1
|
Fang Z, Yang X, Wang C, Shang L. Microfluidics-Based Microcarriers for Live-Cell Delivery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2414410. [PMID: 40184613 DOI: 10.1002/advs.202414410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 03/25/2025] [Indexed: 04/06/2025]
Abstract
Live-cell therapy has emerged as a revolutionary treatment modality, providing a novel therapeutic avenue for intractable diseases. However, a major challenge in live-cell therapy is to maintain live-cell viability and efficacy during the treatment. Microcarriers are crucial for enhancing cell retention, viability, and functions by providing a protective scaffold and creating a supportive environment for live-cell proliferation and metabolism. For microcarrier construction, the microfluidic technology demonstrates excellent characteristics in terms of controllability over microcarrier size and morphology as well as potential for high-throughput production. To date, multiple live-cell delivery microcarrier types (e.g., microspheres, microfibers, and microneedles) are prepared via microfluidic liquid templates to meet different therapeutic needs. In this review, recent developments in microfluidics-based microcarriers for live-cell delivery are presented. It is focused on categorizing the structural design of microfluidic-derived cell-laden microcarriers, and summarizing various therapeutic applications. Finally, an outlook is provided on the future challenges and opportunities in this field.
Collapse
Affiliation(s)
- Zhonglin Fang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Xinyuan Yang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Chong Wang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Luoran Shang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| |
Collapse
|
2
|
Takagi K, Tamura Y, Narita N, Komatsu S, Yamazaki S, Matsumura A, Kubota K, Matsumiya T, Sawada K, Nakaji S, Mikami T, Kobayashi W. Involvement of Megasphaera in the oral microbiome and dyslipidemia onset: evidence from a community-based study in Japan. Folia Microbiol (Praha) 2025:10.1007/s12223-025-01258-4. [PMID: 40175821 DOI: 10.1007/s12223-025-01258-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 03/22/2025] [Indexed: 04/04/2025]
Abstract
Dyslipidemia is a major risk factor for cardiovascular diseases and is influenced by genetic and environmental factors, including diet. Emerging research suggests a link between the gut microbiome and metabolic disorders. While the connection between the gut microbiota and dyslipidemia is well documented, the specific relationship between oral bacteria and dyslipidemia has not been thoroughly investigated. This study aimed to identify oral bacterial species associated with dyslipidemia in a community-based Japanese population. We conducted a metagenomic analysis on tongue coating samples from 763 participants in the Iwaki Health Promotion Project, which were collected during health checkups in 2017 and 2019. Dyslipidemia was diagnosed using standard lipid level criteria. The oral microbiome was analyzed via 16S rDNA amplicon sequencing. Statistical analyses included multiple regression and β diversity assessments. Our analysis revealed that the abundances of several bacterial genera, including Veillonella, Atopobium, Stomatobaculum, Tanneralla, and Megasphaera, are significantly associated with dyslipidemia. A higher relative abundance of Megasphaera was specifically observed in individuals with dyslipidemia. Moreover, Megasphaera abundance was closely associated with the onset of dyslipidemia (P = 0.038, odds ratio: 1.005, 95% confidence interval: 1.000-1.009), suggesting its role in metabolic regulation. This study revealed a significant association between the abundance of specific oral bacteria and dyslipidemia, suggesting the potential of using the oral microbiota as a biomarker for the early detection and management of dyslipidemia. Future research should explore the mechanisms through which oral bacteria influence lipid metabolism and the potential for microbioma-based therapies.
Collapse
Affiliation(s)
- Koki Takagi
- Department of Oral and Maxillofacial Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yoshihiro Tamura
- Department of Oral and Maxillofacial Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Norihiko Narita
- Department of Oral and Maxillofacial Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Shotaro Komatsu
- Department of Oral and Maxillofacial Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Shunya Yamazaki
- Department of Oral and Maxillofacial Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Akihiro Matsumura
- Department of Oral and Maxillofacial Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Kosei Kubota
- Department of Oral and Maxillofacial Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Tomoh Matsumiya
- Department of Bioscience and Laboratory Medicine, Hirosaki University Graduate School of Health Sciences, Hirosaki, Japan.
| | - Kaori Sawada
- Department of Preemptive Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Shigeyuki Nakaji
- Department of Preemptive Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Tatsuya Mikami
- Department of Preemptive Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Wataru Kobayashi
- Department of Oral and Maxillofacial Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
3
|
Kanu GA, Mouselly A, Mohamed AA. Foundations and applications of computational genomics. DEEP LEARNING IN GENETICS AND GENOMICS 2025:59-75. [DOI: 10.1016/b978-0-443-27574-6.00007-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
Xu L, Li W, Chen Y, Liu S, Liu G, Luo W, Cao G, Wang S. Metformin Regulates Cardiac Ferroptosis to Reduce Metabolic Syndrome-Induced Cardiac Dysfunction. Appl Biochem Biotechnol 2025; 197:179-193. [PMID: 39106027 DOI: 10.1007/s12010-024-05038-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 08/07/2024]
Abstract
High-fat diet-induced metabolic syndrome (MetS) is closely associated with cardiac dysfunction. Recent research studies have indicated a potential association between MetS and ferroptosis. Furthermore, metformin can alleviate MetS-induced cardiac ferroptosis. Metformin is a classic biguanide anti-diabetic drug that has protective effects on cardiovascular diseases, which extend beyond its indirect glycemic control. This study aimed to assess whether MetS mediates cardiac ferroptosis, thereby causing oxidative stress and mitochondrial dysfunction. The results revealed that metformin can mitigate cardiac reactive oxygen species and mitochondrial damage, thereby preserving cardiac function. Mechanistic analysis revealed that metformin upregulates the expression of cardiac Nrf2. Moreover, Nrf2 downregulation compromises the cardio-protective effects of metformin. In summary, this study indicated that MetS promotes cardiac ferroptosis, and metformin plays a preventive and therapeutic role, partially through modulation of Nrf2 expression.
Collapse
Affiliation(s)
- Liancheng Xu
- Department of General Surgery, Suqian First Hospital, No.120 Suzhi Street, Suqian, 223800, Jiangsu Province, China
- Fujian Medical University, Fuzhou, 350108, China
| | - Wenwen Li
- Department of Nephrology, Suqian First Hospital, Suqian, 223800, China
| | - Yu Chen
- Department of General Surgery, Suqian First Hospital, No.120 Suzhi Street, Suqian, 223800, Jiangsu Province, China
| | - Shan Liu
- Department of General Surgery, Suqian First Hospital, No.120 Suzhi Street, Suqian, 223800, Jiangsu Province, China
| | - Guodong Liu
- Department of General Surgery, Suqian First Hospital, No.120 Suzhi Street, Suqian, 223800, Jiangsu Province, China
| | - Weihuan Luo
- Department of General Surgery, Suqian First Hospital, No.120 Suzhi Street, Suqian, 223800, Jiangsu Province, China
| | - Guanyi Cao
- Department of General Surgery, Suqian First Hospital, No.120 Suzhi Street, Suqian, 223800, Jiangsu Province, China
| | - Shiping Wang
- Department of General Surgery, Suqian First Hospital, No.120 Suzhi Street, Suqian, 223800, Jiangsu Province, China.
| |
Collapse
|
5
|
Herisson FM, Cluzel GL, Llopis-Grimalt MA, O’Donovan AN, Koc F, Karnik K, Laurie I, Canene-Adams K, Ross RP, Stanton C, Caplice NM. Targeting the Gut-Heart Axis Improves Cardiac Remodeling in a Clinical Scale Model of Cardiometabolic Syndrome. JACC Basic Transl Sci 2025; 10:1-15. [PMID: 39906593 PMCID: PMC11788474 DOI: 10.1016/j.jacbts.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/09/2024] [Indexed: 02/06/2025]
Abstract
Poor diet, gut dysbiosis, and systemic inflammation constitute a gut-heart axis (GHA) that may affect heart failure with preserved ejection fraction. Clinical scale models to interrogate this axis are limited. Here, we show the full extent of the GHA-gut barrier function loss, systemic and microvascular inflammation, and its colocalization with apoptosis (left atrium) and hypertrophy (left ventricle). Gut barrier function primacy in regulating the GHA is supported by a synbiotic intervention that shuts down gut epithelial permeability, markedly decreasing systemic inflammation and, remarkably, cardiac structural changes in left heart chambers. These data support a new paradigm for targeting heart failure with preserved ejection fraction via the GHA.
Collapse
Affiliation(s)
- Florence M. Herisson
- Centre for Research in Vascular Biology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Gaston L. Cluzel
- Centre for Research in Vascular Biology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Maria Antonia Llopis-Grimalt
- Centre for Research in Vascular Biology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Aoife N. O’Donovan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Food Research Centre, Fermoy, Cork, Ireland
| | - Fatma Koc
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Food Research Centre, Fermoy, Cork, Ireland
| | | | - Ieva Laurie
- Tate & Lyle Solutions, LLC, Decatur, Illinois, USA
| | | | - R. Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Food Research Centre, Fermoy, Cork, Ireland
| | - Noel M. Caplice
- Centre for Research in Vascular Biology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
6
|
Sakamoto S, Kakehi S, Abudurezake A, Kaga H, Someya Y, Tabata H, Yoshizawa Y, Naito H, Tajima T, Ito N, Kawamori R, Watada H, Tamura Y. Sex-specific impact of GCKR rs1260326 polymorphism on metabolic traits in an older Japanese population: the Bunkyo Health Study. Ther Adv Endocrinol Metab 2024; 15:20420188241280540. [PMID: 39346030 PMCID: PMC11437585 DOI: 10.1177/20420188241280540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/19/2024] [Indexed: 10/01/2024] Open
Abstract
Background Metabolic syndrome involves health problems influenced by aging and genetics. The glucokinase regulatory protein (GCKR) rs1260326 polymorphism (Leu446) is associated with metabolic traits. This study explores the impact of the GCKR rs1260326 polymorphism on metabolic traits in older Japanese with focusing on sex-specific differences. Methods This cross-sectional study from the Bunkyo Health Study in Tokyo, Japan, examined 883 participants aged 65-84 years. Participants were excluded with diabetes, or on drug treatment for diabetes or dyslipidemia. The GCKR P446L polymorphism was analyzed and compared their characteristics of physical activity, dietary intake, body composition, and metabolic parameters. Results Study participants with GCKR rs1260326 genotypes (C/C 20.7%, C/T 47.6%, T/T 31.7%) had a median age of 72 years, and 60.4% were women. Men with the T/T genotype, as compared to the C/C genotype, had a lower body weight, body mass index (BMI), and skeletal mass index. This genotype also associated with lower fasting insulin, homeostasis model assessment of insulin resistance index (HOMA-IR), and higher Matsuda index, but not after adjustment for age, BMI, and physical activity. In contrast, women with the T/T genotype, compared to the C/C genotype, showed higher C-reactive protein, fibroblast growth factor 21, and Matsuda index. They also had lower fasting insulin, insulin area under the curve, and HOMA-IR; with these associations being independent of age, BMI, and physical activity. Conclusion The GCKR rs1260326 genotype-affected metabolic traits differentially by sex in older Japanese. This highlights the need to consider sex differences in GCKR-related metabolic outcomes.
Collapse
Affiliation(s)
- Shota Sakamoto
- Department of Sports Medicine and Sportology, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo, Japan
| | - Saori Kakehi
- Sportology Center, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
- Department of Sports Medicine and Sportology, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo, Japan
| | - Abulaiti Abudurezake
- Sportology Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Hideyoshi Kaga
- Metabolism and Endocrinology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Yuki Someya
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
| | - Hiroki Tabata
- Sportology Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Yasuyo Yoshizawa
- Center for Healthy Life Expectancy, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo, Japan
| | - Hitoshi Naito
- Metabolism and Endocrinology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Tsubasa Tajima
- Metabolism and Endocrinology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Naoaki Ito
- Metabolism and Endocrinology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Ryuzo Kawamori
- Department of Sports Medicine and Sportology, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo, Japan
- Sportology Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Metabolism and Endocrinology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Hirotaka Watada
- Sportology Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Metabolism and Endocrinology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Yoshifumi Tamura
- Department of Sports Medicine and Sportology, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo, Japan
- Sportology Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Metabolism and Endocrinology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Center for Healthy Life Expectancy, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo, Japan
- Faculty of International Liberal Arts, Juntendo University, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
7
|
Ueno M, Sugiyama H, Li F, Nishimura T, Arakawa H, Chen X, Cheng X, Takeuchi S, Takeshita Y, Takamura T, Miyagi S, Toyama T, Soga T, Masuo Y, Kato Y, Nakamura H, Tsujiguchi H, Hara A, Tajima A, Noguchi-Shinohara M, Ono K, Kurayoshi K, Kobayashi M, Tadokoro Y, Kasahara A, Shoulkamy MI, Maeda K, Ogoshi T, Hirao A. A Supramolecular Biosensor for Rapid and High-Throughput Quantification of a Disease-Associated Niacin Metabolite. Anal Chem 2024; 96:14499-14507. [PMID: 39183562 DOI: 10.1021/acs.analchem.4c02653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Metabolic abnormalities play a pivotal role in various pathological conditions, necessitating the quantification of specific metabolites for diagnosis. While mass spectrometry remains the primary method for metabolite measurement, its limited throughput underscores the need for biosensors capable of rapid detection. Previously, we reported that pillar[6]arene with 12 carboxylate groups (P6AC) forms host-guest complexes with 1-methylnicotinamide (1-MNA), which is produced in vivo by nicotinamide N-methyltransferase (NNMT). P6AC acts as a biosensor by measuring the fluorescence quenching caused by photoinduced electron transfer upon 1-MNA binding. However, the low sensitivity of P6AC makes it impractical for detecting 1-MNA in unpurified biological samples. In this study, we found that P6A with 12 sulfonate groups (P6AS) is a specific and potent supramolecular host for 1-MNA interactions even in biological samples. The 1-MNA binding affinity of P6AS in water was found to be (5.68 ± 1.02) × 106 M-1, which is approximately 700-fold higher than that of P6AC. Moreover, the 1-MNA detection limit of P6AS was determined to be 2.84 × 10-7 M, which is substantially lower than that of P6AC. Direct addition of P6AS to culture medium was sufficient to quantify 1-MNA produced by cancer cells. Furthermore, this sensor was able to specifically detect 1-MNA even in unpurified human urine. P6AS therefore enables rapid and high-throughput quantification of 1-MNA, and further improvement of our strategy will contribute to the establishment of high-throughput screening of NNMT inhibitors, diagnosis of liver diseases, and imaging of human cancer cells in vivo.
Collapse
Affiliation(s)
- Masaya Ueno
- Division of Molecular Genetics, Cancer and Stem Cell Research Program, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Hiroki Sugiyama
- Division of Molecular Genetics, Cancer and Stem Cell Research Program, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Feng Li
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Tatsuya Nishimura
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Hiroshi Arakawa
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Xi Chen
- Division of Molecular Genetics, Cancer and Stem Cell Research Program, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Xiaoxiao Cheng
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Shinji Takeuchi
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Division of Medical Oncology Cancer Research Institute, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa 920-8640, Japan
| | - Yumie Takeshita
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | - Toshinari Takamura
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | - Sakae Miyagi
- Innovative Clinical Research Center, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa 920-8640, Japan
| | - Tadashi Toyama
- Innovative Clinical Research Center, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa 920-8640, Japan
- Department of Nephrology, Faculty of Medical Sciences, University of Fukui, Yoshida-gun, Fukui 910-1193, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, 246-2 Kakuganji-mizukami, Tsuruoka, Yamagata 997-0052, Japan
| | - Yusuke Masuo
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Yukio Kato
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Hiroyuki Nakamura
- Department of Hygiene and Public Health, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa 920-8640, Japan
| | - Hiromasa Tsujiguchi
- Department of Hygiene and Public Health, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa 920-8640, Japan
| | - Akinori Hara
- Department of Hygiene and Public Health, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa 920-8640, Japan
| | - Atsushi Tajima
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | - Moeko Noguchi-Shinohara
- Department of Neurology, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Kenjiro Ono
- Department of Neurology, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Kenta Kurayoshi
- Division of Molecular Genetics, Cancer and Stem Cell Research Program, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Masahiko Kobayashi
- Division of Molecular Genetics, Cancer and Stem Cell Research Program, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Yuko Tadokoro
- Division of Molecular Genetics, Cancer and Stem Cell Research Program, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Atsuko Kasahara
- Division of Molecular Genetics, Cancer and Stem Cell Research Program, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Mahmoud I Shoulkamy
- Division of Molecular Genetics, Cancer and Stem Cell Research Program, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Zoology Department, Faculty of Science, Minia University, El-Minia 61519, Egypt
| | - Katsuhiro Maeda
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Tomoki Ogoshi
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Atsushi Hirao
- Division of Molecular Genetics, Cancer and Stem Cell Research Program, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| |
Collapse
|
8
|
Buchynskyi M, Oksenych V, Kamyshna I, Vorobets I, Halabitska I, Kamyshnyi O. Modulatory Roles of AHR, FFAR2, FXR, and TGR5 Gene Expression in Metabolic-Associated Fatty Liver Disease and COVID-19 Outcomes. Viruses 2024; 16:985. [PMID: 38932276 PMCID: PMC11209102 DOI: 10.3390/v16060985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) is a risk factor for severe COVID-19. This study explores the potential influence of gut hormone receptor and immune response gene expression on COVID-19 outcomes in MAFLD patients. METHODS We investigated gene expression levels of AHR, FFAR2, FXR, and TGR5 in patients with MAFLD and COVID-19 compared to controls. We examined associations between gene expression and clinical outcomes. RESULTS COVID-19 patients displayed altered AHR expression, potentially impacting immune response and recovery. Downregulated AHR in patients with MAFLD correlated with increased coagulation parameters. Elevated FFAR2 expression in patients with MAFLD was linked to specific immune cell populations and hospital stay duration. A significantly lower FXR expression was observed in both MAFLD and severe COVID-19. CONCLUSION Our findings suggest potential modulatory roles for AHR, FFAR2, and FXR in COVID-19 and MAFLD.
Collapse
Affiliation(s)
- Mykhailo Buchynskyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| | - Valentyn Oksenych
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| | - Iryna Kamyshna
- Department of Medical Rehabilitation, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| | - Ihor Vorobets
- Ophthalmology Clinic “Vizex”, Naukova St. 96B, 79060 Lviv, Ukraine
| | - Iryna Halabitska
- Department of Therapy and Family Medicine, I. Horbachevsky Ternopil National Medical University, Voli Square, 1, 46001 Ternopil, Ukraine;
| | - Oleksandr Kamyshnyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| |
Collapse
|
9
|
Li X, Morel JD, Sulc J, De Masi A, Lalou A, Benegiamo G, Poisson J, Liu Y, Von Alvensleben GVG, Gao AW, Bou Sleiman M, Auwerx J. Systems genetics of metabolic health in the BXD mouse genetic reference population. Cell Syst 2024; 15:497-509.e3. [PMID: 38866010 DOI: 10.1016/j.cels.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/29/2024] [Accepted: 05/20/2024] [Indexed: 06/14/2024]
Abstract
Susceptibility to metabolic syndrome (MetS) is dependent on genetics, environment, and gene-by-environment interactions, rendering the study of underlying mechanisms challenging. The majority of experiments in model organisms do not incorporate genetic variation and lack specific evaluation criteria for MetS. Here, we derived a continuous metric, the metabolic health score (MHS), based on standard clinical parameters and defined its molecular signatures in the liver and circulation. In human UK Biobank, the MHS associated with MetS status and was predictive of future disease incidence, even in individuals without MetS. Using quantitative trait locus analyses in mice, we found two MHS-associated genetic loci and replicated them in unrelated mouse populations. Through a prioritization scheme in mice and human genetic data, we identified TNKS and MCPH1 as candidates mediating differences in the MHS. Our findings provide insights into the molecular mechanisms sustaining metabolic health across species and uncover likely regulators. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Xiaoxu Li
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Jean-David Morel
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Jonathan Sulc
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Alessia De Masi
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Amélia Lalou
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Giorgia Benegiamo
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Johanne Poisson
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Yasmine Liu
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Giacomo V G Von Alvensleben
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Arwen W Gao
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Maroun Bou Sleiman
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
10
|
Hemba-Waduge RUS, Liu M, Li X, Sun JL, Budslick EA, Bondos SE, Ji JY. Metabolic control by the Bithorax Complex-Wnt signaling crosstalk in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.31.596851. [PMID: 38853890 PMCID: PMC11160800 DOI: 10.1101/2024.05.31.596851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Adipocytes distributed throughout the body play crucial roles in lipid metabolism and energy homeostasis. Regional differences among adipocytes influence normal function and disease susceptibility, but the mechanisms driving this regional heterogeneity remain poorly understood. Here, we report a genetic crosstalk between the Bithorax Complex ( BX-C ) genes and Wnt/Wingless signaling that orchestrates regional differences among adipocytes in Drosophila larvae. Abdominal adipocytes, characterized by the exclusive expression of abdominal A ( abd-A ) and Abdominal B ( Abd-B ), exhibit distinct features compared to thoracic adipocytes, with Wnt signaling further amplifying these disparities. Depletion of BX-C genes in adipocytes reduces fat accumulation, delays larval-pupal transition, and eventually leads to pupal lethality. Depleting Abd-A or Abd-B reduces Wnt target gene expression, thereby attenuating Wnt signaling-induced lipid mobilization. Conversely, Wnt signaling stimulated abd-A transcription, suggesting a feedforward loop that amplifies the interplay between Wnt signaling and BX-C in adipocytes. These findings elucidate how the crosstalk between cell-autonomous BX-C gene expression and Wnt signaling define unique metabolic behaviors in adipocytes in different anatomical regions of fat body, delineating larval adipose tissue domains.
Collapse
|
11
|
Borges-Canha M, Leite AR, Godinho T, Liberal R, Correia-Chaves J, Lourenço IM, von Hafe M, Vale C, Fragão-Marques M, Pimentel-Nunes P, Leite-Moreira A, Carvalho D, Freitas P, Neves JS. Association of metabolic syndrome components and NAFLD with quality of life: Insights from a cross-sectional study. Prim Care Diabetes 2024; 18:196-201. [PMID: 38262847 DOI: 10.1016/j.pcd.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/08/2024] [Indexed: 01/25/2024]
Abstract
AIM Metabolic syndrome (MetS) is associated with higher cardiovascular and metabolic risks, as well as with psychosocial disorders. Data regarding quality of life (QoL) in patients with MetS, point towards a significative association between MetS and a worse QoL. It remains unclear whether MetS components and non-alcoholic fatty liver disease (NAFLD) are associated with QoL in these individuals. We aimed to evaluate the association between QoL of patients with MetS and prespecified metabolic parameters (anthropometric, lipidic and glucose profiles), the risk of hepatic steatosis and fibrosis, and hepatic elastography parameters. METHODS Cross-sectional study including patients from microDHNA cohort. This cohort includes patients diagnosed with MetS, 18 to 75 years old, followed in our tertiary center. The evaluation included anamnesis, physical examination, a QoL questionnaire (Short-Form Health Survey, SF-36), blood sampling and hepatic elastography. We used ordered logistic regression models adjusted to sex, age and body mass index to evaluate the associations between the QoL domains evaluated by SF-36 and the prespecified parameters. RESULTS We included a total of 65 participants with MetS, with 54% being female and the mean age 61.9 ± 9.6 years old. A worse metabolic profile, specifically higher waist circumference, lower HDL, higher triglycerides, and more severe hepatic steatosis, were associated with worse QoL scores in several domains. We found no significant association of hepatic fibrosis with QoL. CONCLUSION Our data suggests that there is a link between a worse metabolic profile (specifically poorer lipidic profile and presence of hepatic steatosis) and a worse QoL in patients with MetS.
Collapse
Affiliation(s)
- Marta Borges-Canha
- Departamento de Cirurgia e Fisiologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal; Serviço de Endocrinologia, Diabetes e Metabolismo do Centro Hospitalar Universitário de São João, Porto, Portugal.
| | - Ana Rita Leite
- Departamento de Cirurgia e Fisiologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal; Serviço de Endocrinologia, Diabetes e Metabolismo do Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Tiago Godinho
- Departamento de Cirurgia e Fisiologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Rodrigo Liberal
- Serviço de Gastrenterologia e Hepatologia, Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Joana Correia-Chaves
- Departamento de Cirurgia e Fisiologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Inês Mariana Lourenço
- Departamento de Cirurgia e Fisiologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Madalena von Hafe
- Departamento de Cirurgia e Fisiologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Catarina Vale
- Departamento de Cirurgia e Fisiologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Mariana Fragão-Marques
- Departamento de Cirurgia e Fisiologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Pedro Pimentel-Nunes
- Departamento de Cirurgia e Fisiologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Adelino Leite-Moreira
- Departamento de Cirurgia e Fisiologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Davide Carvalho
- Serviço de Endocrinologia, Diabetes e Metabolismo do Centro Hospitalar Universitário de São João, Porto, Portugal; Instituto de Investigação e Inovação em Saúde (i3s), Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Paula Freitas
- Serviço de Endocrinologia, Diabetes e Metabolismo do Centro Hospitalar Universitário de São João, Porto, Portugal; Instituto de Investigação e Inovação em Saúde (i3s), Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - João Sérgio Neves
- Departamento de Cirurgia e Fisiologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal; Serviço de Endocrinologia, Diabetes e Metabolismo do Centro Hospitalar Universitário de São João, Porto, Portugal
| |
Collapse
|
12
|
Kjerulff B, Dowsett J, Jacobsen RL, Gladov J, Larsen MH, Lundgaard AT, Banasik K, Westergaard D, Mikkelsen S, Dinh KM, Hindhede L, Kaspersen KA, Schwinn M, Juul A, Poulsen B, Lindegaard B, Pedersen CB, Sabel CE, Bundgaard H, Nielsen HS, Møller JA, Boldsen JK, Burgdorf KS, Kessing LV, Handgaard LJ, Thørner LW, Didriksen M, Nyegaard M, Grarup N, Ødum N, Johansson PI, Jennum P, Frikke-Schmidt R, Berger SS, Brunak S, Jacobsen S, Hansen TF, Lundquist TK, Hansen T, Sørensen TL, Sigsgaard T, Nielsen KR, Bruun MT, Hjalgrim H, Ullum H, Rostgaard K, Sørensen E, Pedersen OB, Ostrowski SR, Erikstrup C. Lifestyle and demographic associations with 47 inflammatory and vascular stress biomarkers in 9876 blood donors. COMMUNICATIONS MEDICINE 2024; 4:50. [PMID: 38493237 PMCID: PMC10944541 DOI: 10.1038/s43856-024-00474-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 03/04/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND The emerging use of biomarkers in research and tailored care introduces a need for information about the association between biomarkers and basic demographics and lifestyle factors revealing expectable concentrations in healthy individuals while considering general demographic differences. METHODS A selection of 47 biomarkers, including markers of inflammation and vascular stress, were measured in plasma samples from 9876 Danish Blood Donor Study participants. Using regression models, we examined the association between biomarkers and sex, age, Body Mass Index (BMI), and smoking. RESULTS Here we show that concentrations of inflammation and vascular stress biomarkers generally increase with higher age, BMI, and smoking. Sex-specific effects are observed for multiple biomarkers. CONCLUSION This study provides comprehensive information on concentrations of 47 plasma biomarkers in healthy individuals. The study emphasizes that knowledge about biomarker concentrations in healthy individuals is critical for improved understanding of disease pathology and for tailored care and decision support tools.
Collapse
Affiliation(s)
- Bertram Kjerulff
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark.
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
- BERTHA Big Data Centre for Environment and Health, Aarhus University, Aarhus, Denmark.
| | - Joseph Dowsett
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Rikke Louise Jacobsen
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Josephine Gladov
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- BERTHA Big Data Centre for Environment and Health, Aarhus University, Aarhus, Denmark
| | - Margit Hørup Larsen
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Agnete Troen Lundgaard
- Translational Disease Systems Biology, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Karina Banasik
- Translational Disease Systems Biology, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - David Westergaard
- Translational Disease Systems Biology, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Susan Mikkelsen
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Khoa Manh Dinh
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Lotte Hindhede
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Kathrine Agergård Kaspersen
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
- BERTHA Big Data Centre for Environment and Health, Aarhus University, Aarhus, Denmark
| | - Michael Schwinn
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Anders Juul
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Betina Poulsen
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Birgitte Lindegaard
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Pulmonary and Infectious Diseases, Copenhagen University Hospital-North Zealand, Hillerød, Denmark
| | - Carsten Bøcker Pedersen
- BERTHA Big Data Centre for Environment and Health, Aarhus University, Aarhus, Denmark
- National Centre for Register-based Research, Aarhus BSS, Aarhus University, Aarhus, Denmark
| | - Clive Eric Sabel
- BERTHA Big Data Centre for Environment and Health, Aarhus University, Aarhus, Denmark
- Department of Public Health, Aarhus University, DK-8000, Aarhus, Denmark
- School of Geography, Earth and Environmental Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Henning Bundgaard
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Heart Center, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Henriette Svarre Nielsen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Recurrent Pregnancy Loss Unit, Capital Region, Copenhagen University Hospitals, Hvidovre and Rigshospitalet, Copenhagen, Denmark
- Department of Obstetrics and Gynecology, Copenhagen University Hospital, Hvidovre, Denmark
| | - Janne Amstrup Møller
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Jens Kjærgaard Boldsen
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
- BERTHA Big Data Centre for Environment and Health, Aarhus University, Aarhus, Denmark
| | - Kristoffer Sølvsten Burgdorf
- Translational Disease Systems Biology, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lars Vedel Kessing
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Copenhagen Affective Disorder Research Center (CADIC), Psychiatric Center Copenhagen, Copenhagen, Denmark
| | - Linda Jenny Handgaard
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Lise Wegner Thørner
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Maria Didriksen
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Mette Nyegaard
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niels Ødum
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Pär I Johansson
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Obstetrics and Gynecology, Copenhagen University Hospital, Hvidovre, Denmark
| | - Poul Jennum
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Danish Center for Sleep Medicine, Department of Clinical Neurophysiology, Rigshospitalet, Copenhagen, Denmark
| | - Ruth Frikke-Schmidt
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Sanne Schou Berger
- Centre for Diagnostics, DTU Health Technology, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Søren Brunak
- Translational Disease Systems Biology, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Søren Jacobsen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Copenhagen Lupus and Vasculitis Clinic, Center for Rheumatology and Spine Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Thomas Folkmann Hansen
- Translational Disease Systems Biology, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Danish Headache Center and Danish Multiple Sclerosis Center, Copenhagen University Hospital, Rigshospitalet Glostrup, Glostrup, Denmark
| | - Tine Kirkeskov Lundquist
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Torben Lykke Sørensen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Clinical Eye Research Division, Department of Ophthalmology, Zealand University, Hospital, Roskilde, Denmark
| | - Torben Sigsgaard
- BERTHA Big Data Centre for Environment and Health, Aarhus University, Aarhus, Denmark
- Department of Public Health, Aarhus University, DK-8000, Aarhus, Denmark
| | - Kaspar René Nielsen
- Department of Clinical Immunology, Aalborg University Hospital, Aalborg, Denmark
| | - Mie Topholm Bruun
- Department of Clinical Immunology, Odense University Hospital, Odense, Denmark
| | - Henrik Hjalgrim
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
- Danish Cancer Society Research Center, Danish Cancer Society, Copenhagen, Denmark
- Department of Hematology, Copenhagen University Hospital, Copenhagen, Denmark
| | | | - Klaus Rostgaard
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
- Danish Cancer Society Research Center, Danish Cancer Society, Copenhagen, Denmark
| | - Erik Sørensen
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Ole Birger Pedersen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Immunology, Zealand University Hospital, Køge, Denmark
| | - Sisse Rye Ostrowski
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christian Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- BERTHA Big Data Centre for Environment and Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
13
|
Bai Y, Morita K, Kokaji T, Hatano A, Ohno S, Egami R, Pan Y, Li D, Yugi K, Uematsu S, Inoue H, Inaba Y, Suzuki Y, Matsumoto M, Takahashi M, Izumi Y, Bamba T, Hirayama A, Soga T, Kuroda S. Trans-omic analysis reveals opposite metabolic dysregulation between feeding and fasting in liver associated with obesity. iScience 2024; 27:109121. [PMID: 38524370 PMCID: PMC10960062 DOI: 10.1016/j.isci.2024.109121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/03/2023] [Accepted: 01/31/2024] [Indexed: 03/26/2024] Open
Abstract
Dysregulation of liver metabolism associated with obesity during feeding and fasting leads to the breakdown of metabolic homeostasis. However, the underlying mechanism remains unknown. Here, we measured multi-omics data in the liver of wild-type and leptin-deficient obese (ob/ob) mice at ad libitum feeding and constructed a differential regulatory trans-omic network of metabolic reactions. We compared the trans-omic network at feeding with that at 16 h fasting constructed in our previous study. Intermediate metabolites in glycolytic and nucleotide metabolism decreased in ob/ob mice at feeding but increased at fasting. Allosteric regulation reversely shifted between feeding and fasting, generally showing activation at feeding while inhibition at fasting in ob/ob mice. Transcriptional regulation was similar between feeding and fasting, generally showing inhibiting transcription factor regulations and activating enzyme protein regulations in ob/ob mice. The opposite metabolic dysregulation between feeding and fasting characterizes breakdown of metabolic homeostasis associated with obesity.
Collapse
Affiliation(s)
- Yunfan Bai
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Keigo Morita
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Toshiya Kokaji
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Data Science Center, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, Japan
| | - Atsushi Hatano
- Department of Omics and Systems Biology, Graduate School of Medical and Dental Sciences, Niigata University, 757 Ichibancho, Asahimachi-dori, Chuo-ku, Niigata City, Niigata 951-8510, Japan
| | - Satoshi Ohno
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Molecular Genetics Research Laboratory, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
- Department of AI Systems Medicine, M&D Data Science Center, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Riku Egami
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Yifei Pan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Dongzi Li
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Katsuyuki Yugi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Laboratory for Integrated Cellular Systems, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Institute for Advanced Biosciences, Keio University, Fujisawa 252-8520, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Saori Uematsu
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Hiroshi Inoue
- Metabolism and Nutrition Research Unit, Institute for Frontier Science Initiative, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa 920-8641, Japan
| | - Yuka Inaba
- Metabolism and Nutrition Research Unit, Institute for Frontier Science Initiative, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa 920-8641, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Masaki Matsumoto
- Department of Omics and Systems Biology, Graduate School of Medical and Dental Sciences, Niigata University, 757 Ichibancho, Asahimachi-dori, Chuo-ku, Niigata City, Niigata 951-8510, Japan
| | - Masatomo Takahashi
- Division of Metabolomics/Mass Spectrometry Center, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Yoshihiro Izumi
- Division of Metabolomics/Mass Spectrometry Center, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Takeshi Bamba
- Division of Metabolomics/Mass Spectrometry Center, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Akiyoshi Hirayama
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
| | - Shinya Kuroda
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
14
|
Wang W, Li J, Cui S, Li J, Ye X, Wang Z, Zhang T, Jiang X, Kong Y, Chen X, Chen YQ, Zhu S. Microglial Ffar4 deficiency promotes cognitive impairment in the context of metabolic syndrome. SCIENCE ADVANCES 2024; 10:eadj7813. [PMID: 38306420 PMCID: PMC10836723 DOI: 10.1126/sciadv.adj7813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 01/03/2024] [Indexed: 02/04/2024]
Abstract
Metabolic syndrome (MetS) is closely associated with an increased risk of dementia and cognitive impairment, and a complex interaction of genetic and environmental dietary factors may be implicated. Free fatty acid receptor 4 (Ffar4) may bridge the genetic and dietary aspects of MetS development. However, the role of Ffar4 in MetS-related cognitive dysfunction is unclear. In this study, we found that Ffar4 expression is down-regulated in MetS mice and MetS patients with cognitive impairment. Conventional and microglial conditional knockout of Ffar4 exacerbated high-fat diet (HFD)-induced cognitive dysfunction and anxiety, whereas microglial Ffar4 overexpression improved HFD-induced cognitive dysfunction and anxiety. Mechanistically, we found that microglial Ffar4 regulated microglial activation through type I interferon signaling. Microglial depletion and NF-κB inhibition partially reversed cognitive dysfunction and anxiety in microglia-specific Ffar4 knockout MetS mice. Together, these findings uncover a previously unappreciated role of Ffar4 in negatively regulating the NF-κB-IFN-β signaling and provide an attractive therapeutic target for delaying MetS-associated cognitive decline.
Collapse
Affiliation(s)
- Wei Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
| | - Jinyou Li
- Affiliated Hospital of Jiangnan University, Wuxi 214122, China
| | - Siyuan Cui
- Jiangnan University Medical Center, Wuxi 214002, China
| | - Jiayu Li
- Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
| | - Xianlong Ye
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Zhe Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
| | - Tingting Zhang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
| | - Xuan Jiang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
| | - Yulin Kong
- Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
| | - Xin Chen
- Jiangnan University Medical Center, Wuxi 214002, China
| | - Yong Q. Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
| | - Shenglong Zhu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
- Jiangnan University Medical Center, Wuxi 214002, China
| |
Collapse
|
15
|
Cazarin J, Altman BJ. Chewing the fat for good health: ACSM3 deficiency exacerbates metabolic syndrome. EMBO J 2024; 43:481-483. [PMID: 38263332 PMCID: PMC10897420 DOI: 10.1038/s44318-024-00037-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 01/25/2024] Open
Abstract
Recent work identifies mitochondrial acyl-CoA synthetase ACSM3 as a guardian of hepatic lipid processing and metabolic health in mice and patients.
Collapse
Affiliation(s)
- Juliana Cazarin
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Brian J Altman
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.
- Member, Catalysts Program, The EMBO Journal, EMBO, Heidelberg, Germany.
| |
Collapse
|
16
|
Hou L, Geng Z, Yuan Z, Shi X, Wang C, Chen F, Li H, Xue F. MRSL: a causal network pruning algorithm based on GWAS summary data. Brief Bioinform 2024; 25:bbae086. [PMID: 38487847 PMCID: PMC10940843 DOI: 10.1093/bib/bbae086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 02/01/2024] [Accepted: 02/15/2024] [Indexed: 03/18/2024] Open
Abstract
Causal discovery is a powerful tool to disclose underlying structures by analyzing purely observational data. Genetic variants can provide useful complementary information for structure learning. Recently, Mendelian randomization (MR) studies have provided abundant marginal causal relationships of traits. Here, we propose a causal network pruning algorithm MRSL (MR-based structure learning algorithm) based on these marginal causal relationships. MRSL combines the graph theory with multivariable MR to learn the conditional causal structure using only genome-wide association analyses (GWAS) summary statistics. Specifically, MRSL utilizes topological sorting to improve the precision of structure learning. It proposes MR-separation instead of d-separation and three candidates of sufficient separating set for MR-separation. The results of simulations revealed that MRSL had up to 2-fold higher F1 score and 100 times faster computing time than other eight competitive methods. Furthermore, we applied MRSL to 26 biomarkers and 44 International Classification of Diseases 10 (ICD10)-defined diseases using GWAS summary data from UK Biobank. The results cover most of the expected causal links that have biological interpretations and several new links supported by clinical case reports or previous observational literatures.
Collapse
Affiliation(s)
- Lei Hou
- Beijing International Center for Mathematical Research, Peking University, Beijing, People’s Republic of China, 100871
| | - Zhi Geng
- School of Mathematics and Statistics, Beijing Technology and Business University, Beijing, People’s Republic of China, 100048
| | - Zhongshang Yuan
- Department of Epidemiology and Health Statistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China, 250000
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China, 250000
| | - Xu Shi
- Department of Biostatistics, University of Michigan, Ann Arbor, USA
| | - Chuan Wang
- Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China, 250000
| | - Feng Chen
- School of Public Health, Nanjing Medical University, Nanjing, China, 211166
| | - Hongkai Li
- Department of Epidemiology and Health Statistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China, 250000
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China, 250000
| | - Fuzhong Xue
- Department of Epidemiology and Health Statistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China, 250000
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China, 250000
- Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China, 250000
| |
Collapse
|
17
|
Chávez E, Aparicio-Cadena AR, Velasco-Loyden G, Lozano-Rosas MG, Domínguez-López M, Cancino-Bello A, Torres N, Tovar AR, Cabrera-Aguilar A, Chagoya-de Sánchez V. An adenosine derivative prevents the alterations observed in metabolic syndrome in a rat model induced by a rich high-fat diet and sucrose supplementation. PLoS One 2023; 18:e0292448. [PMID: 37796781 PMCID: PMC10553329 DOI: 10.1371/journal.pone.0292448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 09/19/2023] [Indexed: 10/07/2023] Open
Abstract
Metabolic syndrome is a multifactorial disease with high prevalence worldwide. It is related to cardiovascular disease, diabetes, and obesity. Approximately 80% of patients with metabolic syndrome have some degree of fatty liver disease. An adenosine derivative (IFC-305) has been shown to exert protective effects in models of liver damage as well as on elements involved in central metabolism; therefore, here, we evaluated the effect of IFC-305 in an experimental model of metabolic syndrome in rats induced by a high-fat diet and 10% sucrose in drinking water for 18 weeks. We also determined changes in fatty acid uptake in the Huh-7 cell line. In the experimental model, increases in body mass, serum triglycerides and proinflammatory cytokines were induced in rats, and the adenosine derivative significantly prevented these changes. Interestingly, IFC-305 prevented alterations in glucose and insulin tolerance, enabling the regulation of glucose levels in the same way as in the control group. Histologically, the alterations, including mitochondrial morphological changes, observed in response to the high-fat diet were prevented by administration of the adenosine derivative. This compound exerted protective effects against metabolic syndrome, likely due to its action in metabolic regulation, such as in the regulation of glucose blood levels and hepatocyte fatty acid uptake.
Collapse
Affiliation(s)
- Enrique Chávez
- Instituto de Fisiología Celular, Departamento de Biología Celular y del Desarrollo, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alejandro Rusbel Aparicio-Cadena
- Instituto de Fisiología Celular, Departamento de Biología Celular y del Desarrollo, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gabriela Velasco-Loyden
- Instituto de Fisiología Celular, Departamento de Biología Celular y del Desarrollo, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - María Guadalupe Lozano-Rosas
- Instituto de Fisiología Celular, Departamento de Biología Celular y del Desarrollo, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Mariana Domínguez-López
- Instituto de Fisiología Celular, Departamento de Biología Celular y del Desarrollo, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Amairani Cancino-Bello
- Instituto de Fisiología Celular, Departamento de Biología Celular y del Desarrollo, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Nimbe Torres
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City, Mexico
| | - Armando R. Tovar
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City, Mexico
| | - Alejandro Cabrera-Aguilar
- Instituto de Fisiología Celular, Departamento de Biología Celular y del Desarrollo, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Victoria Chagoya-de Sánchez
- Instituto de Fisiología Celular, Departamento de Biología Celular y del Desarrollo, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
18
|
Duan QY, Zhu YX, Jia HR, Wang SH, Wu FG. Nanogels: Synthesis, properties, and recent biomedical applications. PROGRESS IN MATERIALS SCIENCE 2023; 139:101167. [DOI: 10.1016/j.pmatsci.2023.101167] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
19
|
Alanazi AS, Rasheed S, Rehman K, Mallhi TH, Akash MSH, Alotaibi NH, Alzarea AI, Tanveer N, Khan YH. Biochemical association of regulatory variant of KLF14 genotype in the pathogenesis of cardiodiabetic patients. Front Endocrinol (Lausanne) 2023; 14:1176166. [PMID: 37351102 PMCID: PMC10282989 DOI: 10.3389/fendo.2023.1176166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/18/2023] [Indexed: 06/24/2023] Open
Abstract
Background and purpose The study focuses on examining the relationship between a single nucleotide polymorphism (SNP) in KLF14 rs4731702 and risk of type 2 diabetes mellitus (T2DM) and dyslipidemia in different ethnic populations. The purpose of this study was to evaluate the association between KLF14 rs4731702 and serum lipid profile and to determine the frequency distribution of KLF14 rs4731702 among T2DM and cardiometabolic patients. Methods A total of 300 volunteers were recruited, consisting of three groups: 100 healthy individuals, 100 individuals diagnosed with T2DM, and 100 individuals diagnosed with cardiometabolic disorders. Biochemical analysis of blood samples was conducted to assess various biomarkers related to glycemic control and lipid profile. This involved measuring levels of glucose, triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and ApoA1. Genotyping analysis was performed to investigate KLF14 rs4731702 polymorphism. The Tetra ARMS-PCR method was employed for genotyping analysis. Results The results of biochemical profiling revealed a significant association between altered glycemic biomarkers and lipid profile in diseased patients compared to healthy participants. The frequencies of KLF14 rs4731702 alleles and genotypes were compared between the control group and T2DM group. A statistically significant difference was observed, indicating a potential association between KLF14 rs4731702 and T2DM. In the dominant inheritance model of KLF14 rs4731702 SNP, a statistically significant difference [odds ratio (95% confidence interval)] of 0.56 (0.34 -0.96) was found between the control and T2DM subjects. This suggests that the presence of certain genotypes influences the risk of T2DM. In T2DM patients, individuals carrying the C allele exhibited compromised insulin sensitivity, decreased HDL-C and ApoA1 levels, and increased serum glucose, TG, and LDL-C concentrations. Conversely, TT genotype carriers demonstrated increased levels of HDL-C and ApoA1, lower insulin resistance, serum glucose, LDL-C, and TG levels. Conclusion The study's findings indicate that dyslipidemia in T2DM patients is associated with reduced KLF14 functionality due to CC and CT genotypes, leading to insulin resistance and an increased risk of cardiovascular diseases. Additionally, risk of KLF14 rs4731702 polymorphism was found to increase with age and was more prevalent in female than in male individuals. These insights contribute to understanding genetic factors influencing the development and progression of T2DM and dyslipidemia in different ethnic populations.
Collapse
Affiliation(s)
- Abdullah Salah Alanazi
- Department of Clinical Pharmacy, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
- Health Sciences Research Unit, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Sumbal Rasheed
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad, Pakistan
| | - Kanwal Rehman
- Department of Pharmacy, The Women University, Multan, Pakistan
| | - Tauqeer Hussain Mallhi
- Department of Clinical Pharmacy, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | | | - Nasser Hadal Alotaibi
- Department of Clinical Pharmacy, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Abdulaziz Ibrahim Alzarea
- Department of Clinical Pharmacy, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Nida Tanveer
- Institute of Molecular Cardiology, University of Louisville, Louisville, KY, United States
| | - Yusra Habib Khan
- Department of Clinical Pharmacy, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| |
Collapse
|
20
|
Yang Y, Li Q, Long Y, Yuan J, Zha Y. Associations of metabolic syndrome, its severity with cognitive impairment among hemodialysis patients. Diabetol Metab Syndr 2023; 15:108. [PMID: 37221557 DOI: 10.1186/s13098-023-01080-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/08/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND In the general population, metabolic syndrome (MetS) is associated with increased risk of cognitive impairment, including global and specific cognitive domains. These associations are not well studied in patients undergoing hemodialysis and were the focus of the current investigation. METHODS In this multicenter cross-sectional study, 5492 adult hemodialysis patients (3351 men; mean age: 54.4 ± 15.2 years) treated in twenty-two dialysis centers of Guizhou, China were included. The Mini-Mental State Examination (MMSE) was utilized to assess mild cognitive impairment (MCI). MetS was diagnosed with abdominal obesity, hypertension, hyperglycemia, and dyslipidemia. Multivariate logistic and linear regression models were used to examine the associations of MetS, its components, and metabolic scores with the risk of MCI. Restricted cubic spline analyses were performed to explore the dose-response associations. RESULTS Hemodialysis patients had a high prevalence of MetS (62.3%) and MCI (34.3%). MetS was positively associated with MCI risk with adjusted ORs of 1.22 [95% confidence interval (CI) 1.08-1.37, P = 0.001]. Compared to no MetS, adjusted ORs for MCI were 2.03 (95% CI 1.04-3.98) for 22.51 (95% CI 1.28-4.90) for 3, 2.35 (95% CI 1.20-4.62) for 4, and 2.94 (95% CI 1.48-5.84) for 5 components. Metabolic syndrome score, cardiometabolic index, and metabolic syndrome severity score were associated with increased risk of MCI. Further analysis showed that MetS was negatively associated with MMSE score, orientation, registration, recall and language (P < 0.05). Significant interaction effect of sex (P for interaction = 0.012) on the MetS-MCI was observed. CONCLUSION Metabolic syndrome was associated with MCI in hemodialysis patients in a positive dose-response effect.
Collapse
Affiliation(s)
- Yuqi Yang
- Deparment of Nephrology, Guizhou Provincial People's Hospital, Guiyang, 550002, China
- NHC Key Laboratory of Pulmonary Immune-Related Diseases, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Qian Li
- Deparment of Nephrology, Guizhou Provincial People's Hospital, Guiyang, 550002, China
- NHC Key Laboratory of Pulmonary Immune-Related Diseases, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Yanjun Long
- Deparment of Nephrology, Guizhou Provincial People's Hospital, Guiyang, 550002, China
- NHC Key Laboratory of Pulmonary Immune-Related Diseases, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Jing Yuan
- Deparment of Nephrology, Guizhou Provincial People's Hospital, Guiyang, 550002, China
- NHC Key Laboratory of Pulmonary Immune-Related Diseases, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Yan Zha
- Deparment of Nephrology, Guizhou Provincial People's Hospital, Guiyang, 550002, China.
- NHC Key Laboratory of Pulmonary Immune-Related Diseases, Guizhou Provincial People's Hospital, Guiyang, 550002, China.
| |
Collapse
|
21
|
Talarico CHZ, Alves ES, Dos Santos JDM, Sucupira FGS, Araujo LCC, Camporez JP. Progesterone Has No Impact on the Beneficial Effects of Estradiol Treatment in High-Fat-Fed Ovariectomized Mice. Curr Issues Mol Biol 2023; 45:3965-3976. [PMID: 37232722 DOI: 10.3390/cimb45050253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023] Open
Abstract
In recent decades, clinical and experimental studies have revealed that estradiol contributes enormously to glycemic homeostasis. However, the same consensus does not exist in women during menopause who undergo replacement with progesterone or conjugated estradiol and progesterone. Since most hormone replacement treatments in menopausal women are performed with estradiol (E2) and progesterone (P4) combined, this work aimed to investigate the effects of progesterone on energy metabolism and insulin resistance in an experimental model of menopause (ovariectomized female mice-OVX mice) fed a high-fat diet (HFD). OVX mice were treated with E2 or P4 (or both combined). OVX mice treated with E2 alone or combined with P4 displayed reduced body weight after six weeks of HFD feeding compared to OVX mice and OVX mice treated with P4 alone. These data were associated with improved glucose tolerance and insulin sensitivity in OVX mice treated with E2 (alone or combined with P4) compared to OVX and P4-treated mice. Additionally, E2 treatment (alone or combined with P4) reduced both hepatic and muscle triglyceride content compared with OVX control mice and OVX + P4 mice. There were no differences between groups regarding hepatic enzymes in plasma and inflammatory markers. Therefore, our results revealed that progesterone replacement alone does not seem to influence glucose homeostasis and ectopic lipid accumulation in OVX mice. These results will help expand knowledge about hormone replacement in postmenopausal women associated with metabolic syndrome and non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Carlos H Z Talarico
- Department of Physiology, Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirão Preto 14049-900, Brazil
| | - Ester S Alves
- Department of Physiology, Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirão Preto 14049-900, Brazil
| | - Jessica D M Dos Santos
- Department of Physiology, Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirão Preto 14049-900, Brazil
| | - Felipe G S Sucupira
- Department of Physiology, Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirão Preto 14049-900, Brazil
| | - Layanne C C Araujo
- Department of Physiology, Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirão Preto 14049-900, Brazil
| | - João Paulo Camporez
- Department of Physiology, Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirão Preto 14049-900, Brazil
| |
Collapse
|
22
|
Pietropaoli D, Altamura S, Ortu E, Guerrini L, Pizarro TT, Ferri C, Del Pinto R. Association between metabolic syndrome components and gingival bleeding is women-specific: a nested cross-sectional study. J Transl Med 2023; 21:252. [PMID: 37038173 PMCID: PMC10088168 DOI: 10.1186/s12967-023-04072-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 03/21/2023] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND Metabolic syndrome (MetS) is a cluster of atherosclerotic risk factors that increases cardiovascular risk. MetS has been associated with periodontitis, but the contribution of single MetS components and any possible sexual dimorphism in this relation remain undetermined. METHODS Using the third National Health and Nutrition Examination Survey (NHANES III), we performed a nested cross-sectional study to test whether individuals aged > 30 years undergoing periodontal evaluation (population) exposed to ≥ 1 MetS component (exposure) were at increased risk of bleeding/non-bleeding periodontal diseases (outcome) compared to nonexposed individuals, propensity score matched for sex, age, race/ethnicity, and income (controls). The association between MetS components combinations and periodontal diseases was explored overall and across subgroups by sex and smoking. Periodontal health status prediction based on MetS components was assessed. RESULTS In total, 2258 individuals (n. 1129/group) with nested clinical-demographic features were analyzed. Exposure was associated with gingival bleeding (+ 18% risk for every unitary increase in MetS components, and triple risk when all five were combined), but not with stable periodontitis; the association was specific for women, but not for men, irrespective of smoking. The only MetS feature with significant association in men was high BP with periodontitis. CRP levels significantly increased from health to disease only among exposed women. MetS components did not substantially improve the prediction of bleeding/non-bleeding periodontal disease. CONCLUSION The observed women-specific association of gingival bleeding with single and combined MetS components advances gender and precision periodontology. Further research is needed to validate and expand these findings.
Collapse
Affiliation(s)
- Davide Pietropaoli
- Department of Clinical Medicine, Public Health, Life and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
- Center of Oral Diseases, Prevention and Translational Research-Dental Clinic, L'Aquila, Italy
- Oral Diseases and Systemic Interactions Study Group (ODISSY Group), L'Aquila, Italy
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Serena Altamura
- Department of Clinical Medicine, Public Health, Life and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
- Center of Oral Diseases, Prevention and Translational Research-Dental Clinic, L'Aquila, Italy
- Oral Diseases and Systemic Interactions Study Group (ODISSY Group), L'Aquila, Italy
| | - Eleonora Ortu
- Department of Clinical Medicine, Public Health, Life and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
- Center of Oral Diseases, Prevention and Translational Research-Dental Clinic, L'Aquila, Italy
| | - Luca Guerrini
- Department of Clinical Medicine, Public Health, Life and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
- Center of Oral Diseases, Prevention and Translational Research-Dental Clinic, L'Aquila, Italy
| | - Theresa T Pizarro
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Claudio Ferri
- Department of Clinical Medicine, Public Health, Life and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
- Oral Diseases and Systemic Interactions Study Group (ODISSY Group), L'Aquila, Italy
- Unit of Internal Medicine and Nephrology, Center for Hypertension and Cardiovascular Prevention, San Salvatore Hospital, L'Aquila, Italy
| | - Rita Del Pinto
- Department of Clinical Medicine, Public Health, Life and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.
- Oral Diseases and Systemic Interactions Study Group (ODISSY Group), L'Aquila, Italy.
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
- Unit of Internal Medicine and Nephrology, Center for Hypertension and Cardiovascular Prevention, San Salvatore Hospital, L'Aquila, Italy.
| |
Collapse
|
23
|
Jurrjens AW, Seldin MM, Giles C, Meikle PJ, Drew BG, Calkin AC. The potential of integrating human and mouse discovery platforms to advance our understanding of cardiometabolic diseases. eLife 2023; 12:e86139. [PMID: 37000167 PMCID: PMC10065800 DOI: 10.7554/elife.86139] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/15/2023] [Indexed: 04/01/2023] Open
Abstract
Cardiometabolic diseases encompass a range of interrelated conditions that arise from underlying metabolic perturbations precipitated by genetic, environmental, and lifestyle factors. While obesity, dyslipidaemia, smoking, and insulin resistance are major risk factors for cardiometabolic diseases, individuals still present in the absence of such traditional risk factors, making it difficult to determine those at greatest risk of disease. Thus, it is crucial to elucidate the genetic, environmental, and molecular underpinnings to better understand, diagnose, and treat cardiometabolic diseases. Much of this information can be garnered using systems genetics, which takes population-based approaches to investigate how genetic variance contributes to complex traits. Despite the important advances made by human genome-wide association studies (GWAS) in this space, corroboration of these findings has been hampered by limitations including the inability to control environmental influence, limited access to pertinent metabolic tissues, and often, poor classification of diseases or phenotypes. A complementary approach to human GWAS is the utilisation of model systems such as genetically diverse mouse panels to study natural genetic and phenotypic variation in a controlled environment. Here, we review mouse genetic reference panels and the opportunities they provide for the study of cardiometabolic diseases and related traits. We discuss how the post-GWAS era has prompted a shift in focus from discovery of novel genetic variants to understanding gene function. Finally, we highlight key advantages and challenges of integrating complementary genetic and multi-omics data from human and mouse populations to advance biological discovery.
Collapse
Affiliation(s)
- Aaron W Jurrjens
- Baker Heart and Diabetes Institute, Melbourne, Australia
- Central Clinical School, Monash University, Melbourne, Australia
| | - Marcus M Seldin
- Department of Biological Chemistry and Center for Epigenetics and Metabolism, University of California, Irvine, Irvine, United States
| | - Corey Giles
- Baker Heart and Diabetes Institute, Melbourne, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Australia
- Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Bundoora, Australia
| | - Peter J Meikle
- Baker Heart and Diabetes Institute, Melbourne, Australia
- Central Clinical School, Monash University, Melbourne, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Australia
- Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Bundoora, Australia
| | - Brian G Drew
- Baker Heart and Diabetes Institute, Melbourne, Australia
- Central Clinical School, Monash University, Melbourne, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Australia
| | - Anna C Calkin
- Baker Heart and Diabetes Institute, Melbourne, Australia
- Central Clinical School, Monash University, Melbourne, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Australia
| |
Collapse
|
24
|
Luo SS, Zhu H, Huang HF, Ding GL. Sex differences in glycolipidic disorders after exposure to maternal hyperglycemia during early development. J Endocrinol Invest 2023:10.1007/s40618-023-02069-5. [PMID: 36976483 DOI: 10.1007/s40618-023-02069-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 03/10/2023] [Indexed: 03/29/2023]
Abstract
PURPOSE The aim of this review was to summarize sex differences in glycolipid metabolic phenotypes of human and animal models after exposure to maternal hyperglycemia and overview the underlying mechanisms, providing a new perspective on the maternal hyperglycemia-triggered risk of glycolipidic disorders in offspring. METHODS A comprehensive literature search within PubMed was performed. Selected publications related to studies on offspring exposed to maternal hyperglycemia investigating the sex differences of glycolipid metabolism were reviewed. RESULTS Maternal hyperglycemia increases the risk of glycolipid metabolic disorders in offspring, such as obesity, glucose intolerance and diabetes. Whether with or without intervention, metabolic phenotypes have been shown to exhibit sex differences between male and female offspring in response to maternal hyperglycemia, which may be related to gonadal hormones, organic intrinsic differences, placenta, and epigenetic modifications. CONCLUSION Sex may play a role in the different incidences and pathogenesis of abnormal glycolipid metabolism. More studies investigating both sexes are needed to understand how and why environmental conditions in early life affect long-term health between male and female individuals.
Collapse
Affiliation(s)
- S-S Luo
- School of Medicine, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - H Zhu
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - H-F Huang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - G-L Ding
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China.
| |
Collapse
|
25
|
McClelland TJ, Fowler AJ, Davies TW, Pearse R, Prowle J, Puthucheary Z. Can pioglitazone be used for optimization of nutrition in critical illness? A systematic review. JPEN J Parenter Enteral Nutr 2023; 47:459-475. [PMID: 36700419 DOI: 10.1002/jpen.2481] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/13/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023]
Abstract
BACKGROUND Skeletal muscle wasting is a determinant of physical disability in survivors of critical illness. Intramuscular bioenergetic failure, altered substrate metabolim, and inflammation are likely underpinning mechanisms. We examined the effect of pioglitazone, a peroxisome proliferator-activated receptor γ agonist, on muscle-related outcomes in adults. METHODS We included randomized controlled trials in which pioglitazone was administered (no dose/dosage restrictions) and muscle-related outcomes were reported. We searched MEDLINE, CENTRAL, EMBASE, CINAHL, and trial registries. Risk of bias was assessed using RoB 2. Primary outcomes were physical function and symptoms, muscle mass and function, or body composition and muscular compositional change. Secondary outcomes included muscle insulin sensitivity, mitochondrial effects, and intramuscular inflammation. RESULTS Fourteen studies over 19 publications (n = 474 patients) were included. Lean body mass was unaffected in three studies (n = 126) and increased by 1.8-1.92 kg in two studies (P = 0.02 and 0.003, respectively; n = 48). Pioglitazone was associated with increased peripheral insulin sensitivity (+23%-72%, standardized mean difference of 0.97 from trial start point to end point [95% CI, 0.36-1.58; n = 213]). Treatment reduced intramuscular tumor necrosis factor-α (TNF-α) levels (-30%; P = 0.02; n = 29), with mixed effects on serum TNF-α and intramyocellular lipid concentrations. Treatment increased intramuscular markers of adenosine triphosphate (ATP) biosynthesis (ATP5A [+33%, P ≤ 0.05], ETFA [+60%, P ≤ 0.05], and CX6B1 [+ 33%, P = 0.01] [n = 24]), PGC1α and PGC1β messenger RNA expression (P < 0.05; n = 26), and AMPK phosphorylation (+38%, P < 0.05; n = 26). These data have low-quality evidence profiles owing to risk of bias. CONCLUSIONS Pioglitazone therapy increases skeletal muscle insulin sensitivity and can decrease intramuscular inflammation.
Collapse
Affiliation(s)
- Thomas J McClelland
- William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Alexander J Fowler
- William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK.,Adult Critical Care Unit, Royal London Hospital, London, UK
| | - Thomas W Davies
- William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK.,Adult Critical Care Unit, Royal London Hospital, London, UK
| | - Rupert Pearse
- William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK.,Adult Critical Care Unit, Royal London Hospital, London, UK
| | - John Prowle
- William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK.,Adult Critical Care Unit, Royal London Hospital, London, UK
| | - Zudin Puthucheary
- William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK.,Adult Critical Care Unit, Royal London Hospital, London, UK
| |
Collapse
|
26
|
Park Y, Sinn DH, Kim K, Gwak GY. The association of non-alcoholic fatty liver disease between parents and adolescent children. Aliment Pharmacol Ther 2023; 57:245-252. [PMID: 36271616 DOI: 10.1111/apt.17257] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/17/2022] [Accepted: 10/07/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND Data reporting the heritability of non-alcoholic fatty liver disease (NAFLD) are highly variable. AIMS To investigate the association of NAFLD between parents and their adolescent children using a nationwide, population-based cohort. METHODS We analysed 1737 families with both parents and adolescent children aged 12-18 who participated in Korean National Health and Nutrition Examination Surveys (KNHANES) between 2010 and 2019. NAFLD was defined by body mass index and elevated alanine aminotransferase levels in children and by the hepatic steatosis index in parents. RESULTS The prevalence of NAFLD in adolescent children with either parent with NAFLD was higher than that in those without a parent with NAFLD (10.2% vs. 3.1%, p < 0.001). In a model fully adjusted for demographic, nutritional, behavioural and metabolic risk factors, children with either parent with NAFLD had a higher odds ratio (OR) for NAFLD (OR = 1.75, 95% CI: 1.02-3.00) than those without a parent with NAFLD. Compared to those without a parent with NAFLD, the fully adjusted ORs of NAFLD in children with paternal NAFLD, maternal NAFLD and NAFLD in both parents were 1.80 (95% CI: 1.01-3.20), 2.21 (95% CI: 1.11-4.42) and 2.60 (95% CI: 1.03-6.54), respectively. CONCLUSION Adolescent children with a parent with NAFLD were at increased risk of NAFLD; risk was higher when both parents had NAFLD. Further studies are needed to explore the benefit of NAFLD screening in children who have a parent with NAFLD.
Collapse
Affiliation(s)
- Yewan Park
- Department of Internal Medicine, Kyung Hee University Medical Center, Seoul, South Korea.,Department of Digital Health, SAIHST, Sungkyunkwan University, Seoul, South Korea
| | - Dong Hyun Sinn
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Kyunga Kim
- Department of Digital Health, SAIHST, Sungkyunkwan University, Seoul, South Korea.,Statistics and Data Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, South Korea
| | - Geum-Youn Gwak
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| |
Collapse
|
27
|
Franssen WMA, Nieste I, Vandereyt F, Savelberg HHCM, Eijnde BO. A 12-week consumer wearable activity tracker-based intervention reduces sedentary behaviour and improves cardiometabolic health in free-living sedentary adults: a randomised controlled trial. JOURNAL OF ACTIVITY, SEDENTARY AND SLEEP BEHAVIORS 2022; 1:8. [PMID: 40229981 PMCID: PMC11960220 DOI: 10.1186/s44167-022-00007-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/13/2022] [Indexed: 04/16/2025]
Abstract
BACKGROUND Reducing sedentary behaviour significantly improves cardiometabolic health and plays an important role in the prevention and management of cardiometabolic diseases. However, limited effective strategies have been proposed to combat the negative effects of sedentary lifestyles. Although consumer wearable activity trackers (CWATs) can effectively improve physical activity, they were only included as part of a multiple behaviour change technique. In addition, it is not known whether these devices are also effective to reduce sedentary behaviour. Therefore, we aim to investigate the efficacy of a single component CWAT-only intervention and the added value of a multicomponent (CWATs + motivational interviewing) behaviour change intervention to reduce sedentary behaviour and increase physical activity within sedentary adults. METHODS In a three-armed randomised controlled trial, 59 (male/female: 21/38) sedentary adults were randomly allocated to a control group (n = 20), a CWAT-only group (n = 20) or the CWAT + group (CWAT + motivational interviewing; n = 19) for 12 weeks. Physical activity and sedentary behaviour were assessed using the activPAL3™ accelerometer. In addition, anthropometrics, blood pressure, plasma lipids and insulin sensitivity using an oral glucose tolerance test were assessed at baseline and after the 12-week intervention period. RESULTS As compared with the control group, the CWAT + group significantly reduced time spent in sedentary behaviour (- 81 min/day, confidence interval [95%]: [- 151, - 12] min/day) and significantly increased step count (+ 3117 [827, 5406] steps/day), standing time (+ 62 [14, 110] min/day), light intensity PA (+ 28 [5, 50] min/day) and moderate-to-vigorous PA (+ 22 [4, 40] min/day). Body fat mass (- 1.67 [- 3.21, - 0.14] kg), percentage body fat (- 1.5 [- 2.9, - 0.1] %), triglyceride concentration (- 0.31 [- 0.62, - 0.01] mmol/l), the 2 h insulin concentration (- 181 [- 409, - 46] pmol/l), the quantitative insulin sensitivity check index (- 0.022 [- 0.043, - 0.008]) and total area under the curve of insulin (- 6464 [- 26837, - 2735] mmol/l min) were significantly reduced in the CWAT + group, compared to the control group. No significant differences within the CWAT-only group were found. CONCLUSION A 12-week multicomponent CWAT-based intervention (CWAT + motivational interviewing) reduces sedentary time, increases physical activity levels and improves various cardiometabolic health variables in sedentary adults, whereas self-monitoring on itself (CWAT-only group) has no beneficial effects on sedentary time. Trial registration The present study was registered (2018) at clinicaltrials.gov as NCT03853018.
Collapse
Affiliation(s)
- Wouter M A Franssen
- REVAL-Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Hasselt, Belgium.
- SMRC-Sports Medicine Research Center, BIOMED-Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium.
- Department of Nutrition and Movement Sciences, NUTRIM, School for Nutrition and Translation Research Maastricht, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands.
| | - Ine Nieste
- SMRC-Sports Medicine Research Center, BIOMED-Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
- Department of Nutrition and Movement Sciences, NUTRIM, School for Nutrition and Translation Research Maastricht, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Frank Vandereyt
- Department of Cardiology, Virga Jessa Hospital, Heart Centre Hasselt, Hasselt, Belgium
| | - Hans H C M Savelberg
- Department of Nutrition and Movement Sciences, NUTRIM, School for Nutrition and Translation Research Maastricht, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Bert O Eijnde
- SMRC-Sports Medicine Research Center, BIOMED-Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
| |
Collapse
|
28
|
van Walree ES, Jansen IE, Bell NY, Savage JE, de Leeuw C, Nieuwdorp M, van der Sluis S, Posthuma D. Disentangling Genetic Risks for Metabolic Syndrome. Diabetes 2022; 71:2447-2457. [PMID: 35983957 DOI: 10.2337/db22-0478] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022]
Abstract
A quarter of the world's population is estimated to meet the criteria for metabolic syndrome (MetS), a cluster of cardiometabolic risk factors that promote development of coronary artery disease and type 2 diabetes, leading to increased risk of premature death and significant health costs. In this study we investigate whether the genetics associated with MetS components mirror their phenotypic clustering. A multivariate approach that leverages genetic correlations of fasting glucose, HDL cholesterol, systolic blood pressure, triglycerides, and waist circumference was used, which revealed that these genetic correlations are best captured by a genetic one factor model. The common genetic factor genome-wide association study (GWAS) detects 235 associated loci, 174 more than the largest GWAS on MetS to date. Of these loci, 53 (22.5%) overlap with loci identified for two or more MetS components, indicating that MetS is a complex, heterogeneous disorder. Associated loci harbor genes that show increased expression in the brain, especially in GABAergic and dopaminergic neurons. A polygenic risk score drafted from the MetS factor GWAS predicts 5.9% of the variance in MetS. These results provide mechanistic insights into the genetics of MetS and suggestions for drug targets, especially fenofibrate, which has the promise of tackling multiple MetS components.
Collapse
Affiliation(s)
- Eva S van Walree
- Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU Amsterdam, Amsterdam, the Netherlands
| | - Iris E Jansen
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU Amsterdam, Amsterdam, the Netherlands
| | - Nathaniel Y Bell
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU Amsterdam, Amsterdam, the Netherlands
| | - Jeanne E Savage
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU Amsterdam, Amsterdam, the Netherlands
| | - Christiaan de Leeuw
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU Amsterdam, Amsterdam, the Netherlands
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Sophie van der Sluis
- Department of Child and Adolescent Psychology and Psychiatry, section Complex Trait Genetics, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, the Netherlands
| | - Danielle Posthuma
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU Amsterdam, Amsterdam, the Netherlands
- Department of Child and Adolescent Psychology and Psychiatry, section Complex Trait Genetics, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
29
|
Sergesketter AR, Geng Y, Shammas RL, Denis GV, Bachelder R, Hollenbeck ST. The Association Between Metabolic Derangement and Wound Complications in Elective Plastic Surgery. J Surg Res 2022; 278:39-48. [PMID: 35588573 PMCID: PMC9329200 DOI: 10.1016/j.jss.2022.03.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 02/17/2022] [Accepted: 03/19/2022] [Indexed: 12/13/2022]
Abstract
INTRODUCTION The incidence of metabolically unhealthy obesity is rising nationally. In this study, we compare wound and overall complications between metabolically unhealthy obese and healthy patients undergoing elective plastic surgery and model how operative time influences a complication risk. METHODS Patients undergoing elective breast and body plastic surgery procedures in the 2009-2019 National Surgical Quality Improvement Program (NSQIP) dataset were identified. Complications were compared between metabolically unhealthy obese (body mass index [BMI] > 30 with diabetes and/or hypertension) versus metabolically healthy obese patients (BMI > 30 without diabetes or hypertension). Logistic regression was used to model the probability of wound complications across operative times stratified by metabolic status. RESULTS Of 139,352 patients, 13.4% (n = 18,663) had metabolically unhealthy obesity and 23.8% (n = 33,135) had metabolically healthy obesity. Compared to metabolically healthy patients, metabolically unhealthy patients had higher incidence of wound complications (6.9% versus 5.6%; P < 0.001) and adverse events (12.4% versus 9.6%; P < 0.001), in addition to higher 30-d readmission, returns to the operating room, and length of stay (all P < 0.001). After adjustment, BMI (Odds ratio [OR] 7.86), hypertension (OR 1.15), and diabetes (OR 1.25) were independent risk factors for wound complications (all P < 0.001). Among metabolically unhealthy patients, the operative time was log-linear with a wound complication risk (OR 1.21; P < 0.001). CONCLUSIONS Diabetes and hypertension are additive risk factors with obesity for wound complications in elective plastic surgery. Among patients with metabolically unhealthy obesity, a risk of wound complications increases logarithmically with operative time. This distinction with regard to metabolic state might explain the unclear impact of obesity on surgical outcomes within existing surgical literature.
Collapse
Affiliation(s)
- Amanda R Sergesketter
- Division of Plastic, Oral, and Maxillofacial Surgery, Duke University, Durham, North Carolina
| | | | - Ronnie L Shammas
- Division of Plastic, Oral, and Maxillofacial Surgery, Duke University, Durham, North Carolina
| | - Gerald V Denis
- Section of Hematology/Oncology, Boston University School of Medicine, Boston, Massachusetts
| | - Robin Bachelder
- Division of Plastic, Oral, and Maxillofacial Surgery, Duke University, Durham, North Carolina
| | - Scott T Hollenbeck
- Division of Plastic, Oral, and Maxillofacial Surgery, Duke University, Durham, North Carolina.
| |
Collapse
|
30
|
Majaj M, Weckbach LT. Midkine-A novel player in cardiovascular diseases. Front Cardiovasc Med 2022; 9:1003104. [PMID: 36204583 PMCID: PMC9530663 DOI: 10.3389/fcvm.2022.1003104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/30/2022] [Indexed: 11/18/2022] Open
Abstract
Midkine (MK) is a 13-kDa heparin-binding cytokine and growth factor with anti-apoptotic, pro-angiogenic, pro-inflammatory and anti-infective functions, that enable it to partake in a series of physiological and pathophysiological processes. In the past, research revolving around MK has concentrated on its roles in reproduction and development, tissue protection and repair as well as inflammatory and malignant processes. In the recent few years, MK's implication in a wide scope of cardiovascular diseases has been rigorously investigated. Nonetheless, there is still no broadly accepted consensus on whether MK exerts generally detrimental or favorable effects in cardiovascular diseases. The truth probably resides somewhere in-between and depends on the underlying physiological or pathophysiological condition. It is therefore crucial to thoroughly examine and appraise MK's participation in cardiovascular diseases. In this review, we introduce the MK gene and protein, its multiple receptors and signaling pathways along with its expression in the vascular system and its most substantial functions in cardiovascular biology. Further, we recapitulate the current evidence of MK's expression in cardiovascular diseases, addressing the various sources and modes of MK expression. Moreover, we summarize the most significant implications of MK in cardiovascular diseases with particular emphasis on MK's advantageous and injurious functions, highlighting its ample diagnostic and therapeutic potential. Also, we focus on conflicting roles of MK in a number of cardiovascular diseases and try to provide some clarity and guidance to MK's multifaceted roles. In summary, we aim to pave the way for MK-based diagnostics and therapies that could present promising tools in the diagnosis and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Marina Majaj
- Walter Brendel Centre for Experimental Medicine, Biomedical Centre, Institute for Cardiovascular Physiology und Pathophysiology, Ludwig-Maximilians-University Munich, Munich, Germany
- Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
| | - Ludwig T. Weckbach
- Walter Brendel Centre for Experimental Medicine, Biomedical Centre, Institute for Cardiovascular Physiology und Pathophysiology, Ludwig-Maximilians-University Munich, Munich, Germany
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Munich, Germany
- Deutsches Zentrum für Herz-Kreislauf-Forschung e. V, Berlin, Germany
| |
Collapse
|
31
|
Sun W, Zhang T, Hu S, Tang Q, Long X, Yang X, Gun S, Chen L. Chromatin accessibility landscape of stromal subpopulations reveals distinct metabolic and inflammatory features of porcine subcutaneous and visceral adipose tissue. PeerJ 2022; 10:e13250. [PMID: 35646489 PMCID: PMC9138157 DOI: 10.7717/peerj.13250] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/21/2022] [Indexed: 01/13/2023] Open
Abstract
Background Fat accumulation in visceral adipose tissue (VAT) confers increased risk for metabolic disorders of obesity, whereas accumulation of subcutaneous adipose tissue (SAT) is associated with lower risk and may be protective. Previous studies have shed light on the gene expression profile differences between SAT and VAT; however, the chromatin accessibility landscape differences and how the cis-regulatory elements govern gene expression changes between SAT and VAT are unknown. Methods Pig were used to characterize the differences in chromatin accessibility between the two adipose depots-derived stromal vascular fractions (SVFs) using DNase-sequencing (DNase-seq). Using integrated data from DNase-seq, H3K27ac ChIP-sequencing (ChIP-seq), and RNA-sequencing (RNA-seq), we investigated how the regulatory locus complexity regulated gene expression changes between SAT and VAT and the possible impact that these changes may have on the different biological functions of these two adipose depots. Results SVFs form SAT and VAT (S-SVF and V-SVF) have differential chromatin accessibility landscapes. The differential DNase I hypersensitive site (DHS)-associated genes, which indicate dynamic chromatin accessibility, were mainly involved in metabolic processes and inflammatory responses. Additionally, the Krüppel-like factor family of transcription factors were enriched in the differential DHSs. Furthermore, the chromatin accessibility data were highly associated with differential gene expression as indicated using H3K27ac ChIP-seq and RNA-seq data, supporting the validity of the differential gene expression determined using DNase-seq. Moreover, by combining epigenetic and transcriptomic data, we identified two candidate genes, NR1D1 and CRYM, could be crucial to regulate distinct metabolic and inflammatory characteristics between SAT and VAT. Together, these results uncovered differences in the transcription regulatory network and enriched the mechanistic understanding of the different biological functions between SAT and VAT.
Collapse
Affiliation(s)
- Wenyang Sun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China,Key Laboratory of Pig Industry Sciences (Ministry of Agriculture), Chongqing Academy of Animal Science, Chongqing, China
| | - Tinghuan Zhang
- Key Laboratory of Pig Industry Sciences (Ministry of Agriculture), Chongqing Academy of Animal Science, Chongqing, China
| | - Silu Hu
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qianzi Tang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xi Long
- Key Laboratory of Pig Industry Sciences (Ministry of Agriculture), Chongqing Academy of Animal Science, Chongqing, China
| | - Xu Yang
- College of Nursing, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Shuangbao Gun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Lei Chen
- Key Laboratory of Pig Industry Sciences (Ministry of Agriculture), Chongqing Academy of Animal Science, Chongqing, China
| |
Collapse
|
32
|
Pandita D, Pandita A. Omics Technology for the Promotion of Nutraceuticals and Functional Foods. Front Physiol 2022; 13:817247. [PMID: 35634143 PMCID: PMC9136416 DOI: 10.3389/fphys.2022.817247] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/23/2022] [Indexed: 12/24/2022] Open
Abstract
The influence of nutrition and environment on human health has been known for ages. Phytonutrients (7,000 flavonoids and phenolic compounds; 600 carotenoids) and pro-health nutrients—nutraceuticals positively add to human health and may prevent disorders such as cancer, diabetes, obesity, cardiovascular diseases, and dementia. Plant-derived bioactive metabolites have acquired an imperative function in human diet and nutrition. Natural phytochemicals affect genome expression (nutrigenomics and transcriptomics) and signaling pathways and act as epigenetic modulators of the epigenome (nutri epigenomics). Transcriptomics, proteomics, epigenomics, miRNomics, and metabolomics are some of the main platforms of complete omics analyses, finding use in functional food and nutraceuticals. Now the recent advancement in the integrated omics approach, which is an amalgamation of multiple omics platforms, is practiced comprehensively to comprehend food functionality in food science.
Collapse
Affiliation(s)
- Deepu Pandita
- Government Department of School Education, Jammu, India
- *Correspondence: Deepu Pandita,
| | | |
Collapse
|
33
|
DHPPA, a major plasma alkylresorcinol metabolite reflecting whole-grain wheat and rye intake, and risk of metabolic syndrome: a case-control study. Eur J Nutr 2022; 61:3247-3254. [PMID: 35459972 DOI: 10.1007/s00394-022-02880-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/22/2022] [Indexed: 11/04/2022]
Abstract
PURPOSE Whole-grain intake assessed through self-reported methods has been suggested to be inversely associated with the metabolic syndrome (MetS) risk in epidemiological studies. However, few studies have evaluated the association between whole-grain intake and MetS risk using objective biomarkers of whole-grain intake. The aim of this study was to examine the association between plasma 3-(3,5-Dihydroxyphenyl)-1-propanoic acid (DHPPA), a biomarker of whole-grain wheat and rye intake, and MetS risk in a Chinese population. METHODS A case-control study of 667 MetS cases and 667 matched controls was conducted based on baseline data of the Tongji-Ezhou Cohort study. Plasma DHPPA concentrations were assessed by high-performance liquid chromatography-tandem mass spectrometry. The MetS was defined based on criteria set by the Joint Interim Statement. RESULTS Plasma DHPPA was inversely associated with MetS risk. After adjustment for age, sex, body mass index, smoking status, alcohol drinking status, physical activity and education level, the odds ratios (ORs) for MetS across increasing quartiles of plasma DHPPA concentrations were 1 (referent), 0.86 (0.58-1.26), 0.77 (0.52-1.15), and 0.59 (0.39-0.89), respectively. In addition, the cubic spline analysis revealed a potential nonlinear association between plasma DHPPA and MetS, with a steep reduction in the risk at the lower range of plasma DHPPA concentration. CONCLUSION Our study revealed that individuals with higher DHPPA concentrations in plasma had lower odds of MetS compared to those with lower DHPPA concentrations in plasma. Our findings provided further evidence to support health benefits of whole grain consumption.
Collapse
|
34
|
Lustig RH, Collier D, Kassotis C, Roepke TA, Ji Kim M, Blanc E, Barouki R, Bansal A, Cave MC, Chatterjee S, Choudhury M, Gilbertson M, Lagadic-Gossmann D, Howard S, Lind L, Tomlinson CR, Vondracek J, Heindel JJ. Obesity I: Overview and molecular and biochemical mechanisms. Biochem Pharmacol 2022; 199:115012. [PMID: 35393120 PMCID: PMC9050949 DOI: 10.1016/j.bcp.2022.115012] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 02/06/2023]
Abstract
Obesity is a chronic, relapsing condition characterized by excess body fat. Its prevalence has increased globally since the 1970s, and the number of obese and overweight people is now greater than those underweight. Obesity is a multifactorial condition, and as such, many components contribute to its development and pathogenesis. This is the first of three companion reviews that consider obesity. This review focuses on the genetics, viruses, insulin resistance, inflammation, gut microbiome, and circadian rhythms that promote obesity, along with hormones, growth factors, and organs and tissues that control its development. It shows that the regulation of energy balance (intake vs. expenditure) relies on the interplay of a variety of hormones from adipose tissue, gastrointestinal tract, pancreas, liver, and brain. It details how integrating central neurotransmitters and peripheral metabolic signals (e.g., leptin, insulin, ghrelin, peptide YY3-36) is essential for controlling energy homeostasis and feeding behavior. It describes the distinct types of adipocytes and how fat cell development is controlled by hormones and growth factors acting via a variety of receptors, including peroxisome proliferator-activated receptor-gamma, retinoid X, insulin, estrogen, androgen, glucocorticoid, thyroid hormone, liver X, constitutive androstane, pregnane X, farnesoid, and aryl hydrocarbon receptors. Finally, it demonstrates that obesity likely has origins in utero. Understanding these biochemical drivers of adiposity and metabolic dysfunction throughout the life cycle lends plausibility and credence to the "obesogen hypothesis" (i.e., the importance of environmental chemicals that disrupt these receptors to promote adiposity or alter metabolism), elucidated more fully in the two companion reviews.
Collapse
Affiliation(s)
- Robert H Lustig
- Division of Endocrinology, Department of Pediatrics, University of California, San Francisco, CA 94143, United States
| | - David Collier
- Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| | - Christopher Kassotis
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI 48202, United States
| | - Troy A Roepke
- School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ 08901, United States
| | - Min Ji Kim
- Department of Biochemistry and Toxicology, University of Paris, INSERM U1224 (T3S), 75006 Paris, France
| | - Etienne Blanc
- Department of Biochemistry and Toxicology, University of Paris, INSERM U1224 (T3S), 75006 Paris, France
| | - Robert Barouki
- Department of Biochemistry and Toxicology, University of Paris, INSERM U1224 (T3S), 75006 Paris, France
| | - Amita Bansal
- College of Health & Medicine, Australian National University, Canberra, Australia
| | - Matthew C Cave
- Division of Gastroenterology, Hepatology and Nutrition, University of Louisville, Louisville, KY 40402, United States
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, University of South Carolina, Columbia, SC 29208, United States
| | - Mahua Choudhury
- College of Pharmacy, Texas A&M University, College Station, TX 77843, United States
| | - Michael Gilbertson
- Occupational and Environmental Health Research Group, University of Stirling, Stirling, Scotland, United Kingdom
| | - Dominique Lagadic-Gossmann
- Research Institute for Environmental and Occupational Health, University of Rennes, INSERM, EHESP, Rennes, France
| | - Sarah Howard
- Healthy Environment and Endocrine Disruptor Strategies, Commonweal, Bolinas, CA 92924, United States
| | - Lars Lind
- Department of Medical Sciences, University of Uppsala, Uppsala, Sweden
| | - Craig R Tomlinson
- Norris Cotton Cancer Center, Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, United States
| | - Jan Vondracek
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Jerrold J Heindel
- Healthy Environment and Endocrine Disruptor Strategies, Commonweal, Bolinas, CA 92924, United States.
| |
Collapse
|
35
|
Li H, Wang Q, Ke J, Lin W, Luo Y, Yao J, Zhang W, Zhang L, Duan S, Dong Z, Chen X. Optimal Obesity- and Lipid-Related Indices for Predicting Metabolic Syndrome in Chronic Kidney Disease Patients with and without Type 2 Diabetes Mellitus in China. Nutrients 2022; 14:1334. [PMID: 35405947 PMCID: PMC9002364 DOI: 10.3390/nu14071334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/16/2022] [Accepted: 03/20/2022] [Indexed: 12/10/2022] Open
Abstract
Existing obesity- and lipid-related indices are inconsistent with metabolic syndrome (MetS) in chronic kidney disease (CKD) patients. We compared seven indicators, including waist circumference (WC), body mass index (BMI), visceral fat area (VFA), subcutaneous fat area (SFA), visceral adiposity index (VAI), Chinese VAI and lipid accumulation product (LAP), to evaluate their ability to predict MetS in CKD patients with and without Type 2 diabetes mellitus (T2DM) under various criteria. Multivariate logistic regression analysis was used to investigate the independent associations between the indices and metabolic syndrome among 547 non-dialysis CKD patients, aged ≥18 years. The predictive power of these indices was assessed using receiver operating characteristic (ROC) curve analysis. After adjusting for potential confounders, the correlation between VAI and MetS was strongest based on the optimal cut-off value of 1.51 (sensitivity 86.84%, specificity 91.18%) and 2.35 (sensitivity 83.54%, specificity 86.08%), with OR values of 40.585 (8.683-189.695) and 5.076 (1.247-20.657) for males and females with CKD and T2DM. In CKD patients without T2DM, based on the optimal cut-off values of 1.806 (sensitivity 98.11%, specificity 72.73%) and 3.11 (sensitivity 84.62%, specificity 83.82%), the OR values were 7.514 (3.757-15.027) and 3.008 (1.789-5.056) for males and females, respectively. The area under ROC curve (AUC) and Youden index of VAI were the highest among the seven indexes, indicating its superiority in predicting MetS in both male and female CKD patients, especially those with T2DM.
Collapse
Affiliation(s)
- Hangtian Li
- National Clinical Research Center for Kidney Diseases, State Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, Beijing 100853, China; (H.L.); (Q.W.); (J.K.); (W.L.); (Y.L.); (J.Y.); (W.Z.); (L.Z.); (S.D.)
- School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qian Wang
- National Clinical Research Center for Kidney Diseases, State Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, Beijing 100853, China; (H.L.); (Q.W.); (J.K.); (W.L.); (Y.L.); (J.Y.); (W.Z.); (L.Z.); (S.D.)
| | - Jianghua Ke
- National Clinical Research Center for Kidney Diseases, State Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, Beijing 100853, China; (H.L.); (Q.W.); (J.K.); (W.L.); (Y.L.); (J.Y.); (W.Z.); (L.Z.); (S.D.)
- School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Wenwen Lin
- National Clinical Research Center for Kidney Diseases, State Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, Beijing 100853, China; (H.L.); (Q.W.); (J.K.); (W.L.); (Y.L.); (J.Y.); (W.Z.); (L.Z.); (S.D.)
- School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yayong Luo
- National Clinical Research Center for Kidney Diseases, State Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, Beijing 100853, China; (H.L.); (Q.W.); (J.K.); (W.L.); (Y.L.); (J.Y.); (W.Z.); (L.Z.); (S.D.)
- School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jin Yao
- National Clinical Research Center for Kidney Diseases, State Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, Beijing 100853, China; (H.L.); (Q.W.); (J.K.); (W.L.); (Y.L.); (J.Y.); (W.Z.); (L.Z.); (S.D.)
- School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Weiguang Zhang
- National Clinical Research Center for Kidney Diseases, State Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, Beijing 100853, China; (H.L.); (Q.W.); (J.K.); (W.L.); (Y.L.); (J.Y.); (W.Z.); (L.Z.); (S.D.)
| | - Li Zhang
- National Clinical Research Center for Kidney Diseases, State Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, Beijing 100853, China; (H.L.); (Q.W.); (J.K.); (W.L.); (Y.L.); (J.Y.); (W.Z.); (L.Z.); (S.D.)
| | - Shuwei Duan
- National Clinical Research Center for Kidney Diseases, State Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, Beijing 100853, China; (H.L.); (Q.W.); (J.K.); (W.L.); (Y.L.); (J.Y.); (W.Z.); (L.Z.); (S.D.)
| | - Zheyi Dong
- National Clinical Research Center for Kidney Diseases, State Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, Beijing 100853, China; (H.L.); (Q.W.); (J.K.); (W.L.); (Y.L.); (J.Y.); (W.Z.); (L.Z.); (S.D.)
| | - Xiangmei Chen
- National Clinical Research Center for Kidney Diseases, State Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, Beijing 100853, China; (H.L.); (Q.W.); (J.K.); (W.L.); (Y.L.); (J.Y.); (W.Z.); (L.Z.); (S.D.)
- School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
36
|
Tóth ME, Sárközy M, Szűcs G, Dukay B, Hajdu P, Zvara Á, Puskás LG, Szebeni GJ, Ruppert Z, Csonka C, Kovács F, Kriston A, Horváth P, Kővári B, Cserni G, Csont T, Sántha M. Exercise training worsens cardiac performance in males but does not change ejection fraction and improves hypertrophy in females in a mouse model of metabolic syndrome. Biol Sex Differ 2022; 13:5. [PMID: 35101146 PMCID: PMC8805345 DOI: 10.1186/s13293-022-00414-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/05/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Metabolic syndrome (MetS) refers to a cluster of co-existing cardio-metabolic risk factors, including visceral obesity, dyslipidemia, hyperglycemia with insulin resistance, and hypertension. As there is a close link between MetS and cardiovascular diseases, we aimed to investigate the sex-based differences in MetS-associated heart failure (HF) and cardiovascular response to regular exercise training (ET). METHODS High-fat diet-fed male and female APOB-100 transgenic (HFD/APOB-100, 3 months) mice were used as MetS models, and age- and sex-matched C57BL/6 wild-type mice on standard diet served as healthy controls (SD/WT). Both the SD/WT and HFD/APOB-100 mice were divided into sedentary and ET groups, the latter running on a treadmill (0.9 km/h) for 45 min 5 times per week for 7 months. At month 9, transthoracic echocardiography was performed to monitor cardiac function and morphology. At the termination of the experiment at month 10, blood was collected for serum low-density lipoprotein (LDL)- and high-density lipoprotein (HDL)-cholesterol measurements and homeostatic assessment model for insulin resistance (HOMA-IR) calculation. Cardiomyocyte hypertrophy and fibrosis were assessed by histology. Left ventricular expressions of selected genes associated with metabolism, inflammation, and stress response were investigated by qPCR. RESULTS Both HFD/APOB-100 males and females developed obesity and hypercholesterolemia; however, only males showed insulin resistance. ET did not change these metabolic parameters. HFD/APOB-100 males showed echocardiographic signs of mild HF with dilated ventricles and thinner walls, whereas females presented the beginning of left ventricular hypertrophy. In response to ET, SD/WT males developed increased left ventricular volumes, whereas females responded with physiologic hypertrophy. Exercise-trained HFD/APOB-100 males presented worsening HF with reduced ejection fraction; however, ET did not change the ejection fraction and reversed the echocardiographic signs of left ventricular hypertrophy in HFD/APOB-100 females. The left ventricular expression of the leptin receptor was higher in females than males in the SD/WT groups. Left ventricular expression levels of stress response-related genes were higher in the exercise-trained HFD/APOB-100 males and exercise-trained SD/WT females than exercise-trained SD/WT males. CONCLUSIONS HFD/APOB-100 mice showed sex-specific cardiovascular responses to MetS and ET; however, left ventricular gene expressions were similar between the groups except for leptin receptor and several stress response-related genes.
Collapse
Affiliation(s)
- Melinda E. Tóth
- grid.481814.00000 0004 0479 9817Laboratory of Animal Genetics and Molecular Neurobiology, Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Temesvári krt. 62, Szeged, 6726 Hungary
| | - Márta Sárközy
- MEDICS Research Group, Department of Biochemistry, University of Szeged Albert Szent-Györgyi Medical School, Dóm tér 9, Szeged, 6720, Hungary. .,Interdisciplinary Center of Excellence, University of Szeged, Dugonics tér 13, Szeged, 6720, Hungary.
| | - Gergő Szűcs
- grid.9008.10000 0001 1016 9625MEDICS Research Group, Department of Biochemistry, University of Szeged Albert Szent-Györgyi Medical School, Dóm tér 9, Szeged, 6720 Hungary ,grid.9008.10000 0001 1016 9625Interdisciplinary Center of Excellence, University of Szeged, Dugonics tér 13, Szeged, 6720 Hungary
| | - Brigitta Dukay
- grid.481814.00000 0004 0479 9817Laboratory of Animal Genetics and Molecular Neurobiology, Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Temesvári krt. 62, Szeged, 6726 Hungary
| | - Petra Hajdu
- grid.481814.00000 0004 0479 9817Laboratory of Animal Genetics and Molecular Neurobiology, Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Temesvári krt. 62, Szeged, 6726 Hungary
| | - Ágnes Zvara
- grid.418331.c0000 0001 2195 9606Laboratory of Functional Genomics, Biological Research Centre, Eötvös Loránd Research Network, Temesvári krt. 62, Szeged, 6726 Hungary
| | - László G. Puskás
- grid.418331.c0000 0001 2195 9606Laboratory of Functional Genomics, Biological Research Centre, Eötvös Loránd Research Network, Temesvári krt. 62, Szeged, 6726 Hungary
| | - Gábor J. Szebeni
- grid.418331.c0000 0001 2195 9606Laboratory of Functional Genomics, Biological Research Centre, Eötvös Loránd Research Network, Temesvári krt. 62, Szeged, 6726 Hungary
| | - Zsófia Ruppert
- grid.481814.00000 0004 0479 9817Laboratory of Animal Genetics and Molecular Neurobiology, Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Temesvári krt. 62, Szeged, 6726 Hungary ,grid.9008.10000 0001 1016 9625Doctoral School in Biology, University of Szeged, Szeged, Hungary
| | - Csaba Csonka
- grid.9008.10000 0001 1016 9625MEDICS Research Group, Department of Biochemistry, University of Szeged Albert Szent-Györgyi Medical School, Dóm tér 9, Szeged, 6720 Hungary ,grid.9008.10000 0001 1016 9625Interdisciplinary Center of Excellence, University of Szeged, Dugonics tér 13, Szeged, 6720 Hungary
| | - Ferenc Kovács
- grid.481814.00000 0004 0479 9817Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Temesvári krt. 62, Szeged, 6726 Hungary ,Single-Cell Technologies Ltd, Temesvári krt. 62, Szeged, 6726 Hungary
| | - András Kriston
- grid.481814.00000 0004 0479 9817Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Temesvári krt. 62, Szeged, 6726 Hungary ,Single-Cell Technologies Ltd, Temesvári krt. 62, Szeged, 6726 Hungary
| | - Péter Horváth
- grid.481814.00000 0004 0479 9817Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Temesvári krt. 62, Szeged, 6726 Hungary ,Single-Cell Technologies Ltd, Temesvári krt. 62, Szeged, 6726 Hungary ,grid.7737.40000 0004 0410 2071Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00014 Helsinki, Finland
| | - Bence Kővári
- grid.9008.10000 0001 1016 9625Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Állomás utca 1, Szeged, 6720 Hungary
| | - Gábor Cserni
- grid.9008.10000 0001 1016 9625Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Állomás utca 1, Szeged, 6720 Hungary
| | - Tamás Csont
- grid.9008.10000 0001 1016 9625MEDICS Research Group, Department of Biochemistry, University of Szeged Albert Szent-Györgyi Medical School, Dóm tér 9, Szeged, 6720 Hungary ,grid.9008.10000 0001 1016 9625Interdisciplinary Center of Excellence, University of Szeged, Dugonics tér 13, Szeged, 6720 Hungary
| | - Miklós Sántha
- grid.481814.00000 0004 0479 9817Laboratory of Animal Genetics and Molecular Neurobiology, Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Temesvári krt. 62, Szeged, 6726 Hungary
| |
Collapse
|
37
|
Wei L, Chen S, Qiang Y, Kuai L, Zhou M, Luo Y, Luo Y, Song J, Fei X, Zhang R, Yu N, Jiang W, Li X, Wang R, Li B. Tobacco smoking was positively associated with metabolic
syndrome among patients with psoriasis in Shanghai:
A cross-sectional study. Tob Induc Dis 2022; 20:05. [PMID: 35110983 PMCID: PMC8780213 DOI: 10.18332/tid/144228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/15/2021] [Accepted: 11/24/2021] [Indexed: 11/24/2022] Open
Abstract
INTRODUCTION A number of studies have reported a high correlation between psoriasis and metabolic syndrome (MetS), and tobacco smoking is one independent risk factor accounting for the increased prevalence both for psoriasis and MetS. However, few studies have been conducted to assess the effects of tobacco smoking on co-morbidities of psoriasis and MetS. METHODS We conducted a cross-sectional study with 1014 psoriasis patients recruited from January to May 2021. Patients were recruited with a cluster survey method in Yueyang Hospital (affiliated with Shanghai University of Traditional Chinese Medicine) and Shanghai Skin Diseases Hospital (affiliated with Tongji University). Data were collected by face-to-face questionnaire interviews which included basic information, personal life habits, medical history, and clinical examinations. SPSS 24.0 was used for data analysis and a p<0.05 was considered statistically significant. RESULTS The 1014 psoriasis patients were predominantly males (65.58%), with an average age of 45.98 years (IQR: 34.00–57.00). Of these, 25.74% (261) of psoriasis had MetS and 31.85% (323) were tobacco smokers. Male psoriasis patients had higher tobacco smoking prevalence than female patients. With increasing age and BMI, the prevalence of tobacco smoking among psoriasis patients increased dramatically (p<0.01). Logistic regression indicated that psoriasis patients with tobacco smoking had 1.78 times (95% CI: 1.21–2.60) the probability to have MetS than those without tobacco smoking, even adjusting for potential confounding factors. Moreover, smoking psoriasis patients with MetS consumed more cigarettes per day, with longer smoking duration, but with an older age of smoking initiation. CONCLUSIONS The prevalence of tobacco smoking and MetS among psoriasis patients was high in Shanghai, and tobacco smoking was positively associated with the MetS among psoriasis patients. Clinicians should recommend psoriasis patients to abstain from tobacco smoking and provide tobacco cessation assistance regularly.
Collapse
Affiliation(s)
- Lei Wei
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- CORRESPONDENCE TO Ruiping Wang. Clinical Research and Innovation Transformation Center, Shanghai Skin Diseases Hospital, Tongji University, 1278 Baode Road, Jing’an District, Shanghai 200443, China. E-mail: ORCID ID: https://orcid.org/0000-0003-4183-5795
| | - Siting Chen
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Qiang
- Clinical Research and Innovation Transformation Center, Shanghai Skin Diseases Hospital, Tongji University, Shanghai, China
| | - Le Kuai
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mi Zhou
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Luo
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yue Luo
- Department of Dermatology, Shanghai Skin Diseases Hospital, Tongji University, Shanghai, China
| | - Jiankun Song
- Department of Dermatology, Shanghai Skin Diseases Hospital, Tongji University, Shanghai, China
| | - Xiaoya Fei
- Department of Dermatology, Shanghai Skin Diseases Hospital, Tongji University, Shanghai, China
| | - Rui Zhang
- Clinical Research and Innovation Transformation Center, Shanghai Skin Diseases Hospital, Tongji University, Shanghai, China
| | - Ning Yu
- Department of Dermatology, Shanghai Skin Diseases Hospital, Tongji University, Shanghai, China
| | - Wencheng Jiang
- Department of Dermatology, Shanghai Skin Diseases Hospital, Tongji University, Shanghai, China
| | - Xin Li
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ruiping Wang
- Clinical Research and Innovation Transformation Center, Shanghai Skin Diseases Hospital, Tongji University, Shanghai, China
| | - Bin Li
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Clinical Research and Innovation Transformation Center, Shanghai Skin Diseases Hospital, Tongji University, Shanghai, China
| |
Collapse
|
38
|
Huang Q, Yang D, Deng H, Liang H, Zheng X, Yan J, Xu W, Liu X, Yao B, Luo S, Weng J. Association between Metabolic Syndrome and Microvascular Complications in Chinese Adults with Type 1 Diabetes Mellitus. Diabetes Metab J 2022; 46:93-103. [PMID: 34465016 PMCID: PMC8831815 DOI: 10.4093/dmj.2020.0240] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/25/2021] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Both type 1 diabetes mellitus (T1DM) and metabolic syndrome (MetS) are associated with an elevated risk of morbidity and mortality yet with increasing heterogeneity. This study primarily aimed to evaluate the prevalence of MetS among adult patients with T1DM in China and investigate its associated risk factors, and relationship with microvascular complications. METHODS We included adult patients who had been enrolled in the Guangdong T1DM Translational Medicine Study conducted from June 2010 to June 2015. MetS was defined according to the updated National Cholesterol Education Program criterion. Logistic regression models were used to estimate the odds ratio (OR) for the association between MetS and the risk of diabetic kidney disease (DKD) and diabetic retinopathy (DR). RESULTS Among the 569 eligible patients enrolled, the prevalence of MetS was 15.1%. While female gender, longer diabetes duration, higher body mass index, and glycosylated hemoglobin A1c (HbA1c) were risk factors associated with MetS (OR, 2.86, 1.04, 1.14, and 1.23, respectively), received nutrition therapy education was a protective factor (OR, 0.46). After adjustment for gender, age, diabetes duration, HbA1c, socioeconomic and lifestyle variables, MetS status was associated with an increased risk of DKD and DR (OR, 2.14 and 3.72, respectively; both P<0.05). CONCLUSION Although the prevalence of MetS in adult patients with T1DM in China was relatively low, patients with MetS were more likely to have DKD and DR. A comprehensive management including lifestyle modification might reduce their risk of microvascular complications in adults with T1DM.
Collapse
Affiliation(s)
- Qianwen Huang
- Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Daizhi Yang
- Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hongrong Deng
- Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hua Liang
- Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xueying Zheng
- Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Jinhua Yan
- Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wen Xu
- Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiangwen Liu
- Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Bin Yao
- Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Sihui Luo
- Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Jianping Weng
- Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| |
Collapse
|
39
|
Komaki S, Ohmomo H, Hachiya T, Sutoh Y, Ono K, Furukawa R, Umekage S, Otsuka-Yamasaki Y, Tanno K, Sasaki M, Shimizu A. Longitudinal DNA methylation dynamics as a practical indicator in clinical epigenetics. Clin Epigenetics 2021; 13:219. [PMID: 34903243 PMCID: PMC8670275 DOI: 10.1186/s13148-021-01202-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/24/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND One of the fundamental assumptions of DNA methylation in clinical epigenetics is that DNA methylation status can change over time with or without interplay with environmental and clinical conditions. However, little is known about how DNA methylation status changes over time under ordinary environmental and clinical conditions. In this study, we revisited the high frequency longitudinal DNA methylation data of two Japanese males (24 time-points within three months) and characterized the longitudinal dynamics. RESULTS The results showed that the majority of CpGs on Illumina HumanMethylation450 BeadChip probe set were longitudinally stable over the time period of three months. Focusing on dynamic and stable CpGs extracted from datasets, dynamic CpGs were more likely to be reported as epigenome-wide association study (EWAS) markers of various traits, especially those of immune- and inflammatory-related traits; meanwhile, the stable CpGs were enriched in metabolism-related genes and were less likely to be EWAS markers, indicating that the stable CpGs are stable both in the short-term within individuals and under various environmental and clinical conditions. CONCLUSIONS This study indicates that CpGs with different stabilities are involved in different functions and traits, and thus, they are potential indicators that can be applied for clinical epigenetic studies to outline underlying mechanisms.
Collapse
Affiliation(s)
- Shohei Komaki
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, 1-1-1, Idaidori, Yahaba, Iwate, 028-3694, Japan
| | - Hideki Ohmomo
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, 1-1-1, Idaidori, Yahaba, Iwate, 028-3694, Japan
| | - Tsuyoshi Hachiya
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, 1-1-1, Idaidori, Yahaba, Iwate, 028-3694, Japan
| | - Yoichi Sutoh
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, 1-1-1, Idaidori, Yahaba, Iwate, 028-3694, Japan
| | - Kanako Ono
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, 1-1-1, Idaidori, Yahaba, Iwate, 028-3694, Japan
| | - Ryohei Furukawa
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, 1-1-1, Idaidori, Yahaba, Iwate, 028-3694, Japan.,Department of Biology, Research and Education Center for Natural Sciences, Keio University, 4-1-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8521, Japan
| | - So Umekage
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, 1-1-1, Idaidori, Yahaba, Iwate, 028-3694, Japan
| | - Yayoi Otsuka-Yamasaki
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, 1-1-1, Idaidori, Yahaba, Iwate, 028-3694, Japan
| | - Kozo Tanno
- Division of Clinical Research and Epidemiology, Iwate Tohoku Medical Megabank Organization, Iwate Medical University, Iwate, Japan.,Department of Hygiene and Preventive Medicine, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Shiwa, Iwate, 028-3694, Japan
| | - Makoto Sasaki
- Iwate Tohoku Medical Megabank Organization, Iwate Medical University, Iwate, Japan.,Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Shiwa, Iwate, 028-3694, Japan
| | - Atsushi Shimizu
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, 1-1-1, Idaidori, Yahaba, Iwate, 028-3694, Japan. .,Division of Biomedical Information Analysis, Institute for Biomedical Sciences, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Shiwa, Iwate, 028-3694, Japan.
| |
Collapse
|
40
|
Preda A, Liberale L, Montecucco F. Imaging techniques for the assessment of adverse cardiac remodeling in metabolic syndrome. Heart Fail Rev 2021; 27:1883-1897. [PMID: 34796433 DOI: 10.1007/s10741-021-10195-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/11/2021] [Indexed: 12/23/2022]
Abstract
Metabolic syndrome (MetS) includes different metabolic conditions (i.e. abdominal obesity, impaired glucose tolerance, hypertriglyceridemia, decreased HDL cholesterol, and/or hypertension) that concour in the development of cardiovascular disease and diabetes. MetS individuals often show adverse cardiac remodeling and myocardial dysfunction even in the absence of overt coronary artery disease or valvular affliction. Diastolic impairment and hypertrophy are hallmarks of MetS-related cardiac remodeling and represent the leading cause of heart failure with preserved ejection fraction (HFpEF). Altered cardiomyocyte function, increased neurohormonal tone, interstitial fibrosis, coronary microvascular dysfunction, and a myriad of metabolic abnormalities have all been implicated in the development and progression of adverse cardiac remodeling related to MetS. However, despite the enormous amount of literature produced on this argument, HF remains a leading cause of morbidity and mortality in such population. The early detection of initial adverse cardiac remodeling would enable the optimal implementation of effective therapies aiming at preventing the progression of the disease to the symptomatic phase. Beyond conventional imaging techniques, such as echocardiography, cardiac tomography, and magnetic resonance, novel post-processing tools and techniques provide information on the biological processes that underlie metabolic heart disease. In this review, we summarize the pathophysiology of MetS-related cardiac remodeling and illustrate the relevance of state-of-the-art multimodality cardiac imaging to identify and quantify the degree of myocardial involvement, prognosticate long-term clinical outcome, and potentially guide therapeutic strategies.
Collapse
Affiliation(s)
| | - Luca Liberale
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132, Genoa, Italy.,Center for Molecular Cardiology, University of Zürich, Schlieren, Switzerland.,IRCCS Ospedale Policlinico San Martino Genoa-Italian Cardiovascular Network, Genoa, Italy
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132, Genoa, Italy. .,IRCCS Ospedale Policlinico San Martino Genoa-Italian Cardiovascular Network, Genoa, Italy.
| |
Collapse
|
41
|
Ashok T, Puttam H, Tarnate VCA, Jhaveri S, Avanthika C, Trejo Treviño AG, Sl S, Ahmed NT. Role of Vitamin B12 and Folate in Metabolic Syndrome. Cureus 2021; 13:e18521. [PMID: 34754676 PMCID: PMC8569690 DOI: 10.7759/cureus.18521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2021] [Indexed: 12/11/2022] Open
Abstract
Metabolic syndrome (MS) is a collection of pathological metabolic conditions that includes insulin resistance, central or abdominal obesity, dyslipidemia, and hypertension. It affects large populations worldwide, and its prevalence is rising exponentially. There is no specific mechanism that leads to the development of MS. Proposed hypotheses range from visceral adiposity being a key factor to an increase in very-low-density lipoprotein and fatty acid synthesis as the primary cause of MS. Numerous pharmaceutical therapies are widely available in the market for the treatment of the individual components of MS. The relationship between MS and vitamin B complex supplementation, specifically folic acid and vitamin B12, has been a subject of investigation worldwide, with several trials reporting a positive impact with vitamin supplementation on MS. In this study, an all-language literature search was conducted on Medline, Cochrane, Embase, and Google Scholar till September 2021. The following search strings and Medical Subject Headings (MeSH) terms were used: “Vitamin B12,” “Folate,” “Metabolic Syndrome,” and “Insulin Resistance.” We explored the literature on MS for its epidemiology, pathophysiology, newer treatment options, with a special focus on the effectiveness of supplementation with vitamins B9 and B12. According to the literature, vitamin B12 and folate supplementation, along with a host of novel therapies, has a considerable positive impact on MS. These findings must be kept in mind while designing newer treatment protocols in the future.
Collapse
Affiliation(s)
- Tejaswini Ashok
- Internal Medicine, Jagadguru Sri Shivarathreeshwara Medical College, Mysore, IND
| | - Harivarsha Puttam
- Internal Medicine, Employees' State Insurance Corporation Medical College and Hospital, Hyderabad, IND
| | | | - Sharan Jhaveri
- Internal Medicine, Smt. Nathiba Hargovandas Lakhmichand Municipal Medical College, Ahmedabad, IND
| | - Chaithanya Avanthika
- Medicine and Surgery, Karnataka Institute of Medical Sciences, Hubli, IND.,Pediatrics, Karnataka Institute of Medical Sciences, Hubli, IND
| | | | - Sandeep Sl
- Internal Medicine, SRM Medical College Hospital & Research Centre, Kattankulathur, IND
| | - Nazia T Ahmed
- Medicine, Shahabuddin Medical College and Hospital, Dhaka, BGD
| |
Collapse
|
42
|
Chella Krishnan K, Vergnes L, Acín-Pérez R, Stiles L, Shum M, Ma L, Mouisel E, Pan C, Moore TM, Péterfy M, Romanoski CE, Reue K, Björkegren JLM, Laakso M, Liesa M, Lusis AJ. Sex-specific genetic regulation of adipose mitochondria and metabolic syndrome by Ndufv2. Nat Metab 2021; 3:1552-1568. [PMID: 34697471 PMCID: PMC8909918 DOI: 10.1038/s42255-021-00481-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 09/17/2021] [Indexed: 12/28/2022]
Abstract
We have previously suggested a central role for mitochondria in the observed sex differences in metabolic traits. However, the mechanisms by which sex differences affect adipose mitochondrial function and metabolic syndrome are unclear. Here we show that in both mice and humans, adipose mitochondrial functions are elevated in females and are strongly associated with adiposity, insulin resistance and plasma lipids. Using a panel of diverse inbred strains of mice, we identify a genetic locus on mouse chromosome 17 that controls mitochondrial mass and function in adipose tissue in a sex- and tissue-specific manner. This locus contains Ndufv2 and regulates the expression of at least 89 mitochondrial genes in females, including oxidative phosphorylation genes and those related to mitochondrial DNA content. Overexpression studies indicate that Ndufv2 mediates these effects by regulating supercomplex assembly and elevating mitochondrial reactive oxygen species production, which generates a signal that increases mitochondrial biogenesis.
Collapse
Affiliation(s)
- Karthickeyan Chella Krishnan
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
- Department of Medicine/Division of Cardiology, University of California, Los Angeles, CA, USA.
| | - Laurent Vergnes
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Rebeca Acín-Pérez
- Department of Medicine/Division of Endocrinology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Linsey Stiles
- Department of Medicine/Division of Endocrinology, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Michael Shum
- Department of Medicine/Division of Endocrinology, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Molecular Medicine, Faculty of Medicine, Universite Laval, Quebec City, Quebec, Canada
| | - Lijiang Ma
- Department of Genetics and Genomic Sciences, The Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Etienne Mouisel
- INSERM, UMR1297, Institute of Metabolic and Cardiovascular Diseases, University of Toulouse, Paul Sabatier University, Toulouse, France
| | - Calvin Pan
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Timothy M Moore
- Department of Medicine/Division of Cardiology, University of California, Los Angeles, CA, USA
| | - Miklós Péterfy
- Department of Medicine/Division of Cardiology, University of California, Los Angeles, CA, USA
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, USA
| | - Casey E Romanoski
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Karen Reue
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Johan L M Björkegren
- Department of Genetics and Genomic Sciences, The Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Integrated Cardio Metabolic Centre, Department of Medicine, Karolinska Institutet, Karolinska Universitetssjukhuset, Huddinge, Sweden
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Marc Liesa
- Department of Medicine/Division of Endocrinology, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Aldons J Lusis
- Department of Medicine/Division of Cardiology, University of California, Los Angeles, CA, USA.
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
43
|
Wu N, Qin Y, Chen S, Yu C, Xu Y, Zhao J, Yang X, Li N, Pan XF. Association between metabolic syndrome and incident chronic kidney disease among Chinese: A nation-wide cohort study and updated meta-analysis. Diabetes Metab Res Rev 2021; 37:e3437. [PMID: 33469988 DOI: 10.1002/dmrr.3437] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/30/2020] [Accepted: 01/02/2021] [Indexed: 12/22/2022]
Abstract
AIMS We prospectively examined the relationship between metabolic syndrome (MetS) and incident chronic kidney disease (CKD) among middle-aged and elderly Chinese, and conducted a systematic review and meta-analysis of all cohort studies on this topic. MATERIALS AND METHODS Our research data were derived from the China Health and Retirement Longitudinal Study. Participants (n=5752, age ≥45 years) without CKD (defined as estimated glomerular filtration rate <60 ml/min/1.73m2 ) at baseline were followed up for 4 years. We applied logistic regressions to examine the association of MetS with incident CKD. In addition, we pooled our effect estimates and those from previous cohort studies in the meta-analysis. RESULTS In a 4-years follow-up, 61 (4.27%) developed CKD in participants with MetS versus 102 (2.36%) in participants without MetS. After adjustment for potential confounders, odds ratio for incident CKD was 1.82 [95% confidence interval (95% CI): 1.19-2.78] comparing participants with MetS with those without MetS. There was a linear positive association between the number of MetS components and incident CKD (p for trend <0.001). In the updated meta-analysis of 25 studies among 350,655 participants with 29,368 incident cases of CKD, the pooled relative risk of developing CKD in participants with MetS was 1.34 (95% CI: 1.28-1.39), compared with those without MetS. CONCLUSIONS Individuals with MetS had higher risk of incident CKD in middle-aged and elderly Chinese adults, which was supported by a comprehensive review of cohort studies from multiple populations. It may be advisable to routinely monitor renal functions among individuals with MetS.
Collapse
Affiliation(s)
- Nianwei Wu
- Department of Health and Social Behavior, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yao Qin
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Sen Chen
- Department of Health and Social Behavior, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chuan Yu
- Department of Health and Social Behavior, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ying Xu
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jian Zhao
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Xue Yang
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ningxiu Li
- Department of Health and Social Behavior, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiong-Fei Pan
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Epidemiology and Biostatistics, Ministry of Education & Ministry of Environmental Protection Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- The George Institute for Global Health, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
44
|
Klag KA, Round JL. Microbiota-Immune Interactions Regulate Metabolic Disease. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:1719-1724. [PMID: 34544814 PMCID: PMC9105212 DOI: 10.4049/jimmunol.2100419] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/18/2021] [Indexed: 12/13/2022]
Abstract
Metabolic diseases are common worldwide and include diseases of overnutrition, such as obesity, or undernutrition, such as kwashiorkor. Both the immune system and the microbiota contribute to a variety of metabolic diseases; however, these two processes have largely been studied independently of one another in this context. The gastrointestinal system houses the greatest density of microbes but also houses one of the largest collections of immune molecules, especially Abs. The IgA isotype dominates the Ab landscape at mucosal sites, and a number of studies have demonstrated the importance of this Ab to the stability of the microbiota. In this article, we review the literature that demonstrates how homeostatic Ab responses control microbiota composition and function to influence metabolic disease. We propose that many metabolic diseases may arise from disruptions to homeostatic immune control of gut commensals and that further understanding this interaction can offer a novel opportunity for therapeutic interventions.
Collapse
Affiliation(s)
- Kendra A Klag
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT; and
| | - June L Round
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT; and .,Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| |
Collapse
|
45
|
Celec P, Janovičová Ĺ, Gurecká R, Koborová I, Gardlík R, Šebeková K. Circulating extracellular DNA is in association with continuous metabolic syndrome score in healthy adolescents. Physiol Genomics 2021; 53:309-318. [PMID: 34097532 DOI: 10.1152/physiolgenomics.00029.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Obesity is associated with chronic low-grade inflammation that eventually leads to metabolic complications. Extracellular DNA (ecDNA) is a damage-associated molecular pattern. Extracellular mitochondrial DNA can activate innate immunity. We hypothesized that ecDNA, especially of mitochondrial origin, could be associated with components of the metabolic syndrome in young healthy probands. In a cross-sectional study, healthy adolescents (n = 1,249) provided blood samples. Anthropometric data, blood pressure, and blood counts were assessed. In addition, biochemical analysis of sera or plasma was conducted, including the quantification of advanced oxidation protein products (AOPPs) as a marker of oxidative stress induced by neutrophil or monocyte activation. Plasma ecDNA was isolated and measured by fluorometry. Nuclear and mitochondrial DNA were quantified by real-time PCR. Males had higher total plasma ecDNA [15 (11-21) vs. 11 (8-17) ng/mL; median (interquartile range)], nuclear [1,760 (956-3,273) vs. 1,153 (600-2,292) genome equivalents (GE)/mL], and mitochondrial [37,181 (14,836-90,896) vs. 30,089 (12,587-72,286) GE/mL] DNA. ecDNA correlated positively with the continuous metabolic syndrome score (r = 0.158 for males and r = 0.134 for females). Stronger correlations were found between ecDNA of mitochondrial origin and AOPP (r = 0.202 and 0.186 for males and females, respectively). Multivariate regression analysis revealed associations of nuclear DNA with leukocyte and erythrocyte counts. The results of this study of healthy adolescents show that circulating ecDNA is associated with the risk of metabolic syndrome, not with obesity per se. The association between mitochondrial ecDNA and AOPP requires further attention as it supports a potential role of mitochondria-induced sterile inflammation in the pathogenesis of the metabolic syndrome.
Collapse
Affiliation(s)
- Peter Celec
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia.,Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia.,Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Ĺubica Janovičová
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Radana Gurecká
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia.,Institute of Medical Physics, Biophysics, Informatics and Telemedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Ivana Koborová
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Roman Gardlík
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia.,Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Katarína Šebeková
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| |
Collapse
|
46
|
Sohouli MH, Fatahi S, Sharifi-Zahabi E, Santos HO, Tripathi N, Lari A, Pourrajab B, Kord-Varkaneh H, Găman MA, Shidfar F. The Impact of Low Advanced Glycation End Products Diet on Metabolic Risk Factors: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Adv Nutr 2021; 12:766-776. [PMID: 33253361 PMCID: PMC8166565 DOI: 10.1093/advances/nmaa150] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/10/2020] [Accepted: 10/23/2020] [Indexed: 12/17/2022] Open
Abstract
Several randomized clinical trials have investigated the effect of dietary advanced glycation end products (AGEs) on metabolic syndrome risk factors in adults. However, the results of these studies were conflicting. Therefore, our aim was to assess the effect of dietary AGEs on metabolic syndrome risk factors. We searched the PubMed-MEDLINE, Scopus, Cochrane Databases, Google Scholar, Web of Science, and Embase databases for papers published up to October 2019 that investigated the effect of dietary AGEs on metabolic syndrome risk factors. From the eligible trials, 13 articles were selected for inclusion in this systematic review and meta-analysis. The meta-analysis was performed using a random-effects model. Heterogeneity was determined by I2 statistics and Cochrane Q test. Pooled results from the random-effects model showed a significant reduction for insulin resistance [weighted mean difference (WMD): -1.204; 95% CI: -2.057, -0.358; P = 0.006], fasting insulin (WMD: -5.472 μU/mL; 95% CI: -9.718, -1.234 μU/mL; P = 0.011), total cholesterol (WMD: -5.486 mg/dL; 95% CI: -10.222, -0.747 mg/dL; P = 0.023), and LDL (WMD: -6.263 mg/dL; 95% CI: -11.659, -0.866 mg/dL; P = 0.023) in the low-AGEs groups compared with the high-AGEs groups. There were no changes in the other components of the metabolic syndrome. The results of this review suggest that a diet with a low AGEs content has beneficial effects on insulin resistance, fasting insulin, total cholesterol, and LDL. Moreover, following a diet low in AGEs may be a helpful strategy to decrease the burden of metabolic syndrome risk factors in adults and particularly in patients with diabetes.
Collapse
Affiliation(s)
- Mohammad Hasan Sohouli
- Student Research Committee, Faculty of Public Health Branch, Iran University of Medical Sciences, Tehran, Iran
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Somaye Fatahi
- Student Research Committee, Faculty of Public Health Branch, Iran University of Medical Sciences, Tehran, Iran
- Pediatric Gastroenterology, Hepatology and Nutrition Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Sharifi-Zahabi
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Heitor O Santos
- School of Medicine, Federal University of Uberlândia, Uberlândia, Brazil
| | | | - Abolfazl Lari
- Student Research Committee, Faculty of Public Health Branch, Iran University of Medical Sciences, Tehran, Iran
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Behnaz Pourrajab
- Student Research Committee, Faculty of Public Health Branch, Iran University of Medical Sciences, Tehran, Iran
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Kord-Varkaneh
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mihnea-Alexandru Găman
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Center of Hematology and Bone Marrow Transplantation, Fundeni Clinical Institute, Bucharest, Romania
| | - Farzad Shidfar
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
47
|
Wan JY, Goodman DL, Willems EL, Freedland AR, Norden-Krichmar TM, Santorico SA, Edwards KL. Genome-wide association analysis of metabolic syndrome quantitative traits in the GENNID multiethnic family study. Diabetol Metab Syndr 2021; 13:59. [PMID: 34074324 PMCID: PMC8170963 DOI: 10.1186/s13098-021-00670-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/28/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To identify genetic associations of quantitative metabolic syndrome (MetS) traits and characterize heterogeneity across ethnic groups. METHODS Data was collected from GENetics of Noninsulin dependent Diabetes Mellitus (GENNID), a multiethnic resource of Type 2 diabetic families and included 1520 subjects in 259 African-American, European-American, Japanese-Americans, and Mexican-American families. We focused on eight MetS traits: weight, waist circumference, systolic and diastolic blood pressure, high-density lipoprotein, triglycerides, fasting glucose, and insulin. Using genotyped and imputed data from Illumina's Multiethnic array, we conducted genome-wide association analyses with linear mixed models for all ethnicities, except for the smaller Japanese-American group, where we used additive genetic models with gene-dropping. RESULTS Findings included ethnic-specific genetic associations and heterogeneity across ethnicities. Most significant associations were outside our candidate linkage regions and were coincident within a gene or intergenic region, with two exceptions in European-American families: (a) within previously identified linkage region on chromosome 2, two significant GLI2-TFCP2L1 associations with weight, and (b) one chromosome 11 variant near CADM1-LINC00900 with pleiotropic blood pressure effects. CONCLUSIONS This multiethnic family study found genetic heterogeneity and coincident associations (with one case of pleiotropy), highlighting the importance of including diverse populations in genetic research and illustrating the complex genetic architecture underlying MetS.
Collapse
Affiliation(s)
- Jia Y Wan
- Department of Epidemiology and Biostatistics, Program in Public Health, University of California, 635 E. Peltason Dr, Mail Code: 7550, Irvine, CA, 92697, USA
| | - Deborah L Goodman
- Department of Epidemiology and Biostatistics, Program in Public Health, University of California, 635 E. Peltason Dr, Mail Code: 7550, Irvine, CA, 92697, USA
| | - Emileigh L Willems
- Department of Mathematical and Statistical Sciences, University of Colorado, Denver, CO, USA
| | - Alexis R Freedland
- Department of Epidemiology and Biostatistics, Program in Public Health, University of California, 635 E. Peltason Dr, Mail Code: 7550, Irvine, CA, 92697, USA
| | - Trina M Norden-Krichmar
- Department of Epidemiology and Biostatistics, Program in Public Health, University of California, 635 E. Peltason Dr, Mail Code: 7550, Irvine, CA, 92697, USA
| | - Stephanie A Santorico
- Department of Mathematical and Statistical Sciences, University of Colorado, Denver, CO, USA
- Human Medical Genetics and Genomics Program, University of Colorado, Denver, CO, USA
- Department of Biostatistics & Informatics, University of Colorado, Denver, CO, USA
- Division of Biomedical Informatics & Personalized Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Karen L Edwards
- Department of Epidemiology and Biostatistics, Program in Public Health, University of California, 635 E. Peltason Dr, Mail Code: 7550, Irvine, CA, 92697, USA.
| |
Collapse
|
48
|
Secor JD, Fligor SC, Tsikis ST, Yu LJ, Puder M. Free Fatty Acid Receptors as Mediators and Therapeutic Targets in Liver Disease. Front Physiol 2021; 12:656441. [PMID: 33897464 PMCID: PMC8058363 DOI: 10.3389/fphys.2021.656441] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/15/2021] [Indexed: 12/29/2022] Open
Abstract
Free fatty acid receptors (FFARs) are a class of G protein-coupled receptors (GPCRs) that have wide-ranging effects on human physiology. The four well-characterized FFARs are FFAR1/GPR40, FFAR2/GPR43, FFAR3/GPR41, and FFAR4/GPR120. Short-chain (<6 carbon) fatty acids target FFAR2/GPR43 and FFAR3/GPR41. Medium- and long-chain fatty acids (6-12 and 13-21 carbon, respectively) target both FFAR1/GPR40 and FFAR4/GPR120. Signaling through FFARs has been implicated in non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), intestinal failure-associated liver disease (IFALD), and a variety of other liver disorders. FFARs are now regarded as targets for therapeutic intervention for liver disease, diabetes, obesity, hyperlipidemia, and metabolic syndrome. In this review, we provide an in-depth, focused summary of the role FFARs play in liver health and disease.
Collapse
Affiliation(s)
- Jordan D. Secor
- Vascular Biology Program and Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | | | | | | | | |
Collapse
|
49
|
Ma Q, Pollard KM, Brown JM, Italiani P, Moghimi SM. Editorial: Immune Mechanisms in the Pathologic Response to Particles, Fibers, and Nanomaterials. Front Immunol 2021; 12:665810. [PMID: 33815427 PMCID: PMC8017123 DOI: 10.3389/fimmu.2021.665810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 02/24/2021] [Indexed: 11/22/2022] Open
Affiliation(s)
- Qiang Ma
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, United States
| | - Kenneth Michael Pollard
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - Jared M Brown
- Skaggs School of Pharmacy, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Paola Italiani
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), Naples, Italy
| | - Seyed Moein Moghimi
- School of Pharmacy, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
50
|
Kutbi EH, Sohouli MH, Fatahi S, Lari A, Shidfar F, Aljhdali MM, Alhoshan FM, Elahi SS, Almusa HA, Abu-Zaid A. The beneficial effects of cinnamon among patients with metabolic diseases: A systematic review and dose-response meta-analysis of randomized-controlled trials. Crit Rev Food Sci Nutr 2021; 62:6113-6131. [PMID: 33739219 DOI: 10.1080/10408398.2021.1896473] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
This systematic review and meta-analysis aims to summarize and conclude the clinical evidence regarding the use of cinnamon among patients with metabolic diseases. A comprehensive literature search without any limitation on language was conducted using the following bibliographical databases: ISI Web of Science, Embase, Scopus, PubMed, and Google Scholar. Search was conducted up to 23 January 2020. A total of 35 clinical trials were included for final analysis. Pooling of results showed a significant reducing effect of cinnamon on total cholesterol (TC) (weighted mean difference (WMD) = -11.67 mg/dL; P = 0.010), triglyceride (TG) (WMD = -16.27 mg/dL; P < 0.001), low density lipoprotein-cholesterol (LDL-C) (WMD = -6.36 mg/dL; P < 0.001), serum glucose (WMD = -11.39 mg/dL; P < 0.001), serum insulin (WMD = -1.27 μIU/mL; P = 0.028), and waist circumstance (WC) (WMD = -1.68 cm; P = 0.016). These lowering effects on TG, TC, LDL-C, and serum glucose levels were robust in studies that used cinnamon supplementation dose ≤1.5 g. Also, our findings of the present meta-analysis showed that cinnamon supplementation could have favorable effects on high density lipoprotein-cholesterol (HDL-C, WMD = 1.35; P = 0.038) as well as systolic (WMD = -3.95 mmHg; P = 0.018) and diastolic (WMD = -3.36; P = 0.001) blood pressure among patients with metabolic diseases. The present meta-analysis suggests that cinnamon might exert beneficial effects on various cardiometabolic risk factors among patients with metabolic diseases.
Collapse
Affiliation(s)
- Emad H Kutbi
- Biomedical Research Administration, Biorepository Department, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Mohammad Hassan Sohouli
- Student Research Committee, Faculty of Public Health Branch, Iran University of Medical Sciences, Tehran, Iran
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Somaye Fatahi
- Student Research Committee, Faculty of Public Health Branch, Iran University of Medical Sciences, Tehran, Iran
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Abolfazl Lari
- Student Research Committee, Faculty of Public Health Branch, Iran University of Medical Sciences, Tehran, Iran
| | - Farzad Shidfar
- Student Research Committee, Faculty of Public Health Branch, Iran University of Medical Sciences, Tehran, Iran
| | - Maha Mari Aljhdali
- Department of Internal Medicine, King Fahad General Hospital, Jeddah, Saudi Arabia
| | - Faisal Musaad Alhoshan
- College of Medicine, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia
| | - Saad Saif Elahi
- College of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hashem Ameen Almusa
- Department of Respiratory Care, Dr. Sulaiman Al Habib Hospital, Riyadh, Saudi Arabia
| | - Ahmed Abu-Zaid
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|