age than in the healthy population and are not correlated with gender or a family history of autoimmune diseases.
Collapse
Affiliation(s)
- Weronika Szybiak-Skora
- Student’s Scientific Society, Poznan University of Medical Sciences, 60-355 Poznan, Poland; (W.S.-S.); (W.C.)
| | - Wojciech Cyna
- Student’s Scientific Society, Poznan University of Medical Sciences, 60-355 Poznan, Poland; (W.S.-S.); (W.C.)
| | - Katarzyna Lacka
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| |
Collapse
|
10
|
Gillenwater LA, Galbraith MD, Rachubinski AL, Eduthan NP, Sullivan KD, Espinosa JM, Costello JC. Integrated analysis of immunometabolic interactions in Down syndrome. SCIENCE ADVANCES 2024; 10:eadq3073. [PMID: 39671500 PMCID: PMC11641111 DOI: 10.1126/sciadv.adq3073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 11/05/2024] [Indexed: 12/15/2024]
Abstract
Down syndrome (DS), caused by trisomy 21 (T21), results in immune and metabolic dysregulation. People with DS experience co-occurring conditions at higher rates than the euploid population. However, the interplay between immune and metabolic alterations and the clinical manifestations of DS are poorly understood. Here, we report an integrated analysis of immunometabolic pathways in DS. Using multi-omics data, we infered cytokine-metabolite relationships mediated by specific transcriptional programs. We observed increased mediation of immunometabolic interactions in those with DS compared to euploid controls by genes in interferon response, heme metabolism, and oxidative phosphorylation. Unsupervised clustering of immunometabolic relationships in people with DS revealed subgroups with different frequencies of co-occurring conditions. Across the subgroups, we observed distinct mediation by DNA repair, Hedgehog signaling, and angiogenesis. The molecular stratification associates with the clinical heterogeneity observed in DS, suggesting that integrating multiple omic profiles reveals axes of coordinated dysregulation specific to DS co-occurring conditions.
Collapse
Affiliation(s)
- Lucas A. Gillenwater
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Computational Bioscience Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Matthew D. Galbraith
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Angela L. Rachubinski
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pediatrics, Section of Developmental Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Neetha Paul Eduthan
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kelly D. Sullivan
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Joaquin M. Espinosa
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - James C. Costello
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Computational Bioscience Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
11
|
Hore K, Ali U. Anaesthesia for the child with trisomy 21. BJA Educ 2024; 24:440-446. [PMID: 39605313 PMCID: PMC11589198 DOI: 10.1016/j.bjae.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2024] [Indexed: 11/29/2024] Open
Affiliation(s)
- K. Hore
- Great Ormond Street Hospital, London, UK
| | - U. Ali
- Great Ormond Street Hospital, London, UK
| |
Collapse
|
12
|
Cozzolino K, Sanford L, Hunter S, Molison K, Erickson B, Courvan MCS, Jones T, Ajit D, Galbraith MD, Espinosa JM, Bentley DL, Allen MA, Dowell RD, Taatjes DJ. Mediator kinase inhibition suppresses hyperactive interferon signaling in Down syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.05.547813. [PMID: 37461585 PMCID: PMC10349994 DOI: 10.1101/2023.07.05.547813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
Hyperactive interferon (IFN) signaling is a hallmark of Down syndrome (DS), a condition caused by trisomy 21 (T21); strategies that normalize IFN signaling could benefit this population. Mediator-associated kinases CDK8 and CDK19 drive inflammatory responses through incompletely understood mechanisms. Using sibling-matched cell lines with/without T21, we investigated Mediator kinase function in the context of hyperactive IFN in DS over a 75min - 24h timeframe. Activation of IFN-response genes was suppressed in cells treated with the CDK8/CDK19 inhibitor cortistatin A (CA), via rapid suppression of IFN-responsive transcription factor (TF) activity. We also discovered that CDK8/CDK19 affect splicing, a novel means by which Mediator kinases control gene expression. To further probe Mediator kinase function, we completed cytokine screens and metabolomics experiments. Cytokines are master regulators of inflammatory responses; by screening 105 different cytokine proteins, we show that Mediator kinases help drive IFN-dependent cytokine responses at least in part through transcriptional regulation of cytokine genes and receptors. Metabolomics revealed that Mediator kinase inhibition altered core metabolic pathways in cell type-specific ways, and broad up-regulation of anti-inflammatory lipid mediators occurred specifically in kinase-inhibited cells during hyperactive IFNγ signaling. A subset of these lipids (e.g. oleamide, desmosterol) serve as ligands for nuclear receptors PPAR and LXR, and activation of these receptors occurred specifically during hyperactive IFN signaling in CA-treated cells, revealing mechanistic links between Mediator kinases, lipid metabolism, and nuclear receptor function. Collectively, our results establish CDK8/CDK19 as context-specific metabolic regulators, and reveal that these kinases control gene expression not only via TFs, but also through metabolic changes and splicing. Moreover, we establish that Mediator kinase inhibition antagonizes IFN signaling through transcriptional, metabolic, and cytokine responses, with implications for DS and other chronic inflammatory conditions.
Collapse
Affiliation(s)
- Kira Cozzolino
- Dept. of Biochemistry, University of Colorado, Boulder, CO, 80303, USA
| | - Lynn Sanford
- Dept. of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO, 80303, USA
- BioFrontiers Institute, University of Colorado, Boulder, CO, 80303, USA
| | - Samuel Hunter
- Dept. of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO, 80303, USA
- BioFrontiers Institute, University of Colorado, Boulder, CO, 80303, USA
| | - Kayla Molison
- Dept. of Biochemistry, University of Colorado, Boulder, CO, 80303, USA
| | - Benjamin Erickson
- Dept. Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
- UC-Denver RNA Bioscience Initiative
| | - Meaghan C S Courvan
- Dept. of Biochemistry, University of Colorado, Boulder, CO, 80303, USA
- Dept. of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO, 80303, USA
- BioFrontiers Institute, University of Colorado, Boulder, CO, 80303, USA
- Crnic Institute Boulder Branch
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Taylor Jones
- Dept. of Biochemistry, University of Colorado, Boulder, CO, 80303, USA
| | - Deepa Ajit
- Metabolon, Inc., Durham, North Carolina, USA
| | - Matthew D Galbraith
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Dept. of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Joaquin M Espinosa
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Dept. of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - David L Bentley
- Dept. Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
- UC-Denver RNA Bioscience Initiative
| | - Mary A Allen
- BioFrontiers Institute, University of Colorado, Boulder, CO, 80303, USA
| | - Robin D Dowell
- Dept. of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO, 80303, USA
- BioFrontiers Institute, University of Colorado, Boulder, CO, 80303, USA
| | - Dylan J Taatjes
- Dept. of Biochemistry, University of Colorado, Boulder, CO, 80303, USA
| |
Collapse
|
13
|
Wang P, Sarkar S, Zhang M, Xiao T, Kong F, Zhang Z, Balasubramanian D, Jayaram N, Datta S, He R, Wu P, Chao P, Zhang Y, Washburn M, Florens LA, Nagarkar-Jaiswal S, Jaiswal M, Mohan M. DYRK1A interacts with the tuberous sclerosis complex and promotes mTORC1 activity. eLife 2024; 12:RP88318. [PMID: 39436397 PMCID: PMC11495841 DOI: 10.7554/elife.88318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024] Open
Abstract
DYRK1A, a ubiquitously expressed kinase, is linked to the dominant intellectual developmental disorder, microcephaly, and Down syndrome in humans. It regulates numerous cellular processes such as cell cycle, vesicle trafficking, and microtubule assembly. DYRK1A is a critical regulator of organ growth; however, how it regulates organ growth is not fully understood. Here, we show that the knockdown of DYRK1A in mammalian cells results in reduced cell size, which depends on mTORC1. Using proteomic approaches, we found that DYRK1A interacts with the tuberous sclerosis complex (TSC) proteins, namely TSC1 and TSC2, which negatively regulate mTORC1 activation. Furthermore, we show that DYRK1A phosphorylates TSC2 at T1462, a modification known to inhibit TSC activity and promote mTORC1 activity. We also found that the reduced cell growth upon knockdown of DYRK1A can be rescued by overexpression of RHEB, an activator of mTORC1. Our findings suggest that DYRK1A inhibits TSC complex activity through inhibitory phosphorylation on TSC2, thereby promoting mTORC1 activity. Furthermore, using the Drosophila neuromuscular junction as a model, we show that the mnb, the fly homologs of DYRK1A, is rescued by RHEB overexpression, suggesting a conserved role of DYRK1A in TORC1 regulation.
Collapse
Affiliation(s)
- Pinhua Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and TechnologyKunmingChina
| | | | - Menghuan Zhang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and TechnologyKunmingChina
| | - Tingting Xiao
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and TechnologyKunmingChina
| | - Fenhua Kong
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and TechnologyKunmingChina
| | - Zhe Zhang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and TechnologyKunmingChina
| | | | - Nandan Jayaram
- CSIR–Centre for Cellular and Molecular BiologyHyderabadIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | | | - Ruyu He
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and TechnologyKunmingChina
| | - Ping Wu
- National Facility for Protein Science in Shanghai, Zhangjiang LabShanghaiChina
| | - Peng Chao
- National Facility for Protein Science in Shanghai, Zhangjiang LabShanghaiChina
| | - Ying Zhang
- Stowers Institute for Medical ResearchKansas CityUnited States
| | - Michael Washburn
- Stowers Institute for Medical ResearchKansas CityUnited States
- Department of Cancer Biology, The University of Kansas Medical CenterKansas CityUnited States
| | | | - Sonal Nagarkar-Jaiswal
- CSIR–Centre for Cellular and Molecular BiologyHyderabadIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | | | - Man Mohan
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and TechnologyKunmingChina
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiaotong University School of MedicineShanghaiChina
| |
Collapse
|
14
|
Marderstein AR, De Zuani M, Moeller R, Bezney J, Padhi EM, Wong S, Coorens THH, Xie Y, Xue H, Montgomery SB, Cvejic A. Single-cell multi-omics map of human fetal blood in Down syndrome. Nature 2024; 634:104-112. [PMID: 39322663 PMCID: PMC11446839 DOI: 10.1038/s41586-024-07946-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 08/14/2024] [Indexed: 09/27/2024]
Abstract
Down syndrome predisposes individuals to haematological abnormalities, such as increased number of erythrocytes and leukaemia in a process that is initiated before birth and is not entirely understood1-3. Here, to understand dysregulated haematopoiesis in Down syndrome, we integrated single-cell transcriptomics of over 1.1 million cells with chromatin accessibility and spatial transcriptomics datasets using human fetal liver and bone marrow samples from 3 fetuses with disomy and 15 fetuses with trisomy. We found that differences in gene expression in Down syndrome were dependent on both cell type and environment. Furthermore, we found multiple lines of evidence that haematopoietic stem cells (HSCs) in Down syndrome are 'primed' to differentiate. We subsequently established a Down syndrome-specific map linking non-coding elements to genes in disomic and trisomic HSCs using 10X multiome data. By integrating this map with genetic variants associated with blood cell counts, we discovered that trisomy restructured regulatory interactions to dysregulate enhancer activity and gene expression critical to erythroid lineage differentiation. Furthermore, as mutations in Down syndrome display a signature of oxidative stress4,5, we validated both increased mitochondrial mass and oxidative stress in Down syndrome, and observed that these mutations preferentially fell into regulatory regions of expressed genes in HSCs. Together, our single-cell, multi-omic resource provides a high-resolution molecular map of fetal haematopoiesis in Down syndrome and indicates significant regulatory restructuring giving rise to co-occurring haematological conditions.
Collapse
Affiliation(s)
| | - Marco De Zuani
- Department of Haematology, University of Cambridge, Cambridge, UK
- Cambridge Stem Cell Institute, Cambridge, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Rebecca Moeller
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Jon Bezney
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Evin M Padhi
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Shuo Wong
- Department of Haematology, University of Cambridge, Cambridge, UK
- Cambridge Stem Cell Institute, Cambridge, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | - Yilin Xie
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Haoliang Xue
- Department of Haematology, University of Cambridge, Cambridge, UK
- Cambridge Stem Cell Institute, Cambridge, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Stephen B Montgomery
- Department of Pathology, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Ana Cvejic
- Department of Haematology, University of Cambridge, Cambridge, UK.
- Cambridge Stem Cell Institute, Cambridge, UK.
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
15
|
Yu H, Liu Y, Xu F, Fu Y, Yang M, Ding L, Wu Y, Tang F, Qiao J, Wen L. A human fetal cerebellar map of the late second trimester reveals developmental molecular characteristics and abnormality in trisomy 21. Cell Rep 2024; 43:114586. [PMID: 39137113 DOI: 10.1016/j.celrep.2024.114586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/29/2024] [Accepted: 07/19/2024] [Indexed: 08/15/2024] Open
Abstract
Our understanding of human fetal cerebellum development during the late second trimester, a critical period for the generation of astrocytes, oligodendrocytes, and unipolar brush cells (UBCs), remains limited. Here, we performed single-cell RNA sequencing (scRNA-seq) in human fetal cerebellum samples from gestational weeks (GWs) 18-25. We find that proliferating UBC progenitors distribute in the subventricular zone of the rhombic lip (RLSVZ) near white matter (WM), forming a layer structure. We also delineate two trajectories from astrogenic radial glia (ARGs) to Bergmann glial progenitors (BGPs) and recognize oligodendrogenic radial glia (ORGs) as one source of primitive oligodendrocyte progenitor cells (PriOPCs). Additionally, our scRNA-seq analysis of the trisomy 21 fetal cerebellum at this stage reveals abnormal upregulated genes in pathways such as the cell adhesion pathway and focal adhesion pathway, which potentially promote neuronal differentiation. Overall, our research provides valuable insights into normal and abnormal development of the human fetal cerebellum.
Collapse
Affiliation(s)
- Hongmin Yu
- Biomedical Pioneering Innovation Center, Department of Obstetrics and Gynecology, Academy for Advanced Interdisciplinary Studies, Third Hospital, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
| | - Yun Liu
- Biomedical Pioneering Innovation Center, Department of Obstetrics and Gynecology, Academy for Advanced Interdisciplinary Studies, Third Hospital, Peking University, Beijing 100871, China; Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China; Changping Laboratory, Changping Laboratory, Yard 28, Science Park Road, Changping District, Beijing 102206, China
| | - Fanqing Xu
- Biomedical Pioneering Innovation Center, Department of Obstetrics and Gynecology, Academy for Advanced Interdisciplinary Studies, Third Hospital, Peking University, Beijing 100871, China; Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Yuanyuan Fu
- Biomedical Pioneering Innovation Center, Department of Obstetrics and Gynecology, Academy for Advanced Interdisciplinary Studies, Third Hospital, Peking University, Beijing 100871, China; Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
| | - Ming Yang
- Biomedical Pioneering Innovation Center, Department of Obstetrics and Gynecology, Academy for Advanced Interdisciplinary Studies, Third Hospital, Peking University, Beijing 100871, China; Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Ling Ding
- Biomedical Pioneering Innovation Center, Department of Obstetrics and Gynecology, Academy for Advanced Interdisciplinary Studies, Third Hospital, Peking University, Beijing 100871, China; Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Yixuan Wu
- Biomedical Pioneering Innovation Center, Department of Obstetrics and Gynecology, Academy for Advanced Interdisciplinary Studies, Third Hospital, Peking University, Beijing 100871, China; Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Fuchou Tang
- Biomedical Pioneering Innovation Center, Department of Obstetrics and Gynecology, Academy for Advanced Interdisciplinary Studies, Third Hospital, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China; Changping Laboratory, Changping Laboratory, Yard 28, Science Park Road, Changping District, Beijing 102206, China
| | - Jie Qiao
- Biomedical Pioneering Innovation Center, Department of Obstetrics and Gynecology, Academy for Advanced Interdisciplinary Studies, Third Hospital, Peking University, Beijing 100871, China; Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China.
| | - Lu Wen
- Biomedical Pioneering Innovation Center, Department of Obstetrics and Gynecology, Academy for Advanced Interdisciplinary Studies, Third Hospital, Peking University, Beijing 100871, China; Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China; Changping Laboratory, Changping Laboratory, Yard 28, Science Park Road, Changping District, Beijing 102206, China.
| |
Collapse
|
16
|
Sukreet S, Rafii MS, Rissman RA. From understanding to action: Exploring molecular connections of Down syndrome to Alzheimer's disease for targeted therapeutic approach. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2024; 16:e12580. [PMID: 38623383 PMCID: PMC11016820 DOI: 10.1002/dad2.12580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 04/17/2024]
Abstract
Down syndrome (DS) is caused by a third copy of chromosome 21. Alzheimer's disease (AD) is a neurodegenerative condition characterized by the deposition of amyloid-beta (Aβ) plaques and neurofibrillary tangles in the brain. Both disorders have elevated Aβ, tau, dysregulated immune response, and inflammation. In people with DS, Hsa21 genes like APP and DYRK1A are overexpressed, causing an accumulation of amyloid and neurofibrillary tangles, and potentially contributing to an increased risk of AD. As a result, people with DS are a key demographic for research into AD therapeutics and prevention. The molecular links between DS and AD shed insights into the underlying causes of both diseases and highlight potential therapeutic targets. Also, using biomarkers for early diagnosis and treatment monitoring is an active area of research, and genetic screening for high-risk individuals may enable earlier intervention. Finally, the fundamental mechanistic parallels between DS and AD emphasize the necessity for continued research into effective treatments and prevention measures for DS patients at risk for AD. Genetic screening with customized therapy approaches may help the DS population in current clinical studies and future biomarkers.
Collapse
Affiliation(s)
- Sonal Sukreet
- Department of NeurosciencesUniversity of California‐San DiegoLa JollaCaliforniaUSA
| | - Michael S. Rafii
- Department of Neurology, Alzheimer's Therapeutic Research InstituteKeck School of Medicine of the University of Southern CaliforniaSan DiegoCaliforniaUSA
| | - Robert A. Rissman
- Department of NeurosciencesUniversity of California‐San DiegoLa JollaCaliforniaUSA
- Department Physiology and Neuroscience, Alzheimer’s Therapeutic Research InstituteKeck School of Medicine of the University of Southern CaliforniaSan DiegoCaliforniaUSA
| |
Collapse
|
17
|
Zhao H, Lou G, Shao Y, Wang T, Wang H, Guo Q, Yang W, Liu H, Liao S. Competing Endogenous RNAs Crosstalk in Hippocampus: A Potential Mechanism for Neuronal Developing Defects in Down Syndrome. J Mol Neurosci 2024; 74:32. [PMID: 38536538 DOI: 10.1007/s12031-024-02205-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/02/2024] [Indexed: 07/20/2024]
Abstract
Down syndrome (DS) is the most example of aneuploidy, resulting from an additional copy of all or part of chromosome 21. Competing endogenous RNAs (ceRNAs) play important roles in neuronal development and neurological defects. This study aimed to identify hub genes and synergistic crosstalk among ceRNAs in the DS fetal hippocampus as potential targets for the treatment of DS-related neurodegenerative diseases. We profiled differentially expressed long non-coding RNAs (DElncRNAs), differentially expressed circular RNAs (DEcircRNAs), differentially expressed microRNAs (DEmiRNAs), and differentially expressed messenger RNAs (DEmRNAs) in hippocampal samples from patients with or without DS. Functional enrichment analysis and gene set enrichment analysis were performed, and chromosome 21-related ceRNA and protein-protein interaction networks were constructed. Additionally, the correlations between lncRNA-mRNA and miRNA-mRNA expression in the samples and HEK293T cells were validated. Our finding of changes in the expression of some key genes and ncRNAs on chromosome 21 in DS might not fully conform to the gene dosage hypothesis. Moreover, we found that four lncRNAs (MIR99AHG, PLCB4, SNHG14, GIGYF2) and one circRNA (hsa_circ_0061697) may competitively bind with three miRNAs (hsa-miR-548b-5p, miR-730-5p, and hsa-miR-548i) and subsequently regulate five mRNAs (beta-1,3-galactosyltransferase 5 [B3GALT5], helicase lymphoid-specific [HELLS], thrombospondin-2 [THBS2], glycinamide ribonucleotide transformylase [GART], clathrin heavy chain like 1 [CLTCL1]). These RNAs, whether located on chromosome 21 or not, interact with each other and might activate the PI3K/Akt/mTOR and Wnt signaling pathways, which are involved in autophagosome formation and tau hyperphosphorylation, possibly leading to adverse consequences of trisomy 21. These findings provide researchers with a better understanding of the fundamental molecular mechanisms underlying DS-related progressive defects in neuronal development.
Collapse
Affiliation(s)
- Huiru Zhao
- National Health Commission Key Laboratory of Birth Defects Prevention, Henan Provincial People's Hospital, Medical Genetics Institute of Henan Province, Henan Provincial Key Laboratory of Genetic Diseases and Functional Genomics, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Guiyu Lou
- National Health Commission Key Laboratory of Birth Defects Prevention, Henan Provincial People's Hospital, Medical Genetics Institute of Henan Province, Henan Provincial Key Laboratory of Genetic Diseases and Functional Genomics, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Yupu Shao
- Experimental Center, Department of Basic Medicine, Henan Medical College, Zhengzhou, China
| | - Tao Wang
- National Health Commission Key Laboratory of Birth Defects Prevention, Henan Provincial People's Hospital, Medical Genetics Institute of Henan Province, Henan Provincial Key Laboratory of Genetic Diseases and Functional Genomics, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongdan Wang
- National Health Commission Key Laboratory of Birth Defects Prevention, Henan Provincial People's Hospital, Medical Genetics Institute of Henan Province, Henan Provincial Key Laboratory of Genetic Diseases and Functional Genomics, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Qiannan Guo
- National Health Commission Key Laboratory of Birth Defects Prevention, Henan Provincial People's Hospital, Medical Genetics Institute of Henan Province, Henan Provincial Key Laboratory of Genetic Diseases and Functional Genomics, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenke Yang
- National Health Commission Key Laboratory of Birth Defects Prevention, Henan Provincial People's Hospital, Medical Genetics Institute of Henan Province, Henan Provincial Key Laboratory of Genetic Diseases and Functional Genomics, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongyan Liu
- National Health Commission Key Laboratory of Birth Defects Prevention, Henan Provincial People's Hospital, Medical Genetics Institute of Henan Province, Henan Provincial Key Laboratory of Genetic Diseases and Functional Genomics, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Shixiu Liao
- National Health Commission Key Laboratory of Birth Defects Prevention, Henan Provincial People's Hospital, Medical Genetics Institute of Henan Province, Henan Provincial Key Laboratory of Genetic Diseases and Functional Genomics, People's Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
18
|
Ramba M, Bogunovic D. The immune system in Down Syndrome: Autoimmunity and severe infections. Immunol Rev 2024; 322:300-310. [PMID: 38050836 PMCID: PMC10950520 DOI: 10.1111/imr.13296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 12/07/2023]
Abstract
Over 200,000 individuals in the United States alone live with Down Syndrome (DS), the most common genetic disorder associated with intellectual disability. DS has a constellation of features across the body, including dysregulation of the immune system. Individuals with DS have both a higher frequency of autoimmunity and more severe infections than the general population, highlighting the importance of understanding the immune system in this population. Individuals with DS present with dysregulation of both the innate and adaptive immune systems. Elevated cytokine levels, increased type I and type II IFN signaling, a shift toward memory phenotypes in T cells, and a decrease in the size of the B-cell compartment are observed in individuals with DS, which contribute to both autoinflammation and severe infections. Herein, we discuss the current knowledge of the immune system in individuals with Down Syndrome as well as ideas of necessary further investigations to decipher the mechanisms by which trisomy 21 leads to immune dysregulation, with the ultimate goal of identifying clinical targets to improve treatment.
Collapse
Affiliation(s)
- Meredith Ramba
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai New York, NY, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dusan Bogunovic
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai New York, NY, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
19
|
Hergenreder T, Yang T, Ye B. The role of Down syndrome cell adhesion molecule in Down syndrome. MEDICAL REVIEW (2021) 2024; 4:31-41. [PMID: 38515781 PMCID: PMC10954295 DOI: 10.1515/mr-2023-0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/18/2024] [Indexed: 03/23/2024]
Abstract
Down syndrome (DS) is caused by the presence of an extra copy of the entire or a portion of human chromosome 21 (HSA21). This genomic alteration leads to elevated expression of numerous HSA21 genes, resulting in a variety of health issues in individuals with DS. Among the genes located in the DS "critical region" of HSA21, Down syndrome cell adhesion molecule (DSCAM) plays an important role in neuronal development. There is a growing body of evidence underscoring DSCAM's involvement in various DS-related disorders. This review aims to provide a concise overview of the established functions of DSCAM, with a particular focus on its implications in DS. We delve into the roles that DSCAM plays in DS-associated diseases. In the concluding section of this review, we explore prospective avenues for future research to further unravel DSCAM's role in DS and opportunities for therapeutic treatments.
Collapse
Affiliation(s)
- Ty Hergenreder
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Tao Yang
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Bing Ye
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
20
|
Abukhaled Y, Hatab K, Awadhalla M, Hamdan H. Understanding the genetic mechanisms and cognitive impairments in Down syndrome: towards a holistic approach. J Neurol 2024; 271:87-104. [PMID: 37561187 PMCID: PMC10769995 DOI: 10.1007/s00415-023-11890-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 08/11/2023]
Abstract
The most common genetic cause of intellectual disability is Down syndrome (DS), trisomy 21. It commonly results from three copies of human chromosome 21 (HC21). There are no mutations or deletions involved in DS. Instead, the phenotype is caused by altered transcription of the genes on HC21. These transcriptional variations are responsible for a myriad of symptoms affecting every organ system. A very debilitating aspect of DS is intellectual disability (ID). Although tremendous advances have been made to try and understand the underlying mechanisms of ID, there is a lack of a unified, holistic view to defining the cause and managing the cognitive impairments. In this literature review, we discuss the mechanisms of neuronal over-inhibition, abnormal morphology, and other genetic factors in contributing to the development of ID in DS patients and to gain a holistic understanding of ID in DS patients. We also highlight potential therapeutic approaches to improve the quality of life of DS patients.
Collapse
Affiliation(s)
- Yara Abukhaled
- Department of Physiology and Immunology, College of Medicine, and Health Sciences, Khalifa University, 127788, Abu Dhabi, United Arab Emirates
| | - Kenana Hatab
- Department of Physiology and Immunology, College of Medicine, and Health Sciences, Khalifa University, 127788, Abu Dhabi, United Arab Emirates
| | - Mohammad Awadhalla
- Department of Physiology and Immunology, College of Medicine, and Health Sciences, Khalifa University, 127788, Abu Dhabi, United Arab Emirates
| | - Hamdan Hamdan
- Department of Physiology and Immunology, College of Medicine, and Health Sciences, Khalifa University, 127788, Abu Dhabi, United Arab Emirates.
- Healthcare Engineering Innovation Center (HEIC), Khalifa University, 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
21
|
Perluigi M, Di Domenico F, Butterfield DA. Oxidative damage in neurodegeneration: roles in the pathogenesis and progression of Alzheimer disease. Physiol Rev 2024; 104:103-197. [PMID: 37843394 PMCID: PMC11281823 DOI: 10.1152/physrev.00030.2022] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/30/2023] [Accepted: 05/24/2023] [Indexed: 10/17/2023] Open
Abstract
Alzheimer disease (AD) is associated with multiple etiologies and pathological mechanisms, among which oxidative stress (OS) appears as a major determinant. Intriguingly, OS arises in various pathways regulating brain functions, and it seems to link different hypotheses and mechanisms of AD neuropathology with high fidelity. The brain is particularly vulnerable to oxidative damage, mainly because of its unique lipid composition, resulting in an amplified cascade of redox reactions that target several cellular components/functions ultimately leading to neurodegeneration. The present review highlights the "OS hypothesis of AD," including amyloid beta-peptide-associated mechanisms, the role of lipid and protein oxidation unraveled by redox proteomics, and the antioxidant strategies that have been investigated to modulate the progression of AD. Collected studies from our groups and others have contributed to unraveling the close relationships between perturbation of redox homeostasis in the brain and AD neuropathology by elucidating redox-regulated events potentially involved in both the pathogenesis and progression of AD. However, the complexity of AD pathological mechanisms requires an in-depth understanding of several major intracellular pathways affecting redox homeostasis and relevant for brain functions. This understanding is crucial to developing pharmacological strategies targeting OS-mediated toxicity that may potentially contribute to slow AD progression as well as improve the quality of life of persons with this severe dementing disorder.
Collapse
Affiliation(s)
- Marzia Perluigi
- Department of Biochemical Sciences "A. Rossi Fanelli," Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Fabio Di Domenico
- Department of Biochemical Sciences "A. Rossi Fanelli," Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - D Allan Butterfield
- Department of Chemistry and Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States
| |
Collapse
|
22
|
Guo Z, Xiao H, Yang W, Li T, Hao B, Liao S. Transcriptome research of human amniocytes identifies hub genes associated with developmental dysplasia in down syndrome. Aging (Albany NY) 2023; 15:14086-14108. [PMID: 38095646 PMCID: PMC10756088 DOI: 10.18632/aging.205291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/02/2023] [Indexed: 12/21/2023]
Abstract
Trisomy 21, or Down syndrome (DS), is the most frequent human autosomal chromosome aneuploidy, which leads to multiple developmental disorders, especially mental retardation in individuals. The presence of an additional human chromosome 21 (HSA21) could account for the pathological manifestations in DS. In this study, we analyzed the mRNA gene expression profile of DS-derived amniocytes compared with normal amniocytes, aiming to evaluate the relationship between candidate dysregulated HSA21 genes and DS developmental phenotypes. Differentially expressed genes (DEGs) included 1794 upregulated genes and 1411 downregulated genes, which are mainly involved in cell adhesion, inflammation, cell proliferation and thus may play an important role in inducing multiple dysplasia during DS fetal development. Furthermore, STRING protein network studies demonstrated 7 candidate HSA21 genes participated Gene Ontology (GO) terms: cell adhesion and extracellular matrix remodeling (COL6A1, COL6A2, COL18A1, ADAMTS5, JAM2, and POFUT2), inflammation and virus infection response (MX1 and MX2), histone modification and chromatin remodeling (NRIP1), glycerolipid and glycerophospholipid metabolism (AGPAT3), mitochondrial function (ATP5PF and ATP5PO), synaptic vesicle endocytosis (ITSN1 and SYNJ1) and amyloid metabolism (APP). Meanwhile, GSEA enrichment identified several transcription factors and miRNAs, which may target gene expression in the DS group. Our study established connections between dysregulated genes, especially HSA21 genes, and DS-associated phenotypes. The alteration of multiple pathways and biological processes may contribute to DS developmental disorders, providing potential pathogenesis and therapeutic targets for DS.
Collapse
Affiliation(s)
- Zhenglong Guo
- Henan Provincial Key Laboratory of Genetic Diseases and Functional Genomics, National Health Commission Key Laboratory of Birth Defects Prevention, Medical Genetic Institute of Henan Province, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
- School of Medicine, People’s Hospital of Henan University, Henan University, Zhengzhou, China
| | - Hai Xiao
- Henan Provincial Key Laboratory of Genetic Diseases and Functional Genomics, National Health Commission Key Laboratory of Birth Defects Prevention, Medical Genetic Institute of Henan Province, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
- School of Medicine, People’s Hospital of Henan University, Henan University, Zhengzhou, China
| | - Wenke Yang
- Henan Provincial Key Laboratory of Genetic Diseases and Functional Genomics, National Health Commission Key Laboratory of Birth Defects Prevention, Medical Genetic Institute of Henan Province, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
- School of Medicine, People’s Hospital of Henan University, Henan University, Zhengzhou, China
| | - Tao Li
- Department of Medicine Laboratory, Fuwai Central China Cardiovascular Hospital, Zhengzhou, China
| | - Bingtao Hao
- Henan Provincial Key Laboratory of Genetic Diseases and Functional Genomics, National Health Commission Key Laboratory of Birth Defects Prevention, Medical Genetic Institute of Henan Province, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
- School of Medicine, People’s Hospital of Henan University, Henan University, Zhengzhou, China
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shixiu Liao
- Henan Provincial Key Laboratory of Genetic Diseases and Functional Genomics, National Health Commission Key Laboratory of Birth Defects Prevention, Medical Genetic Institute of Henan Province, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
- School of Medicine, People’s Hospital of Henan University, Henan University, Zhengzhou, China
| |
Collapse
|
23
|
Harisinghani A, Raffaele G, Zawatsky CB, Santoro SL. Beyond chromosome analysis: Additional genetic testing practice in a Down syndrome clinic. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2023; 193:e32063. [PMID: 37774106 DOI: 10.1002/ajmg.c.32063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/29/2023] [Accepted: 09/09/2023] [Indexed: 10/01/2023]
Abstract
Down syndrome (DS) and other genetic conditions have been reported to co-occur in the same person. This study sought to examine the genetic evaluation beyond chromosome analysis of individuals with DS at one DS specialty clinic. Retrospective chart review of genetic testing performed beyond chromosome analysis, the indication for the genetic testing, and the result of the genetic testing from the electronic health record was performed. Demographic information was collected and summary statistics, including mean and frequency, were calculated. The charts of 637 individuals with DS were reviewed. Overall, 146 genetic tests in addition to routine chromosome analysis were performed on 92 individuals with DS. Tests included chromosomal microarray, gene panels, and whole exome sequencing. Tests were performed for the indication of: autism spectrum disorder, celiac disease, dementia, hematologic diseases, and others. Eleven individuals with DS were found to have a second genetic diagnosis. Individuals with DS in one multidisciplinary clinic for DS had a variety of genetic tests beyond chromosomes completed, for varied indications, and with some abnormal results leading to additional diagnoses. Additional genetic testing beyond chromosome analysis is a reasonable consideration for patients with DS who have features suggestive of a secondary diagnosis.
Collapse
Affiliation(s)
- Ayesha Harisinghani
- Down Syndrome Program, Division of Medical Genetics and Metabolism, Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | - Carrie Blout Zawatsky
- Institute of Health Professions, MGH, Boston, Massachusetts, USA
- Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Stephanie L Santoro
- Down Syndrome Program, Division of Medical Genetics and Metabolism, Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
24
|
Tang H, Hu J, Liu L, Lv L, Lu J, Yang J, Lu J, Chen Z, Yang C, Chen D, Fu J, Wu J. Prenatal diagnosis of Down syndrome combined with transient abnormal myelopoiesis in foetuses with a GATA1 gene variant: two case reports. Mol Cytogenet 2023; 16:27. [PMID: 37858167 PMCID: PMC10588144 DOI: 10.1186/s13039-023-00658-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 09/27/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Down syndrome myeloid hyperplasia includes transient abnormal myelopoiesis (TAM) and the myeloid leukemia associated with Down syndrome (ML-DS). The mutation of GATA1 gene is essential in the development of Down syndrome combined with TAM or ML-DS. Some patients with TAM are asymptomatic and may also present with severe manifestations such as hepatosplenomegaly and hydrops. CASE PRESENTATION We report two cases of prenatally diagnosed TAM. One case was a rare placental low percentage 21 trisomy mosiacism, resulting in the occurrence of a false negative NIPT. The final diagnosis was made at 36 weeks of gestation when ultrasound revealed significant enlargement of the foetal liver and spleen and an enlarged heart; the foetus eventually died in utero. We detected a placenta with a low percentage (5-8%) of trisomy 21 mosiacism by Copy Number Variation Sequencing (CNV-seq) and Fluorescence in situ hybridization (FISH). In another case, foetal oedema was detected by ultrasound at 31 weeks of gestation. Two foetuses were diagnosed with Down syndrome by chromosomal microarray analysis via umbilical vein puncture and had significantly elevated cord blood leucocyte counts with large numbers of blasts. The GATA1 Sanger sequencing results suggested the presence of a [NM_002049.4(GATA1):c.220G > A (p. Val74Ile)] hemizygous variant and a [NM_002049.4(GATA1):c.49dupC(p. Gln17ProfsTer23)] hemizygous variant of the GATA1 gene in two cases. CONCLUSION It seems highly likely that these two identified mutations are the genetic cause of prenatal TAM in foetuses with Down syndrome.
Collapse
Affiliation(s)
- Hui Tang
- Gentic Medical Center, Guangdong Women and Children Hospital, Guangzhou, People's Republic of China
| | - Jingjing Hu
- Gentic Medical Center, Guangdong Women and Children Hospital, Guangzhou, People's Republic of China
| | - Ling Liu
- Gentic Medical Center, Guangdong Women and Children Hospital, Guangzhou, People's Republic of China
| | - Lijuan Lv
- Gentic Medical Center, Guangdong Women and Children Hospital, Guangzhou, People's Republic of China
| | - Jian Lu
- Gentic Medical Center, Guangdong Women and Children Hospital, Guangzhou, People's Republic of China
| | - Jiexia Yang
- Gentic Medical Center, Guangdong Women and Children Hospital, Guangzhou, People's Republic of China
| | - Jiaqi Lu
- Gentic Medical Center, Guangdong Women and Children Hospital, Guangzhou, People's Republic of China
| | - Zhenhui Chen
- Laboratory Department, Guangdong Women and Children Hospital, Guangzhou, People's Republic of China
| | - Chaoxiang Yang
- Radiology Department, Guangdong Women and Children Hospital, Guangzhou, People's Republic of China
| | - Dan Chen
- Ultrasound Department, Guangdong Women and Children Hospital, Guangzhou, People's Republic of China
| | - Jintao Fu
- Pathology Department, Guangdong Women and Children Hospital, Guangzhou, People's Republic of China
| | - Jing Wu
- Gentic Medical Center, Guangdong Women and Children Hospital, Guangzhou, People's Republic of China.
| |
Collapse
|
25
|
Peroni E, Gottardi M, D’Antona L, Randi ML, Rosato A, Coltro G. Hematologic Neoplasms Associated with Down Syndrome: Cellular and Molecular Heterogeneity of the Diseases. Int J Mol Sci 2023; 24:15325. [PMID: 37895004 PMCID: PMC10607483 DOI: 10.3390/ijms242015325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
The molecular basis of Down syndrome (DS) predisposition to leukemia is not fully understood but involves various factors such as chromosomal abnormalities, oncogenic mutations, epigenetic alterations, and changes in selection dynamics. Myeloid leukemia associated with DS (ML-DS) is preceded by a preleukemic phase called transient abnormal myelopoiesis driven by GATA1 gene mutations and progresses to ML-DS via additional mutations in cohesin genes, CTCF, RAS, or JAK/STAT pathway genes. DS-related ALL (ALL-DS) differs from non-DS ALL in terms of cytogenetic subgroups and genetic driver events, and the aberrant expression of CRLF2, JAK2 mutations, and RAS pathway-activating mutations are frequent in ALL-DS. Recent advancements in single-cell multi-omics technologies have provided unprecedented insights into the cellular and molecular heterogeneity of DS-associated hematologic neoplasms. Single-cell RNA sequencing and digital spatial profiling enable the identification of rare cell subpopulations, characterization of clonal evolution dynamics, and exploration of the tumor microenvironment's role. These approaches may help identify new druggable targets and tailor therapeutic interventions based on distinct molecular profiles, ultimately improving patient outcomes with the potential to guide personalized medicine approaches and the development of targeted therapies.
Collapse
Affiliation(s)
- Edoardo Peroni
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology, IOV-IRCCS, 35128 Padova, Italy
| | - Michele Gottardi
- Onco Hematology, Department of Oncology, Veneto Institute of Oncology, IOV-IRCCS, 31033 Padua, Italy
| | - Lucia D’Antona
- Medical Genetics Unit, Mater Domini University Hospital, 88100 Catanzaro, Italy
| | - Maria Luigia Randi
- First Medical Clinic, Department of Medicine-DIMED, University of Padova, 35128 Padova, Italy
| | - Antonio Rosato
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology, IOV-IRCCS, 35128 Padova, Italy
- Department of Surgery Oncology and Gastroenterology, University of Padova, 35122 Padova, Italy
| | - Giacomo Coltro
- Department of Clinical and Experimental Medicine, University of Florence, 50134 Florence, Italy
- Center of Research and Innovation for Myeloproliferative Neoplasms, CRIMM, AOU Careggi, 50134 Florence, Italy
| |
Collapse
|
26
|
Bevilacqua Junior DE, Mello ECD, Lage JB, Ribeiro MF, Ferreira AA, Teixeira VDPA, Espindula AP. Analysis of strength and electromyographic activity of lower limbs of individuals with down syndrome assisted in physiotherapy and hippotherapy. J Bodyw Mov Ther 2023; 36:83-88. [PMID: 37949604 DOI: 10.1016/j.jbmt.2023.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/05/2023] [Accepted: 05/27/2023] [Indexed: 11/12/2023]
Abstract
INTRODUCTION one of the characteristics of Down Syndrome (DS) is muscle hypotonia. Different therapeutic approaches have a positive influence, between them Physiotherapy applications with different therapeutic approaches such as Hippotherapy have a positive effect on the physical health and quality of live of individuals with DS. OBJECTIVE to evaluate the effects of both treatments on the strength and electromyographic activity of the lower limbs of children and adolescents with DS. METHODS fourteen individuals, aged between 10 and 18 years, participated in two groups: Physiotherapy group (n = 5) and Hippotherapy group (n = 9). Thirty interventions were performed for each type of therapy, once a week, lasting 30 min. Pre and post-interventions, the 30-Second Chair Stand Test (30s-CST) was used to assess the strength of the lower limbs and the surface electromyography equipment (EMG 800RF) to assess the lower limb myoelectric activity. RESULTS there was a reduction in the post-intervention electromyographic values for both treatments (p˂0.001), with significantly less myoelectric activity in Hippotherapy compared to Physiotherapy for all evaluated muscles (p˂0.001) and a significant increase in muscle strength for the Hippotherapy, post-intervention group (p = 0.0007). CONCLUSION Physiotherapy and Hippotherapy are interventions that promote positive changes in the myoelectric activities of individuals with DS. However, only hippotherapy promoted an increase in strength of the lower limbs.
Collapse
Affiliation(s)
- Domingos Emanuel Bevilacqua Junior
- Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, Brazil; Associação de Pais e Amigos dos Excepcionais de Uberaba, Minas Gerais, Brazil
| | - Edneia Corrêa de Mello
- Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, Brazil; Faculdade de Odontologia de Ribeirão Preto da Universidade de São Paulo, São Paulo, Brazil
| | - Janaine Brandão Lage
- Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, Brazil; Associação de Pais e Amigos dos Excepcionais de Uberaba, Minas Gerais, Brazil
| | - Mariane Fernandes Ribeiro
- Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, Brazil; Faculdade de Patos de Minas, Pato de Minas, Minas Gerais, Brazil
| | | | | | - Ana Paula Espindula
- Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, Brazil; Associação de Pais e Amigos dos Excepcionais de Uberaba, Minas Gerais, Brazil.
| |
Collapse
|
27
|
Huang YN, Huang JY, Wang CH, Su PH. Long-Term Non-Congenital Cardiac and Renal Complications in Down Syndrome: A Study of 32,936 Patients. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1351. [PMID: 37628350 PMCID: PMC10453106 DOI: 10.3390/children10081351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/27/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023]
Abstract
BACKGROUND Individuals with Down syndrome are at a higher risk of cardiac, renal, and other health issues due to a complex disease physiology. However, few data exist on long-term disease risks to guide prevention and care. We aimed to determine the 10-year incidence of cardiac, renal, and urinary tract complications in Down syndrome versus matched controls. METHODS This retrospective cohort study utilized a large collaborative database. We identified 32,444 patients with Down syndrome and matched controls, excluding those with pre-follow-up target events. Covariates included demographics, lifestyle factors, and comorbidities. Outcomes were ischemic heart disease, hypertension, hypothyroidism, epilepsy, urinary tract infections and chronic kidney disease. We calculated unadjusted and adjusted hazard ratios (HRs) and 95% confidence intervals (CIs) using Cox regression and plotted Kaplan-Meier survival curves. FINDINGS Over 10 years, Down syndrome patients showed a 3.7-fold higher ischemic heart disease risk (95% CI: 3.0-4.6) and a 1.6-fold higher hypertension risk (95% CI: 1.4-1.8) versus controls. Hypothyroidism (HR = 2.0; 95% CI: 1.7-2.4), epilepsy (HR = 4.5; 95% CI: 3.5-5.8), and urinary tract infection (HR = 3.9; 95% CI: 3.4-4.6) risks were also higher. Chronic kidney disease risk was 2.7-fold greater (95% CI: 2.1-3.5). Survival analysis confirmed a significantly higher incidence of all outcomes in Down syndrome (p < 0.0001). INTERPRETATION This large study found major health challenges in Down syndrome, with risks 3- to 5-fold higher for chronic conditions versus matched controls over 10 years. Though survival remains high with proper care, focusing resources on the prevention and management of complications in this high-risk group can optimize well-being across the lifespan. Future research accounting for limitations here would provide definitive estimates of disease risk in Down syndrome to guide targeted health strategies.
Collapse
Affiliation(s)
- Yu-Nan Huang
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung 402306, Taiwan (C.-H.W.)
- School of Medicine, Chung Shan Medical University, Taichung 402306, Taiwan
| | - Jing-Yang Huang
- Center for Health Data Science, Chung Shan Medical University Hospital, Taichung 402306, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung 402306, Taiwan
| | - Chung-Hsing Wang
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung 402306, Taiwan (C.-H.W.)
- School of Medicine, Chung Shan Medical University, Taichung 402306, Taiwan
- Division of Genetics and Metabolism, Children’s Hospital of China Medical University, Taichung 404327, Taiwan
- School of Medicine, China Medical University, Taichung 404327, Taiwan
| | - Pen-Hua Su
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung 402306, Taiwan (C.-H.W.)
- School of Medicine, Chung Shan Medical University, Taichung 402306, Taiwan
| |
Collapse
|
28
|
Chi C, Knight WE, Riching AS, Zhang Z, Tatavosian R, Zhuang Y, Moldovan R, Rachubinski AL, Gao D, Xu H, Espinosa JM, Song K. Interferon hyperactivity impairs cardiogenesis in Down syndrome via downregulation of canonical Wnt signaling. iScience 2023; 26:107012. [PMID: 37360690 PMCID: PMC10285545 DOI: 10.1016/j.isci.2023.107012] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/03/2023] [Accepted: 05/28/2023] [Indexed: 06/28/2023] Open
Abstract
Congenital heart defects (CHDs) are frequent in children with Down syndrome (DS), caused by trisomy of chromosome 21. However, the underlying mechanisms are poorly understood. Here, using a human-induced pluripotent stem cell (iPSC)-based model and the Dp(16)1Yey/+ (Dp16) mouse model of DS, we identified downregulation of canonical Wnt signaling downstream of increased dosage of interferon (IFN) receptors (IFNRs) genes on chromosome 21 as a causative factor of cardiogenic dysregulation in DS. We differentiated human iPSCs derived from individuals with DS and CHDs, and healthy euploid controls into cardiac cells. We observed that T21 upregulates IFN signaling, downregulates the canonical WNT pathway, and impairs cardiac differentiation. Furthermore, genetic and pharmacological normalization of IFN signaling restored canonical WNT signaling and rescued defects in cardiogenesis in DS in vitro and in vivo. Our findings provide insights into mechanisms underlying abnormal cardiogenesis in DS, ultimately aiding the development of therapeutic strategies.
Collapse
Affiliation(s)
- Congwu Chi
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus; Aurora, CO 80045, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus; Aurora, CO 80045, USA
- Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado Anschutz Medical Campus; Aurora, CO 80045, USA
| | - Walter E. Knight
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus; Aurora, CO 80045, USA
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus; Aurora, CO 80045, USA
| | - Andrew S. Riching
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus; Aurora, CO 80045, USA
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus; Aurora, CO 80045, USA
| | - Zhen Zhang
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus; Aurora, CO 80045, USA
| | - Roubina Tatavosian
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus; Aurora, CO 80045, USA
- Department of Pharmacology, University of Colorado Anschutz Medical Campus; Aurora, CO 80045, USA
| | - Yonghua Zhuang
- Department of Pediatrics, University of Colorado Anschutz Medical Campus; Aurora, CO 80045, USA
| | - Radu Moldovan
- Department of Pharmacology, University of Colorado Anschutz Medical Campus; Aurora, CO 80045, USA
| | - Angela L. Rachubinski
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus; Aurora, CO 80045, USA
- Department of Pediatrics, University of Colorado Anschutz Medical Campus; Aurora, CO 80045, USA
| | - Dexiang Gao
- Department of Pediatrics, University of Colorado Anschutz Medical Campus; Aurora, CO 80045, USA
| | - Hongyan Xu
- Department of Population Health Sciences, Medical College of Georgia, Augusta University; Augusta, GA 30912, USA
| | - Joaquin M. Espinosa
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus; Aurora, CO 80045, USA
- Department of Pharmacology, University of Colorado Anschutz Medical Campus; Aurora, CO 80045, USA
| | - Kunhua Song
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus; Aurora, CO 80045, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus; Aurora, CO 80045, USA
- Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado Anschutz Medical Campus; Aurora, CO 80045, USA
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus; Aurora, CO 80045, USA
| |
Collapse
|
29
|
Tripathi SJ, Chakraborty S, Miller E, Pieper AA, Paul BD. Hydrogen sulfide signalling in neurodegenerative diseases. Br J Pharmacol 2023:10.1111/bph.16170. [PMID: 37338307 PMCID: PMC10730776 DOI: 10.1111/bph.16170] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 06/21/2023] Open
Abstract
The gaseous neurotransmitter hydrogen sulfide (H2 S) exerts neuroprotective efficacy in the brain via post-translational modification of cysteine residues by sulfhydration, also known as persulfidation. This process is comparable in biological impact to phosphorylation and mediates a variety of signalling events. Unlike conventional neurotransmitters, H2 S cannot be stored in vesicles due to its gaseous nature. Instead, it is either locally synthesized or released from endogenous stores. Sulfhydration affords both specific and general neuroprotective effects and is critically diminished in several neurodegenerative disorders. Conversely, some forms of neurodegenerative disease are linked to excessive cellular H2 S. Here, we review the signalling roles of H2 S across the spectrum of neurodegenerative diseases, including Huntington's disease, Parkinson's disease, Alzheimer's disease, Down syndrome, traumatic brain injury, the ataxias, and amyotrophic lateral sclerosis, as well as neurodegeneration generally associated with ageing.
Collapse
Affiliation(s)
- Sunil Jamuna Tripathi
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Suwarna Chakraborty
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Emiko Miller
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Andrew A Pieper
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
- Department of Psychiatry, Case Western Reserve University, Cleveland, Ohio, USA
- Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center; Cleveland, Ohio, USA
- School of Medicine, Institute for Transformative Molecular Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Neuroscience, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Translational Therapeutics Core, Cleveland Alzheimer's Disease Research Center, Cleveland, Ohio, USA
| | - Bindu D Paul
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Lieber Institute for Brain Development, Baltimore, Maryland, USA
| |
Collapse
|
30
|
Xing Z, Li Y, Cortes-Gomez E, Jiang X, Gao S, Pao A, Shan J, Song Y, Perez A, Yu T, Highsmith MR, Boadu F, Conroy JM, Singh PK, Bakin AV, Cheng J, Duan Z, Wang J, Liu S, Tycko B, Yu YE. Dissection of a Down syndrome-associated trisomy to separate the gene dosage-dependent and -independent effects of an extra chromosome. Hum Mol Genet 2023; 32:2205-2218. [PMID: 37014740 PMCID: PMC10281752 DOI: 10.1093/hmg/ddad056] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 02/13/2023] [Accepted: 03/27/2023] [Indexed: 04/05/2023] Open
Abstract
As an aneuploidy, trisomy is associated with mammalian embryonic and postnatal abnormalities. Understanding the underlying mechanisms involved in mutant phenotypes is broadly important and may lead to new strategies to treat clinical manifestations in individuals with trisomies, such as trisomy 21 [Down syndrome (DS)]. Although increased gene dosage effects because of a trisomy may account for the mutant phenotypes, there is also the possibility that phenotypic consequences of a trisomy can arise because of the presence of a freely segregating extra chromosome with its own centromere, i.e. a 'free trisomy' independent of gene dosage effects. Presently, there are no reports of attempts to functionally separate these two types of effects in mammals. To fill this gap, here we describe a strategy that employed two new mouse models of DS, Ts65Dn;Df(17)2Yey/+ and Dp(16)1Yey/Df(16)8Yey. Both models carry triplications of the same 103 human chromosome 21 gene orthologs; however, only Ts65Dn;Df(17)2Yey/+ mice carry a free trisomy. Comparison of these models revealed the gene dosage-independent impacts of an extra chromosome at the phenotypic and molecular levels for the first time. They are reflected by impairments of Ts65Dn;Df(17)2Yey/+ males in T-maze tests when compared with Dp(16)1Yey/Df(16)8Yey males. Results from the transcriptomic analysis suggest the extra chromosome plays a major role in trisomy-associated expression alterations of disomic genes beyond gene dosage effects. This model system can now be used to deepen our mechanistic understanding of this common human aneuploidy and obtain new insights into the effects of free trisomies in other human diseases such as cancers.
Collapse
Affiliation(s)
- Zhuo Xing
- The Children’s Guild Foundation Down Syndrome Research Program, Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Yichen Li
- The Children’s Guild Foundation Down Syndrome Research Program, Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Eduardo Cortes-Gomez
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Xiaoling Jiang
- The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Shuang Gao
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- Bioinformatics, OmniSeq Inc., Buffalo, NY, USA
| | - Annie Pao
- The Children’s Guild Foundation Down Syndrome Research Program, Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Jidong Shan
- Molecular Cytogenetics Core, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yinghui Song
- Molecular Cytogenetics Core, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Amanda Perez
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Tao Yu
- The Children’s Guild Foundation Down Syndrome Research Program, Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Max R Highsmith
- Department of Electric Engineering and Computer Science, University of Missouri, Columbia, MO, USA
| | - Frimpong Boadu
- Department of Electric Engineering and Computer Science, University of Missouri, Columbia, MO, USA
| | - Jeffrey M Conroy
- Research and Development, OmniSeq Inc., Buffalo, NY, USA
- Research Support Services, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Prashant K Singh
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Andrei V Bakin
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Jianlin Cheng
- Department of Electric Engineering and Computer Science, University of Missouri, Columbia, MO, USA
| | - Zhijun Duan
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Jianmin Wang
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Benjamin Tycko
- Hackensack-Meridian Health Center for Discovery and Innovation, Nutley, NJ, USA
- John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Y Eugene Yu
- The Children’s Guild Foundation Down Syndrome Research Program, Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- Genetics, Genomics and Bioinformatics Program, State University of New York at Buffalo, Buffalo, NY, USA
| |
Collapse
|
31
|
Huang T, Fakurazi S, Cheah PS, Ling KH. REST Targets JAK-STAT and HIF-1 Signaling Pathways in Human Down Syndrome Brain and Neural Cells. Int J Mol Sci 2023; 24:9980. [PMID: 37373133 DOI: 10.3390/ijms24129980] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Down syndrome (DS) is the most frequently diagnosed chromosomal disorder of chromosome 21 (HSA21) aneuploidy, characterized by intellectual disability and reduced lifespan. The transcription repressor, Repressor Element-1 Silencing Transcription factor (REST), which acts as an epigenetic regulator, is a crucial regulator of neuronal and glial gene expression. In this study, we identified and investigated the role of REST-target genes in human brain tissues, cerebral organoids, and neural cells in Down syndrome. Gene expression datasets generated from healthy controls and DS samples of human brain tissues, cerebral organoids, NPC, neurons, and astrocytes were retrieved from the Gene Ontology (GEO) and Sequence Read Archive (SRA) databases. Differential expression analysis was performed on all datasets to produce differential expression genes (DEGs) between DS and control groups. REST-targeted DEGs were subjected to functional ontologies, pathways, and network analyses. We found that REST-targeted DEGs in DS were enriched for the JAK-STAT and HIF-1 signaling pathways across multiple distinct brain regions, ages, and neural cell types. We also identified REST-targeted DEGs involved in nervous system development, cell differentiation, fatty acid metabolism and inflammation in the DS brain. Based on the findings, we propose REST as the critical regulator and a promising therapeutic target to modulate homeostatic gene expression in the DS brain.
Collapse
Affiliation(s)
- Tan Huang
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Sharida Fakurazi
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Pike-See Cheah
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - King-Hwa Ling
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Malaysian Research Institute on Ageing (MyAgeingTM), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
32
|
Tristão RM, Scafutto Marengo LA, Costa JFDD, Pires ALDS, Boato EM. The use of the cambridge neuropsychological test automated battery for people born with Down syndrome and those born premature: A comparative systematic review. JOURNAL OF INTELLECTUAL DISABILITIES : JOID 2023; 27:539-567. [PMID: 35166595 DOI: 10.1177/17446295211050460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
This review aimed to investigate the use of the Cambridge Neuropsychological Automated Testing Battery (CANTAB) for people at risk of cognitive impairment, especially those born with Down syndrome and those born preterm. Six databases were searched according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) standards, in addition to the bibliography index listed in the CANTAB site. Twenty four studies regarding Down syndrome and 17 regarding prematurity were reviewed and are here described. Both cognitive profiles were described, and their performance was compared on specific tasks and CANTAB tests. In this battery of tests, people with Down syndrome usually present impaired key cognitive domains, such as episodic memory and recognition memory. Results were presented considering general aspects described in the studies, specific findings such as dementia, the role of genetics, and cognitive profile, among other descriptions. Comparability between both populations in future studies is discussed.
Collapse
Affiliation(s)
- Rosana M Tristão
- Faculty of Medicine and University Hospital, Medicine of the Child and Adolescent, University of Brasilia, Brasilia, Brazil
| | | | | | - Ana Luísa Dos Santos Pires
- Faculty of Medicine and University Hospital, Medicine of the Child and Adolescent, University of Brasilia, Brasilia, Brazil
| | - Elvio M Boato
- Center for Science and Technology, CogniAction Lab, Catholic University of Brasilia, Brasilia, Brazil
| |
Collapse
|
33
|
Baksh RA, Pape SE, Chan LF, Aslam AA, Gulliford MC, Strydom A. Multiple morbidity across the lifespan in people with Down syndrome or intellectual disabilities: a population-based cohort study using electronic health records. Lancet Public Health 2023; 8:e453-e462. [PMID: 37119823 DOI: 10.1016/s2468-2667(23)00057-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/22/2023] [Accepted: 02/28/2023] [Indexed: 05/01/2023]
Abstract
BACKGROUND The Down syndrome phenotype is well established, but our understanding of its morbidity patterns is limited. We comprehensively estimated the risk of multiple morbidity across the lifespan in people with Down syndrome compared with the general population and controls with other forms of intellectual disability. METHODS In this matched population-based cohort-study design, we used electronic health-record data from the UK Clinical Practice Research Datalink (CRPD) from Jan 1, 1990, to June 29, 2020. We aimed to explore the pattern of morbidities throughout the lifespan of people with Down syndrome compared with people with other intellectual disabilities and the general population, to identify syndrome-specific health conditions and their age-related incidence. We estimated incidence rates per 1000 person-years and incidence rate ratios (IRRs) for 32 common morbidities. Hierarchical clustering was used to identify groups of associated conditions using prevalence data. FINDINGS Between Jan 1, 1990, and June 29, 2020, a total of 10 204 people with Down syndrome, 39 814 controls, and 69 150 people with intellectual disabilities were included. Compared with controls, people with Down syndrome had increased risk of dementia (IRR 94·7, 95% CI 69·9-128·4), hypothyroidism (IRR 10·6, 9·6-11·8), epilepsy (IRR 9·7, 8·5-10·9), and haematological malignancy (IRR 4·7, 3·4-6·3), whereas asthma (IRR 0·88, 0·79-0·98), cancer (solid tumour IRR 0·75, 0·62-0·89), ischaemic heart disease (IRR 0·65, 0·51-0·85), and particularly hypertension (IRR 0·26, 0·22-0·32) were less frequent in people with Down syndrome than in controls. Compared to people with intellectual disabilities, risk of dementia (IRR 16·60, 14·23-19·37), hypothyroidism (IRR 7·22, 6·62-7·88), obstructive sleep apnoea (IRR 4·45, 3·72-5·31), and haematological malignancy (IRR 3·44, 2·58-4·59) were higher in people with Down syndrome, with reduced rates for a third of conditions, including new onset of dental inflammation (IRR 0·88, 0·78-0·99), asthma (IRR 0·82, 0·73-0·91), cancer (solid tumour IRR 0·78, 0·65-0·93), sleep disorder (IRR 0·74, 0·68-0·80), hypercholesterolaemia (IRR 0·69, 0·60-0·80), diabetes (IRR 0·59, 0·52-0·66), mood disorder (IRR 0·55, 0·50-0·60), glaucoma (IRR 0·47, 0·29-0·78), and anxiety disorder (IRR 0·43, 0·38-0·48). Morbidities in Down syndrome could be categorised on age-related incidence trajectories, and their prevalence clustered into typical syndromic conditions, cardiovascular diseases, autoimmune disorders, and mental health conditions. INTERPRETATION Multiple morbidity in Down syndrome shows distinct patterns of age-related incidence trajectories and clustering that differ from those found in the general population and in people with other intellectual disabilities, with implications for provision and timing of health-care screening, prevention, and treatment for people with Down syndrome. FUNDING The European Union's Horizon 2020 Research and Innovation Programme, the Jérôme Lejeune Foundation, the Alzheimer's Society, the Medical Research Council, the Academy of Medical Sciences, the Wellcome Trust, and William Harvey Research Limited.
Collapse
Affiliation(s)
- R Asaad Baksh
- Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK; South London and Maudsley NHS Foundation Trust, London, UK; The LonDowns Consortium, London, UK
| | - Sarah E Pape
- Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK; South London and Maudsley NHS Foundation Trust, London, UK; The LonDowns Consortium, London, UK
| | - Li F Chan
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, UK
| | - Aisha A Aslam
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, UK
| | - Martin C Gulliford
- School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Andre Strydom
- Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK; South London and Maudsley NHS Foundation Trust, London, UK; The LonDowns Consortium, London, UK.
| |
Collapse
|
34
|
Sarver DC, Xu C, Rodriguez S, Aja S, Jaffe AE, Gao FJ, Delannoy M, Periasamy M, Kazuki Y, Oshimura M, Reeves RH, Wong GW. Hypermetabolism in mice carrying a near-complete human chromosome 21. eLife 2023; 12:e86023. [PMID: 37249575 PMCID: PMC10229126 DOI: 10.7554/elife.86023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 05/07/2023] [Indexed: 05/31/2023] Open
Abstract
The consequences of aneuploidy have traditionally been studied in cell and animal models in which the extrachromosomal DNA is from the same species. Here, we explore a fundamental question concerning the impact of aneuploidy on systemic metabolism using a non-mosaic transchromosomic mouse model (TcMAC21) carrying a near-complete human chromosome 21. Independent of diets and housing temperatures, TcMAC21 mice consume more calories, are hyperactive and hypermetabolic, remain consistently lean and profoundly insulin sensitive, and have a higher body temperature. The hypermetabolism and elevated thermogenesis are likely due to a combination of increased activity level and sarcolipin overexpression in the skeletal muscle, resulting in futile sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA) activity and energy dissipation. Mitochondrial respiration is also markedly increased in skeletal muscle to meet the high ATP demand created by the futile cycle and hyperactivity. This serendipitous discovery provides proof-of-concept that sarcolipin-mediated thermogenesis via uncoupling of the SERCA pump can be harnessed to promote energy expenditure and metabolic health.
Collapse
Affiliation(s)
- Dylan C Sarver
- Department of Physiology, Johns Hopkins University School of MedicineBaltimoreUnited States
- Center for Metabolism and Obesity Research, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Cheng Xu
- Department of Physiology, Johns Hopkins University School of MedicineBaltimoreUnited States
- Center for Metabolism and Obesity Research, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Susana Rodriguez
- Department of Physiology, Johns Hopkins University School of MedicineBaltimoreUnited States
- Center for Metabolism and Obesity Research, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Susan Aja
- Center for Metabolism and Obesity Research, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Andrew E Jaffe
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Mental Health, Johns Hopkins Bloomberg School of Public HealthBaltimoreUnited States
- The Lieber Institute for Brain DevelopmentBaltimoreUnited States
- Center for Computational Biology, Johns Hopkins UniversityBaltimoreUnited States
- Department of Genetic Medicine, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public HealthBaltimoreUnited States
| | - Feng J Gao
- Department of Physiology, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Michael Delannoy
- Department of Cell Biology, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Muthu Periasamy
- Department of Physiology and Cell Biology, The Ohio State UniversityColumbusUnited States
- Burnett School of Biomedical Sciences, College of Medicine, University of Central FloridaOrlandoUnited States
| | - Yasuhiro Kazuki
- Division of Genome and Cellular Functions, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine, Tottori UniversityTottoriJapan
- Chromosome Engineering Research Center, Tottori UniversityTottoriJapan
| | - Mitsuo Oshimura
- Chromosome Engineering Research Center, Tottori UniversityTottoriJapan
| | - Roger H Reeves
- Department of Physiology, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Genetic Medicine, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - G William Wong
- Department of Physiology, Johns Hopkins University School of MedicineBaltimoreUnited States
- Center for Metabolism and Obesity Research, Johns Hopkins University School of MedicineBaltimoreUnited States
| |
Collapse
|
35
|
Haase MAB, Ólafsson G, Flores RL, Boakye‐Ansah E, Zelter A, Dickinson MS, Lazar‐Stefanita L, Truong DM, Asbury CL, Davis TN, Boeke JD. DASH/Dam1 complex mutants stabilize ploidy in histone-humanized yeast by weakening kinetochore-microtubule attachments. EMBO J 2023; 42:e112600. [PMID: 36651597 PMCID: PMC10106983 DOI: 10.15252/embj.2022112600] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 01/19/2023] Open
Abstract
Forcing budding yeast to chromatinize their DNA with human histones manifests an abrupt fitness cost. We previously proposed chromosomal aneuploidy and missense mutations as two potential modes of adaptation to histone humanization. Here, we show that aneuploidy in histone-humanized yeasts is specific to a subset of chromosomes that are defined by their centromeric evolutionary origins but that these aneuploidies are not adaptive. Instead, we find that a set of missense mutations in outer kinetochore proteins drives adaptation to human histones. Furthermore, we characterize the molecular mechanism underlying adaptation in two mutants of the outer kinetochore DASH/Dam1 complex, which reduce aneuploidy by suppression of chromosome instability. Molecular modeling and biochemical experiments show that these two mutants likely disrupt a conserved oligomerization interface thereby weakening microtubule attachments. We propose a model through which weakened microtubule attachments promote increased kinetochore-microtubule turnover and thus suppress chromosome instability. In sum, our data show how a set of point mutations evolved in histone-humanized yeasts to counterbalance human histone-induced chromosomal instability through weakening microtubule interactions, eventually promoting a return to euploidy.
Collapse
Affiliation(s)
- Max A B Haase
- Institute for Systems Genetics and Department of Biochemistry and Molecular PharmacologyNYU Langone HealthNew YorkNYUSA
- Vilcek Institute of Graduate Biomedical SciencesNYU School of MedicineNew YorkNYUSA
| | - Guðjón Ólafsson
- Institute for Systems Genetics and Department of Biochemistry and Molecular PharmacologyNYU Langone HealthNew YorkNYUSA
| | - Rachel L Flores
- Department of BiochemistryUniversity of WashingtonSeattleWAUSA
| | | | - Alex Zelter
- Department of BiochemistryUniversity of WashingtonSeattleWAUSA
| | | | - Luciana Lazar‐Stefanita
- Institute for Systems Genetics and Department of Biochemistry and Molecular PharmacologyNYU Langone HealthNew YorkNYUSA
| | - David M Truong
- Department of Biomedical EngineeringNYU Tandon School of EngineeringBrooklynNYUSA
- Department of PathologyNYU Langone HealthNew YorkNYUSA
| | - Charles L Asbury
- Department of BiochemistryUniversity of WashingtonSeattleWAUSA
- Department of Physiology and BiophysicsUniversity of WashingtonSeattleWAUSA
| | - Trisha N Davis
- Department of BiochemistryUniversity of WashingtonSeattleWAUSA
| | - Jef D Boeke
- Institute for Systems Genetics and Department of Biochemistry and Molecular PharmacologyNYU Langone HealthNew YorkNYUSA
- Department of Biomedical EngineeringNYU Tandon School of EngineeringBrooklynNYUSA
- Department of Biochemistry and Molecular PharmacologyNYU Langone HealthNew YorkNYUSA
| |
Collapse
|
36
|
Redhead Y, Gibbins D, Lana-Elola E, Watson-Scales S, Dobson L, Krause M, Liu KJ, Fisher EMC, Green JBA, Tybulewicz VLJ. Craniofacial dysmorphology in Down syndrome is caused by increased dosage of Dyrk1a and at least three other genes. Development 2023; 150:dev201077. [PMID: 37102702 PMCID: PMC10163349 DOI: 10.1242/dev.201077] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 03/21/2023] [Indexed: 04/28/2023]
Abstract
Down syndrome (DS), trisomy of human chromosome 21 (Hsa21), occurs in 1 in 800 live births and is the most common human aneuploidy. DS results in multiple phenotypes, including craniofacial dysmorphology, which is characterised by midfacial hypoplasia, brachycephaly and micrognathia. The genetic and developmental causes of this are poorly understood. Using morphometric analysis of the Dp1Tyb mouse model of DS and an associated mouse genetic mapping panel, we demonstrate that four Hsa21-orthologous regions of mouse chromosome 16 contain dosage-sensitive genes that cause the DS craniofacial phenotype, and identify one of these causative genes as Dyrk1a. We show that the earliest and most severe defects in Dp1Tyb skulls are in bones of neural crest (NC) origin, and that mineralisation of the Dp1Tyb skull base synchondroses is aberrant. Furthermore, we show that increased dosage of Dyrk1a results in decreased NC cell proliferation and a decrease in size and cellularity of the NC-derived frontal bone primordia. Thus, DS craniofacial dysmorphology is caused by an increased dosage of Dyrk1a and at least three other genes.
Collapse
Affiliation(s)
- Yushi Redhead
- Centre for Craniofacial Biology and Regenerative Biology, King's College London, London SE1 9RT, UK
- The Francis Crick Institute, London NW1 1AT, UK
| | | | | | | | - Lisa Dobson
- Centre for Craniofacial Biology and Regenerative Biology, King's College London, London SE1 9RT, UK
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Matthias Krause
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Karen J. Liu
- Centre for Craniofacial Biology and Regenerative Biology, King's College London, London SE1 9RT, UK
| | | | - Jeremy B. A. Green
- Centre for Craniofacial Biology and Regenerative Biology, King's College London, London SE1 9RT, UK
| | | |
Collapse
|
37
|
Krivega M, Storchova Z. Consequences of trisomy syndromes - 21 and beyond. Trends Genet 2023; 39:172-174. [PMID: 36496311 DOI: 10.1016/j.tig.2022.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/01/2022] [Accepted: 11/27/2022] [Indexed: 12/12/2022]
Abstract
The mechanisms underlying pathologies in Down syndrome remain poorly understood. In this forum article we compare the cellular phenotypes of chromosome 21 trisomy with other trisomic cells. We argue that both effects of the extra chromosome 21 and the global consequences of chromosome gain must be considered to understand complex pathologies of Down syndrome.
Collapse
Affiliation(s)
- Maria Krivega
- Reproduction Genetics, Department of Endocrinology Gynecology and Infertility Disorders, Women Hospital, Heidelberg University, Im Neuenheimer Feld 440, 69120 Heidelberg, Germany.
| | - Zuzana Storchova
- Department of Molecular Genetics, Faculty of Biology, TU Kaiserslautern, Paul-Ehrlich-Str. 24, 67663 Kaiserslautern, Germany
| |
Collapse
|
38
|
Mendelian inheritance revisited: dominance and recessiveness in medical genetics. Nat Rev Genet 2023:10.1038/s41576-023-00574-0. [PMID: 36806206 DOI: 10.1038/s41576-023-00574-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2022] [Indexed: 02/22/2023]
Abstract
Understanding the consequences of genotype for phenotype (which ranges from molecule-level effects to whole-organism traits) is at the core of genetic diagnostics in medicine. Many measures of the deleteriousness of individual alleles exist, but these have limitations for predicting the clinical consequences. Various mechanisms can protect the organism from the adverse effects of functional variants, especially when the variant is paired with a wild type allele. Understanding why some alleles are harmful in the heterozygous state - representing dominant inheritance - but others only with the biallelic presence of pathogenic variants - representing recessive inheritance - is particularly important when faced with the deluge of rare genetic alterations identified by high throughput DNA sequencing. Both awareness of the specific quantitative and/or qualitative effects of individual variants and the elucidation of allelic and non-allelic interactions are essential to optimize genetic diagnosis and counselling.
Collapse
|
39
|
Sarver DC, Xu C, Velez LM, Aja S, Jaffe AE, Seldin MM, Reeves RH, Wong GW. Dysregulated systemic metabolism in a Down syndrome mouse model. Mol Metab 2023; 68:101666. [PMID: 36587842 PMCID: PMC9841171 DOI: 10.1016/j.molmet.2022.101666] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/14/2022] [Accepted: 12/26/2022] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE Trisomy 21 is one of the most complex genetic perturbations compatible with postnatal survival. Dosage imbalance arising from the triplication of genes on human chromosome 21 (Hsa21) affects multiple organ systems. Much of Down syndrome (DS) research, however, has focused on addressing how aneuploidy dysregulates CNS function leading to cognitive deficit. Although obesity, diabetes, and associated sequelae such as fatty liver and dyslipidemia are well documented in the DS population, only limited studies have been conducted to determine how gene dosage imbalance affects whole-body metabolism. Here, we conduct a comprehensive and systematic analysis of key metabolic parameters across different physiological states in the Ts65Dn trisomic mouse model of DS. METHODS Ts65Dn mice and euploid littermates were subjected to comprehensive metabolic phenotyping under basal (chow-fed) state and the pathophysiological state of obesity induced by a high-fat diet (HFD). RNA sequencing of liver, skeletal muscle, and two major fat depots were conducted to determine the impact of aneuploidy on tissue transcriptome. Pathway enrichments, gene-centrality, and key driver estimates were performed to provide insights into tissue autonomous and non-autonomous mechanisms contributing to the dysregulation of systemic metabolism. RESULTS Under the basal state, chow-fed Ts65Dn mice of both sexes had elevated locomotor activity and energy expenditure, reduced fasting serum cholesterol levels, and mild glucose intolerance. Sexually dimorphic deterioration in metabolic homeostasis became apparent when mice were challenged with a high-fat diet. While obese Ts65Dn mice of both sexes exhibited dyslipidemia, male mice also showed impaired systemic insulin sensitivity, reduced mitochondrial activity, and elevated fibrotic and inflammatory gene signatures in the liver and adipose tissue. Systems-level analysis highlighted conserved pathways and potential endocrine drivers of adipose-liver crosstalk that contribute to dysregulated glucose and lipid metabolism. CONCLUSIONS A combined alteration in the expression of trisomic and disomic genes in peripheral tissues contribute to metabolic dysregulations in Ts65Dn mice. These data lay the groundwork for understanding the impact of aneuploidy on in vivo metabolism.
Collapse
Affiliation(s)
- Dylan C Sarver
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Cheng Xu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Leandro M Velez
- Department of Biological Chemistry, University of California, Irvine, Irvine, USA; Center for Epigenetics and Metabolism, University of California Irvine, Irvine, USA
| | - Susan Aja
- Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrew E Jaffe
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; The Lieber Institute for Brain Development, Baltimore, MD, USA; Center for Computational Biology, Johns Hopkins University, Baltimore, MD, USA; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Marcus M Seldin
- Department of Biological Chemistry, University of California, Irvine, Irvine, USA; Center for Epigenetics and Metabolism, University of California Irvine, Irvine, USA
| | - Roger H Reeves
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - G William Wong
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
40
|
Sarver DC, Xu C, Rodriguez S, Aja S, Jaffe AE, Gao FJ, Delannoy M, Periasamy M, Kazuki Y, Oshimura M, Reeves RH, Wong GW. Hypermetabolism in mice carrying a near complete human chromosome 21. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.30.526183. [PMID: 36778465 PMCID: PMC9915508 DOI: 10.1101/2023.01.30.526183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The consequences of aneuploidy have traditionally been studied in cell and animal models in which the extrachromosomal DNA is from the same species. Here, we explore a fundamental question concerning the impact of aneuploidy on systemic metabolism using a non-mosaic transchromosomic mouse model (TcMAC21) carrying a near complete human chromosome 21. Independent of diets and housing temperatures, TcMAC21 mice consume more calories, are hyperactive and hypermetabolic, remain consistently lean and profoundly insulin sensitive, and have a higher body temperature. The hypermetabolism and elevated thermogenesis are due to sarcolipin overexpression in the skeletal muscle, resulting in futile sarco(endo)plasmic reticulum Ca 2+ ATPase (SERCA) activity and energy dissipation. Mitochondrial respiration is also markedly increased in skeletal muscle to meet the high ATP demand created by the futile cycle. This serendipitous discovery provides proof-of-concept that sarcolipin-mediated thermogenesis via uncoupling of the SERCA pump can be harnessed to promote energy expenditure and metabolic health.
Collapse
Affiliation(s)
- Dylan C. Sarver
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA,Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Cheng Xu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA,Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Susana Rodriguez
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA,Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Susan Aja
- Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrew E. Jaffe
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.,The Lieber Institute for Brain Development, Baltimore, MD, USA.,Center for Computational Biology, Johns Hopkins University, Baltimore, MD, USA.,Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Feng J. Gao
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael Delannoy
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Muthu Periasamy
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA.,Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Yasuhiro Kazuki
- Division of Genome and Cellular Functions, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine, Tottori University, Tottori, Japan,Chromosome Engineering Research Center, Tottori University, Tottori, Japan
| | - Mitsuo Oshimura
- Chromosome Engineering Research Center, Tottori University, Tottori, Japan
| | - Roger H. Reeves
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA,Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - G. William Wong
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA,Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA,Correspondence:
| |
Collapse
|
41
|
Conan P, Léon A, Caroff N, Rollet C, Chaïr L, Martin J, Bihel F, Mignen O, Voisset C, Friocourt G. New insights into the regulation of Cystathionine beta synthase (CBS), an enzyme involved in intellectual deficiency in Down syndrome. Front Neurosci 2023; 16:1110163. [PMID: 36711154 PMCID: PMC9879293 DOI: 10.3389/fnins.2022.1110163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
Down syndrome (DS), the most frequent chromosomic aberration, results from the presence of an extra copy of chromosome 21. The identification of genes which overexpression contributes to intellectual disability (ID) in DS is important to understand the pathophysiological mechanisms involved and develop new pharmacological therapies. In particular, gene dosage of Dual specificity tyrosine phosphorylation Regulated Kinase 1A (DYRK1A) and of Cystathionine beta synthase (CBS) are crucial for cognitive function. As these two enzymes have lately been the main targets for therapeutic research on ID, we sought to decipher the genetic relationship between them. We also used a combination of genetic and drug screenings using a cellular model overexpressing CYS4, the homolog of CBS in Saccharomyces cerevisiae, to get further insights into the molecular mechanisms involved in the regulation of CBS activity. We showed that overexpression of YAK1, the homolog of DYRK1A in yeast, increased CYS4 activity whereas GSK3β was identified as a genetic suppressor of CBS. In addition, analysis of the signaling pathways targeted by the drugs identified through the yeast-based pharmacological screening, and confirmed using human HepG2 cells, emphasized the importance of Akt/GSK3β and NF-κB pathways into the regulation of CBS activity and expression. Taken together, these data provide further understanding into the regulation of CBS and in particular into the genetic relationship between DYRK1A and CBS through the Akt/GSK3β and NF-κB pathways, which should help develop more effective therapies to reduce cognitive deficits in people with DS.
Collapse
Affiliation(s)
- Pierre Conan
- INSERM, Université de Brest, EFS, UMR 1078, GGB, Brest, France
| | - Alice Léon
- INSERM, Université de Brest, EFS, UMR 1078, GGB, Brest, France
| | - Noéline Caroff
- INSERM, Université de Brest, EFS, UMR 1078, GGB, Brest, France
| | - Claire Rollet
- INSERM, Université de Brest, EFS, UMR 1078, GGB, Brest, France
| | - Loubna Chaïr
- INSERM, Université de Brest, EFS, UMR 1078, GGB, Brest, France
| | - Jennifer Martin
- INSERM, Université de Brest, EFS, UMR 1078, GGB, Brest, France
| | - Frédéric Bihel
- Laboratoire d’Innovation Thérapeutique, UMR 7200, IMS MEDALIS, Faculty of Pharmacy, CNRS, Université de Strasbourg, Illkirch, France
| | - Olivier Mignen
- U1227, Lymphocytes B, Autoimmunité et Immunothérapies, INSERM, Université de Brest, Brest, France
| | - Cécile Voisset
- INSERM, Université de Brest, EFS, UMR 1078, GGB, Brest, France
| | | |
Collapse
|
42
|
Han P, Mo S, Wang Z, Xu J, Fu X, Tian Y. UXT at the crossroads of cell death, immunity and neurodegenerative diseases. Front Oncol 2023; 13:1179947. [PMID: 37152054 PMCID: PMC10154696 DOI: 10.3389/fonc.2023.1179947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
The ubiquitous expressed transcript (UXT), a member of the prefoldin-like protein family, modulates regulated cell death (RCD) such as apoptosis and autophagy-mediated cell death through nuclear factor-κB (NF-κB), tumor necrosis factor-α (TNF-α), P53, P62, and methylation, and is involved in the regulation of cell metabolism, thereby affecting tumor progression. UXT also maintains immune homeostasis and reduces proteotoxicity in neuro-degenerative diseases through selective autophagy and molecular chaperones. Herein, we review and further elucidate the mechanisms by which UXT affects the regulation of cell death, maintenance of immune homeostasis, and neurodegenerative diseases and discuss the possible UXT involvement in the regulation of ferroptosis and immunogenic cell death, and targeting it to improve cancer treatment outcomes by regulating cell death and immune surveillance.
Collapse
Affiliation(s)
- Pengzhe Han
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, China
| | - Shaojian Mo
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, China
- Department of Biliary and Pancreatic Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Zhengwang Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, China
| | - Jiale Xu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, China
| | - Xifeng Fu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, China
- Department of Biliary and Pancreatic Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yanzhang Tian
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, China
- Department of Biliary and Pancreatic Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- *Correspondence: Yanzhang Tian,
| |
Collapse
|
43
|
Ganguly BB, Kadam NN. Therapeutics for mitochondrial dysfunction-linked diseases in Down syndrome. Mitochondrion 2023; 68:25-43. [PMID: 36371073 DOI: 10.1016/j.mito.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022]
Abstract
Genome-wide deregulation contributes to mitochondrial dysfunction and impairment in oxidative phosphorylation (OXPHOS) mechanism resulting in oxidative stress, increased production of reactive oxygen species (ROS) and cell death in individuals with Down syndrome (DS). The cells, which require more energy, such as muscles, brain and heart are greatly affected. Impairment in mitochondrial network has a direct link with patho-mechanism at cellular and systemic levels at the backdrop of generalized metabolic perturbations in individuals with DS. Myriads of clinico-phenotypic features, including intellectual disability, early aging and neurodegeneration, and Alzheimer disease (AD)-related dementia are inevitable in DS-population where mitochondrial dysfunctions play the central role. Collectively, the mitochondrial abnormalities and altered energy metabolism perturbs several signaling pathways, particularly related to neurogenesis, which are directly associated with cognitive development and early onset of AD in individuals with DS. Therefore, therapeutic challenges for amelioration of the mitochondrial defects were perceived to improve the quality of life of the DS population. A number of pharmacologically active natural compounds such as polyphenols, antioxidants and flavonoids have shown convincing outcome for reversal of the dysfunctional mitochondrial network and oxidative metabolism, and improvement in intellectual skill in mouse models of DS and humans with DS.
Collapse
Affiliation(s)
- Bani Bandana Ganguly
- MGM New Bombay Hospital and MGM Institute of Health Sciences, Navi Mumbai, India.
| | - Nitin N Kadam
- MGM New Bombay Hospital and MGM Institute of Health Sciences, Navi Mumbai, India
| |
Collapse
|
44
|
Embryonic organizer formation disorder leads to multiorgan dysplasia in Down syndrome. Cell Death Dis 2022; 13:1054. [PMID: 36535930 PMCID: PMC9763398 DOI: 10.1038/s41419-022-05517-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Despite the high prevalence of Down syndrome (DS) and early identification of the cause (trisomy 21), its molecular pathogenesis has been poorly understood and specific treatments have consequently been practically unavailable. A number of medical conditions throughout the body associated with DS have prompted us to investigate its molecular etiology from the viewpoint of the embryonic organizer, which can steer the development of surrounding cells into specific organs and tissues. We established a DS zebrafish model by overexpressing the human DYRK1A gene, a highly haploinsufficient gene located at the "critical region" within 21q22. We found that both embryonic organizer and body axis were significantly impaired during early embryogenesis, producing abnormalities of the nervous, heart, visceral, and blood systems, similar to those observed with DS. Quantitative phosphoproteome analysis and related assays demonstrated that the DYRK1A-overexpressed zebrafish embryos had anomalous phosphorylation of β-catenin and Hsp90ab1, resulting in Wnt signaling enhancement and TGF-β inhibition. We found an uncovered ectopic molecular mechanism present in amniocytes from fetuses diagnosed with DS and isolated hematopoietic stem cells (HSCs) of DS patients. Importantly, the abnormal proliferation of DS HSCs could be recovered by switching the balance between Wnt and TGF-β signaling in vitro. Our findings provide a novel molecular pathogenic mechanism in which ectopic Wnt and TGF-β lead to DS physical dysplasia, suggesting potential targeted therapies for DS.
Collapse
|
45
|
Vione B, Ramacieri G, Zavaroni G, Piano A, La Rocca G, Caracausi M, Vitale L, Piovesan A, Gori C, Pirazzoli GL, Strippoli P, Cocchi G, Corvaglia L, Locatelli C, Pelleri MC, Antonaros F. One-carbon pathway metabolites are altered in the plasma of subjects with Down syndrome: Relation to chromosomal dosage. Front Med (Lausanne) 2022; 9:1006891. [PMID: 36530924 PMCID: PMC9751312 DOI: 10.3389/fmed.2022.1006891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/09/2022] [Indexed: 09/19/2023] Open
Abstract
Introduction Down syndrome (DS) is the most common chromosomal disorder and it is caused by trisomy of chromosome 21 (Hsa21). Subjects with DS show a large heterogeneity of phenotypes and the most constant clinical features present are typical facies and intellectual disability (ID). Several studies demonstrated that trisomy 21 causes an alteration in the metabolic profile, involving among all the one-carbon cycle. Methods We performed enzyme-linked immunosorbent assays (ELISAs) to identify the concentration of 5 different intermediates of the one-carbon cycle in plasma samples obtained from a total of 164 subjects with DS compared to 54 euploid subjects. We investigated: tetrahydrofolate (THF; DS n = 108, control n = 41), 5-methyltetrahydrofolate (5-methyl-THF; DS n = 140, control n = 34), 5-formyltetrahydrofolate (5-formyl-THF; DS n = 80, control n = 21), S-adenosyl-homocysteine (SAH; DS n = 94, control n = 20) and S-adenosyl-methionine (SAM; DS n = 24, control n = 15). Results Results highlight specific alterations of THF with a median concentration ratio DS/control of 2:3, a decrease of a necessary molecule perfectly consistent with a chromosomal dosage effect. Moreover, SAM and SAH show a ratio DS/control of 1.82:1 and 3.6:1, respectively. Discussion The relevance of these results for the biology of intelligence and its impairment in trisomy 21 is discussed, leading to the final proposal of 5-methyl-THF as the best candidate for a clinical trial aimed at restoring the dysregulation of one-carbon cycle in trisomy 21, possibly improving cognitive skills of subjects with DS.
Collapse
Affiliation(s)
- Beatrice Vione
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Bologna, Italy
| | - Giuseppe Ramacieri
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Giacomo Zavaroni
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Bologna, Italy
| | - Angela Piano
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Bologna, Italy
| | - Giorgia La Rocca
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Bologna, Italy
| | - Maria Caracausi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Bologna, Italy
| | - Lorenza Vitale
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Bologna, Italy
| | - Allison Piovesan
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Bologna, Italy
| | - Caterina Gori
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Bologna, Italy
| | | | - Pierluigi Strippoli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Bologna, Italy
| | - Guido Cocchi
- Neonatology Unit, IRCCS Sant’Orsola-Malpighi University Hospital, Bologna, Italy
| | - Luigi Corvaglia
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- Neonatology Unit, IRCCS Sant’Orsola-Malpighi University Hospital, Bologna, Italy
| | - Chiara Locatelli
- Neonatology Unit, IRCCS Sant’Orsola-Malpighi University Hospital, Bologna, Italy
| | - Maria Chiara Pelleri
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Bologna, Italy
| | - Francesca Antonaros
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Bologna, Italy
| |
Collapse
|
46
|
Llambrich S, González-Colom R, Wouters J, Roldán J, Salassa S, Wouters K, Van Bulck V, Sharpe J, Callaerts-Vegh Z, Vande Velde G, Martínez-Abadías N. Green Tea Catechins Modulate Skeletal Development with Effects Dependent on Dose, Time, and Structure in a down Syndrome Mouse Model. Nutrients 2022; 14:nu14194167. [PMID: 36235819 PMCID: PMC9572077 DOI: 10.3390/nu14194167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 11/26/2022] Open
Abstract
Altered skeletal development in Down syndrome (DS) results in a brachycephalic skull, flattened face, shorter mandibular ramus, shorter limbs, and reduced bone mineral density (BMD). Our previous study showed that low doses of green tea extract enriched in epigallocatechin-3-gallate (GTE-EGCG), administered continuously from embryonic day 9 to postnatal day 29, reduced facial dysmorphologies in the Ts65Dn (TS) mouse model of DS, but high doses could exacerbate them. Here, we extended the analyses to other skeletal structures and systematically evaluated the effects of high and low doses of GTE-EGCG treatment over postnatal development in wild-type (WT) and TS mice using in vivo µCT and geometric morphometrics. TS mice developed shorter and wider faces, skulls, and mandibles, together with shorter and narrower humerus and scapula, and reduced BMD dynamically over time. Besides facial morphology, GTE-EGCG did not rescue any other skeletal phenotype in TS treated mice. In WT mice, GTE-EGCG significantly altered the shape of the skull and mandible, reduced the length and width of the long bones, and lowered the BMD. The disparate effects of GTE-EGCG depended on the dose, developmental timepoint, and anatomical structure analyzed, emphasizing the complex nature of DS and the need to further investigate the simultaneous effects of GTE-EGCG supplementation.
Collapse
Affiliation(s)
- Sergi Llambrich
- Biomedical MRI, Department of Imaging and Pathology, University of Leuven (KU Leuven), 3000 Leuven, Belgium
| | - Rubèn González-Colom
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA), Facultat de Biologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Jens Wouters
- Biomedical MRI, Department of Imaging and Pathology, University of Leuven (KU Leuven), 3000 Leuven, Belgium
| | - Jorge Roldán
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA), Facultat de Biologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Sara Salassa
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA), Facultat de Biologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Kaat Wouters
- Laboratory of Biological Psychology, University of Leuven (KU Leuven), 3000 Leuven, Belgium
| | - Vicky Van Bulck
- Laboratory of Biological Psychology, University of Leuven (KU Leuven), 3000 Leuven, Belgium
| | - James Sharpe
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08003 Barcelona, Spain
- EMBL Barcelona, European Molecular Biology Laboratory, 08003 Barcelona, Spain
| | | | - Greetje Vande Velde
- Biomedical MRI, Department of Imaging and Pathology, University of Leuven (KU Leuven), 3000 Leuven, Belgium
- Correspondence: (G.V.V.); (N.M.-A.); Tel.: +32-16330924 (G.V.V.); +34-934034564 (N.M.-A.)
| | - Neus Martínez-Abadías
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA), Facultat de Biologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Correspondence: (G.V.V.); (N.M.-A.); Tel.: +32-16330924 (G.V.V.); +34-934034564 (N.M.-A.)
| |
Collapse
|
47
|
García O, Flores-Aguilar L. Astroglial and microglial pathology in Down syndrome: Focus on Alzheimer's disease. Front Cell Neurosci 2022; 16:987212. [PMID: 36212691 PMCID: PMC9533652 DOI: 10.3389/fncel.2022.987212] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Down syndrome (DS) arises from the triplication of human chromosome 21 and is considered the most common genetic cause of intellectual disability. Glial cells, specifically astroglia and microglia, display pathological alterations that might contribute to DS neuropathological alterations. Further, in middle adulthood, people with DS develop clinical symptoms associated with premature aging and Alzheimer's disease (AD). Overexpression of the amyloid precursor protein (APP) gene, encoded on chromosome 21, leads to increased amyloid-β (Aβ) levels and subsequent formation of Aβ plaques in the brains of individuals with DS. Amyloid-β deposition might contribute to astroglial and microglial reactivity, leading to neurotoxic effects and elevated secretion of inflammatory mediators. This review discusses evidence of astroglial and microglial alterations that might be associated with the AD continuum in DS.
Collapse
Affiliation(s)
- Octavio García
- Facultad de Psicología, Unidad de Investigación en Psicobiología y Neurociencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- *Correspondence: Octavio García
| | - Lisi Flores-Aguilar
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
48
|
Kleschevnikov AM. Enhanced GIRK2 channel signaling in Down syndrome: A feasible role in the development of abnormal nascent neural circuits. Front Genet 2022; 13:1006068. [PMID: 36171878 PMCID: PMC9510977 DOI: 10.3389/fgene.2022.1006068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/24/2022] [Indexed: 11/24/2022] Open
Abstract
The most distinctive feature of Down syndrome (DS) is moderate to severe cognitive impairment. Genetic, molecular, and neuronal mechanisms of this complex DS phenotype are currently under intensive investigation. It is becoming increasingly clear that the abnormalities arise from a combination of initial changes caused by triplication of genes on human chromosome 21 (HSA21) and later compensatory adaptations affecting multiple brain systems. Consequently, relatively mild initial cognitive deficits become pronounced with age. This pattern of changes suggests that one approach to improving cognitive function in DS is to target the earliest critical changes, the prevention of which can change the ‘trajectory’ of the brain development and reduce the destructive effects of the secondary alterations. Here, we review the experimental data on the role of KCNJ6 in DS-specific brain abnormalities, focusing on a putative role of this gene in the development of abnormal neural circuits in the hippocampus of genetic mouse models of DS. It is suggested that the prevention of these early abnormalities with pharmacological or genetic means can ameliorate cognitive impairment in DS.
Collapse
|
49
|
Manfredi-Lozano M, Leysen V, Adamo M, Paiva I, Rovera R, Pignat JM, Timzoura FE, Candlish M, Eddarkaoui S, Malone SA, Silva MSB, Trova S, Imbernon M, Decoster L, Cotellessa L, Tena-Sempere M, Claret M, Paoloni-Giacobino A, Plassard D, Paccou E, Vionnet N, Acierno J, Maceski AM, Lutti A, Pfrieger F, Rasika S, Santoni F, Boehm U, Ciofi P, Buée L, Haddjeri N, Boutillier AL, Kuhle J, Messina A, Draganski B, Giacobini P, Pitteloud N, Prevot V. GnRH replacement rescues cognition in Down syndrome. Science 2022; 377:eabq4515. [PMID: 36048943 PMCID: PMC7613827 DOI: 10.1126/science.abq4515] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
At the present time, no viable treatment exists for cognitive and olfactory deficits in Down syndrome (DS). We show in a DS model (Ts65Dn mice) that these progressive nonreproductive neurological symptoms closely parallel a postpubertal decrease in hypothalamic as well as extrahypothalamic expression of a master molecule that controls reproduction-gonadotropin-releasing hormone (GnRH)-and appear related to an imbalance in a microRNA-gene network known to regulate GnRH neuron maturation together with altered hippocampal synaptic transmission. Epigenetic, cellular, chemogenetic, and pharmacological interventions that restore physiological GnRH levels abolish olfactory and cognitive defects in Ts65Dn mice, whereas pulsatile GnRH therapy improves cognition and brain connectivity in adult DS patients. GnRH thus plays a crucial role in olfaction and cognition, and pulsatile GnRH therapy holds promise to improve cognitive deficits in DS.
Collapse
Affiliation(s)
- Maria Manfredi-Lozano
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, LabexDistAlz, Lille, France
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 days for health, EGID, Lille, France
| | - Valerie Leysen
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, LabexDistAlz, Lille, France
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 days for health, EGID, Lille, France
| | - Michela Adamo
- Department of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, 1011 Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne 1005, Switzerland
| | - Isabel Paiva
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364, Université de Strasbourg-CNRS, Strasbourg, France
| | - Renaud Rovera
- Univ. Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron 69500, France
| | - Jean-Michel Pignat
- Department of Clinical Neurosciences, Neurorehabilitation Unit, University Hospital CHUV, Lausanne, Switzerland
| | - Fatima Ezzahra Timzoura
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, LabexDistAlz, Lille, France
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 days for health, EGID, Lille, France
| | - Michael Candlish
- Experimental Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, 66421, Homburg, Germany
| | - Sabiha Eddarkaoui
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, LabexDistAlz, Lille, France
| | - Samuel A. Malone
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, LabexDistAlz, Lille, France
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 days for health, EGID, Lille, France
| | - Mauro S. B. Silva
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, LabexDistAlz, Lille, France
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 days for health, EGID, Lille, France
| | - Sara Trova
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, LabexDistAlz, Lille, France
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 days for health, EGID, Lille, France
| | - Monica Imbernon
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, LabexDistAlz, Lille, France
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 days for health, EGID, Lille, France
| | - Laurine Decoster
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, LabexDistAlz, Lille, France
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 days for health, EGID, Lille, France
| | - Ludovica Cotellessa
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, LabexDistAlz, Lille, France
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 days for health, EGID, Lille, France
| | - Manuel Tena-Sempere
- Univ. Cordoba, IMIBC/HURS, CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Cordoba, Spain
| | - Marc Claret
- Neuronal Control of Metabolism Laboratory, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08036 Barcelona, Spain
| | - Ariane Paoloni-Giacobino
- Department of Genetic Medicine, University Hospitals of Geneva, 4 rue Gabrielle-Perret-Gentil, 1211, Genève 14, Switzerland
| | - Damien Plassard
- CNRS UMR 7104, INSERM U1258, GenomEast Platform, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, Illkirch, France
| | - Emmanuelle Paccou
- Department of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Nathalie Vionnet
- Department of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - James Acierno
- Department of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Aleksandra Maleska Maceski
- Neurologic Clinic and Polyclinic, MS Centre and Research Centre for Clinical Neuroimmunology and Neuroscience Basel; University Hospital Basel, University of Basel, Basel Switzerland
| | - Antoine Lutti
- Laboratory for Research in Neuroimaging LREN, Centre for Research in Neurosciences, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Frank Pfrieger
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, 67000 Strasbourg, France
| | - S. Rasika
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, LabexDistAlz, Lille, France
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 days for health, EGID, Lille, France
| | - Federico Santoni
- Faculty of Biology and Medicine, University of Lausanne, Lausanne 1005, Switzerland
| | - Ulrich Boehm
- Experimental Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, 66421, Homburg, Germany
| | - Philippe Ciofi
- Univ. Bordeaux, Inserm, U1215, Neurocentre Magendie, Bordeaux, France
| | - Luc Buée
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, LabexDistAlz, Lille, France
| | - Nasser Haddjeri
- Univ. Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron 69500, France
| | - Anne-Laurence Boutillier
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364, Université de Strasbourg-CNRS, Strasbourg, France
| | - Jens Kuhle
- Neurologic Clinic and Polyclinic, MS Centre and Research Centre for Clinical Neuroimmunology and Neuroscience Basel; University Hospital Basel, University of Basel, Basel Switzerland
| | - Andrea Messina
- Department of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, 1011 Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne 1005, Switzerland
| | - Bogdan Draganski
- Laboratory for Research in Neuroimaging LREN, Centre for Research in Neurosciences, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Switzerland
- Neurology Department, Max-Planck-Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Paolo Giacobini
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, LabexDistAlz, Lille, France
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 days for health, EGID, Lille, France
| | - Nelly Pitteloud
- Department of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, 1011 Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne 1005, Switzerland
| | - Vincent Prevot
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, LabexDistAlz, Lille, France
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 days for health, EGID, Lille, France
| |
Collapse
|
50
|
Li J, Kalev-Zylinska ML. Advances in molecular characterization of myeloid proliferations associated with Down syndrome. Front Genet 2022; 13:891214. [PMID: 36035173 PMCID: PMC9399805 DOI: 10.3389/fgene.2022.891214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Myeloid leukemia associated with Down syndrome (ML-DS) has a unique molecular landscape that differs from other subtypes of acute myeloid leukemia. ML-DS is often preceded by a myeloproliferative neoplastic condition called transient abnormal myelopoiesis (TAM) that disrupts megakaryocytic and erythroid differentiation. Over the last two decades, many genetic and epigenetic changes in TAM and ML-DS have been elucidated. These include overexpression of molecules and micro-RNAs located on chromosome 21, GATA1 mutations, and a range of other somatic mutations and chromosomal alterations. In this review, we summarize molecular changes reported in TAM and ML-DS and provide a comprehensive discussion of these findings. Recent advances in the development of CRISPR/Cas9-modified induced pluripotent stem cell-based disease models are also highlighted. However, despite significant progress in this area, we still do not fully understand the pathogenesis of ML-DS, and there are no targeted therapies. Initial diagnosis of ML-DS has a favorable prognosis, but refractory and relapsed disease can be difficult to treat; therapeutic options are limited in Down syndrome children by their stronger sensitivity to the toxic effects of chemotherapy. Because of the rarity of TAM and ML-DS, large-scale multi-center studies would be helpful to advance molecular characterization of these diseases at different stages of development and progression.
Collapse
Affiliation(s)
- Jixia Li
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
- Department of Laboratory Medicine, School of Medicine, Foshan University, Foshan, China
- *Correspondence: Jixia Li, ; Maggie L. Kalev-Zylinska,
| | - Maggie L. Kalev-Zylinska
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
- Haematology Laboratory, Department of Pathology and Laboratory Medicine, Auckland City Hospital, Auckland, New Zealand
- *Correspondence: Jixia Li, ; Maggie L. Kalev-Zylinska,
| |
Collapse
|