1
|
Lee DG, Kim JE, Park JH, Kim MJ, Kim MI, Lim SK, Jung JY. Allelic and haplotype diversity of 12 X-chromosomal short tandem repeats in Koreans, with an analysis of anomalous profiles. Leg Med (Tokyo) 2025; 72:102561. [PMID: 39693790 DOI: 10.1016/j.legalmed.2024.102561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/18/2024] [Accepted: 12/14/2024] [Indexed: 12/20/2024]
Abstract
Owing to the unique inheritance pattern of the X chromosome, X-chromosomal short tandem repeat (X-STR) analysis represents a valuable tool in forensic DNA examination-particularly in complex kinship cases, missing person investigations, and disaster victim identification. We analyzed buccal swabs from 429 unrelated Korean males for forensic statistical parameters of 12 X-STRs. Among the 427 individuals analyzed (2 were excluded), DXS10135 was the most informative marker (polymorphism information content [PIC] = 0.9131) and DXS7423 the least informative (PIC = 0.4250). When analyzed based on the four linkage groups (LGs), each individual had unique 12 X-STR haplotypes, with LG1 showing the highest haplotype diversity (0.9968) and the most common haplotype frequency (0.0164). LG1 was also the most informative (PIC = 0.9945), followed by LG3, LG4, and LG2 (with haplotype diversities of 0.9882-0.9968). Our analysis shows that Koreans clustered with East Asians, displayed strong genetic similarity, but differed significantly from Emirati Arabs, Brazilians, Argentinians, and Europeans, forming three distinct clusters influenced by historical and geographical factors. Within the examined X-STR haplotypes, biallelic patterns were identified in two instances: one involved a duplication at DXS10146, as indicated by relative peak height and normalized peak height ratio analysis, and the other encompassed eight loci, where balanced peak heights (72.51 %) and an X peak height imbalance at the amelogenin locus (59.69 %) were indicative of Klinefelter syndrome with sex chromosome aneuploidy. The 12 X-STR loci are informative and discriminatory in the Korean population, providing critical insights for forensic applications and genetic research.
Collapse
Affiliation(s)
- Dong Gyu Lee
- Forensic DNA Division, National Forensic Service, 10, Ipchun-ro, Wonju-si, Gangwon-do 26460, Republic of Korea; Department of Forensic Sciences, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Jung-Eun Kim
- DNA Analysis Division, National Forensic Service Busan Institute, 50, Geumo-ro, Mulgeum-eup, Yangsan-si, Gyeongsangnam-do, 50612, Republic of Korea
| | - Ji Hwan Park
- Forensic DNA Division, National Forensic Service, 10, Ipchun-ro, Wonju-si, Gangwon-do 26460, Republic of Korea
| | - Mi-Jung Kim
- Forensic DNA Division, National Forensic Service, 10, Ipchun-ro, Wonju-si, Gangwon-do 26460, Republic of Korea
| | - Man Il Kim
- Forensic DNA Division, National Forensic Service, 10, Ipchun-ro, Wonju-si, Gangwon-do 26460, Republic of Korea
| | - Si-Keun Lim
- Department of Forensic Sciences, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea.
| | - Ju Yeon Jung
- Forensic DNA Section, National Forensic Service Jeju Branch, 221, Cheomdan-ro, Jeju-si, Jeju-do 63309, Republic of Korea; Department of Forensic Medicine, Seoul National University College of Medicine, 103, Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea.
| |
Collapse
|
2
|
Chatzikyriakidou A. Beyond the "Dominant" and "Recessive" Patterns of Inheritance. Int J Mol Sci 2024; 25:13377. [PMID: 39769142 PMCID: PMC11676908 DOI: 10.3390/ijms252413377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/07/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
This study aimed to investigate whether genes with different modes of inheritance differ in the presence of promoter-enriched CGI loci. For each autosomal chromosome, the author searched for variations in the total number of diseases' phenotypes with autosomal dominant (AD) and recessive (AR) inheritance for a list of promoter-poor CGI (CGI-) and promoter-enriched CGI (CGI+) genes using the OMIM database. Then, the CGI- and CGI+ genes displaying random allelic or bi-allelic expression were examined. The author evaluated whether there was a distinct distribution of AD and AR diseases in the groups of chromosomes based on their SNP hotspot density. The same analysis was conducted for the X chromosome. The SPSS statistical package was utilized. The distribution of AD and AR diseases between CGI- and CGI+ bi-allelic genes significantly differed in autosomal chromosomes 6 and 17, which show intermediate SNP hotspot density. Additionally, a statistically significant difference was observed in AD and AR diseases in the remaining autosomal chromosomes with low SNP hotspots between their randomly allelic expressed CGI- and CGI+ genes. Specifically, AD diseases were related to CGI- genes, while AR diseases were associated with CGI+ genes. In the X chromosome, X-linked dominant (XLD) diseases were mainly found in CGI+ genes, and X-linked recessive (XLR) diseases were found in CGI- genes, regardless of the X-inactivation process. It is essential to study inheritance and classify genetic variants in a more stochastic way than the terms "Dominant" and "Recessive," and their derivatives, such as "Codominant" and "Incomplete Dominant," are applied in Mendelian and non-Mendelian inheritance. This concept may further explain the "Reduced Penetrance" and "Variable Expressivity" in certain human diseases. All the above suggests a need to reassess how genetic and epigenetic data are studied and utilized for genetic counseling or precision medicine.
Collapse
Affiliation(s)
- Anthoula Chatzikyriakidou
- Laboratory of Medical Biology—Genetics, Faculty of Medicine, School of Health Sciences, Aristotle University, 54124 Thessaloniki, Greece; ; Tel.: +30-2310999013
- Genetics Unit, “Papageorgiou” General Hospital of Thessaloniki, Faculty of Medicine, School of Health Sciences, Aristotle University, 54124 Thessaloniki, Greece
| |
Collapse
|
3
|
Wang D, Rastas P, Yi X, Löytynoja A, Kivikoski M, Feng X, Reid K, Merilä J. Improved assembly of the Pungitius pungitius reference genome. G3 (BETHESDA, MD.) 2024; 14:jkae126. [PMID: 38861393 PMCID: PMC11304971 DOI: 10.1093/g3journal/jkae126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/23/2024] [Accepted: 05/30/2024] [Indexed: 06/13/2024]
Abstract
The nine-spined stickleback (Pungitius pungitius) has been increasingly used as a model system in studies of local adaptation and sex chromosome evolution but its current reference genome assembly is far from perfect, lacking distinct sex chromosomes. We generated an improved assembly of the nine-spined stickleback reference genome (98.3% BUSCO completeness) with the aid of linked-read mapping. While the new assembly (v8) was of similar size as the earlier version (v7), we were able to assign 4.4 times more contigs to the linkage groups and improve the contiguity of the genome. Moreover, the new assembly contains a ∼22.8 Mb Y-linked scaffold (LG22) consisting mainly of previously assigned X-contigs, putative Y-contigs, putative centromere contigs, and highly repetitive elements. The male individual showed an even mapping depth on LG12 (pseudo X chromosome) and LG22 (Y-linked scaffold) in the segregating sites, suggesting near-pure X and Y representation in the v8 assembly. A total of 26,803 genes were annotated, and about 33% of the assembly was found to consist of repetitive elements. The high proportion of repetitive elements in LG22 (53.10%) suggests it can be difficult to assemble the complete sequence of the species' Y chromosome. Nevertheless, the new assembly is a significant improvement over the previous version and should provide a valuable resource for genomic studies of stickleback fishes.
Collapse
Affiliation(s)
- Dandan Wang
- Area of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, 999077, Hong Kong SAR
| | - Pasi Rastas
- Institute of Biotechnology, University of Helsinki, Helsinki FI-00014, Finland
| | - Xueling Yi
- Area of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, 999077, Hong Kong SAR
| | - Ari Löytynoja
- Institute of Biotechnology, University of Helsinki, Helsinki FI-00014, Finland
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki FI-00014, Finland
| | - Mikko Kivikoski
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki FI-00014, Finland
- Department of Computer Science, University of Helsinki, Helsinki FI-00014, Finland
| | - Xueyun Feng
- Institute of Biotechnology, University of Helsinki, Helsinki FI-00014, Finland
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki FI-00014, Finland
| | - Kerry Reid
- Area of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, 999077, Hong Kong SAR
| | - Juha Merilä
- Area of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, 999077, Hong Kong SAR
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki FI-00014, Finland
| |
Collapse
|
4
|
Xu Y, Wang W, Huang J, Xu M, Wang B, Wu Y, Xie Y, Jian J. Kinship analysis and pedigree reconstruction by RAD sequencing in cattle. GIGABYTE 2024; 2024:1-15. [PMID: 39071179 PMCID: PMC11273509 DOI: 10.46471/gigabyte.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/12/2024] [Indexed: 07/30/2024] Open
Abstract
Kinship and pedigree, used for estimating inbreeding, heritability, selection, and gene flow, are useful for breeding and animal conservation. However, as the size of crossbred populations increases, inaccurate generation and parentage assignment in livestock farms increase. Restriction-site-associated DNA sequencing is a cost-effective platform for single nucleotide polymorphism (SNP) discovery and genotyping. Here, we performed a kinship analysis and pedigree reconstruction for Angus and Xiangxi yellow cattle. A total of 975 cattle, including 923 offspring with 24 known sires and 28 known dams, were sampled and subjected to SNP discovery and genotyping. The identified SNP panel included 7,305 SNPs capturing the maximum difference between paternal and maternal genome information, allowing us to distinguish F1 from F2 generations with 90% accuracy. In conclusion, we provided a low-cost and efficient SNP panel for kinship analyses and the improvement of local genetic resources, which are valuable for breed improvement, local resource utilization, and conservation.
Collapse
Affiliation(s)
- Yiming Xu
- Animal Husbandry and Aquatic Affairs Center, Lianyuan City 417100, Hunan Province, China
| | - Wanqiu Wang
- BGI Genomics, BGI Center, 9 Yunhua Road, Yantian District, Shenzhen, 518081, China
| | - Jiefeng Huang
- Loudi Municipal Bureau of Agriculture and Rural Affairs, Loudi City 417000, Hunan Province, China
| | - Minjie Xu
- People’s Government of Shexian County 056400, Hebei Province, China
| | - Binhu Wang
- BGI Genomics, BGI Center, 9 Yunhua Road, Yantian District, Shenzhen, 518081, China
| | - Yingsong Wu
- People’s Government of Shexian County 056400, Hebei Province, China
| | - Yongzhong Xie
- Animal Husbandry and Aquatic Affairs Center, Lianyuan City 417100, Hunan Province, China
| | - Jianbo Jian
- BGI Genomics, BGI Center, 9 Yunhua Road, Yantian District, Shenzhen, 518081, China
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, 2800, Denmark
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| |
Collapse
|
5
|
Srithawong S, Muisuk K, Prakhun N, Tungpairojwong N, Kutanan W. Forensic efficiency and genetic polymorphisms of 12 X-chromosomal STR loci in Northeastern Thai populations. Mol Genet Genomics 2024; 299:42. [PMID: 38568251 DOI: 10.1007/s00438-024-02134-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 03/07/2024] [Indexed: 04/05/2024]
Abstract
Northeastern Thailand comprises one-third of the country and is home to various populations, with Lao Isan constituting the majority, while others are considered minority groups. Previous studies on forensic short tandem repeats (STRs) in Thailand predominantly focused on autosomal STRs but there was a paucity of X-STRs, exclusively reported from the North and Central regions of the country. In this study, we have newly established a 12 X-STRs from a total of 896 samples from Northeastern Thailand, encompassing Lao Isan as the major group in the region, alongside nine minor populations (Khmer, Mon, Nyahkur, Bru, Kuy, Phutai, Kalueang, Nyaw, and Saek). Across all ten populations, the combined powers of discrimination in both genders were high and the combined mean exclusion chance (MEC) indices calculated for deficiency, normal trio and duo cases were also high (> 0.99999). DXS10148 emerged as the most informative marker, while DXS7423 was identified as the least informative. Genetic comparison based on X-STRs frequency supported genetic distinction of cerain minor groups such as Kuy, Saek and Nyahkur from other northeastern Thai groups as well as genetic differences according to the geographic region of Thai groups (Northeast, North and Central). In sum, the overall results on population genetics are in agreement with earlier reports on other genetic systems, indicating the informativeness of X-STRs for use in anthropological genetics studies. From a forensic perspective, despite the limitations of small sample sizes for minority groups, the present results contribute to filling the gap in the reference X-STRs database of the major group Lao Isan, providing valuable frequency data for forensic applications in Thailand and neighboring countries.
Collapse
Affiliation(s)
- Suparat Srithawong
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Kanha Muisuk
- Department of Forensic Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Nonglak Prakhun
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | | | - Wibhu Kutanan
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand.
- Department of Biology, Faculty of Science, Naresuan University, Pitsanulok, Thailand.
| |
Collapse
|
6
|
Venkatesh SS, Wittemans LBL, Palmer DS, Baya NA, Ferreira T, Hill B, Lassen FH, Parker MJ, Reibe S, Elhakeem A, Banasik K, Bruun MT, Erikstrup C, Jensen BA, Juul A, Mikkelsen C, Nielsen HS, Ostrowski SR, Pedersen OB, Rohde PD, Sorensen E, Ullum H, Westergaard D, Haraldsson A, Holm H, Jonsdottir I, Olafsson I, Steingrimsdottir T, Steinthorsdottir V, Thorleifsson G, Figueredo J, Karjalainen MK, Pasanen A, Jacobs BM, Hubers N, Lippincott M, Fraser A, Lawlor DA, Timpson NJ, Nyegaard M, Stefansson K, Magi R, Laivuori H, van Heel DA, Boomsma DI, Balasubramanian R, Seminara SB, Chan YM, Laisk T, Lindgren CM. Genome-wide analyses identify 21 infertility loci and over 400 reproductive hormone loci across the allele frequency spectrum. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.19.24304530. [PMID: 38562841 PMCID: PMC10984039 DOI: 10.1101/2024.03.19.24304530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Genome-wide association studies (GWASs) may help inform treatments for infertility, whose causes remain unknown in many cases. Here we present GWAS meta-analyses across six cohorts for male and female infertility in up to 41,200 cases and 687,005 controls. We identified 21 genetic risk loci for infertility (P≤5E-08), of which 12 have not been reported for any reproductive condition. We found positive genetic correlations between endometriosis and all-cause female infertility (r g=0.585, P=8.98E-14), and between polycystic ovary syndrome and anovulatory infertility (r g=0.403, P=2.16E-03). The evolutionary persistence of female infertility-risk alleles in EBAG9 may be explained by recent directional selection. We additionally identified up to 269 genetic loci associated with follicle-stimulating hormone (FSH), luteinising hormone, oestradiol, and testosterone through sex-specific GWAS meta-analyses (N=6,095-246,862). While hormone-associated variants near FSHB and ARL14EP colocalised with signals for anovulatory infertility, we found no r g between female infertility and reproductive hormones (P>0.05). Exome sequencing analyses in the UK Biobank (N=197,340) revealed that women carrying testosterone-lowering rare variants in GPC2 were at higher risk of infertility (OR=2.63, P=1.25E-03). Taken together, our results suggest that while individual genes associated with hormone regulation may be relevant for fertility, there is limited genetic evidence for correlation between reproductive hormones and infertility at the population level. We provide the first comprehensive view of the genetic architecture of infertility across multiple diagnostic criteria in men and women, and characterise its relationship to other health conditions.
Collapse
Affiliation(s)
- Samvida S Venkatesh
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, United Kingdom
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Laura B L Wittemans
- Novo Nordisk Research Centre Oxford, Oxford, United Kingdom
- Nuffield Department of Women's and Reproductive Health, Medical Sciences Division, University of Oxford, United Kingdom
| | - Duncan S Palmer
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, United Kingdom
- Nuffield Department of Population Health, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Nikolas A Baya
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, United Kingdom
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Teresa Ferreira
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, United Kingdom
| | - Barney Hill
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, United Kingdom
- Nuffield Department of Population Health, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Frederik Heymann Lassen
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, United Kingdom
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Melody J Parker
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, United Kingdom
- Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Saskia Reibe
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, United Kingdom
- Nuffield Department of Population Health, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Ahmed Elhakeem
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, United Kingdom
- Population Health Science, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Karina Banasik
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
- Department of Obstetrics and Gynecology, Copenhagen University Hospital, Hvidovre, Copenhagen, Denmark
| | - Mie T Bruun
- Department of Clinical Immunology, Odense University Hospital, Odense, Denmark
| | - Christian Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Health, Aarhus University, Aarhus, Denmark
| | - Bitten A Jensen
- Department of Clinical Immunology, Aalborg University Hospital, Aalborg, Denmark
| | - Anders Juul
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen; Copenhagen, Denmark
- Department of Growth and Reproduction, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Christina Mikkelsen
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, Copenhagen University, Copenhagen, Denmark
| | - Henriette S Nielsen
- Department of Obstetrics and Gynecology, The Fertility Clinic, Hvidovre University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sisse R Ostrowski
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ole B Pedersen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Immunology, Zealand University Hospital, Kge, Denmark
| | - Palle D Rohde
- Genomic Medicine, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Erik Sorensen
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | | | - David Westergaard
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
- Department of Obstetrics and Gynecology, Copenhagen University Hospital, Hvidovre, Copenhagen, Denmark
| | - Asgeir Haraldsson
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Children's Hospital Iceland, Landspitali University Hospital, Reykjavik, Iceland
| | - Hilma Holm
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
| | - Ingileif Jonsdottir
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
| | - Isleifur Olafsson
- Department of Clinical Biochemistry, Landspitali University Hospital, Reykjavik, Iceland
| | - Thora Steingrimsdottir
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Department of Obstetrics and Gynecology, Landspitali University Hospital, Reykjavik, Iceland
| | | | | | - Jessica Figueredo
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Minna K Karjalainen
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Research Unit of Population Health, Faculty of Medicine, University of Oulu, Finland
- Northern Finland Birth Cohorts, Arctic Biobank, Infrastructure for Population Studies, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Anu Pasanen
- Research Unit of Clinical Medicine, Medical Research Center Oulu, University of Oulu, and Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Benjamin M Jacobs
- Centre for Preventive Neurology, Wolfson Institute of Population Health, Queen Mary University London, London, EC1M 6BQ, United Kingdom
| | - Nikki Hubers
- Department of Biological Psychology, Netherlands Twin Register, Vrije Universiteit, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Institute, Amsterdam, The Netherlands
| | - Margaret Lippincott
- Harvard Reproductive Sciences Center and Reproductive Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Abigail Fraser
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, United Kingdom
- Population Health Science, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Deborah A Lawlor
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, United Kingdom
- Population Health Science, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Nicholas J Timpson
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, United Kingdom
- Population Health Science, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Mette Nyegaard
- Genomic Medicine, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Kari Stefansson
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
| | - Reedik Magi
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Hannele Laivuori
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Obstetrics and Gynecology, Tampere University Hospital, Finland
- Center for Child, Adolescent, and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, Finland
| | - David A van Heel
- Blizard Institute, Queen Mary University London, London, E1 2AT, United Kingdom
| | - Dorret I Boomsma
- Department of Biological Psychology, Netherlands Twin Register, Vrije Universiteit, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Institute, Amsterdam, The Netherlands
| | - Ravikumar Balasubramanian
- Harvard Reproductive Sciences Center and Reproductive Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Stephanie B Seminara
- Harvard Reproductive Sciences Center and Reproductive Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Yee-Ming Chan
- Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Endocrinology, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts, United States of America
| | - Triin Laisk
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Cecilia M Lindgren
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, United Kingdom
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom
- Nuffield Department of Women's and Reproductive Health, Medical Sciences Division, University of Oxford, United Kingdom
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| |
Collapse
|
7
|
M. Albarzinji B, Hadi S, Ismael B, Barqee A, Hadi A, Lazim H. An X-STRs analysis of the Iraqi Sorani Kurds. PLoS One 2023; 18:e0294973. [PMID: 38011210 PMCID: PMC10681225 DOI: 10.1371/journal.pone.0294973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/10/2023] [Indexed: 11/29/2023] Open
Abstract
A database for the Iraqi Sorani Kurds, specifically focused on the 12 X-short tandem repeat (STR) loci, has been developed to fascilitate forensic and population genetics investigations. The present study involved genotyping 117 unrelated individuals from the Sorani Kurds ethnic group using the Investigator Argus X-12 QS kit. The analysis revealed that the DXS10135 locus exhibited the highest degree of polymorphism, as indicated by a polymorphism information content (PIC) value of 0.94565 and a gene diversity (GD) value of 0.95623. Conversely, the DXS8378 locus displayed the lowest level of polymorphism, with a PIC value of 0.61026 and a GD value of 0.68170. Notably, two individuals were found to possess a rare allele (allele = 6) at the DXS8378 locus, which was not included in the allelic ladder of the kit. Furthermore, a significant linkage disequilibrium (LD) (p < 0.05/117) was observed between the DXS10103 and DXS10101 loci on linkage group 3 (LG3). The ancestral composition of the five primary geographic regions, namely Africa, Middle East, East Asia, Europe, and South America, was determined through the utilization of the [Formula: see text] ratio. The findings of this analysis revealed that the Middle Eastern populations exhibited the lowest [Formula: see text] ratio, measuring at 0.23243, indicating a relatively lower ancestral diversity. Conversely, the European populations showcased the highest [Formula: see text] ratio, measuring at 0.27122, indicative of a greater ancestral diversity within this region. Additionally, the allelic richness indicators, namely distinctive and private alleles, indicated that Africa and the Middle East displayed the highest levels, while Far East Asia exhibited the lowest. This analysis supports the hypothesis of repeated founder effects during outward migrations, as evidenced by both the ancestry variability and the allelic richness. Consequently, the findings of this study have important implications for forensic genetics and population genetics research, particularly in relation to the consideration of genetic predispositions within specific ethnic groups.
Collapse
Affiliation(s)
- Balnd M. Albarzinji
- Kurdistan Institution for Strategic Studies and Scientific Research (KISSR), Sulaymaniyah, Iraq
| | - Shams Hadi
- University of Central Lancashire Medical School, Preston, United Kingdom
| | - Bahez Ismael
- Kurdistan Institution for Strategic Studies and Scientific Research (KISSR), Sulaymaniyah, Iraq
| | - Ahmed Barqee
- Kurdistan Institution for Strategic Studies and Scientific Research (KISSR), Sulaymaniyah, Iraq
| | - Abdullah Hadi
- University of Central Lancashire Medical School, Preston, United Kingdom
| | - Hayder Lazim
- Faculty of Health, Social Care and Medicine (FHSCM), School of Medicine, Edge Hill University, Ormskirk, United Kingdom
| |
Collapse
|
8
|
Cai R, Browning BL, Browning SR. Identity-by-descent-based estimation of the X chromosome effective population size with application to sex-specific demographic history. G3 (BETHESDA, MD.) 2023; 13:jkad165. [PMID: 37497617 PMCID: PMC10542559 DOI: 10.1093/g3journal/jkad165] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/10/2023] [Accepted: 07/14/2023] [Indexed: 07/28/2023]
Abstract
The effective size of a population (Ne) in the recent past can be estimated through analysis of identity-by-descent (IBD) segments. Several methods have been developed for estimating Ne from autosomal IBD segments, but no such effort has been made with X chromosome IBD segments. In this work, we propose a method to estimate the X chromosome effective population size from X chromosome IBD segments. We show how to use the estimated autosome Ne and X chromosome Ne to estimate the female and male effective population sizes. We demonstrate the accuracy of our autosome and X chromosome Ne estimation with simulated data. We find that the estimated female and male effective population sizes generally reflect the simulated sex-specific effective population sizes across the past 100 generations but that short-term differences between the estimated sex-specific Ne across tens of generations may not reliably indicate true sex-specific differences. We analyzed the effective size of populations represented by samples of sequenced UK White British and UK Indian individuals from the UK Biobank.
Collapse
Affiliation(s)
- Ruoyi Cai
- Department of Biostatistics, University of Washington, Seattle, Washington, 98195, USA
| | - Brian L Browning
- Department of Biostatistics, University of Washington, Seattle, Washington, 98195, USA
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington, 98195, USA
| | - Sharon R Browning
- Department of Biostatistics, University of Washington, Seattle, Washington, 98195, USA
| |
Collapse
|
9
|
Xiao C, Yang X, Yu Z, Wu W, Wang Y, Xu Q, Chen L. Genetic polymorphism and variability in the Guangdong Hakka, Teochew, and Cantonese groups: A comprehensive analysis of 19 X-STRs. Ann Hum Genet 2023; 87:232-240. [PMID: 37337755 DOI: 10.1111/ahg.12518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/21/2023]
Abstract
BACKGROUND X chromosomeshort tandem repeat (X-STR) loci are playing an increasingly important role inforensic work, identifying female traces in male contamination and explainingcomplex kinship analyses. METHODS In this study, we analyzed thegenetic polymorphism of 19 X-STR loci in the Guangdong Hakka, Teochew and Cantonese groups, respectively, aswell as in the Guangdong Hakka, Teochew andCantonese pooled Han. The genetic diversity and forensic characteristics of the19 X-STRs and 7 linkage groups were investigated, respectively. RESULTS The experiments showed that the genetic diversity (GD) and polymorphism information content (PIC) in the pooledGuangdong Han ranged from 0.5320 to 0.9234 and 0.4369 to 0.9171, respectively, and the cumulative power of discrimination for males (PDM), power of discrimination for females (PDF) and mean paternity exclusion chance (MEC) were higher than 0.9999999, indicating that the 19 X-STRs had high geneticpolymorphism and discriminatory power. Genetic differences among Chinese Hansubgroups and among different Chinese populations were investigated byphylogenetic reconstruction and principal component analysis (PCA), respectively. Genetic analyses based on neighbor-joining (NJ) tree and principal component analysis plot showed that Cantonese, Teochew and Hakka were closely genetically related, and different populations with closer linguistic components had more genetic affinity. CONCLUSIONS This study adds to the forensic X-STR database and demonstrates the forensic efficiency of 19 X-STRs for the Hakka, Teochewand Cantonese populations in Guangdong, and the pooled Han of Hakka, Teochewand Cantonese people in Guangdong.
Collapse
Affiliation(s)
- Cheng Xiao
- Guangzhou Red Cross Hospital, Guangzhou, China
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Xingyi Yang
- Guangzhou Forensic Science Institute, Guangzhou, China
| | - Zhonghao Yu
- Guangzhou Forensic Science Institute, Guangzhou, China
| | - Weibin Wu
- Guangzhou Forensic Science Institute, Guangzhou, China
| | - Yuan Wang
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Quyi Xu
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
- Guangzhou Forensic Science Institute, Guangzhou, China
| | - Ling Chen
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
10
|
Chevy ET, Huerta-Sánchez E, Ramachandran S. Integrating sex-bias into studies of archaic introgression on chromosome X. PLoS Genet 2023; 19:e1010399. [PMID: 37578977 PMCID: PMC10449224 DOI: 10.1371/journal.pgen.1010399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 08/24/2023] [Accepted: 07/10/2023] [Indexed: 08/16/2023] Open
Abstract
Evidence of interbreeding between archaic hominins and humans comes from methods that infer the locations of segments of archaic haplotypes, or 'archaic coverage' using the genomes of people living today. As more estimates of archaic coverage have emerged, it has become clear that most of this coverage is found on the autosomes- very little is retained on chromosome X. Here, we summarize published estimates of archaic coverage on autosomes and chromosome X from extant human samples. We find on average 7 times more archaic coverage on autosomes than chromosome X, and identify broad continental patterns in this ratio: greatest in European samples, and least in South Asian samples. We also perform extensive simulation studies to investigate how the amount of archaic coverage, lengths of coverage, and rates of purging of archaic coverage are affected by sex-bias caused by an unequal sex ratio within the archaic introgressors. Our results generally confirm that, with increasing male sex-bias, less archaic coverage is retained on chromosome X. Ours is the first study to explicitly model such sex-bias and its potential role in creating the dearth of archaic coverage on chromosome X.
Collapse
Affiliation(s)
- Elizabeth T. Chevy
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, United States of America
| | - Emilia Huerta-Sánchez
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, United States of America
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, Rhode Island, United States of America
| | - Sohini Ramachandran
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, United States of America
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, Rhode Island, United States of America
- Data Science Initiative, Brown University, Providence, Rhode Island, United States of America
| |
Collapse
|
11
|
Gorlov IP, Amos CI. Why does the X chromosome lag behind autosomes in GWAS findings? PLoS Genet 2023; 19:e1010472. [PMID: 36848382 PMCID: PMC9997976 DOI: 10.1371/journal.pgen.1010472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 03/09/2023] [Accepted: 02/15/2023] [Indexed: 03/01/2023] Open
Abstract
The X-chromosome is among the largest human chromosomes. It differs from autosomes by a number of important features including hemizygosity in males, an almost complete inactivation of one copy in females, and unique patterns of recombination. We used data from the Catalog of Published Genome Wide Association Studies to compare densities of the GWAS-detected SNPs on the X-chromosome and autosomes. The density of GWAS-detected SNPs on the X-chromosome is 6-fold lower compared to the density of the GWAS-detected SNPs on autosomes. Differences between the X-chromosome and autosomes cannot be explained by differences in the overall SNP density, lower X-chromosome coverage by genotyping platforms or low call rate of X-chromosomal SNPs. Similar differences in the density of GWAS-detected SNPs were found in female-only GWASs (e.g. ovarian cancer GWASs). We hypothesized that the lower density of GWAS-detected SNPs on the X-chromosome compared to autosomes is not a result of a methodological bias, e.g. differences in coverage or call rates, but has a real underlying biological reason-a lower density of functional SNPs on the X-chromosome versus autosomes. This hypothesis is supported by the observation that (i) the overall SNP density of X-chromosome is lower compared to the SNP density on autosomes and that (ii) the density of genic SNPs on the X-chromosome is lower compared to autosomes while densities of intergenic SNPs are similar.
Collapse
Affiliation(s)
- Ivan P. Gorlov
- Baylor College of Medicine, Institute for Clinical & Translational Research, One Baylor Plaza, Houston, Texas, United States of America
| | - Christopher I. Amos
- Baylor College of Medicine, Institute for Clinical & Translational Research, One Baylor Plaza, Houston, Texas, United States of America
| |
Collapse
|
12
|
Naderi E, Cornejo-Sanchez DM, Li G, Schrauwen I, Wang GT, Dewan AT, Leal SM. The genetic contribution of the X chromosome in age-related hearing loss. Front Genet 2023; 14:1106328. [PMID: 36896235 PMCID: PMC9988903 DOI: 10.3389/fgene.2023.1106328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/09/2023] [Indexed: 02/23/2023] Open
Abstract
Age-related (AR) hearing loss (HL) is the most common sensory impairment with heritability of 55%. The aim of this study was to identify genetic variants on chromosome X associated with ARHL through the analysis of data obtained from the UK Biobank. We performed association analysis between self-reported measures of HL and genotyped and imputed variants on chromosome X from ∼460,000 white Europeans. We identified three loci associated with ARHL with a genome-wide significance level (p < 5 × 10-8), ZNF185 (rs186256023, p = 4.9 × 10-10) and MAP7D2 (rs4370706, p = 2.3 × 10-8) in combined analysis of males and females, and LOC101928437 (rs138497700, p = 8.9 × 10-9) in the sex-stratified analysis of males. In-silico mRNA expression analysis showed MAP7D2 and ZNF185 are expressed in mice and adult human inner ear tissues, particularly in the inner hair cells. We estimated that only a small amount of variation of ARHL, 0.4%, is explained by variants on the X chromosome. This study suggests that although there are likely a few genes contributing to ARHL on the X chromosome, the role that the X chromosome plays in the etiology of ARHL may be limited.
Collapse
Affiliation(s)
- Elnaz Naderi
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, and the Department of Neurology, Columbia University Medical Center, New York, NY, United States
| | - Diana M Cornejo-Sanchez
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, and the Department of Neurology, Columbia University Medical Center, New York, NY, United States
| | - Guangyou Li
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, and the Department of Neurology, Columbia University Medical Center, New York, NY, United States
| | - Isabelle Schrauwen
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, and the Department of Neurology, Columbia University Medical Center, New York, NY, United States
| | - Gao T Wang
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, and the Department of Neurology, Columbia University Medical Center, New York, NY, United States
| | - Andrew T Dewan
- Department of Chronic Disease Epidemiology and Center for Perinatal, Pediatric and Environmental Epidemiology, Yale School of Public Health, New Haven, CT, United States
| | - Suzanne M Leal
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, and the Department of Neurology, Columbia University Medical Center, New York, NY, United States.,Taub Institute for Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, United States
| |
Collapse
|
13
|
Feng Y, Wang T, Yang Y, You J, He K, Zhang H, Wang Q, Yang M, Huang J, Ren Z, Jin X. Genetic features and phylogenetic relationship analyses of Guizhou Han population residing in Southwest China via 38 X-InDels. PeerJ 2023; 11:e14964. [PMID: 36915656 PMCID: PMC10007965 DOI: 10.7717/peerj.14964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/06/2023] [Indexed: 03/11/2023] Open
Abstract
Background The insertion/deletion polymorphism (InDel), an ideal forensic genetic marker with a low spontaneous mutation rate and small amplification product fragments, is widely distributed in the genome, combining the advantages of STR and SNP genetic markers. The X-chromosome has high application value in complex paternity testing, and it is an excellent system for evaluating population admixture and studying evolutionary anthropology. However, further research is needed on the population genetics of X-chromosome InDels (X-InDels). Methods In this article, a system composed of 38 X-InDel loci was utilized to analyse and evaluate the forensic parameters of the Guizhou Han population in order to explore its forensic application efficiency. Results The results showed that expected heterozygosities spanned from 0.0189 to 0.5715, and the cumulative power of discrimination of the 32 X-InDels and three linkage blocks was 0.9999999954 and 0.999999999999741 for males and females, respectively. The combined mean exclusion chance of these loci for trios and duos is 0.999999 and 0.999747, respectively. Multiple methods like principal component analysis, Fst genetic distance, and phylogenetic reconstruction were employed for dissecting the genetic structure of the Guizhou Han population by comparing it with previously reported populations. As expected, the studied Han population displayed relatively close genetic affinities with the East Asian populations. At the same time, there were obvious genetic differentiations between the Guizhou Han population and other continental populations that were discerned, especially for the African populations. Conclusions This study further verified the applicability of 38 X-InDels for human personal identification and kinship analyses of Han Chinese, and also showed the application potential of X-InDels in population genetics.
Collapse
Affiliation(s)
- Yuhang Feng
- Shanghai Key Lab of Forensic Medicine, Key Lab of Forensic Science, Ministry of Justice, China, Academy of Forensic Science, Shanghai, China.,Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Ting Wang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Yunteng Yang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Jiangtao You
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Kun He
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Hongling Zhang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Qiyan Wang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Meiqing Yang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Jiang Huang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Zheng Ren
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Xiaoye Jin
- Shanghai Key Lab of Forensic Medicine, Key Lab of Forensic Science, Ministry of Justice, China, Academy of Forensic Science, Shanghai, China.,Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| |
Collapse
|
14
|
Frankham R. Effects of genomic homozygosity on total fitness in an invertebrate: lethal equivalent estimates for Drosophila melanogaster. CONSERV GENET 2022. [DOI: 10.1007/s10592-022-01493-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
15
|
Population structure of threatened caribou in western Canada inferred from genome-wide SNP data. CONSERV GENET 2022. [DOI: 10.1007/s10592-022-01475-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
16
|
Zhang R, Ni X, Yuan K, Pan Y, Xu S. MultiWaverX: modeling latent sex-biased admixture history. Brief Bioinform 2022; 23:6590437. [PMID: 35598333 DOI: 10.1093/bib/bbac179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
Sex-biased gene flow has been common in the demographic history of modern humans. However, the lack of sophisticated methods for delineating the detailed sex-biased admixture process prevents insights into complex admixture history and thus our understanding of the evolutionary mechanisms of genetic diversity. Here, we present a novel algorithm, MultiWaverX, for modeling complex admixture history with sex-biased gene flow. Systematic simulations showed that MultiWaverX is a powerful tool for modeling complex admixture history and inferring sex-biased gene flow. Application of MultiWaverX to empirical data of 17 typical admixed populations in America, Central Asia, and the Middle East revealed sex-biased admixture histories that were largely consistent with the historical records. Notably, fine-scale admixture process reconstruction enabled us to recognize latent sex-biased gene flow in certain populations that would likely be overlooked by much of the routine analysis with commonly used methods. An outstanding example in the real world is the Kazakh population that experienced complex admixture with sex-biased gene flow but in which the overall signature has been canceled due to biased gene flow from an opposite direction.
Collapse
Affiliation(s)
- Rui Zhang
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xumin Ni
- School of Mathematics and Statistics, Beijing Jiaotong University, Beijing, 100044, China
| | - Kai Yuan
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuwen Pan
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shuhua Xu
- Department of Liver Surgery and Transplantation Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200438, China.,Human Phenome Institute, Zhangjiang Fudan International Innovation Center, and Ministry of Education Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai 201203, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China.,Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China.,Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450052, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
17
|
Keur N, Ricaño-Ponce I, Kumar V, Matzaraki V. A systematic review of analytical methods used in genetic association analysis of the X-chromosome. Brief Bioinform 2022; 23:6651325. [PMID: 35901513 DOI: 10.1093/bib/bbac287] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/07/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
Genetic association studies have been very successful at elucidating the genetic background of many complex diseases/traits. However, the X-chromosome is often neglected in these studies because of technical difficulties and the fact that most tools only utilize genetic data from autosomes. In this review, we aim to provide an overview of different practical approaches that are followed to incorporate the X-chromosome in association analysis, such as Genome-Wide Association Studies and Expression Quantitative Trait Loci Analysis. In general, the choice of which test statistics is most appropriate will depend on three main criteria: (1) the underlying X-inactivation model, (2) if Hardy-Weinberg equilibrium holds and sex-specific allele frequencies are expected and (3) whether adjustment for confounding variables is required. All in all, it is recommended that a combination of different association tests should be used for the analysis of X-chromosome.
Collapse
Affiliation(s)
- Nick Keur
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 HP, Nijmegen, The Netherlands
| | - Isis Ricaño-Ponce
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 HP, Nijmegen, The Netherlands
| | - Vinod Kumar
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 HP, Nijmegen, The Netherlands.,Department of Genetics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700RB, Groningen, The Netherlands
| | - Vasiliki Matzaraki
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 HP, Nijmegen, The Netherlands
| |
Collapse
|
18
|
Mateus D, Sebastião AI, Carrascal MA, do Carmo A, Matos AM, Cruz MT. Crosstalk between estrogen, dendritic cells, and SARS-CoV-2 infection. Rev Med Virol 2022; 32:e2290. [PMID: 34534372 PMCID: PMC8646421 DOI: 10.1002/rmv.2290] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/11/2022]
Abstract
The novel coronavirus disease 2019 (Covid-19) first appeared in Wuhan and has so far killed more than four million people worldwide. Men are more affected than women by Covid-19, but the cellular and molecular mechanisms behind these differences are largely unknown. One plausible explanation is that differences in sex hormones could partially account for this distinct prevalence in both sexes. Accordingly, several papers have reported a protective role of 17β-estradiol during Covid-19, which might help explain why women appear less likely to die from Covid-19 than men. 17β-estradiol is the predominant and most biologically active endogenous estrogen, which signals through estrogen receptor α, estrogen receptor β, and G protein-coupled estrogen receptor 1. These receptors are expressed in mature cells from the innate and the adaptive immune system, particularly on dendritic cells (DCs), suggesting that estrogens could modulate their effector functions. DCs are the most specialized and proficient antigen-presenting cells, acting at the interface of innate and adaptive immunity with a powerful capacity to prime antigen-specific naive CD8+ T cells. DCs are richly abundant in the lung where they respond to viral infection. A relative increase of mature DCs in broncho-alveolar lavage fluids from Covid-19 patients has already been reported. Here we will describe how SARS-CoV-2 acts on DCs, the role of estrogen on DC immunobiology, summarise the impact of sex hormones on the immune response against Covid-19, and explore clinical trials regarding Covid-19.
Collapse
Affiliation(s)
- Daniela Mateus
- Faculty of Pharmacy—FFUCUniversity of CoimbraCoimbraPortugal
| | | | - Mylène A. Carrascal
- Center for Neuroscience and Cell Biology—CNCUniversity of CoimbraCoimbraPortugal
- UpCellsTecnimed GroupSintraPortugal
| | - Anália do Carmo
- Clinical Pathology DepartmentCentro Hospitalar e Universitário de CoimbraCoimbraPortugal
| | - Ana Miguel Matos
- Faculty of Pharmacy—FFUCUniversity of CoimbraCoimbraPortugal
- Chemical Engineering Processes and Forest Products Research Center, CIEPQPFFaculty of Sciences and Technology, University of CoimbraCoimbraPortugal
| | - Maria Teresa Cruz
- Faculty of Pharmacy—FFUCUniversity of CoimbraCoimbraPortugal
- Center for Neuroscience and Cell Biology—CNCUniversity of CoimbraCoimbraPortugal
| |
Collapse
|
19
|
Shihabi M, Lukic B, Cubric-Curik V, Brajkovic V, Oršanić M, Ugarković D, Vostry L, Curik I. Identification of Selection Signals on the X-Chromosome in East Adriatic Sheep: A New Complementary Approach. Front Genet 2022; 13:887582. [PMID: 35615375 PMCID: PMC9126029 DOI: 10.3389/fgene.2022.887582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/21/2022] [Indexed: 12/13/2022] Open
Abstract
Sheep are one of the most important livestock species in Croatia, found mainly in the Mediterranean coastal and mountainous regions along the East Adriatic coast, well adapted to the environment and mostly kept extensively. Our main objective was therefore to map the positive selection of the X-chromosome (18,983 SNPs that passed quality control), since nothing is known about the adaptation genes on this chromosome for any of the breeds from the Balkan cluster. Analyses were performed on a sample of eight native Croatian breeds (101 females and 100 males) representing the East Adriatic metapopulation and on 10 mouflons (five females and males), all sampled in Croatia. Three classical within-population approaches (extreme Runs of Homozygosity islands, integrated Haplotype Score, and number of Segregating Sites by Length) were applied along with our new approach called Haplotype Richness Drop (HRiD), which uses only the information contained in male haplotypes. We have also shown that phylogenetic analyses, such as the Median-joining network, can provide additional information when performed with the selection signals identified by HRiD. Our new approach identifies positive selection signals by searching for genomic regions that exhibit a sudden decline in haplotype richness. In total, we identified 14 positive selection signals, 11 using the classical approach and three using the HRiD approach, all together containing 34 annotated genes. The most reliable selection signal was mapped by all four approaches in the same region, overlapping between 13.17 and 13.60 Mb, and assigned to the CA5B, ZRSR2, AP1S2, and GRPR genes. High repeatability (86%) of results was observed, as 12 identified selection signals were also confirmed in other studies with sheep. HRiD offers an interesting possibility to be used complementary to other approaches or when only males are genotyped, which is often the case in genomic breeding value estimations. These results highlight the importance of the X-chromosome in the adaptive architecture of domestic ruminants, while our novel HRiD approach opens new possibilities for research.
Collapse
Affiliation(s)
- Mario Shihabi
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
- *Correspondence: Mario Shihabi, ; Ino Curik,
| | - Boris Lukic
- Department for Animal Production and Biotechnology, Faculty of Agrobiotechnical Sciences Osijek, J.J. Strossmayer University of Osijek, Osijek, Croatia
| | - Vlatka Cubric-Curik
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
| | - Vladimir Brajkovic
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
| | - Milan Oršanić
- Department of Forest Ecology and Silviculture, Faculty of Forestry and Wood Technology, University of Zagreb, Zagreb, Croatia
| | - Damir Ugarković
- Department of Forest Ecology and Silviculture, Faculty of Forestry and Wood Technology, University of Zagreb, Zagreb, Croatia
| | - Luboš Vostry
- Department of Genetics and Breeding, Faculty Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Czechia
| | - Ino Curik
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
- *Correspondence: Mario Shihabi, ; Ino Curik,
| |
Collapse
|
20
|
Ma X, Øvrebø JI, Thompson EM. Evolution of CDK1 Paralog Specializations in a Lineage With Fast Developing Planktonic Embryos. Front Cell Dev Biol 2022; 9:770939. [PMID: 35155443 PMCID: PMC8832800 DOI: 10.3389/fcell.2021.770939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 12/27/2021] [Indexed: 12/03/2022] Open
Abstract
The active site of the essential CDK1 kinase is generated by core structural elements, among which the PSTAIRE motif in the critical αC-helix, is universally conserved in the single CDK1 ortholog of all metazoans. We report serial CDK1 duplications in the chordate, Oikopleura. Paralog diversifications in the PSTAIRE, activation loop substrate binding platform, ATP entrance site, hinge region, and main Cyclin binding interface, have undergone positive selection to subdivide ancestral CDK1 functions along the S-M phase cell cycle axis. Apparent coevolution of an exclusive CDK1d:Cyclin Ba/b pairing is required for oogenic meiosis and early embryogenesis, a period during which, unusually, CDK1d, rather than Cyclin Ba/b levels, oscillate, to drive very rapid cell cycles. Strikingly, the modified PSTAIRE of odCDK1d shows convergence over great evolutionary distance with plant CDKB, and in both cases, these variants exhibit increased specialization to M-phase.
Collapse
Affiliation(s)
- Xiaofei Ma
- College of Life Sciences, Northwest Normal University, Lanzhou, China
- Sars International Centre, University of Bergen, Bergen, Norway
| | - Jan Inge Øvrebø
- Sars International Centre, University of Bergen, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Eric M. Thompson
- Sars International Centre, University of Bergen, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
21
|
Zhang L, Zhu Z, Du W, Li S, Liu C. Genetic Structure and Forensic Feature of 38 X-Chromosome InDels in the Henan Han Chinese Population. Front Genet 2022; 12:805936. [PMID: 35047018 PMCID: PMC8762224 DOI: 10.3389/fgene.2021.805936] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 11/25/2021] [Indexed: 12/11/2022] Open
Abstract
Insertion/deletion (InDel) polymorphisms, as ideal forensic markers, show useful characteristics of both SNPs and STRs, such as low mutation rate, short amplicon size and general applicability of genotyping platform, and have been used in human identification, population genetics and biogeographic research in recent years. X-chromosome genetic markers are significant in population genetic studies and indispensable complements in some complex forensic cases. However, the population genetic studies of X-chromosome InDel polymorphisms (X-InDels) still need to be explored. In this study, the forensic utility of a novel panel including 38 X-InDel markers was evaluated in a sample of Han population from Henan province in China. It is observed that the heterozygosities ranged from 0.0054 to 0.6133, and the combined discrimination power was 1-9.18 × 10-17 for males and 1-7.22 × 10-12 for females respectively. The mean exclusion chance in trios and duos were 0.999999319 and 0.999802969 respectively. Multiple biostatistics methods, such as principal component analysis, genetic distances analysis, phylogenetic reconstruction, and structure analysis was used to reveal the genetic relationships among the studied Henan Han group and other 26 reference groups from 1,000 Genomes Project. As expected, the Henan Han population was clustered with East Asian populations, and the most intimate genetic relationships existed in three Han Chinese populations from Henan, Beijing and South China, and showed significant differences compared with other continental groups. These results confirmed the suitability of the 38 X-InDel markers both in individual identification and parentage testing in Han Chinese population, and simultaneously showed the potential application in population genetics.
Collapse
Affiliation(s)
- Lin Zhang
- Bio-evidence Science Academy, Xi’an Jiaotong University, Xi’an, China
- Department of Forensic Medicine, Xinxiang Medical University, Xinxiang, China
| | - Zhendong Zhu
- Department of Human Anatomy, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Weian Du
- HOMY GeneTech Incorporation, Foshan, China
| | - Shengbin Li
- Bio-evidence Science Academy, Xi’an Jiaotong University, Xi’an, China
| | - Changhui Liu
- Guangzhou Forensic Science Institute, Guangzhou, China
| |
Collapse
|
22
|
Lucena-Perez M, Kleinman-Ruiz D, Marmesat E, Saveljev AP, Schmidt K, Godoy JA. Bottleneck-associated changes in the genomic landscape of genetic diversity in wild lynx populations. Evol Appl 2021; 14:2664-2679. [PMID: 34815746 PMCID: PMC8591332 DOI: 10.1111/eva.13302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/17/2021] [Accepted: 09/08/2021] [Indexed: 01/06/2023] Open
Abstract
Demographic bottlenecks generally reduce genetic diversity through more intense genetic drift, but their net effect may vary along the genome due to the random nature of genetic drift and to local effects of recombination, mutation, and selection. Here, we analyzed the changes in genetic diversity following a bottleneck by comparing whole-genome diversity patterns in populations with and without severe recent documented declines of Iberian (Lynx pardinus, n = 31) and Eurasian lynx (Lynx lynx, n = 29). As expected, overall genomic diversity correlated negatively with bottleneck intensity and/or duration. Correlations of genetic diversity with divergence, chromosome size, gene or functional site content, GC content, or recombination were observed in nonbottlenecked populations, but were weaker in bottlenecked populations. Also, functional features under intense purifying selection and the X chromosome showed an increase in the observed density of variants, even resulting in higher θ W diversity than in nonbottlenecked populations. Increased diversity seems to be related to both a higher mutational input in those regions creating a large collection of low-frequency variants, a few of which increase in frequency during the bottleneck to the point they become detectable with our limited sample, and the reduced efficacy of purifying selection, which affects not only protein structure and function but also the regulation of gene expression. The results of this study alert to the possible reduction of fitness and adaptive potential associated with the genomic erosion in regulatory elements. Further, the detection of a gain of diversity in ultra-conserved elements can be used as a sensitive and easy-to-apply signature of genetic erosion in wild populations.
Collapse
Affiliation(s)
- Maria Lucena-Perez
- Departamento de Ecología Integrativa Estación Biológica de Doñana (CSIC) Sevilla Spain
| | - Daniel Kleinman-Ruiz
- Departamento de Ecología Integrativa Estación Biológica de Doñana (CSIC) Sevilla Spain
- Departamento de Genética Facultad de Biología Universidad Complutense Madrid Spain
| | - Elena Marmesat
- Departamento de Ecología Integrativa Estación Biológica de Doñana (CSIC) Sevilla Spain
| | - Alexander P Saveljev
- Department of Animal Ecology Russian Research Institute of Game Management and Fur Farming Kirov Russia
| | - Krzysztof Schmidt
- Mammal Research Institute Polish Academy of Sciences Białowieża Poland
| | - José A Godoy
- Departamento de Ecología Integrativa Estación Biológica de Doñana (CSIC) Sevilla Spain
| |
Collapse
|
23
|
A reference database of forensic autosomal and gonosomal STR markers in the Tigray population of Ethiopia. Forensic Sci Int Genet 2021; 56:102618. [PMID: 34735940 DOI: 10.1016/j.fsigen.2021.102618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/31/2021] [Accepted: 10/20/2021] [Indexed: 11/20/2022]
Abstract
Allele frequencies of 21 autosomal STR markers (AmpF/STR GlobalFiler) and haplotype frequencies of 27 Y- and 12 X-STR markers (AmpF/STR YFiler Plus and Investigator Argus X-12, respectively) were investigated in the Tigray population of Ethiopia, representing the main population group in the Tigray regional state of Ethiopia and neighboring Eritrea. For autosomal STR allele frequencies, the average random match probability in the Tigray sample was 2.1 × 10-27. The average locus by locus FST distance calculated comparing autosomal STR allele frequencies from Tigray and from a broad regional reference dataset currently available for the Horn of Africa was 0.003. The Tigray male sample displayed high Y-STR diversity, with complete individualization of haplotypes using the AmpF/STR YFiler Plus panel. Analysis of molecular variance did not detect significant heterogeneity between Y-STR haplotypes observed in the present study and those previously reported in the literature for other Tigray population samples from Ethiopia and Eritrea. Study of the X-STR landscape in Tigray evidenced several distinctive features including: the molecular characterization of a novel null allele at locus DXS10146 with frequency > 1%; allele dependency between loci within linkage groups I and III; significant differences in haplotype distribution compared to other Horn of Africa populations, that should be taken into account in kinship analysis. The collected data can be used as a reference STR database by local forensic genetics services and in genetic identification procedures of victims of human trafficking in the Mediterranean Sea, which frequently involve individuals originating from the Horn of Africa.
Collapse
|
24
|
Jackson EK, Bellott DW, Skaletsky H, Page DC. GC-biased gene conversion in X-chromosome palindromes conserved in human, chimpanzee, and rhesus macaque. G3 GENES|GENOMES|GENETICS 2021; 11:6317831. [PMID: 34849781 PMCID: PMC8981503 DOI: 10.1093/g3journal/jkab224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/28/2021] [Indexed: 12/03/2022]
Abstract
Gene conversion is GC-biased across a wide range of taxa. Large palindromes on mammalian
sex chromosomes undergo frequent gene conversion that maintains arm-to-arm sequence
identity greater than 99%, which may increase their susceptibility to the effects of
GC-biased gene conversion. Here, we demonstrate a striking history of GC-biased gene
conversion in 12 palindromes conserved on the X chromosomes of human, chimpanzee, and
rhesus macaque. Primate X-chromosome palindrome arms have significantly higher GC content
than flanking single-copy sequences. Nucleotide replacements that occurred in human and
chimpanzee palindrome arms over the past 7 million years are one-and-a-half times as
GC-rich as the ancestral bases they replaced. Using simulations, we show that our observed
pattern of nucleotide replacements is consistent with GC-biased gene conversion with a
magnitude of 70%, similar to previously reported values based on analyses of human
meioses. However, GC-biased gene conversion since the divergence of human and rhesus
macaque explains only a fraction of the observed difference in GC content between
palindrome arms and flanking sequence, suggesting that palindromes are older than 29
million years and/or had elevated GC content at the time of their formation. This work
supports a greater than 2:1 preference for GC bases over AT bases during gene conversion
and demonstrates that the evolution and composition of mammalian sex chromosome
palindromes is strongly influenced by GC-biased gene conversion.
Collapse
Affiliation(s)
- Emily K Jackson
- Whitehead Institute, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Whitehead Institute, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Helen Skaletsky
- Whitehead Institute, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Whitehead Institute, Cambridge, MA 02142, USA
| | - David C Page
- Whitehead Institute, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Whitehead Institute, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
25
|
Hennelly LM, Habib B, Modi S, Rueness EK, Gaubert P, Sacks BN. Ancient divergence of Indian and Tibetan wolves revealed by recombination-aware phylogenomics. Mol Ecol 2021; 30:6687-6700. [PMID: 34398980 DOI: 10.1111/mec.16127] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 06/24/2021] [Accepted: 08/13/2021] [Indexed: 12/29/2022]
Abstract
The grey wolf (Canis lupus) expanded its range across Holarctic regions during the late Pleistocene. Consequently, most grey wolves share recent (<100,000 years ago) maternal origins corresponding to a widespread Holarctic clade. However, two deeply divergent (200,000-700,000 years ago) mitochondrial clades are restricted, respectively, to the Indian subcontinent and the Tibetan Plateau, where remaining wolves are endangered. No genome-wide analysis had previously included wolves corresponding to the mitochondrial Indian clade or attempted to parse gene flow and phylogeny. We sequenced four Indian and two Tibetan wolves and included 31 additional canid genomes to resolve the phylogenomic history of grey wolves. Genomic analyses revealed Indian and Tibetan wolves to be distinct from each other and from broadly distributed wolf populations corresponding to the mitochondrial Holarctic clade. Despite gene flow, which was reflected disproportionately in high-recombination regions of the genome, analyses revealed Indian and Tibetan wolves to be basal to Holarctic grey wolves, in agreement with the mitochondrial phylogeny. In contrast to mitochondrial DNA, however, genomic findings suggest the possibility that the Indian wolf could be basal to the Tibetan wolf, a discordance potentially reflecting selection on the mitochondrial genome. Together, these findings imply that southern regions of Asia have been important centers for grey wolf evolution and that Indian and Tibetan wolves represent evolutionary significant units (ESUs). Further study is needed to assess whether these ESUs warrant recognition as distinct species. This question is especially urgent regarding the Indian wolf, which represents one of the world's most endangered wolf populations.
Collapse
Affiliation(s)
- Lauren M Hennelly
- Mammalian Ecology and Conservation Unit, Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Bilal Habib
- Department of Animal Ecology and Conservation, Wildlife Institute of India, Dehradun, Uttarakhand, India
| | - Shrushti Modi
- Department of Animal Ecology and Conservation, Wildlife Institute of India, Dehradun, Uttarakhand, India
| | - Eli K Rueness
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Philippe Gaubert
- Laboratoire Evolution et Diversité Biologique (EDB), CNRS/UPS/IRD, Université Toulouse III Paul Sabatier - Bâtiment 4R1, Toulouse cedex 9, France
| | - Benjamin N Sacks
- Mammalian Ecology and Conservation Unit, Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, Davis, California, USA.,Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| |
Collapse
|
26
|
Flores-Espinoza R, Paz-Cruz E, Ruiz-Pozo VA, Lopez-Carrera M, Cabrera-Andrade A, Gusmão L, Burgos G. Investigating genetic diversity in admixed populations from Ecuador. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2021; 176:109-119. [PMID: 34169504 DOI: 10.1002/ajpa.24341] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/21/2021] [Accepted: 05/23/2021] [Indexed: 11/10/2022]
Abstract
OBJECTIVES According to demographic history, Ecuador has experienced shifts in its Native American populations caused by European colonization and the African slave trade. The continuous admixture events among Europeans, Native Americans, and Africans occurred differently in each region of the country, producing a stratified population. Thus, the aim of this study was to investigate the level of genetic substructure in the Ecuadorian Mestizo population. MATERIALS AND METHODS A total of 377 male and 209 female samples were genotyped for two sets of X-chromosomal markers (32 X-Indels and 12 X-STRs). Population analyses performed included Hardy-Weinberg equilibrium tests, LD analysis, PCA, pairwise FST s, and AMOVA. RESULTS Significant levels of LD were observed between markers separated by distances of less than 1 cM, as well as between markers separated by distances varying from 10.891 to 163.53 cM. Among Ecuadorian regions, Amazonia showed the highest average R2 value. DISCUSSION When X-chromosomal and autosomal differentiation values were compared, a sex-biased admixture between European men and Native American and African women was revealed, as well as between African men and Native American women. Moreover, a distinct Native American ancestry was discernible in the Amazonian population, in addition to sex-biased gene flow between Amazonia and the Andes and Pacific coast regions. Overall, these results underline the importance of integrating X chromosome information to achieve a more comprehensive view of the genetic and demographic histories of South American admixed populations.
Collapse
Affiliation(s)
- Rodrigo Flores-Espinoza
- Laboratório de Diagnóstico por DNA (LDD), Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratorios de Investigación, Universidad de Las Américas (UDLA), Quito, Ecuador
| | - Elius Paz-Cruz
- Laboratorio de ADN, Fiscalía General del Estado, Quito, Ecuador
| | | | | | - Alejandro Cabrera-Andrade
- Grupo de Bio-Quimioinformática, Universidad de Las Américas (UDLA), Quito, Ecuador.,Carrera de Enfermería, Facultad de Ciencias de la Salud, Universidad de Las Américas (UDLA), Quito, Ecuador
| | - Leonor Gusmão
- Laboratório de Diagnóstico por DNA (LDD), Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - German Burgos
- Escuela de Medicina, Facultad de Ciencias de la Salud, Universidad de Las Américas (UDLA), Quito, Ecuador.,Grupo de Medicina Xenómica, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
27
|
Asselta R, Paraboschi EM, Gerussi A, Cordell HJ, Mells GF, Sandford RN, Jones DE, Nakamura M, Ueno K, Hitomi Y, Kawashima M, Nishida N, Tokunaga K, Nagasaki M, Tanaka A, Tang R, Li Z, Shi Y, Liu X, Xiong M, Hirschfield G, Siminovitch KA, Carbone M, Cardamone G, Duga S, Gershwin ME, Seldin MF, Invernizzi P. X Chromosome Contribution to the Genetic Architecture of Primary Biliary Cholangitis. Gastroenterology 2021; 160:2483-2495.e26. [PMID: 33675743 PMCID: PMC8169555 DOI: 10.1053/j.gastro.2021.02.061] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 02/15/2021] [Accepted: 02/25/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Genome-wide association studies in primary biliary cholangitis (PBC) have failed to find X chromosome (chrX) variants associated with the disease. Here, we specifically explore the chrX contribution to PBC, a sexually dimorphic complex autoimmune disease. METHODS We performed a chrX-wide association study, including genotype data from 5 genome-wide association studies (from Italy, United Kingdom, Canada, China, and Japan; 5244 case patients and 11,875 control individuals). RESULTS Single-marker association analyses found approximately 100 loci displaying P < 5 × 10-4, with the most significant being a signal within the OTUD5 gene (rs3027490; P = 4.80 × 10-6; odds ratio [OR], 1.39; 95% confidence interval [CI], 1.028-1.88; Japanese cohort). Although the transethnic meta-analysis evidenced only a suggestive signal (rs2239452, mapping within the PIM2 gene; OR, 1.17; 95% CI, 1.09-1.26; P = 9.93 × 10-8), the population-specific meta-analysis showed a genome-wide significant locus in East Asian individuals pointing to the same region (rs7059064, mapping within the GRIPAP1 gene; P = 6.2 × 10-9; OR, 1.33; 95% CI, 1.21-1.46). Indeed, rs7059064 tags a unique linkage disequilibrium block including 7 genes: TIMM17B, PQBP1, PIM2, SLC35A2, OTUD5, KCND1, and GRIPAP1, as well as a superenhancer (GH0XJ048933 within OTUD5) targeting all these genes. GH0XJ048933 is also predicted to target FOXP3, the main T-regulatory cell lineage specification factor. Consistently, OTUD5 and FOXP3 RNA levels were up-regulated in PBC case patients (1.75- and 1.64-fold, respectively). CONCLUSIONS This work represents the first comprehensive study, to our knowledge, of the chrX contribution to the genetics of an autoimmune liver disease and shows a novel PBC-related genome-wide significant locus.
Collapse
Affiliation(s)
- Rosanna Asselta
- Department of Biomedical Sciences, Humanitas University, Milan, Italy; IRCCS Humanitas Research Hospital, Milan, Italy
| | - Elvezia M Paraboschi
- Department of Biomedical Sciences, Humanitas University, Milan, Italy; IRCCS Humanitas Research Hospital, Milan, Italy
| | - Alessio Gerussi
- Division of Gastroenterology and Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy; European Reference Network on Hepatological Diseases, San Gerardo Hospital, Monza, Italy
| | - Heather J Cordell
- Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, United Kingdom
| | - George F Mells
- Academic Department of Medical Genetics, Cambridge University, Cambridge, United Kingdom
| | - Richard N Sandford
- Academic Department of Medical Genetics, Cambridge University, Cambridge, United Kingdom
| | - David E Jones
- Faculty of Medical Sciences, Newcastle University, Newcastle, United Kingdom
| | - Minoru Nakamura
- Clinical Research Center, National Hospital Organization, Nagasaki Medical Center, Nagasaki, Japan; Department of Hepatology, Nagasaki University Graduate School of Biomedical Sciences, Omura, Nagasaki, Japan
| | - Kazuko Ueno
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yuki Hitomi
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Minae Kawashima
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Nao Nishida
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Katsushi Tokunaga
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, Japan; Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masao Nagasaki
- Human Biosciences Unit for the Top Global Course Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Japan; Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Atsushi Tanaka
- Department of Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Ruqi Tang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Zhiqiang Li
- Affiliated Hospital of Qingdao University and Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China; Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Yongyong Shi
- Affiliated Hospital of Qingdao University and Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China; Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Xiangdong Liu
- Key Laboratory of Developmental Genes and Human Diseases, Institute of Life Sciences, Southeast University, Nanjing, Jiangsu, China
| | - Ma Xiong
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Gideon Hirschfield
- Toronto General Hospital Research Institute, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Katherine A Siminovitch
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada; Mount Sinai Hospital, Lunenfeld Tanenbaum Research Institute and Toronto General Research Institute, Toronto, Canada; Department of Immunology, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Marco Carbone
- Division of Gastroenterology and Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy; European Reference Network on Hepatological Diseases, San Gerardo Hospital, Monza, Italy
| | - Giulia Cardamone
- Department of Biomedical Sciences, Humanitas University, Milan, Italy; IRCCS Humanitas Research Hospital, Milan, Italy
| | - Stefano Duga
- Department of Biomedical Sciences, Humanitas University, Milan, Italy; IRCCS Humanitas Research Hospital, Milan, Italy
| | | | | | - Pietro Invernizzi
- Division of Gastroenterology and Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy; European Reference Network on Hepatological Diseases, San Gerardo Hospital, Monza, Italy.
| |
Collapse
|
28
|
Caputo M, Amador MA, Sala A, Riveiro Dos Santos A, Santos S, Corach D. Ancestral genetic legacy of the extant population of Argentina as predicted by autosomal and X-chromosomal DIPs. Mol Genet Genomics 2021; 296:581-590. [PMID: 33580820 DOI: 10.1007/s00438-020-01755-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/14/2020] [Indexed: 12/01/2022]
Abstract
Aiming to determine their ancestry diagnostic potential, we selected two sets of nuclear deletion/insertion polymorphisms (DIPs), including 30 located on autosomal chromosomes and 33 on the X chromosome. We analysed over 200 unrelated Argentinean individuals living in urban areas of Argentina. As in most American countries, the extant Argentinean population is the result of tricontinental genetic admixture. The peopling process within the continent was characterised by mating bias involving Native American and enslaved African females and European males. Differential results were detected between autosomal DIPs and X-DIPs. The former showed that the European component was the largest (77.8%), followed by the Native American (17.9%) and African (4.2%) components, in good agreement with the previously published results. In contrast, X-DIPs showed that the European genetic contribution was also predominant but much smaller (52.9%) and considerably larger Native American and African contributions (39.6% and 7.5%, respectively). Genetic analysis revealed continental genetic contributions whose associated phenotypic traits have been mostly lost. The observed differences between the estimated continental genetic contribution proportions based on autosomal DIPs and X-DIPs reflect the effects of autosome and X-chromosome transmission behaviour and their different recombination patterns. This work shows the ability of the tested DIP panels to infer ancestry and confirm mating bias. To the best of our knowledge, this is the first study focusing on ancestry-informative autosomal DIP and X-DIP comparisons performed in a sample representing the entire Argentinean population.
Collapse
Affiliation(s)
- M Caputo
- Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra de Genética Forense Y Servicio de Huellas Digitales Genéticas, Facultad de Farmacia Y Bioquímica, Universidad de Buenos Aires, Junín 956, C1113AAD, Buenos Aires, Argentina. .,CONICET - Consejo Nacional de Investigaciones Científicas y Tecnológicas, C1033AAJ, Buenos Aires, Argentina. .,Department of Forensic Genetics and DNA Fingerprinting Service, School of Pharmacy and Biochemistry, Junin 956, 7th floor, C1113AAD, CABA, Argentina.
| | - M A Amador
- Laboratorio de Genética Humana E Médica, Departamento de Patologia, Universidade Federal Do Pará, Belém, Pará, Brazil
| | - A Sala
- Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra de Genética Forense Y Servicio de Huellas Digitales Genéticas, Facultad de Farmacia Y Bioquímica, Universidad de Buenos Aires, Junín 956, C1113AAD, Buenos Aires, Argentina.,CONICET - Consejo Nacional de Investigaciones Científicas y Tecnológicas, C1033AAJ, Buenos Aires, Argentina
| | - A Riveiro Dos Santos
- Laboratorio de Genética Humana E Médica, Departamento de Patologia, Universidade Federal Do Pará, Belém, Pará, Brazil
| | - S Santos
- Laboratorio de Genética Humana E Médica, Departamento de Patologia, Universidade Federal Do Pará, Belém, Pará, Brazil
| | - D Corach
- Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra de Genética Forense Y Servicio de Huellas Digitales Genéticas, Facultad de Farmacia Y Bioquímica, Universidad de Buenos Aires, Junín 956, C1113AAD, Buenos Aires, Argentina.,CONICET - Consejo Nacional de Investigaciones Científicas y Tecnológicas, C1033AAJ, Buenos Aires, Argentina
| |
Collapse
|
29
|
Exploring the Western Mediterranean through X-chromosome. Int J Legal Med 2021; 135:787-790. [PMID: 33392656 DOI: 10.1007/s00414-020-02498-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/17/2020] [Indexed: 10/22/2022]
Abstract
In this study, we investigate the forensic and population genetics properties of 21 X-chromosome markers (9 X-Alu insertions and 12 X-STRs) in a dataset composed of 716 individuals from 11 Western Mediterranean populations. The high values of combined forensic parameters indicate that this 21 X-loci panel can complement autosomal or uniparental markers in kinship analysis and complex deficient paternity testing in the populations studied. Population analyses revealed a lower differentiation between Western Mediterranean human groups for X-STRs than for X-Alu insertion polymorphisms. Moreover, X-chromosome markers suggest a sex-biased migration rate, confirming the predominance of patrilocality in this area.
Collapse
|
30
|
Baiz MD, Tucker PK, Mueller JL, Cortés-Ortiz L. X-Linked Signature of Reproductive Isolation in Humans is Mirrored in a Howler Monkey Hybrid Zone. J Hered 2020; 111:419-428. [PMID: 32725191 PMCID: PMC7525826 DOI: 10.1093/jhered/esaa021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Indexed: 12/13/2022] Open
Abstract
Reproductive isolation is a fundamental step in speciation. While sex chromosomes have been linked to reproductive isolation in many model systems, including hominids, genetic studies of the contribution of sex chromosome loci to speciation for natural populations are relatively sparse. Natural hybrid zones can help identify genomic regions contributing to reproductive isolation, like hybrid incompatibility loci, since these regions exhibit reduced introgression between parental species. Here, we use a primate hybrid zone (Alouatta palliata × Alouatta pigra) to test for reduced introgression of X-linked SNPs compared to autosomal SNPs. To identify X-linked sequence in A. palliata, we used a sex-biased mapping approach with whole-genome re-sequencing data. We then used genomic cline analysis with reduced-representation sequence data for parental A. palliata and A. pigra individuals and hybrids (n = 88) to identify regions with non-neutral introgression. We identified ~26 Mb of non-repetitive, putatively X-linked genomic sequence in A. palliata, most of which mapped collinearly to the marmoset and human X chromosomes. We found that X-linked SNPs had reduced introgression and an excess of ancestry from A. palliata as compared to autosomal SNPs. One outlier region with reduced introgression overlaps a previously described "desert" of archaic hominin ancestry on the human X chromosome. These results are consistent with a large role for the X chromosome in speciation across animal taxa and further, suggest shared features in the genomic basis of the evolution of reproductive isolation in primates.
Collapse
Affiliation(s)
- Marcella D Baiz
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, MI
- Department of Biology, Pennsylvania State University, University Park, PA
| | - Priscilla K Tucker
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, MI
| | - Jacob L Mueller
- Department of Human Genetics, University of Michigan, Ann Arbor, MI
| | - Liliana Cortés-Ortiz
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
31
|
Gomes I, Pinto N, Antão-Sousa S, Gomes V, Gusmão L, Amorim A. Twenty Years Later: A Comprehensive Review of the X Chromosome Use in Forensic Genetics. Front Genet 2020; 11:926. [PMID: 33093840 PMCID: PMC7527635 DOI: 10.3389/fgene.2020.00926] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022] Open
Abstract
The unique structure of the X chromosome shaped by evolution has led to the present gender-specific genetic differences, which are not shared by its counterpart, the Y chromosome, and neither by the autosomes. In males, recombination between the X and Y chromosomes is limited to the pseudoautosomal regions, PAR1 and PAR2; therefore, in males, the X chromosome is (almost) entirely transmitted to female offspring. On the other hand, the X chromosome is present in females with two copies that recombine along the whole chromosome during female meiosis and that is transmitted to both female and male descendants. These transmission characteristics, besides the obvious clinical impact (sex chromosome aneuploidies are extremely frequent), make the X chromosome an irreplaceable genetic tool for population genetic-based studies as well as for kinship and forensic investigations. In the early 2000s, the number of publications using X-chromosomal polymorphisms in forensic and population genetic applications increased steadily. However, nearly 20 years later, we observe a conspicuous decrease in the rate of these publications. In light of this observation, the main aim of this article is to provide a comprehensive review of the advances and applications of X-chromosomal markers in population and forensic genetics over the last two decades. The foremost relevant topics are addressed as: (i) developments concerning the number and types of markers available, with special emphasis on short tandem repeat (STR) polymorphisms (STR nomenclatures and practical concerns); (ii) overview of worldwide population (frequency) data; (iii) the use of X-chromosomal markers in (complex) kinship testing and the forensic statistical evaluation of evidence; (iv) segregation and mutation studies; and (v) current weaknesses and future prospects.
Collapse
Affiliation(s)
- Iva Gomes
- Institute for Research and Innovation in Health Sciences (i3S), University of Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Porto, Portugal
| | - Nádia Pinto
- Institute for Research and Innovation in Health Sciences (i3S), University of Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Porto, Portugal.,Center of Mathematics, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Sofia Antão-Sousa
- Institute for Research and Innovation in Health Sciences (i3S), University of Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Porto, Portugal.,Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal.,DNA Diagnostic Laboratory (LDD), State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Verónica Gomes
- Institute for Research and Innovation in Health Sciences (i3S), University of Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Porto, Portugal
| | - Leonor Gusmão
- DNA Diagnostic Laboratory (LDD), State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - António Amorim
- Institute for Research and Innovation in Health Sciences (i3S), University of Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Porto, Portugal.,Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
32
|
Oyelami FO, Zhao Q, Xu Z, Zhang Z, Sun H, Zhang Z, Ma P, Wang Q, Pan Y. Haplotype Block Analysis Reveals Candidate Genes and QTLs for Meat Quality and Disease Resistance in Chinese Jiangquhai Pig Breed. Front Genet 2020; 11:752. [PMID: 33101353 PMCID: PMC7498712 DOI: 10.3389/fgene.2020.00752] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 06/23/2020] [Indexed: 11/19/2022] Open
Abstract
The Jiangquhai (JQ) pig breed is one of the most widely recognized pig populations in China due to its unique and dominant characteristics. In this study, we examined the extent of Linkage disequilibrium (LD) and haplotype block structure of the JQ pig breed, and scanned the blocks for possible genes underlying important QTLs that could either be responsible for some adaptive features in these pigs or might have undergone some selection pressure. We compared some of our results with other Chinese and Western pig breeds. The results show that the JQ breed had the highest total block length (349.73 Mb ≈ 15% of its genome), and the coverage rate of blocks in most of its chromosomes was larger than those of other breeds except for Sus scrofa chromosome 4 (SSC4), SSC6, SSC7, SSC8, SSC10, SSC12, SSC13, SSC14, SSC17, SSC18, and SSCX. Moreover, the JQ breed had more SNPs that were clustered into haplotype blocks than the other breeds examined in this study. Our shared and unique haplotype block analysis revealed that the Hongdenglong (HD) breed had the lowest percentage of shared haplotype blocks while the Shanzhu (SZ) breed had the highest. We found that the JQ breed had an average r2 > 0.2 at SNPs distances 10–20 kb and concluded that about 120,000–240,000 SNPs would be needed for a successful GWAS in the breed. Finally, we detected a total of 88 genes harbored by selected haplotype blocks in the JQ breed, of which only 4 were significantly enriched (p-value ≤ 0.05). These genes were significantly enriched in 2 GO terms (p-value < 0.01), and 2 KEGG pathways (p-value < 0.02). Most of these enriched genes were related to health. Also, most of the overlapping QTLs detected in the haplotype blocks were related to meat and carcass quality, as well as health, with a few of them relating to reproduction and production. These results provide insights into the genetic architecture of some adaptive and meat quality traits observed in the JQ pig breed and also revealed the pattern of LD in the genome of the pig. Our result provides significant guidance for improving the statistical power of GWAS and optimizing the conservation strategy for this JQ pig breed.
Collapse
Affiliation(s)
- Favour Oluwapelumi Oyelami
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Qingbo Zhao
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhong Xu
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhe Zhang
- Department of Animal Breeding and Reproduction, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Hao Sun
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhenyang Zhang
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Peipei Ma
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Qishan Wang
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.,Department of Animal Breeding and Reproduction, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Yuchun Pan
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.,Department of Animal Breeding and Reproduction, College of Animal Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
33
|
Simcoe MJ, Khawaja AP, Mahroo OA, Hammond CJ, Hysi PG. The Role of Chromosome X in Intraocular Pressure Variation and Sex-Specific Effects. Invest Ophthalmol Vis Sci 2020; 61:20. [PMID: 32926103 PMCID: PMC7490223 DOI: 10.1167/iovs.61.11.20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/19/2020] [Indexed: 01/10/2023] Open
Abstract
Purpose The purpose of this study was to identify genetic variants on chromosome X associated with intraocular pressure (IOP) and determine if they possess any sex-specific effects. Methods Association analyses were performed across chromosome X using 102,407 participants from the UK Biobank. Replication and validation analyses were conducted in an additional 6599 participants from the EPIC-Norfolk cohort, and an independent 331,682 participants from the UK Biobank. Results We identified three loci associated with IOP at genomewide significance (P < 5 × 10-8), located within or near the following genes: MXRA5 (rs2107482, P = 7.1 × 10-11), GPM6B (rs66819623, P = 6.9 × 10-10), NDP, and EFHC2 (rs12558081, P = 4.9 × 10-11). Alleles associated with increased IOP were also associated with increased risk for primary open-angle glaucoma in an independent sample. Finally, our results indicate that chromosome X genetics most likely do not illicit sex-specific effects on IOP. Conclusions In this study, we report the results of genomewide levels of association of three loci on chromosome X with IOP, and provide a framework to include chromosome X in large-scale genomewide association analyses for complex phenotypes.
Collapse
Affiliation(s)
- Mark J. Simcoe
- Department of Ophthalmology, Kings College London, London, United Kingdom
- KCL Department of Twin Research and Genetic Epidemiology, London, United Kingdom
- Institute of Ophthalmology, University College London, London, United Kingdom
| | - Anthony P. Khawaja
- NIHR Biomedical Research Centre, Moorfield's Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
- Department of Public Health and Primary Care, Institute of Public Health, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - Omar A. Mahroo
- Institute of Ophthalmology, University College London, London, United Kingdom
| | - Christopher J. Hammond
- Department of Ophthalmology, Kings College London, London, United Kingdom
- KCL Department of Twin Research and Genetic Epidemiology, London, United Kingdom
| | - Pirro G. Hysi
- Department of Ophthalmology, Kings College London, London, United Kingdom
- KCL Department of Twin Research and Genetic Epidemiology, London, United Kingdom
| | | |
Collapse
|
34
|
Druet T, Legarra A. Theoretical and empirical comparisons of expected and realized relationships for the X-chromosome. Genet Sel Evol 2020; 52:50. [PMID: 32819272 PMCID: PMC7441635 DOI: 10.1186/s12711-020-00570-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 08/12/2020] [Indexed: 01/08/2023] Open
Abstract
Background X-chromosomal loci present different inheritance patterns compared to autosomal loci and must be modeled accordingly. Sexual chromosomes are not systematically considered in whole-genome relationship matrices although rules based on genealogical or marker information have been derived. Loci on the X-chromosome could have a significant contribution to the additive genetic variance, in particular for some traits such as those related to reproduction. Thus, accounting for the X-chromosome relationship matrix might be informative to better understand the architecture of complex traits (e.g., by estimating the variance associated to this chromosome) and to improve their genomic prediction. For such applications, previous studies have shown the benefits of combining information from genotyped and ungenotyped individuals. Results In this paper, we start by presenting rules to compute a genomic relationship matrix (GRM) for the X-chromosome (GX) without making any assumption on dosage compensation, and based on coding of gene content with 0/1 for males and 0/1/2 for females. This coding adjusts naturally to previously derived pedigree-based relationships (S) for the X-chromosome. When needed, we propose to accommodate and estimate dosage compensation and genetic heterogeneity across sexes via multiple trait models. Using a Holstein dairy cattle dataset, including males and females, we then empirically illustrate that realized relationships (GX) matches expectations (S). However, GX presents high deviations from S. GX has also a lower dimensionality compared to the autosomal GRM. In particular, individuals are frequently identical along the entire chromosome. Finally, we confirm that the heritability of gene content for markers on the X-chromosome that are estimated by using S is 1, further demonstrating that S and GX can be combined. For the pseudo-autosomal region, we demonstrate that the expected relationships vary according to position because of the sex-gradient. We end by presenting the rules to construct the 'H matrix’ by combining both relationship matrices. Conclusions This work shows theoretically and empirically that a pedigree-based relationship matrix built with rules specifically developed for the X-chromosome (S) matches the realized GRM for the X-chromosome. Therefore, applications that combine expected relationships and genotypes for markers on the X-chromosome should use S and GX.
Collapse
Affiliation(s)
- Tom Druet
- Unit of Animal Genomics, GIGA-R & Faculty of Veterinary Medicine, University of Liège, Liège, Belgium.
| | - Andres Legarra
- GenPhySE, INPT, INRAE, ENVT, 31326, Castanet Tolosan, France.
| |
Collapse
|
35
|
On the causes of geographically heterogeneous parallel evolution in sticklebacks. Nat Ecol Evol 2020; 4:1105-1115. [DOI: 10.1038/s41559-020-1222-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/14/2020] [Indexed: 12/22/2022]
|
36
|
Singh G, Sandhu HS, Srinivas Y, Matharoo K, Bhanwer AJS. Genetic portrait of North-West Indian population based on X chromosome Alu insertion markers. Int J Legal Med 2019; 134:1655-1657. [PMID: 31853675 DOI: 10.1007/s00414-019-02238-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/11/2019] [Indexed: 11/25/2022]
Abstract
In the present study, allele frequencies and forensic parameters of four ethnic groups (Brahmin, Khatri, Jat Sikh, and Scheduled Caste) of Punjab, India, at 10 Alu insertions of X chromosome were calculated. Six Alu markers were observed to be highly polymorphic with no significant deviations from Hardy-Weinberg equilibrium and no linkage disequilibrium present in any marker. Multidimensional plot showed higher genetic affinity of studied populations with Asian populations. Overall, the tested markers were reliable and were found suitable in human forensics and population genetic studies.
Collapse
Affiliation(s)
- Gagandeep Singh
- Department of Anthropology, Panjab University, Chandigarh, India.
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India.
| | - Harkirat Singh Sandhu
- Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, 1470 Madison Avenue, New York, NY, USA
| | | | - Kawaljit Matharoo
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| | - A J S Bhanwer
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
37
|
Michailidou S, Tsangaris GT, Tzora A, Skoufos I, Banos G, Argiriou A, Arsenos G. Analysis of genome-wide DNA arrays reveals the genomic population structure and diversity in autochthonous Greek goat breeds. PLoS One 2019; 14:e0226179. [PMID: 31830089 PMCID: PMC6907847 DOI: 10.1371/journal.pone.0226179] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 11/21/2019] [Indexed: 12/02/2022] Open
Abstract
Goats play an important role in the livestock sector in Greece. The national herd consists mainly of two indigenous breeds, the Eghoria and Skopelos. Here, we report the population structure and genomic profiles of these two native goat breeds using Illumina’s Goat SNP50 BeadChip. Moreover, we present a panel of candidate markers acquired using different genetic models for breed discrimination. Quality control on the initial dataset resulted in 48,841 SNPs kept for downstream analysis. Principal component and admixture analyses were applied to assess population structure. The rate of inbreeding within breed was evaluated based on the distribution of runs of homozygosity in the genome and respective coefficients, the genomic relationship matrix, the patterns of linkage disequilibrium, and the historic effective population size. Results showed that both breeds exhibit high levels of genetic diversity. Level of inbreeding between the two breeds estimated by the Wright’s fixation index FST was low (Fst = 0.04362), indicating the existence of a weak genetic differentiation between them. In addition, grouping of farms according to their geographical locations was observed. This study presents for the first time a genome-based analysis on the genetic structure of the two indigenous Greek goat breeds and identifies markers that can be potentially exploited in future selective breeding programs for traceability purposes, targeted genetic improvement schemes and conservation strategies.
Collapse
Affiliation(s)
- S. Michailidou
- Laboratory of Animal Husbandry, School of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Institute of Applied Biosciences, Center for Research and Technology Hellas, Thermi, Greece
- * E-mail:
| | - G. Th. Tsangaris
- Proteomics Research Unit, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - A. Tzora
- School of Agriculture, Department of Agriculture, Division of Animal Production, University of Ioannina, Kostakioi Artas, Greece
| | - I. Skoufos
- School of Agriculture, Department of Agriculture, Division of Animal Production, University of Ioannina, Kostakioi Artas, Greece
| | - G. Banos
- Laboratory of Animal Husbandry, School of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Scotland's Rural College and The Roslin Institute University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - A. Argiriou
- Institute of Applied Biosciences, Center for Research and Technology Hellas, Thermi, Greece
| | - G. Arsenos
- Laboratory of Animal Husbandry, School of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
38
|
Zambrano AK, Vaca-Pólit M, Boada L, Vela M, Rodríguez-Pólit C, Fiallos G, Gruezo C, Paz-y-Miño C, Gaviria A. X-STR decaplex study in the population of Imbabura-Ecuador. FORENSIC SCIENCE INTERNATIONAL GENETICS SUPPLEMENT SERIES 2019. [DOI: 10.1016/j.fsigss.2019.09.116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
Genetic insight into Nigerian population groups using an X-chromosome decaplex system. FORENSIC SCIENCE INTERNATIONAL GENETICS SUPPLEMENT SERIES 2019. [DOI: 10.1016/j.fsigss.2019.10.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
40
|
Lim MCW, Witt CC, Graham CH, Dávalos LM. Parallel Molecular Evolution in Pathways, Genes, and Sites in High-Elevation Hummingbirds Revealed by Comparative Transcriptomics. Genome Biol Evol 2019; 11:1552-1572. [PMID: 31028697 PMCID: PMC6553502 DOI: 10.1093/gbe/evz101] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2019] [Indexed: 12/13/2022] Open
Abstract
High-elevation organisms experience shared environmental challenges that include low oxygen availability, cold temperatures, and intense ultraviolet radiation. Consequently, repeated evolution of the same genetic mechanisms may occur across high-elevation taxa. To test this prediction, we investigated the extent to which the same biochemical pathways, genes, or sites were subject to parallel molecular evolution for 12 Andean hummingbird species (family: Trochilidae) representing several independent transitions to high elevation across the phylogeny. Across high-elevation species, we discovered parallel evolution for several pathways and genes with evidence of positive selection. In particular, positively selected genes were frequently part of cellular respiration, metabolism, or cell death pathways. To further examine the role of elevation in our analyses, we compared results for low- and high-elevation species and tested different thresholds for defining elevation categories. In analyses with different elevation thresholds, positively selected genes reflected similar functions and pathways, even though there were almost no specific genes in common. For example, EPAS1 (HIF2α), which has been implicated in high-elevation adaptation in other vertebrates, shows a signature of positive selection when high-elevation is defined broadly (>1,500 m), but not when defined narrowly (>2,500 m). Although a few biochemical pathways and genes change predictably as part of hummingbird adaptation to high-elevation conditions, independent lineages have rarely adapted via the same substitutions.
Collapse
Affiliation(s)
- Marisa C W Lim
- Department of Ecology and Evolution, Stony Brook University
| | - Christopher C Witt
- Museum of Southwestern Biology and Department of Biology, University of New Mexico
| | - Catherine H Graham
- Department of Ecology and Evolution, Stony Brook University.,Swiss Federal Research Institute (WSL), Birmensdorf, Switzerland
| | - Liliana M Dávalos
- Department of Ecology and Evolution, Stony Brook University.,Consortium for Inter-Disciplinary Environmental Research, Stony Brook University
| |
Collapse
|
41
|
Eusebi PG, Sevane N, Cortés O, Contreras E, Cañon J, Dunner S. Aggressive behavior in cattle is associated with a polymorphism in the MAOA gene promoter. Anim Genet 2019; 51:14-21. [PMID: 31633208 DOI: 10.1111/age.12867] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2019] [Indexed: 12/17/2022]
Abstract
Molecular mechanisms underlying aggressive behavior are primitive and similar among the subphylum Vertebrata. In humans, a primary goal in the study of aggression is to determine the neurobehavioral molecular factors triggering violence. Although several species have been used to study agonistic responses, researchers are limited by the difficulty of artificially inducing aggression in animals not selected for it. Conversely, the Lidia cattle breed has been selected since the eighteenth century to display agonistic responses based on traits such as aggressiveness, ferocity and mobility, all of them showing significant heritability values. This intensive selection may have driven shifts in specific allele frequencies. In a previous analysis across the autosomes, we revealed long-term selection regions including genes involved in behavioral development. In the present study, we focus on mapping recent signatures of selection associated with aggressiveness at chromosome X, by comparing Lidia cattle samples with two non-specialized Spanish breeds showing tamed behavior. The most significant markers peaked around the monoamine oxidase A (MAOA) gene, and thus the associations of three functionally important regions located near the promoter of this gene were further investigated. A polymorphism consisting of a variable number of tandem repeats of the nucleotide 'C' (BTX:105,462,494) and displaying lower number of repetitions in the Lidia breed when compared with the tamed breeds was detected. In silico analyses predicted that the g.105,462,494delsinsC variant may code for the Sp1 binding motif, one of the major transcription factors controlling the core promoter and expression of the MAOA gene in humans.
Collapse
Affiliation(s)
- P G Eusebi
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Avenida Puerta de Hierro, s/n, 28040, Madrid, Spain.,VELOGEN.SL., Servicio de Genética, Facultad de Veterinaria, Universidad Complutense, Avenida Puerta de Hierro, s/n, 28040, Madrid, Spain
| | - N Sevane
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Avenida Puerta de Hierro, s/n, 28040, Madrid, Spain
| | - O Cortés
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Avenida Puerta de Hierro, s/n, 28040, Madrid, Spain
| | - E Contreras
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Avenida Puerta de Hierro, s/n, 28040, Madrid, Spain
| | - J Cañon
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Avenida Puerta de Hierro, s/n, 28040, Madrid, Spain
| | - S Dunner
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Avenida Puerta de Hierro, s/n, 28040, Madrid, Spain
| |
Collapse
|
42
|
Signatures of Recent Positive Selection in Enhancers Across 41 Human Tissues. G3-GENES GENOMES GENETICS 2019; 9:2761-2774. [PMID: 31213516 PMCID: PMC6686946 DOI: 10.1534/g3.119.400186] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Evolutionary changes in enhancers are widely associated with variation in human traits and diseases. However, studies comprehensively quantifying levels of selection on enhancers at multiple evolutionary periods during recent human evolution and how enhancer evolution varies across human tissues are lacking. To address these questions, we integrated a dataset of 41,561 transcribed enhancers active in 41 different human tissues (FANTOM Consortium) with whole genome sequences of 1,668 individuals from the African, Asian, and European populations (1000 Genomes Project). Our analyses based on four different metrics (Tajima’s D, FST, H12, nSL) showed that ∼5.90% of enhancers showed evidence of recent positive selection and that genes associated with enhancers under very recent positive selection are enriched for diverse immune-related functions. The distributions of these metrics for brain and testis enhancers were often statistically significantly different and in the direction suggestive of less positive selection compared to those of other tissues; the same was true for brain and testis enhancers that are tissue-specific compared to those that are tissue-broad and for testis enhancers associated with tissue-enriched and non-tissue-enriched genes. These differences varied considerably across metrics and tissues and were generally in the form of changes in distributions’ shapes rather than shifts in their values. Collectively, these results suggest that many human enhancers experienced recent positive selection throughout multiple time periods in human evolutionary history, that this selection occurred in a tissue-dependent and immune-related functional context, and that much like the evolution of their protein-coding gene counterparts, the evolution of brain and testis enhancers has been markedly different from that of enhancers in other tissues.
Collapse
|
43
|
Hunt LC, Jiao J, Wang YD, Finkelstein D, Rao D, Curley M, Robles-Murguia M, Shirinifard A, Pagala VR, Peng J, Fan Y, Demontis F. Circadian gene variants and the skeletal muscle circadian clock contribute to the evolutionary divergence in longevity across Drosophila populations. Genome Res 2019; 29:1262-1276. [PMID: 31249065 PMCID: PMC6673717 DOI: 10.1101/gr.246884.118] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 06/25/2019] [Indexed: 12/17/2022]
Abstract
Organisms use endogenous clocks to adapt to the rhythmicity of the environment and to synchronize social activities. Although the circadian cycle is implicated in aging, it is unknown whether natural variation in its function contributes to differences in lifespan between populations and whether the circadian clock of specific tissues is key for longevity. We have sequenced the genomes of Drosophila melanogaster strains with exceptional longevity that were obtained via multiple rounds of selection from a parental strain. Comparison of genomic, transcriptomic, and proteomic data revealed that changes in gene expression due to intergenic polymorphisms are associated with longevity and preservation of skeletal muscle function with aging in these strains. Analysis of transcription factors differentially modulated in long-lived versus parental strains indicates a possible role of circadian clock core components. Specifically, there is higher period and timeless and lower cycle expression in the muscle of strains with delayed aging compared to the parental strain. These changes in the levels of circadian clock transcription factors lead to changes in the muscle circadian transcriptome, which includes genes involved in metabolism, proteolysis, and xenobiotic detoxification. Moreover, a skeletal muscle-specific increase in timeless expression extends lifespan and recapitulates some of the transcriptional and circadian changes that differentiate the long-lived from the parental strains. Altogether, these findings indicate that the muscle circadian clock is important for longevity and that circadian gene variants contribute to the evolutionary divergence in longevity across populations.
Collapse
Affiliation(s)
- Liam C Hunt
- Division of Developmental Biology, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Jianqin Jiao
- Division of Developmental Biology, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Yong-Dong Wang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - David Finkelstein
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Deepti Rao
- Division of Developmental Biology, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Michelle Curley
- Division of Developmental Biology, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Maricela Robles-Murguia
- Division of Developmental Biology, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Abbas Shirinifard
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Vishwajeeth R Pagala
- Department of Structural Biology, Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Junmin Peng
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA.,Department of Structural Biology, Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Yiping Fan
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Fabio Demontis
- Division of Developmental Biology, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| |
Collapse
|
44
|
Lim MCW, Witt CC, Graham CH, Dávalos LM. Divergent Fine-Scale Recombination Landscapes between a Freshwater and Marine Population of Threespine Stickleback Fish. Genome Biol Evol 2019; 11:1573-1585. [PMID: 31028697 PMCID: PMC6553502 DOI: 10.1093/gbe/evz090] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2019] [Indexed: 12/27/2022] Open
Abstract
Meiotic recombination is a highly conserved process that has profound effects on genome evolution. At a fine-scale, recombination rates can vary drastically across genomes, often localized into small recombination "hotspots" with highly elevated rates, surrounded by regions with little recombination. In most species studied, the location of hotspots within genomes is highly conserved across broad evolutionary timescales. The main exception to this pattern is in mammals, where hotspot location can evolve rapidly among closely related species and even among populations within a species. Hotspot position in mammals is controlled by the gene, Prdm9, whereas in species with conserved hotspots, a functional Prdm9 is typically absent. Due to a limited number of species where recombination rates have been estimated at a fine-scale, it remains unclear whether hotspot conservation is always associated with the absence of a functional Prdm9. Threespine stickleback fish (Gasterosteus aculeatus) are an excellent model to examine the evolution of recombination over short evolutionary timescales. Using a linkage disequilibrium-based approach, we found recombination rates indeed varied at a fine-scale across the genome, with many regions organized into narrow hotspots. Hotspots had highly divergent landscapes between stickleback populations, where only ∼15% of these hotspots were shared. Our results indicate that fine-scale recombination rates may be diverging between closely related populations of threespine stickleback fish. Interestingly, we found only a weak association of a PRDM9 binding motif within hotspots, which suggests that threespine stickleback fish may possess a novel mechanism for targeting recombination hotspots at a fine-scale.
Collapse
Affiliation(s)
- Marisa C W Lim
- Department of Ecology and Evolution, Stony Brook University
| | - Christopher C Witt
- Museum of Southwestern Biology and Department of Biology, University of New Mexico
| | - Catherine H Graham
- Department of Ecology and Evolution, Stony Brook University
- Swiss Federal Research Institute (WSL), Birmensdorf, Switzerland
| | - Liliana M Dávalos
- Department of Ecology and Evolution, Stony Brook University
- Consortium for Inter-Disciplinary Environmental Research, Stony Brook University
| |
Collapse
|
45
|
Li Y, Li X, Chen W, Fan Y, Xie M, Wu J. Allele and haplotype frequencies of 19 X-STRs in the Kyrgyz and Han populations from Kizilsu Prefecture. Forensic Sci Int Genet 2019; 40:e259-e261. [DOI: 10.1016/j.fsigen.2019.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 02/06/2019] [Accepted: 02/06/2019] [Indexed: 01/22/2023]
|
46
|
Sun S, Yang Z, Wen D, Lan L, Xie P, Xiao J, Li G, Zhu W, Zha L. Genetic polymorphism investigation of 16 X-STR loci in a Han population in Central South China. Forensic Sci Int Genet 2018; 39:e21-e23. [PMID: 30538076 DOI: 10.1016/j.fsigen.2018.11.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/07/2018] [Accepted: 11/25/2018] [Indexed: 11/19/2022]
Affiliation(s)
- Shule Sun
- Department of Forensic Medicine, School of Basic Medical Sciences, Central South University, Changsha, 410013, Hunan, PR China
| | - Zedeng Yang
- Department of Forensic Medicine, School of Basic Medical Sciences, Central South University, Changsha, 410013, Hunan, PR China
| | - Dan Wen
- Department of Forensic Medicine, School of Basic Medical Sciences, Central South University, Changsha, 410013, Hunan, PR China
| | - Lingmei Lan
- Department of Forensic Medicine, School of Basic Medical Sciences, Central South University, Changsha, 410013, Hunan, PR China
| | - Pingli Xie
- Department of Forensic Medicine, School of Basic Medical Sciences, Central South University, Changsha, 410013, Hunan, PR China
| | - Junxin Xiao
- Center of Forensic Services of Xiangya of Hunan Province, Changsha, 410013, Hunan, PR China
| | - Guanlin Li
- Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Key Clinical Laboratory of Henan Province, Zhengzhou, 450052, PR China
| | - Wenbing Zhu
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medicine, Central South University, Changsha, 410013, Hunan, PR China.
| | - Lagabaiyila Zha
- Department of Forensic Medicine, School of Basic Medical Sciences, Central South University, Changsha, 410013, Hunan, PR China.
| |
Collapse
|
47
|
Chen ZH, Zhang M, Lv FH, Ren X, Li WR, Liu MJ, Nam K, Bruford MW, Li MH. Contrasting Patterns of Genomic Diversity Reveal Accelerated Genetic Drift but Reduced Directional Selection on X-Chromosome in Wild and Domestic Sheep Species. Genome Biol Evol 2018; 10:1282-1297. [PMID: 29790980 PMCID: PMC5963296 DOI: 10.1093/gbe/evy085] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2018] [Indexed: 01/08/2023] Open
Abstract
Analyses of genomic diversity along the X chromosome and of its correlation with autosomal diversity can facilitate understanding of evolutionary forces in shaping sex-linked genomic architecture. Strong selective sweeps and accelerated genetic drift on the X-chromosome have been inferred in primates and other model species, but no such insight has yet been gained in domestic animals compared with their wild relatives. Here, we analyzed X-chromosome variability in a large ovine data set, including a BeadChip array for 943 ewes from the world’s sheep populations and 110 whole genomes of wild and domestic sheep. Analyzing whole-genome sequences, we observed a substantially reduced X-to-autosome diversity ratio (∼0.6) compared with the value expected under a neutral model (0.75). In particular, one large X-linked segment (43.05–79.25 Mb) was found to show extremely low diversity, most likely due to a high density of coding genes, featuring highly conserved regions. In general, we observed higher nucleotide diversity on the autosomes, but a flat diversity gradient in X-linked segments, as a function of increasing distance from the nearest genes, leading to a decreased X: autosome (X/A) diversity ratio and contrasting to the positive correlation detected in primates and other model animals. Our evidence suggests that accelerated genetic drift but reduced directional selection on X chromosome, as well as sex-biased demographic events, explain low X-chromosome diversity in sheep species. The distinct patterns of X-linked and X/A diversity we observed between Middle Eastern and non-Middle Eastern sheep populations can be explained by multiple migrations, selection, and admixture during the domestic sheep’s recent postdomestication demographic expansion, coupled with natural selection for adaptation to new environments. In addition, we identify important novel genes involved in abnormal behavioral phenotypes, metabolism, and immunity, under selection on the sheep X-chromosome.
Collapse
Affiliation(s)
- Ze-Hui Chen
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China.,College of Life Sciences, University of the Academy of Sciences, Beijing 100049, China
| | - Min Zhang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China.,School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Feng-Hua Lv
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Xue Ren
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Wen-Rong Li
- Animal Biotechnological Research Center, Xinjiang Academy of Animal Science, Urumqi, China
| | - Ming-Jun Liu
- Animal Biotechnological Research Center, Xinjiang Academy of Animal Science, Urumqi, China
| | - Kiwoong Nam
- Diversité, Génomes et Interactions Microorganismes Insectes, Institut National de la Recherche Agronomique, University of Montpellier, Montpellier, France
| | - Michael W Bruford
- Organisms and Environment Division, School of Biosciences and Sustainable Places Research Institute, Cardiff University, Wales, United Kingdom
| | - Meng-Hua Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China
| |
Collapse
|
48
|
Analysis of 21 X-chromosome polymorphisms in urban and rural populations in Salta province (north-western Argentina). Int J Legal Med 2018; 133:1043-1047. [PMID: 30446817 DOI: 10.1007/s00414-018-1970-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/12/2018] [Indexed: 10/27/2022]
Abstract
Population genetic data for 21 X-chromosome markers (Alu insertions and STRs) are reported for two populations (rural and urban) in Salta province (north-western Argentina). New variants are described, confirming the complexity and variability of some markers in this set. Results reveal Salta populations harbor a high Native American component, despite their self-recognized European ancestry. Notwithstanding the high genetic similarity of both populations, the rural sample seems to have maintained a larger Amerindian legacy. Data further show these X-linked markers, especially STRs, are highly informative in Salta populations and, therefore, can contribute to the development of a local database for forensic purposes in north-western Argentina.
Collapse
|
49
|
Abstract
Levels and patterns of genetic diversity can provide insights into a population’s history. In species with sex chromosomes, differences between genomic regions with unique inheritance patterns can be used to distinguish between different sets of possible demographic and selective events. This review introduces the differences in population history for sex chromosomes and autosomes, provides the expectations for genetic diversity across the genome under different evolutionary scenarios, and gives an introductory description for how deviations in these expectations are calculated and can be interpreted. Predominantly, diversity on the sex chromosomes has been used to explore and address three research areas: 1) Mating patterns and sex-biased variance in reproductive success, 2) signatures of selection, and 3) evidence for modes of speciation and introgression. After introducing the theory, this review catalogs recent studies of genetic diversity on the sex chromosomes across species within the major research areas that sex chromosomes are typically applied to, arguing that there are broad similarities not only between male-heterogametic (XX/XY) and female-heterogametic (ZZ/ZW) sex determination systems but also any mating system with reduced recombination in a sex-determining region. Further, general patterns of reduced diversity in nonrecombining regions are shared across plants and animals. There are unique patterns across populations with vastly different patterns of mating and speciation, but these do not tend to cluster by taxa or sex determination system.
Collapse
Affiliation(s)
- Melissa A Wilson Sayres
- School of Life Sciences, Center for Evolution and Medicine, The Biodesign Institute, Arizona State University
| |
Collapse
|
50
|
Worldwide phylogeny of three-spined sticklebacks. Mol Phylogenet Evol 2018; 127:613-625. [DOI: 10.1016/j.ympev.2018.06.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 04/16/2018] [Accepted: 06/04/2018] [Indexed: 11/23/2022]
|