1
|
Liang X, Liang H, Liang S, Ning Y, Luo Z, Chen Q, He Z. Refractory nontuberculous mycobacterial infection and potential hidden immunodeficiency related to RAG mutation and production of anti-interferon-α autoantibodies: a case report. BMC Infect Dis 2025; 25:572. [PMID: 40259221 PMCID: PMC12012934 DOI: 10.1186/s12879-025-10975-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 04/15/2025] [Indexed: 04/23/2025] Open
Abstract
BACKGROUND Nontuberculous mycobacterial infectious diseases are associated with host immunological status. Neutralizing anti-interferon (IFN)-γ autoantibodies have been considered as a significant cause of nontuberculous mycobacterial infections. However, another autoantibody specifically targeting interferon-α, occurring in patients with nontuberculous mycobacterial infection, has been rarely reported. CASE PRESENTATION We report the case of a 23-year-old female who developed refractory nontuberculous mycobacterial infection and subsequently manifested skin lesions and motor disorder of muscles. The laboratory examination results showed elevated levels of globulin and immunoglobulin, as well as local deposits of amyloid material in pleural sections. Additionally, various tissue biopsies showed no evidence of malignancy. After 6 months of anti-nontuberculous mycobacterial therapy, the patient recovered normal temperature but developed progressive pulmonary lesions. The patient received steroids and methotrexate treatment and her skin lesions as well limitation of muscle movement improved. Further evaluation revealed a hidden immunodeficiency with positive anti-interferon-α autoantibodies and recombinase activating gene (RAG) mutation. CONCLUSIONS This case highlights alternation of infection and immune dysregulation, likely resulting from RAG mutation and production of anti-interferon-α autoantibodies.
Collapse
Affiliation(s)
- Xiaona Liang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Hanlin Liang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Siqiao Liang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Yan Ning
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Zengtao Luo
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Quanfang Chen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Zhiyi He
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Guangxi Zhuang Autonomous Region, Nanning, 530021, China.
| |
Collapse
|
2
|
Zhan C, Peng C, Wei H, Wei K, Ou Y, Zhang Z. Diverse Subsets of γδT Cells and Their Specific Functions Across Liver Diseases. Int J Mol Sci 2025; 26:2778. [PMID: 40141420 PMCID: PMC11943347 DOI: 10.3390/ijms26062778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/15/2025] [Accepted: 03/17/2025] [Indexed: 03/28/2025] Open
Abstract
γδT cells, a distinct group of T lymphocytes, serve as a link between innate and adaptive immune responses. They are pivotal in the pathogenesis of various liver disorders, such as viral hepatitis, nonalcoholic fatty liver disease (NAFLD), alcoholic liver disease (ALD), liver fibrosis, autoimmune liver diseases, and hepatocellular carcinoma (HCC). Despite their importance, the functional diversity and regulatory mechanisms of γδT cells remain incompletely understood. Recent advances in high-throughput single-cell sequencing and spatial transcriptomics have revealed significant heterogeneity among γδT cell subsets, particularly Vδ1+ and Vδ2+, which exhibit distinct immunological roles. Vδ1+ T cells are mainly tissue-resident and contribute to tumor immunity and chronic inflammation, while Vδ2+ T cells, predominantly found in peripheral blood, play roles in systemic immune surveillance but may undergo dysfunction in chronic liver diseases. Additionally, γδT17 cells exacerbate inflammation in NAFLD and ALD, whereas IFN-γ-secreting γδT cells contribute to antiviral and antifibrotic responses. These discoveries have laid the foundation for the creation of innovative solutions. γδT cell-based immunotherapeutic approaches, such as adoptive cell transfer, immune checkpoint inhibition, and strategies targeting metabolic pathways. Future research should focus on harnessing γδT cells' therapeutic potential through targeted interventions, offering promising prospects for precision immunotherapy in liver diseases.
Collapse
Affiliation(s)
- Chenjie Zhan
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning 530021, China; (C.Z.); (C.P.)
| | - Chunxiu Peng
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning 530021, China; (C.Z.); (C.P.)
| | - Huaxiu Wei
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning 530021, China; (C.Z.); (C.P.)
| | - Ke Wei
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning 530021, China; (C.Z.); (C.P.)
| | - Yangzhi Ou
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning 530021, China; (C.Z.); (C.P.)
| | - Zhiyong Zhang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning 530021, China; (C.Z.); (C.P.)
- Department of Surgery, Robert-Wood-Johnson Medical School University Hospital, Rutgers University, New Brunswick, NJ 08901-8554, USA
| |
Collapse
|
3
|
Lu M, Wu J, Gao Q, Jin R, An C, Ma T. To cleave or not and how? The DNA exonucleases and endonucleases in immunity. Genes Dis 2025; 12:101219. [PMID: 39759116 PMCID: PMC11697192 DOI: 10.1016/j.gendis.2024.101219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/02/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2025] Open
Abstract
DNA exonucleases and endonucleases are key executors of the genome during many physiological processes. They generate double-stranded DNA by cleaving damaged endogenous or exogenous DNA, triggering the activation of the innate immune pathways such as cGAS-STING-IFN, and enabling the body to produce anti-viral or anti-tumor immune responses. This is of great significance for maintaining the stability of the genome and improving the therapeutic efficacy of tumors. In addition, genomic instability caused by exonuclease mutations contributes to the development of various autoimmune diseases. This review summarizes the DNA exonucleases and endonucleases which have critical functions in immunity and associated diseases.
Collapse
Affiliation(s)
- Mingjun Lu
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Jinghong Wu
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Qing Gao
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Renjing Jin
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Changming An
- Department of Head and Neck Surgery, Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Teng Ma
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| |
Collapse
|
4
|
Jacovas VC, Zelnick M, McNulty S, Ross JE, Khurana N, Pan X, Nieto A, Martin S, McLean B, Elnagheeb MA, Cowan MJ, Puck JM, Hershfield M, Verbsky J, Walter J, Allenspach E, Chan AY, van Oers NSC, Ghosh R, Piazza M, Yuan B, Notarangelo LD, Johnson BA, Chinn IK. The ClinGen Severe Combined Immunodeficiency Disease Variant Curation Expert Panel: Specifications for classification of variants in ADA , DCLRE1C , IL2RG , IL7R , JAK3 , RAG1 , and RAG2. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.02.11.25322033. [PMID: 39990552 PMCID: PMC11844601 DOI: 10.1101/2025.02.11.25322033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Purpose This collaborative study, led by the Clinical Genome Resource Severe Combined Immunodeficiency Disease Variant Curation Expert Panel (ClinGen SCID-VCEP), implemented and adapted the American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) guidelines for interpreting germline variants in genes with established relationships to SCID. The effort focused on the 7 most common SCID-related genes identified by SCID newborn screening in North America: ADA , DCLRE1C , IL2RG , IL7R , JAK3 , RAG1 , and RAG2 . Methods The SCID-VCEP conducted a rigorous review of variants that involved database analyses, literature review, and expert feedback to derive gene-specific modifications to the ACMG/AMP guidelines. These specifications were validated using a pilot set of 90 variants. Results: Of these 90 variants, 25 were classified as pathogenic, 21 as likely pathogenic, 14 as variants of uncertain significance (VUS), 18 as likely benign, and 12 as benign. Seventeen variants with conflicting classifications in ClinVar were successfully resolved. The criteria included modifications to 20 of the 28 original ACMG/AMP criteria specific to SCID-related genes. Conclusion The SCID-specific variant curation guidelines developed by the SCID-VCEP will enhance the precision of SCID genetic diagnosis and provide a robust framework for interpreting variants in SCID-related genes, contributing to appropriate treatment of SCID.
Collapse
|
5
|
Belot A, Tusseau M, Cognard J, Georgin‐Lavialle S, Boursier G, Hedrich CM. How (Ultra-)Rare Gene Variants Improve Our Understanding of More Common Autoimmune and Inflammatory Diseases. ACR Open Rheumatol 2025; 7:e70003. [PMID: 39964335 PMCID: PMC11834591 DOI: 10.1002/acr2.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 02/21/2025] Open
Abstract
The aim of this study was to explore the impact of rare and ultra-rare genetic variants on the understanding and treatment of autoimmune and autoinflammatory diseases with a focus on systemic lupus erythematosus (SLE) and Behçet syndrome. This review summarizes current research on the monogenic causes of SLE and Behçet syndrome, highlighting the various pathways that can be responsible for these unique phenotypes. In monogenic SLE, the identification of complement and DNASE1L3 deficiencies has elucidated mechanisms of apoptotic body accumulation and extracellular nucleic acid sensing. Type I interferonopathies underline the specific role of DNA/RNA sensing and the interferon overexpression in the development of systemic autoimmunity. Other significant genetic defects include Toll-like receptor hypersignaling and JAK/STATopathies, which contribute to the breakdown of immune tolerance. To date, genetic defects directly affecting B and T cell biology only account for a minority of identified causes of monogenic lupus, highlighting the importance of a tight regulation of mechanistic target of rapamycin and RAS (Rat sarcoma GTPase)/MAPK (mitogen-activated protein kinase) signaling in lupus. In Behçet syndrome, rare variants in TNFAIP3, RELA, and NFKB1 genes have been identified, underscoring the importance of NF-κB overactivation. Additional monogenic diseases such as ELF4, WDR1 mutations and trisomy 8 further illustrate the genetic complexity of this condition. Observations from genetic studies in SLE and Behçet syndrome highlight the complexity of systemic inflammatory diseases in which distinct molecular defects caused by single-gene mutations can promote lupus or Behçet syndromes, often unrecognizable from their genetically complex "classical" forms. Insights gained from studying rare genetic variants enhance our understanding of immune function in health and disease, paving the way for targeted therapies and personalized medicine.
Collapse
Affiliation(s)
- Alexandre Belot
- Centre International de Recherche en Infectiologie, University of Lyon, Inserm U1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, UMR5308, École normale supérieure de Lyon, National Referee Centre for Rheumatic and Autoimmune and Systemic Diseases in Children, and Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Lyon, France, and French National Reference Center of Autoinflammatory Diseases and AmyloidosisLyonFrance
| | - Maud Tusseau
- Centre International de Recherche en Infectiologie, University of Lyon, Inserm U1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, UMR5308, École normale supérieure de Lyon, National Referee Centre for Rheumatic and AutoImmune and Systemic Diseases in Children, and Hôpital Femme Mère Enfant and Groupement Hospitalier Est, Hospices Civils de Lyon, Lyon, France, and French National Reference Center of Autoinflammatory Diseases and AmyloidosisParisFrance
| | - Jade Cognard
- American Memorial Hospital, Centre Hospitalier Universitaire Reims, Reims Champagne‐Ardenne UniversityReimsFrance
| | - Sophie Georgin‐Lavialle
- French National Reference Center of Autoinflammatory Diseases and Amyloidosis, Paris, France, and Sorbonne Université, Hôpital Tenon, DMU 3ID, AP‐HPParisFrance
| | - Guilaine Boursier
- French National Reference Center of Autoinflammatory Diseases and Amyloidosis, Paris, France, and Centre Hospitalier Universitaire Montpellier, University of MontpellierMontpellierFrance
| | - Christian M. Hedrich
- Institute of Life Course and Medical Sciences, University of Liverpool and Alder Hey Children's NHS Foundation TrustLiverpoolUnited Kingdom
| |
Collapse
|
6
|
Thouvenel CD, Tipton CM, Yamazaki Y, Zhang TT, Rylaarsdam S, Hom JR, Snead C, Zhu C, Li QZ, Lee YN, Kawai T, Haque N, Zimmermann MT, Ponnan SM, Jackson SW, James RG, Sanz I, Notarangelo LD, Torgerson TR, Ochs HD, Rawlings DJ, Allenspach EJ. Hypomorphic RAG2 Deficiency Promotes Selection of Self-Reactive B Cells. J Clin Immunol 2025; 45:66. [PMID: 39812873 PMCID: PMC11735530 DOI: 10.1007/s10875-024-01849-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 12/10/2024] [Indexed: 01/30/2025]
Abstract
Reduced function or hypomorphic variants in recombination-activating genes (RAG) 1 or 2 result in a broad clinical phenotype including common variable immunodeficiency (CVID) and even adult-onset disease. Milder RAG variants are less characterized. Here we describe the longitudinal course of a milder combined RAG deficiency in 3 of 7 siblings sharing the same RAG2 mutations over a 50-year study. Whole-genome and repertoire sequencing, bacteriophage immunizations, and deep immunophenotyping were used to compare affected and unaffected family members. The clinical phenotype of three affected siblings with hypomorphic RAG deficiency ranged from combined immunodeficiency and early mortality to a late-onset CID with hyper-IgM phenotype. T cells were remarkably similar across affected siblings, yet CDR3 skewing and regulatory T cell defects were not observed. B cell analysis showed elevated unswitched CD27+ and CD21low cells as well as features of an autoreactive antibody repertoire and presence of secreted autoantibodies, yet no clinical autoimmunity was present. Most striking was an expanded polyclonal marginal zone-like B cell population (IgM+IgD+CD27+) utilizing the self-reactive unmutated VH4-34 receptor demonstrating that hypomorphic RAG deficiency can promote expansion of self-reactive B cells. This process, however, was not sufficient to trigger clinical autoimmunity. Utilizing multiple approaches, we functionally measured the specific RAG2 variant effects and assessed how selection and secondary triggers altered the BCR repertoire and immunophenotype overtime. Overall, we demonstrate a broad disease spectrum in siblings with identical hypomorphic RAG deficiency, highlighting that phenotypic divergence can result from expansion of IgM + memory B cells.
Collapse
Affiliation(s)
- Christopher D Thouvenel
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA
| | - Christopher M Tipton
- Lowance Center for Human Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Yasuhiro Yamazaki
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ting-Ting Zhang
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA
| | - Stacey Rylaarsdam
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA
| | - Jennifer R Hom
- Lowance Center for Human Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Chengsong Zhu
- Department of Immunology, Microarray and Immune Phenotyping Core, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Yu Nee Lee
- Pediatric Department A and the Immunology Service, Ramat-Gan and Sackler Faculty of Medicine, "Edmond and Lily Safra" Children's Hospital, Jeffrey Modell Foundation Center, Sheba Medical Center, Tel Hashomer, Tel-Aviv University, Tel-Aviv, Israel
| | - Tomoki Kawai
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Neshatul Haque
- Bioinformatics Research and Development Laboratory, Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Michael T Zimmermann
- Bioinformatics Research and Development Laboratory, Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Shaun W Jackson
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Rich G James
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA
| | - Ignacio Sanz
- Lowance Center for Human Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Hans D Ochs
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - David J Rawlings
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA.
- Department of Pediatrics, University of Washington, Seattle, WA, USA.
- Department of Immunology, University of Washington, Seattle, WA, USA.
| | - Eric J Allenspach
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA.
- Department of Pediatrics, University of Washington, Seattle, WA, USA.
| |
Collapse
|
7
|
Bosticardo M, Dobbs K, Delmonte OM, Martins AJ, Pala F, Kawai T, Kenney H, Magro G, Rosen LB, Yamazaki Y, Yu HH, Calzoni E, Lee YN, Liu C, Stoddard J, Niemela J, Fink D, Castagnoli R, Ramba M, Cheng A, Riley D, Oikonomou V, Shaw E, Belaid B, Keles S, Al-Herz W, Cancrini C, Cifaldi C, Baris S, Sharapova S, Schuetz C, Gennery AR, Freeman AF, Somech R, Choo S, Giliani SC, Güngör T, Drozdov D, Meyts I, Moshous D, Neven B, Abraham RS, El-Marsafy A, Kanariou M, King A, Licciardi F, Cruz-Muñoz ME, Palma P, Poli C, Adeli M, Algeri M, Alroqi FJ, Bastard P, Bergerson JRE, Booth C, Brett A, Burns SO, Butte MJ, Padem N, de la Morena M, Dbaibo G, de Ravin SS, Dimitrova D, Djidjik R, Dorna MB, Dutmer CM, Elfeky R, Facchetti F, Fuleihan RL, Geha RS, Gonzalez-Granado LI, Haljasmägi L, Ale H, Hayward A, Hifanova AM, Ip W, Kaplan B, Kapoor N, Karakoc-Aydiner E, Kärner J, Keller MD, Dávila Saldaña BJ, Kiykim A, Kuijpers TW, Kuznetsova EE, Latysheva EA, Leiding JW, Locatelli F, Alva-Lozada G, McCusker C, Celmeli F, Morsheimer M, Ozen A, Parvaneh N, Pasic S, Plebani A, Preece K, Prockop S, Sakovich IS, Starkova EE, et alBosticardo M, Dobbs K, Delmonte OM, Martins AJ, Pala F, Kawai T, Kenney H, Magro G, Rosen LB, Yamazaki Y, Yu HH, Calzoni E, Lee YN, Liu C, Stoddard J, Niemela J, Fink D, Castagnoli R, Ramba M, Cheng A, Riley D, Oikonomou V, Shaw E, Belaid B, Keles S, Al-Herz W, Cancrini C, Cifaldi C, Baris S, Sharapova S, Schuetz C, Gennery AR, Freeman AF, Somech R, Choo S, Giliani SC, Güngör T, Drozdov D, Meyts I, Moshous D, Neven B, Abraham RS, El-Marsafy A, Kanariou M, King A, Licciardi F, Cruz-Muñoz ME, Palma P, Poli C, Adeli M, Algeri M, Alroqi FJ, Bastard P, Bergerson JRE, Booth C, Brett A, Burns SO, Butte MJ, Padem N, de la Morena M, Dbaibo G, de Ravin SS, Dimitrova D, Djidjik R, Dorna MB, Dutmer CM, Elfeky R, Facchetti F, Fuleihan RL, Geha RS, Gonzalez-Granado LI, Haljasmägi L, Ale H, Hayward A, Hifanova AM, Ip W, Kaplan B, Kapoor N, Karakoc-Aydiner E, Kärner J, Keller MD, Dávila Saldaña BJ, Kiykim A, Kuijpers TW, Kuznetsova EE, Latysheva EA, Leiding JW, Locatelli F, Alva-Lozada G, McCusker C, Celmeli F, Morsheimer M, Ozen A, Parvaneh N, Pasic S, Plebani A, Preece K, Prockop S, Sakovich IS, Starkova EE, Torgerson T, Verbsky J, Walter JE, Ward B, Wisner EL, Draper D, Myint-Hpu K, Truong PM, Lionakis MS, Similuk MB, Walkiewicz MA, Klion A, Holland SM, Oguz C, Bogunovic D, Kisand K, Su HC, Tsang JS, Kuhns D, Villa A, Rosenzweig SD, Pittaluga S, Notarangelo LD. Multiomics dissection of human RAG deficiency reveals distinctive patterns of immune dysregulation but a common inflammatory signature. Sci Immunol 2025; 10:eadq1697. [PMID: 39792639 DOI: 10.1126/sciimmunol.adq1697] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 12/12/2024] [Indexed: 01/30/2025]
Abstract
Human recombination-activating gene (RAG) deficiency can manifest with distinct clinical and immunological phenotypes. By applying a multiomics approach to a large group of RAG-mutated patients, we aimed at characterizing the immunopathology associated with each phenotype. Although defective T and B cell development is common to all phenotypes, patients with hypomorphic RAG variants can generate T and B cells with signatures of immune dysregulation and produce autoantibodies to a broad range of self-antigens, including type I interferons. T helper 2 (TH2) cell skewing and a prominent inflammatory signature characterize Omenn syndrome, whereas more hypomorphic forms of RAG deficiency are associated with a type 1 immune profile both in blood and tissues. We used cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) analysis to define the cell lineage-specific contribution to the immunopathology of the distinct RAG phenotypes. These insights may help improve the diagnosis and clinical management of the various forms of the disease.
Collapse
Affiliation(s)
- Marita Bosticardo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kerry Dobbs
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ottavia M Delmonte
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Andrew J Martins
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | - Francesca Pala
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Tomoki Kawai
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Heather Kenney
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Gloria Magro
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lindsey B Rosen
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yasuhiro Yamazaki
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Hsin-Hui Yu
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Department of Pediatrics, National Taiwan University Children's Hospital, Taipei, Taiwan
| | - Enrica Calzoni
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yu Nee Lee
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, 52621 Tel HaShomer, Israel
| | - Can Liu
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | - Jennifer Stoddard
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD, USA
| | - Julie Niemela
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD, USA
| | - Danielle Fink
- Neutrophil Monitoring Laboratory, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Riccardo Castagnoli
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Meredith Ramba
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Aristine Cheng
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Deanna Riley
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Vasileios Oikonomou
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Elana Shaw
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Brahim Belaid
- Department of Medical Immunology, Beni Messous University Hospital Center, Faculty of Pharmacy, University of Algiers, Algiers, Algeria
| | - Sevgi Keles
- Division of Pediatric Allergy and Immunology, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Waleed Al-Herz
- Department of Pediatrics, College of Medicine, Kuwait University, Safat, Kuwait City, Kuwait
- Allergy and Clinical Immunology Unit, Pediatric Department, Al-Sabah Hospital, Kuwait City, Kuwait
| | - Caterina Cancrini
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Research Unit of Primary Immunodeficiencies, Academic Department of Pediatrics, Bambino Gesu' Children's Hospital, Scientific Institute for Research and Heathcare (IRCCS), Rome, Italy
| | - Cristina Cifaldi
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Safa Baris
- Faculty of Medicine, Division of Pediatric Allergy and Immunology, Marmara University, Istanbul, Turkey
- Isil Berat Barlan Center for Translational Medicine, Istanbul Jeffrey Modell Foundation Diagnostic Center for Primary Immune Deficiencies, Istanbul, Turkey
| | - Svetlana Sharapova
- Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | - Catharina Schuetz
- Department of Paediatrics, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Andrew R Gennery
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Alexandra F Freeman
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Raz Somech
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, 52621 Tel HaShomer, Israel
| | - Sharon Choo
- Department of Allergy and Immunology, Royal Children's Hospital, Melbourne, VIC, Australia
| | - Silvia C Giliani
- Angelo Nocivelli Institute for Molecular Medicine, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Laboratory Department, Spedali Civili, Brescia, Italy
- National Center for Gene Therapy and Drugs based on RNA Technology, CN3, Brescia, Italy
| | - Tayfun Güngör
- Division of Hematology/Oncology/Immunology, Gene-Therapy, and Stem Cell Transplantation, University Children's Hospital Zürich, Zürich, Switzerland
- Eleonore Foundation & Children's Research Center (CRC), Zürich, Switzerland
| | - Daniel Drozdov
- Division of Hematology/Oncology/Immunology, Gene-Therapy, and Stem Cell Transplantation, University Children's Hospital Zürich, Zürich, Switzerland
- Eleonore Foundation & Children's Research Center (CRC), Zürich, Switzerland
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Kantonsspital Aarau, Aarau, Switzerland
| | - Isabelle Meyts
- Department of Immunology and Microbiology, Inborn Errors of Immunity, KU Leuven, Leuven, Belgium
- University Hospitals Leuven and ERN-RITA Core Center, Leuven, Belgium
| | - Despina Moshous
- Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Université Paris Cité, Paris, France
- Institut Imagine, Université Paris Cité, Paris, France
| | - Benedicte Neven
- Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Université Paris Cité, Paris, France
- Institut Imagine, Université Paris Cité, Paris, France
| | - Roshini S Abraham
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Aisha El-Marsafy
- Department of Pediatrics, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Maria Kanariou
- Department of Immunology-Histocompatibility, Specialized & Referral Center for Primary Immunodeficiencies-Paediatric Immunology, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Alejandra King
- Departamento de Pediatría, Hospital Luis Calvo Mackenna, Santiago, Chile
| | - Francesco Licciardi
- Immuno-reumatologia, Pediatria Specialistica Universitaria, Ospedale Infantile Regina Margherita, Torino, Italy
| | - Mario E Cruz-Muñoz
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Paolo Palma
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Clinical Immunology and Vaccinology Unit, Children's Hospital "Bambino Gesu," Rome, Italy
| | - Cecilia Poli
- Faculty of Medicine, Clínica Alemana Universidad del Desarrollo Roberto del Rio, Santiago, Chile
| | - Mehdi Adeli
- Department of Immunology, Sidra Medicine, Ar-Rayyan, Qatar
| | - Mattia Algeri
- Department of Hematology/Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
- Catholic University of the Sacred Heart, Rome, Italy
| | - Fayhan J Alroqi
- King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Paul Bastard
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
| | - Jenna R E Bergerson
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Claire Booth
- Molecular and Cellular Immunology, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Ana Brett
- Hospital Pediátrico, Unidade Local de Saúde de Coimbra, Coimbra, Portugal
- Clínica Universitária de Pediatria, Faculdade de Medicina, Universidade de Coimbra, Coimbra, Portugal
| | - Siobhan O Burns
- Institute of Immunity and Transplantation, University College London, London, UK
- Department of Immunology, Royal Free London NHS Foundation Trust, London, UK
| | - Manish J Butte
- Department of Pediatrics, Division of Immunology, Allergy, and Rheumatology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Nurcicek Padem
- Division of Pediatric Pulmonology, Allergy-Immunology and Sleep Medicine, Riley Hospital for Children/Indiana University, Indianapolis, IN, USA
| | - M de la Morena
- Division of Immunology, Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA, USA
| | - Ghassan Dbaibo
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
- Center for Infectious Diseases Research (CIDR) and WHO Collaborating Center for Reference and Research on Bacterial Pathogens, American University of Beirut, Beirut, Lebanon
| | - Suk See de Ravin
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Dimana Dimitrova
- Experimental Transplantation and Immunotherapy Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Reda Djidjik
- Department of Medical Immunology, Beni Messous University Hospital Center, Faculty of Pharmacy, University of Algiers, Algiers, Algeria
| | - Mayra B Dorna
- Division of Allergy and Immunology, Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Cullen M Dutmer
- Allergy and Immunology Section, Children's Hospital Colorado and University of Colorado School of Medicine, Aurora, CO, USA
| | - Reem Elfeky
- Department of Clinical Immunology, Royal Free Hospital, London, UK
| | - Fabio Facchetti
- Section of Pathology, Department of Molecular and Translational Medicine, University of Brescia, Spedali Civili di Brescia, Brescia, Italy
| | - Ramsay L Fuleihan
- Division of Allergy & Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Raif S Geha
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA
| | - Luis I Gonzalez-Granado
- Primary Immunodeficiency Unit, Pediatrics, Hospital 12 Octubre, Madrid, Spain
- Instituto de Investigation Hospital 12 Octubre (imas12), Madrid, Spain
- School of Medicine Complutense University, Madrid, Spain
| | - Liis Haljasmägi
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Hanadys Ale
- Division of Immunology, Allergy and Rheumatology, Joe DiMaggio Children's Hospital, Memorial Healthcare System, Hollywood, FL, USA
- Florida International University Herbert Wertheim College of Medicine, Miami, FL, USA
| | - Anthony Hayward
- Division of Infectious Diseases, Department of Pediatrics, Brown University and Rhode Island Hospital, Providence, RI, USA
| | - Anna M Hifanova
- Department of Pediatric Infectious Diseases and Pediatric Immunology, Shupyk National Healthcare University of Ukraine, Kiev, Ukraine
| | - Winnie Ip
- Molecular and Cellular Immunology, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Blanka Kaplan
- Division of Allergy, Asthma and Immunology, Cohen Children's Medical Center, Northwell Health, New Hyde Park, NY, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Neena Kapoor
- Children's Hospital of Los Angeles, Los Angeles, CA, USA
| | - Elif Karakoc-Aydiner
- Faculty of Medicine, Division of Pediatric Allergy and Immunology, Marmara University, Istanbul, Turkey
- Isil Berat Barlan Center for Translational Medicine, Istanbul Jeffrey Modell Foundation Diagnostic Center for Primary Immune Deficiencies, Istanbul, Turkey
| | - Jaanika Kärner
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Michael D Keller
- Division of Allergy and Immunology, Children's National Hospital, Washington, DC, USA
| | | | - Ayça Kiykim
- Division of Pediatric Allergy and Immunology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Taco W Kuijpers
- Department of Pediatric Immunology, Amsterdam UMC Locatie AMC, Amsterdam, Netherlands
| | | | - Elena A Latysheva
- Immunopathology Department, NRC Institute of Immunology FMBA, Pigorov Russian National Research Medical University, Moscow, Russia
| | - Jennifer W Leiding
- Division of Allergy and Immunology, Department of Pediatrics, Johns Hopkins University, Baltimore, MD, USA
- Institute for Clinical and Translational Research, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
- Cancer and Blood Disorders Institute, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Franco Locatelli
- Department of Hematology/Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
- Catholic University of the Sacred Heart, Rome, Italy
| | - Guisela Alva-Lozada
- Allergy and Immunology Division Hospital Nacional Edgardo Rebagliati Martins, Lima, Peru
| | - Christine McCusker
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Montreal Children's Hospital, McGill University Health Centre, Montreal, QC, Canada
| | - Fatih Celmeli
- Immunology and Allergy Diseases, Saglık Bilimleri University, Antalya Training and Research Hospital Pediatric, Antalya, Turkey
| | - Megan Morsheimer
- Division of Allergy, Immunology and Transplantation, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ahmet Ozen
- Faculty of Medicine, Division of Pediatric Allergy and Immunology, Marmara University, Istanbul, Turkey
- Isil Berat Barlan Center for Translational Medicine, Istanbul Jeffrey Modell Foundation Diagnostic Center for Primary Immune Deficiencies, Istanbul, Turkey
| | - Nima Parvaneh
- Infectious Disease Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Srdjan Pasic
- Department of Pediatric Immunology, Mother and Child Health Institute, Medical Faculty, University of Belgrade, Belgrade, Serbia
| | | | - Kahn Preece
- Department of Immunology, John Hunter Children's Hospital, Newcastle, NSW, Australia
| | - Susan Prockop
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - Inga S Sakovich
- Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | - Elena E Starkova
- Clinical Department, Regional Clinical Hospital No. 2, Orenburg, Russia
| | | | - James Verbsky
- Division of Rheumatology, Department of Pediatrics, Medical College of Wisconsin and Children's Wisconsin, Milwaukee, WI, USA
| | - Jolan E Walter
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Brant Ward
- Division of Rheumatology, Allergy and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| | - Elizabeth L Wisner
- Division of Allergy Immunology, Department of Pediatrics, Louisiana State University Health Sciences Center New Orleans, New Orleans, LA, USA
| | - Deborah Draper
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Katherine Myint-Hpu
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Pooi M Truong
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michail S Lionakis
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Morgan B Similuk
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Magdalena A Walkiewicz
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Amy Klion
- Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, MD, USA
| | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Cihan Oguz
- Integrated Data Sciences Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Dusan Bogunovic
- Center for Genetic Errors of Immunity, Columbia University Medical Center, New York City, NY, USA
| | - Kai Kisand
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Helen C Su
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John S Tsang
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | - Douglas Kuhns
- Neutrophil Monitoring Laboratory, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Anna Villa
- Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Sergio D Rosenzweig
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD, USA
| | - Stefania Pittaluga
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
8
|
Henrickson SE. Evolution of the concept of immune dysregulation and current classification. J Allergy Clin Immunol 2025; 155:89-91. [PMID: 39428080 DOI: 10.1016/j.jaci.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Affiliation(s)
- Sarah E Henrickson
- Division of Allergy Immunology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa.
| |
Collapse
|
9
|
Gilioli G, Lankester AC, de Kivit S, Staal FJT, Ott de Bruin LM. Gene therapy strategies for RAG1 deficiency: Challenges and breakthroughs. Immunol Lett 2024; 270:106931. [PMID: 39303994 DOI: 10.1016/j.imlet.2024.106931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Mutations in the recombination activating genes (RAG) cause various forms of immune deficiency. Hematopoietic stem cell transplantation (HSCT) is the only cure for patients with severe manifestations of RAG deficiency; however, outcomes are suboptimal with mismatched donors. Gene therapy aims to correct autologous hematopoietic stem and progenitor cells (HSPC) and is emerging as an alternative to allogeneic HSCT. Gene therapy based on viral gene addition exploits viral vectors to add a correct copy of a mutated gene into the genome of HSPCs. Only recently, after a prolonged phase of development, viral gene addition has been approved for clinical testing in RAG1-SCID patients. In the meantime, a new technology, CRISPR/Cas9, has made its debut to compete with viral gene addition. Gene editing based on CRISPR/Cas9 allows to perform targeted genomic integrations of a correct copy of a mutated gene, circumventing the risk of virus-mediated insertional mutagenesis. In this review, we present the biology of the RAG genes, the challenges faced during the development of viral gene addition for RAG1-SCID, and the current status of gene therapy for RAG1 deficiency. In particular, we highlight the latest advances and challenges in CRISPR/Cas9 gene editing and their potential for the future of gene therapy.
Collapse
Affiliation(s)
- Giorgio Gilioli
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - Arjan C Lankester
- Department of Pediatrics, Pediatric Stem Cell Transplantation Program and Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, the Netherlands
| | - Sander de Kivit
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - Frank J T Staal
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands.
| | - Lisa M Ott de Bruin
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands; Department of Pediatrics, Pediatric Stem Cell Transplantation Program and Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, the Netherlands
| |
Collapse
|
10
|
Adelon J, Abolhassani H, Esenboga S, Fouyssac F, Cagdas D, Tezcan I, Kuskonmaz B, Cetinkaya D, Suarez F, Mahdaviani SA, Plassart S, Mathieu AL, Fabien N, Malcus C, Morfin-Sherpa F, Billaud G, Tusseau M, Benezech S, Walzer T, De Villartay JP, Bertrand Y, Belot A. Human DNA-dependent protein kinase catalytic subunit deficiency: A comprehensive review and update. J Allergy Clin Immunol 2024; 154:1300-1312. [PMID: 38977084 DOI: 10.1016/j.jaci.2024.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 06/24/2024] [Accepted: 06/28/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND DNA-dependent protein kinase catalytic subunit (DNA-PKcs) has an essential role in the non-homologous end-joining pathway that repairs DNA double-strand breaks in V(D)J recombination involved in the expression of T- and B-cell receptors. Whereas homozygous mutations in Prkdc define the Scid mouse, a model that has been widely used in biology, human mutations in PRKDC are extremely rare and the disease spectrum has not been described so far. OBJECTIVES To provide an update on the genetics, clinical spectrum, immunological profile, and therapy of DNA-PKcs deficiency in human. METHODS The clinical, biological, and treatment data from the 6 cases published to date and from 1 new patient were obtained and analyzed. Rubella PCR was performed on available granuloma material. RESULTS We report on 7 patients; 6 patients displayed the autosomal recessive p.L3062R mutation in PRKDC-encoding DNA-PKcs. Atypical severe combined immunodeficiency with inflammatory lesions, granulomas, and autoimmunity was the predominant clinical manifestation (n = 5 of 7). Rubella viral strain was detected in the granuloma of 1 patient over the 2 tested. T-cell counts, including naive CD4+CD45RA+ T cells and T-cell function were low at diagnosis for 6 patients. For most patients with available values, naive CD4+CD45RA+ T cells decreased over time (n = 5 of 6). Hematopoietic stem cell transplantation was performed in 5 patients, of whom 4 are still alive without transplant-related morbidity. Sustained T- and B-cell reconstitution was observed, respectively, for 4 and 3 patients, after a median follow-up of 8 years (range 3-16 years). CONCLUSIONS DNA-PKcs deficiency mainly manifests as an inflammatory disease with granuloma and autoimmune features, along with severe infections.
Collapse
Affiliation(s)
- Jihane Adelon
- Department of Pediatric Immunology and Hematology, Institut d'Hématologie et d'Oncologie Pédiatrique, Lyon, France; Hospices Civils de Lyon, Lyon, France.
| | - Hassan Abolhassani
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden; Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Saliha Esenboga
- Department of Pediatric Immunology, Ihsan Dogramacı Children's Hospital, Hacettepe University, Ankara, Turkey
| | - Fanny Fouyssac
- Department of Pediatric Oncology, Children's Hospital, Nancy, France
| | - Deniz Cagdas
- Department of Pediatric Immunology, Ihsan Dogramacı Children's Hospital, Hacettepe University, Ankara, Turkey
| | - Ilhan Tezcan
- Department of Pediatric Immunology, Ihsan Dogramacı Children's Hospital, Hacettepe University, Ankara, Turkey
| | - Barıs Kuskonmaz
- Department of Pediatric Hematology, Ihsan Dogramacı Children's Hospital, Hacettepe University, Ankara, Turkey
| | - Duygu Cetinkaya
- Department of Pediatric Hematology, Ihsan Dogramacı Children's Hospital, Hacettepe University, Ankara, Turkey
| | - Felipe Suarez
- Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutical Implications, INSERM UMR1163/CNRS URL 8254, Paris, France; French National Center for Primary Immunodeficiencies, Necker University Hospital, AP-HP, Paris, France; INSERM UMR1163, Imagine Institut, Sorbonne Paris Cité, Paris, France; Department of Hematology, Hôpital Universitaire Necker-Enfants Malades, Assistance Publique des Hôpitaux de Paris, Paris, France; Université Paris Cité, Paris, France
| | - Seyed Alireza Mahdaviani
- Pediatric Respiratory Diseases Research Centre, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samira Plassart
- Centre de Références Maladies Rares, Rhumatismes inflammatoires et les maladies Auto-Immunes Systémiques rares de l'Enfant (RAISE), Lyon, France
| | - Anne-Laure Mathieu
- Centre de Références Maladies Rares, Rhumatismes inflammatoires et les maladies Auto-Immunes Systémiques rares de l'Enfant (RAISE), Lyon, France; Centre International de Recherche en Infectiologie (CIRI), Institut National de la Santé et de la Recherche Médicale (INSERM) U1111, Centre National de la Recherche Scientifique Unité Mixte de Recherche (UMR) 5308, École Normale Supérieure de Lyon, Université Claude Bernard Lyon, Lyon, France
| | - Nicole Fabien
- Department of Immunology, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Pierre-Benite, France
| | - Christophe Malcus
- Department of Immunology, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | - Florence Morfin-Sherpa
- Laboratoire de Virologie, Institut des Agents Infectieux, Hospices Civils de Lyon, Groupement Hospitalier Nord, Lyon, France; Laboratoire Virologie et Pathologies humaines (VirPath),Centre International de Recherche en Infectiologie (CIRI), Institut National de la Santé et de la Recherche Médicale (INSERM) U1111, Centre National de la Recherche Scientifique Unité Mixte de Recherche (UMR) 5308, École Normale Supérieure de Lyon, Université Claude Bernard Lyon, Lyon, France
| | - Geneviève Billaud
- Laboratoire de Virologie, Institut des Agents Infectieux, Hospices Civils de Lyon, Groupement Hospitalier Nord, Lyon, France
| | - Maud Tusseau
- Hospices Civils de Lyon, Lyon, France; Centre International de Recherche en Infectiologie (CIRI), Institut National de la Santé et de la Recherche Médicale (INSERM) U1111, Centre National de la Recherche Scientifique Unité Mixte de Recherche (UMR) 5308, École Normale Supérieure de Lyon, Université Claude Bernard Lyon, Lyon, France; Service de Génétique, Groupe Hospitalier Est, Hospices Civils de Lyon, Bron, France
| | - Sarah Benezech
- Department of Pediatric Immunology and Hematology, Institut d'Hématologie et d'Oncologie Pédiatrique, Lyon, France; Hospices Civils de Lyon, Lyon, France; Centre International de Recherche en Infectiologie (CIRI), Institut National de la Santé et de la Recherche Médicale (INSERM) U1111, Centre National de la Recherche Scientifique Unité Mixte de Recherche (UMR) 5308, École Normale Supérieure de Lyon, Université Claude Bernard Lyon, Lyon, France
| | - Thierry Walzer
- Centre International de Recherche en Infectiologie (CIRI), Institut National de la Santé et de la Recherche Médicale (INSERM) U1111, Centre National de la Recherche Scientifique Unité Mixte de Recherche (UMR) 5308, École Normale Supérieure de Lyon, Université Claude Bernard Lyon, Lyon, France
| | - Jean-Pierre De Villartay
- Laboratory "Genome Dynamics in the Immune System" INSERM UMR 1163, Imagine Institute, Université de Paris Cité, Paris, France
| | - Yves Bertrand
- Department of Pediatric Immunology and Hematology, Institut d'Hématologie et d'Oncologie Pédiatrique, Lyon, France; Hospices Civils de Lyon, Lyon, France
| | - Alexandre Belot
- Hospices Civils de Lyon, Lyon, France; Centre de Références Maladies Rares, Rhumatismes inflammatoires et les maladies Auto-Immunes Systémiques rares de l'Enfant (RAISE), Lyon, France; Centre International de Recherche en Infectiologie (CIRI), Institut National de la Santé et de la Recherche Médicale (INSERM) U1111, Centre National de la Recherche Scientifique Unité Mixte de Recherche (UMR) 5308, École Normale Supérieure de Lyon, Université Claude Bernard Lyon, Lyon, France; Department of Pediatrics Nephrology, Rheumatology, and Dermatology, Hôpital Femme-Mère-Enfant, Bron, France.
| |
Collapse
|
11
|
Glynn RA, Hayer KE, Bassing CH. ATM-dependent Phosphorylation of Nemo SQ Motifs Is Dispensable for Nemo-mediated Gene Expression Changes in Response to DNA Double-Strand Breaks. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:628-640. [PMID: 39007641 PMCID: PMC11348802 DOI: 10.4049/jimmunol.2300139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/25/2024] [Indexed: 07/16/2024]
Abstract
In response to DNA double-strand breaks (DSBs), the ATM kinase activates NF-κB factors to stimulate gene expression changes that promote survival and allow time for cells to repair damage. In cell lines, ATM can activate NF-κB transcription factors via two independent, convergent mechanisms. One is ATM-mediated phosphorylation of nuclear NF-κB essential modulator (Nemo) protein, which leads to monoubiquitylation and export of Nemo to the cytoplasm where it engages the IκB kinase (IKK) complex to activate NF-κB. Another is DSB-triggered migration of ATM into the cytoplasm, where it promotes monoubiquitylation of Nemo and the resulting IKK-mediated activation of NF-κB. ATM has many other functions in the DSB response beyond activation of NF-κB, and Nemo activates NF-κB downstream of diverse stimuli, including developmental or proinflammatory stimuli such as LPSs. To elucidate the in vivo role of DSB-induced, ATM-dependent changes in expression of NF-κB-responsive genes, we generated mice expressing phosphomutant Nemo protein lacking consensus SQ sites for phosphorylation by ATM or related kinases. We demonstrate that these mice are viable/healthy and fertile and exhibit overall normal B and T lymphocyte development. Moreover, treatment of their B lineage cells with LPS induces normal NF-κB-regulated gene expression changes. Furthermore, in marked contrast to results from a pre-B cell line, primary B lineage cells expressing phosphomutant Nemo treated with the genotoxic drug etoposide induce normal ATM- and Nemo-dependent changes in expression of NF-κB-regulated genes. Our data demonstrate that ATM-dependent phosphorylation of Nemo SQ motifs in vivo is dispensable for DSB-signaled changes in expression of NF-κB-regulated genes.
Collapse
Affiliation(s)
- Rebecca A. Glynn
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Katharina E. Hayer
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Biomedical Engineering Doctoral Degree Program, School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, 19104
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Perelman School of Medicine, Philadelphia, PA, 19104
| | - Craig H. Bassing
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
12
|
Volodashchik TP, Polyakova EA, Mikhaleuskaya TM, Sakovich IS, Kupchinskaya AN, Dubrouski AC, Belevtsev MV, Dasso JF, Varabyou DS, Notarangelo LD, Walter JE, Sharapova SO. Infant with diffuse large B-cell lymphoma identified postmortem with homozygous founder Slavic RAG1 variant: a case report and literature review. Front Pediatr 2024; 12:1415020. [PMID: 39026935 PMCID: PMC11254792 DOI: 10.3389/fped.2024.1415020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/13/2024] [Indexed: 07/20/2024] Open
Abstract
Background and aims There is an increased risk of lymphomas in inborn errors of immunity (IEI); however, germline genetic testing is rarely used in oncological patients, even in those with early onset of cancer. Our study focuses on a child with a recombination-activating gene 1 (RAG1) deficiency who was identified through a screening program for Slavic founder genetic variants among patients who died with malignancy at an early age in Belarus. Results We identified one homozygous founder RAG1 variant out of 24 available DNA samples from 71 patients who developed lymphoma aged <3 years from the Belarusian cancer registry between 1986 and 2023. Our patient had an episode of pneumonia at 3 months of age and was hospitalized for respiratory distress, candida-positive lung disease, and lymphadenopathy at 14 months of age. The diagnosis of Epstein-Barr virus (EBV)-positive diffuse large B-cell lymphoma (DLBCL) was established. The patient had a normal lymphocyte count that decreased over time. One month after chemotherapy initiation, the patient died due to sepsis and multiple organ failure without a genetic diagnosis. In a retrospective analysis, T-cell receptor excision circles (TRECs) and kappa-deleting recombination excision circles (KRECs) were undetectable in peripheral blood. Conclusions A targeted screening program designed to detect a Slavic founder variant in the RAG1 gene among children revealed a 14-month-old Belarusian male infant with low TREC levels who died of EBV-driven DLBCL and complications of chemotherapy including infections. This case highlights how patients with IEI and recurrent infections may develop serious non-infectious complications, such as fatal malignancy. It also emphasizes the importance of early identification, such as newborn screening for severe combined immune deficiency. Earlier diagnosis of RAG deficiency could have prompted hematopoietic stem cell transplant well before the DLBCL occurrence. This likely would impact the onset and/or management strategies for the cancer.
Collapse
Affiliation(s)
- Tatiana P. Volodashchik
- Research Department, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | - Ekaterina A. Polyakova
- Research Department, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | - Taisia M. Mikhaleuskaya
- Research Department, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | - Inga S. Sakovich
- Research Department, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | - Aleksandra N. Kupchinskaya
- Research Department, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | | | - Mikhail V. Belevtsev
- Research Department, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | - Joseph F. Dasso
- Division of Pediatric Allergy/Immunology, Johns Hopkins All Children’s Hospital, Saint Petersburg, FL, United States
- Division of Pediatric Allergy/Immunology, University of South Florida, Tampa, FL, United States
| | - Dzmitry S. Varabyou
- Department of Geographical Ecology, Faculty of Geography and Geoinformatics, Belarusian State University, Minsk, Belarus
| | - Luigi D. Notarangelo
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIH), Bethesda, MD, United States
| | - Jolan E. Walter
- Division of Pediatric Allergy/Immunology, Johns Hopkins All Children’s Hospital, Saint Petersburg, FL, United States
- Division of Pediatric Allergy/Immunology, University of South Florida, Tampa, FL, United States
| | - Svetlana O. Sharapova
- Research Department, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| |
Collapse
|
13
|
León-Lara X, Fichtner AS, Willers M, Yang T, Schaper K, Riemann L, Schöning J, Harms A, Almeida V, Schimrock A, Janssen A, Ospina-Quintero L, von Kaisenberg C, Förster R, Eberl M, Richter MF, Pirr S, Viemann D, Ravens S. γδ T cell profiling in a cohort of preterm infants reveals elevated frequencies of CD83+ γδ T cells in sepsis. J Exp Med 2024; 221:e20231987. [PMID: 38753245 PMCID: PMC11098939 DOI: 10.1084/jem.20231987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/06/2024] [Accepted: 04/22/2024] [Indexed: 05/19/2024] Open
Abstract
Preterm infants are at high risk of developing neonatal sepsis. γδ T cells are thought to be an important set of effector cells in neonates. Here, γδ T cells were investigated in a longitudinal cohort of preterm neonates using next-generation sequencing, flow cytometry, and functional assays. During the first year of life, the Vγ9Vδ2 T cell subset showed dynamic phenotypic changes and elevated levels of fetal-derived Vγ9Vδ2 T cells were evident in infants with sepsis. Single-cell transcriptomics identified HLA-DRhiCD83+ γδ T cells in neonatal sepsis, which expressed genes related to antigen presentation. In vitro assays showed that CD83 was expressed on activated Vγ9Vδ2 T cells in preterm and term neonates, but not in adults. In contrast, activation of adult Vγ9Vδ2 T cells enhanced CD86 expression, which was presumably the key receptor to induce CD4 T cell proliferation. Together, we provide a map of the maturation of γδ T cells after preterm birth and highlight their phenotypic diversity in infections.
Collapse
MESH Headings
- Adult
- Female
- Humans
- Infant
- Infant, Newborn
- Male
- Antigens, CD/metabolism
- Antigens, CD/genetics
- CD83 Antigen
- Cohort Studies
- Infant, Premature/immunology
- Lymphocyte Activation/immunology
- Membrane Glycoproteins/metabolism
- Membrane Glycoproteins/genetics
- Neonatal Sepsis/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
Collapse
Affiliation(s)
- Ximena León-Lara
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | - Maike Willers
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Tao Yang
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | - Lennart Riemann
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Jennifer Schöning
- Translational Pediatrics, Department of Pediatrics, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Anna Harms
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Vicente Almeida
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Anja Schimrock
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Anika Janssen
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | - Constantin von Kaisenberg
- Department of Obstetrics, Gynecology, and Reproductive Medicine, Hannover Medical School, Hannover, Germany
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Matthias Eberl
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| | | | - Sabine Pirr
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Dorothee Viemann
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Translational Pediatrics, Department of Pediatrics, University Hospital Wuerzburg, Wuerzburg, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
- PRIMAL (Priming IMmunity at the Beginning of Life) Consortium, Lübeck, Germany
- Center for Infection Research, University Würzburg, Würzburg, Germany
| | - Sarina Ravens
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
14
|
Pavel-Dinu M, Gardner CL, Nakauchi Y, Kawai T, Delmonte OM, Palterer B, Bosticardo M, Pala F, Viel S, Malech HL, Ghanim HY, Bode NM, Kurgan GL, Detweiler AM, Vakulskas CA, Neff NF, Sheikali A, Menezes ST, Chrobok J, Hernández González EM, Majeti R, Notarangelo LD, Porteus MH. Genetically corrected RAG2-SCID human hematopoietic stem cells restore V(D)J-recombinase and rescue lymphoid deficiency. Blood Adv 2024; 8:1820-1833. [PMID: 38096800 PMCID: PMC11006817 DOI: 10.1182/bloodadvances.2023011766] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 10/23/2023] [Indexed: 04/10/2024] Open
Abstract
ABSTRACT Recombination-activating genes (RAG1 and RAG2) are critical for lymphoid cell development and function by initiating the variable (V), diversity (D), and joining (J) (V(D)J)-recombination process to generate polyclonal lymphocytes with broad antigen specificity. The clinical manifestations of defective RAG1/2 genes range from immune dysregulation to severe combined immunodeficiencies (SCIDs), causing life-threatening infections and death early in life without hematopoietic cell transplantation (HCT). Despite improvements, haploidentical HCT without myeloablative conditioning carries a high risk of graft failure and incomplete immune reconstitution. The RAG complex is only expressed during the G0-G1 phase of the cell cycle in the early stages of T- and B-cell development, underscoring that a direct gene correction might capture the precise temporal expression of the endogenous gene. Here, we report a feasibility study using the CRISPR/Cas9-based "universal gene-correction" approach for the RAG2 locus in human hematopoietic stem/progenitor cells (HSPCs) from healthy donors and RAG2-SCID patient. V(D)J-recombinase activity was restored after gene correction of RAG2-SCID-derived HSPCs, resulting in the development of T-cell receptor (TCR) αβ and γδ CD3+ cells and single-positive CD4+ and CD8+ lymphocytes. TCR repertoire analysis indicated a normal distribution of CDR3 length and preserved usage of the distal TRAV genes. We confirmed the in vivo rescue of B-cell development with normal immunoglobulin M surface expression and a significant decrease in CD56bright natural killer cells. Together, we provide specificity, toxicity, and efficacy data supporting the development of a gene-correction therapy to benefit RAG2-deficient patients.
Collapse
Affiliation(s)
- Mara Pavel-Dinu
- Division of Oncology, Hematology, Stem Cell Transplantation, Department of Pediatrics, Stanford University, Stanford, CA
| | - Cameron L. Gardner
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Yusuke Nakauchi
- Division of Hematology, Department of Medicine, Cancer Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA
| | - Tomoki Kawai
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Ottavia M. Delmonte
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Boaz Palterer
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Marita Bosticardo
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Francesca Pala
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Sebastien Viel
- Division of Oncology, Hematology, Stem Cell Transplantation, Department of Pediatrics, Stanford University, Stanford, CA
- Service d’immunologie biologique, Hospices Civils de Lyon, Centre International de Recherche en Infectivologie, Centre International de Recheerche in Infectivalogie, INSERM U1111, Université Claude Bernard Lyon 1, Centre National de la Recherge Scientifique, UMR5308, École Normale Supérieure de Lyon, University of Lyon, Lyon, France
| | - Harry L. Malech
- Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Hana Y. Ghanim
- Division of Oncology, Hematology, Stem Cell Transplantation, Department of Pediatrics, Stanford University, Stanford, CA
| | | | | | | | | | | | - Adam Sheikali
- Division of Oncology, Hematology, Stem Cell Transplantation, Department of Pediatrics, Stanford University, Stanford, CA
| | - Sherah T. Menezes
- Division of Oncology, Hematology, Stem Cell Transplantation, Department of Pediatrics, Stanford University, Stanford, CA
| | - Jade Chrobok
- Division of Oncology, Hematology, Stem Cell Transplantation, Department of Pediatrics, Stanford University, Stanford, CA
| | - Elaine M. Hernández González
- Division of Oncology, Hematology, Stem Cell Transplantation, Department of Pediatrics, Stanford University, Stanford, CA
| | - Ravindra Majeti
- Division of Hematology, Department of Medicine, Cancer Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA
| | - Luigi D. Notarangelo
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Matthew H. Porteus
- Division of Oncology, Hematology, Stem Cell Transplantation, Department of Pediatrics, Stanford University, Stanford, CA
| |
Collapse
|
15
|
Oftedal BE, Sjøgren T, Wolff ASB. Interferon autoantibodies as signals of a sick thymus. Front Immunol 2024; 15:1327784. [PMID: 38455040 PMCID: PMC10917889 DOI: 10.3389/fimmu.2024.1327784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/07/2024] [Indexed: 03/09/2024] Open
Abstract
Type I interferons (IFN-I) are key immune messenger molecules that play an important role in viral defense. They act as a bridge between microbe sensing, immune function magnitude, and adaptive immunity to fight infections, and they must therefore be tightly regulated. It has become increasingly evident that thymic irregularities and mutations in immune genes affecting thymic tolerance can lead to the production of IFN-I autoantibodies (autoAbs). Whether these biomarkers affect the immune system or tissue integrity of the host is still controversial, but new data show that IFN-I autoAbs may increase susceptibility to severe disease caused by certain viruses, including SARS-CoV-2, herpes zoster, and varicella pneumonia. In this article, we will elaborate on disorders that have been identified with IFN-I autoAbs, discuss models of how tolerance to IFN-Is is lost, and explain the consequences for the host.
Collapse
Affiliation(s)
- Bergithe E. Oftedal
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Thea Sjøgren
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Anette S. B. Wolff
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
16
|
Wang C, Sun B, Wu K, Farmer JR, Ujhazi B, Geier CB, Gordon S, Westermann-Clark E, Savic S, Secord E, Sargur R, Chen K, Jin JJ, Dutmer CM, Kanariou MG, Adeli M, Palma P, Bonfim C, Lycopoulou E, Wolska-Kusnierz B, Dbaibo G, Bleesing J, Moshous D, Neven B, Schuetz C, Geha RS, Notarangelo LD, Miano M, Buchbinder DK, Csomos K, Wang W, Wang JY, Wang X, Walter JE. Clinical, immunological features, treatments, and outcomes of autoimmune hemolytic anemia in patients with RAG deficiency. Blood Adv 2024; 8:603-607. [PMID: 37883797 PMCID: PMC10837476 DOI: 10.1182/bloodadvances.2023011264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/05/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023] Open
Affiliation(s)
- Chen Wang
- Department of Internal Medicine, University of South Florida, Morsani College of Medicine, Tampa, FL
| | - Bijun Sun
- Department of Clinical Immunology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Kevin Wu
- Department of Pediatrics & Medicine, University of South Florida at Johns Hopkins All Children’s Hospital, St. Petersburg, FL
| | - Jocelyn R. Farmer
- Division of Allergy and Inflammation, Beth Israel Lahey Health, Harvard Medical School, Boston, MA
| | - Boglarka Ujhazi
- Department of Pediatric Allergy and Immunology, University of South Florida at Johns Hopkins All Children’s Hospital, St. Petersburg, FL
| | - Christoph B. Geier
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, University of Freiburg; Center for Chronic Immunodeficiency, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sumai Gordon
- Department of Pediatric Allergy and Immunology, University of South Florida at Johns Hopkins All Children’s Hospital, St. Petersburg, FL
| | - Emma Westermann-Clark
- Department of Pediatric Allergy and Immunology, University of South Florida at Johns Hopkins All Children’s Hospital, St. Petersburg, FL
| | - Sinisa Savic
- St James’s University Hospital, University of Leeds, Leeds, United Kingdom
| | - Elizabeth Secord
- Division of Allergy and Immunology, Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI
| | - Ravishankar Sargur
- Sheffield Teaching Hospitals Foundation NHS Trust, Sheffield, United Kingdom
| | - Karin Chen
- Division of Immunology, Department of Pediatrics, University of Washington School of Medicine and Seattle Children's Hospital, Seattle, WA
| | - Jay J. Jin
- Division of Pediatric Pulmonology, Allergy and Sleep Medicine, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| | - Cullen M. Dutmer
- Section of Allergy & Immunology, Department of Pediatrics, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, CO
| | - Maria G. Kanariou
- Department of Immunology and Histocompatibility, Aghia Sophia Children’s Hospital, Athens, Greece
| | - Mehdi Adeli
- Pediatric Allergy and Immunology, Sidra Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Paolo Palma
- Unit of Clinical Immunology and Vaccinology, Bambino Gesu` Children’s Hospital, Department of Systems Medicine, University of Rome ‘‘Tor Vergata,’’ Rome, Italy
| | - Carmem Bonfim
- Hospital Pequeno Príncipe/Instituto de Pesquisa Pelé Pequeno Príncipe/Faculdades Pequeno Príncipe, Curitiba, Paraná, Brazil
| | - Evangelia Lycopoulou
- 1st Department of Pediatrics, University of Athens, Aghia Sofia Children’s Hospital, Athens, Greece
| | | | - Ghassan Dbaibo
- Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon
| | - Jack Bleesing
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cancer and Blood Diseases Institute, Cincinnati, OH
| | - Despina Moshous
- Department of Pediatric Immunology, Hematology and Rheumatology, Necker Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris, CEREDIH, French National Reference Centre for Primary Immunodeficiencies, Paris, France
- Imagine Institute, INSERM UMR 1163, University Paris Cité, Paris, France
| | - Benedicte Neven
- Imagine Institute, INSERM UMR 1163, University Paris Cité, Paris, France
| | - Catharina Schuetz
- Department of Pediatrics and Adolescent Medicine, University Hospital Ulm, Ulm, Germany
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Raif S. Geha
- Division of Immunology, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA
| | - Luigi D. Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Maurizio Miano
- Hematology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | - Krisztian Csomos
- Department of Pediatric Allergy and Immunology, University of South Florida at Johns Hopkins All Children’s Hospital, St. Petersburg, FL
| | - Wenjie Wang
- Department of Clinical Immunology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Ji-Yang Wang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Shanghai Huashen Institute of Microbes and Infections, Shanghai, China
| | - Xiaochuan Wang
- Department of Clinical Immunology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Jolan E. Walter
- Department of Pediatric Allergy and Immunology, University of South Florida at Johns Hopkins All Children’s Hospital, St. Petersburg, FL
| |
Collapse
|
17
|
Castiello MC, Brandas C, Ferrari S, Porcellini S, Sacchetti N, Canarutto D, Draghici E, Merelli I, Barcella M, Pelosi G, Vavassori V, Varesi A, Jacob A, Scala S, Basso Ricci L, Paulis M, Strina D, Di Verniere M, Sergi Sergi L, Serafini M, Holland SM, Bergerson JRE, De Ravin SS, Malech HL, Pala F, Bosticardo M, Brombin C, Cugnata F, Calzoni E, Crooks GM, Notarangelo LD, Genovese P, Naldini L, Villa A. Exonic knockout and knockin gene editing in hematopoietic stem and progenitor cells rescues RAG1 immunodeficiency. Sci Transl Med 2024; 16:eadh8162. [PMID: 38324638 PMCID: PMC11149094 DOI: 10.1126/scitranslmed.adh8162] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 01/17/2024] [Indexed: 02/09/2024]
Abstract
Recombination activating genes (RAGs) are tightly regulated during lymphoid differentiation, and their mutations cause a spectrum of severe immunological disorders. Hematopoietic stem and progenitor cell (HSPC) transplantation is the treatment of choice but is limited by donor availability and toxicity. To overcome these issues, we developed gene editing strategies targeting a corrective sequence into the human RAG1 gene by homology-directed repair (HDR) and validated them by tailored two-dimensional, three-dimensional, and in vivo xenotransplant platforms to assess rescue of expression and function. Whereas integration into intron 1 of RAG1 achieved suboptimal correction, in-frame insertion into exon 2 drove physiologic human RAG1 expression and activity, allowing disruption of the dominant-negative effects of unrepaired hypomorphic alleles. Enhanced HDR-mediated gene editing enabled the correction of human RAG1 in HSPCs from patients with hypomorphic RAG1 mutations to overcome T and B cell differentiation blocks. Gene correction efficiency exceeded the minimal proportion of functional HSPCs required to rescue immunodeficiency in Rag1-/- mice, supporting the clinical translation of HSPC gene editing for the treatment of RAG1 deficiency.
Collapse
Affiliation(s)
- Maria Carmina Castiello
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
- Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Rozzano (MI) 20089, Italy
| | - Chiara Brandas
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
- Translational and Molecular Medicine (DIMET), University of Milano-Bicocca, Monza 20900, Italy
| | - Samuele Ferrari
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Simona Porcellini
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Nicolò Sacchetti
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
- Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Daniele Canarutto
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
- Vita-Salute San Raffaele University, Milan 20132, Italy
- Pediatric Immunohematology Unit and BMT Program, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Elena Draghici
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Ivan Merelli
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
- National Research Council (CNR), Institute for Biomedical Technologies, Segrate (MI) 20054, Italy
| | - Matteo Barcella
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
- National Research Council (CNR), Institute for Biomedical Technologies, Segrate (MI) 20054, Italy
| | - Gabriele Pelosi
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
- Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Valentina Vavassori
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Angelica Varesi
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Aurelien Jacob
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Serena Scala
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Luca Basso Ricci
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Marianna Paulis
- Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Rozzano (MI) 20089, Italy
- Humanitas Clinical and Research Center IRCCS, Rozzano (MI) 20089, Italy
| | - Dario Strina
- Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Rozzano (MI) 20089, Italy
- Humanitas Clinical and Research Center IRCCS, Rozzano (MI) 20089, Italy
| | - Martina Di Verniere
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
- Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Rozzano (MI) 20089, Italy
| | - Lucia Sergi Sergi
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Marta Serafini
- Translational and Molecular Medicine (DIMET), University of Milano-Bicocca, Monza 20900, Italy
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza (MI) 20900, Italy
| | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Jenna R E Bergerson
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Suk See De Ravin
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Harry L Malech
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Francesca Pala
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Marita Bosticardo
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Chiara Brombin
- University Center for Statistics in the Biomedical Sciences, Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Federica Cugnata
- University Center for Statistics in the Biomedical Sciences, Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Enrica Calzoni
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Gay M Crooks
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Pietro Genovese
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
- Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA 02115, USA
| | - Luigi Naldini
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
- Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Anna Villa
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
- Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Rozzano (MI) 20089, Italy
| |
Collapse
|
18
|
Karaatmaca B, Cagdas D, Esenboga S, Erman B, Tan C, Turul Ozgur T, Boztug K, van der Burg M, Sanal O, Tezcan I. Heterogeneity in RAG1 and RAG2 deficiency: 35 cases from a single-centre. Clin Exp Immunol 2024; 215:160-176. [PMID: 37724703 PMCID: PMC10847812 DOI: 10.1093/cei/uxad110] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 09/03/2023] [Accepted: 09/17/2023] [Indexed: 09/21/2023] Open
Abstract
Recombination activating genes (RAG)1 and RAG2 deficiency leads to combined T/B-cell deficiency with varying clinical presentations. This study aimed to define the clinical/laboratory spectrum of RAG1 and RAG2 deficiency. We retrospectively reviewed the clinical/laboratory data of 35 patients, grouped them as severe combined immunodeficiency (SCID), Omenn syndrome (OS), and delayed-onset combined immunodeficiency (CID) and reported nine novel mutations. The male/female ratio was 23/12. Median age of clinical manifestations was 1 months (mo) (0.5-2), 2 mo (1.25-5), and 14 mo (3.63-27), age at diagnosis was 4 mo (3-6), 4.5 mo (2.5-9.75), and 27 mo (14.5-70) in SCID (n = 25; 71.4%), OS (n = 5; 14.3%), and CID (n = 5; 14.3%) patients, respectively. Common clinical manifestations were recurrent sinopulmonary infections 82.9%, oral moniliasis 62.9%, diarrhea 51.4%, and eczema/dermatitis 42.9%. Autoimmune features were present in 31.4% of the patients; 80% were in CID patients. Lymphopenia was present in 92% of SCID, 80% of OS, and 80% of CID patients. All SCID and CID patients had low T (CD3, CD4, and CD8), low B, and increased NK cell numbers. Twenty-eight patients underwent hematopoietic stem cell transplantation (HSCT), whereas seven patients died before HSCT. Median age at HSCT was 7 mo (4-13.5). Survival differed in groups; maximum in SCID patients who had an HLA-matched family donor, minimum in OS. Totally 19 (54.3%) patients survived. Early molecular genetic studies will give both individualized therapy options, and a survival advantage because of timely diagnosis and treatment. Further improvement in therapeutic outcomes will be possible if clinicians gain time for HSCT.
Collapse
Affiliation(s)
- Betul Karaatmaca
- Hacettepe University School of Medicine, Department of Pediatrics, Division of Pediatric Immunology, Ankara, Turkey
- Department of Pediatric Allergy and Immunology, University of Health Sciences, Ankara Bilkent City Hospital, Ankara, Turkey
| | - Deniz Cagdas
- Hacettepe University School of Medicine, Department of Pediatrics, Division of Pediatric Immunology, Ankara, Turkey
- Section of Pediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Turkey
| | - Saliha Esenboga
- Hacettepe University School of Medicine, Department of Pediatrics, Division of Pediatric Immunology, Ankara, Turkey
| | - Baran Erman
- Section of Pediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Turkey
| | - Cagman Tan
- Section of Pediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Turkey
| | - Tuba Turul Ozgur
- Hacettepe University School of Medicine, Department of Pediatrics, Division of Pediatric Immunology, Ankara, Turkey
| | - Kaan Boztug
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Medical University of Vienna, Department of Pediatrics and Adolescent Medicine, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- St. Anna Children's Hospital, Vienna, Austria
| | - Mirjam van der Burg
- Department of Pediatrics, Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - Ozden Sanal
- Hacettepe University School of Medicine, Department of Pediatrics, Division of Pediatric Immunology, Ankara, Turkey
| | - Ilhan Tezcan
- Hacettepe University School of Medicine, Department of Pediatrics, Division of Pediatric Immunology, Ankara, Turkey
- Section of Pediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Turkey
| |
Collapse
|
19
|
Ott de Bruin LM, Lankester AC, Staal FJ. Advances in gene therapy for inborn errors of immunity. Curr Opin Allergy Clin Immunol 2023; 23:467-477. [PMID: 37846903 PMCID: PMC10621649 DOI: 10.1097/aci.0000000000000952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
PURPOSE OF REVIEW Provide an overview of the landmark accomplishments and state of the art of gene therapy for inborn errors of immunity (IEI). RECENT FINDINGS Three decades after the first clinical application of gene therapy for IEI, there is one market authorized product available, while for several others efficacy has been demonstrated or is currently being tested in ongoing clinical trials. Gene editing approaches using programmable nucleases are being explored preclinically and could be beneficial for genes requiring tightly regulated expression, gain-of-function mutations and dominant-negative mutations. SUMMARY Gene therapy by modifying autologous hematopoietic stem cells (HSCs) offers an attractive alternative to allogeneic hematopoietic stem cell transplantation (HSCT), the current standard of care to treat severe IEI. This approach does not require availability of a suitable allogeneic donor and eliminates the risk of graft versus host disease (GvHD). Gene therapy can be attempted by using a viral vector to add a copy of the therapeutic gene (viral gene addition) or by using programmable nucleases (gene editing) to precisely correct mutations, disrupt a gene or introduce an entire copy of a gene at a specific locus. However, gene therapy comes with its own challenges such as safety, therapeutic effectiveness and access. For viral gene addition, a major safety concern is vector-related insertional mutagenesis, although this has been greatly reduced with the introduction of safer vectors. For gene editing, the risk of off-site mutagenesis is a main driver behind the ongoing search for modified nucleases. For both approaches, HSCs have to be manipulated ex vivo, and doing this efficiently without losing stemness remains a challenge, especially for gene editing.
Collapse
Affiliation(s)
- Lisa M. Ott de Bruin
- Willem-Alexander Children's Hospital, Department of Pediatrics, Pediatric Stem Cell Transplantation Program and Laboratory for Pediatric Immunology
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Arjan C. Lankester
- Willem-Alexander Children's Hospital, Department of Pediatrics, Pediatric Stem Cell Transplantation Program and Laboratory for Pediatric Immunology
| | - Frank J.T. Staal
- Willem-Alexander Children's Hospital, Department of Pediatrics, Pediatric Stem Cell Transplantation Program and Laboratory for Pediatric Immunology
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
20
|
Allen D, Knop O, Itkowitz B, Kalter N, Rosenberg M, Iancu O, Beider K, Lee YN, Nagler A, Somech R, Hendel A. CRISPR-Cas9 engineering of the RAG2 locus via complete coding sequence replacement for therapeutic applications. Nat Commun 2023; 14:6771. [PMID: 37891182 PMCID: PMC10611791 DOI: 10.1038/s41467-023-42036-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
RAG2-SCID is a primary immunodeficiency caused by mutations in Recombination-activating gene 2 (RAG2), a gene intimately involved in the process of lymphocyte maturation and function. ex-vivo manipulation of a patient's own hematopoietic stem and progenitor cells (HSPCs) using CRISPR-Cas9/rAAV6 gene editing could provide a therapeutic alternative to the only current treatment, allogeneic hematopoietic stem cell transplantation (HSCT). Here we show an innovative RAG2 correction strategy that replaces the entire endogenous coding sequence (CDS) for the purpose of preserving the critical endogenous spatiotemporal gene regulation and locus architecture. Expression of the corrective transgene leads to successful development into CD3+TCRαβ+ and CD3+TCRγδ+ T cells and promotes the establishment of highly diverse TRB and TRG repertoires in an in-vitro T-cell differentiation platform. Thus, our proof-of-concept study holds promise for safer gene therapy techniques of tightly regulated genes.
Collapse
Affiliation(s)
- Daniel Allen
- Institute of Nanotechnology and Advanced Materials, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Orli Knop
- Institute of Nanotechnology and Advanced Materials, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Bryan Itkowitz
- Institute of Nanotechnology and Advanced Materials, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Nechama Kalter
- Institute of Nanotechnology and Advanced Materials, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Michael Rosenberg
- Institute of Nanotechnology and Advanced Materials, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Ortal Iancu
- Institute of Nanotechnology and Advanced Materials, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Katia Beider
- The Division of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan, 5266202, Israel
| | - Yu Nee Lee
- Sackler Faculty of Medicine, Tel Aviv University, 6997801, Tel Aviv, Israel
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, 5266202, Israel
| | - Arnon Nagler
- The Division of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan, 5266202, Israel
- Sackler Faculty of Medicine, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Raz Somech
- Sackler Faculty of Medicine, Tel Aviv University, 6997801, Tel Aviv, Israel
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, 5266202, Israel
| | - Ayal Hendel
- Institute of Nanotechnology and Advanced Materials, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel.
| |
Collapse
|
21
|
Blaustein RA, Shen Z, Kashaf SS, Lee-Lin S, Conlan S, Bosticardo M, Delmonte OM, Holmes CJ, Taylor ME, Banania G, Nagao K, Dimitrova D, Kanakry JA, Su H, Holland SM, Bergerson JRE, Freeman AF, Notarangelo LD, Kong HH, Segre JA. Expanded microbiome niches of RAG-deficient patients. Cell Rep Med 2023; 4:101205. [PMID: 37757827 PMCID: PMC10591041 DOI: 10.1016/j.xcrm.2023.101205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/28/2022] [Accepted: 08/31/2023] [Indexed: 09/29/2023]
Abstract
The complex interplay between microbiota and immunity is important to human health. To explore how altered adaptive immunity influences the microbiome, we characterize skin, nares, and gut microbiota of patients with recombination-activating gene (RAG) deficiency-a rare genetically defined inborn error of immunity (IEI) that results in a broad spectrum of clinical phenotypes. Integrating de novo assembly of metagenomes from RAG-deficient patients with reference genome catalogs provides an expansive multi-kingdom view of microbial diversity. RAG-deficient patient microbiomes exhibit inter-individual variation, including expansion of opportunistic pathogens (e.g., Corynebacterium bovis, Haemophilus influenzae), and a relative loss of body site specificity. We identify 35 and 27 bacterial species derived from skin/nares and gut microbiomes, respectively, which are distinct to RAG-deficient patients compared to healthy individuals. Underscoring IEI patients as potential reservoirs for viral persistence and evolution, we further characterize the colonization of eukaryotic RNA viruses (e.g., Coronavirus 229E, Norovirus GII) in this patient population.
Collapse
Affiliation(s)
- Ryan A Blaustein
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Zeyang Shen
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Sara Saheb Kashaf
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - ShihQueen Lee-Lin
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Sean Conlan
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Marita Bosticardo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Ottavia M Delmonte
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Cassandra J Holmes
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD 20892, USA
| | - Monica E Taylor
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD 20892, USA
| | - Glenna Banania
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD 20892, USA
| | - Keisuke Nagao
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD 20892, USA
| | - Dimana Dimitrova
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Jennifer A Kanakry
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Helen Su
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Jenna R E Bergerson
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Alexandra F Freeman
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Heidi H Kong
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD 20892, USA
| | - Julia A Segre
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
22
|
Jabbarpour N, Bonyadi M, Sadeghi L. A novel loss of function mutation in the PHD domain of the RAG2 gene, affecting zinc-binding affinity. Mol Biol Rep 2023; 50:8771-8775. [PMID: 37573280 DOI: 10.1007/s11033-023-08731-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 08/02/2023] [Indexed: 08/14/2023]
Abstract
BACKGROUND Severe combined immune deficiencies (SCIDs) are genetically heterogeneous disorders that lead to the absence or malfunction of adaptive immune cells, including T- and B-cells. Pathogenic variants in the RAG2 gene are associated with this disease. METHODS A couple with consanguineous marriage from the Iranian-Azeri-Turkish ethnic group was referred to the genetic lab. Two children of this family died due to SCID disease with symptoms of skin granulomas, lack of developed T- and B-cells, and intact NK cells. To infer their genotypes, DNA samples obtained from the parents were subjected to whole-exome sequencing (WES). RESULTS WES data analysis revealed that both parents were carriers of a pathogenic variant, NC_000011.10 (NM_000536.4):c.1268G > C, in the RAG2 gene. This variant was absent in our cohort of 400 healthy individuals from the same ethnic group. To gain insight into the consequence of the variant on the protein function, further analysis was performed by applying bioinformatics tools. This study revealed that the replacement of cysteine with serine at the zinc-binding domain diminished the domain's affinity to zinc ion, resulting in the loss of the mutant protein's ability to bind to the recombination signal sequence (RSS). The formation of the RAG2-RSS complex is vital for T- and B-cell development. CONCLUSION The identification of a novel pathogenic variant, c.1268G > C, revealed that this variant in the zinc-binding domain diminished the affinity of the zinc ion to the mutant protein and consequently led to the loss of its ability to bind to the RSS.
Collapse
Affiliation(s)
- Neda Jabbarpour
- Animal Biology Department, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Mortaza Bonyadi
- Center of Excellence for Biodiversity, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| | - Leila Sadeghi
- Animal Biology Department, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| |
Collapse
|
23
|
Jauch AJ, Bignucolo O, Seki S, Ghraichy M, Delmonte OM, von Niederhäusern V, Higgins R, Ghosh A, Nishizawa M, Tanaka M, Baldrich A, Köppen J, Hirsiger JR, Hupfer R, Ehl S, Rensing-Ehl A, Hopfer H, Prince SS, Daley SR, Marquardsen FA, Meyer BJ, Tamm M, Daikeler TD, Diesch T, Kühne T, Helbling A, Berkemeier C, Heijnen I, Navarini AA, Trück J, de Villartay JP, Oxenius A, Berger CT, Hess C, Notarangelo LD, Yamamoto H, Recher M. Autoimmunity and immunodeficiency associated with monoallelic LIG4 mutations via haploinsufficiency. J Allergy Clin Immunol 2023; 152:500-516. [PMID: 37004747 PMCID: PMC10529397 DOI: 10.1016/j.jaci.2023.03.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 02/24/2023] [Accepted: 03/06/2023] [Indexed: 04/03/2023]
Abstract
BACKGROUND Biallelic mutations in LIG4 encoding DNA-ligase 4 cause a rare immunodeficiency syndrome manifesting as infant-onset life-threatening and/or opportunistic infections, skeletal malformations, radiosensitivity and neoplasia. LIG4 is pivotal during DNA repair and during V(D)J recombination as it performs the final DNA-break sealing step. OBJECTIVES This study explored whether monoallelic LIG4 missense mutations may underlie immunodeficiency and autoimmunity with autosomal dominant inheritance. METHODS Extensive flow-cytometric immune-phenotyping was performed. Rare variants of immune system genes were analyzed by whole exome sequencing. DNA repair functionality and T-cell-intrinsic DNA damage tolerance was tested with an ensemble of in vitro and in silico tools. Antigen-receptor diversity and autoimmune features were characterized by high-throughput sequencing and autoantibody arrays. Reconstitution of wild-type versus mutant LIG4 were performed in LIG4 knockout Jurkat T cells, and DNA damage tolerance was subsequently assessed. RESULTS A novel heterozygous LIG4 loss-of-function mutation (p.R580Q), associated with a dominantly inherited familial immune-dysregulation consisting of autoimmune cytopenias, and in the index patient with lymphoproliferation, agammaglobulinemia, and adaptive immune cell infiltration into nonlymphoid organs. Immunophenotyping revealed reduced naive CD4+ T cells and low TCR-Vα7.2+ T cells, while T-/B-cell receptor repertoires showed only mild alterations. Cohort screening identified 2 other nonrelated patients with the monoallelic LIG4 mutation p.A842D recapitulating clinical and immune-phenotypic dysregulations observed in the index family and displaying T-cell-intrinsic DNA damage intolerance. Reconstitution experiments and molecular dynamics simulations categorize both missense mutations as loss-of-function and haploinsufficient. CONCLUSIONS This study provides evidence that certain monoallelic LIG4 mutations may cause human immune dysregulation via haploinsufficiency.
Collapse
Affiliation(s)
- Annaïse J Jauch
- Immunodeficiency Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | | | - Sayuri Seki
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Marie Ghraichy
- Division of Immunology and Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Ottavia M Delmonte
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Valentin von Niederhäusern
- Division of Immunology and Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Rebecca Higgins
- Division of Dermatology and Dermatology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Adhideb Ghosh
- Division of Dermatology and Dermatology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland; Competence Center for Personalized Medicine, University of Zürich/Eidgenössische Technische Hochschule, Zurich, Switzerland
| | - Masako Nishizawa
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Mariko Tanaka
- Department of Pathology, The University of Tokyo, Tokyo, Japan
| | - Adrian Baldrich
- Immunodeficiency Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Julius Köppen
- Immunodeficiency Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Julia R Hirsiger
- Translational Immunology, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Robin Hupfer
- Immunodeficiency Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Stephan Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty for Medicine, University of Freiburg, Freiburg, Germany
| | - Anne Rensing-Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty for Medicine, University of Freiburg, Freiburg, Germany
| | - Helmut Hopfer
- Institute for Pathology, University Hospital Basel, Basel, Switzerland
| | | | - Stephen R Daley
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland
| | - Florian A Marquardsen
- Immunodeficiency Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Benedikt J Meyer
- Immunodeficiency Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Michael Tamm
- Department of Pneumology, University Hospital Basel, Basel, Switzerland
| | - Thomas D Daikeler
- Department of Rheumatology, University Hospital Basel, Basel, Switzerland; University Center for Immunology, University Hospital Basel, Basel, Switzerland
| | - Tamara Diesch
- Division of Pediatric Oncology/Hematology, University Children's Hospital Basel, Basel, Switzerland
| | - Thomas Kühne
- Division of Pediatric Oncology/Hematology, University Children's Hospital Basel, Basel, Switzerland
| | - Arthur Helbling
- Division of Allergology and clinical Immunology, Department of Pneumology and Allergology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Caroline Berkemeier
- Division Medical Immunology, Laboratory Medicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Ingmar Heijnen
- Division Medical Immunology, Laboratory Medicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Alexander A Navarini
- Division of Dermatology and Dermatology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland; University Center for Immunology, University Hospital Basel, Basel, Switzerland
| | - Johannes Trück
- Division of Immunology and Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Jean-Pierre de Villartay
- Laboratory of Genome Dynamics in the Immune System, Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherché 1163, Université Paris Descartes Sorbonne Paris Cité, Institut Imagine, Paris, France
| | - Annette Oxenius
- Institute of Microbiology, Eidgenössische Technische Hochschule, Zurich, Switzerland
| | - Christoph T Berger
- Translational Immunology, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland; University Center for Immunology, University Hospital Basel, Basel, Switzerland
| | - Christoph Hess
- University Center for Immunology, University Hospital Basel, Basel, Switzerland; Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland; Cambridge Institute of Therapeutic Immunology and Infectious Disease, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Hiroyuki Yamamoto
- Immunodeficiency Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland; AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan.
| | - Mike Recher
- Immunodeficiency Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland; University Center for Immunology, University Hospital Basel, Basel, Switzerland.
| |
Collapse
|
24
|
Zhao Y, Guo R, Cao X, Zhang Y, Sun R, Lu W, Zhao M. Role of chemokines in T-cell acute lymphoblastic Leukemia: From pathogenesis to therapeutic options. Int Immunopharmacol 2023; 121:110396. [PMID: 37295031 DOI: 10.1016/j.intimp.2023.110396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/11/2023]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a highly heterogeneous and aggressive subtype of hematologic malignancy, with limited therapeutic options due to the complexity of its pathogenesis. Although high-dose chemotherapy and allogeneic hematopoietic stem cell transplantation have improved outcomes for T-ALL patients, there remains an urgent need for novel treatments in cases of refractory or relapsed disease. Recent research has demonstrated the potential of targeted therapies aimed at specific molecular pathways to improve patient outcomes. Chemokine-related signals, both upstream and downstream, modulate the composition of distinct tumor microenvironments, thereby regulating a multitude of intricate cellular processes such as proliferation, migration, invasion and homing. Furthermore, the progress in research has made significant contributions to precision medicine by targeting chemokine-related pathways. This review article summarizes the crucial roles of chemokines and their receptors in T-ALL pathogenesis. Moreover, it explores the advantages and disadvantages of current and potential therapeutic options that target chemokine axes, including small molecule antagonists, monoclonal antibodies, and chimeric antigen receptor T-cells.
Collapse
Affiliation(s)
- YiFan Zhao
- First Center Clinic College of Tianjin Medical University, Tianjin 300192, China
| | - RuiTing Guo
- First Center Clinic College of Tianjin Medical University, Tianjin 300192, China
| | - XinPing Cao
- First Center Clinic College of Tianjin Medical University, Tianjin 300192, China
| | - Yi Zhang
- First Center Clinic College of Tianjin Medical University, Tianjin 300192, China
| | - Rui Sun
- School of Medicine, Nankai University, Tianjin 300192, China
| | - WenYi Lu
- Department of Hematology, Tianjin First Central Hospital, Tianjin 300192, China
| | - MingFeng Zhao
- Department of Hematology, Tianjin First Central Hospital, Tianjin 300192, China.
| |
Collapse
|
25
|
Braams M, Pike-Overzet K, Staal FJT. The recombinase activating genes: architects of immune diversity during lymphocyte development. Front Immunol 2023; 14:1210818. [PMID: 37497222 PMCID: PMC10367010 DOI: 10.3389/fimmu.2023.1210818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/19/2023] [Indexed: 07/28/2023] Open
Abstract
The mature lymphocyte population of a healthy individual has the remarkable ability to recognise an immense variety of antigens. Instead of encoding a unique gene for each potential antigen receptor, evolution has used gene rearrangements, also known as variable, diversity, and joining gene segment (V(D)J) recombination. This process is critical for lymphocyte development and relies on recombination-activating genes-1 (RAG1) and RAG2, here collectively referred to as RAG. RAG serves as powerful genome editing tools for lymphocytes and is strictly regulated to prevent dysregulation. However, in the case of dysregulation, RAG has been implicated in cases of cancer, autoimmunity and severe combined immunodeficiency (SCID). This review examines functional protein domains and motifs of RAG, describes advances in our understanding of the function and (dys)regulation of RAG, discuss new therapeutic options, such as gene therapy, for RAG deficiencies, and explore in vitro and in vivo methods for determining RAG activity and target specificity.
Collapse
Affiliation(s)
- Merijn Braams
- Department of Immunology, Leiden University Medical Centre, Leiden, Netherlands
| | - Karin Pike-Overzet
- Department of Immunology, Leiden University Medical Centre, Leiden, Netherlands
| | - Frank J. T. Staal
- Department of Immunology, Leiden University Medical Centre, Leiden, Netherlands
- Novo Nordisk Foundation Centre for Stem Cell Medicine (reNEW), Leiden University Medical Centre, Leiden, Netherlands
- Department of Paediatrics, Leiden University Medical Centre, Leiden, Netherlands
| |
Collapse
|
26
|
Min Q, Csomos K, Li Y, Dong L, Hu Z, Meng X, Yu M, Walter JE, Wang JY. B cell abnormalities and autoantibody production in patients with partial RAG deficiency. Front Immunol 2023; 14:1155380. [PMID: 37475856 PMCID: PMC10354446 DOI: 10.3389/fimmu.2023.1155380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/15/2023] [Indexed: 07/22/2023] Open
Abstract
Mutations in the recombination activating gene 1 (RAG1) and RAG2 in humans are associated with a broad spectrum of clinical phenotypes, from severe combined immunodeficiency to immune dysregulation. Partial (hypomorphic) RAG deficiency (pRD) in particular, frequently leads to hyperinflammation and autoimmunity, with several underlying intrinsic and extrinsic mechanisms causing a break in tolerance centrally and peripherally during T and B cell development. However, the relative contributions of these processes to immune dysregulation remain unclear. In this review, we specifically focus on the recently described tolerance break and B cell abnormalities, as well as consequent molecular and cellular mechanisms of autoantibody production in patients with pRD.
Collapse
Affiliation(s)
- Qing Min
- Department of Clinical Immunology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Krisztian Csomos
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St. Petersburg, FL, United States
| | - Yaxuan Li
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Lulu Dong
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ziying Hu
- Department of Microbiology and Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xin Meng
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Meiping Yu
- Department of Clinical Immunology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Jolan E Walter
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St. Petersburg, FL, United States
- Division of Pediatric Allergy/Immunology, Massachusetts General Hospital for Children, Boston, MA, United States
| | - Ji-Yang Wang
- Department of Clinical Immunology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Department of Microbiology and Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- Shanghai Huashen Institute of Microbes and Infections, Shanghai, China
| |
Collapse
|
27
|
Suspitsin EN, Imyanitov EN. Hereditary Conditions Associated with Elevated Cancer Risk in Childhood. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:880-891. [PMID: 37751861 DOI: 10.1134/s0006297923070039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 09/28/2023]
Abstract
Received January, 31, 2023 Revised March, 16, 2023 Accepted March, 18, 2023 Widespread use of the next-generation sequencing (NGS) technologies revealed that a significant percentage of tumors in children develop as a part of monogenic hereditary diseases. Predisposition to the development of pediatric neoplasms is characteristic of a wide range of conditions including hereditary tumor syndromes, primary immunodeficiencies, RASopathies, and phakomatoses. The mechanisms of tumor molecular pathogenesis are diverse and include disturbances in signaling cascades, defects in DNA repair, chromatin remodeling, and microRNA processing. Timely diagnosis of tumor-associated syndromes is important for the proper choice of cancer treatment, genetic counseling of families, and development of the surveillance programs. The review describes the spectrum of neoplasms characteristic of the most common syndromes and molecular pathogenesis of these diseases.
Collapse
Affiliation(s)
- Evgeny N Suspitsin
- N. N. Petrov National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Saint Petersburg, 197758, Russia.
- St.-Petersburg State Pediatric Medical University, Saint Petersburg, 194100, Russia
| | - Evgeny N Imyanitov
- N. N. Petrov National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Saint Petersburg, 197758, Russia
- St.-Petersburg State Pediatric Medical University, Saint Petersburg, 194100, Russia
| |
Collapse
|
28
|
Mou W, Yang Z, Wang X, Hei M, Wang Y, Gui J. Immunological assessment of a patient with Omenn syndrome resulting from compound heterozygous mutations in the RAG1 gene. Immunogenetics 2023:10.1007/s00251-023-01309-5. [PMID: 37269334 DOI: 10.1007/s00251-023-01309-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 05/17/2023] [Indexed: 06/05/2023]
Abstract
The recombination activating gene 1 (RAG1) is essential for V(D)J recombination during T- and B-cell development. In this study, we presented a case study of a 41-day-old female infant who exhibited symptoms of generalized erythroderma, lymphadenopathy, hepatosplenomegaly, and recurrent infections including suppurative meningitis and septicemia. The patient showed a T+B-NK+ immunophenotype. We observed an impaired thymic output, as indicated by reduced levels of naive T cells and sjTRECs, coupled with a restricted TCR repertoire. Additionally, T-cell CFSE proliferation was impaired, indicating a suboptimal T-cell response. Notably, our data further revealed that T cells were in an activated state. Genetic analysis revealed a previously reported compound heterozygous mutation (c. 1186C > T, p. R396C; c. 1210C > T, p. R404W) in the RAG1 gene. Structural analysis of RAG1 suggested that the R396C mutation might lead to the loss of hydrogen bonds with neighboring amino acids. These findings contribute to our understanding of RAG1 deficiency and may have implications for the development of novel therapies for patients with this condition.
Collapse
Affiliation(s)
- Wenjun Mou
- Laboratory of Tumor Immunology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Zixin Yang
- Department of Neonatology, Neonatal Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Xiaojiao Wang
- Department of Neonatology, Neonatal Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Mingyan Hei
- Department of Neonatology, Neonatal Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.
| | - Yajuan Wang
- Department of Neonatology, Children's Hospital, Capital Institute of Pediatrics, Beijing, 100020, China.
| | - Jingang Gui
- Laboratory of Tumor Immunology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.
| |
Collapse
|
29
|
Chitty Lopez M, Yilmaz M, Diaz-Cabrera NM, Saco T, Ishmael L, Sotoudeh S, Bindernagel C, Ujhazi B, Gordon S, Potts DE, Danziger R, Bosticardo M, Kenney H, Illes P, Lee S, Harris M, Cuellar-Rodriguez J, Patel KN, Csomos K, Dimitrova D, Kanakry JA, Notarangelo LD, Walter JE. Separating the Wheat From the Chaff in Asthma and Bronchiectasis: The Saga Trajectory of a Patient With Adult-Onset RAG1 Deficiency. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:1972-1980. [PMID: 37088379 PMCID: PMC10332246 DOI: 10.1016/j.jaip.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 04/25/2023]
Affiliation(s)
- Maria Chitty Lopez
- Division of Allergy and Immunology, Department of Pediatrics, University of South Florida, Tampa, Fla; Division of Allergy and Immunology, Department of Pediatrics, Johns Hopkins All Children's Hospital, St. Petersburg, Fla
| | - Melis Yilmaz
- Division of Allergy and Immunology, Department of Pediatrics, University of South Florida, Tampa, Fla; Division of Allergy and Immunology, Department of Pediatrics, Johns Hopkins All Children's Hospital, St. Petersburg, Fla
| | - Natalie M Diaz-Cabrera
- Division of Allergy and Immunology, Department of Internal Medicine, University of South Florida, Tampa, Fla
| | - Tara Saco
- Windom Allergy, Asthma and Sinus, Sarasota, Fla
| | - Leah Ishmael
- Division of Allergy and Immunology, Department of Internal Medicine, University of South Florida, Tampa, Fla
| | - Shannon Sotoudeh
- Division of Allergy and Immunology, Department of Pediatrics, University of South Florida, Tampa, Fla; Division of Allergy and Immunology, Department of Pediatrics, Johns Hopkins All Children's Hospital, St. Petersburg, Fla
| | | | - Boglarka Ujhazi
- Division of Allergy and Immunology, Department of Pediatrics, University of South Florida, Tampa, Fla
| | - Sumai Gordon
- Division of Allergy and Immunology, Department of Pediatrics, University of South Florida, Tampa, Fla
| | - David Evan Potts
- Division of Allergy and Immunology, Department of Pediatrics, University of South Florida, Tampa, Fla; Division of Allergy and Immunology, Department of Pediatrics, Johns Hopkins All Children's Hospital, St. Petersburg, Fla
| | | | - Marita Bosticardo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Md
| | - Heather Kenney
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Md
| | - Peter Illes
- Division of Allergy and Immunology, Department of Pediatrics, University of South Florida, Tampa, Fla
| | - Sena Lee
- Riverchase Dermatology and Cosmetic Surgery, Suncity Center, Fla
| | - Megan Harris
- Infectious Disease Associates of Tampa Bay, Tampa, Fla
| | - Jennifer Cuellar-Rodriguez
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Md
| | - Kapil N Patel
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Internal Medicine, University of South Florida, Tampa, Fla
| | - Krisztian Csomos
- Division of Allergy and Immunology, Department of Pediatrics, University of South Florida, Tampa, Fla
| | - Dimana Dimitrova
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Md
| | | | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Md
| | - Jolan E Walter
- Division of Allergy and Immunology, Department of Pediatrics, University of South Florida, Tampa, Fla; Division of Allergy and Immunology, Department of Pediatrics, Johns Hopkins All Children's Hospital, St. Petersburg, Fla; Massachusetts General Hospital for Children, Boston, Mass.
| |
Collapse
|
30
|
Yonkof JR, Basu A, Redmond MT, Dobbs AK, Perelygina L, Notarangelo LD, Abraham RS, Rangarajan HG. Refractory, fatal autoimmune hemolytic anemia due to ineffective thymic-derived T-cell reconstitution following allogeneic hematopoietic cell transplantation for hypomorphic RAG1 deficiency. Pediatr Blood Cancer 2023; 70:e30183. [PMID: 36583469 PMCID: PMC10038854 DOI: 10.1002/pbc.30183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 12/31/2022]
Affiliation(s)
- Jennifer R Yonkof
- Department of Pediatrics, Division of Allergy & Immunology, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Amrita Basu
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Margaret T Redmond
- Department of Pediatrics, Division of Allergy & Immunology, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Adam Kerry Dobbs
- Laboratory of Clinical Immunology and Microbiology, National Institutes of Health, Bethesda, Maryland, USA
| | - Ludmila Perelygina
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institutes of Health, Bethesda, Maryland, USA
| | - Roshini S Abraham
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Hemalatha G Rangarajan
- Department of Pediatrics, Division of Hematology, Oncology, Blood and Marrow Transplant, Nationwide Children's Hospital, Columbus, Ohio, USA
| |
Collapse
|
31
|
Iancu O, Allen D, Knop O, Zehavi Y, Breier D, Arbiv A, Lev A, Lee YN, Beider K, Nagler A, Somech R, Hendel A. Multiplex HDR for disease and correction modeling of SCID by CRISPR genome editing in human HSPCs. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 31:105-121. [PMID: 36618262 PMCID: PMC9813580 DOI: 10.1016/j.omtn.2022.12.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
Severe combined immunodeficiency (SCID) is a group of disorders caused by mutations in genes involved in the process of lymphocyte maturation and function. CRISPR-Cas9 gene editing of the patient's own hematopoietic stem and progenitor cells (HSPCs) ex vivo could provide a therapeutic alternative to allogeneic hematopoietic stem cell transplantation, the current gold standard for treatment of SCID. To eliminate the need for scarce patient samples, we engineered genotypes in healthy donor (HD)-derived CD34+ HSPCs using CRISPR-Cas9/rAAV6 gene-editing, to model both SCID and the therapeutic outcomes of gene-editing therapies for SCID via multiplexed homology-directed repair (HDR). First, we developed a SCID disease model via biallelic knockout of genes critical to the development of lymphocytes; and second, we established a knockin/knockout strategy to develop a proof-of-concept single-allelic gene correction. Based on these results, we performed gene correction of RAG2-SCID patient-derived CD34+ HSPCs that successfully developed into CD3+ T cells with diverse TCR repertoires in an in vitro T cell differentiation platform. In summary, we present a strategy to determine the optimal configuration for CRISPR-Cas9 gene correction of SCID using HD-derived CD34+ HSPCs, and the feasibility of translating this gene correction approach in patient-derived CD34+ HSPCs.
Collapse
Affiliation(s)
- Ortal Iancu
- The Institute for Advanced Materials and Nanotechnology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Daniel Allen
- The Institute for Advanced Materials and Nanotechnology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Orli Knop
- The Institute for Advanced Materials and Nanotechnology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Yonathan Zehavi
- The Institute for Advanced Materials and Nanotechnology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Dor Breier
- The Institute for Advanced Materials and Nanotechnology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Adaya Arbiv
- The Institute for Advanced Materials and Nanotechnology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Atar Lev
- The Institute for Advanced Materials and Nanotechnology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel-HaShomer, Ramat Gan 5266202, Israel
| | - Yu Nee Lee
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel-HaShomer, Ramat Gan 5266202, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Katia Beider
- The Division of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel-HaShomer, Ramat Gan 5266202, Israel
| | - Arnon Nagler
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- The Division of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel-HaShomer, Ramat Gan 5266202, Israel
| | - Raz Somech
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel-HaShomer, Ramat Gan 5266202, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ayal Hendel
- The Institute for Advanced Materials and Nanotechnology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
32
|
Castiello MC, Ferrari S, Villa A. Correcting inborn errors of immunity: From viral mediated gene addition to gene editing. Semin Immunol 2023; 66:101731. [PMID: 36863140 PMCID: PMC10109147 DOI: 10.1016/j.smim.2023.101731] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/25/2023] [Accepted: 02/14/2023] [Indexed: 03/04/2023]
Abstract
Allogeneic hematopoietic stem cell transplantation is an effective treatment to cure inborn errors of immunity. Remarkable progress has been achieved thanks to the development and optimization of effective combination of advanced conditioning regimens and use of immunoablative/suppressive agents preventing rejection as well as graft versus host disease. Despite these tremendous advances, autologous hematopoietic stem/progenitor cell therapy based on ex vivo gene addition exploiting integrating γ-retro- or lenti-viral vectors, has demonstrated to be an innovative and safe therapeutic strategy providing proof of correction without the complications of the allogeneic approach. The recent advent of targeted gene editing able to precisely correct genomic variants in an intended locus of the genome, by introducing deletions, insertions, nucleotide substitutions or introducing a corrective cassette, is emerging in the clinical setting, further extending the therapeutic armamentarium and offering a cure to inherited immune defects not approachable by conventional gene addition. In this review, we will analyze the current state-of-the art of conventional gene therapy and innovative protocols of genome editing in various primary immunodeficiencies, describing preclinical models and clinical data obtained from different trials, highlighting potential advantages and limits of gene correction.
Collapse
Affiliation(s)
- Maria Carmina Castiello
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy; Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (IRGB-CNR), Milan, Italy
| | - Samuele Ferrari
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy; Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Anna Villa
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy; Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (IRGB-CNR), Milan, Italy.
| |
Collapse
|
33
|
de Villartay JP, Pannier E, Sibiude J, Frange P, Tubiana R, Blanche S. Brief Report: T-Cell Receptor α Repertoire Diversity at Birth After in utero Exposure to HIV Integrase Strand-Transfer Inhibitors. J Acquir Immune Defic Syndr 2023; 92:260-262. [PMID: 36343360 DOI: 10.1097/qai.0000000000003130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022]
Abstract
ABSTRACT Effectiveness of anti-HIV in the prevention of perinatal transmission has been established. Assessing the tolerance of drug exposure during pregnancy is of the utmost importance given the number of children exposed. HIV integrase and the recombinase-activating gene enzyme involved in the establishment of the T-lymphocyte repertoire show structural similarity. The inhibition of recombinase-activating (RAG) gene by anti-integrases is observed in vitro, in a variable way according to the molecules. Here, we show that in utero exposure to raltegravir did not alter the T-lymphocyte repertoire of 12 newborns. These reassuring data merit verification for other anti-integrases. ( ClinicalTrial.org NCT04024150).
Collapse
Affiliation(s)
- Jean Pierre de Villartay
- Imagine Institute, Laboratory "Genome Dynamics in the Immune System", INSERM UMR 11635, Paris, France.,Université Paris-Cité, Paris, France; and
| | - Emmanuelle Pannier
- Université Paris-Cité, Paris, France; and.,Assistance Publique-Hôpitaux de Paris (APHP), Paris and Colombes, France
| | - Jeanne Sibiude
- Université Paris-Cité, Paris, France; and.,Assistance Publique-Hôpitaux de Paris (APHP), Paris and Colombes, France
| | - Pierre Frange
- Université Paris-Cité, Paris, France; and.,Assistance Publique-Hôpitaux de Paris (APHP), Paris and Colombes, France
| | - Roland Tubiana
- Assistance Publique-Hôpitaux de Paris (APHP), Paris and Colombes, France
| | - Stéphane Blanche
- Université Paris-Cité, Paris, France; and.,Assistance Publique-Hôpitaux de Paris (APHP), Paris and Colombes, France
| |
Collapse
|
34
|
Pavel-Dinu M, Borna S, Bacchetta R. Rare immune diseases paving the road for genome editing-based precision medicine. Front Genome Ed 2023; 5:1114996. [PMID: 36846437 PMCID: PMC9945114 DOI: 10.3389/fgeed.2023.1114996] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 01/26/2023] [Indexed: 02/11/2023] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) genome editing platform heralds a new era of gene therapy. Innovative treatments for life-threatening monogenic diseases of the blood and immune system are transitioning from semi-random gene addition to precise modification of defective genes. As these therapies enter first-in-human clinical trials, their long-term safety and efficacy will inform the future generation of genome editing-based medicine. Here we discuss the significance of Inborn Errors of Immunity as disease prototypes for establishing and advancing precision medicine. We will review the feasibility of clustered regularly interspaced short palindromic repeats-based genome editing platforms to modify the DNA sequence of primary cells and describe two emerging genome editing approaches to treat RAG2 deficiency, a primary immunodeficiency, and FOXP3 deficiency, a primary immune regulatory disorder.
Collapse
Affiliation(s)
- Mara Pavel-Dinu
- Division of Hematology-Oncology-Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford Medical School, Palo Alto, CA, United States
| | - Simon Borna
- Division of Hematology-Oncology-Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford Medical School, Palo Alto, CA, United States
| | - Rosa Bacchetta
- Division of Hematology-Oncology-Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford Medical School, Palo Alto, CA, United States
- Center for Definitive and Curative Medicine, Stanford University School of Medicine, Palo Alto, CA, United States
| |
Collapse
|
35
|
Zhang X, Kang X, Yang M, Cai Z, Song Y, Zhou X, Cao J, Wang C, Huang K, Peng Y, He J, Xiao Z. A variant of RAG1 gene identified in severe combined immunodeficiency: a case report. BMC Pediatr 2023; 23:56. [PMID: 36732712 PMCID: PMC9896705 DOI: 10.1186/s12887-022-03822-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/24/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND The recombination-activating gene 1 (RAG1) protein is essential for the V (variable)-D (diversity)-J (joining) recombination process. Mutations in RAG1 have been reported to be associated with several types of immune disorders. Typical clinical features driven by RAG1 variants include persistent infections, severe lymphopenia, and decreased immunoglobulin levels . CASE PRESENTATION In this study, a 2-month-24-days-old infant with recurrent fever was admitted to our hospital with multiple infections and absence of T and B lymphocytes. The infant was diagnosed with severe combined immunodeficiency (SCID). A homozygous variation c.2147G>A (NM_000448.2: exonme2: c.2147G>A (p.Arg716Gln)) was identified in the RAG1 gene using whole-exome sequencing and Sanger sequencing. The predicted 3D structure of variant RAG1 indicated altered protein stability. Additionally, decreased expression of variant RAG1 gene was detected at both the mRNA and protein levels. CONCLUSIONS Our study identified a novel homozygous variant in RAG1 gene that causes SCID. This finding expands the variant spectrum of RAG1 in SCID and provides further evidence for the clinical diagnosis of SCID.
Collapse
Affiliation(s)
- Xinping Zhang
- grid.440223.30000 0004 1772 5147Department of Pediatric Intensive Care Unit of Hunan Children’s Hospital, Changsha, Hunan People’s Republic of China
| | - Xiayan Kang
- grid.440223.30000 0004 1772 5147Department of Pediatric Intensive Care Unit of Hunan Children’s Hospital, Changsha, Hunan People’s Republic of China
| | - Meiyu Yang
- grid.440223.30000 0004 1772 5147Department of Pediatric Intensive Care Unit of Hunan Children’s Hospital, Changsha, Hunan People’s Republic of China
| | - Zili Cai
- grid.440223.30000 0004 1772 5147Department of Pediatric Intensive Care Unit of Hunan Children’s Hospital, Changsha, Hunan People’s Republic of China
| | - Yulei Song
- grid.440223.30000 0004 1772 5147Department of Pediatric Intensive Care Unit of Hunan Children’s Hospital, Changsha, Hunan People’s Republic of China
| | - Xiong Zhou
- grid.440223.30000 0004 1772 5147Department of Pediatric Intensive Care Unit of Hunan Children’s Hospital, Changsha, Hunan People’s Republic of China
| | - Jianshe Cao
- grid.440223.30000 0004 1772 5147Department of Pediatric Intensive Care Unit of Hunan Children’s Hospital, Changsha, Hunan People’s Republic of China
| | - Chengjuan Wang
- grid.440223.30000 0004 1772 5147Department of Pediatric Intensive Care Unit of Hunan Children’s Hospital, Changsha, Hunan People’s Republic of China
| | - Kang Huang
- grid.440223.30000 0004 1772 5147Department of Pediatric Intensive Care Unit of Hunan Children’s Hospital, Changsha, Hunan People’s Republic of China
| | - Yani Peng
- grid.440223.30000 0004 1772 5147Department of Pediatric Intensive Care Unit of Hunan Children’s Hospital, Changsha, Hunan People’s Republic of China
| | - Jie He
- grid.440223.30000 0004 1772 5147Department of Pediatric Intensive Care Unit of Hunan Children’s Hospital, Changsha, Hunan People’s Republic of China
| | - Zhenghui Xiao
- Department of Pediatric Intensive Care Unit of Hunan Children's Hospital, Changsha, Hunan, People's Republic of China.
| |
Collapse
|
36
|
Castiello MC, Brandas C, Capo V, Villa A. HyperIgE in hypomorphic recombination-activating gene defects. Curr Opin Immunol 2023; 80:102279. [PMID: 36529093 DOI: 10.1016/j.coi.2022.102279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022]
Abstract
Increased immunogloblulin-E (IgE) levels associated with eosinophilia represent a common finding observed in Omenn syndrome, a severe immunodeficiency caused by decreased V(D)J recombination, leading to restricted T- and B-cell receptor repertoire. V(D)J recombination is initiated by the lymphoid-restricted recombination-activating gene (RAG) recombinases. The lack of RAG proteins causes a block in lymphocyte differentiation, resulting in T-B- severe combined immunodeficiency. Conversely, hypomorphic mutations allow the generation of few T and B cells, leading to a spectrum of immunological phenotypes, in which immunodeficiency associates to inflammation, immune dysregulation, and autoimmunity. Elevated IgE levels are frequently observed in hypomorphic RAG patients. Here, we describe the role of RAG genes in lymphocyte differentiation and maintenance of immune tolerance.
Collapse
Affiliation(s)
- Maria Carmina Castiello
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy; Institute of Genetic and Biomedical Research, Milan Unit, National Research Council, Milan, Italy
| | - Chiara Brandas
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy; Translational and Molecular Medicine (DIMET), University of Milano-Bicocca, Monza, Italy
| | - Valentina Capo
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy; Institute of Genetic and Biomedical Research, Milan Unit, National Research Council, Milan, Italy
| | - Anna Villa
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy; Institute of Genetic and Biomedical Research, Milan Unit, National Research Council, Milan, Italy.
| |
Collapse
|
37
|
Lin YF, Lee WI, Ho CH, Chen SH, Hsu MH, Wu RC, Lee WF, Jaing TH, Huang JL, Tsai SF. Lymphocyte disturbance and functional assessment of the [Asp521Asn] ZAP70 mutation. Clin Immunol 2023; 247:109236. [PMID: 36669607 DOI: 10.1016/j.clim.2023.109236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 12/20/2022] [Accepted: 12/28/2022] [Indexed: 01/19/2023]
Abstract
Activated zeta-chain-associated protein kinase 70 (ZAP70) phosphorylates the TCRαβ:CD3:zeta complex to diversify and amplify TCR signaling. Patients with ZAP70 mutations can present with phenotypes of immune dysregulation as well as infection. We identified the first Taiwanese boy with the [Asp521Asn] ZAP70 mutation who presented with recurrent pneumonia, inflammatory bowel disease-like diarrhea, transient hematuria and autoimmune hepatitis. He had isolated CD8 lymphopenia, eosinophilia, hypogammaglobulinemia, and impaired lymphocyte proliferation. Downstream CD3/CD28 signaling, phosphorylation of AKT, ZAP70 and Ca2+ influx were decreased in [Asp521Asn] ZAP70 lymphocytes. Immunophenotyping analysis revealed expansion of transitional B and CD21-low B cells, Th2-skewing T follicular helper cells, but lower Treg cells. The Asp521Asn-ZAP70 hindered TCR-CD3 downstream phosphorylation and disturbed lymphocyte subgroup "profiles" leading to autoimmunity/autoinflammation. Further large-scale studies are warranted to clarify this lymphocyte disturbance. The prognosis significantly depends on hematopoietic stem cell transplantation, but not the genotype, the presence of opportunistic infections or immune dysregulation.
Collapse
Affiliation(s)
- Yung-Feng Lin
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Wen-I Lee
- Department of Pediatrics, Division of Allergy, Asthma and Rheumatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Primary Immunodeficiency Care and Research (PICAR) Institute, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan.
| | - Ching-Huang Ho
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County, Taiwan; VYM Genome Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Shih-Hsiang Chen
- Primary Immunodeficiency Care and Research (PICAR) Institute, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan; Department Pediatrics, Division of Hematology/Oncology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Mei-Hsin Hsu
- Department of Pediatric Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ren-Chin Wu
- Department of Pathology, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Wan-Fang Lee
- Department of Pediatrics, Division of Allergy, Asthma and Rheumatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Tang-Her Jaing
- Primary Immunodeficiency Care and Research (PICAR) Institute, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan; Department Pediatrics, Division of Hematology/Oncology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Jing-Long Huang
- Primary Immunodeficiency Care and Research (PICAR) Institute, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan; Department of Pediatrics, New Taipei Municipal TuChen Hospital, New Taipei, Taiwan
| | - Shih-Feng Tsai
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| |
Collapse
|
38
|
Johnston R, Mathias B, Crowley SJ, Schmidt HA, White LS, Mosammaparast N, Green AM, Bednarski JJ. Nuclease-independent functions of RAG1 direct distinct DNA damage responses in B cells. EMBO Rep 2023; 24:e55429. [PMID: 36382770 PMCID: PMC9827558 DOI: 10.15252/embr.202255429] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/23/2022] [Accepted: 10/26/2022] [Indexed: 11/18/2022] Open
Abstract
Developing B cells generate DNA double-stranded breaks (DSBs) to assemble immunoglobulin receptor (Ig) genes necessary for the expression of a mature B cell receptor. These physiologic DSBs are made by the RAG endonuclease, which is comprised of the RAG1 and RAG2 proteins. In pre-B cells, RAG-mediated DSBs activate the ATM kinase to coordinate canonical and non-canonical DNA damage responses (DDR) that trigger DSB repair and B cell developmental signals, respectively. Whether this broad cellular response is distinctive to RAG DSBs is poorly understood. To delineate the factors that direct DDR signaling in B cells, we express a tetracycline-inducible Cas9 nuclease in Rag1-deficient pre-B cells. Both RAG- and Cas9-mediated DSBs at Ig genes activate canonical DDR. In contrast, RAG DSBs, but not Cas9 DSBs, induce the non-canonical DDR-dependent developmental program. This unique response to RAG DSBs is, in part, regulated by non-core regions of RAG1. Thus, B cells trigger distinct cellular responses to RAG DSBs through unique properties of the RAG endonuclease that promotes activation of B cell developmental programs.
Collapse
Affiliation(s)
- Rachel Johnston
- Department of PediatricsWashington University School of MedicineSt. LouisMOUSA
| | - Brendan Mathias
- Department of PediatricsWashington University School of MedicineSt. LouisMOUSA
| | - Stephanie J Crowley
- Department of PediatricsWashington University School of MedicineSt. LouisMOUSA
| | - Haley A Schmidt
- Department of PediatricsWashington University School of MedicineSt. LouisMOUSA
| | - Lynn S White
- Department of PediatricsWashington University School of MedicineSt. LouisMOUSA
| | - Nima Mosammaparast
- Department of Pathology and ImmunologyWashington University School of MedicineSt. LouisMOUSA
| | - Abby M Green
- Department of PediatricsWashington University School of MedicineSt. LouisMOUSA
| | - Jeffrey J Bednarski
- Department of PediatricsWashington University School of MedicineSt. LouisMOUSA
| |
Collapse
|
39
|
Chopp L, Redmond C, O'Shea JJ, Schwartz DM. From thymus to tissues and tumors: A review of T-cell biology. J Allergy Clin Immunol 2023; 151:81-97. [PMID: 36272581 PMCID: PMC9825672 DOI: 10.1016/j.jaci.2022.10.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022]
Abstract
T cells are critical orchestrators of the adaptive immune response that optimally eliminate a specific pathogen. Aberrant T-cell development and function are implicated in a broad range of human disease including immunodeficiencies, autoimmune diseases, and allergic diseases. Accordingly, therapies targeting T cells and their effector cytokines have markedly improved the care of patients with immune dysregulatory diseases. Newer discoveries concerning T-cell-mediated antitumor immunity and T-cell exhaustion have further prompted development of highly effective and novel treatment modalities for malignancies, including checkpoint inhibitors and antigen-reactive T cells. Recent discoveries are also uncovering the depth and variability of T-cell phenotypes: while T cells have long been described using a subset-based classification system, next-generation sequencing technologies suggest an astounding degree of complexity and heterogeneity at the single-cell level.
Collapse
Affiliation(s)
- Laura Chopp
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda
| | - Christopher Redmond
- Clinical Fellowship Program, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda
| | - John J O'Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda
| | - Daniella M Schwartz
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda; Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh.
| |
Collapse
|
40
|
Manchorova D, Papadopoulou M, Alexandrova M, Dimitrova V, Djerov L, Zapryanova S, Dimitrova P, Vangelov I, Vermijlen D, Dimova T. Human decidual gamma/delta T cells possess unique effector and TCR repertoire profiles during pregnancy. Cell Immunol 2022; 382:104634. [PMID: 36308817 DOI: 10.1016/j.cellimm.2022.104634] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/21/2022] [Accepted: 10/19/2022] [Indexed: 01/13/2023]
Abstract
Human γδ T cells are enriched at the maternal-fetal interface (MFI, decidua basalis) showing a highly differentiated phenotype. However, their functional potential is not well-known and it is not clear whether this decidua-enrichment is associated with specific γδ T cell receptors (TCR) as is observed in mice. Here we addressed these open questions by investigating decidual γδ T cells during early and late gestation, in comparison with paired blood samples, with flow cytometry (cytotoxic mediators, cytokines) and TCR high-throughput sequencing. While decidual γδ T cells expressed less perforin than their counterparts in the blood, they expressed significant more granulysin during early pregnancy. Strikingly, this high granulysin expression was limited to early pregnancy, as it was reduced at term pregnancy. In contrast to this granulysin expression pattern, decidual γδ T cells produced reduced levels of IFNγ and TNFα (compared to paired blood) in early pregnancy that then increased by term pregnancy. TCR repertoire analysis indicated that human decidual γδ T cells are not generated early in life as in the mouse. Despite this, a specific enrichment of the Vγ2 chain in the decidua in early pregnancy was observed that disappeared later onwards, reflecting dynamic changes in the decidual γδ TCR repertoire during human gestation. In conclusion, our data indicate that decidual γδ T cells express a specific and dynamic pattern of cytotoxic mediators, Th1 cytokines and TCR repertoire suggesting an important role for these unconventional T cells in assuring a healthy pregnancy in human.
Collapse
Affiliation(s)
- D Manchorova
- Institute of Biology and Immunology of Reproduction "Acad. K. Bratanov", Bulgarian Academy of Sciences, Sofia 1113, 73 Tzarigradsko shosse blv, Bulgaria
| | - M Papadopoulou
- Department of Pharmacotherapy and Pharmaceutics, Universite Libre de Bruxelles (ULB), 1050 Brussels, Belgium
| | - M Alexandrova
- Institute of Biology and Immunology of Reproduction "Acad. K. Bratanov", Bulgarian Academy of Sciences, Sofia 1113, 73 Tzarigradsko shosse blv, Bulgaria
| | - V Dimitrova
- Medical University, University Obstetrics and Gynecology Hospital "Maichin Dom", Sofia 1463, 2 Zdrave Str., Bulgaria
| | - L Djerov
- Medical University, University Obstetrics and Gynecology Hospital "Maichin Dom", Sofia 1463, 2 Zdrave Str., Bulgaria
| | - S Zapryanova
- Institute of Biology and Immunology of Reproduction "Acad. K. Bratanov", Bulgarian Academy of Sciences, Sofia 1113, 73 Tzarigradsko shosse blv, Bulgaria
| | - P Dimitrova
- Institute of Microbiology "Acad. St. Angelov", Bulgarian Academy of Sciences, Sofia 1113, 25 Acad. G. Bonchev str., Bulgaria
| | - I Vangelov
- Institute of Biology and Immunology of Reproduction "Acad. K. Bratanov", Bulgarian Academy of Sciences, Sofia 1113, 73 Tzarigradsko shosse blv, Bulgaria
| | - D Vermijlen
- Department of Pharmacotherapy and Pharmaceutics, Universite Libre de Bruxelles (ULB), 1050 Brussels, Belgium; Institute for Medical Immunology, Universitȇ Libre de Bruxelles (ULB), 6041 Gosselies, Belgium; ULB Center for Research in Immunology (U-CRI), Universite Libre de Bruxelles (ULB), Belgium; Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Wavre, Belgium
| | - T Dimova
- Institute of Biology and Immunology of Reproduction "Acad. K. Bratanov", Bulgarian Academy of Sciences, Sofia 1113, 73 Tzarigradsko shosse blv, Bulgaria.
| |
Collapse
|
41
|
Huang X, Liang X, Zhu S, Xie Q, Yao Y, Shi Z, Liu Z. Expression and clinical significance of RAG1 in myelodysplastic syndromes. HEMATOLOGY (AMSTERDAM, NETHERLANDS) 2022; 27:1122-1129. [PMID: 36166051 DOI: 10.1080/16078454.2022.2127462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVE To determine the expression level of RAG1 and its clinical significance in myelodysplastic syndromes (MDS). METHODS To explore the candidate genes, the microarray datasets GSE19429, GSE58831, and GSE2779 were downloaded from the Gene Expression Omnibus database. The differentially expressed genes (DEGs) in MDS were screened using RStudio, and overlapped DEGs were obtained with Venn Diagrams. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses, and protein-protein interaction network were performed. Quantitative real-time PCR (qRT-PCR) was employed to confirm the microarray results. RESULTS This study identified 26 DEGs. Functional enrichment analyses indicated that these DEGs were significantly enriched in the immune response, and hematopoietic cell lineage. Eight core genes, for example, RAG1 and PAX5, were identified with a high degree of connectivity. The result of qRT-PCR showed that RAG1 was significantly down-regulated in MDS patients, which helped in distinguishing MDS patients from normal controls. The area under the curve of the receiver operator characteristic was 0.913 (P < 0.0001). MDS patients with low RAG1 expression level had a poor long-term survival (P = 0.031). What's more, the expression of RAG1 was significantly increased in the patients who received treatment. CONCLUSION The results showed that the expression of RAG1 was down-regulated in MDS patients. Lower RAG1 expression was associated with adverse clinical outcomes. RAG1 may be a potential prognostic biomarker for MDS.
Collapse
Affiliation(s)
- Xiaoke Huang
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Xiaolin Liang
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Shanhu Zhu
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Qiongni Xie
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Yibin Yao
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Zeyan Shi
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Zhenfang Liu
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| |
Collapse
|
42
|
Standing S, Tran S, Murguia-Favela L, Kovalchuk O, Bose P, Narendran A. Identification of Altered Primary Immunodeficiency-Associated Genes and Their Implications in Pediatric Cancers. Cancers (Basel) 2022; 14:5942. [PMID: 36497424 PMCID: PMC9741011 DOI: 10.3390/cancers14235942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Cancer is the leading cause of disease-related mortality in children and malignancies are more frequently observed in individuals with primary immunodeficiencies (PIDs). This study aimed to identify and highlight the molecular mechanisms, such as oncogenesis and immune evasion, by which PID-related genes may lead to the development of pediatric cancers. METHOD We implemented a novel bioinformatics framework using patient data from the TARGET database and performed a comparative transcriptome analysis of PID-related genes in pediatric cancers between normal and cancer tissues, gene ontology enrichment, and protein-protein interaction analyses, and determined the prognostic impacts of commonly mutated and differentially expressed PID-related genes. RESULTS From the Fulgent Genetics Comprehensive Primary Immunodeficiency panel of 472 PID-related genes, 89 genes were significantly differentially expressed between normal and cancer tissues, and 20 genes were mutated in two or more patients. Enrichment analysis highlighted many immune system processes as well as additional pathways in the mutated PID-related genes related to oncogenesis. Survival outcomes for patients with altered PID-related genes were significantly different for 75 of the 89 DEGs, often resulting in a poorer prognosis. CONCLUSIONS Overall, multiple PID-related genes demonstrated the connection between PIDs and cancer development and should be studied further, with hopes of identifying new therapeutic targets.
Collapse
Affiliation(s)
- Shaelene Standing
- Section of Pediatric Oncology and Blood and Marrow Transplantation, Division of Pediatrics, Alberta Children’s Hospital and University of Calgary, Calgary, AB T3B 6A8, Canada
| | - Son Tran
- Section of Pediatric Oncology and Blood and Marrow Transplantation, Division of Pediatrics, Alberta Children’s Hospital and University of Calgary, Calgary, AB T3B 6A8, Canada
| | - Luis Murguia-Favela
- Section of Pediatric Hematology and Immunology, Division of Pediatrics, Alberta Children’s Hospital and University of Calgary, Calgary, AB T3B 6A8, Canada
| | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Pinaki Bose
- Departments of Oncology, Biochemistry and Molecular Biology, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Aru Narendran
- Section of Pediatric Oncology and Blood and Marrow Transplantation, Division of Pediatrics, Alberta Children’s Hospital and University of Calgary, Calgary, AB T3B 6A8, Canada
| |
Collapse
|
43
|
Fischer A. Gene therapy for inborn errors of immunity: past, present and future. Nat Rev Immunol 2022:10.1038/s41577-022-00800-6. [DOI: 10.1038/s41577-022-00800-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2022] [Indexed: 11/27/2022]
|
44
|
Chen Y, Zhao H, Luo J, Liao Y, Dan X, Hu G, Gu W. A phase I dose-escalation study of neoantigen-activated haploidentical T cell therapy for the treatment of relapsed or refractory peripheral T-cell lymphoma. Front Oncol 2022; 12:944511. [PMID: 36439517 PMCID: PMC9684663 DOI: 10.3389/fonc.2022.944511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 10/10/2022] [Indexed: 01/25/2023] Open
Abstract
UNLABELLED Peripheral T-cell lymphoma (PTCL) is a type of highly heterogeneous non-Hodgkin lymphoma with a poor prognosis and lack of effective targeted therapies. Adoptive T-cell therapy has been successfully used in the treatment of B-cell malignancies. We first used adoptive transfer of haploidentical T cells activated by patient-specific neoantigens in vitro to treat an elderly patient with refractory angioimmunoblastic T-cell lymphoma (AITL) in 2017, and the patient achieved long-term complete remission (CR). Here we report on early results from this first-in-human phase 1 clinical trial that aims to assess the safety and tolerability of neoantigen-activated haploidentical T cell therapy (NAHTC) for relapsed/refractory PTCL. CLINICAL TRIAL REGISTRATION http://www.chictr.org.cn/index.aspx, identifier [ChiCTR1800017440].
Collapse
Affiliation(s)
- Yuan Chen
- Department of Hematology, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou, Hunan, China
| | - Hu Zhao
- Department of Hematology, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou, Hunan, China
| | - Jing Luo
- Department of Hematology, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou, Hunan, China
| | - Youping Liao
- Department of Hematology, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou, Hunan, China
| | - Xu Dan
- YuceBio Medical Technology Co., Ltd, Shenzhen, Guangdong, China
| | - Guoyu Hu
- Department of Hematology, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou, Hunan, China,*Correspondence: Guoyu Hu, ; Weiyue Gu,
| | - Weiyue Gu
- Chineo Medical Technology Co., Ltd, Beijing, China,*Correspondence: Guoyu Hu, ; Weiyue Gu,
| |
Collapse
|
45
|
Kumánovics A, Sadighi Akha AA. Flow cytometry for B-cell subset analysis in immunodeficiencies. J Immunol Methods 2022; 509:113327. [DOI: 10.1016/j.jim.2022.113327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 06/07/2022] [Accepted: 08/01/2022] [Indexed: 11/28/2022]
|
46
|
Porteus MH, Pavel-Dinu M, Pai SY. A Curative DNA Code for Hematopoietic Defects: Novel Cell Therapies for Monogenic Diseases of the Blood and Immune System. Hematol Oncol Clin North Am 2022; 36:647-665. [PMID: 35773054 PMCID: PMC9365196 DOI: 10.1016/j.hoc.2022.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Matthew H Porteus
- Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford Medical School, Lokey Stem Cell Research Building, G3040B, MC 5462, 265 Campus Drive, Stanford, CA 94305, USA.
| | - Mara Pavel-Dinu
- Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford Medical School, Lokey Stem Cell Research Building, G3045, MC 5175, 265 Campus Drive, Stanford, CA 94305, USA.
| | - Sung-Yun Pai
- Immune Deficiency Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, 10 Center Drive, MSC 1102, Bethesda, MD 20892, USA
| |
Collapse
|
47
|
Csomos K, Ujhazi B, Blazso P, Herrera JL, Tipton CM, Kawai T, Gordon S, Ellison M, Wu K, Stowell M, Haynes L, Cruz R, Zakota B, Nguyen J, Altrich M, Geier CB, Sharapova S, Dasso JF, Leiding JW, Smith G, Al-Herz W, de Barros Dorna M, Fadugba O, Fronkova E, Kanderova V, Svaton M, Henrickson SE, Hernandez JD, Kuijpers T, Kandilarova SM, Naumova E, Milota T, Sediva A, Moshous D, Neven B, Saco T, Sargur R, Savic S, Sleasman J, Sunkersett G, Ward BR, Komatsu M, Pittaluga S, Kumanovics A, Butte MJ, Cancro MP, Pillai S, Meffre E, Notarangelo LD, Walter JE. Partial RAG deficiency in humans induces dysregulated peripheral lymphocyte development and humoral tolerance defect with accumulation of T-bet + B cells. Nat Immunol 2022; 23:1256-1272. [PMID: 35902638 PMCID: PMC9355881 DOI: 10.1038/s41590-022-01271-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 06/16/2022] [Indexed: 12/22/2022]
Abstract
The recombination-activating genes (RAG) 1 and 2 are indispensable for diversifying the primary B cell receptor repertoire and pruning self-reactive clones via receptor editing in the bone marrow; however, the impact of RAG1/RAG2 on peripheral tolerance is unknown. Partial RAG deficiency (pRD) manifesting with late-onset immune dysregulation represents an ‘experiment of nature’ to explore this conundrum. By studying B cell development and subset-specific repertoires in pRD, we demonstrate that reduced RAG activity impinges on peripheral tolerance through the generation of a restricted primary B cell repertoire, persistent antigenic stimulation and an inflammatory milieu with elevated B cell-activating factor. This unique environment gradually provokes profound B cell dysregulation with widespread activation, remarkable extrafollicular maturation and persistence, expansion and somatic diversification of self-reactive clones. Through the model of pRD, we reveal a RAG-dependent ‘domino effect’ that impacts stringency of tolerance and B cell fate in the periphery. Patients with partial recombination-activating gene (RAG) deficiency (pRD) present variable late-onset autoimmune clinical phenotypes. Walter and colleagues identified a restricted primary B cell antigen receptor repertoire enriched for autoreactivity and clonal persistence in pRD. They described dysregulated B cell maturation with expansion of T-bet+ B cells revealing how RAG impacts stringency of tolerance and B cell fate in the periphery.
Collapse
Affiliation(s)
- Krisztian Csomos
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA.
| | - Boglarka Ujhazi
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Peter Blazso
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA.,Department of Pediatrics, University of Szeged, Szeged, Hungary
| | - Jose L Herrera
- Cancer and Blood Disorders Institute and Department of Surgery, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA.,Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christopher M Tipton
- Department of Medicine, Division of Rheumatology, Emory University, Atlanta, GA, USA
| | - Tomoki Kawai
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Sumai Gordon
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Maryssa Ellison
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Kevin Wu
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Matthew Stowell
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Lauren Haynes
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Rachel Cruz
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Bence Zakota
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Johnny Nguyen
- Department of Pathology & Laboratory Medicine, Johns Hopkins All Children's Hospital, St Petersburg, FL, USA
| | | | | | | | - Joseph F Dasso
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Jennifer W Leiding
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Grace Smith
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Waleed Al-Herz
- Department of Pediatrics, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Mayra de Barros Dorna
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brasil
| | - Olajumoke Fadugba
- Division of Pulmonary, Allergy and Critical Care, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, USA
| | - Eva Fronkova
- Childhood Leukemia Investigation Prague, Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Veronika Kanderova
- Childhood Leukemia Investigation Prague, Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Michael Svaton
- Childhood Leukemia Investigation Prague, Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Sarah E Henrickson
- Allergy Immunology Division, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Institute for Immunology, the University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph D Hernandez
- Department of Pediatrics, Division of Allergy, Immunology and Rheumatology, Stanford University, Stanford, CA, USA
| | - Taco Kuijpers
- Deptartment of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, Academic Medical Center, Amsterdam, Netherlands
| | | | - Elizaveta Naumova
- Department of Clinical Immunology, University Hospital Alexandrovska, Medical University, Sofia, Bulgaria
| | - Tomas Milota
- Department of Immunology, Second Faculty of Medicine Charles University and University Hospital Motol, Prague, Czech Republic
| | - Anna Sediva
- Department of Immunology, Second Faculty of Medicine Charles University and University Hospital Motol, Prague, Czech Republic
| | - Despina Moshous
- Université de Paris, Paris, France.,Pediatric Hematology-Immunology and Rheumatology Unit, Necker-Enfants Malades Université Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France.,Laboratory of Genome Dynamics in the Immune System, INSERM UMR1163, Institut Imagine, Paris, France
| | - Benedicte Neven
- Université de Paris, Paris, France.,Pediatric Hematology-Immunology and Rheumatology Unit, Necker-Enfants Malades Université Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France.,Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR1163, Institut Imagine, Paris, France
| | - Tara Saco
- Windom Allergy, Asthma and Sinus, Sarasota, FL, USA
| | - Ravishankar Sargur
- Department of Immunology and Allergy, Sheffield Teaching Hospitals, Sheffield, UK
| | - Sinisa Savic
- Department of Clinical Immunology and Allergy, St James's University Hospital, Leeds, UK.,National Institute for Health Research-Leeds Musculoskeletal Biomedical Research Centre and Leeds Institute of Rheumatic and Musculoskeletal Medicine, St James's University Hospital, Leeds, UK
| | - John Sleasman
- Division of Allergy, Immunology and Pulmonary Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Gauri Sunkersett
- Cancer and Blood Disorder Institute, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Brant R Ward
- Division of Allergy and Immunology, Children's Hospital of Richmond, Virginia Commonwealth University, Richmond, VA, USA
| | - Masanobu Komatsu
- Cancer and Blood Disorders Institute and Department of Surgery, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA.,Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Stefania Pittaluga
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Attila Kumanovics
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Manish J Butte
- Division of Immunology, Allergy, and Rheumatology, Department of Pediatrics and Jeffrey Modell Diagnostic and Research Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Michael P Cancro
- Department of Pathology, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, USA
| | - Shiv Pillai
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of technology and Harvard University, Cambridge, MA, USA
| | - Eric Meffre
- Department of Immunobiology, Yale University, New Haven, CT, USA.,Section of Rheumatology, Allergy and Clinical Immunology, Yale School of Medicine, New Haven, CT, USA
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Jolan E Walter
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA. .,Division of Allergy and Immunology, Massachusetts General Hospital for Children, Boston, MA, USA.
| |
Collapse
|
48
|
Maciocia PM, Wawrzyniecka PA, Maciocia NC, Burley A, Karpanasamy T, Devereaux S, Hoekx M, O'Connor D, Leon T, Rapoz-D'Silva T, Pocock R, Rahman S, Gritti G, Yánez DC, Ross S, Crompton T, Williams O, Lee L, Pule MA, Mansour MR. Anti-CCR9 chimeric antigen receptor T cells for T-cell acute lymphoblastic leukemia. Blood 2022; 140:25-37. [PMID: 35507686 DOI: 10.1182/blood.2021013648] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 04/19/2022] [Indexed: 11/20/2022] Open
Abstract
T cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy of immature T lymphocytes, associated with higher rates of induction failure compared with those in B cell acute lymphoblastic leukemia. The potent immunotherapeutic approaches applied in B cell acute lymphoblastic leukemia, which have revolutionized the treatment paradigm, have proven more challenging in T-ALL, largely due to a lack of target antigens expressed on malignant but not healthy T cells. Unlike B cell depletion, T-cell aplasia is highly toxic. Here, we show that the chemokine receptor CCR9 is expressed in >70% of cases of T-ALL, including >85% of relapsed/refractory disease, and only on a small fraction (<5%) of normal T cells. Using cell line models and patient-derived xenografts, we found that chimeric antigen receptor (CAR) T-cells targeting CCR9 are resistant to fratricide and have potent antileukemic activity both in vitro and in vivo, even at low target antigen density. We propose that anti-CCR9 CAR-T cells could be a highly effective treatment strategy for T-ALL, avoiding T cell aplasia and the need for genome engineering that complicate other approaches.
Collapse
Affiliation(s)
- Paul M Maciocia
- Department of Haematology, Cancer Institute, University College London, London, United Kingdom
| | - Patrycja A Wawrzyniecka
- Department of Haematology, Cancer Institute, University College London, London, United Kingdom
| | - Nicola C Maciocia
- Department of Haematology, Cancer Institute, University College London, London, United Kingdom
| | - Amy Burley
- Department of Haematology, Cancer Institute, University College London, London, United Kingdom
| | - Thaneswari Karpanasamy
- Department of Haematology, Cancer Institute, University College London, London, United Kingdom
| | - Sam Devereaux
- Department of Haematology, Cancer Institute, University College London, London, United Kingdom
| | - Malika Hoekx
- Department of Haematology, Cancer Institute, University College London, London, United Kingdom
| | - David O'Connor
- Department of Haematology, Cancer Institute, University College London, London, United Kingdom
| | - Theresa Leon
- Department of Haematology, Cancer Institute, University College London, London, United Kingdom
| | - Tanya Rapoz-D'Silva
- Department of Haematology, Cancer Institute, University College London, London, United Kingdom
| | - Rachael Pocock
- Department of Haematology, Cancer Institute, University College London, London, United Kingdom
| | - Sunniyat Rahman
- Department of Haematology, Cancer Institute, University College London, London, United Kingdom
| | - Giuseppe Gritti
- Department of Haematology, Ospedale Papa Giovanni XXIII, Bergamo, Italy; and
| | - Diana C Yánez
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Susan Ross
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Tessa Crompton
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Owen Williams
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Lydia Lee
- Department of Haematology, Cancer Institute, University College London, London, United Kingdom
| | - Martin A Pule
- Department of Haematology, Cancer Institute, University College London, London, United Kingdom
| | - Marc R Mansour
- Department of Haematology, Cancer Institute, University College London, London, United Kingdom
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| |
Collapse
|
49
|
Ruan Y, Zhao Q, Liu Q, Zhao HY, Zhang ZY, Ding Y, Zhao XD. A novel homozygous RAG1 mutation in a girl presenting with granulomas and alopecia capitis totalis. World J Pediatr 2022; 18:294-299. [PMID: 35157248 DOI: 10.1007/s12519-021-00503-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 12/12/2021] [Indexed: 11/30/2022]
Affiliation(s)
- Yu Ruan
- Growth, Development, and Mental Health Center of Children and Adolescents, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.,Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, 136 Zhongshan 2nd Road, Yu Zhong District, Chongqing, 400014, China
| | - Qin Zhao
- Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, 136 Zhongshan 2nd Road, Yu Zhong District, Chongqing, 400014, China
| | - Qing Liu
- Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, 136 Zhongshan 2nd Road, Yu Zhong District, Chongqing, 400014, China
| | - Hong-Yi Zhao
- Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, 136 Zhongshan 2nd Road, Yu Zhong District, Chongqing, 400014, China
| | - Zhi-Yong Zhang
- Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, 136 Zhongshan 2nd Road, Yu Zhong District, Chongqing, 400014, China.,Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Yuan Ding
- Growth, Development, and Mental Health Center of Children and Adolescents, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.,Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, 136 Zhongshan 2nd Road, Yu Zhong District, Chongqing, 400014, China
| | - Xiao-Dong Zhao
- Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, 136 Zhongshan 2nd Road, Yu Zhong District, Chongqing, 400014, China. .,Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| |
Collapse
|
50
|
Cifaldi C, Rivalta B, Amodio D, Mattia A, Pacillo L, Di Cesare S, Chiriaco M, Ursu GM, Cotugno N, Giancotta C, Manno EC, Santilli V, Zangari P, Federica G, Palumbo G, Merli P, Palma P, Rossi P, Di Matteo G, Locatelli F, Finocchi A, Cancrini C. Clinical, Immunological, and Molecular Variability of RAG Deficiency: A Retrospective Analysis of 22 RAG Patients. J Clin Immunol 2022; 42:130-145. [PMID: 34664192 PMCID: PMC8821501 DOI: 10.1007/s10875-021-01130-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/29/2021] [Indexed: 11/05/2022]
Abstract
PURPOSE We described clinical, immunological, and molecular characterization within a cohort of 22 RAG patients focused on the possible correlation between clinical and genetic data. METHODS Immunological and genetic features were investigated by multiparametric flow cytometry and by Sanger or next generation sequencing (NGS) as appropriate. RESULTS Patients represented a broad spectrum of RAG deficiencies: SCID, OS, LS/AS, and CID. Three novel mutations in RAG1 gene and one in RAG2 were reported. The primary symptom at presentation was infections (81.8%). Infections and autoimmunity occurred together in the majority of cases (63.6%). Fifteen out of 22 (68.2%) patients presented autoimmune or inflammatory manifestations. Five patients experienced severe autoimmune cytopenia refractory to different lines of therapy. Total lymphocytes count was reduced or almost lacking in SCID group and higher in OS patients. B lymphocytes were variably detected in LS/AS and CID groups. Eighteen patients underwent HSCT permitting definitive control of autoimmune/hyperinflammatory manifestations in twelve of them (80%). CONCLUSION We reinforce the notion that different clinical phenotype can be found in patients with identical mutations even within the same family. Infections may influence genotype-phenotype correlation and function as trigger for immune dysregulation or autoimmune manifestations. Severe and early autoimmune refractory cytopenia is frequent and could be the first symptom of onset. Prompt recognition of RAG deficiency in patients with early onset of autoimmune/hyperinflammatory manifestations could contribute to the choice of a timely and specific treatment preventing the onset of other complications.
Collapse
Affiliation(s)
- Cristina Cifaldi
- Academic Department of Pediatrics (DPUO), Immune and Infectious Diseases Division, Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy.
| | - Beatrice Rivalta
- Academic Department of Pediatrics (DPUO), Immune and Infectious Diseases Division, Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
- Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", via Montpellier, 1, 00133, Rome, Italy
| | - Donato Amodio
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Algeri Mattia
- Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, Scientific Institute for Research and Healthcare, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Lucia Pacillo
- Academic Department of Pediatrics (DPUO), Immune and Infectious Diseases Division, Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
- Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", via Montpellier, 1, 00133, Rome, Italy
| | - Silvia Di Cesare
- Academic Department of Pediatrics (DPUO), Immune and Infectious Diseases Division, Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
- Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", via Montpellier, 1, 00133, Rome, Italy
| | - Maria Chiriaco
- Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", via Montpellier, 1, 00133, Rome, Italy
| | - Giorgiana Madalina Ursu
- Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", via Montpellier, 1, 00133, Rome, Italy
| | - Nicola Cotugno
- Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", via Montpellier, 1, 00133, Rome, Italy
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Carmela Giancotta
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Emma C Manno
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Veronica Santilli
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Paola Zangari
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Galaverna Federica
- Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, Scientific Institute for Research and Healthcare, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Giuseppe Palumbo
- Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", via Montpellier, 1, 00133, Rome, Italy
- Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, Scientific Institute for Research and Healthcare, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Pietro Merli
- Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, Scientific Institute for Research and Healthcare, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Paolo Palma
- Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", via Montpellier, 1, 00133, Rome, Italy
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Paolo Rossi
- Academic Department of Pediatrics (DPUO), Immune and Infectious Diseases Division, Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
- Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", via Montpellier, 1, 00133, Rome, Italy
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Gigliola Di Matteo
- Academic Department of Pediatrics (DPUO), Immune and Infectious Diseases Division, Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
- Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", via Montpellier, 1, 00133, Rome, Italy
| | - Franco Locatelli
- Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, Scientific Institute for Research and Healthcare, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
- Department of Pediatrics, Sapienza, University of Rome, Rome, Italy
| | - Andrea Finocchi
- Academic Department of Pediatrics (DPUO), Immune and Infectious Diseases Division, Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
- Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", via Montpellier, 1, 00133, Rome, Italy
| | - Caterina Cancrini
- Academic Department of Pediatrics (DPUO), Immune and Infectious Diseases Division, Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy.
- Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", via Montpellier, 1, 00133, Rome, Italy.
| |
Collapse
|