1
|
Kahveci EF, Colvin Zielen AM, Gibbs WJ, McIntyre CA, Modi R, Johnstonbaugh HZ, Washington TH, Brown DR, Hockman MR, Rossman NR, Jensen-Seaman MI. Comparative functional analyses of the prostate-specific KLK3 enzyme in primates reveal the impact of sexual selection. Evolution 2025; 79:611-624. [PMID: 39878341 PMCID: PMC11965614 DOI: 10.1093/evolut/qpaf012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 01/10/2025] [Accepted: 01/21/2025] [Indexed: 01/31/2025]
Abstract
Male reproductive proteins frequently evolve rapidly in animals, potentially due to adaptive evolution driven by sperm competition, polyspermy avoidance, or pathogen defense. Alternatively, elevated rates of protein change may be due to relaxed constraint. The prostate-specific protease KLK3 has experienced dynamic evolution since its origin stemming from a gene duplication in the ancestor of all Old World primates, with instances of rapid evolution, stasis, and pseudogenization. As we demonstrate with functional assays using recombinant proteins, these changes have resulted in a chimpanzee KLK3 ortholog with greater enzyme velocity and higher efficiency than other apes, including humans. Reduced enzyme efficiency was observed in gorillas and gibbons who both possess a chimeric KLK2/KLK3 enzyme resulting from independent genomic deletions. The relative efficiency of KLK3 homologs among these species correlates well with their presumed levels of sperm competition. Furthermore, the reconstructed protein of the human-chimpanzee last common ancestor has enzyme kinetics identical to modern humans, suggesting that the observed functional differences between humans and chimpanzees are derived in the latter and allowing us to tentatively speculate that their common ancestor did not possess a polygynandrous mating system similar to modern chimpanzees.
Collapse
Affiliation(s)
- Emine F Kahveci
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Amanda M Colvin Zielen
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, and UPMC Magee Center of Reproduction and Transplantation, Pittsburgh, PA, United States
| | - William J Gibbs
- College of Criminology and Criminal Justice, Florida State University, Tallahassee, FL, United States
| | - Clancy A McIntyre
- Department of Biology, Pennsylvania State University, University Park, PA, United States
| | - Raahi Modi
- Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, United States
| | - Hannah Z Johnstonbaugh
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland Baltimore, Baltimore, MD, United States
| | - Thomas H Washington
- Genetic Counseling, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - David R Brown
- Interpace Biosciences, Pittsburgh, PA, United States
| | - Megan R Hockman
- Systems Genomics Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Neil R Rossman
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA, United States
| | | |
Collapse
|
2
|
Sawada H, Saito T, Shimada Y, Nishimura H. Fertilization mechanisms in hermaphroditic ascidians and nematodes: Common mechanisms with mammals and plants. Curr Top Dev Biol 2025; 162:55-114. [PMID: 40180517 DOI: 10.1016/bs.ctdb.2025.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Most animals have male and female, whereas flowering plants are hermaphrodites. Exceptionally, a small population of invertebrates, including ascidians and nematodes, has hermaphrodite in reproductive strategies. Several ascidians exhibit strict self-sterility (or self-incompatibility), similar to flowering plants. Such a self-incompatibility mechanism in ascidian has been revealed to be very similar to those of flowering plants. Here, we describe the mechanisms of ascidian fertilization shared with invertebrates and mammals, as well as with plants. In the nematode Caenorhabditis elegans, having self-fertile hermaphrodite and male, several genes responsible for fertilization are homologous to those of mammals. Thus, novel proteins responsible for fertilization will be easily disclosed by the analyses of sterile mutants. In this review, we focus on the same or similar reproductive strategies by shedding lights on the common mechanisms of fertilization, particularly in hermaphrodites.
Collapse
Affiliation(s)
- Hitoshi Sawada
- Graduate School of Science, Nagoya University, Nagoya, Japan.
| | - Takako Saito
- Department of Applied Life Sciences, Faculty of Agriculture, Shizuoka University, Shizuoka, Japan.
| | - Yoshihiro Shimada
- Department of Life Science, Faculty of Science and Engineering, Setsunan University, Neyagawa, Osaka, Japan
| | - Hitoshi Nishimura
- Department of Life Science, Faculty of Science and Engineering, Setsunan University, Neyagawa, Osaka, Japan.
| |
Collapse
|
3
|
Luo H, Wang Y, Huang J, Miao B, Zhang H, Luo X, You W, Lu Y, Cai M, Ke C. Intraspecific variation and functional study of VERL polymorphism in Pacific abalone (Haliotis discus hannai Ino) and giant abalone (H. gigantea Gmelin). Int J Biol Macromol 2025; 296:139677. [PMID: 39793801 DOI: 10.1016/j.ijbiomac.2025.139677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 01/07/2025] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
Sperm and eggs have interacting proteins on their surfaces that affect their compatibility during fertilization. These gamete recognition proteins (GRPs) are typically polymorphic within species, resulting in variations in gamete affinity. This study presents the full-length sequence of VERL, an egg vitelline envelope receptor for sperm lysin, in Pacific abalone (Haliotis discus hannai Ino) and giant abalone (Haliotis gigantea Gmelin). The full-length VERL cDNA sequence in Pacific abalone (11,373 bp) encodes 3790 amino acids, most of which are organized into 21 tandem repeats. In giant abalone, the VERL spans 9405 bp and encodes 3134 amino acids, including 17 tandem repeats. By resolving the nucleotide polymorphisms from resequencing data into haplotypes, high allelic diversity was found in VERL domain repeats 1-2 in both species. Further analysis of intraspecific variation in this region revealed that the alleles of VERL repeats 1-2 in Pacific abalone clustered into two clades, yet no significant divergence was observed among the three Pacific abalone geographic populations. In contrast, alleles in giant abalone were subdivided into two distinct branches, separated by a maximum of 12 amino acid substitutions. Notably, this study provides the first evidence of assortative mating between male and female gametes based on VERL genotypes in giant abalone. Overall, this study revealed the amino acid polymorphism of VERL in two abalone species and its functional effects on fertilization potential. These findings provide a foundation for future research on gamete recognition mechanisms and support selective breeding strategies to enhance abalone reproductive efficiency.
Collapse
Affiliation(s)
- Hanjiao Luo
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Yi Wang
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Jie Huang
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Benben Miao
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Haichen Zhang
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Xuan Luo
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Weiwei You
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Ying Lu
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Mingyi Cai
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, Fujian, China.
| | - Caihuan Ke
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
4
|
Peng L, Zheng JH, Liu LL, Huang MQ, Cao MH, Cui JD, Vasseur L, You MS, Zou MM. Identification of seminal fluid proteins and reproductive function of trypsin-1 in male Plutella xylostella. Int J Biol Macromol 2025; 306:141450. [PMID: 40015405 DOI: 10.1016/j.ijbiomac.2025.141450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/20/2025] [Accepted: 02/23/2025] [Indexed: 03/01/2025]
Abstract
Insect seminal fluid proteins (SFPs) are primary factors affecting physiology and behavior in both sexes, making them valuable targets for pest control. However, SFPs have not been fully characterized in the Plutella xylostella, a global pest that attacks cruciferous crops. Here, 75 putative SFPs were identified in P. xylostella, compared to 10 orthologs in Drosophila melanogaster, 10 in Nilaparvata lugens, 5 in Apis mellifera, and 43 in Heliconius melpomene. Analyses of Ka/Ks suggested that SFPs had high evolution rates. Proteases (22/75, 29.3 %) accounted for the highest proportion of P. xylostella SFPs, including 16 trypsins. The phylogenetic analysis showed that most trypsins from P. xylostella and H. melpomene belonged to the same cluster. SFP04 (trypsin-1) was orthologous to the SFP ADJ58550.1 in H. melpomene. PxTry1 was specifically expressed in adult males and their accessory glands but was also detected in females after mating. A CRISPR/Cas9-induced PxTry1 homozygous mutant strain with a 22-base pair nucleotides insertion was generated. PxTry1 deletion resulted in swollen testes, smaller spermatophores, and abnormal sperm, thus reducing the P. xylostella egg production and hatching. These results clarify the role of insect SFPs in evolution and reproduction and identify a promising target for pest control based on genetic regulation.
Collapse
Affiliation(s)
- Lu Peng
- State Key Laboratory of Agricultural and Forestry Biosecurity, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; International Joint Research Laboratory of Ecological Pest Control of Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, PR China; Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Jun-Hao Zheng
- State Key Laboratory of Agricultural and Forestry Biosecurity, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; International Joint Research Laboratory of Ecological Pest Control of Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, PR China; Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Li-Li Liu
- State Key Laboratory of Agricultural and Forestry Biosecurity, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; International Joint Research Laboratory of Ecological Pest Control of Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, PR China; Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Meng-Qi Huang
- State Key Laboratory of Agricultural and Forestry Biosecurity, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; International Joint Research Laboratory of Ecological Pest Control of Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, PR China; Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Min-Hui Cao
- State Key Laboratory of Agricultural and Forestry Biosecurity, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; International Joint Research Laboratory of Ecological Pest Control of Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, PR China; Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Jin-Dong Cui
- State Key Laboratory of Agricultural and Forestry Biosecurity, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; International Joint Research Laboratory of Ecological Pest Control of Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, PR China; Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Liette Vasseur
- International Joint Research Laboratory of Ecological Pest Control of Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; Department of Biological Sciences, Brock University, St. Catharines, Ontario L2S 3A1, Canada
| | - Min-Sheng You
- State Key Laboratory of Agricultural and Forestry Biosecurity, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; International Joint Research Laboratory of Ecological Pest Control of Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, PR China; Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| | - Ming-Min Zou
- State Key Laboratory of Agricultural and Forestry Biosecurity, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; Crops Research Institute, Guangdong Academy of Agricultural Science, Guangzhou 510640, PR China.
| |
Collapse
|
5
|
Marshall KL, Stadtmauer DJ, Maziarz J, Wagner GP, Lesch BJ. Evolutionary innovations in germline biology of placental mammals identified by transcriptomics of first-wave spermatogenesis in opossum. Dev Cell 2025; 60:646-664.e8. [PMID: 39536760 PMCID: PMC11859772 DOI: 10.1016/j.devcel.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/26/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
Mammalian spermatogenesis is a highly stereotyped and conserved developmental process that is essential for fitness. At the same time, gene expression in spermatogenic cells is rapidly evolving. This combination of features has been suggested to drive rapid fixation of new gene expression patterns. Using a high-resolution dataset comprising bulk and single-cell data from juvenile and adult testes of the opossum Monodelphis domestica, a model marsupial, we define the developmental timing of the spermatogenic first wave in opossum and delineate conserved and divergent gene expression programs across the placental-marsupial split by comparison to equivalent data from mouse, a model placental mammal. Epigenomic data confirmed divergent regulation at the level of transcription, and comparison to data from four additional amniote species identified hundreds of genes with evidence of rapid fixation of expression. This gene set encompasses known and previously undescribed regulators of spermatogenic development.
Collapse
Affiliation(s)
- Kira L Marshall
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Daniel J Stadtmauer
- Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect Street, New Haven, CT 06511, USA; Yale Systems Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Jamie Maziarz
- Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect Street, New Haven, CT 06511, USA; Yale Systems Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Günter P Wagner
- Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect Street, New Haven, CT 06511, USA; Yale Systems Biology Institute, Yale University, West Haven, CT 06516, USA; Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT 06510, USA
| | - Bluma J Lesch
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA; Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT 06510, USA; Yale Cancer Center, Yale School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
6
|
Pryzhkova MV, Skinner MW, Candelaria JI, Wellard SR, Jordan PW. The use of deidentified organ donor testes for research. Andrology 2025. [PMID: 39912553 DOI: 10.1111/andr.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 01/21/2025] [Accepted: 01/27/2025] [Indexed: 02/07/2025]
Abstract
Our knowledge of testis development and function mainly comes from research using mammalian model organisms, primarily the mouse. However, there are integral differences between men and other mammalian species regarding cellular composition and expression profiles during fetal and post-natal testis development and in the mature testis. Therefore, to specifically learn more about human testis development and function, there is a need to use human testis tissue for research. Human testicular tissues that have been donated for research have allowed extensive molecular and cytological assessments, as well as single-cell transcriptome and epigenome analyses. These tissues have also been used for the development of cell technologies and in vitro models that aim to improve infertility treatments and diagnostics. Biopsied material taken from patients and designated for research is usually very small in size and is unsuitable for comprehensive studies. On the other hand, research using whole testes obtained from deceased, deidentified donors has become a valuable resource to assess conservation between humans and other organisms and identify human-specific phenomena. This review discusses the acquisition of donated deidentified human testes and their use for basic science research.
Collapse
Affiliation(s)
- Marina V Pryzhkova
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Marnie W Skinner
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Juliana I Candelaria
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Stephen R Wellard
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Philip W Jordan
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
- School of Biomedicine, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
7
|
Komondor KM, Carlson AE. Fertilization and the fast block to polyspermy in the African Clawed Frog, Xenopus laevis: A historical perspective. Curr Top Dev Biol 2025; 162:143-163. [PMID: 40180508 DOI: 10.1016/bs.ctdb.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
The African clawed frog, Xenopus laevis, has long been a model organism for studying fertilization due to its large and abundant eggs that are easily manipulated and rapidly undergo embryonic development. Research on this model organism has provided significant insights into the mechanisms that ensure successful fertilization, including the prevention of polyspermy. Polyspermy, the fertilization of an egg by multiple sperm, poses a significant threat to successful embryonic development in most sexually reproducing animals. To counter this, eggs have evolved mechanisms known as polyspermy blocks, which prevent additional sperm from entering once fertilization has occurred. This review focuses on fertilization research in general, and specifically on studies of the fast block to polyspermy in X. laevis. We trace key discoveries and experimental advancements that have shaped our current understanding. Indeed, studies on X. laevis have revealed that fertilization triggers a depolarization of the egg membrane mediated by an efflux of Cl- through the Ca2+-activated Cl- channel TMEM16A, effectively preventing polyspermy. Despite these advances, several questions remain regarding the precise molecular interactions and signaling pathways involved. Continued research on X. laevis promises to uncover further details about the earliest events in embryogenesis and the voltage-dependent mechanisms of fertilization, offering broader insights into reproductive biology across species.
Collapse
Affiliation(s)
- Kayla M Komondor
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| | - Anne E Carlson
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
8
|
Dong Y, Wei Q, Sun G, Gao X, Lyu T, Wang L, Zhou S, Wang X, Shang Y, Shi L, Zhang H. Evolutionary analysis of genes associated with the sense of balance in semi-aquatic mammals. BMC Ecol Evol 2025; 25:8. [PMID: 39794719 PMCID: PMC11721335 DOI: 10.1186/s12862-024-02345-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 12/20/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND Semi-aquatic mammals represent a transitional phase in the evolutionary spectrum between terrestrial and aquatic mammals. The sense of balance is crucial for mammalian locomotion, and in semi-aquatic mammals, the structural foundation of this sense (the vestibular system) shows distinct morphological adaptations to both aquatic and terrestrial environments compared to their terrestrial counterparts. Despite this, the precise molecular mechanisms driving these adaptations remain elusive. Our study endeavors to unravel the genetic components associated with the sense of balance in semi-aquatic mammals and to examine the evolutionary trajectories of these genes, shed light on the molecular mechanisms underlying the adaptive evolution of balance perception in semi-aquatic mammals. RESULTS We selected 42 mammal species across 20 orders, 38 families, and 42 genera for analysis. We analyzed a comprehensive set of 116 genes related to the vestibular system's development or function. Our findings indicate that 27 of these genes likely experienced adaptive evolution in semi-aquatic mammals. Particularly, genes such as SLC26A2, SOX10, MYCN, and OTX1 are implicated in collectively orchestrating morphological adaptations in the semicircular canals to suit semi-aquatic environments. Additionally, genes associated with otolith development, including SLC26A2, OC90, and OTOP1, likely regulate otolith sensitivity across various locomotor modes. Moreover, genes linked to vestibular disorders, such as GJB2, GJB6, and USH1C, may provide a molecular foundation for averting vertigo amidst intricate locomotor scenarios in semi-aquatic mammals. CONCLUSIONS Our research offers insights into the molecular mechanisms underlying the evolution of the sense of balance in semi-aquatic mammals, while also providing a new research direction for the adaptive evolution of mammals undergoing a secondary transition to an aquatic lifestyle.
Collapse
Affiliation(s)
- Yuehuan Dong
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, China
| | - Qinguo Wei
- College of Life Sciences, Qufu Normal University, Qufu, 273165, China
| | - Guolei Sun
- College of Life Sciences, Qufu Normal University, Qufu, 273165, China
| | - Xiaodong Gao
- College of Life Sciences, Qufu Normal University, Qufu, 273165, China
| | - Tianshu Lyu
- College of Life Sciences, Qufu Normal University, Qufu, 273165, China
| | - Lidong Wang
- College of Life Sciences, Qufu Normal University, Qufu, 273165, China
| | - Shengyang Zhou
- College of Life Sciences, Qufu Normal University, Qufu, 273165, China
| | - Xibao Wang
- College of Life Sciences, Qufu Normal University, Qufu, 273165, China
| | - Yongquan Shang
- College of Life Sciences, Qufu Normal University, Qufu, 273165, China
| | - Lupeng Shi
- College of Life Sciences, Qufu Normal University, Qufu, 273165, China
| | - Honghai Zhang
- College of Life Sciences, Qufu Normal University, Qufu, 273165, China.
| |
Collapse
|
9
|
Balastegui-Alarcón M, Moros-Nicolás C, Ballesta J, Izquierdo-Rico MJ, Chevret P, Avilés M. Molecular Evolution of the Ovgp1 Gene in the Subfamily Murinae. Animals (Basel) 2024; 15:55. [PMID: 39794998 PMCID: PMC11719014 DOI: 10.3390/ani15010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/16/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
OGP, encoded by the Ovgp1 gene, is the major non-serum oviductal protein in most mammals. In the genome of Rattus norvegicus, Ovgp1 has been identified as a pseudogene. However, Mus musculus presents a functional gene. As the rat and the mouse belong to the subfamily Murinae, Ovgp1 has probably been lost after their divergence. This study aims to determine when the pseudogenization event occurred and which proteins could replace its function. To attain that, the potential expression of members belonging to the GH18 family is investigated in the rat oviduct by means of molecular and proteomic analyses. Specific Ovgp1 regions are sequenced in different murine rodent species. The analysis reveals the presence of stop codons only in some species of the Rattini tribe, suggesting that the majority of the murine species present a functional gene. Thus, the pseudogenization of Ovgp1 could be dated back to around 10 Mya, after the divergence of the Rattini tribe. The expression of several genes and proteins of the GH18 family, such as Chia, Chit1, Chi3l1, and Chid1, are detected in the rat oviduct. This study opens the door for further research on GH18 family proteins that mimic the OGP functions in species where Ovgp1 is pseudogenized.
Collapse
Affiliation(s)
- Miriam Balastegui-Alarcón
- Departamento de Biología Celular e Histología, Facultad de Medicina y de Enfermería, Universidad de Murcia, 30120 Murcia, Spain; (M.B.-A.); (C.M.-N.); (J.B.); (M.J.I.-R.)
- Instituto Murciano de Investigación Biosanitaria Pascual Parrilla (IMIB), 30120 Murcia, Spain
| | - Carla Moros-Nicolás
- Departamento de Biología Celular e Histología, Facultad de Medicina y de Enfermería, Universidad de Murcia, 30120 Murcia, Spain; (M.B.-A.); (C.M.-N.); (J.B.); (M.J.I.-R.)
- Instituto Murciano de Investigación Biosanitaria Pascual Parrilla (IMIB), 30120 Murcia, Spain
| | - José Ballesta
- Departamento de Biología Celular e Histología, Facultad de Medicina y de Enfermería, Universidad de Murcia, 30120 Murcia, Spain; (M.B.-A.); (C.M.-N.); (J.B.); (M.J.I.-R.)
- Instituto Murciano de Investigación Biosanitaria Pascual Parrilla (IMIB), 30120 Murcia, Spain
| | - Mª José Izquierdo-Rico
- Departamento de Biología Celular e Histología, Facultad de Medicina y de Enfermería, Universidad de Murcia, 30120 Murcia, Spain; (M.B.-A.); (C.M.-N.); (J.B.); (M.J.I.-R.)
- Instituto Murciano de Investigación Biosanitaria Pascual Parrilla (IMIB), 30120 Murcia, Spain
| | - Pascale Chevret
- Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, CNRS, Université Claude Bernard Lyon 1, Université de Lyon, 69100 Villeurbanne, France
| | - Manuel Avilés
- Departamento de Biología Celular e Histología, Facultad de Medicina y de Enfermería, Universidad de Murcia, 30120 Murcia, Spain; (M.B.-A.); (C.M.-N.); (J.B.); (M.J.I.-R.)
- Instituto Murciano de Investigación Biosanitaria Pascual Parrilla (IMIB), 30120 Murcia, Spain
| |
Collapse
|
10
|
Carlisle JA, Gurbuz DH, Swanson WJ. Recurrent Independent Pseudogenization Events of the Sperm Fertilization Gene ZP3r in Apes and Monkeys. J Mol Evol 2024; 92:695-702. [PMID: 39264464 DOI: 10.1007/s00239-024-10192-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/18/2024] [Indexed: 09/13/2024]
Abstract
Many reproductive proteins show signatures of rapid evolution through sequence divergence and duplication. These features of reproductive genes may complicate the detection of orthologs across taxa, making it difficult to connect studies in model systems to human biology. In mice, ZP3r/sp56 is a binding partner to the egg coat protein ZP3 and may mediate induction of the acrosome reaction, a crucial step in fertilization. In rodents, ZP3r, as a member of the Regulators of Complement Activation cluster, is surrounded by paralogs, some of which have been shown to be evolving under positive selection. Although primate egg coats also contain ZP3, sequence divergence paired with paralogous relationships with neighboring genes has complicated the accurate identification of the human ZP3r ortholog. Here, we phylogenetically and syntenically resolve that the human ortholog of ZP3r is the pseudogene C4BPAP1. We investigate the evolution of this gene within primates. We observe independent pseudogenization events of ZP3r in all Apes with the exception of Orangutans, and independent pseudogenization events in many monkey species. ZP3r in both primates that retain ZP3r and in rodents contains positively selected sites. We hypothesize that redundant mechanisms mediate ZP3 recognition in mammals and ZP3r's relative importance to ZP recognition varies across species.
Collapse
Affiliation(s)
- J A Carlisle
- Department of Genome Sciences, University of Washington, Seattle, USA.
| | - D H Gurbuz
- Department of Genome Sciences, University of Washington, Seattle, USA
| | - W J Swanson
- Department of Genome Sciences, University of Washington, Seattle, USA
| |
Collapse
|
11
|
de Cássia Bisio M, Dos Santos EM, Santos CA, Chahad-Ehlers S, de Brito RA. Molecular evolution and genetic diversity of defective chorion 1 in Anastrepha fraterculus and Anastrepha obliqua (Diptera, Tephritidae). Dev Genes Evol 2024; 234:153-171. [PMID: 39509071 DOI: 10.1007/s00427-024-00723-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/17/2024] [Indexed: 11/15/2024]
Abstract
The family Tephritidae comprises numerous fruit fly species, some of which are economically significant, such as several in the genus Anastrepha. Most pest species in this genus belong to the fraterculus group, characterized by closely related species that are difficult to differentiate due to recent divergence and gene flow. Identifying genetic markers for their study is paramount for understanding the group's evolution and eventual phytosanitary control. Because there is variation in eggshell morphology among species in the genus, the study of the rapidly evolving defective chorion 1 (dec-1) gene, which is crucial for chorion formation and reproduction, could provide relevant information for Anastrepha differentiation. We compared transcriptome sequences of dec-1 from two of the most important pest species in the genus, Anastrepha fraterculus and Anastrepha obliqua to dec-1 sequences from Anastrepha ludens, which was used for structure prediction. Furthermore, we amplified a conserved exon across populations of these species. These data revealed three alternative transcripts in A. fraterculus and A. obliqua, consistent with patterns found in other Tephritidae; we obtained orthologous sequences for these other tephritids from NCBI to investigate patterns of selection affecting this gene at different hierarchical levels using different methods. These analyses show a general pattern of purifying selection across the whole gene and throughout its history at different hierarchical levels, from populations to more distantly related species. That notwithstanding, we still found evidence of positive and episodic diversifying selection at different levels. Different parts of the gene have shown distinct evolutionary rates, which were associated with the diverse proproteins produced by posttranslational changes of DEC-1, with proproteins that are incorporated in the chorion earlier in egg formation being in general more conserved than others that are incorporated later. This correlation appears more evident in certain lineages, including the branch that separates Anastrepha, as well as other internal branches that differentiate species within the genus. Our data showed that this gene shows remarkable variation across its different exons, which has proven to be informative at different evolutionary levels. These changes hold promise not only for studying differentiation in Anastrepha but also for the eventual management of selected pest species.
Collapse
Affiliation(s)
- Mariana de Cássia Bisio
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, Via Washington Luis Km 235, São Carlos, SP, 13565-905, Brazil
| | - Edyane Moraes Dos Santos
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, Via Washington Luis Km 235, São Carlos, SP, 13565-905, Brazil
| | - Camilla Alves Santos
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências - Universidade de São Paulo., São Paulo, SP, 05508-090, Brazil
| | - Samira Chahad-Ehlers
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, Via Washington Luis Km 235, São Carlos, SP, 13565-905, Brazil
| | - Reinaldo Alves de Brito
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, Via Washington Luis Km 235, São Carlos, SP, 13565-905, Brazil.
| |
Collapse
|
12
|
Lim HC, Bennett KFP, Justyn NM, Powers MJ, Long KM, Kingston SE, Lindsay WR, Pease JB, Fuxjager MJ, Bolton PE, Balakrishnan CN, Day LB, Parsons TJ, Brawn JD, Hill GE, Braun MJ. Sequential introgression of a carotenoid processing gene underlies sexual ornament diversity in a genus of manakins. SCIENCE ADVANCES 2024; 10:eadn8339. [PMID: 39565864 PMCID: PMC11578183 DOI: 10.1126/sciadv.adn8339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 10/17/2024] [Indexed: 11/22/2024]
Abstract
In a hybrid zone between two tropical lekking birds, yellow male plumage of one species has introgressed asymmetrically replacing white plumage of another via sexual selection. Here, we present a detailed analysis of the plumage trait to uncover its physical and genetic bases and trace its evolutionary history. We determine that the carotenoid lutein underlies the yellow phenotype and describe microstructural feather features likely to enhance color appearance. These same features reduce predicted water shedding capacity of feathers, a potential liability in the tropics. Through genome-scale DNA sequencing of hybrids and each species in the genus, we identify BCO2 as the major gene responsible for the color polymorphism. The BCO2 gene tree and genome-wide allele frequency patterns suggest that carotenoid-pigmented collars initially arose in a third species and reached the hybrid zone through historical gene flow. Complex interplay between sexual selection and hybridization has thus shaped phenotypes of these species, where conspicuous sexual traits are key to male reproductive success.
Collapse
Affiliation(s)
- Haw Chuan Lim
- Department of Biology, George Mason University, Fairfax, VA 22030, USA
- National Zoo and Conservation Biology Institute, Smithsonian Institution, Washington, DC 20013, USA
| | - Kevin F. P. Bennett
- Department of Biology and Biological Sciences Graduate Program, University of Maryland, College Park, MD 20742, USA
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA
| | - Nicholas M. Justyn
- Department of Biological Sciences, Auburn University, Auburn, AL 36830, USA
| | - Matthew J. Powers
- Department of Biological Sciences, Auburn University, Auburn, AL 36830, USA
| | - Kira M. Long
- Program in Ecology Evolution and Conservation Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | | | - Willow R. Lindsay
- Department of Biology and Interdisciplinary Neuroscience Minor, University of Mississippi, University, MS 38677, USA
| | - James B. Pease
- Department of Biology, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Matthew J. Fuxjager
- Department of Ecology Evolution and Organismal Biology, Brown University, Providence, RI 02912, USA
| | - Peri E. Bolton
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Christopher N. Balakrishnan
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
- Division of Environmental Biology, National Science Foundation, Alexandria, VA 22314, USA
| | - Lainy B. Day
- Department of Biology and Interdisciplinary Neuroscience Minor, University of Mississippi, University, MS 38677, USA
| | - Thomas J. Parsons
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA
| | - Jeffrey D. Brawn
- Department of Natural Resources and Environmental Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Geoffrey E. Hill
- Department of Biological Sciences, Auburn University, Auburn, AL 36830, USA
| | - Michael J. Braun
- Department of Biology and Biological Sciences Graduate Program, University of Maryland, College Park, MD 20742, USA
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA
| |
Collapse
|
13
|
Tosto NM, Rose E, Mason HD, Mank JE, Flanagan SP. Sexual Selection on Non-Ornamental Traits Is Underpinned by Evidence of Genetic Constraints on Sex-Biased Expression in Dusky Pipefish. Mol Ecol 2024:e17550. [PMID: 39400380 DOI: 10.1111/mec.17550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 09/10/2024] [Accepted: 09/26/2024] [Indexed: 10/15/2024]
Abstract
Species lacking distinct secondary sex characteristics, such as differences in size or morphology, are often thought to experience lower levels of sex-specific selection in comparison to highly sexually dimorphic organisms. However, monomorphism in classic visible traits could be a result of genetic or physiological constraints that prevent the sexes from reaching divergent fitness optima. Additionally, biochemical and molecular work have revealed a variety of less easily observed phenotypes that nonetheless exhibit profound dimorphism. Sex-specific selection could act on these more subtle, less visible, traits. We investigate sex-specific selection in the polygynandrous dusky pipefish (Syngnathus floridae), which lacks distinct secondary sexual characteristics such as size, colour and morphological dimorphism. Using experimental breeding populations, we revealed that although males and females have similar opportunities for sexual selection, only males experience significant sexual selection pressures on body size. We also investigated patterns of sex-biased and sex-specific gene expression in gonads, livers and gills, and tested whether genes with highly divergent expression patterns between the sexes are more likely to be tissue-specific, and therefore relieved of genetic constraints. Sex bias in gene expression was widespread, although the reproductive organs had the most sex-biased and sex-specific genes. Sex-specific selection on gene expression in gills was primarily related to immune response, whereas the liver and gonads had a wide variety of cellular processes, as well as reproductive proteins, showing sex-biased expression. These sex-biased genes showed higher organ-specificity in their expression patterns, suggesting that pleiotropic constraints might have historically impacted the evolution of sex-specific expression patterns. Altogether, we find evidence for ongoing and historical sex-specific selection in the dusky pipefish.
Collapse
Affiliation(s)
- Nicole M Tosto
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Emily Rose
- Department of Biology, Valdosta State University, Valdosta, Georgia, USA
| | - Heather D Mason
- Department of Biology, University of Tampa, Tampa, Florida, USA
| | - Judith E Mank
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sarah P Flanagan
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
14
|
Brattig-Correia R, Almeida JM, Wyrwoll MJ, Julca I, Sobral D, Misra CS, Di Persio S, Guilgur LG, Schuppe HC, Silva N, Prudêncio P, Nóvoa A, Leocádio AS, Bom J, Laurentino S, Mallo M, Kliesch S, Mutwil M, Rocha LM, Tüttelmann F, Becker JD, Navarro-Costa P. The conserved genetic program of male germ cells uncovers ancient regulators of human spermatogenesis. eLife 2024; 13:RP95774. [PMID: 39388236 PMCID: PMC11466473 DOI: 10.7554/elife.95774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024] Open
Abstract
Male germ cells share a common origin across animal species, therefore they likely retain a conserved genetic program that defines their cellular identity. However, the unique evolutionary dynamics of male germ cells coupled with their widespread leaky transcription pose significant obstacles to the identification of the core spermatogenic program. Through network analysis of the spermatocyte transcriptome of vertebrate and invertebrate species, we describe the conserved evolutionary origin of metazoan male germ cells at the molecular level. We estimate the average functional requirement of a metazoan male germ cell to correspond to the expression of approximately 10,000 protein-coding genes, a third of which defines a genetic scaffold of deeply conserved genes that has been retained throughout evolution. Such scaffold contains a set of 79 functional associations between 104 gene expression regulators that represent a core component of the conserved genetic program of metazoan spermatogenesis. By genetically interfering with the acquisition and maintenance of male germ cell identity, we uncover 161 previously unknown spermatogenesis genes and three new potential genetic causes of human infertility. These findings emphasize the importance of evolutionary history on human reproductive disease and establish a cross-species analytical pipeline that can be repurposed to other cell types and pathologies.
Collapse
Affiliation(s)
- Rion Brattig-Correia
- Instituto Gulbenkian de CiênciaOeirasPortugal
- Department of Systems Science and Industrial Engineering, Binghamton UniversityNew YorkUnited States
| | - Joana M Almeida
- Instituto Gulbenkian de CiênciaOeirasPortugal
- EvoReproMed Lab, Environmental Health Institute (ISAMB), Associate Laboratory TERRA, Faculty of Medicine, University of LisbonLisbonPortugal
| | - Margot Julia Wyrwoll
- Centre of Medical Genetics, Institute of Reproductive Genetics, University and University Hospital of MünsterMünsterGermany
| | - Irene Julca
- School of Biological Sciences, Nanyang Technological UniversitySingaporeSingapore
| | - Daniel Sobral
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University LisbonLisbonPortugal
- UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University LisbonCaparicaPortugal
| | - Chandra Shekhar Misra
- Instituto Gulbenkian de CiênciaOeirasPortugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de LisboaOeirasPortugal
| | - Sara Di Persio
- Centre of Reproductive Medicine and Andrology, University Hospital MünsterMünsterGermany
| | | | - Hans-Christian Schuppe
- Clinic of Urology, Pediatric Urology and Andrology, Justus-Liebig-UniversityGiessenGermany
| | - Neide Silva
- Instituto Gulbenkian de CiênciaOeirasPortugal
| | - Pedro Prudêncio
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de LisboaLisboaPortugal
| | - Ana Nóvoa
- Instituto Gulbenkian de CiênciaOeirasPortugal
| | | | - Joana Bom
- Instituto Gulbenkian de CiênciaOeirasPortugal
| | - Sandra Laurentino
- Centre of Reproductive Medicine and Andrology, University Hospital MünsterMünsterGermany
| | | | - Sabine Kliesch
- Centre of Reproductive Medicine and Andrology, University Hospital MünsterMünsterGermany
| | - Marek Mutwil
- School of Biological Sciences, Nanyang Technological UniversitySingaporeSingapore
| | - Luis M Rocha
- Instituto Gulbenkian de CiênciaOeirasPortugal
- Department of Systems Science and Industrial Engineering, Binghamton UniversityNew YorkUnited States
| | - Frank Tüttelmann
- Centre of Medical Genetics, Institute of Reproductive Genetics, University and University Hospital of MünsterMünsterGermany
| | - Jörg D Becker
- Instituto Gulbenkian de CiênciaOeirasPortugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de LisboaOeirasPortugal
| | - Paulo Navarro-Costa
- Instituto Gulbenkian de CiênciaOeirasPortugal
- EvoReproMed Lab, Environmental Health Institute (ISAMB), Associate Laboratory TERRA, Faculty of Medicine, University of LisbonLisbonPortugal
| |
Collapse
|
15
|
Garlovsky MD, Whittington E, Albrecht T, Arenas-Castro H, Castillo DM, Keais GL, Larson EL, Moyle LC, Plakke M, Reifová R, Snook RR, Ålund M, Weber AAT. Synthesis and Scope of the Role of Postmating Prezygotic Isolation in Speciation. Cold Spring Harb Perspect Biol 2024; 16:a041429. [PMID: 38151330 PMCID: PMC11444258 DOI: 10.1101/cshperspect.a041429] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
How barriers to gene flow arise and are maintained are key questions in evolutionary biology. Speciation research has mainly focused on barriers that occur either before mating or after zygote formation. In comparison, postmating prezygotic (PMPZ) isolation-a barrier that acts after gamete release but before zygote formation-is less frequently investigated but may hold a unique role in generating biodiversity. Here we discuss the distinctive features of PMPZ isolation, including the primary drivers and molecular mechanisms underpinning PMPZ isolation. We then present the first comprehensive survey of PMPZ isolation research, revealing that it is a widespread form of prezygotic isolation across eukaryotes. The survey also exposes obstacles in studying PMPZ isolation, in part attributable to the challenges involved in directly measuring PMPZ isolation and uncovering its causal mechanisms. Finally, we identify outstanding knowledge gaps and provide recommendations for improving future research on PMPZ isolation. This will allow us to better understand the nature of this often-neglected reproductive barrier and its contribution to speciation.
Collapse
Affiliation(s)
- Martin D Garlovsky
- Applied Zoology, Faculty of Biology, Technische Universität Dresden, Dresden 01062, Germany
| | | | - Tomas Albrecht
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno 60365, Czech Republic
- Department of Zoology, Faculty of Science, Charles University, Prague 128 00, Czech Republic
| | - Henry Arenas-Castro
- School of Biological Sciences, University of Queensland, St Lucia 4072, Queensland, Australia
| | - Dean M Castillo
- Department of Biological Sciences, Miami University, Hamilton, Ohio 45011, USA
| | - Graeme L Keais
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Erica L Larson
- Department of Biological Sciences, University of Denver, Denver, Colorado 80208, USA
| | - Leonie C Moyle
- Department of Biology, Indiana University Bloomington, Indiana 47405, USA
| | - Melissa Plakke
- Division of Science, Mathematics, and Technology, Governors State University, University Park, Illinois 60484, USA
| | - Radka Reifová
- Department of Zoology, Faculty of Science, Charles University, Prague 128 00, Czech Republic
| | - Rhonda R Snook
- Department of Zoology, Stockholm University, Stockholm 109 61, Sweden
| | - Murielle Ålund
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala 75236, Sweden
| | - Alexandra A-T Weber
- Department of Aquatic Ecology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf 8600, Zürich, Switzerland
| |
Collapse
|
16
|
Mason C, Tschirren B, Hemmings N. Effects of female-specific selection for reproductive investment on male fertility traits. J Evol Biol 2024; 37:1113-1124. [PMID: 39110095 DOI: 10.1093/jeb/voae095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/05/2024] [Accepted: 08/02/2024] [Indexed: 08/29/2024]
Abstract
Despite sharing an autosomal genome, the often divergent reproductive strategies of males and females cause the selection to act in a sex-specific manner. Selection acting on one sex can have negative, positive, or neutral fitness consequences on the opposite sex. Here, we test how female-limited selection on reproductive investment in Japanese quail (Coturnix japonica) affects male fertility-related traits. Despite there being no difference in the size of males' testes from lines selected for high female reproductive investment (H-line) or low female reproductive investment (L-line), in both lines, the left testis had a greater volume of sperm-producing tissue. Since H-line females have a larger left-side restricted oviduct, this suggests a positive genetic correlation between male and female gonad function and that internal testis structure is a target of sexual selection. However, despite H-line males having previously been found to have greater fertilization success in a competitive scenario, we found little evidence of a difference between the lines in sperm number, motility, velocity, length, or the number of sperm that reached the ova. Precopulatory cues and/or the role of seminal fluid in sperm motility may thus be more likely to contribute to the H-line male fertilization advantage in this species.
Collapse
Affiliation(s)
- Chloe Mason
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Barbara Tschirren
- Centre for Ecology and Conservation, University of Exeter, Penryn, United Kingdom
| | - Nicola Hemmings
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
17
|
Cutter AD. Beyond Haldane's rule: Sex-biased hybrid dysfunction for all modes of sex determination. eLife 2024; 13:e96652. [PMID: 39158559 PMCID: PMC11333046 DOI: 10.7554/elife.96652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 08/06/2024] [Indexed: 08/20/2024] Open
Abstract
Haldane's rule occupies a special place in biology as one of the few 'rules' of speciation, with empirical support from hundreds of species. And yet, its classic purview is restricted taxonomically to the subset of organisms with heteromorphic sex chromosomes. I propose explicit acknowledgement of generalized hypotheses about Haldane's rule that frame sex bias in hybrid dysfunction broadly and irrespective of the sexual system. The consensus view of classic Haldane's rule holds that sex-biased hybrid dysfunction across taxa is a composite phenomenon that requires explanations from multiple causes. Testing of the multiple alternative hypotheses for Haldane's rule is, in many cases, applicable to taxa with homomorphic sex chromosomes, environmental sex determination, haplodiploidy, and hermaphroditism. Integration of a variety of biological phenomena about hybrids across diverse sexual systems, beyond classic Haldane's rule, will help to derive a more general understanding of the contributing forces and mechanisms that lead to predictable sex biases in evolutionary divergence and speciation.
Collapse
Affiliation(s)
- Asher D Cutter
- Department of Ecology & Evolutionary Biology, University of TorontoTorontoCanada
| |
Collapse
|
18
|
Papachristos K, Sayadi A, Arnqvist G. Comparative Genomic Analysis of the Pattern of Evolution of Male and Female Reproductive Proteins in Seed Beetles. Genome Biol Evol 2024; 16:evae143. [PMID: 38941482 PMCID: PMC11251426 DOI: 10.1093/gbe/evae143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/10/2024] [Accepted: 06/26/2024] [Indexed: 06/30/2024] Open
Abstract
Male seminal fluid proteins often show signs of positive selection and divergent evolution, believed to reflect male-female coevolution. Yet, our understanding of the predicted concerted evolution of seminal fluid proteins and female reproductive proteins is limited. We sequenced, assembled, and annotated the genome of two species of seed beetles allowing a comparative analysis of four closely related species of these herbivorous insects. We compare the general pattern of evolution in genes encoding seminal fluid proteins and female reproductive proteins with those in digestive protein genes and well-conserved reference genes. We found that female reproductive proteins showed an overall ratio of nonsynonymous to synonymous substitutions (ω) similar to that of conserved genes, while seminal fluid proteins and digestive proteins exhibited higher overall ω values. Further, seminal fluid proteins and digestive proteins showed a higher proportion of sites putatively under positive selection, and explicit tests showed no difference in relaxed selection between protein types. Evolutionary rate covariation analyses showed that evolutionary rates among seminal fluid proteins were on average more closely correlated with those in female reproductive proteins than with either digestive or conserved genes. Gene expression showed the expected negative covariation with ω values, except for male-biased genes where this negative relationship was reversed. In conclusion, seminal fluid proteins showed relatively rapid evolution and signs of positive selection. In contrast, female reproductive proteins evolved at a lower rate under selective constraints, on par with genes known to be well conserved. Although our findings provide support for concerted evolution of seminal fluid proteins and female reproductive proteins, they also suggest that these two classes of proteins evolve under partly distinct selective regimes.
Collapse
Affiliation(s)
| | - Ahmed Sayadi
- Rheumatology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Göran Arnqvist
- Animal Ecology, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| |
Collapse
|
19
|
Whittle CA, Extavour CG. Gene Protein Sequence Evolution Can Predict the Rapid Divergence of Ovariole Numbers in the Drosophila melanogaster Subgroup. Genome Biol Evol 2024; 16:evae118. [PMID: 38848313 PMCID: PMC11272079 DOI: 10.1093/gbe/evae118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/01/2024] [Accepted: 05/30/2024] [Indexed: 06/09/2024] Open
Abstract
Ovaries play key roles in fitness and evolution: they are essential female reproductive structures that develop and house the eggs in sexually reproducing animals. In Drosophila, the mature ovary contains multiple tubular egg-producing structures known as ovarioles. Ovarioles arise from somatic cellular structures in the larval ovary called terminal filaments (TFs), formed by TF cells and subsequently enclosed by sheath (SH) cells. As in many other insects, ovariole number per female varies extensively in Drosophila. At present, however, there is a striking gap of information on genetic mechanisms and evolutionary forces that shape the well-documented rapid interspecies divergence of ovariole numbers. To address this gap, here we studied genes associated with Drosophila melanogaster ovariole number or functions based on recent experimental and transcriptional datasets from larval ovaries, including TFs and SH cells, and assessed their rates and patterns of molecular evolution in five closely related species of the melanogaster subgroup that exhibit species-specific differences in ovariole numbers. From comprehensive analyses of protein sequence evolution (dN/dS), branch-site positive selection, expression specificity (tau), and phylogenetic regressions (phylogenetic generalized least squares), we report evidence of 42 genes that showed signs of playing roles in the genetic basis of interspecies evolutionary change of Drosophila ovariole number. These included the signaling genes upd2 and Ilp5 and extracellular matrix genes vkg and Col4a1, whose dN/dS predicted ovariole numbers among species. Together, we propose a model whereby a set of ovariole-involved gene proteins have an enhanced evolvability, including adaptive evolution, facilitating rapid shifts in ovariole number among Drosophila species.
Collapse
Affiliation(s)
- Carrie A Whittle
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Cassandra G Extavour
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
20
|
Zhao Q, Zheng Y, Li Y, Shi L, Zhang J, Ma D, You M. An Orphan Gene Enhances Male Reproductive Success in Plutella xylostella. Mol Biol Evol 2024; 41:msae142. [PMID: 38990889 PMCID: PMC11290247 DOI: 10.1093/molbev/msae142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 06/28/2024] [Accepted: 07/05/2024] [Indexed: 07/13/2024] Open
Abstract
Plutella xylostella exhibits exceptional reproduction ability, yet the genetic basis underlying the high reproductive capacity remains unknown. Here, we demonstrate that an orphan gene, lushu, which encodes a sperm protein, plays a crucial role in male reproductive success. Lushu is located on the Z chromosome and is prevalent across different P. xylostella populations worldwide. We subsequently generated lushu mutants using transgenic CRISPR/Cas9 system. Knockout of Lushu results in reduced male mating efficiency and accelerated death in adult males. Furthermore, our findings highlight that the deficiency of lushu reduced the transfer of sperms from males to females, potentially resulting in hindered sperm competition. Additionally, the knockout of Lushu results in disrupted gene expression in energy-related pathways and elevated insulin levels in adult males. Our findings reveal that male reproductive performance has evolved through the birth of a newly evolved, lineage-specific gene with enormous potentiality in fecundity success. These insights hold valuable implications for identifying the target for genetic control, particularly in relation to species-specific traits that are pivotal in determining high levels of fecundity.
Collapse
Affiliation(s)
- Qian Zhao
- State Key Laboratory for Ecological Pest Control of Fujian/Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
| | - Yahong Zheng
- State Key Laboratory for Ecological Pest Control of Fujian/Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yiying Li
- State Key Laboratory for Ecological Pest Control of Fujian/Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lingping Shi
- State Key Laboratory for Ecological Pest Control of Fujian/Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jing Zhang
- State Key Laboratory for Ecological Pest Control of Fujian/Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
| | - Dongna Ma
- State Key Laboratory for Ecological Pest Control of Fujian/Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Minsheng You
- State Key Laboratory for Ecological Pest Control of Fujian/Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
| |
Collapse
|
21
|
Voss ER, Nachman MW. Mating system variation and gene expression in the male reproductive tract of Peromyscus mice. Mol Ecol 2024:e17433. [PMID: 39031829 PMCID: PMC11662088 DOI: 10.1111/mec.17433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/14/2024] [Accepted: 05/31/2024] [Indexed: 07/22/2024]
Abstract
Genes involved in reproduction often evolve rapidly at the sequence level due to postcopulatory sexual selection (PCSS) driven by male-male competition and male-female sexual conflict, but the impact of PCSS on gene expression has been under-explored. Further, though multiple tissues contribute to male reproductive success, most studies have focused on the testes. To explore the influence of mating system variation on reproductive tract gene expression in natural populations, we captured adult males from monogamous Peromyscus californicus and polygynandrous P. boylii and P. maniculatus. We generated RNAseq libraries, quantified gene expression in the testis, seminal vesicle, epididymis, and liver, and identified 3627 mating system-associated differentially expressed genes (MS-DEGs), where expression shifted in the same direction in P. maniculatus and P. boylii relative to P. californicus. Gene expression variation was most strongly associated with mating behaviour in the seminal vesicles, where 89% of differentially expressed genes were MS-DEGs, including the key seminal fluid proteins Svs2 and Pate4. We also used published rodent genomes to test for positive and relaxed selection on Peromyscus-expressed genes. Though we did not observe more overlap than expected by chance between MS-DEGs and positively selected genes, 203 MS-DEGs showed evidence of positive selection. Fourteen reproductive genes were under tree-wide positive selection but convergent relaxed selection in P. californicus and Microtus ochrogaster, a distantly related monogamous species. Changes in transcript abundance and gene sequence evolution in association with mating behaviour suggest that male mice may respond to sexual selection intensity by altering aspects of sperm motility, sperm-egg binding and copulatory plug formation.
Collapse
Affiliation(s)
- Erin R Voss
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, California, USA
| | - Michael W Nachman
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
22
|
Majane AC, Cridland JM, Blair LK, Begun DJ. Evolution and genetics of accessory gland transcriptome divergence between Drosophila melanogaster and D. simulans. Genetics 2024; 227:iyae039. [PMID: 38518250 PMCID: PMC11151936 DOI: 10.1093/genetics/iyae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 08/27/2023] [Accepted: 02/15/2024] [Indexed: 03/24/2024] Open
Abstract
Studies of allele-specific expression in interspecific hybrids have provided important insights into gene-regulatory divergence and hybrid incompatibilities. Many such investigations in Drosophila have used transcriptome data from complex mixtures of many tissues or from gonads, however, regulatory divergence may vary widely among species, sexes, and tissues. Thus, we lack sufficiently broad sampling to be confident about the general biological principles of regulatory divergence. Here, we seek to fill some of these gaps in the literature by characterizing regulatory evolution and hybrid misexpression in a somatic male sex organ, the accessory gland, in F1 hybrids between Drosophila melanogaster and D. simulans. The accessory gland produces seminal fluid proteins, which play an important role in male and female fertility and may be subject to adaptive divergence due to male-male or male-female interactions. We find that trans differences are relatively more abundant than cis, in contrast to most of the interspecific hybrid literature, though large effect-size trans differences are rare. Seminal fluid protein genes have significantly elevated levels of expression divergence and tend to be regulated through both cis and trans divergence. We find limited misexpression (over- or underexpression relative to both parents) in this organ compared to most other Drosophila studies. As in previous studies, male-biased genes are overrepresented among misexpressed genes and are much more likely to be underexpressed. ATAC-Seq data show that chromatin accessibility is correlated with expression differences among species and hybrid allele-specific expression. This work identifies unique regulatory evolution and hybrid misexpression properties of the accessory gland and suggests the importance of tissue-specific allele-specific expression studies.
Collapse
Affiliation(s)
- Alex C Majane
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA
| | - Julie M Cridland
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA
| | - Logan K Blair
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA
| | - David J Begun
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA
| |
Collapse
|
23
|
Castellanos MDP, Wickramasinghe CD, Betrán E. The roles of gene duplications in the dynamics of evolutionary conflicts. Proc Biol Sci 2024; 291:20240555. [PMID: 38865605 DOI: 10.1098/rspb.2024.0555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 04/02/2024] [Indexed: 06/14/2024] Open
Abstract
Evolutionary conflicts occur when there is antagonistic selection between different individuals of the same or different species, life stages or between levels of biological organization. Remarkably, conflicts can occur within species or within genomes. In the dynamics of evolutionary conflicts, gene duplications can play a major role because they can bring very specific changes to the genome: changes in protein dose, the generation of novel paralogues with different functions or expression patterns or the evolution of small antisense RNAs. As we describe here, by having those effects, gene duplication might spark evolutionary conflict or fuel arms race dynamics that takes place during conflicts. Interestingly, gene duplication can also contribute to the resolution of a within-locus evolutionary conflict by partitioning the functions of the gene that is under an evolutionary trade-off. In this review, we focus on intraspecific conflicts, including sexual conflict and illustrate the various roles of gene duplications with a compilation of examples. These examples reveal the level of complexity and the differences in the patterns of gene duplications within genomes under different conflicts. These examples also reveal the gene ontologies involved in conflict and the genomic location of the elements of the conflict. The examples provide a blueprint for the direct study of these conflicts or the exploration of the presence of similar conflicts in other lineages.
Collapse
Affiliation(s)
| | | | - Esther Betrán
- Department of Biology, University of Texas at Arlington , Arlington, TX 76019, USA
| |
Collapse
|
24
|
Amaro IA, Wohl MP, Pitcher S, Alfonso-Parra C, Avila FW, Paige AS, Helinski MEH, Duvall LB, Harrington LC, Wolfner MF, McMeniman CJ. Sex peptide receptor is not required for refractoriness to remating or induction of egg laying in Aedes aegypti. Genetics 2024; 227:iyae034. [PMID: 38551457 PMCID: PMC11075561 DOI: 10.1093/genetics/iyae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 02/09/2024] [Indexed: 05/08/2024] Open
Abstract
Across diverse insect taxa, the behavior and physiology of females dramatically changes after mating-processes largely triggered by the transfer of seminal proteins from their mates. In the vinegar fly Drosophila melanogaster, the seminal protein sex peptide (SP) decreases the likelihood of female flies remating and causes additional behavioral and physiological changes that promote fertility including increasing egg production. Although SP is only found in the Drosophila genus, its receptor, sex peptide receptor (SPR), is the widely conserved myoinhibitory peptide (MIP) receptor. To test the functional role of SPR in mediating postmating responses in a non-Drosophila dipteran, we generated 2 independent Spr-knockout alleles in the yellow fever mosquito, Aedes aegypti. Although SPR is needed for postmating responses in Drosophila and the cotton bollworm Helicoverpa armigera, Spr mutant Ae. aegypti show completely normal postmating decreases in remating propensity and increases in egg laying. In addition, injection of synthetic SP or accessory gland homogenate from D. melanogaster into virgin female mosquitoes did not elicit these postmating responses. Our results demonstrate that Spr is not required for these canonical postmating responses in Ae. aegypti, indicating that other, as yet unknown, signaling pathways are likely responsible for these behavioral switches in this disease vector.
Collapse
Affiliation(s)
| | - Margot P Wohl
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Sylvie Pitcher
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| | | | - Frank W Avila
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Andrew S Paige
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | | - Laura B Duvall
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Conor J McMeniman
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
25
|
Arter M, Keeney S. Divergence and conservation of the meiotic recombination machinery. Nat Rev Genet 2024; 25:309-325. [PMID: 38036793 DOI: 10.1038/s41576-023-00669-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2023] [Indexed: 12/02/2023]
Abstract
Sexually reproducing eukaryotes use recombination between homologous chromosomes to promote chromosome segregation during meiosis. Meiotic recombination is almost universally conserved in its broad strokes, but specific molecular details often differ considerably between taxa, and the proteins that constitute the recombination machinery show substantial sequence variability. The extent of this variation is becoming increasingly clear because of recent increases in genomic resources and advances in protein structure prediction. We discuss the tension between functional conservation and rapid evolutionary change with a focus on the proteins that are required for the formation and repair of meiotic DNA double-strand breaks. We highlight phylogenetic relationships on different time scales and propose that this remarkable evolutionary plasticity is a fundamental property of meiotic recombination that shapes our understanding of molecular mechanisms in reproductive biology.
Collapse
Affiliation(s)
- Meret Arter
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Scott Keeney
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
26
|
Sherman CDH, Careau V, Gasparini C, Weston KJ, Evans JP. Population density effects on gamete traits and fertilisation dynamics under varying sperm environments in mussels. Ecol Evol 2024; 14:e11338. [PMID: 38698926 PMCID: PMC11063781 DOI: 10.1002/ece3.11338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/05/2024] [Accepted: 04/12/2024] [Indexed: 05/05/2024] Open
Abstract
Gamete traits can vary widely among species, populations and individuals, influencing fertilisation dynamics and overall reproductive fitness. Sexual selection can play an important role in determining the evolution of gamete traits with local environmental conditions determining the strength and direction of sexual selection. Here, we test for signatures of post-mating selection on gamete traits in relation to population density, and possible interactive effects of population density and sperm concentration on sperm motility and fertilisation rates among natural populations of mussels. Our study shows that males from high-density populations produce smaller sperm compared with males from low-density populations, but we detected no effect of population density on egg size. Our results also reveal that females from low-density populations tended to exhibit lower fertilisation rates across a range of sperm concentrations, although this became less important as sperm concentration increased. Variances in fertilisation success were higher for females than males and the effect of gamete compatibility between males and females increases as sperm concentrations increase. These results suggest that local population density can influence gamete traits and fertilisation dynamics but also highlight the importance of phenotypic plasticity in governing sperm-egg interactions in a highly dynamic selective environment.
Collapse
Affiliation(s)
- Craig D. H. Sherman
- School of Life and Environmental SciencesDeakin UniversityGeelongVictoriaAustralia
| | - Vincent Careau
- Department of BiologyUniversity of OttawaOttawaOntarioCanada
| | | | - Kim J. Weston
- School of Life and Environmental SciencesDeakin UniversityGeelongVictoriaAustralia
| | - Jonathan P. Evans
- Centre for Evolutionary Biology, School of Biological SciencesUniversity of Western AustraliaCrawleyWestern AustraliaAustralia
| |
Collapse
|
27
|
Guo B, Sun Y, Wang Y, Zhang Y, Zheng Y, Xu S, Yang G, Ren W. Evolutionary genetics of pulmonary anatomical adaptations in deep-diving cetaceans. BMC Genomics 2024; 25:339. [PMID: 38575860 PMCID: PMC10993460 DOI: 10.1186/s12864-024-10263-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/27/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND Cetaceans, having experienced prolonged adaptation to aquatic environments, have undergone evolutionary changes in their respiratory systems. This process of evolution has resulted in the emergence of distinctive phenotypic traits, notably the abundance of elastic fibers and thickened alveolar walls in their lungs, which may facilitate alveolar collapse during diving. This structure helps selective exchange of oxygen and carbon dioxide, while minimizing nitrogen exchange, thereby reducing the risk of DCS. Nevertheless, the scientific inquiry into the mechanisms through which these unique phenotypic characteristics govern the diving behavior of marine mammals, including cetaceans, remains unresolved. RESULTS This study entails an evolutionary analysis of 42 genes associated with pulmonary fibrosis across 45 mammalian species. Twenty-one genes in cetaceans exhibited accelerated evolution, featuring specific amino acid substitutions in 14 of them. Primarily linked to the development of the respiratory system and lung morphological construction, these genes play a crucial role. Moreover, among marine mammals, we identified eight genes undergoing positive selection, and the evolutionary rates of three genes significantly correlated with diving depth. Specifically, the SFTPC gene exhibited convergent amino acid substitutions. Through in vitro cellular experiments, we illustrated that convergent amino acid site mutations in SFTPC contribute positively to pulmonary fibrosis in marine mammals, and the presence of this phenotype can induce deep alveolar collapse during diving, thereby reducing the risk of DCS during diving. CONCLUSIONS The study unveils pivotal genetic signals in cetaceans and other marine mammals, arising through evolution. These genetic signals may influence lung characteristics in marine mammals and have been linked to a reduced risk of developing DCS. Moreover, the research serves as a valuable reference for delving deeper into human diving physiology.
Collapse
Affiliation(s)
- Boxiong Guo
- Jiangsu Key Laboratory for Bioaffiliationersity and Biotechnology, College of Life Sciences, Nanjing Normal University, 210023, Nanjing, China
| | - Yixuan Sun
- Jiangsu Key Laboratory for Bioaffiliationersity and Biotechnology, College of Life Sciences, Nanjing Normal University, 210023, Nanjing, China
| | - Yuehua Wang
- Jiangsu Key Laboratory for Bioaffiliationersity and Biotechnology, College of Life Sciences, Nanjing Normal University, 210023, Nanjing, China
| | - Ya Zhang
- Jiangsu Key Laboratory for Bioaffiliationersity and Biotechnology, College of Life Sciences, Nanjing Normal University, 210023, Nanjing, China
| | - Yu Zheng
- Jiangsu Key Laboratory for Bioaffiliationersity and Biotechnology, College of Life Sciences, Nanjing Normal University, 210023, Nanjing, China
| | - Shixia Xu
- Jiangsu Key Laboratory for Bioaffiliationersity and Biotechnology, College of Life Sciences, Nanjing Normal University, 210023, Nanjing, China
| | - Guang Yang
- Jiangsu Key Laboratory for Bioaffiliationersity and Biotechnology, College of Life Sciences, Nanjing Normal University, 210023, Nanjing, China
| | - Wenhua Ren
- Jiangsu Key Laboratory for Bioaffiliationersity and Biotechnology, College of Life Sciences, Nanjing Normal University, 210023, Nanjing, China.
| |
Collapse
|
28
|
Yoshida J, Tajika Y, Uchida K, Kuwahara M, Sano K, Suzuki T, Hondo E, Iida A. Membrane molecule bouncer regulates sperm binding activity in immature oocytes in the viviparous teleost species Poecilia reticulata (guppy). Dev Growth Differ 2024; 66:194-204. [PMID: 38302769 DOI: 10.1111/dgd.12914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 02/03/2024]
Abstract
Generally, in vertebrates, the first step toward fertilization is the ovulation of mature oocytes, followed by their binding to sperm cells outside of the ovary. Exceptionally, the oocytes of poeciliid fish are fertilized by sperm cells within the follicle, and the developmental embryo is subsequently released into the ovarian lumen before delivery. In the present study, we aimed to identify the factor(s) responsible for intrafollicular fertilization in a viviparous teleost species, Poecilia reticulata (guppy). Sperm tracking analysis in this regard indicated that in this species, sperm cells reached immature oocytes including the germinal vesicle, and the insemination assay indicated that the immature oocytes robustly adhered to the sperm cells; similar binding was not observed in Danio rerio (zebrafish) and Oryzias latipes (medaka). We also identified the Ly6/uPAR protein bouncer as the factor responsible for the observed sperm binding activity of the immature oocytes in this species. The recombinant bouncer peptide acted as an inhibitory decoy for the sperm-oocyte binding in guppy. On the other hand, ectopic expression of guppy bouncer in zebrafish oocytes resulted in interspecific sperm-oocyte binding. These results argue that bouncer is responsible for sperm-immature oocyte binding. Our findings highlight the unique reproductive strategies of guppy fish and enhance our understanding of the diverse reproductive mechanisms in vertebrates.
Collapse
Affiliation(s)
- Junki Yoshida
- Laboratory of Animal Morphology, Graduate School of Bioagricultural Sciences, Nagoya University, Tokai National Higher Education and Research System, Nagoya, Japan
| | - Yuki Tajika
- Department of Radiological Technology, School of Radiological Technology, Gunma Prefectural College of Health Science, Maebashi, Japan
| | - Kazuko Uchida
- Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya, Japan
| | - Makoto Kuwahara
- Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya, Japan
| | - Kaori Sano
- Department of Chemistry, Faculty of Science, Josai University, Sakado, Japan
| | - Takayuki Suzuki
- Graduate School of Science Department of Biology, Osaka Metropolitan University, Sugimoto, Osaka, Japan
| | - Eiichi Hondo
- Laboratory of Animal Morphology, Graduate School of Bioagricultural Sciences, Nagoya University, Tokai National Higher Education and Research System, Nagoya, Japan
| | - Atsuo Iida
- Laboratory of Animal Morphology, Graduate School of Bioagricultural Sciences, Nagoya University, Tokai National Higher Education and Research System, Nagoya, Japan
| |
Collapse
|
29
|
Cormier N, Worsham AE, Rich KA, Hardy DM. SMA20/PMIS2 Is a Rapidly Evolving Sperm Membrane Alloantigen with Possible Species-Divergent Function in Fertilization. Int J Mol Sci 2024; 25:3652. [PMID: 38612464 PMCID: PMC11011635 DOI: 10.3390/ijms25073652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/05/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Immunodominant alloantigens in pig sperm membranes include 15 known gene products and a previously undiscovered Mr 20,000 sperm membrane-specific protein (SMA20). Here we characterize SMA20 and identify it as the unannotated pig ortholog of PMIS2. A composite SMA20 cDNA encoded a 126 amino acid polypeptide comprising two predicted transmembrane segments and an N-terminal alanine- and proline (AP)-rich region with no apparent signal peptide. The Northern blots showed that the composite SMA20 cDNA was derived from a 1.1 kb testis-specific transcript. A BLASTp search retrieved no SMA20 match from the pig genome, but it did retrieve a 99% match to the Pmis2 gene product in warthog. Sequence identity to predicted PMIS2 orthologs from other placental mammals ranged from no more than 80% overall in Cetartiodactyla to less than 60% in Primates, with the AP-rich region showing the highest divergence, including, in the extreme, its absence in most rodents, including the mouse. SMA20 immunoreactivity localized to the acrosome/apical head of methanol-fixed boar spermatozoa but not live, motile cells. Ultrastructurally, the SMA20 AP-rich domain immunolocalized to the inner leaflet of the plasma membrane, the outer acrosomal membrane, and the acrosomal contents of ejaculated spermatozoa. Gene name search failed to retrieve annotated Pmis2 from most mammalian genomes. Nevertheless, individual pairwise interrogation of loci spanning Atp4a-Haus5 identified Pmis2 in all placental mammals, but not in marsupials or monotremes. We conclude that the gene encoding sperm-specific SMA20/PMIS2 arose de novo in Eutheria after divergence from Metatheria, whereupon rapid molecular evolution likely drove the acquisition of a species-divergent function unique to fertilization in placental mammals.
Collapse
Affiliation(s)
- Nathaly Cormier
- Department of Biological Sciences, University of Wisconsin-Whitewater, Whitewater, WI 53190, USA
| | - Asha E. Worsham
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (A.E.W.); (K.A.R.)
| | - Kinsey A. Rich
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (A.E.W.); (K.A.R.)
| | - Daniel M. Hardy
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (A.E.W.); (K.A.R.)
| |
Collapse
|
30
|
Pisciottano F, Campos MC, Penna C, Bruque CD, Gabaldón T, Saragüeta P. Positive selection in gamete interaction proteins in Carnivora. Mol Ecol 2024; 33:e17263. [PMID: 38318732 DOI: 10.1111/mec.17263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 02/07/2024]
Abstract
The absence of robust interspecific isolation barriers among pantherines, including the iconic South American jaguar (Panthera onca), led us to study molecular evolution of typically rapidly evolving reproductive proteins within this subfamily and related groups. In this study, we delved into the evolutionary forces acting on the zona pellucida (ZP) gamete interaction protein family and the sperm-oocyte fusion protein pair IZUMO1-JUNO across the Carnivora order, distinguishing between Caniformia and Feliformia suborders and anticipating few significant diversifying changes in the Pantherinae subfamily. A chromosome-resolved jaguar genome assembly facilitated coding sequences, enabling the reconstruction of protein evolutionary histories. Examining sequence variability across more than 30 Carnivora species revealed that Feliformia exhibited significantly lower diversity compared to its sister taxa, Caniformia. Molecular evolution analyses of ZP2 and ZP3, subunits directly involved in sperm-recognition, unveiled diversifying positive selection in Feliformia, Caniformia and Pantherinae, although no significant changes were linked to sperm binding. Structural cross-linking ZP subunits, ZP4 and ZP1 exhibited lower levels or complete absence of positive selection. Notably, the fusion protein IZUMO1 displayed prominent positive selection signatures and sites in basal lineages of both Caniformia and Feliformia, extending along the Caniformia subtree but absent in Pantherinae. Conversely, JUNO did not exhibit any positive selection signatures across tested lineages and clades. Eight Caniformia-specific positive selected sites in IZUMO1 were detected within two JUNO-interaction clusters. Our findings provide for the first time insights into the evolutionary trajectories of ZP proteins and the IZUMO1-JUNO gamete interaction pair within the Carnivora order.
Collapse
Affiliation(s)
- Francisco Pisciottano
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Buenos Aires, Argentina
| | - María Clara Campos
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Buenos Aires, Argentina
| | - Clementina Penna
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Buenos Aires, Argentina
| | - Carlos David Bruque
- Unidad de Conocimiento Traslacional Hospitalaria Patagónica, Hospital de Alta Complejidad El Calafate SAMIC, El Calafate, Santa Cruz, Argentina
| | - Toni Gabaldón
- Barcelona Supercomputing Center (BSC), Institute for Research in Biomedicine (IRB), and Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Patricia Saragüeta
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Buenos Aires, Argentina
| |
Collapse
|
31
|
Baur J, Zwoinska M, Koppik M, Snook RR, Berger D. Heat stress reveals a fertility debt owing to postcopulatory sexual selection. Evol Lett 2024; 8:101-113. [PMID: 38370539 PMCID: PMC10872150 DOI: 10.1093/evlett/qrad007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 01/21/2023] [Accepted: 02/21/2023] [Indexed: 02/20/2024] Open
Abstract
Climates are changing rapidly, demanding equally rapid adaptation of natural populations. Whether sexual selection can aid such adaptation is under debate; while sexual selection should promote adaptation when individuals with high mating success are also best adapted to their local surroundings, the expression of sexually selected traits can incur costs. Here we asked what the demographic consequences of such costs may be once climates change to become harsher and the strength of natural selection increases. We first adopted a classic life history theory framework, incorporating a trade-off between reproduction and maintenance, and applied it to the male germline to generate formalized predictions for how an evolutionary history of strong postcopulatory sexual selection (sperm competition) may affect male fertility under acute adult heat stress. We then tested these predictions by assessing the thermal sensitivity of fertility (TSF) in replicated lineages of seed beetles maintained for 68 generations under three alternative mating regimes manipulating the opportunity for sexual and natural selection. In line with the theoretical predictions, we find that males evolving under strong sexual selection suffer from increased TSF. Interestingly, females from the regime under strong sexual selection, who experienced relaxed selection on their own reproductive effort, had high fertility in benign settings but suffered increased TSF, like their brothers. This implies that female fertility and TSF evolved through genetic correlation with reproductive traits sexually selected in males. Paternal but not maternal heat stress reduced offspring fertility with no evidence for adaptive transgenerational plasticity among heat-exposed offspring, indicating that the observed effects may compound over generations. Our results suggest that trade-offs between fertility and traits increasing success in postcopulatory sexual selection can be revealed in harsh environments. This can put polyandrous species under immediate risk during extreme heat waves expected under future climate change.
Collapse
Affiliation(s)
- Julian Baur
- Department of Ecology and Genetics, Division of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Martyna Zwoinska
- Department of Ecology and Genetics, Division of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Mareike Koppik
- Department of Ecology and Genetics, Division of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
- Department of Zoology, Animal Ecology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Rhonda R Snook
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - David Berger
- Department of Ecology and Genetics, Division of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| |
Collapse
|
32
|
Yang Z, Zhao A, Teng M, Li M, Wang H, Wang X, Liu Z, Zeng Q, Hu L, Hu J, Bao Z, Huang X. Signatures of selection in Mulinia lateralis underpinning its rapid adaptation to laboratory conditions. Evol Appl 2024; 17:e13657. [PMID: 38357357 PMCID: PMC10866071 DOI: 10.1111/eva.13657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 01/17/2024] [Accepted: 01/26/2024] [Indexed: 02/16/2024] Open
Abstract
The dwarf surf clam, Mulinia lateralis, is considered as a model species for bivalves because of its rapid growth and short generation time. Recently, successful breeding of this species for multiple generations in our laboratory revealed its acquisition of adaptive advantages during artificial breeding. In this study, 310 individuals from five different generations were genotyped with 22,196 single nucleotide polymorphisms (SNPs) with the aim of uncovering the genetic basis of their adaptation to laboratory conditions. Results revealed that M. lateralis consistently maintained high genetic diversity across generations, characterized by high observed heterozygosity (H o: 0.2733-0.2934) and low levels of inbreeding (F is: -0.0244-0.0261). Population analysis indicated low levels of genetic differentiation among generations of M. lateralis during artificial breeding (F st <0.05). In total, 316 genomic regions exhibited divergent selection, with 168 regions under positive selection. Furthermore, 227 candidate genes were identified in the positive selection regions, which have functions including growth, stress resistance, and reproduction. Notably, certain selection signatures with significantly higher F st value were detected in genes associated with male reproduction, such as GAL3ST1, IFT88, and TSSK2, which were significantly upregulated during artificial breeding. This suggests a potential role of sperm-associated genes in the rapid evolutionary response of M. lateralis to selection in laboratory conditions. Overall, our findings highlight the phenotypic and genetic changes, as well as selection signatures, in M. lateralis during artificial breeding. This contributes to understanding their adaptation to laboratory conditions and underscores the potential for using this species to explore the adaptive evolution of bivalves.
Collapse
Affiliation(s)
- Zujing Yang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Ang Zhao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Mingxuan Teng
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Moli Li
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Hao Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Xuefeng Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Zhi Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Qifan Zeng
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
- Laboratory of Tropical Marine Germplasm Resources and Breeding EngineeringSanya Oceanographic Institution, Ocean University of ChinaSanyaChina
| | - Liping Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
- Yantai Marine Economic Research InstituteYantaiChina
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
- Laboratory of Tropical Marine Germplasm Resources and Breeding EngineeringSanya Oceanographic Institution, Ocean University of ChinaSanyaChina
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
- Laboratory of Tropical Marine Germplasm Resources and Breeding EngineeringSanya Oceanographic Institution, Ocean University of ChinaSanyaChina
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and TechnologyQingdaoChina
| | - Xiaoting Huang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and TechnologyQingdaoChina
| |
Collapse
|
33
|
Wang Y, Yue Y, Li C, Chen Z, Cai Y, Hu C, Qu Y, Li H, Zhou K, Yan J, Li P. Insights into the adaptive evolution of chromosome and essential traits through chromosome-level genome assembly of Gekko japonicus. iScience 2024; 27:108445. [PMID: 38205241 PMCID: PMC10776941 DOI: 10.1016/j.isci.2023.108445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/05/2023] [Accepted: 11/09/2023] [Indexed: 01/12/2024] Open
Abstract
Gekko japonicus possesses flexible climbing and detoxification abilities under insectivorous habits. Still, the evolutionary mechanisms behind these traits remain unclarified. This study presents a chromosome-level G. japonicus genome, revealing that its evolutionary breakpoint regions were enriched with specific repetitive elements and defense response genes. Gene families unique to G. japonicus and positively selected genes are mainly enriched in immune, sensory, and nervous pathways. Expansion of bitter taste receptor type 2 primarily in insectivorous species could be associated with toxin clearance. Detox cytochrome P450 in G. japonicus has undergone more birth and death processes than biosynthesis-type P450 genes. Proline, cysteine, glycine, and serine in corneous beta proteins of G. japonicus might influence flexibility and setae adhesiveness. Certain thermosensitive transient receptor potential channels under relaxed purifying selection or positive selection in G. japonicus might enhance adaptation to climate change. This genome assembly offers insights into the adaptive evolution of gekkotans.
Collapse
Affiliation(s)
- Yinwei Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, P.R. China
| | - Youxia Yue
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, P.R. China
| | - Chao Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, P.R. China
| | - Zhiyi Chen
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, P.R. China
| | - Yao Cai
- School of Food Science, Nanjing Xiaozhuang University, Nanjing, Jiangsu 211171, P.R. China
| | - Chaochao Hu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, P.R. China
- Analytical and Testing Center, Nanjing Normal University, Nanjing, Jiangsu 210023, P.R. China
| | - Yanfu Qu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, P.R. China
| | - Hong Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, P.R. China
| | - Kaiya Zhou
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, P.R. China
| | - Jie Yan
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, P.R. China
| | - Peng Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, P.R. China
| |
Collapse
|
34
|
Khanal S, Jaiswal A, Chowdanayaka R, Puente N, Turner K, Assefa KY, Nawras M, Back ED, Royfman A, Burkett JP, Cheong SH, Fisher HS, Sindhwani P, Gray J, Ramachandra NB, Avidor-Reiss T. The evolution of centriole degradation in mouse sperm. Nat Commun 2024; 15:117. [PMID: 38168044 PMCID: PMC10761967 DOI: 10.1038/s41467-023-44411-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
Centrioles are subcellular organelles found at the cilia base with an evolutionarily conserved structure and a shock absorber-like function. In sperm, centrioles are found at the flagellum base and are essential for embryo development in basal animals. Yet, sperm centrioles have evolved diverse forms, sometimes acting like a transmission system, as in cattle, and sometimes becoming dispensable, as in house mice. How the essential sperm centriole evolved to become dispensable in some organisms is unclear. Here, we test the hypothesis that this transition occurred through a cascade of evolutionary changes to the proteins, structure, and function of sperm centrioles and was possibly driven by sperm competition. We found that the final steps in this cascade are associated with a change in the primary structure of the centriolar inner scaffold protein FAM161A in rodents. This information provides the first insight into the molecular mechanisms and adaptive evolution underlying a major evolutionary transition within the internal structure of the mammalian sperm neck.
Collapse
Affiliation(s)
- Sushil Khanal
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | - Ankit Jaiswal
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | - Rajanikanth Chowdanayaka
- Department of Studies in Genetics and Genomics, University of Mysore, Manasagangotri, Mysuru, India
| | - Nahshon Puente
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | - Katerina Turner
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | | | - Mohamad Nawras
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | - Ezekiel David Back
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | - Abigail Royfman
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | - James P Burkett
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Soon Hon Cheong
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Heidi S Fisher
- Department of Biology, University of Maryland College Park, College Park, MD, USA
| | - Puneet Sindhwani
- Department of Urology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - John Gray
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | | | - Tomer Avidor-Reiss
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA.
- Department of Urology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA.
| |
Collapse
|
35
|
Brown NC, Gordon B, McDonough-Goldstein CE, Misra S, Findlay GD, Clark AG, Wolfner MF. The seminal odorant binding protein Obp56g is required for mating plug formation and male fertility in Drosophila melanogaster. eLife 2023; 12:e86409. [PMID: 38126735 PMCID: PMC10834028 DOI: 10.7554/elife.86409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 12/20/2023] [Indexed: 12/23/2023] Open
Abstract
In Drosophila melanogaster and other insects, the seminal fluid proteins (SFPs) and male sex pheromones that enter the female with sperm during mating are essential for fertility and induce profound post-mating effects on female physiology. The SFPs in D. melanogaster and other taxa include several members of the large gene family known as odorant binding proteins (Obps). Work in Drosophila has shown that some Obp genes are highly expressed in the antennae and can mediate behavioral responses to odorants, potentially by binding and carrying these molecules to odorant receptors. These observations have led to the hypothesis that the seminal Obps might act as molecular carriers for pheromones or other compounds important for male fertility, though functional evidence in any species is lacking. Here, we used functional genetics to test the role of the seven seminal Obps in D. melanogaster fertility and the post-mating response (PMR). We found that Obp56g is required for male fertility and the induction of the PMR, whereas the other six genes are dispensable. We found males lacking Obp56g fail to form a mating plug in the mated female's reproductive tract, leading to ejaculate loss and reduced sperm storage, likely due to its expression in the male ejaculatory bulb. We also examined the evolutionary history of these seminal Obp genes, as several studies have documented rapid evolution and turnover of SFP genes across taxa. We found extensive lability in gene copy number and evidence of positive selection acting on two genes, Obp22a and Obp51a. Comparative RNAseq data from the male reproductive tract of multiple Drosophila species revealed that Obp56g shows high male reproductive tract expression in a subset of taxa, though conserved head expression across the phylogeny. Together, these functional and expression data suggest that Obp56g may have been co-opted for a reproductive function over evolutionary time.
Collapse
Affiliation(s)
- Nora C Brown
- Department of Molecular Biology and Genetics, Cornell UniversityIthacaUnited States
| | - Benjamin Gordon
- Department of Molecular Biology and Genetics, Cornell UniversityIthacaUnited States
| | | | - Snigdha Misra
- Department of Molecular Biology and Genetics, Cornell UniversityIthacaUnited States
| | - Geoffrey D Findlay
- Department of Molecular Biology and Genetics, Cornell UniversityIthacaUnited States
- Department of Biology, College of the Holy CrossWorcesterUnited States
| | - Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell UniversityIthacaUnited States
| | | |
Collapse
|
36
|
Schlötterer C. Unraveling the Molecular Basis of Stabilizing Selection by Experimental Evolution. Genome Biol Evol 2023; 15:evad220. [PMID: 38092037 PMCID: PMC10718812 DOI: 10.1093/gbe/evad220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2023] [Indexed: 12/17/2023] Open
Abstract
Stabilizing selection provides a challenge to molecular population genetics. Although stabilizing selection is ubiquitous, its genomic signature is difficult to distinguish from demographic signals. Experimental evolution provides a promising approach to characterize genomic regions exposed to stabilizing selection. A recent experimental evolution study of Aedes aegypti populations evolving either with or without sexual selection found a pattern of genetic differentiation suggestive of relaxed stabilizing selection. I argue that this study could not have detected the signal of relaxed stabilizing selection. I highlight why incorrect statistical methods resulted in a high number of false positive candidate single nucleotide polymorphism (SNPs) and discuss the fallacy of functional validation of candidate SNPs for polygenic traits by RNA-mediated knockdown.
Collapse
|
37
|
Takashima YA, Majane AC, Begun DJ. Evolution of secondary cell number and position in the Drosophila accessory gland. PLoS One 2023; 18:e0278811. [PMID: 37878630 PMCID: PMC10599531 DOI: 10.1371/journal.pone.0278811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/25/2023] [Indexed: 10/27/2023] Open
Abstract
In animals with internal fertilization, males transfer gametes and seminal fluid during copulation, both of which are required for successful reproduction. In Drosophila and other insects, seminal fluid is produced in the paired accessory gland (AG), the ejaculatory duct, and the ejaculatory bulb. The D. melanogaster AG has emerged as an important model system for this component of male reproductive biology. Seminal fluid proteins produced in the Drosophila AG are required for proper storage and use of sperm by the females, and are also critical for establishing and maintaining a suite of short- and long-term postcopulatory female physiological responses that promote reproductive success. The Drosophila AG is composed of two main cell types. The majority of AG cells, which are referred to as main cells, are responsible for production of many seminal fluid proteins. A minority of cells, about 4%, are referred to as secondary cells. These cells, which are restricted to the distal tip of the D. melanogaster AG, may play an especially important role in the maintenance of the long-term female post-mating response. Many studies of Drosophila AG evolution have suggested that the proteins produced in the gland evolve quickly, as does the transcriptome. Here, we investigate the evolution of secondary cell number and position in the AG in a collection of eight species spanning the entire history of the Drosophila genus. We document a heretofore underappreciated rapid evolutionary rate for both number and position of these specialized AG cells, raising several questions about the developmental, functional, and evolutionary significance of this variation.
Collapse
Affiliation(s)
- Yoko A. Takashima
- Department of Evolution and Ecology, University of California, Davis, California, United States of America
| | - Alex C. Majane
- Department of Evolution and Ecology, University of California, Davis, California, United States of America
| | - David J. Begun
- Department of Evolution and Ecology, University of California, Davis, California, United States of America
| |
Collapse
|
38
|
Cutter AD. Sexual conflict, heterochrony and tissue specificity as evolutionary problems of adaptive plasticity in development. Proc Biol Sci 2023; 290:20231854. [PMID: 37817601 PMCID: PMC10565415 DOI: 10.1098/rspb.2023.1854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/15/2023] [Indexed: 10/12/2023] Open
Abstract
Differential gene expression represents a fundamental cause and manifestation of phenotypic plasticity. Adaptive phenotypic plasticity in gene expression as a trait evolves when alleles that mediate gene regulation serve to increase organismal fitness by improving the alignment of variation in gene expression with variation in circumstances. Among the diverse circumstances that a gene encounters are distinct cell types, developmental stages and sexes, as well as an organism's extrinsic ecological environments. Consequently, adaptive phenotypic plasticity provides a common framework to consider diverse evolutionary problems by considering the shared implications of alleles that produce context-dependent gene expression. From this perspective, adaptive plasticity represents an evolutionary resolution to conflicts of interest that arise from any negatively pleiotropic effects of expression of a gene across ontogeny, among tissues, between the sexes, or across extrinsic environments. This view highlights shared properties within the general relation of fitness, trait expression and context that may nonetheless differ substantively in the grain of selection within and among generations to influence the likelihood of adaptive plasticity as an evolutionary response. Research programmes that historically have focused on these separate issues may use the insights from one another by recognizing their shared dependence on context-dependent gene regulatory evolution.
Collapse
Affiliation(s)
- Asher D. Cutter
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada M5S 3B2
| |
Collapse
|
39
|
Dudka D, Akins RB, Lampson MA. FREEDA: An automated computational pipeline guides experimental testing of protein innovation. J Cell Biol 2023; 222:e202212084. [PMID: 37358475 PMCID: PMC10292211 DOI: 10.1083/jcb.202212084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 04/22/2023] [Accepted: 06/07/2023] [Indexed: 06/27/2023] Open
Abstract
Cell biologists typically focus on conserved regions of a protein, overlooking innovations that can shape its function over evolutionary time. Computational analyses can reveal potential innovations by detecting statistical signatures of positive selection that lead to rapid accumulation of beneficial mutations. However, these approaches are not easily accessible to non-specialists, limiting their use in cell biology. Here, we present an automated computational pipeline FREEDA that provides a simple graphical user interface requiring only a gene name; integrates widely used molecular evolution tools to detect positive selection in rodents, primates, carnivores, birds, and flies; and maps results onto protein structures predicted by AlphaFold. Applying FREEDA to >100 centromere proteins, we find statistical evidence of positive selection within loops and turns of ancient domains, suggesting innovation of essential functions. As a proof-of-principle experiment, we show innovation in centromere binding of mouse CENP-O. Overall, we provide an accessible computational tool to guide cell biology research and apply it to experimentally demonstrate functional innovation.
Collapse
Affiliation(s)
- Damian Dudka
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - R. Brian Akins
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael A. Lampson
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
40
|
Le Beulze M, Daubech C, Balde-Camara A, Ghieh F, Vialard F. Mammal Reproductive Homeobox (Rhox) Genes: An Update of Their Involvement in Reproduction and Development. Genes (Basel) 2023; 14:1685. [PMID: 37761825 PMCID: PMC10531175 DOI: 10.3390/genes14091685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/16/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
The reproductive homeobox on the X chromosome (RHOX) genes were first identified in the mouse during the 1990s and have a crucial role in reproduction. In various transcription factors with a key regulatory role, the homeobox sequence encodes a "homeodomain" DNA-binding motif. In the mouse, there are three clusters of Rhox genes (α, β, and γ) on the X chromosome. Each cluster shows temporal and/or quantitative collinearity, which regulates the progression of the embryonic development process. Although the RHOX family is conserved in mammals, the interspecies differences in the number of RHOX genes and pseudogenes testifies to a rich evolutionary history with several relatively recent events. In the mouse, Rhox genes are mainly expressed in reproductive tissues, and several have a role in the differentiation of primordial germ cells (Rhox1, Rhox6, and Rhox10) and in spermatogenesis (Rhox1, Rhox8, and Rhox13). Despite the lack of detailed data on human RHOX, these genes appear to be involved in the formation of germ cells because they are predominantly expressed during the early (RHOXF1) and late (RHOXF2/F2B) stages of germ cell development. Furthermore, the few variants identified to date are thought to induce or predispose to impaired spermatogenesis and severe oligozoospermia or azoospermia. In the future, research on the pathophysiology of the human RHOX genes is likely to confirm the essential role of this family in the reproductive process and might help us to better understand the various causes of infertility and characterize the associated human phenotypes.
Collapse
Affiliation(s)
- Morgane Le Beulze
- Equipe RHuMA, UMR-BREED, UFR Simone Veil Santé, F-78180 Montigny-le-Bretonneux, France; (M.L.B.); (C.D.); (A.B.-C.); (F.G.)
- UFR des Sciences de la Santé Simone Veil, Université de Versailles-Saint Quentin en Yvelines—Université Paris Saclay (UVSQ), INRAE, BREED, F-78350 Jouy-en-Josas, France
| | - Cécile Daubech
- Equipe RHuMA, UMR-BREED, UFR Simone Veil Santé, F-78180 Montigny-le-Bretonneux, France; (M.L.B.); (C.D.); (A.B.-C.); (F.G.)
- UFR des Sciences de la Santé Simone Veil, Université de Versailles-Saint Quentin en Yvelines—Université Paris Saclay (UVSQ), INRAE, BREED, F-78350 Jouy-en-Josas, France
| | - Aissatu Balde-Camara
- Equipe RHuMA, UMR-BREED, UFR Simone Veil Santé, F-78180 Montigny-le-Bretonneux, France; (M.L.B.); (C.D.); (A.B.-C.); (F.G.)
- UFR des Sciences de la Santé Simone Veil, Université de Versailles-Saint Quentin en Yvelines—Université Paris Saclay (UVSQ), INRAE, BREED, F-78350 Jouy-en-Josas, France
| | - Farah Ghieh
- Equipe RHuMA, UMR-BREED, UFR Simone Veil Santé, F-78180 Montigny-le-Bretonneux, France; (M.L.B.); (C.D.); (A.B.-C.); (F.G.)
- UFR des Sciences de la Santé Simone Veil, Université de Versailles-Saint Quentin en Yvelines—Université Paris Saclay (UVSQ), INRAE, BREED, F-78350 Jouy-en-Josas, France
| | - François Vialard
- Equipe RHuMA, UMR-BREED, UFR Simone Veil Santé, F-78180 Montigny-le-Bretonneux, France; (M.L.B.); (C.D.); (A.B.-C.); (F.G.)
- UFR des Sciences de la Santé Simone Veil, Université de Versailles-Saint Quentin en Yvelines—Université Paris Saclay (UVSQ), INRAE, BREED, F-78350 Jouy-en-Josas, France
- Département de Génétique, CHI de Poissy St. Germain en Laye, F-78300 Poissy, France
| |
Collapse
|
41
|
Glasenapp MR, Pogson GH. Extensive introgression among strongylocentrotid sea urchins revealed by phylogenomics. Ecol Evol 2023; 13:e10446. [PMID: 37636863 PMCID: PMC10451471 DOI: 10.1002/ece3.10446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 08/29/2023] Open
Abstract
Gametic isolation is thought to play an important role in the evolution of reproductive isolation in broadcast-spawning marine invertebrates. However, it is unclear whether gametic isolation commonly evolves early in the speciation process or only accumulates after other reproductive barriers are already in place. It is also unknown whether gametic isolation is an effective barrier to introgression following speciation. Here, we used whole-genome sequencing data and multiple complementary phylogenomic approaches to test whether the well-documented gametic incompatibilities among the strongylocentrotid sea urchins have limited introgression. We quantified phylogenetic discordance, inferred reticulate phylogenetic networks, and applied the Δ statistic using gene tree topologies reconstructed from multiple sequence alignments of protein-coding single-copy orthologs. In addition, we conducted ABBA-BABA tests on genome-wide single nucleotide variants and reconstructed a phylogeny of mitochondrial genomes. Our results revealed strong mito-nuclear discordance and considerable nonrandom gene tree discordance that cannot be explained by incomplete lineage sorting alone. Eight of the nine species examined demonstrated a history of introgression with at least one other species or ancestral lineage, indicating that introgression was common during the diversification of the strongylocentrotid urchins. There was strong support for introgression between four extant species pairs (Strongylocentrotus pallidus ⇔ S. droebachiensis, S. intermedius ⇔ S. pallidus, S. purpuratus ⇔ S. fragilis, and Mesocentrotus franciscanus ⇔ Pseudocentrotus depressus) and additional evidence for introgression on internal branches of the phylogeny. Our results suggest that the existing gametic incompatibilities among the strongylocentrotid urchin species have not been a complete barrier to hybridization and introgression following speciation. Their continued divergence in the face of widespread introgression indicates that other reproductive isolating barriers likely exist and may have been more critical in establishing reproductive isolation early in speciation.
Collapse
Affiliation(s)
- Matthew R. Glasenapp
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaSanta CruzCaliforniaUSA
| | - Grant H. Pogson
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaSanta CruzCaliforniaUSA
| |
Collapse
|
42
|
Garlovsky MD, Ahmed-Braimah YH. Evolutionary Quantitative Proteomics of Reproductive Protein Divergence in Drosophila. Mol Cell Proteomics 2023; 22:100610. [PMID: 37391044 PMCID: PMC10407754 DOI: 10.1016/j.mcpro.2023.100610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/11/2023] [Accepted: 06/04/2023] [Indexed: 07/02/2023] Open
Abstract
Reproductive traits often evolve rapidly between species. Understanding the causes and consequences of this rapid divergence requires characterization of female and male reproductive proteins and their effect on fertilization success. Species in the Drosophila virilis clade exhibit rampant interspecific reproductive incompatibilities, making them ideal for studies on diversification of reproductive proteins and their role in speciation. Importantly, the role of intraejaculate protein abundance and allocation in interspecific divergence is poorly understood. Here, we identify and quantify the transferred male ejaculate proteome using multiplexed isobaric labeling of the lower female reproductive tract before and immediately after mating using three species of the virilis group. We identified over 200 putative male ejaculate proteins, many of which show differential abundance between species, suggesting that males transfer a species-specific allocation of seminal fluid proteins during copulation. We also identified over 2000 female reproductive proteins, which contain female-specific serine-type endopeptidases that showed differential abundance between species and elevated rates of molecular evolution, similar to that of some male seminal fluid proteins. Our findings suggest that reproductive protein divergence can also manifest in terms of species-specific protein abundance patterns.
Collapse
|
43
|
Dallai R, Mercati D, Rezende PH, Fanciulli PP, Lupetti P. Ultrastructure of the female reproductive organs of the diving beetle Deronectes moestus incospectus (Leprieur, 1876) (Dytiscidae, Hydroporinae). ARTHROPOD STRUCTURE & DEVELOPMENT 2023; 75:101287. [PMID: 37429116 DOI: 10.1016/j.asd.2023.101287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/12/2023]
Abstract
We describe the ultrastructure of the female reproductive organs of Deronectes moestus (Dytiscidae Hydroporinae). The long spermathecal duct has a simple epithelium lined internally by a thin cuticle and externally by a thick layer of muscle cells. The wide duct lumen contains electron-dense material, among which remnants of extracellular material are visible. This material consists of tubular structures assembled around sperm bundles previously described in the male deferent ducts. The so-called gland, disposed along the spermathecal duct, is a structure with epithelial cells lined by an irregular cuticle bearing a rich system of microvilli. Many mitochondria are visible in the apical cytoplasm of the epithelial cells, and a few spheroidal bodies are close to the basal nuclei. Since the epithelial ultrastructure of the gland suggests it is involved in fluid uptake from the lumen rather than secretory activity, the term gland, coined by other authors to describe this organ, is inappropriate. The spermatheca is a large structure with a complex epithelium showing secretory and duct-forming cells. The lumen of this organ contains sperm with the distinctive ultrastructural features of those described in the male deferent ducts, namely having a mitochondrial matrix with a small crystallized area and electron-dense dots. Because to its overall organization, the spermatheca of D. moestus can be considered a more integrated organ than those in previously studied hydroporine species.
Collapse
Affiliation(s)
- Romano Dallai
- Dipartimento di Scienze Della Vita, Università di Siena, Italy.
| | - David Mercati
- Dipartimento di Scienze Della Vita, Università di Siena, Italy.
| | | | | | - Pietro Lupetti
- Dipartimento di Scienze Della Vita, Università di Siena, Italy.
| |
Collapse
|
44
|
Cutter AD. Speciation and development. Evol Dev 2023; 25:289-327. [PMID: 37545126 DOI: 10.1111/ede.12454] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/13/2023] [Accepted: 07/20/2023] [Indexed: 08/08/2023]
Abstract
Understanding general principles about the origin of species remains one of the foundational challenges in evolutionary biology. The genomic divergence between groups of individuals can spawn hybrid inviability and hybrid sterility, which presents a tantalizing developmental problem. Divergent developmental programs may yield either conserved or divergent phenotypes relative to ancestral traits, both of which can be responsible for reproductive isolation during the speciation process. The genetic mechanisms of developmental evolution involve cis- and trans-acting gene regulatory change, protein-protein interactions, genetic network structures, dosage, and epigenetic regulation, all of which also have roots in population genetic and molecular evolutionary processes. Toward the goal of demystifying Darwin's "mystery of mysteries," this review integrates microevolutionary concepts of genetic change with principles of organismal development, establishing explicit links between population genetic process and developmental mechanisms in the production of macroevolutionary pattern. This integration aims to establish a more unified view of speciation that binds process and mechanism.
Collapse
Affiliation(s)
- Asher D Cutter
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
45
|
Lu L, Huang W, Han Y, Tong D, Sun S, Yu Y, Liu G, Shi W. Toxicity of microplastics and triclosan, alone and in combination, to the fertilisation success of a broadcast spawning bivalve Tegillarca granosa. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 101:104208. [PMID: 37390575 DOI: 10.1016/j.etap.2023.104208] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 07/02/2023]
Abstract
Since most marine invertebrates adopted external fertilisation, their fertilisation process is particularly vulnerable to aquatic pollutants. Both antimicrobial ingredients and microplastics (MPs) are ubiquitous in aquatic environments; however, their synergistic effects on the fertilisation of marine invertebrates remain unclear. Therefore, in this study, the fertilisation toxicity of MPs and triclosan (TCS), alone and in combination, was investigated in the broadcast spawning bivalve Tegillarca granosa. Results showed that MPs and TCS significantly suppressed the fertilisation success of T. granosa. As the fertilisation success of broadcast spawning invertebrates depends on successful gamete collisions, gamete fusion, and egg activation, sperm swimming velocity, viability, gamete collision probability, ATP status, and ion-transport enzyme activities were also analysed to further ascertain the underlying toxicity mechanisms. In summary, our findings indicate that the presence of MPs may enhance the fertilisation toxicity of TCS by hampering sperm-egg collision probability, reducing gamete fusion efficiency, and restricting Ca2+ oscillation formation.
Collapse
Affiliation(s)
- Lingzheng Lu
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China; State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, PR China
| | - Wei Huang
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, PR China
| | - Yu Han
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China; School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, PR China
| | - Difei Tong
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Shuge Sun
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Yihan Yu
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China.
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China; State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, PR China; Zhejiang Key Laboratory of Exploitation and Preservation of Coastal Bio-resource, Zhejiang Mariculture Research Institute, Wenzhou, PR China.
| |
Collapse
|
46
|
Bertram J, Fulton B, Tourigny JP, Peña-Garcia Y, Moyle LC, Hahn MW. CAGEE: Computational Analysis of Gene Expression Evolution. Mol Biol Evol 2023; 40:msad106. [PMID: 37158385 PMCID: PMC10195155 DOI: 10.1093/molbev/msad106] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 04/26/2023] [Accepted: 05/01/2023] [Indexed: 05/10/2023] Open
Abstract
Despite the increasing abundance of whole transcriptome data, few methods are available to analyze global gene expression across phylogenies. Here, we present a new software package (Computational Analysis of Gene Expression Evolution [CAGEE]) for inferring patterns of increases and decreases in gene expression across a phylogenetic tree, as well as the rate at which these changes occur. In contrast to previous methods that treat each gene independently, CAGEE can calculate genome-wide rates of gene expression, along with ancestral states for each gene. The statistical approach developed here makes it possible to infer lineage-specific shifts in rates of evolution across the genome, in addition to possible differences in rates among multiple tissues sampled from the same species. We demonstrate the accuracy and robustness of our method on simulated data and apply it to a data set of ovule gene expression collected from multiple self-compatible and self-incompatible species in the genus Solanum to test hypotheses about the evolutionary forces acting during mating system shifts. These comparisons allow us to highlight the power of CAGEE, demonstrating its utility for use in any empirical system and for the analysis of most morphological traits. Our software is available at https://github.com/hahnlab/CAGEE/.
Collapse
Affiliation(s)
- Jason Bertram
- Department of Biology, Indiana University, Bloomington, IN
- Department of Mathematics, Western University, London, ON, Canada
| | - Ben Fulton
- Department of Biology, Indiana University, Bloomington, IN
- University Information Technology Services, Indiana University, Bloomington, IN
| | - Jason P Tourigny
- Department of Biology, Indiana University, Bloomington, IN
- Department of Computer Science, Indiana University, Bloomington, IN
| | | | - Leonie C Moyle
- Department of Biology, Indiana University, Bloomington, IN
| | - Matthew W Hahn
- Department of Biology, Indiana University, Bloomington, IN
- Department of Computer Science, Indiana University, Bloomington, IN
| |
Collapse
|
47
|
Gu H, Wang L, Lv X, Yang W, Zhang L, Zhang Z, Zhu T, Jia Y, Chen Y, Qu L. Domestication affects sex-biased gene expression evolution in the duck. ROYAL SOCIETY OPEN SCIENCE 2023; 10:221313. [PMID: 37035296 PMCID: PMC10073915 DOI: 10.1098/rsos.221313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/27/2023] [Indexed: 06/19/2023]
Abstract
Genes with sex-biased expression are thought to underlie sexually dimorphic phenotypes and are therefore subject to different selection pressures in males and females. Many authors have proposed that sexual conflict leads to the evolution of sex-biased expression, which allows males and females to reach separate phenotypic and fitness optima. The selection pressures associated with domestication may cause changes in population architectures and mating systems, which in turn can alter their direction and strength. We compared sex-biased expression and genetic signatures in wild and domestic ducks (Anas platyrhynchos), and observed changes of sexual selection and identified the genomic divergence affected by selection forces. The extent of sex-biased expression in both sexes is positively correlated with the level of both d N /d S and nucleotide diversity. This observed changing pattern may mainly be owing to relaxed genetic constraints. We also demonstrate a clear link between domestication and sex-biased evolutionary rate in a comparative framework. Decreased polymorphism and evolutionary rate in domesticated populations generally matched life-history phenotypes known to experience artificial selection. Taken together, our work suggests the important implications of domestication in sex-biased evolution and the roles of artificial selection and sexual selection for shaping the diversity and evolutionary rate of the genome.
Collapse
Affiliation(s)
- Hongchang Gu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, People's Republic of China
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, People's Republic of China
| | - Liang Wang
- Beijing Municipal General Station of Animal Science, Beijing, People's Republic of China
| | - Xueze Lv
- Beijing Municipal General Station of Animal Science, Beijing, People's Republic of China
| | - Weifang Yang
- Beijing Municipal General Station of Animal Science, Beijing, People's Republic of China
| | - Li Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, People's Republic of China
| | - Zebin Zhang
- Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Tao Zhu
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, People's Republic of China
| | - Yaxiong Jia
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Yu Chen
- Beijing Municipal General Station of Animal Science, Beijing, People's Republic of China
| | - Lujiang Qu
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, People's Republic of China
| |
Collapse
|
48
|
Furukawa H, Mito S, Nishio J, Sato N, Ando Y, Tominaga A, Toyama F, Nakauchi Y, Takayama-Watanabe E, Watanabe A. Identification and characterization of sperm motility-initiating substance-2 gene in internally fertilizing Cynops species. Dev Growth Differ 2023; 65:144-152. [PMID: 36856665 DOI: 10.1111/dgd.12846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 03/02/2023]
Abstract
Sperm motility-initiating substance (SMIS) is an oviductal protein critical for internal fertilization in urodeles. It contributes to the establishment of various reproductive modes in amphibians and is thus a unique research model for the gene evolution of gamete-recognizing ligands that have diversified among animal species. In this study, a paralogous SMIS gene, smis2, was identified via the RNA sequencing of the oviduct of the newt, Cynops pyrrhogaster. The base sequence of the smis2 gene was homologous (˃90%) to that of the original smis gene (smis1), and deduced amino acid sequences of both genes conserved six cysteine residues essential for the cysteine knot motif. Furthermore, smis2 complementary DNA was identified in the oviduct of Cynops ensicauda, and the base substitution patterns also suggested that the smis gene was duplicated in the Salamandridae. Nonsynonymous/synonymous substitution ratios of smis1 and smis2 genes were 0.79 and 2.6, respectively, suggesting that smis2 gene evolution was independently driven by positive selection. Amino acid substitutions were concentrated in the cysteine knot motif of SMIS2. The smis2 gene was expressed in some organs in addition to the oviduct; in contrast, SMIS1 was only expressed in the oviduct. The SMIS2 protein was suggested to be produced and secreted at least in the oviduct and redundantly act in sperm. These results suggest that smis1 plays the original role in the oviduct, whereas smis2 may undergo neofunctionalization, which rarely occurs in gene evolution.
Collapse
Affiliation(s)
- Haruka Furukawa
- Faculty of Science, Biological Division, Yamagata University, Yamagata, Japan
| | - Shinya Mito
- Faculty of Science, Biological Division, Yamagata University, Yamagata, Japan
| | - Jun Nishio
- Faculty of Science, Biological Division, Yamagata University, Yamagata, Japan
| | - Nozomi Sato
- Faculty of Science, Biological Division, Yamagata University, Yamagata, Japan
| | - Yoshihiro Ando
- Faculty of Science, Biological Division, Yamagata University, Yamagata, Japan
| | | | - Fubito Toyama
- Graduate School of Engineering, Utsunomiya University, Tochigi, Japan
| | - Yuni Nakauchi
- Faculty of Science, Biological Division, Yamagata University, Yamagata, Japan
| | | | - Akihiko Watanabe
- Faculty of Science, Biological Division, Yamagata University, Yamagata, Japan
| |
Collapse
|
49
|
Feng C, Wang K, Xu W, Yang L, Wanghe K, Sun N, Wu B, Wu F, Yang L, Qiu Q, Gan X, Chen Y, He S. Monsoon boosted radiation of the endemic East Asian carps. SCIENCE CHINA. LIFE SCIENCES 2023; 66:563-578. [PMID: 36166180 DOI: 10.1007/s11427-022-2141-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/21/2022] [Indexed: 10/14/2022]
Abstract
Major historical events often trigger the rapid flourishing of a few lineages, which in turn shape established biodiversity patterns. How did this process occur and develop? This study provides a window into this issue. The endemic East Asian carps (EEAC) dominated the ichthyofauna of East Asia and exhibited a high degree of adaptation to monsoonal river-lake ecosystems. A series of evidence, including ecogeography, phylogenetics, and macroevolution, suggests that the EEAC is a lineage that arose with the East Asian monsoon and thrived intimately with subsequent monsoon activities. We further deduce the evolution of the EEAC and find that a range of historical events in the monsoon setting (e.g., marine transgression and regression and glacial-interglacial cycle) have further reshaped the distribution patterns of EEAC's members. Comparative genomics analyses reveal that introgressions during the initial period of EEAC radiation and innovations in the regulation of the brain and nervous system may have aided their adaptation to river-lake ecosystems in a monsoon setting, which boosted radiation. Overall, this study strengthens knowledge of the evolutionary patterns of freshwater fishes in East Asia and provides a model case for understanding the impact of major historical events on the evolution of biota.
Collapse
Affiliation(s)
- Chenguang Feng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Kun Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Wenjie Xu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Liandong Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Kunyuan Wanghe
- Key Laboratory of Adaptation and Evolution of Plateau Biota of Chinese Academy of Sciences, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
| | - Ning Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Baosheng Wu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Feixiang Wu
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, 100044, China
| | - Lei Yang
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
| | - Qiang Qiu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Xiaoni Gan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yiyu Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- National Natural Science Foundation of China, Beijing, 100085, China
| | - Shunping He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
- Center for Excellence in Animal Evolution and Genetics, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
| |
Collapse
|
50
|
Dudka D, Akins RB, Lampson MA. FREEDA: an automated computational pipeline guides experimental testing of protein innovation by detecting positive selection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.27.530329. [PMID: 36909479 PMCID: PMC10002610 DOI: 10.1101/2023.02.27.530329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Cell biologists typically focus on conserved regions of a protein, overlooking innovations that can shape its function over evolutionary time. Computational analyses can reveal potential innovations by detecting statistical signatures of positive selection that leads to rapid accumulation of beneficial mutations. However, these approaches are not easily accessible to non-specialists, limiting their use in cell biology. Here, we present an automated computational pipeline FREEDA (Finder of Rapidly Evolving Exons in De novo Assemblies) that provides a simple graphical user interface requiring only a gene name, integrates widely used molecular evolution tools to detect positive selection, and maps results onto protein structures predicted by AlphaFold. Applying FREEDA to >100 mouse centromere proteins, we find evidence of positive selection in intrinsically disordered regions of ancient domains, suggesting innovation of essential functions. As a proof-of-principle experiment, we show innovation in centromere binding of CENP-O. Overall, we provide an accessible computational tool to guide cell biology research and apply it to experimentally demonstrate functional innovation.
Collapse
|