1
|
Wang K, Fu C, Fu X, Qin P, Hu X, Zhang X, Deng Z, Yan T, Jiang N, Li Y, Fu J, Deng Y, Zhou Y, Xiao G, He Z, Yang Y. Enhancing the blast resistance of an elite thermo-sensitive genic male sterile line (TGMS) Longke638S and its derived hybrid varieties by incorporating Pigm gene. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2025; 45:35. [PMID: 40151760 PMCID: PMC11937461 DOI: 10.1007/s11032-025-01555-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 03/13/2025] [Indexed: 03/29/2025]
Abstract
Rice blast, caused by the fungal pathogen Magnaporthe oryzae, is one of the most destructive diseases of rice worldwide. The utilization of host resistance (R) genes in rice breeding program is considered as the most economical, effective, environment-friendly strategy for rice blast control. The R gene Pigm, shows high, broad-spectrum and durable resistance to rice blast. Here, we report the successful integration of Pigm into Longke638S (LK638S), an elite thermo-sensitive genic male sterile (TGMS) line in hybrid rice production in China. The integration significantly enhanced the blast resistance of LK638S and the derived hybrid varieties demonstrated exceptional performance in both yield and blast resistance. The improved line Longzhen36S (LZ36S), which recovered 91.84% of the recurrent parent genome. LZ36S exhibited a high blast resistance frequency of 96.4% against 28 blast isolates. Furthermore, the LZ36S-derived hybrids exhibited enhanced resistance to both seedling and panicle blast compared to LK638S-derived hybrids carrying the heterozygous Pi2 gene, all without yield penalty. A total of ninety LK638S derived hybrid varieties have been state or provincial approved and certified with an annual promoting area exceed 964.0 thousand hectares. The LZ36S-derived hybrids can serve as improved versions with enhanced blast resistance, making them viable replacements for LK638S-derived hybrids in commercial production. Moreover, sixteen LZ36S-derived hybrid varieties, all possessing moderate (MR) or high (R) level blast resistance, along with excellent yield and grain quality, have been state or provincial approved and certificated. These LZ36S-derived hybrids show great potential for rapid commercialization, with promoting area of ~ 200 thousand hectares by 2023. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-025-01555-3.
Collapse
Affiliation(s)
- Kai Wang
- State Key Laboratory of Hybrid Rice, Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd, Changsha, 410128 China
- Department of Botany, College of Life Sciences, Hunan Normal University, Changsha, 410081 China
- Citic Agricultural Technology Co., Ltd, Beijing, 100027 China
| | - Chenjian Fu
- State Key Laboratory of Hybrid Rice, Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd, Changsha, 410128 China
| | - Xingxue Fu
- State Key Laboratory of Hybrid Rice, Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd, Changsha, 410128 China
| | - Peng Qin
- State Key Laboratory of Hybrid Rice, Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd, Changsha, 410128 China
| | - Xiaochun Hu
- State Key Laboratory of Hybrid Rice, Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd, Changsha, 410128 China
| | - Xuanwen Zhang
- State Key Laboratory of Hybrid Rice, Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd, Changsha, 410128 China
| | - Zhao Deng
- State Key Laboratory of Hybrid Rice, Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd, Changsha, 410128 China
| | - Tianze Yan
- State Key Laboratory of Hybrid Rice, Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd, Changsha, 410128 China
| | - Nan Jiang
- State Key Laboratory of Hybrid Rice, Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd, Changsha, 410128 China
| | - Yanfeng Li
- State Key Laboratory of Hybrid Rice, Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd, Changsha, 410128 China
| | - Jun Fu
- State Key Laboratory of Hybrid Rice, Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd, Changsha, 410128 China
| | - Yiwen Deng
- National Key Laboratory of Plant Molecular Genetics and National Center of Plant Gene Research, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Yanbiao Zhou
- State Key Laboratory of Hybrid Rice, Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd, Changsha, 410128 China
| | - Gui Xiao
- State Key Laboratory of Hybrid Rice, Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd, Changsha, 410128 China
| | - Zuhua He
- National Key Laboratory of Plant Molecular Genetics and National Center of Plant Gene Research, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Yuanzhu Yang
- State Key Laboratory of Hybrid Rice, Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd, Changsha, 410128 China
- National Key Laboratory of Plant Molecular Genetics and National Center of Plant Gene Research, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032 China
- Shanghai Collaborative Innovation Center of Agri-Seeds/Shanghai Agrobiological Gene Center, Shanghai, 200000 China
- Department of Botany, College of Life Sciences, Hunan Normal University, Changsha, 410081 China
- Citic Agricultural Technology Co., Ltd, Beijing, 100027 China
| |
Collapse
|
2
|
Singh AK, Srivastava AK, Johri P, Dwivedi M, Kaushal RS, Trivedi M, Upadhyay TK, Alabdallah NM, Ahmad I, Saeed M, Lakhanpal S. Odyssey of environmental and microbial interventions in maize crop improvement. FRONTIERS IN PLANT SCIENCE 2025; 15:1428475. [PMID: 39850212 PMCID: PMC11755104 DOI: 10.3389/fpls.2024.1428475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/01/2024] [Indexed: 01/25/2025]
Abstract
Maize (Zea mays) is India's third-largest grain crop, serving as a primary food source for at least 30% of the population and sustaining 900 million impoverished people globally. The growing human population has led to an increasing demand for maize grains. However, maize cultivation faces significant challenges due to a variety of environmental factors, including both biotic and abiotic stresses. Abiotic stresses such as salinity, extreme temperatures, and drought, along with biotic factors like bacterial, fungal, and viral infections, have drastically reduced maize production and grain quality worldwide. The interaction between these stresses is complex; for instance, abiotic stress can heighten a plant's susceptibility to pathogens, while an overabundance of pests can exacerbate the plant's response to environmental stress. Given the complexity of these interactions, comprehensive studies are crucial for understanding how the simultaneous presence of biotic and abiotic stresses affects crop productivity. Despite the importance of this issue, there is a lack of comprehensive data on how these stress combinations impact maize in key agricultural regions. This review focuses on developing abiotic stress-tolerant maize varieties, which will be essential for maintaining crop yields in the future. One promising approach involves the use of Plant Growth-Promoting Rhizobacteria (PGPR), soil bacteria that colonize the rhizosphere and interact with plant tissues. Scientists are increasingly exploring microbial strategies to enhance maize's resistance to both biotic and abiotic stresses. Throughout the cultivation process, insect pests and microorganisms pose significant threats to maize, diminishing both the quantity and quality of the grain. Among the various factors causing maize degradation, insects are the most prevalent, followed by fungal infections. The review also delves into the latest advancements in applying beneficial rhizobacteria across different agroecosystems, highlighting current trends and offering insights into future developments under both normal and stress conditions.
Collapse
Affiliation(s)
- Alok Kumar Singh
- Indian Council of Agriculture Research (ICAR) – National Bureau of Agriculturally Important Microorganism, Mau, Uttar Pradesh, India
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, India
| | - Alok Kumar Srivastava
- Indian Council of Agriculture Research (ICAR) – National Bureau of Agriculturally Important Microorganism, Mau, Uttar Pradesh, India
| | - Parul Johri
- Department of Biotechnology, Dr. Ambedkar Institute of Technology for Divyangjan (AITH), Kanpur, Uttar Pradesh, India
| | - Manish Dwivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, India
| | - Radhey Shyam Kaushal
- Department of Life Sciences, Parul Institute of Applied Sciences and Research and Development Cell, Parul University, Vadodara, Gujarat, India
| | - Mala Trivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, India
| | - Tarun Kumar Upadhyay
- Department of Life Sciences, Parul Institute of Applied Sciences and Research and Development Cell, Parul University, Vadodara, Gujarat, India
| | - Nadiyah M. Alabdallah
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
- Basic & Applied Scientific Research Centre, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Mohd Saeed
- Department of Biology, College of Sciences, University of Hail, Hail, Saudi Arabia
| | - Sorabh Lakhanpal
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
3
|
Hlaing MM, Win KT, Yasui H, Yoshimura A, Yamagata Y. A genome-wide association study using Myanmar indica diversity panel reveals a significant genomic region associated with heading date in rice. BREEDING SCIENCE 2024; 74:415-426. [PMID: 39897663 PMCID: PMC11780332 DOI: 10.1270/jsbbs.23083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 07/29/2024] [Indexed: 02/04/2025]
Abstract
Heading date is a key agronomic trait for adapting rice varieties to different growing areas and crop seasons. The genetic mechanism of heading date in Myanmar rice accessions was investigated using a genome-wide association study (GWAS) in a 250-variety indica diversity panel collected from different geographical regions. Using the days to heading data collected in 2019 and 2020, a major genomic region associated with the heading date, designated as MTA3, was found on chromosome 3. The linkage disequilibrium block of the MTA3 contained the coding sequence (CDS) of the phytochrome gene PhyC but not in its promoter region. Haplotype analysis of the 2-kb promoter and gene regions of PhyC revealed the six haplotypes, PHYCHapA, B, C, D, E, and F. The most prominent haplotypes, PHYCHapA and PHYCHapC, had different CDS and were associated with late heading and early heading phenotypes in MIDP, respectively. The difference in CDS effects between the PHYCHapB, which has identical CDS to PHYCHapA, and PHYCHapC was validated by QTL analysis using an F2 population. The distribution of PHYCHapA in the southern coastal and delta regions and of PHYCHapC in the northern highlands appears to ensure heading at the appropriate time in each area under the local day-length conditions in Myanmar. The natural variation in PhyC would be a major determinant of heading date in Myanmar accessions.
Collapse
Affiliation(s)
- Moe Moe Hlaing
- Plant Breeding Laboratory, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Khin Thanda Win
- Plant Breeding Laboratory, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hideshi Yasui
- Plant Breeding Laboratory, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Atsushi Yoshimura
- Plant Breeding Laboratory, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoshiyuki Yamagata
- Plant Breeding Laboratory, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
4
|
Koja Y, Arakawa T, Yoritaka Y, Joshima Y, Kobayashi H, Toda K, Takeda S. Basic design of artificial membrane-less organelles using condensation-prone proteins in plant cells. Commun Biol 2024; 7:1396. [PMID: 39462114 PMCID: PMC11514006 DOI: 10.1038/s42003-024-07102-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Membrane-less organelles, formed by the condensation of biomolecules, play a pivotal role in eukaryotes. Artificial membrane-less organelles and condensates are effective tools for the creation of new cellular functions. However, it is poorly understood how to control the properties that affect condensate function, particularly in plants. Here, we report the construction of model artificial condensates using the condensation-prone proteins OsJAZ2 and AtFCA in a transient assay using rice (Oryza sativa) cells, and how condensate properties, such as subcellular localization, protein mobility, and size can be altered. We showed that proteins of interest can be recruited to condensates using nanobodies or chemically induced dimerization. Furthermore, by combining two types of condensation-prone proteins, we demonstrated that artificial hybrid condensates with heterogeneous material properties could be constructed. Finally, we showed that modified artificial condensates can be constructed in transgenic Arabidopsis thaliana plants. These results provide a framework for the basic design of synthetic membrane-less organelles in plants.
Collapse
Affiliation(s)
- Yoshito Koja
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Takuya Arakawa
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Yusuke Yoritaka
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Yu Joshima
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Japan
| | - Hazuki Kobayashi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Kenta Toda
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Shin Takeda
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan.
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Japan.
| |
Collapse
|
5
|
Geng L, Zou T, Zhang W, Wang S, Yao Y, Zheng Z, Du Q, Han L. Integration Linkage Mapping and Comparative Transcriptome Analysis to Dissect the Genetic Basis of Rice Salt Tolerance Associated with the Germination Stage. Int J Mol Sci 2024; 25:10376. [PMID: 39408706 PMCID: PMC11476921 DOI: 10.3390/ijms251910376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/05/2024] [Accepted: 09/18/2024] [Indexed: 10/20/2024] Open
Abstract
Soil salinity poses a serious threat to rice production. The salt tolerance of rice at the germination stage is one of the major determinants of stable stand establishment, which is very important for direct seeding in saline soil. The complexity and polygenic nature of salt tolerance have limited the efficiency of discovering and cloning key genes in rice. In this study, an RIL population with an ultra-high-density genetic map was employed to investigate the salt-tolerant genetic basis in rice, and a total of 20 QTLs were detected, including a major and stable QTL (qRCL3-1). Subsequently, salt-specific DEGs from a comparative transcriptome analysis were overlaid onto annotated genes located on a stable QTL interval, and eight putative candidate genes were further identified. Finally, from the sequence alignment and variant analysis, OsCam1-1 was confirmed to be the most promising candidate gene for regulating salinity tolerance in rice. This study provides important information for elucidating the genetic and molecular basis of rice salt tolerance at the germination stage, and the genes detected here will be useful for improvements in rice salt tolerance.
Collapse
Affiliation(s)
- Leiyue Geng
- Institute of Coastal Agriculture, Hebei Academy of Agriculture and Forestry Sciences, Tangshan 063299, China; (L.G.); (T.Z.); (W.Z.); (S.W.); (Y.Y.); (Z.Z.)
- Tangshan Key Laboratory of Rice Breeding, Tangshan 063299, China
| | - Tuo Zou
- Institute of Coastal Agriculture, Hebei Academy of Agriculture and Forestry Sciences, Tangshan 063299, China; (L.G.); (T.Z.); (W.Z.); (S.W.); (Y.Y.); (Z.Z.)
- Tangshan Key Laboratory of Rice Breeding, Tangshan 063299, China
| | - Wei Zhang
- Institute of Coastal Agriculture, Hebei Academy of Agriculture and Forestry Sciences, Tangshan 063299, China; (L.G.); (T.Z.); (W.Z.); (S.W.); (Y.Y.); (Z.Z.)
- Tangshan Key Laboratory of Rice Breeding, Tangshan 063299, China
| | - Shuo Wang
- Institute of Coastal Agriculture, Hebei Academy of Agriculture and Forestry Sciences, Tangshan 063299, China; (L.G.); (T.Z.); (W.Z.); (S.W.); (Y.Y.); (Z.Z.)
- Tangshan Key Laboratory of Rice Breeding, Tangshan 063299, China
| | - Yutao Yao
- Institute of Coastal Agriculture, Hebei Academy of Agriculture and Forestry Sciences, Tangshan 063299, China; (L.G.); (T.Z.); (W.Z.); (S.W.); (Y.Y.); (Z.Z.)
- Tangshan Key Laboratory of Rice Breeding, Tangshan 063299, China
| | - Zhenyu Zheng
- Institute of Coastal Agriculture, Hebei Academy of Agriculture and Forestry Sciences, Tangshan 063299, China; (L.G.); (T.Z.); (W.Z.); (S.W.); (Y.Y.); (Z.Z.)
- Tangshan Key Laboratory of Rice Breeding, Tangshan 063299, China
| | - Qi Du
- Institute of Coastal Agriculture, Hebei Academy of Agriculture and Forestry Sciences, Tangshan 063299, China; (L.G.); (T.Z.); (W.Z.); (S.W.); (Y.Y.); (Z.Z.)
- Tangshan Key Laboratory of Rice Breeding, Tangshan 063299, China
| | - Longzhi Han
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
6
|
Wang H, Wang G, Qin R, Gong C, Zhou D, Li D, Luo B, Jin J, Deng Q, Wang S, Zhu J, Zou T, Li S, Liang Y, Li P. Improvement of Quality and Disease Resistance for a Heavy-Panicle Hybrid Restorer Line, R600, in Rice ( Oryza sativa L.) by Gene Pyramiding Breeding. Curr Issues Mol Biol 2024; 46:10762-10778. [PMID: 39451519 PMCID: PMC11505696 DOI: 10.3390/cimb46100639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
The utilization of heavy-panicle hybrid rice exemplifies the successful integration of architectural enhancement and heterosis, which has been widely adopted in the southwest rice-producing area of China. Iterative improvement in disease resistance and grain quality of heavy-panicle hybrid rice varieties is crucial to promote their sustainable utilization. Here, we performed a molecular design breeding strategy to introgress beneficial alleles of broad-spectrum disease resistance and grain quality into a heavy-panicle hybrid backbone restorer line Shuhui 600 (R600). We successfully developed introgression lines through marker-assisted selection to pyramid major genes (Wxb + ALKA-GC + Pigm + Xa23) derived from three parents (Huanghuazhan, I135, I488), which significantly enhance grain quality and confer resistance to rice blast and bacterial blight (BB). The improved parental R600 line (iR600) exhibited superior grain quality and elevated disease resistance while maintaining the heavy-panicle architecture and high-yield capacity of R600. Moreover, the iR600 was crossed with male sterility line 608A to obtain a new heavy-panicle hybrid rice variety with excellent eating and cooking quality (ECQ) and high yield potential. This study presents an effective breeding strategy for rice breeders to expedite the improvement of grain quality and disease resistance in heavy-panicle hybrid rice.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Yueyang Liang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China (G.W.); (R.Q.); (C.G.); (D.Z.); (D.L.); (B.L.); (J.J.); (Q.D.); (S.W.); (J.Z.); (T.Z.); (S.L.)
| | - Ping Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China (G.W.); (R.Q.); (C.G.); (D.Z.); (D.L.); (B.L.); (J.J.); (Q.D.); (S.W.); (J.Z.); (T.Z.); (S.L.)
| |
Collapse
|
7
|
Zeng X, Fan K, Shi Y, Chen R, Liu W, Wang X, Ye G, Lin W, Li Z. OsSPL11 positively regulates grain size by activating the expression of GW5L in rice. PLANT CELL REPORTS 2024; 43:228. [PMID: 39237771 DOI: 10.1007/s00299-024-03315-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
KEY MESSAGE Rice OsSPL11 activates the expression of GW5L through binding to its promoter and positively regulates grain size. Grain size (GS) is an important determinant of grain weight and yield potential in cereal. Here, we report the functional analysis of OsSPL11 in grain length (GL), grain width (GW), and 1000-grain weight (TGW). OsSPL11 mutant plants, osspl11 lines, exhibited a decrease in GL, GW, and TGW, and OsSPL11-OE lines showed an increase in GL and TGW. Expression analysis revealed that OsSPL11 was located in the nucleus and highly expressed in spikelet hull and young development grains, consistent with its function in determining GS. Further analysis confirmed that OsSPL11 directly activates the expression of GW5L to regulate GS, meanwhile OsSPL11 expression is negatively regulated by OsGBP3. Taken together, our findings demonstrate that OsSPL11 could be a key regulator of affecting GS during the spikelet hull development and facilitate the process of improving grain yield by GS modification in rice.
Collapse
Affiliation(s)
- Xinhai Zeng
- College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- Key Laboratory of Crop Ecology and Molecular Physiology of Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou, 35002, Fujian, China
| | - Kai Fan
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- Key Laboratory of Crop Ecology and Molecular Physiology of Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou, 35002, Fujian, China
| | - Yu Shi
- College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- Key Laboratory of Crop Ecology and Molecular Physiology of Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou, 35002, Fujian, China
| | - Rui Chen
- College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- Key Laboratory of Crop Ecology and Molecular Physiology of Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou, 35002, Fujian, China
| | - Wanyu Liu
- College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- Key Laboratory of Crop Ecology and Molecular Physiology of Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou, 35002, Fujian, China
| | - Xin Wang
- College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Guixiang Ye
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- Key Laboratory of Crop Ecology and Molecular Physiology of Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou, 35002, Fujian, China
| | - Wenxiong Lin
- College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- Key Laboratory of Crop Ecology and Molecular Physiology of Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou, 35002, Fujian, China
| | - Zhaowei Li
- College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
- Key Laboratory of Crop Ecology and Molecular Physiology of Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou, 35002, Fujian, China.
| |
Collapse
|
8
|
Wei X, Chen M, Zhang Q, Gong J, Liu J, Yong K, Wang Q, Fan J, Chen S, Hua H, Luo Z, Zhao X, Wang X, Li W, Cong J, Yu X, Wang Z, Huang R, Chen J, Zhou X, Qiu J, Xu P, Murray J, Wang H, Xu Y, Xu C, Xu G, Yang J, Han B, Huang X. Genomic investigation of 18,421 lines reveals the genetic architecture of rice. Science 2024; 385:eadm8762. [PMID: 38963845 DOI: 10.1126/science.adm8762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/29/2024] [Indexed: 07/06/2024]
Abstract
Understanding how numerous quantitative trait loci (QTL) shape phenotypic variation is an important question in genetics. To address this, we established a permanent population of 18,421 (18K) rice lines with reduced population structure. We generated reference-level genome assemblies of the founders and genotyped all 18K-rice lines through whole-genome sequencing. Through high-resolution mapping, 96 high-quality candidate genes contributing to variation in 16 traits were identified, including OsMADS22 and OsFTL1 verified as causal genes for panicle number and heading date, respectively. We identified epistatic QTL pairs and constructed a genetic interaction network with 19 genes serving as hubs. Overall, 170 masking epistasis pairs were characterized, serving as an important factor contributing to genetic background effects across diverse varieties. The work provides a basis to guide grain yield and quality improvements in rice.
Collapse
Affiliation(s)
- Xin Wei
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Mengjiao Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Qi Zhang
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Junyi Gong
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
| | - Jie Liu
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Kaicheng Yong
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Qin Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jiongjiong Fan
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
| | - Suhui Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Hua Hua
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Zhaowei Luo
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Xiaoyan Zhao
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Xuan Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Wei Li
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jia Cong
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Xiting Yu
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Zhihan Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Ruipeng Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jiaxin Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Xiaoyi Zhou
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jie Qiu
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Ping Xu
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jeremy Murray
- CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200233, China
| | - Hai Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yang Xu
- Key Laboratory of Plant Functional Genomics of Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Chenwu Xu
- Key Laboratory of Plant Functional Genomics of Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Gen Xu
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Jinliang Yang
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Bin Han
- CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200233, China
| | - Xuehui Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
9
|
Agha HI, Endelman JB, Chitwood-Brown J, Clough M, Coombs J, De Jong WS, Douches DS, Higgins CR, Holm DG, Novy R, Resende MFR, Sathuvalli V, Thompson AL, Yencho GC, Zotarelli L, Shannon LM. Genotype-by-environment interactions and local adaptation shape selection in the US National Chip Processing Trial. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:99. [PMID: 38598016 PMCID: PMC11006776 DOI: 10.1007/s00122-024-04610-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 03/25/2024] [Indexed: 04/11/2024]
Abstract
KEY MESSAGE We find evidence of selection for local adaptation and extensive genotype-by-environment interaction in the potato National Chip Processing Trial (NCPT). We present a novel method for dissecting the interplay between selection, local adaptation and environmental response in plant breeding schemes. Balancing local adaptation and the desire for widely adapted cultivars is challenging for plant breeders and makes genotype-by-environment interactions (GxE) an important target of selection. Selecting for GxE requires plant breeders to evaluate plants across multiple environments. One way breeders have accomplished this is to test advanced materials across many locations. Public potato breeders test advanced breeding material in the National Chip Processing Trial (NCPT), a public-private partnership where breeders from ten institutions submit advanced chip lines to be evaluated in up to ten locations across the country. These clones are genotyped and phenotyped for important agronomic traits. We used these data to interrogate the NCPT for GxE. Further, because breeders submitting clones to the NCPT select in a relatively small geographic range for the first 3 years of selection, we examined these data for evidence of incidental selection for local adaptation, and the alleles underlying it, using an environmental genome-wide association study (envGWAS). We found genomic regions associated with continuous environmental variables and discrete breeding programs, as well as regions of the genome potentially underlying GxE for yield.
Collapse
Affiliation(s)
- Husain I Agha
- Department of Horticultural Science, University of Minnesota, Saint Paul, MN, USA
| | - Jeffrey B Endelman
- Department of Plant & Agroecosystem Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Jessica Chitwood-Brown
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, USA
| | - Mark Clough
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, USA
| | - Joseph Coombs
- Department of Plant Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - Walter S De Jong
- School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - David S Douches
- Department of Plant Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | | | - David G Holm
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, USA
| | - Richard Novy
- Small Grains and Potato Germplasm Research, USDA-ARS, Aberdeen, ID, USA
| | - Marcio F R Resende
- Horticultural Sciences Department, University of Florida, Gainesville, FL, USA
| | - Vidyasagar Sathuvalli
- Hermiston Agricultural Research and Extension Center, Oregon State University, Hermiston, OR, USA
| | - Asunta L Thompson
- Department of Plant Sciences, North Dakota State University, Fargo, ND, USA
| | - G Craig Yencho
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, USA
| | - Lincoln Zotarelli
- Horticultural Sciences Department, University of Florida, Gainesville, FL, USA
| | - Laura M Shannon
- Department of Horticultural Science, University of Minnesota, Saint Paul, MN, USA.
| |
Collapse
|
10
|
Xing J, Zhang J, Wang Y, Wei X, Yin Z, Zhang Y, Pu A, Dong Z, Long Y, Wan X. Mining genic resources regulating nitrogen-use efficiency based on integrative biological analyses and their breeding applications in maize and other crops. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1148-1164. [PMID: 37967146 DOI: 10.1111/tpj.16550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/08/2023] [Accepted: 11/05/2023] [Indexed: 11/17/2023]
Abstract
Nitrogen (N) is an essential factor for limiting crop yields, and cultivation of crops with low nitrogen-use efficiency (NUE) exhibits increasing environmental and ecological risks. Hence, it is crucial to mine valuable NUE improvement genes, which is very important to develop and breed new crop varieties with high NUE in sustainable agriculture system. Quantitative trait locus (QTL) and genome-wide association study (GWAS) analysis are the most common methods for dissecting genetic variations underlying complex traits. In addition, with the advancement of biotechnology, multi-omics technologies can be used to accelerate the process of exploring genetic variations. In this study, we integrate the substantial data of QTLs, quantitative trait nucleotides (QTNs) from GWAS, and multi-omics data including transcriptome, proteome, and metabolome and further analyze their interactions to predict some NUE-related candidate genes. We also provide the genic resources for NUE improvement among maize, rice, wheat, and sorghum by homologous alignment and collinearity analysis. Furthermore, we propose to utilize the knowledge gained from classical cases to provide the frameworks for improving NUE and breeding N-efficient varieties through integrated genomics, systems biology, and modern breeding technologies.
Collapse
Affiliation(s)
- Jiapeng Xing
- Research Institute of Biology and Agriculture, Shunde Innovation School, Zhongzhi International Institute of Agricultural Biosciences, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing, 100192, China
| | - Juan Zhang
- Research Institute of Biology and Agriculture, Shunde Innovation School, Zhongzhi International Institute of Agricultural Biosciences, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing, 100192, China
| | - Yanbo Wang
- Research Institute of Biology and Agriculture, Shunde Innovation School, Zhongzhi International Institute of Agricultural Biosciences, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xun Wei
- Research Institute of Biology and Agriculture, Shunde Innovation School, Zhongzhi International Institute of Agricultural Biosciences, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing, 100192, China
| | - Zechao Yin
- Research Institute of Biology and Agriculture, Shunde Innovation School, Zhongzhi International Institute of Agricultural Biosciences, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yuqian Zhang
- Research Institute of Biology and Agriculture, Shunde Innovation School, Zhongzhi International Institute of Agricultural Biosciences, University of Science and Technology Beijing, Beijing, 100083, China
| | - Aqing Pu
- Research Institute of Biology and Agriculture, Shunde Innovation School, Zhongzhi International Institute of Agricultural Biosciences, University of Science and Technology Beijing, Beijing, 100083, China
| | - Zhenying Dong
- Research Institute of Biology and Agriculture, Shunde Innovation School, Zhongzhi International Institute of Agricultural Biosciences, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yan Long
- Research Institute of Biology and Agriculture, Shunde Innovation School, Zhongzhi International Institute of Agricultural Biosciences, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing, 100192, China
| | - Xiangyuan Wan
- Research Institute of Biology and Agriculture, Shunde Innovation School, Zhongzhi International Institute of Agricultural Biosciences, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing, 100192, China
| |
Collapse
|
11
|
Haq SAU, Bashir T, Roberts TH, Husaini AM. Ameliorating the effects of multiple stresses on agronomic traits in crops: modern biotechnological and omics approaches. Mol Biol Rep 2023; 51:41. [PMID: 38158512 DOI: 10.1007/s11033-023-09042-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 10/13/2023] [Indexed: 01/03/2024]
Abstract
While global climate change poses a significant environmental threat to agriculture, the increasing population is another big challenge to food security. To address this, developing crop varieties with increased productivity and tolerance to biotic and abiotic stresses is crucial. Breeders must identify traits to ensure higher and consistent yields under inconsistent environmental challenges, possess resilience against emerging biotic and abiotic stresses and satisfy customer demands for safer and more nutritious meals. With the advent of omics-based technologies, molecular tools are now integrated with breeding to understand the molecular genetics of genotype-based traits and develop better climate-smart crops. The rapid development of omics technologies offers an opportunity to generate novel datasets for crop species. Identifying genes and pathways responsible for significant agronomic traits has been made possible by integrating omics data with genetic and phenotypic information. This paper discusses the importance and use of omics-based strategies, including genomics, transcriptomics, proteomics and phenomics, for agricultural and horticultural crop improvement, which aligns with developing better adaptability in these crop species to the changing climate conditions.
Collapse
Affiliation(s)
- Syed Anam Ul Haq
- Genome Engineering and Societal Biotechnology Lab, Division of Plant Biotechnology, SKUAST-K, Shalimar, Srinagar, Jammu and Kashmir, 190025, India
| | - Tanzeel Bashir
- Genome Engineering and Societal Biotechnology Lab, Division of Plant Biotechnology, SKUAST-K, Shalimar, Srinagar, Jammu and Kashmir, 190025, India
| | - Thomas H Roberts
- Plant Breeding Institute, School of Life and Environmental Sciences, Faculty of Science, Sydney Institute of Agriculture, The University of Sydney, Eveleigh, Australia
| | - Amjad M Husaini
- Genome Engineering and Societal Biotechnology Lab, Division of Plant Biotechnology, SKUAST-K, Shalimar, Srinagar, Jammu and Kashmir, 190025, India.
| |
Collapse
|
12
|
Shehzad M, Ditta A, Cai X, Ur Rahman S, Xu Y, Wang K, Zhou Z, Fang L. Identification of salt stress-tolerant candidate genes in the BC 2F 2 population at the seedling stages of G. hirsutum and G. darwinii using NGS-based bulked segregant analysis. FRONTIERS IN PLANT SCIENCE 2023; 14:1125805. [PMID: 37465381 PMCID: PMC10350501 DOI: 10.3389/fpls.2023.1125805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/02/2023] [Indexed: 07/20/2023]
Abstract
Salinity is a major threat to the yield and productivity of cotton seedlings. In the present study, we developed a BC2F2 population of cotton plants from Gossypium darwinii (5-7) and Gossypium hirsutum (CCRI 12-4) salt-susceptible parents to identify salt-resistant candidate genes. The Illumina HiSeq™ strategy was used with bulked segregant analysis. Salt-resistant and salt-susceptible DNA bulks were pooled by using 30 plants from a BC2F2 population. Next-generation sequencing (NGS) technology was used for the sequencing of parents and both bulks. Four significant genomic regions were identified: the first genomic region was located on chromosome 18 (1.86 Mb), the second and third genomic regions were on chromosome 25 (1.06 Mb and 1.94 Mb, respectively), and the fourth was on chromosome 8 (1.41 Mb). The reads of bulk1 and bulk2 were aligned to the G. darwinii and G. hirsutum genomes, respectively, leading to the identification of 20,664,007 single-nucleotide polymorphisms (SNPs) and insertions/deletions (indels). After the screening, 6,573 polymorphic markers were obtained after filtration of the candidate regions. The SNP indices in resistant and susceptible bulks and Δ(SNP-index) values of resistant and susceptible bulks were measured. Based on the higher Δ(SNP-index) value, six effective polymorphic SNPs were selected in a different chromosome. Six effective SNPs were linked to five candidate genes in four genomic regions. Further validation of these five candidate genes was carried out using reverse transcription-quantitative polymerase chain reaction (RT-qPCR), resulting in an expression profile that showed two highly upregulated genes in the salt-tolerant species G. darwinii, i.e., Gohir.D05G367800 and Gohir.D12G239100; however, the opposite was shown in G. hirsutum, for which all genes, except one, showed partial expression. The results indicated that Gohir.D05G367800 and Gohir.D12G239100 may be salt-tolerant genes. We are confident that this study could be helpful for the cloning, transformation, and development of salt-resistant cotton varieties.
Collapse
Affiliation(s)
- Muhammad Shehzad
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Allah Ditta
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- Plant Breeding and Genetics Division, Cotton Group, Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, Punjab, Pakistan
| | - Xiaoyan Cai
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- National Nanfan Research Institute of Chinese Academy of Agriculture Sciences, Sanya, China
| | - Shafeeq Ur Rahman
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Yanchao Xu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- National Nanfan Research Institute of Chinese Academy of Agriculture Sciences, Sanya, China
| | - Kunbo Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Zhongli Zhou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Liu Fang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- National Nanfan Research Institute of Chinese Academy of Agriculture Sciences, Sanya, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
13
|
Moon CY, Kang BH, Kim WJ, Chowdhury S, Kang S, Lee JD, Kwon SJ, Kim HY, Lee HS, Ha BK. Morpho-physiological and genetic characteristics of a salt-tolerant mutant line in soybean (Glycine max L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:166. [PMID: 37393202 DOI: 10.1007/s00122-023-04408-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/22/2023] [Indexed: 07/03/2023]
Abstract
KEY MESSAGE One major quantitative trait loci and candidate gene for salt tolerance were identified on chromosome 3 from a new soybean mutant derived from gamma-ray irradiation, which will provide a new genetic resource for improving soybean salt tolerance. Soil salinity is a worldwide problem that reduces crop yields, but the development of salt-tolerant crops can help overcome this challenge. This study was conducted with the purpose of evaluating the morpho-physiological and genetic characteristics of a new salt-tolerant mutant KA-1285 developed using gamma-ray irradiation in soybean (Glycine max L.). The morphological and physiological responses of KA-1285 were compared with salt-sensitive and salt-tolerant genotypes after treatment with 150 mM NaCl for two weeks. In addition, a major salt tolerance quantitative trait locus (QTL) was identified on chromosome 3 in this study using the Daepung X KA-1285 169 F2:3 population, and a specific deletion was identified in Glyma03g171600 (Wm82.a2.v1) near the QTL region based on re-sequencing analysis. A kompetitive allele-specific PCR (KASP) marker was developed based on the deletion of Glyma03g171600 which distinguished the wild-type and mutant alleles. Through the analysis of gene expression patterns, it was confirmed that Glyma03g171700 (Wm82.a2.v1) is a major gene that controls salt tolerance functions in Glyma03g32900 (Wm82.a1.v1). These results suggest that the gamma-ray-induced mutant KA-1285 has the potential to be employed for the development of a salt-tolerant cultivar and provide useful information for genetic research related to salt tolerance in soybeans.
Collapse
Affiliation(s)
- Chang Yeok Moon
- Department of Applied Plant Science, Chonnnam National University, Gwangju, 61186, Republic of Korea
- BK21 Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Byeong Hee Kang
- Department of Applied Plant Science, Chonnnam National University, Gwangju, 61186, Republic of Korea
- BK21 Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Woon Ji Kim
- Department of Applied Plant Science, Chonnnam National University, Gwangju, 61186, Republic of Korea
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea
| | - Sreeparna Chowdhury
- Department of Applied Plant Science, Chonnnam National University, Gwangju, 61186, Republic of Korea
| | - Sehee Kang
- Department of Applied Plant Science, Chonnnam National University, Gwangju, 61186, Republic of Korea
- BK21 Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jeong-Dong Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Soon-Jae Kwon
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea
| | - Han-Yong Kim
- Department of Applied Plant Science, Chonnnam National University, Gwangju, 61186, Republic of Korea
| | - Hyeon-Seok Lee
- National Institute of Crop Science, RDA, Wanju, 55365, Republic of Korea.
| | - Bo-Keun Ha
- Department of Applied Plant Science, Chonnnam National University, Gwangju, 61186, Republic of Korea.
- BK21 Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
14
|
Muneer S, Chen K. Editorial: A large-scale biology view of crop-environment interaction: the influence of water and temperature stresses on the development of cereal and horticultural crops. FRONTIERS IN PLANT SCIENCE 2023; 14:1235466. [PMID: 37426989 PMCID: PMC10325649 DOI: 10.3389/fpls.2023.1235466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 06/14/2023] [Indexed: 07/11/2023]
Affiliation(s)
- Sowbiya Muneer
- Horticulture and Molecular Physiology Lab, School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Keting Chen
- Genetics, Development, and Cell Biology, College of Agricultural and Life Sciences, Iowa State University, Ames, IA, United States
| |
Collapse
|
15
|
Kota S, Vispo NA, Quintana MR, Cabral CLU, Centeno CA, Egdane J, Maathuis FJM, Kohli A, Henry A, Singh RK. Development of a phenotyping protocol for combined drought and salinity stress at seedling stage in rice. FRONTIERS IN PLANT SCIENCE 2023; 14:1173012. [PMID: 37324685 PMCID: PMC10266585 DOI: 10.3389/fpls.2023.1173012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/18/2023] [Indexed: 06/17/2023]
Abstract
Introduction The case of combined drought and salinity stress is increasingly becoming a constraint to rice production, especially in coastal areas and river deltas where low rainfall not only reduces soil moisture levels but also reduces the flow of river water, resulting in intrusion of saline sea-water. A standardized screening method is needed in order to systematically evaluate rice cultivars under combined drought+salinity at the same time because sequential stress of salinity followed by drought or vice-versa is not similar to simultaneous stress effects. Therefore, we aimed to develop a screening protocol for combined drought+salinity stress applied to soil-grown plants at seedling stage. Methods The study system used 30-L soil-filled boxes, which allowed a comparison of plant growth under control conditions, individual drought and salinity stress, as well as combined drought+salinity. A set of salinity tolerant and drought tolerant cultivars were tested, together with several popular but salinity and drought-susceptible varieties that are grown in regions prone to combined drought+salinity. A range of treatments were tested including different timings of the drought and salinity application, and different severities of stress, in order to determine the most effective that resulted in visible distinction among cultivars. The challenges related to determining a protocol with repeatable seedling stage stress treatment effects while achieving a uniform plant stand are described here. Results The optimized protocol simultaneously applied both stresses by planting into saline soil at 75% of field capacity which was then allowed to undergo progressive drydown. Meanwhile, physiological characterization revealed that chlorophyll fluorescence at seedling stage correlated well with grain yield when drought stress was applied to vegetative stage only. Discussion The drought+salinity protocol developed here can be used for screening rice breeding populations as part of a pipeline to develop new rice varieties with improved adaptation to combined stresses.
Collapse
Affiliation(s)
- Suneetha Kota
- Rice Breeding Innovations Department, International Rice Research Institute, Los Baños, Laguna, Philippines
- Plant Breeding, Indian Institute of Rice Research, Hyderabad, Telangana, India
| | - Naireen Aiza Vispo
- Rice Breeding Innovations Department, International Rice Research Institute, Los Baños, Laguna, Philippines
| | - Marinell R. Quintana
- Rice Breeding Innovations Department, International Rice Research Institute, Los Baños, Laguna, Philippines
| | - Carlo L. U. Cabral
- Rice Breeding Innovations Department, International Rice Research Institute, Los Baños, Laguna, Philippines
| | - C. Arloo Centeno
- Rice Breeding Innovations Department, International Rice Research Institute, Los Baños, Laguna, Philippines
| | - James Egdane
- Rice Breeding Innovations Department, International Rice Research Institute, Los Baños, Laguna, Philippines
| | | | - Ajay Kohli
- Rice Breeding Innovations Department, International Rice Research Institute, Los Baños, Laguna, Philippines
| | - Amelia Henry
- Rice Breeding Innovations Department, International Rice Research Institute, Los Baños, Laguna, Philippines
| | - Rakesh Kumar Singh
- Rice Breeding Innovations Department, International Rice Research Institute, Los Baños, Laguna, Philippines
| |
Collapse
|
16
|
Vallarino JG, Jun H, Wang S, Wang X, Sade N, Orf I, Zhang D, Shi J, Shen S, Cuadros-Inostroza Á, Xu Q, Luo J, Fernie AR, Brotman Y. Limitations and advantages of using metabolite-based genome-wide association studies: focus on fruit quality traits. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 333:111748. [PMID: 37230189 DOI: 10.1016/j.plantsci.2023.111748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 05/27/2023]
Abstract
In the last decades, linkage mapping has help in the location of metabolite quantitative trait loci (QTL) in many species; however, this approach shows some limitations. Recently, thanks to the most recent advanced in high-throughput genotyping technologies like next-generation sequencing, metabolite genome-wide association study (mGWAS) has been proposed a powerful tool to identify the genetic variants in polygenic agrinomic traits. Fruit flavor is a complex interaction of aroma volatiles and taste being sugar and acid ratio key parameter for flavor acceptance. Here, we review recent progress of mGWAS in pinpoint gene polymorphisms related to flavor-related metabolites in fruits. Despite clear successes in discovering novel genes or regions associated with metabolite accumulation affecting sensory attributes in fruits, GWAS incurs in several limitations summarized in this review. In addition, in our own work, we performed mGWAS on 194 Citrus grandis accessions to investigate the genetic control of individual primary and lipid metabolites in ripe fruit. We have identified a total of 667 associations for 14 primary metabolites including amino acids, sugars, and organic acids, and 768 associations corresponding to 47 lipids. Furthermore, candidate genes related to important metabolites related to fruit quality such as sugars, organic acids and lipids were discovered.
Collapse
Affiliation(s)
- José G Vallarino
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento de Biología Molecular y Bioquímica, Campus de Teatinos, 29071 Málaga, Spain
| | - Hong Jun
- Department of Genetics and Developmental Science, Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China; Waite Research Institute, School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA, Australia
| | | | - Xia Wang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Nir Sade
- School of Plant Sciences and Food Security, Tel Aviv University, P.O.B. 39040, 55 Haim Levanon St., Tel Aviv 6139001, Israel
| | - Isabel Orf
- Department of Life Sciences, Ben Gurion University of the Negev, Beersheva, Israel
| | - Dabing Zhang
- Department of Genetics and Developmental Science, Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China; Waite Research Institute, School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA, Australia
| | - Jianxin Shi
- Department of Genetics and Developmental Science, Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Shuangqian Shen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | | | - Qiang Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Jie Luo
- College of Tropical Crops, Hainan University, Haikou, China; National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Alisdair R Fernie
- Department of Root Biology and Symbiosis, Max Planck Institute of Molecular Plant Physiology, 1 Am Mühlenberg, Golm, Potsdam 14476, Germany; Department of Plant Metabolomics, Center for Plant Systems Biology and Biotechnology, 139 Ruski Blvd., Plovdiv 4000, Bulgaria.
| | - Yariv Brotman
- Department of Life Sciences, Ben Gurion University of the Negev, Beersheva, Israel.
| |
Collapse
|
17
|
Li J, Shi X, Wang C, Li Q, Lu J, Zeng D, Xie J, Shi Y, Zhai W, Zhou Y. Genome-Wide Association Study Identifies Resistance Loci for Bacterial Blight in a Collection of Asian Temperate Japonica Rice Germplasm. Int J Mol Sci 2023; 24:ijms24108810. [PMID: 37240156 DOI: 10.3390/ijms24108810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/29/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Growing resistant rice cultivars is the most effective strategy to control bacterial blight (BB), a devastating disease caused by Xanthomonas oryzae pv. oryzae (Xoo). Screening resistant germplasm and identifying resistance (R) genes are prerequisites for breeding resistant rice cultivars. We conducted a genome-wide association study (GWAS) to detect quantitative trait loci (QTL) associated with BB resistance using 359 East Asian temperate Japonica accessions inoculated with two Chinese Xoo strains (KS6-6 and GV) and one Philippine Xoo strain (PXO99A). Based on the 55K SNPs Array dataset of the 359 Japonica accessions, eight QTL were identified on rice chromosomes 1, 2, 4, 10, and 11. Four of the QTL coincided with previously reported QTL, and four were novel loci. Six R genes were localized in the qBBV-11.1, qBBV-11.2, and qBBV-11.3 loci on chromosome 11 in this Japonica collection. Haplotype analysis revealed candidate genes associated with BB resistance in each QTL. Notably, LOC_Os11g47290 in qBBV-11.3, encoding a leucine-rich repeat receptor-like kinase, was a candidate gene associated with resistance to the virulent strain GV. Knockout mutants of Nipponbare with the susceptible haplotype of LOC_Os11g47290 exhibited significantly improved BB resistance. These results will be useful for cloning BB resistance genes and breeding resistant rice cultivars.
Collapse
Affiliation(s)
- Jianmin Li
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
| | - Xiaorong Shi
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Chunchao Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Quanlin Li
- Institute of Genetics and Developmental Biological, Chinese Academy of Sciences, No. 1 Beichen West Road, Chaoyang District, Beijing 100101, China
| | - Jialing Lu
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dan Zeng
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Junping Xie
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Yingyao Shi
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Wenxue Zhai
- Institute of Genetics and Developmental Biological, Chinese Academy of Sciences, No. 1 Beichen West Road, Chaoyang District, Beijing 100101, China
| | - Yongli Zhou
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
| |
Collapse
|
18
|
Agata A, Ashikari M, Sato Y, Kitano H, Hobo T. Designing rice panicle architecture via developmental regulatory genes. BREEDING SCIENCE 2023; 73:86-94. [PMID: 37168816 PMCID: PMC10165343 DOI: 10.1270/jsbbs.22075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/03/2022] [Indexed: 05/13/2023]
Abstract
Rice panicle architecture displays remarkable diversity in branch number, branch length, and grain arrangement; however, much remains unknown about how such diversity in patterns is generated. Although several genes related to panicle branch number and panicle length have been identified, how panicle branch number and panicle length are coordinately regulated is unclear. Here, we show that panicle length and panicle branch number are independently regulated by the genes Prl5/OsGA20ox4, Pbl6/APO1, and Gn1a/OsCKX2. We produced near-isogenic lines (NILs) in the Koshihikari genetic background harboring the elite alleles for Prl5, regulating panicle rachis length; Pbl6, regulating primary branch length; and Gn1a, regulating panicle branching in various combinations. A pyramiding line carrying Prl5, Pbl6, and Gn1a showed increased panicle length and branching without any trade-off relationship between branch length or number. We successfully produced various arrangement patterns of grains by changing the combination of alleles at these three loci. Improvement of panicle architecture raised yield without associated negative effects on yield-related traits except for panicle number. Three-dimensional (3D) analyses by X-ray computed tomography (CT) of panicles revealed that differences in panicle architecture affect grain filling. Importantly, we determined that Prl5 improves grain filling without affecting grain number.
Collapse
Affiliation(s)
- Ayumi Agata
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
- National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Motoyuki Ashikari
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Yutaka Sato
- National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Hidemi Kitano
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Tokunori Hobo
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan
- Corresponding author (e-mail: )
| |
Collapse
|
19
|
Molecular bases of rice grain size and quality for optimized productivity. Sci Bull (Beijing) 2023; 68:314-350. [PMID: 36710151 DOI: 10.1016/j.scib.2023.01.026] [Citation(s) in RCA: 99] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/30/2022] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
The accomplishment of further optimization of crop productivity in grain yield and quality is a great challenge. Grain size is one of the crucial determinants of rice yield and quality; all of these traits are typical quantitative traits controlled by multiple genes. Research advances have revealed several molecular and developmental pathways that govern these traits of agronomical importance. This review provides a comprehensive summary of these pathways, including those mediated by G-protein, the ubiquitin-proteasome system, mitogen-activated protein kinase, phytohormone, transcriptional regulators, and storage product biosynthesis and accumulation. We also generalize the excellent precedents for rice variety improvement of grain size and quality, which utilize newly developed gene editing and conventional gene pyramiding capabilities. In addition, we discuss the rational and accurate breeding strategies, with the aim of better applying molecular design to breed high-yield and superior-quality varieties.
Collapse
|
20
|
Geng L, Zhang W, Zou T, Du Q, Ma X, Cui D, Han B, Zhang Q, Han L. Integrating linkage mapping and comparative transcriptome analysis for discovering candidate genes associated with salt tolerance in rice. FRONTIERS IN PLANT SCIENCE 2023; 14:1065334. [PMID: 36760644 PMCID: PMC9904508 DOI: 10.3389/fpls.2023.1065334] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
Salinity is one of the most widespread abiotic stresses affecting rice productivity worldwide. Understanding the genetic basis of salt tolerance is key for breeding salt-tolerant rice varieties. Numerous QTLs have been identified to help dissect rice salt-tolerance genetic mechanisms, yet only rare genes located in significant QTLs have been thoroughly studied or fine-mapped. Here, a combination of linkage mapping and transcriptome profiling analysis was used to identify salt tolerance-related functional candidate genes underlying stable QTLs. A recombinant inbred line (RIL) population derived from a cross between Jileng 1 (salt-sensitive) and Milyang 23 (salt-tolerant) was constructed. Subsequently, a high-density genetic map was constructed by using 2921 recombination bin markers developed from whole genome resequencing. A total of twelve QTLs controlling the standard evaluation score under salt stress were identified by linkage analysis and distributed on chromosomes 2, 3, 4, 6, 8 and 11. Notably, five QTL intervals were detected as environmentally stable QTLs in this study, and their functions were verified by comparative transcriptome analysis. By comparing the transcriptome profiles of the two parents and two bulks, we found 551 salt stress-specific differentially expressed genes. Among them, fifteen DEGs located in stable QTL intervals were considered promising candidate genes for salt tolerance. According to gene annotations, the gene OsRCI2-8(Os06g0184800) was the most promising, as it is known to be associated with salt stress, and its differential expression between the tolerant and sensitive RIL bulks highlights its important role in salt stress response pathways. Our findings provide five stable salt tolerance-related QTLs and one promising candidate gene, which will facilitate breeding for improved salt tolerance in rice varieties and promote the exploration of salt stress tolerance mechanisms in rice.
Collapse
Affiliation(s)
- Leiyue Geng
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Institute of Coastal Agriculture, Hebei Academy of Agriculture and Forestry Sciences, Tangshan, China
- Tangshan Key Laboratory of Rice Breeding, Tangshan, China
| | - Wei Zhang
- Institute of Coastal Agriculture, Hebei Academy of Agriculture and Forestry Sciences, Tangshan, China
- Tangshan Key Laboratory of Rice Breeding, Tangshan, China
| | - Tuo Zou
- Institute of Coastal Agriculture, Hebei Academy of Agriculture and Forestry Sciences, Tangshan, China
- Tangshan Key Laboratory of Rice Breeding, Tangshan, China
| | - Qi Du
- Institute of Coastal Agriculture, Hebei Academy of Agriculture and Forestry Sciences, Tangshan, China
- Tangshan Key Laboratory of Rice Breeding, Tangshan, China
| | - Xiaoding Ma
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Di Cui
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bing Han
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qixing Zhang
- Institute of Coastal Agriculture, Hebei Academy of Agriculture and Forestry Sciences, Tangshan, China
- Tangshan Key Laboratory of Rice Breeding, Tangshan, China
| | - Longzhi Han
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
21
|
Hu B, Wang W, Chen J, Liu Y, Chu C. Genetic improvement toward nitrogen-use efficiency in rice: Lessons and perspectives. MOLECULAR PLANT 2023; 16:64-74. [PMID: 36380584 DOI: 10.1016/j.molp.2022.11.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
The indispensable role of nitrogen fertilizer in ensuring world food security together with the severe threats it poses to the ecosystem makes the usage of nitrogen fertilizer a major challenge for sustainable agriculture. Genetic improvement of crops with high nitrogen-use efficiency (NUE) is one of the most feasible solutions for tackling this challenge. In the last two decades, extensive efforts toward dissecting the variation of NUE-related traits and the underlying genetic basis in different germplasms have been made, and a series of achievements have been obtained in crops, especially in rice. Here, we summarize the approaches used for genetic dissection of NUE and the functions of the causal genes in modulating NUE as well as their applications in NUE improvement in rice. Strategies for exploring the variants controlling NUE and breeding future crops with "less-input-more-output" for sustainable agriculture are also proposed.
Collapse
Affiliation(s)
- Bin Hu
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, 510642, Guangzhou, China.
| | - Wei Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, 510642, Guangzhou, China
| | - Jiajun Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Yongqiang Liu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Chengcai Chu
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, 510642, Guangzhou, China.
| |
Collapse
|
22
|
Gautam A, Khan FN, Priya S, Kumar K, Sharda S, Kaul T, Singh I, Langyan S, Yadava P. Cloning and comparative modeling identifies a highly stress tolerant Cu/Zn cytosolic super oxide dismutase 2 from a drought tolerant maize inbred line. PeerJ 2023; 11:e14845. [PMID: 36935928 PMCID: PMC10019340 DOI: 10.7717/peerj.14845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/11/2023] [Indexed: 03/14/2023] Open
Abstract
Plants have a complex system of stress response that deals with different types of stresses. Maize (Zea mays L.), one of the most important crops grown throughout the world, across a range of agro-ecological environments, employs complex mechanisms of gene regulation in response to drought stress. HKI 335 is a tropical maize inbred line showing remarkable adaptation to drought stress. Abiotic stresses, like drought, trigger the production of reactive oxygen species (ROS) due to the incomplete reduction or excitation of molecular oxygen, eventually leading to cell damage. Superoxide dismutase (SOD, EC 1.15.1.1) is a metalloenzyme that acts as the first line of defense against ROS. We cloned the Sod2 gene from HKI 335 inbred line and analyzed its protein through detailed in silico characterization. Our comparative modeling revealed that at the level of tertiary structure, the HKI 335 SOD2 protein is highly similar to Potentilla atrosanguinea SOD2, which had been previously identified as highly thermostable SOD that can tolerate autoclaving as well as sub-zero temperatures. We performed phylogenetic analysis, estimated physicochemical properties, post-translational modifications, protein-protein interactions, and domain composition of this SOD2. The phylogenetic analysis showed that orthologous sequences of SOD from different species were clustered into two clusters. Secondary structure prediction indicates that SOD2 is a soluble protein and no transmembrane domains have been found. Most of the beta sheets have RSA value greater than 2. The Ramachandran plot from PDBsum revealed that most of the residues fall in the highly favored region. It was estimated that the value of the instability index was less than 40, the value of the aliphatic index was extremely high and the GRAVY value lies between -2 and +2. We could identify only one phosphorylation site, located at position 20 with a score of 0.692. Overall, the unique stress-tolerant properties of the HKI 335 SOD2, may be one of the reasons contributing to the high drought tolerance trait exhibited by HKI 335 maize inbred line. Further research may reveal more insights into the drought adaptation mechanism in maize and the eventual deployment of the trait in maize hybrids.
Collapse
Affiliation(s)
- Anuradha Gautam
- ICAR-Indian Institute of Maize Research, Pusa Campus, New Delhi, India
| | - Fatima Nazish Khan
- Division of Plant Physiology, Indian Agricultural Research Institute, Pusa, New Delhi, India
- Department of Biotechnology, Jamia Millia Islamia, Jamia Nagar, New Delhi, India
| | - Surabhi Priya
- ICAR-Indian Institute of Maize Research, Pusa Campus, New Delhi, India
| | - Krishan Kumar
- ICAR-Indian Institute of Maize Research, Pusa Campus, New Delhi, India
| | - Shivani Sharda
- Amity Institute of Biotechnology, Amity University, Noida, India
| | - Tanushri Kaul
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Ishwar Singh
- ICAR-Indian Institute of Maize Research, Pusa Campus, New Delhi, India
| | - Sapna Langyan
- Division of Germplasm Evaluation, ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, India
| | - Pranjal Yadava
- ICAR-Indian Institute of Maize Research, Pusa Campus, New Delhi, India
- Division of Plant Physiology, Indian Agricultural Research Institute, Pusa, New Delhi, India
| |
Collapse
|
23
|
Mmbando GS. Challenges and prospects in using biotechnological interventions in O. glaberrima, an African cultivated rice. GM CROPS & FOOD 2022; 13:372-387. [DOI: 10.1080/21645698.2022.2149212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Gideon Sadikiel Mmbando
- Department of Biology, College of Natural and Mathematical Sciences, University of Dodoma (Udom), Dodoma, Tanzania
| |
Collapse
|
24
|
Tp MA, Kumar A, Anilkumar C, Sah RP, Behera S, Marndi BC. Understanding natural genetic variation for grain phytic acid content and functional marker development for phytic acid-related genes in rice. BMC PLANT BIOLOGY 2022; 22:446. [PMID: 36114452 PMCID: PMC9482188 DOI: 10.1186/s12870-022-03831-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The nutritional value of rice can be improved by developing varieties with optimum levels of grain phytic acid (PA). Artificial low-PA mutants with impaired PA biosynthesis have been developed in rice through induced mutagenesis. However, low-PA mutant stocks with drastically reduced grain PA content have poor breeding potential, and their use in rice breeding is restricted due to their detrimental pleiotropic effects, which include decreased seed viability, low grain weight, and low seed yield. Therefore, it is necessary to take advantage of the natural variation in grain PA content in order to reduce the PA content to an ideal level without compromising the crop's agronomic performance. Natural genetic diversity in grain PA content has not been thoroughly examined among elite genetic stocks. Additionally, given grain PA content as a quantitative trait driven by polygenes, DNA marker-assisted selection may be required for manipulation of such a trait; however, informative DNA markers for PA content have not yet been identified in rice. Here we investigated and dissected natural genetic variation and genetic variability components for grain PA content in rice varieties cultivated in Eastern and North-Eastern India during the last 50 years. We developed novel gene-based markers for the low-PA-related candidate genes in rice germplasm, and their allelic diversity and association with natural variation in grain PA content were studied. RESULTS A wide (0.3-2.8%), significant variation for grain PA content, with decade-wise and ecology-wise differences, was observed among rice varieties. Significant genotype x environment interaction suggested polygenic inheritance. The novel candidate gene-based markers detected 43 alleles in the rice varieties. The new markers were found highly informative as indicated by PIC values (0.11-0.65; average: 0.34) and coverage of total diversity. Marker alleles developed from two putative transporter genes viz., SPDT and OsPT8 were significantly associated with grain PA variation assayed on the panel. A 201 bp allele at the 3' UTR of SPDT gene was negatively associated with grain PA content and explained 7.84% of the phenotypic variation. A rare allele in the coding sequence of OsPT8 gene was positively associated with grain PA content which explained phenotypic variation of 18.49%. CONCLUSION Natural variation in grain PA content is substantial and is mostly controlled by genetic factors. The unique DNA markers linked with PA content have significant potential as genomic resources for the development of low-PA rice varieties through genomics-assisted breeding procedures.
Collapse
Affiliation(s)
| | - Awadhesh Kumar
- Crop Physiology and Biochemistry Division, ICAR-National Rice Research Institute, Cuttack, India
| | - Chandrappa Anilkumar
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack, India
| | - Rameswar Prasad Sah
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack, India.
| | - Sasmita Behera
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack, India
| | - Bishnu Charan Marndi
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack, India
| |
Collapse
|
25
|
MicroRNA398: A Master Regulator of Plant Development and Stress Responses. Int J Mol Sci 2022; 23:ijms231810803. [PMID: 36142715 PMCID: PMC9502370 DOI: 10.3390/ijms231810803] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/04/2022] [Accepted: 09/12/2022] [Indexed: 02/05/2023] Open
Abstract
MicroRNAs (miRNAs) play crucial roles in plant development and stress responses, and a growing number of studies suggest that miRNAs are promising targets for crop improvement because they participate in the regulation of diverse, important agronomic traits. MicroRNA398 (miR398) is a conserved miRNA in plants and has been shown to control multiple stress responses and plant growth in a variety of species. There are many studies on the stress response and developmental regulation of miR398. To systematically understand its function, it is necessary to summarize the evolution and functional roles of miR398 and its target genes. In this review, we analyze the evolution of miR398 in plants and outline its involvement in abiotic and biotic stress responses, in growth and development and in model and non-model plants. We summarize recent functional analyses, highlighting the role of miR398 as a master regulator that coordinates growth and diverse responses to environmental factors. We also discuss the potential for fine-tuning miR398 to achieve the goal of simultaneously improving plant growth and stress tolerance.
Collapse
|
26
|
Zhang Z, Li X, Ju W, Zhou Y, Cheng X. Improved estimation of global gross primary productivity during 1981-2020 using the optimized P model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156172. [PMID: 35618136 DOI: 10.1016/j.scitotenv.2022.156172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/12/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Accurate estimation of terrestrial gross primary productivity (GPP) is essential for quantifying the net carbon exchange between the atmosphere and biosphere. Light use efficiency (LUE) models are widely used to estimate GPP at different spatial scales. However, difficulties in proper determination of maximum LUE (LUEmax) and downregulation of LUEmax into actual LUE result in uncertainties in GPP estimated by LUE models. The recently developed P model, as a LUE-like model, captures the deep mechanism of photosynthesis and simplifies parameterization. Site level studies have proved the outperformance of P model over LUE models. However, the global application of the P model is still lacking. Thus, the effectiveness of 5 water stress factors integrated into the P model was compared. The optimal P model was used to generate a new long-term (1981-2020) global monthly GPP dataset at a spatial resolution of 0.1° × 0.1°, called PGPP. Validation at globally distributed 109 FLUXNET sites indicated that PGPP is better than three widely-used GPP products. R2 between PGPP and observed GPP equals to 0.75, the corresponding root mean squared error (RMSE) and mean absolute error (MAE) equal to 1.77 g C m-2 d-1 and 1.28 g C m-2 d-1. During the period from 1981 to 2020, PGPP significantly increased in 69.02% of global vegetated regions (p < 0.05). Overall, PGPP provides a new GPP product choice for global ecology studies and the comparison of various water stress factors provides a new idea for the improvement of GPP model in the future.
Collapse
Affiliation(s)
- Zhenyu Zhang
- International Institute of Earth System Science, Nanjing University, Nanjing 210023, China; School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China; Jiangsu Center for Collaborative Innovation in Geographic Information Resource Development and Application, Nanjing, Jiangsu 210023, China
| | - Xiaoyu Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Weimin Ju
- International Institute of Earth System Science, Nanjing University, Nanjing 210023, China; Jiangsu Center for Collaborative Innovation in Geographic Information Resource Development and Application, Nanjing, Jiangsu 210023, China.
| | - Yanlian Zhou
- School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China; Jiangsu Center for Collaborative Innovation in Geographic Information Resource Development and Application, Nanjing, Jiangsu 210023, China
| | - Xianfu Cheng
- Key Laboratory of Earth Surface Processes and Regional Response in the Yangtze-Huaihe River Basin, Anhui Province, Wuhu 241003, China
| |
Collapse
|
27
|
Guo X, Ullah A, Siuta D, Kukfisz B, Iqbal S. Role of WRKY Transcription Factors in Regulation of Abiotic Stress Responses in Cotton. Life (Basel) 2022; 12:life12091410. [PMID: 36143446 PMCID: PMC9504182 DOI: 10.3390/life12091410] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Environmental factors are the major constraints in sustainable agriculture. WRKY proteins are a large family of transcription factors (TFs) that regulate various developmental processes and stress responses in plants, including cotton. On the basis of Gossypium raimondii genome sequencing, WRKY TFs have been identified in cotton and characterized for their functions in abiotic stress responses. WRKY members of cotton play a significant role in the regulation of abiotic stresses, i.e., drought, salt, and extreme temperatures. These TFs either activate or repress various signaling pathways such as abscisic acid, jasmonic acid, salicylic acid, mitogen-activated protein kinases (MAPK), and the scavenging of reactive oxygen species. WRKY-associated genes in cotton have been genetically engineered in Arabidopsis, Nicotiana, and Gossypium successfully, which subsequently enhanced tolerance in corresponding plants against abiotic stresses. Although a few review reports are available for WRKY TFs, there is no critical report available on the WRKY TFs of cotton. Hereby, the role of cotton WRKY TFs in environmental stress responses is studied to enhance the understanding of abiotic stress response and further improve in cotton plants.
Collapse
Affiliation(s)
- Xiaoqiang Guo
- College of Life Science and Technology, Longdong University, Qingyang 745000, China
- Correspondence: (X.G.); (A.U.)
| | - Abid Ullah
- Department of Botany, Post Graduate College Dargai, Malakand 23060, Khyber Pakhtunkhwa, Pakistan
- Correspondence: (X.G.); (A.U.)
| | - Dorota Siuta
- Faculty of Process and Environmental Engineering, Lodz University of Technology, Wolczanska Str. 213, 90-924 Lodz, Poland
| | - Bożena Kukfisz
- Faculty of Security Engineering and Civil Protection, The Main School of Fire Service, 01-629 Warsaw, Poland
| | - Shehzad Iqbal
- College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
28
|
Generation mean analysis of the key earliness related traits in cowpea (Vigna unguiculata (L.) Walp). SCIENTIFIC AFRICAN 2022. [DOI: 10.1016/j.sciaf.2022.e01289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
29
|
Ali A, Wu T, Xu Z, Riaz A, Alqudah AM, Iqbal MZ, Zhang H, Liao Y, Chen X, Liu Y, Mujtaba T, Zhou H, Wang W, Xu P, Wu X. Phytohormones and Transcriptome Analyses Revealed the Dynamics Involved in Spikelet Abortion and Inflorescence Development in Rice. Int J Mol Sci 2022; 23:7887. [PMID: 35887236 PMCID: PMC9324563 DOI: 10.3390/ijms23147887] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/06/2022] [Accepted: 07/13/2022] [Indexed: 02/05/2023] Open
Abstract
Panicle degeneration, sometimes known as abortion, causes heavy losses in grain yield. However, the mechanism of naturally occurring panicle abortion is still elusive. In a previous study, we characterized a mutant, apical panicle abortion1331 (apa1331), exhibiting abortion in apical spikelets starting from the 6 cm stage of panicle development. In this study, we have quantified the five phytohormones, gibberellins (GA), auxins (IAA), abscisic acid (ABA), cytokinins (CTK), and brassinosteroids (BR), in the lower, middle, and upper parts of apa1331 and compared these with those exhibited in its wild type (WT). In apa331, the lower and middle parts of the panicle showed contrasting concentrations of all studied phytohormones, but highly significant changes in IAA and ABA, compared to the upper part of the panicle. A comparative transcriptome of apa1331 and WT apical spikelets was performed to explore genes causing the physiological basis of spikelet abortion. The differential expression analysis revealed a significant downregulation and upregulation of 1587 and 978 genes, respectively. Hierarchical clustering of differentially expressed genes (DEGs) revealed the correlation of gene ontology (GO) terms associated with antioxidant activity, peroxidase activity, and oxidoreductase activity. KEGG pathway analysis using parametric gene set enrichment analysis (PGSEA) revealed the downregulation of the biological processes, including cell wall polysaccharides and fatty acids derivatives, in apa1331 compared to its WT. Based on fold change (FC) value and high variation in expression during late inflorescence, early inflorescence, and antherdevelopment, we predicted a list of novel genes, which presumably can be the potential targets of inflorescence development. Our study not only provides novel insights into the role of the physiological dynamics involved in panicle abortion, but also highlights the potential targets involved in reproductive development.
Collapse
Affiliation(s)
- Asif Ali
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (A.A.); (T.W.); (Z.X.); (H.Z.); (Y.L.); (X.C.); (Y.L.); (H.Z.); (W.W.)
| | - Tingkai Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (A.A.); (T.W.); (Z.X.); (H.Z.); (Y.L.); (X.C.); (Y.L.); (H.Z.); (W.W.)
| | - Zhengjun Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (A.A.); (T.W.); (Z.X.); (H.Z.); (Y.L.); (X.C.); (Y.L.); (H.Z.); (W.W.)
| | - Asad Riaz
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Ahmad M. Alqudah
- Department of Agroecology, Aarhus University at Falkebjerg, Forsøgsvej 1, 4200 Slagelse, Denmark;
| | - Muhammad Zafar Iqbal
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China;
| | - Hongyu Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (A.A.); (T.W.); (Z.X.); (H.Z.); (Y.L.); (X.C.); (Y.L.); (H.Z.); (W.W.)
| | - Yongxiang Liao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (A.A.); (T.W.); (Z.X.); (H.Z.); (Y.L.); (X.C.); (Y.L.); (H.Z.); (W.W.)
| | - Xiaoqiong Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (A.A.); (T.W.); (Z.X.); (H.Z.); (Y.L.); (X.C.); (Y.L.); (H.Z.); (W.W.)
| | - Yutong Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (A.A.); (T.W.); (Z.X.); (H.Z.); (Y.L.); (X.C.); (Y.L.); (H.Z.); (W.W.)
| | - Tahir Mujtaba
- Department of Biotechnology, School of Natural Sciences and Engineering, University of Verona, 37134 Verona, Italy;
| | - Hao Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (A.A.); (T.W.); (Z.X.); (H.Z.); (Y.L.); (X.C.); (Y.L.); (H.Z.); (W.W.)
| | - Wenming Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (A.A.); (T.W.); (Z.X.); (H.Z.); (Y.L.); (X.C.); (Y.L.); (H.Z.); (W.W.)
| | - Peizhou Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (A.A.); (T.W.); (Z.X.); (H.Z.); (Y.L.); (X.C.); (Y.L.); (H.Z.); (W.W.)
| | - Xianjun Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (A.A.); (T.W.); (Z.X.); (H.Z.); (Y.L.); (X.C.); (Y.L.); (H.Z.); (W.W.)
| |
Collapse
|
30
|
Paccapelo MV, Kelly AM, Christopher JT, Verbyla AP. WGNAM: whole-genome nested association mapping. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:2213-2232. [PMID: 35597886 PMCID: PMC9271119 DOI: 10.1007/s00122-022-04107-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 04/13/2022] [Indexed: 06/15/2023]
Abstract
A powerful QTL analysis method for nested association mapping populations is presented. Based on a one-stage multi-locus model, it provides accurate predictions of founder specific QTL effects. Nested association mapping (NAM) populations have been created to enable the identification of quantitative trait loci (QTL) in different genetic backgrounds. A whole-genome nested association mapping (WGNAM) method is presented to perform QTL analysis in NAM populations. The WGNAM method is an adaptation of the multi-parent whole genome average interval mapping approach where the crossing design is incorporated through the probability of inheriting founder alleles for every marker across the genome. Based on a linear mixed model, this method provides a one-stage analysis of raw phenotypic data, molecular markers, and crossing design. It simultaneously scans the whole-genome through an iterative process leading to a model with all the identified QTL while keeping the false positive rate low. The WGNAM approach was assessed through a simulation study, confirming to be a powerful and accurate method for QTL analysis for a NAM population. This novel method can also accommodate a multi-reference NAM (MR-NAM) population where donor parents are crossed with multiple reference parents to increase genetic diversity. Therefore, a demonstration is presented using a MR-NAM population for wheat (Triticum aestivum L.) to perform a QTL analysis for plant height. The strength and size of the putative QTL were summarized enhancing the understanding of the QTL effects depending on the parental origin. Compared to other methods, the proposed methodology based on a one-stage analysis provides greater power to detect QTL and increased accuracy in the estimation of their effects. The WGNAM method establishes the basis for accurate QTL mapping studies for NAM and MR-NAM populations.
Collapse
Affiliation(s)
- M Valeria Paccapelo
- Department of Agriculture and Fisheries, Leslie Research Facility, Toowoomba, QLD, 4350, Australia.
| | - Alison M Kelly
- Department of Agriculture and Fisheries, Leslie Research Facility, Toowoomba, QLD, 4350, Australia
| | - Jack T Christopher
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Leslie Research Facility, Toowoomba, QLD, 4350, Australia
| | - Arūnas P Verbyla
- AV Data Analytics, Pilton, QLD, 4361, Australia
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, St. Lucia, Brisbane, QLD, 4067, Australia
| |
Collapse
|
31
|
McCoy JE, McHale LK, Kantar M, Jardón-Barbolla L, Mercer KL. Environment of origin and domestication affect morphological, physiological, and agronomic response to water deficit in chile pepper (Capsicum sp.). PLoS One 2022; 17:e0260684. [PMID: 35700182 PMCID: PMC9197065 DOI: 10.1371/journal.pone.0260684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 05/22/2022] [Indexed: 11/18/2022] Open
Abstract
Global climate change is having a significant effect on agriculture by causing greater precipitation variability and an increased risk of drought. To mitigate these effects, it is important to identify specific traits, adaptations, and germplasm that improve tolerance to soil water deficit. Local varieties, known as landraces, have undergone generations of farmer-mediated selection and can serve as sources of variation, specifically for tolerance to abiotic stress. Landraces can possess local adaptations, where accessions adapted to a particular environment will outperform others grown under the same conditions. We explore adaptations to water deficit in chile pepper landraces from across an environmental gradient in Mexico, a center of crop domestication and diversity, as well in improved varieties bred for the US. In the present study, we evaluated 25 US and Mexico accessions in a greenhouse experiment under well-watered and water deficit conditions and measured morphological, physiological, and agronomic traits. Accession and irrigation regime influenced plant biomass and height, while branching, CO2 assimilation, and fruit weight were all influenced by an interaction between accession and irrigation. A priori group contrasts revealed possible adaptations to water deficit for branching, CO2 assimilation, and plant height associated with geographic origin, domestication level, and pepper species. Additionally, within the Mexican landraces, the number of primary branches had a strong relationship with precipitation from the environment of origin. This work provides insight into chile pepper response to water deficit and adaptation to drought and identifies possibly tolerant germplasm.
Collapse
Affiliation(s)
- Jack E. McCoy
- Department of Horticulture and Crop Science, Ohio State University, Columbus, OH, United States of America
| | - Leah K. McHale
- Department of Horticulture and Crop Science, Ohio State University, Columbus, OH, United States of America
| | - Michael Kantar
- Department of Tropical Plant and Soil Sciences, University of Hawai’i, Manoa, Honolulu, HI, United States of America
| | - Lev Jardón-Barbolla
- Centro de Investigaciones Interdisciplinarias en Ciencias y Humanidades, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Kristin L. Mercer
- Department of Horticulture and Crop Science, Ohio State University, Columbus, OH, United States of America
- * E-mail:
| |
Collapse
|
32
|
|
33
|
An Integrated Fuzzy MCDM Hybrid Methodology to Analyze Agricultural Production. SUSTAINABILITY 2022. [DOI: 10.3390/su14084835] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A hybrid model was developed by combining multiple-criteria decision-making (MCDM) with the analytic hierarchy process (AHP) and a fuzzy set to give decision support for choosing sustainable solutions to agricultural problems. Six steps were taken to build the suggested hybrid model: identifying and weighing criteria; normalizing data using fuzzy membership functions; calculating the weighting of the criteria using AHP; and selecting the best alternative for the agricultural problem. The objective of this case study is to demonstrate how agricultural production techniques (APTs) are becoming more complex as agricultural production becomes more complex. Organic agriculture aims to protect both the environment and consumer satisfaction by utilizing organic management practices that do not have the negative effects associated with conventional and genetic engineering production. Meanwhile, products obtained through conventional and genetic engineering techniques are more cost-effective. To present the superiority of the proposed fuzzy MCDM hybrid model, this problem is used as the causative agent’s dataset. Because the challenge involves a large number of competing quantitative and qualitative criteria, the assessment approach should improve the ratio of input data to output data. As a result, agricultural productivity should be controlled holistically. However, because the problem may contain both qualitative and quantitative facts and uncertainties, it is necessary to represent the uncertainty inherent in human thinking. To achieve superior outcomes, fuzzy set theory (FST), which enables the expression of uncertainty in human judgments, can be integrated with). The purpose of this study is to present a novel MCDM approach based on fuzzy numbers for analyzing decision-making scenarios. The proposed methodology, which is based on Buckley’s fuzzy analytic hierarchy process (B-FAHP) and the Fuzzy Technique for Order of Preference by Similarity to Ideal Solution (F-TOPSIS), uses Buckley’s fuzzy analytic hierarchy process (B-FAHP) and fuzzy TOPSIS to determine weights and rank alternatives, respectively. As a result, we attempted to include both the uncertainty and hesitancy of experts in the decision-making process through the use of fuzzy numbers. We have three main criteria in this study: Satisfaction (C1), Economy (C2), and Environment (C3). An important objective of the current research is to build a complete framework for evaluating and grading the suitability of technologies. A real-world case study is used to demonstrate the suggested paradigm’s validity.
Collapse
|
34
|
Zhu F, Ahchige MW, Brotman Y, Alseekh S, Zsögön A, Fernie AR. Bringing more players into play: Leveraging stress in genome wide association studies. JOURNAL OF PLANT PHYSIOLOGY 2022; 271:153657. [PMID: 35231821 DOI: 10.1016/j.jplph.2022.153657] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/14/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
In order to meet the demand of the burgeoning human population as well as to adapt crops to the enhanced abiotic and biotic stress caused by the global climatic change, breeders focus on identifying valuable genes to improve both crop stress tolerance and crop quality. Recently, with the development of next-generation sequencing methods, millions of high quality single-nucleotide polymorphisms (SNPs) have been made available and genome-wide association studies (GWAS) are widely used in crop improvement studies to identify the associations between genetic variants of genomes and relevant crop agronomic traits. Here, we review classic cases of use of GWAS to identify genetic variants associated with valuable traits such as geographic adaptation, crop quality and metabolites. We discuss the power of stress GWAS to identify further associations including those with genes that are not, or only lowly, expressed during optimal growth conditions. Finally, we emphasize recent demonstrations of the efficiency and accuracy of time-resolved dynamic stress GWAS and GWAS based on genomic gene expression and structural variations, which can be applied to resolve more comprehensively the genetic regulation mechanisms of complex traits.
Collapse
Affiliation(s)
- Feng Zhu
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany; National R&D Center for Citrus Preservation, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, 430070, Wuhan, China
| | - Micha Wijesingha Ahchige
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Yariv Brotman
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany; Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Saleh Alseekh
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany; Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria
| | - Agustin Zsögön
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany; Departamento de Biologia Vegetal, Universidade Federal de Viçosa, CEP 36570-900, Viçosa, MG, Brazil
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany; Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria.
| |
Collapse
|
35
|
Tang J, Mei E, He M, Bu Q, Tian X. Functions of OsWRKY24, OsWRKY70 and OsWRKY53 in regulating grain size in rice. PLANTA 2022; 255:92. [PMID: 35322309 DOI: 10.1007/s00425-022-03871-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
OsWRKY24 functions redundantly with OsWRKY53, while OsWRKY70 functions differently from OsWRKY53 in regulating grain size. Grain size is a key agronomic trait that affects grain yield and quality in rice (Oryza sativa L.). The transcription factor OsWRKY53 positively regulates grain size through brassinosteroid (BR) signaling and Mitogen-Activated Protein Kinase (MAPK) cascades. However, whether the OsWRKY53 homologs OsWRKY24 and OsWRKY70 also contribute to grain size which remains unknown. Here, we report that grain size in OsWRKY24 overexpression lines and oswrky24 mutants is similar to that of the wild type. However, the oswrky24 oswrky53 double mutant produced smaller grains than the oswrky53 single mutant, indicating functional redundancy between OsWRKY24 and OsWRKY53. In addition, OsWRKY70 overexpression lines displayed an enlarged leaf angle, reduced plant height, longer grains, and higher BR sensitivity, phenotypes similar to those of OsWRKY53 overexpression lines. Importantly, a systematic characterization of seed length in the oswrky70 single, the oswrky53 oswrky70 double and the oswrky24 oswrky53 oswrky70 triple mutant indicated that loss of OsWRKY70 also leads to increased seed length, suggesting that OsWRKY70 might play a role distinct from that of OsWRKY53 in regulating grain size. Taken together, these findings suggest that OsWRKY24 and OsWRKY70 regulate rice grain size redundantly and independently from OsWRKY53.
Collapse
Affiliation(s)
- Jiaqi Tang
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, Chinese Academy of Sciences, Harbin, 150081, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Enyang Mei
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, Chinese Academy of Sciences, Harbin, 150081, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingliang He
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, Chinese Academy of Sciences, Harbin, 150081, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qingyun Bu
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, Chinese Academy of Sciences, Harbin, 150081, China.
| | - Xiaojie Tian
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, Chinese Academy of Sciences, Harbin, 150081, China.
| |
Collapse
|
36
|
Ajeesh Krishna TP, Maharajan T, Ceasar SA. Improvement of millets in the post-genomic era. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:669-685. [PMID: 35465206 PMCID: PMC8986959 DOI: 10.1007/s12298-022-01158-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 02/23/2022] [Accepted: 03/01/2022] [Indexed: 05/16/2023]
Abstract
Millets are food and nutrient security crops in the semi-arid tropics of developing countries. Crop improvement using modern tools is one of the priority areas of research in millets. The whole-genome sequence (WGS) of millets provides new insight into understanding and studying the genes, genome organization and genomic-assisted improvement of millets. The WGS of millets helps to carry out genome-wide comparison and co-linearity studies among millets and other cereal crops. This approach might lead to the identification of genes underlying biotic and abiotic stress tolerance in millets. The available genome sequence of millets can be used for SNP identification, allele discovery, association and linkage mapping, identification of valuable candidate genes, and marker-assisted breeding (MAB) programs. Next generation sequencing (NGS) technology provides opportunities for genome-assisted breeding (GAB) through genomic selection (GS) and genome-wide association studies (GAWS) for crop improvement. Clustered, regularly interspaced, short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) genome editing (GE) system provides new opportunities for millet improvement. In this review, we discuss the details on the WGS available for millets and highlight the importance of utilizing such resources in the post-genomic era for millet improvement. We also draw inroads on the utilization of various approaches such as GS, GWAS, functional genomics, gene validation and GE for millet improvement. This review might be helpful for understanding the developments in the post-genomic era of millet improvement.
Collapse
Affiliation(s)
- T P Ajeesh Krishna
- Department of Biosciences, Rajagiri College of Social Sciences, 683104 Kochi, Kerala India
| | - T Maharajan
- Department of Biosciences, Rajagiri College of Social Sciences, 683104 Kochi, Kerala India
| | - S Antony Ceasar
- Department of Biosciences, Rajagiri College of Social Sciences, 683104 Kochi, Kerala India
| |
Collapse
|
37
|
Gupta C, Salgotra RK. Epigenetics and its role in effecting agronomical traits. FRONTIERS IN PLANT SCIENCE 2022; 13:925688. [PMID: 36046583 PMCID: PMC9421166 DOI: 10.3389/fpls.2022.925688] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/11/2022] [Indexed: 05/16/2023]
Abstract
Climate-resilient crops with improved adaptation to the changing climate are urgently needed to feed the growing population. Hence, developing high-yielding crop varieties with better agronomic traits is one of the most critical issues in agricultural research. These are vital to enhancing yield as well as resistance to harsh conditions, both of which help farmers over time. The majority of agronomic traits are quantitative and are subject to intricate genetic control, thereby obstructing crop improvement. Plant epibreeding is the utilisation of epigenetic variation for crop development, and has a wide range of applications in the field of crop improvement. Epigenetics refers to changes in gene expression that are heritable and induced by methylation of DNA, post-translational modifications of histones or RNA interference rather than an alteration in the underlying sequence of DNA. The epigenetic modifications influence gene expression by changing the state of chromatin, which underpins plant growth and dictates phenotypic responsiveness for extrinsic and intrinsic inputs. Epigenetic modifications, in addition to DNA sequence variation, improve breeding by giving useful markers. Also, it takes epigenome diversity into account to predict plant performance and increase crop production. In this review, emphasis has been given for summarising the role of epigenetic changes in epibreeding for crop improvement.
Collapse
|
38
|
Rice functional genomics: decades' efforts and roads ahead. SCIENCE CHINA. LIFE SCIENCES 2021; 65:33-92. [PMID: 34881420 DOI: 10.1007/s11427-021-2024-0] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/01/2021] [Indexed: 12/16/2022]
Abstract
Rice (Oryza sativa L.) is one of the most important crops in the world. Since the completion of rice reference genome sequences, tremendous progress has been achieved in understanding the molecular mechanisms on various rice traits and dissecting the underlying regulatory networks. In this review, we summarize the research progress of rice biology over past decades, including omics, genome-wide association study, phytohormone action, nutrient use, biotic and abiotic responses, photoperiodic flowering, and reproductive development (fertility and sterility). For the roads ahead, cutting-edge technologies such as new genomics methods, high-throughput phenotyping platforms, precise genome-editing tools, environmental microbiome optimization, and synthetic methods will further extend our understanding of unsolved molecular biology questions in rice, and facilitate integrations of the knowledge for agricultural applications.
Collapse
|
39
|
Drought Tolerance and Application of Marker-Assisted Selection in Sorghum. BIOLOGY 2021; 10:biology10121249. [PMID: 34943164 PMCID: PMC8699005 DOI: 10.3390/biology10121249] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/07/2021] [Accepted: 10/07/2021] [Indexed: 12/30/2022]
Abstract
Simple Summary Sorghum is a climate-resilient crop grown in limited rainfall areas globally. However, climate change has increased temperature and shortened rainfall durations, which has constrained crop yield. We reviewed mechanisms of drought tolerance and application of marker-assisted selection in sorghum. Marker-assisted selection uses DNA molecular markers to map quantitative trait loci (QTL) associated with stay-green. Stg1, Stg2, Stg3, Stg4, Stg3A, and Stg3B QTLs associated with stay-green and high yield, have been mapped in sorghum. These QTLs are used for introgression into the senescent sorghum varieties through marker-assisted backcrossing. Abstract Sorghum is an important staple food crop in drought prone areas of Sub-Saharan Africa, which is characterized by erratic rainfall with poor distribution. Sorghum is a drought-tolerant crop by nature with reasonable yield compared to other cereal crops, but such abiotic stress adversely affects the productivity. Some sorghum varieties maintain green functional leaves under post-anthesis drought stress referred to as stay-green, which makes it an important crop for food and nutritional security. Notwithstanding, it is difficult to maintain consistency of tolerance over time due to climate change, which is caused by human activities. Drought in sorghum is addressed by several approaches, for instance, breeding drought-tolerant sorghum using conventional and molecular technologies. The challenge with conventional methods is that they depend on phenotyping stay-green, which is complex in sorghum, as it is constituted by multiple genes and environmental effects. Marker assisted selection, which involves the use of DNA molecular markers to map QTL associated with stay-green, has been useful to supplement stay-green improvement in sorghum. It involves QTL mapping associated with the stay-green trait for introgression into the senescent sorghum varieties through marker-assisted backcrossing by comparing with phenotypic field data. Therefore, this review discusses mechanisms of drought tolerance in sorghum focusing on physiological, morphological, and biochemical traits. In addition, the review discusses the application of marker-assisted selection techniques, including marker-assisted backcrossing, QTL mapping, and QTL pyramiding for addressing post-flowering drought in sorghum.
Collapse
|
40
|
Khan SU, Saeed S, Khan MHU, Fan C, Ahmar S, Arriagada O, Shahzad R, Branca F, Mora-Poblete F. Advances and Challenges for QTL Analysis and GWAS in the Plant-Breeding of High-Yielding: A Focus on Rapeseed. Biomolecules 2021; 11:1516. [PMID: 34680149 PMCID: PMC8533950 DOI: 10.3390/biom11101516] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 12/15/2022] Open
Abstract
Yield is one of the most important agronomic traits for the breeding of rapeseed (Brassica napus L), but its genetic dissection for the formation of high yield remains enigmatic, given the rapid population growth. In the present review, we review the discovery of major loci underlying important agronomic traits and the recent advancement in the selection of complex traits. Further, we discuss the benchmark summary of high-throughput techniques for the high-resolution genetic breeding of rapeseed. Biparental linkage analysis and association mapping have become powerful strategies to comprehend the genetic architecture of complex agronomic traits in crops. The generation of improved crop varieties, especially rapeseed, is greatly urged to enhance yield productivity. In this sense, the whole-genome sequencing of rapeseed has become achievable to clone and identify quantitative trait loci (QTLs). Moreover, the generation of high-throughput sequencing and genotyping techniques has significantly enhanced the precision of QTL mapping and genome-wide association study (GWAS) methodologies. Furthermore, this study demonstrates the first attempt to identify novel QTLs of yield-related traits, specifically focusing on ovule number per pod (ON). We also highlight the recent breakthrough concerning single-locus-GWAS (SL-GWAS) and multi-locus GWAS (ML-GWAS), which aim to enhance the potential and robust control of GWAS for improved complex traits.
Collapse
Affiliation(s)
- Shahid Ullah Khan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (S.U.K.); (S.S.); (M.H.U.K.)
| | - Sumbul Saeed
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (S.U.K.); (S.S.); (M.H.U.K.)
| | - Muhammad Hafeez Ullah Khan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (S.U.K.); (S.S.); (M.H.U.K.)
| | - Chuchuan Fan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (S.U.K.); (S.S.); (M.H.U.K.)
| | - Sunny Ahmar
- Institute of Biological Sciences, University of Talca, 1 Poniente 1141, Talca 3465548, Chile;
| | - Osvin Arriagada
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile;
| | - Raheel Shahzad
- Department of Biotechnology, Faculty of Science & Technology, Universitas Muhammadiyah Bandung, Bandung 40614, Indonesia;
| | - Ferdinando Branca
- Department of Agriculture, Food and Environment (Di3A), University of Catania, 95123 Catania, Italy;
| | - Freddy Mora-Poblete
- Institute of Biological Sciences, University of Talca, 1 Poniente 1141, Talca 3465548, Chile;
| |
Collapse
|
41
|
Wei S, Xia R, Chen C, Shang X, Ge F, Wei H, Chen H, Wu Y, Xie Q. ZmbHLH124 identified in maize recombinant inbred lines contributes to drought tolerance in crops. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:2069-2081. [PMID: 34031958 PMCID: PMC8486247 DOI: 10.1111/pbi.13637] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 03/28/2021] [Accepted: 05/14/2021] [Indexed: 06/12/2023]
Abstract
Due to climate change, drought has become a severe abiotic stress that affects the global production of all crops. Elucidation of the complex physiological mechanisms underlying drought tolerance in crops will support the cultivation of new drought-tolerant crop varieties. Here, two drought-tolerant lines, RIL70 and RIL73, and two drought-sensitive lines, RIL44 and RIL93, from recombinant inbred lines (RIL) generated from maize drought-tolerant line PH4CV and drought-sensitive line F9721, were selected for a comparative RNA-seq study. Through transcriptome analyses, we found that gene expression differences existed between drought-tolerant and -sensitive lines, but also differences between the drought-tolerant lines, RIL70 and RIL73. ZmbHLH124 in RIL73, named as ZmbHLH124T-ORG which origins from PH4CV and encodes a bHLH type transcription factor, was specifically up-regulated during drought stress. In addition, we identified a substitution in ZmbHLH124 that produced an early stop codon in sensitive lines (ZmbHLH124S-ORG ). Overexpression of ZmbHLH124T-ORG , but not ZmbHLH124S-ORG , in maize and rice enhanced plant drought tolerance and up-regulated the expression of drought-responsive genes. Moreover, we found that ZmbHLH124T-ORG could directly bind the cis-acting elements in ZmDREB2A promoter to enhance its expression. Taken together, this work identified a valuable genetic locus and provided a new strategy for breeding drought-tolerant crops.
Collapse
Affiliation(s)
- Shaowei Wei
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental BiologyThe Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Ran Xia
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental BiologyThe Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
| | - Chengxuan Chen
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental BiologyThe Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xiaoling Shang
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental BiologyThe Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
| | - Fengyong Ge
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental BiologyThe Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Huimin Wei
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental BiologyThe Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Huabang Chen
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental BiologyThe Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yaorong Wu
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental BiologyThe Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
| | - Qi Xie
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental BiologyThe Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
42
|
Zhou S, Yang J, Qian C, Yin X, Yan X, Fan X, Fang T, Gao Y, Chang Y, Ma XF. Organic acid metabolites involved in local adaptation to altitudinal gradient in Agriophyllum squarrosum, a desert medicinal plant. JOURNAL OF PLANT RESEARCH 2021; 134:999-1011. [PMID: 34308491 DOI: 10.1007/s10265-021-01325-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Agriophyllum squarrosum (L.) Moq., a pioneer plant endemic to the temperate deserts of Asia, could be domesticated into an ideal crop with outstanding ecological and medicinal characteristics. A previous study showed differential organic acid accumulation between two in situ altitudinal ecotypes. To verify whether this accumulation was determined by environmental or genetic factors, we conducted organic acid targeted metabolic profiling among 14 populations of A. squarrosum collected from regions with different altitudes based on a common garden experiment. Results showed that the most abundant organic acid in A. squarrosum was citric acid (96.03%, 2322.90 μg g-1). Association analysis with in situ environmental variables showed that salicylic acid content was positively correlated with altitudinal gradient. Considering the enrichment of salicylic acid and protocatechualdehyde in high-altitude populations based on the common garden experiment, and the high expression of their biosynthesis relative genes (i.e., PAL and C4H) in the in situ high-altitude ecotype, we propose that organic acid accumulation could be involved in local adaptation to high altitudes. This study not only addresses the molecular basis of local adaptation involving the accumulation of organic acids in the desert plant A. squarrosum but also provides a method to screen wild germplasms to mitigate the impact of global climate change.
Collapse
Affiliation(s)
- Shanshan Zhou
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Gansu Province, Department of Ecology and Agriculture Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Donggang West Road 320, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Yang
- State Key Laboratory Breeding Base of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Chaoju Qian
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Gansu Province, Department of Ecology and Agriculture Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Donggang West Road 320, Lanzhou, 730000, Gansu, China
| | - Xiaoyue Yin
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Gansu Province, Department of Ecology and Agriculture Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Donggang West Road 320, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xia Yan
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Gansu Province, Department of Ecology and Agriculture Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Donggang West Road 320, Lanzhou, 730000, Gansu, China
- School of Life Science, Nantong University, Nantong, 226019, Jiangsu, China
| | - Xingke Fan
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Gansu Province, Department of Ecology and Agriculture Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Donggang West Road 320, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tingzhou Fang
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Gansu Province, Department of Ecology and Agriculture Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Donggang West Road 320, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuan Gao
- Faculty of Materials and Chemical Engineering, Yibin University, Yibin, 644000, Sichuan, China
| | - Yuxiao Chang
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 450002, Guangdong, China
| | - Xiao-Fei Ma
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Gansu Province, Department of Ecology and Agriculture Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Donggang West Road 320, Lanzhou, 730000, Gansu, China.
- School of Life Science, Nantong University, Nantong, 226019, Jiangsu, China.
| |
Collapse
|
43
|
Jeyasri R, Muthuramalingam P, Satish L, Pandian SK, Chen JT, Ahmar S, Wang X, Mora-Poblete F, Ramesh M. An Overview of Abiotic Stress in Cereal Crops: Negative Impacts, Regulation, Biotechnology and Integrated Omics. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10071472. [PMID: 34371676 PMCID: PMC8309266 DOI: 10.3390/plants10071472] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 05/06/2023]
Abstract
Abiotic stresses (AbS), such as drought, salinity, and thermal stresses, could highly affect the growth and development of plants. For decades, researchers have attempted to unravel the mechanisms of AbS for enhancing the corresponding tolerance of plants, especially for crop production in agriculture. In the present communication, we summarized the significant factors (atmosphere, soil and water) of AbS, their regulations, and integrated omics in the most important cereal crops in the world, especially rice, wheat, sorghum, and maize. It has been suggested that using systems biology and advanced sequencing approaches in genomics could help solve the AbS response in cereals. An emphasis was given to holistic approaches such as, bioinformatics and functional omics, gene mining and agronomic traits, genome-wide association studies (GWAS), and transcription factors (TFs) family with respect to AbS. In addition, the development of omics studies has improved to address the identification of AbS responsive genes and it enables the interaction between signaling pathways, molecular insights, novel traits and their significance in cereal crops. This review compares AbS mechanisms to omics and bioinformatics resources to provide a comprehensive view of the mechanisms. Moreover, further studies are needed to obtain the information from the integrated omics databases to understand the AbS mechanisms for the development of large spectrum AbS-tolerant crop production.
Collapse
Affiliation(s)
- Rajendran Jeyasri
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630003, India; (R.J.); (P.M.); (L.S.); (S.K.P.)
| | - Pandiyan Muthuramalingam
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630003, India; (R.J.); (P.M.); (L.S.); (S.K.P.)
- Department of Biotechnology, Sri Shakthi Institute of Engineering and Technology, Coimbatore 641062, India
| | - Lakkakula Satish
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630003, India; (R.J.); (P.M.); (L.S.); (S.K.P.)
- Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Shunmugiah Karutha Pandian
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630003, India; (R.J.); (P.M.); (L.S.); (S.K.P.)
| | - Jen-Tsung Chen
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung 81148, Taiwan;
| | - Sunny Ahmar
- Institute of Biological Sciences, University of Talca, 2 Norte 685, Talca 3460000, Chile;
| | - Xiukang Wang
- College of Life Sciences, Yan’an University, Yan’an 716000, China;
| | - Freddy Mora-Poblete
- Institute of Biological Sciences, University of Talca, 2 Norte 685, Talca 3460000, Chile;
- Correspondence: (F.M.-P.); (M.R.)
| | - Manikandan Ramesh
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630003, India; (R.J.); (P.M.); (L.S.); (S.K.P.)
- Correspondence: (F.M.-P.); (M.R.)
| |
Collapse
|
44
|
Yang F, Xiong M, Huang M, Li Z, Wang Z, Zhu H, Chen R, Lu L, Cheng Q, Wang Y, Tang J, Zhuang H, Li Y. Panicle Apical Abortion 3 Controls Panicle Development and Seed Size in Rice. RICE (NEW YORK, N.Y.) 2021; 14:68. [PMID: 34264425 PMCID: PMC8282854 DOI: 10.1186/s12284-021-00509-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND In rice, panicle apical abortion is a common phenomenon that usually results in a decreased number of branches and grains per panicle, and consequently a reduced grain yield. A better understanding of the molecular mechanism of panicle abortion is thus critical for maintaining and increasing rice production. RESULTS We reported a new rice mutant panicle apical abortion 3 (paa3), which exhibited severe abortion of spikelet development on the upper part of the branches as well as decreased grain size over the whole panicle. Using mapping-based clone, the PAA3 was characterized as the LOC_ Os04g56160 gene, encoding an H+-ATPase. The PAA3 was expressed highly in the stem and panicle, and its protein was localized in the plasma membrane. Our data further showed that PAA3 played an important role in maintaining normal panicle development by participating in the removal of reactive oxygen species (ROS) in rice. CONCLUSIONS Our studies suggested that PAA3 might function to remove ROS, the accumulation of which leads to programmed cell death, and ultimately panicle apical abortion and decreased seed size in the paa3 panicle.
Collapse
Affiliation(s)
- Fayu Yang
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Mao Xiong
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Mingjiang Huang
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Zhongcheng Li
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Ziyi Wang
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Honghui Zhu
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Rui Chen
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Lu Lu
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Qinglan Cheng
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Yan Wang
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Jun Tang
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Hui Zhuang
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Yunfeng Li
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
45
|
Blanc J, Kremling KAG, Buckler E, Josephs EB. Local adaptation contributes to gene expression divergence in maize. G3-GENES GENOMES GENETICS 2021; 11:6114460. [PMID: 33604670 PMCID: PMC8022924 DOI: 10.1093/g3journal/jkab004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/20/2020] [Indexed: 11/14/2022]
Abstract
Gene expression links genotypes to phenotypes, so identifying genes whose expression is shaped by selection will be important for understanding the traits and processes underlying local adaptation. However, detecting local adaptation for gene expression will require distinguishing between divergence due to selection and divergence due to genetic drift. Here, we adapt a QST−FST framework to detect local adaptation for transcriptome-wide gene expression levels in a population of diverse maize genotypes. We compare the number and types of selected genes across a wide range of maize populations and tissues, as well as selection on cold-response genes, drought-response genes, and coexpression clusters. We identify a number of genes whose expression levels are consistent with local adaptation and show that genes involved in stress response show enrichment for selection. Due to its history of intense selective breeding and domestication, maize evolution has long been of interest to researchers, and our study provides insight into the genes and processes important for in local adaptation of maize.
Collapse
Affiliation(s)
- Jennifer Blanc
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Karl A G Kremling
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.,Inari Agriculture, Cambridge, MA 02139, USA
| | - Edward Buckler
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.,Institute for Genomic Diversity, Cornell University, Ithaca, NY 14853, USA.,United States Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY 14853, USA
| | - Emily B Josephs
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA.,Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
46
|
Zhou S, Yan X, Yang J, Qian C, Yin X, Fan X, Fang T, Gao Y, Chang Y, Liu W, Ma XF. Variations in Flavonoid Metabolites Along Altitudinal Gradient in a Desert Medicinal Plant Agriophyllum squarrosum. FRONTIERS IN PLANT SCIENCE 2021; 12:683265. [PMID: 34354722 PMCID: PMC8329721 DOI: 10.3389/fpls.2021.683265] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 06/07/2021] [Indexed: 06/10/2023]
Abstract
Agriophyllum squarrosum (L.) Moq., a pioneer plant endemic to the temperate deserts of Asia, could be domesticated into an ideal crop with outstanding ecological and medicinal characteristics. A previous study showed differential flavonoid accumulation between two in situ altitudinal ecotypes. To verify whether this accumulation was determined by environmental or genetic factors, we conducted flavonoid-targeted metabolic profiling among 14 populations of A. squarrosum collected from regions with different altitudes based on a common garden experiment. Results showed that the most abundant flavonoid in A. squarrosum was isorhamnetin (48.40%, 557.45 μg/g), followed by quercetin (13.04%, 150.15 μg/g), tricin (11.17%, 128.70 μg/g), isoquercitrin (7.59%, 87.42 μg/g), isovitexin (7.20%, 82.94 μg/g), and rutin (7.00%, 80.62 μg/g). However, based on a common garden at middle-altitude environment, almost none of the flavonoids was enriched in the high-altitude populations, and even some flavonoids, such as quercetin, tricin, and rutin, were significantly enriched in low-altitude populations. This phenomenon indicated that the accumulation of flavonoids was not a result of local adaptation to high altitude. Furthermore, association analysis with in situ environmental variables showed that the contents of quercetin, tricin, and rutin were strongly positively correlated with latitude, longitude, and precipitation gradients and negatively correlated with temperature gradients. Thus, we could conclude that the accumulations of flavonoids in A. squarrosum were more likely as a result of local adaption to environmental heterogeneity combined with precipitation and temperature other than high altitude. This study not only provides an example to understand the molecular ecological basis of pharmacognosy, but also supplies methodologies for developing a new industrial crop with ecological and agricultural importance.
Collapse
Affiliation(s)
- Shanshan Zhou
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Department of Ecology and Agriculture Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Xia Yan
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Department of Ecology and Agriculture Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- School of Life Sciences, Nantong University, Nantong, China
| | - Jian Yang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chaoju Qian
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Department of Ecology and Agriculture Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Xiaoyue Yin
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Department of Ecology and Agriculture Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Xingke Fan
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Department of Ecology and Agriculture Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Tingzhou Fang
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Department of Ecology and Agriculture Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Gao
- Faculty of Materials and Chemical Engineering, Yibin University, Yibin, China
| | - Yuxiao Chang
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Weimin Liu
- Zhongnong Haidao (Shenzhen) Biotech Co., Ltd., Shenzhen, China
| | - Xiao-Fei Ma
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Department of Ecology and Agriculture Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- School of Life Sciences, Nantong University, Nantong, China
| |
Collapse
|
47
|
Yang W, Zhao J, Zhang S, Chen L, Yang T, Dong J, Fu H, Ma Y, Zhou L, Wang J, Liu W, Liu Q, Liu B. Genome-Wide Association Mapping and Gene Expression Analysis Reveal the Negative Role of OsMYB21 in Regulating Bacterial Blight Resistance in Rice. RICE (NEW YORK, N.Y.) 2021; 14:58. [PMID: 34185169 PMCID: PMC8241976 DOI: 10.1186/s12284-021-00501-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 06/08/2021] [Indexed: 05/17/2023]
Abstract
BACKGROUND Bacterial blight (BB), caused by Xanthomonas oryzae pv. oryzae (Xoo), is one of the most devastating diseases in rice all over the world. Due to the diversity and rapid evolution of Xoo, identification and use of the non-race specific quantitative resistance QTLs has been considered the preferred strategy for effective control of this disease. Although numerous QTLs for BB resistance have been identified, they haven't been effectively used for improvement of BB resistance in rice due to their small effects and lack of knowledge on the function of genes underlying the QTLs. RESULTS In the present study, a genome-wide association study of BB resistance was performed in a rice core collection from South China. A total of 17 QTLs were identified to be associated with BB resistance. Among them, 13 QTLs were newly identified in the present study and the other 4 QTLs were co-localized with the previously reported QTLs or Xa genes that confer qualitative resistance to Xoo strains. Particularly, the qBBR11-4 on chromosome 11 explained the largest phenotypic variation in this study and was co-localized with the previously identified QTLs for BB and bacterial leaf streak (BLS) resistance against diverse strains in three studies, suggesting its broad-spectrum resistance and potential value in rice breeding. Through combined analysis of differential expression and annotations of the predicted genes within qBBR11-4 between two sets of rice accessions selected based on haplotypes and disease phenotypes, we identified the transcription factor OsMYB21 as the candidate gene for qBBR11-4. The OsMYB21 overexpressing plants exhibited decreased resistance to bacterial blight, accompanied with down-regulation of several defense-related genes compared with the wild-type plants. CONCLUSION The results suggest that OsMYB21 negatively regulates bacterial blight resistance in rice, and this gene can be a promising target in rice breeding by using the gene editing method. In addition, the potential candidate genes for the 13 novel QTLs for BB resistance were also analyzed in this study, providing a new source for cloning of genes associated with BB resistance and molecular breeding in rice.
Collapse
Affiliation(s)
- Wu Yang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Junliang Zhao
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Shaohong Zhang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Luo Chen
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Tifeng Yang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Jingfang Dong
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Hua Fu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Yamei Ma
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Lian Zhou
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Jian Wang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Wei Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Qing Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Bin Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| |
Collapse
|
48
|
Lyu D, Yu Y, Wang Q, Luo Z, Zhang Q, Zhang X, Xiang J, Li F. Identification of Growth-Associated Genes by Genome-Wide Association Study and Their Potential Application in the Breeding of Pacific White Shrimp ( Litopenaeus vannamei). Front Genet 2021; 12:611570. [PMID: 33897754 PMCID: PMC8058354 DOI: 10.3389/fgene.2021.611570] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 03/08/2021] [Indexed: 11/13/2022] Open
Abstract
The Pacific white shrimp (Litopenaeus vannamei) is the most widely cultured shrimp in the world. A great attention has been paid to improve its body weight (BW) at harvest through genetic selection for decades. Genome-wide association study (GWAS) is a tool to dissect the genetic basis of the traits. In this study, a GWAS approach was conducted to find genes related to BW through genotyping 94,113 single nucleotide polymorphisms (SNPs) in 200 individuals from a breeding population. Four BW-related SNPs located in LG19 and LG39 were identified. Through further candidate gene association analysis, the SNPs in two candidate genes, deoxycytidylate deaminase and non-receptor protein tyrosine kinase, were found to be related with the body weight of the shrimp. Marker-assisted best linear unbiased prediction (MA-BLUP) based on the SNPs in these two genes was used to estimate the breeding values, and the result showed that the highest prediction accuracy of MA-BLUP was increased by 9.4% than traditional BLUP. These results will provide useful information for the marker-assisted breeding in L. vannamei.
Collapse
Affiliation(s)
- Ding Lyu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Yang Yu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Quanchao Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Zheng Luo
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qian Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaojun Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Jianhai Xiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Fuhua Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
49
|
Chen M, Fan W, Ji F, Hua H, Liu J, Yan M, Ma Q, Fan J, Wang Q, Zhang S, Liu G, Sun Z, Tian C, Zhao F, Zheng J, Zhang Q, Chen J, Qiu J, Wei X, Chen Z, Zhang P, Pei D, Yang J, Huang X. Genome-wide identification of agronomically important genes in outcrossing crops using OutcrossSeq. MOLECULAR PLANT 2021; 14:556-570. [PMID: 33429094 DOI: 10.1016/j.molp.2021.01.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/07/2020] [Accepted: 01/06/2021] [Indexed: 05/27/2023]
Abstract
Many important crops (e.g., tuber, root, and tree crops) are cross-pollinating. For these crops, no inbred lines are available for genetic study and breeding because they are self-incompatible, clonally propagated, or have a long generation time, making the identification of agronomically important genes difficult, particularly in crops with a complex autopolyploid genome. In this study, we developed a method, OutcrossSeq, for mapping agronomically important loci in outcrossing crops based on whole-genome low-coverage resequencing of a large genetic population, and designed three computation algorithms in OutcrossSeq for different types of outcrossing populations. We applied OutcrossSeq to a tuberous root crop (sweet potato, autopolyploid), a tree crop (walnut tree, highly heterozygous diploid), and hybrid crops (double-cross populations) to generate high-density genotype maps for the outcrossing populations, which enable precise identification of genomic loci underlying important agronomic traits. Candidate causative genes at these loci were detected based on functional clues. Taken together, our results indicate that OutcrossSeq is a robust and powerful method for identifying agronomically important genes in heterozygous species, including polyploids, in a cost-efficient way. The OutcrossSeq software and its instruction manual are available for downloading at www.xhhuanglab.cn/tool/OutcrossSeq.html.
Collapse
Affiliation(s)
- Mengjiao Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Weijuan Fan
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Feiyang Ji
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Hua Hua
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jie Liu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Mengxiao Yan
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Qingguo Ma
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Jiongjiong Fan
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Qin Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Shufeng Zhang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Guiling Liu
- Tai'an Academy of Agricultural Sciences, Tai'an 271000, Shandong, China
| | - Zhe Sun
- Tai'an Academy of Agricultural Sciences, Tai'an 271000, Shandong, China
| | - Changgeng Tian
- Tai'an Academy of Agricultural Sciences, Tai'an 271000, Shandong, China
| | - Fengling Zhao
- Tai'an Academy of Agricultural Sciences, Tai'an 271000, Shandong, China
| | - Jianli Zheng
- Tai'an Academy of Agricultural Sciences, Tai'an 271000, Shandong, China
| | - Qi Zhang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jiaxin Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jie Qiu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Xin Wei
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Ziru Chen
- National Genomics Data Center, Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
| | - Peng Zhang
- CAS Center for Excellence of Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200233, China.
| | - Dong Pei
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China.
| | - Jun Yang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai Chenshan Botanical Garden, Shanghai 201602, China.
| | - Xuehui Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
50
|
Host Antony David R, Ramakrishnan M, Maharajan T, BarathiKannan K, Atul Babu G, Daniel MA, Agastian P, Antony Caesar S, Ignacimuthu S. Mining QTL and genes for root traits and biochemical parameters under vegetative drought in South Indian genotypes of finger millet (Eleusine coracana (L.) Gaertn) by association mapping and in silico comparative genomics. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.101935] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|