1
|
Coyle C, Ma M, Abraham Y, Mahony CB, Steel K, Simpson C, Guerra N, Croft AP, Rapecki S, Cope A, Bowcutt R, Perucha E. NK cell subsets define sustained remission in rheumatoid arthritis. JCI Insight 2024; 9:e182390. [PMID: 39418106 PMCID: PMC11623943 DOI: 10.1172/jci.insight.182390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
Rheumatoid arthritis (RA) is an immune-mediated, chronic inflammatory condition. With modern therapeutics and evidence-based management strategies, achieving sustained remission is increasingly common. To prevent complications associated with prolonged use of immunosuppressants, drug tapering or withdrawal is recommended. However, due to the lack of tools that define immunological remission, disease flares are frequent, highlighting the need for a more precision medicine-based approach. Utilizing high-dimensional phenotyping platforms, we set out to define peripheral blood immunological signatures of sustained remission in RA. We identified that CD8+CD57+KIR2DL1+ NK cells are associated with sustained remission. Functional studies uncovered an NK cell subset characterized by normal degranulation responses and reduced proinflammatory cytokine expression, which was elevated in sustained remission. Furthermore, flow cytometric analysis of NK cells from synovial fluid combined with interrogation of a publicly available single-cell RNA-Seq dataset of synovial tissue from active RA identified a deficiency of the phenotypic characteristics associated with this NK cell remission signature. In summary, we have uncovered an immune signature of RA remission associated with compositional changes in NK cell phenotype and function that has implications for understanding the effect of sustained remission on host immunity and distinct features that may define operational tolerance in RA.
Collapse
Affiliation(s)
- Carl Coyle
- Centre for Inflammation Biology and Cancer Immunology, Floor 1, New Hunt’s House, Great Maze Pond, King’s College London, Guy’s Campus, London, United Kingdom
- Centre for Rheumatic Diseases, King’s College London, London, United Kingdom
| | - Margaret Ma
- Centre for Rheumatic Diseases, King’s College London, London, United Kingdom
- Level 10, Tower Block, Division of Rheumatology, University Medicine Cluster, National University Health System, Singapore
- Department of Medicine, National University Singapore, Singapore
| | | | - Christopher B. Mahony
- Rheumatology Research Group, Institute of Inflammation and Ageing, Queen Elizabeth Hospital, and
- Birmingham NIHR Biomedical Research Centre, University of Birmingham, Birmingham, United Kingdom
| | - Kathryn Steel
- Centre for Inflammation Biology and Cancer Immunology, Floor 1, New Hunt’s House, Great Maze Pond, King’s College London, Guy’s Campus, London, United Kingdom
- Centre for Rheumatic Diseases, King’s College London, London, United Kingdom
| | | | - Nadia Guerra
- Faculty of Natural Sciences, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Adam P. Croft
- Rheumatology Research Group, Institute of Inflammation and Ageing, Queen Elizabeth Hospital, and
- Birmingham NIHR Biomedical Research Centre, University of Birmingham, Birmingham, United Kingdom
| | | | - Andrew Cope
- Centre for Inflammation Biology and Cancer Immunology, Floor 1, New Hunt’s House, Great Maze Pond, King’s College London, Guy’s Campus, London, United Kingdom
- Centre for Rheumatic Diseases, King’s College London, London, United Kingdom
| | | | - Esperanza Perucha
- Centre for Inflammation Biology and Cancer Immunology, Floor 1, New Hunt’s House, Great Maze Pond, King’s College London, Guy’s Campus, London, United Kingdom
- Centre for Rheumatic Diseases, King’s College London, London, United Kingdom
| |
Collapse
|
2
|
Bida M, Miya TV, Hull R, Dlamini Z. Tumor-infiltrating lymphocytes in melanoma: from prognostic assessment to therapeutic applications. Front Immunol 2024; 15:1497522. [PMID: 39712007 PMCID: PMC11659259 DOI: 10.3389/fimmu.2024.1497522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/04/2024] [Indexed: 12/24/2024] Open
Abstract
Malignant melanoma, the most aggressive form of skin cancer, is characterized by unpredictable growth patterns, and its mortality rate has remained alarmingly high over recent decades, despite various treatment approaches. One promising strategy for improving outcomes in melanoma patients lies in the early use of biomarkers to predict prognosis. Biomarkers offer a way to gauge patient outlook early in the disease course, facilitating timely, targeted intervention. In recent years, considerable attention has been given to the immune response's role in melanoma, given the tumor's high immunogenicity and potential responsiveness to immunologic treatments. Researchers are focusing on identifying predictive biomarkers by examining both cancer cell biology and immune interactions within the tumor microenvironment (TME). This approach has shed light on tumor-infiltrating lymphocytes (TILs), a type of immune cell found within the tumor. TILs have emerged as a promising area of study for their potential to serve as both a prognostic indicator and therapeutic target in melanoma. The presence of TILs in melanoma tissue can often signal a positive immune response to the cancer, with numerous studies suggesting that TILs may improve patient prognosis. This review delves into the prognostic value of TILs in melanoma, assessing how these immune cells influence patient outcomes. It explores the mechanisms through which TILs interact with melanoma cells and the potential clinical applications of leveraging TILs in treatment strategies. While TILs present a hopeful avenue for prognostication and treatment, there are still challenges. These include understanding the full extent of TIL dynamics within the TME and overcoming limitations in TIL-based therapies. Advancements in TIL characterization methods are also critical to refining TIL-based approaches. By addressing these hurdles, TIL-focused research may pave the way for improved diagnostic and therapeutic options, ultimately offering better outcomes for melanoma patients.
Collapse
Affiliation(s)
- Meshack Bida
- Division of Anatomical Pathology, National Health Laboratory Service, University of Pretoria, Hatfield, South Africa
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield, South Africa
| | - Thabiso Victor Miya
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield, South Africa
| | - Rodney Hull
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield, South Africa
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield, South Africa
| |
Collapse
|
3
|
Jarvi N, Hofman K, Venkatesh A, Gorecki E, Balu-Iyer SV. Immunogenicity risk assessment of empty capsids present in adeno-associated viral vectors using predictive innate immune responses. J Pharm Sci 2024; 113:3457-3469. [PMID: 39326842 DOI: 10.1016/j.xphs.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/09/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024]
Abstract
Immunogenicity of gene therapy and the impacts on safety and efficacy are of increasing interest in the pharmaceutical industry. Unique structural aspects of gene therapy delivery vectors, such as adeno-associated viral (AAV) vectors, are expected to activate the innate immune system. The risk of innate immune activation is critical to understand due to the potential impacts on safety and on subsequent adaptive immune responses. In this study, we investigated the responses of key innate immune players-dendritic cells, natural killer (NK) cells, and the complement system-to AAV8 capsids. Immunogenicity risk was also predicted in the presence empty AAV capsids for AAV gene therapy. Compared to genome-containing "full" AAV8 capsids, empty AAV8 capsids more strongly induced proinflammatory cytokine production and migration by human and mouse dendritic cells, but the "full" capsid increased expression of co-stimulatory markers. Furthermore, in an NK cell degranulation assay, we found mixtures of empty and full AAV8 capsids to activate expression of TNF-α, IFN-γ, and CD107a more strongly in multiple NK cell populations compared to either capsid type alone. Serum complement C3a was also induced more strongly in the presence of mixed empty and full AAV8 capsid formulations. Risk for innate immune activation suggests the importance to determine acceptable limits of empty capsids. Immunogenicity risk assessment of novel biological modalities will benefit from the aforementioned in vitro innate immune activation assays providing valuable mechanistic information.
Collapse
Affiliation(s)
- Nicole Jarvi
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA
| | - Kirk Hofman
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA
| | - Aditi Venkatesh
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA
| | - Emily Gorecki
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA
| | - Sathy V Balu-Iyer
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA.
| |
Collapse
|
4
|
Koya J, Tanigawa T, Mizuno K, Kim H, Ito Y, Yuasa M, Yamaguchi K, Kogure Y, Saito Y, Shingaki S, Tabata M, Murakami K, Chiba K, Okada A, Shiraishi Y, Marouf A, Liévin R, Chaubard S, Jaccard A, Hermine O, de Leval L, Tournilhac O, Damaj G, Gaulard P, Couronné L, Yasui T, Nakashima K, Miyoshi H, Ohshima K, Kataoka K. Modeling NK-cell lymphoma in mice reveals its cell-of-origin and microenvironmental changes and identifies therapeutic targets. Nat Commun 2024; 15:9106. [PMID: 39438472 PMCID: PMC11496546 DOI: 10.1038/s41467-024-53376-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024] Open
Abstract
Extranodal NK/T-cell lymphoma (ENKTCL) is an Epstein-Barr virus (EBV)-related neoplasm preferentially involving the upper aerodigestive tract. Here we show that NK-cell-specific Trp53 disruption in mice leads to the development of NK-cell lymphomas after long latency, which involve not only the hematopoietic system but also the salivary glands. Before tumor onset, Trp53 knockout causes extensive gene expression changes, resulting in immature NK-cell expansion, exclusively in the salivary glands. Both human and murine NK-cell lymphomas express tissue-resident markers, suggesting tissue-resident NK cells as their cell-of-origin. Murine NK-cell lymphomas show recurrent Myc amplifications and upregulation of MYC target gene signatures. EBV-encoded latent membrane protein 1 expression accelerates NK-cell lymphomagenesis and causes diverse microenvironmental changes, particularly myeloid propagation, through interferon-γ signaling. In turn, myeloid cells support tumor cells via CXCL16-CXCR6 signaling and its inhibition is effective against NK-cell tumors in vivo. Remarkably, KLRG1-expressing cells expand in the tumor and are capable of repopulating tumors in secondary recipients. Furthermore, targeting KLRG1 alone or combined with MYC inhibition using an eIF4 inhibitor is effective against NK-cell tumors. Therefore, our observations provide insights into the pathogenesis and highlight potential therapeutic targets, including CXCL16, KLRG1, and MYC, in ENKTCL, which can help improve its diagnostic and therapeutic strategies.
Collapse
MESH Headings
- Animals
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Mice
- Tumor Microenvironment/immunology
- Lymphoma, Extranodal NK-T-Cell/genetics
- Lymphoma, Extranodal NK-T-Cell/metabolism
- Lymphoma, Extranodal NK-T-Cell/virology
- Lymphoma, Extranodal NK-T-Cell/pathology
- Humans
- Proto-Oncogene Proteins c-myc/metabolism
- Proto-Oncogene Proteins c-myc/genetics
- Tumor Suppressor Protein p53/metabolism
- Tumor Suppressor Protein p53/genetics
- Mice, Knockout
- Disease Models, Animal
- Interferon-gamma/metabolism
- Receptors, CXCR6/metabolism
- Receptors, CXCR6/genetics
- Chemokine CXCL16/metabolism
- Chemokine CXCL16/genetics
- Herpesvirus 4, Human
- Gene Expression Regulation, Neoplastic
- Signal Transduction
- Salivary Glands/pathology
- Salivary Glands/metabolism
- Myeloid Cells/metabolism
- Cell Line, Tumor
- Mice, Inbred C57BL
Collapse
Affiliation(s)
- Junji Koya
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Tomohiko Tanigawa
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kota Mizuno
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Haryoon Kim
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yuta Ito
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
- Division of Clinical Oncology and Hematology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Mitsuhiro Yuasa
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kentaro Yamaguchi
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yasunori Kogure
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | - Yuki Saito
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, Japan
| | - Sumito Shingaki
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | - Mariko Tabata
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Koichi Murakami
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kenichi Chiba
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Ai Okada
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Yuichi Shiraishi
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Amira Marouf
- Laboratory of cellular and molecular mechanisms of hematological disorders and therapeutic implications, INSERM UMR_S 1163, Imagine Institute, Université Paris Cité, Paris, France
| | - Raphaël Liévin
- Laboratory of cellular and molecular mechanisms of hematological disorders and therapeutic implications, INSERM UMR_S 1163, Imagine Institute, Université Paris Cité, Paris, France
| | - Sammara Chaubard
- Hematology department, Limoges University Hospital, Limoges, France
| | - Arnaud Jaccard
- Hematology department, Limoges University Hospital, Limoges, France
| | - Olivier Hermine
- Laboratory of cellular and molecular mechanisms of hematological disorders and therapeutic implications, INSERM UMR_S 1163, Imagine Institute, Université Paris Cité, Paris, France
- Hematology Department, Necker Children's Hospital, Assistance Publique - Hôpitaux de Paris (APHP), Paris, France
| | - Laurence de Leval
- Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Olivier Tournilhac
- Department of Hematology, Clermont-Ferrand University Hospital, Clermont Auvergne University, Clermont-Ferrand, France
| | - Gandhi Damaj
- Department of Hematology, Caen University Hospital, Normandy University, Caen, France
| | - Philippe Gaulard
- University Paris Est Créteil, INSERMU955, IMRB, Créteil, France
- Pathology Department, Henri Mondor University Hospital, Assistance Publique -Hôpitaux de Paris (APHP), Créteil, France
| | - Lucile Couronné
- Laboratory of cellular and molecular mechanisms of hematological disorders and therapeutic implications, INSERM UMR_S 1163, Imagine Institute, Université Paris Cité, Paris, France
- Laboratory of Onco-Hematology, Necker Children's Hospital, Assistance Publique -Hôpitaux de Paris (APHP), Paris, France
| | - Teruhito Yasui
- Laboratory of Infectious Diseases and Immunity, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki City, Japan
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | | | | | - Koichi Ohshima
- Division of Pathology, Kurume University, Fukuoka, Japan
| | - Keisuke Kataoka
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan.
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
5
|
Wang F, Bashiri Dezfouli A, Multhoff G. The immunomodulatory effects of cannabidiol on Hsp70-activated NK cells and tumor target cells. Mol Immunol 2024; 174:1-10. [PMID: 39126837 DOI: 10.1016/j.molimm.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 05/07/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Cannabidiol (CBD), the major non-psychoactive component of cannabis, exhibits anti-inflammatory properties, but less is known about the immunomodulatory potential of CBD on activated natural killer (NK) cells and/or their targets. Many tumor cells present heat shock protein 70 (Hsp70) on their cell surface in a tumor-specific manner and although a membrane Hsp70 (mHsp70) positive phenotype serves as a target for Hsp70-activated NK cells, a high mHsp70 expression is associated with tumor aggressiveness. This study investigated the immuno-modulatory potential of CBD on NK cells stimulated with TKD Hsp70 peptide and IL-2 (TKD+IL-2) and also on HCT116 p53wt and HCT116 p53-/- colorectal cancer cells exhibiting high and low basal levels of mHsp70 expression. RESULTS Apart from an increase in the density of NTB-A and a reduced expression of LAMP-1, the expression of all other activatory NK cell receptors including NKp30, NKG2D and CD69 which are significantly up-regulated after stimulation with TKD+IL-2 remained unaffected after a co-treatment with CBD. However, the release of major pro-inflammatory cytokines by NK cells such as interferon-γ (IFN-γ) and the effector molecule granzyme B (GrzB) was significantly reduced upon CBD treatment. With respect to the tumor target cells, CBD significantly reduced the elevated expression of mHsp70 but had no effect on the low basal mHsp70 expression. Expression of other NK cell ligands such as MICA and MICB remained unaffected, and the NK cell ligands ULBP and B7-H6 were not expressed on these target cells. Consistent with the reduced mHsp70 expression, treatment of both effector and target cells with CBD reduced the killing of high mHsp70 expressing tumor cells by TKD+IL-2+CBD pre-treated NK cells but had no effect on the killing of low mHsp70 expressing tumor cells. Concomitantly, CBD treatment reduced the TKD+IL-2 induced increased release of IFN-γ, IL-4, TNF-α and GrzB, but CBD had no effect on the release of IFN-α when NK cells were co-incubated with tumor target cells. CONCLUSION Cannabidiol (CBD) may potentially diminish the anti-tumor effectiveness of TKD+IL-2 activated natural killer (NK) cells.
Collapse
Affiliation(s)
- Fei Wang
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Center Munich and Department of Oncology, The second affiliated Hospital of Zunyi Medical University, Zunyi, China; Radiation Immuno-Oncology Group, TranslaTUM - Central Institute for Translational Cancer Research and Department of Radiation Oncology, Klinikum rechts der Isar, TUM School of Medicine and Health, Munich, Germany
| | - Ali Bashiri Dezfouli
- Department of Otolaryngology, Head and Neck Surgery, Klinikum rechts der Isar, TUM School of Medicine and Health, Munich, Germany
| | - Gabriele Multhoff
- Radiation Immuno-Oncology Group, TranslaTUM - Central Institute for Translational Cancer Research and Department of Radiation Oncology, Klinikum rechts der Isar, TUM School of Medicine and Health, Munich, Germany.
| |
Collapse
|
6
|
Xu J, Gao H, Azhar MS, Xu H, Chen S, Li M, Ni X, Yan T, Zhou H, Long Q, Yi W. Interleukin signaling in the regulation of natural killer cells biology in breast cancer. Front Immunol 2024; 15:1449441. [PMID: 39380989 PMCID: PMC11459090 DOI: 10.3389/fimmu.2024.1449441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 09/09/2024] [Indexed: 10/10/2024] Open
Abstract
In the field of breast cancer treatment, the immunotherapy involving natural killer (NK) cells is increasingly highlighting its distinct potential and significance. Members of the interleukin (IL) family play pivotal regulatory roles in the growth, differentiation, survival, and apoptosis of NK cells, and are central to their anti-tumor activity. These cytokines enhance the ability of NK cells to recognize and eliminate tumor cells by binding to specific receptors and activating downstream signaling pathways. Furthermore, interleukins do not function in isolation; the synergistic or antagonistic interactions between different interleukins can drive NK cells toward various functional pathways, ultimately leading to diverse outcomes for breast cancer patients. This paper reviews the intricate relationship between NK cells and interleukins, particularly within the breast cancer tumor microenvironment. Additionally, we summarize the latest clinical studies and advancements in NK cell therapy for breast cancer, along with the potential applications of interleukin signaling in these therapies. In conclusion, this article underscores the critical role of NK cells and interleukin signaling in breast cancer treatment, providing valuable insights and a significant reference for future research and clinical practice.
Collapse
Affiliation(s)
- Jiachi Xu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center For Breast Disease In Hunan Province, Changsha, Hunan, China
| | - Hongyu Gao
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center For Breast Disease In Hunan Province, Changsha, Hunan, China
| | - Muhammad Salman Azhar
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Haifan Xu
- Breast and Thyroid Surgery, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Siyuan Chen
- Breast and Thyroid Surgery, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Mingcan Li
- Breast and Thyroid Surgery, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Xinxi Ni
- Breast and Thyroid Surgery, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Ting Yan
- Breast and Thyroid Surgery, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Hui Zhou
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qian Long
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center For Breast Disease In Hunan Province, Changsha, Hunan, China
| | - Wenjun Yi
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center For Breast Disease In Hunan Province, Changsha, Hunan, China
| |
Collapse
|
7
|
Mohammad Taheri M, Javan F, Poudineh M, Athari SS. Beyond CAR-T: The rise of CAR-NK cell therapy in asthma immunotherapy. J Transl Med 2024; 22:736. [PMID: 39103889 PMCID: PMC11302387 DOI: 10.1186/s12967-024-05534-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/23/2024] [Indexed: 08/07/2024] Open
Abstract
Asthma poses a major public health burden. While existing asthma drugs manage symptoms for many, some patients remain resistant. The lack of a cure, especially for severe asthma, compels exploration of novel therapies. Cancer immunotherapy successes with CAR-T cells suggest its potential for asthma treatment. Researchers are exploring various approaches for allergic diseases including membrane-bound IgE, IL-5, PD-L2, and CTLA-4 for asthma, and Dectin-1 for fungal asthma. NK cells offer several advantages over T cells for CAR-based immunotherapy. They offer key benefits: (1) HLA compatibility, meaning they can be used in a wider range of patients without the need for matching tissue types. (2) Minimal side effects (CRS and GVHD) due to their limited persistence and cytokine profile. (3) Scalability for "off-the-shelf" production from various sources. Several strategies have been introduced that highlight the superiority and challenges of CAR-NK cell therapy for asthma treatment including IL-10, IFN-γ, ADCC, perforin-granzyme, FASL, KIR, NCRs (NKP46), DAP, DNAM-1, TGF-β, TNF-α, CCL, NKG2A, TF, and EGFR. Furthermore, we advocate for incorporating AI for CAR design optimization and CRISPR-Cas9 gene editing technology for precise gene manipulation to generate highly effective CAR constructs. This review will delve into the evolution and production of CAR designs, explore pre-clinical and clinical studies of CAR-based therapies in asthma, analyze strategies to optimize CAR-NK cell function, conduct a comparative analysis of CAR-T and CAR-NK cell therapy with their respective challenges, and finally present established novel CAR designs with promising potential for asthma treatment.
Collapse
Affiliation(s)
| | - Fatemeh Javan
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohadeseh Poudineh
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Seyed Shamseddin Athari
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
- Department of Immunology, Zanjan School of Medicine, Zanjan University of Medical Sciences, 12th Street, Shahrake Karmandan, Zanjan, 45139-561111, Iran.
| |
Collapse
|
8
|
Wang D, Dou L, Sui L, Xue Y, Xu S. Natural killer cells in cancer immunotherapy. MedComm (Beijing) 2024; 5:e626. [PMID: 38882209 PMCID: PMC11179524 DOI: 10.1002/mco2.626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/18/2024] Open
Abstract
Natural killer (NK) cells, as innate lymphocytes, possess cytotoxic capabilities and engage target cells through a repertoire of activating and inhibitory receptors. Particularly, natural killer group 2, member D (NKG2D) receptor on NK cells recognizes stress-induced ligands-the MHC class I chain-related molecules A and B (MICA/B) presented on tumor cells and is key to trigger the cytolytic response of NK cells. However, tumors have developed sophisticated strategies to evade NK cell surveillance, which lead to failure of tumor immunotherapy. In this paper, we summarized these immune escaping strategies, including the downregulation of ligands for activating receptors, upregulation of ligands for inhibitory receptors, secretion of immunosuppressive compounds, and the development of apoptosis resistance. Then, we focus on recent advancements in NK cell immune therapies, which include engaging activating NK cell receptors, upregulating NKG2D ligand MICA/B expression, blocking inhibitory NK cell receptors, adoptive NK cell therapy, chimeric antigen receptor (CAR)-engineered NK cells (CAR-NK), and NKG2D CAR-T cells, especially several vaccines targeting MICA/B. This review will inspire the research in NK cell biology in tumor and provide significant hope for improving cancer treatment outcomes by harnessing the potent cytotoxic activity of NK cells.
Collapse
Affiliation(s)
- DanRu Wang
- National Key Lab of Immunity and Inflammation and Institute of Immunology Naval Medical University Shanghai China
| | - LingYun Dou
- National Key Lab of Immunity and Inflammation and Institute of Immunology Naval Medical University Shanghai China
| | - LiHao Sui
- National Key Lab of Immunity and Inflammation and Institute of Immunology Naval Medical University Shanghai China
| | - Yiquan Xue
- National Key Lab of Immunity and Inflammation and Institute of Immunology Naval Medical University Shanghai China
| | - Sheng Xu
- National Key Lab of Immunity and Inflammation and Institute of Immunology Naval Medical University Shanghai China
- Shanghai Institute of Stem Cell Research and Clinical Translation Dongfang Hospital Shanghai China
| |
Collapse
|
9
|
Froehlich F, Landerholm K, Neeb J, Meß AK, Seiler DL, Tilburgs T, Karsten CM. Emerging role of C5aR2: novel insights into the regulation of uterine immune cells during pregnancy. Front Immunol 2024; 15:1411315. [PMID: 38979410 PMCID: PMC11229525 DOI: 10.3389/fimmu.2024.1411315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/27/2024] [Indexed: 07/10/2024] Open
Abstract
Pregnancy is a fascinating immunological phenomenon because it allows allogeneic fetal and placental tissues to survive inside the mother. As a component of innate immunity with high inflammatory potential, the complement system must be tightly regulated during pregnancy. Dysregulation of the complement system plays a role in pregnancy complications including pre-eclampsia and intrauterine growth restriction. Complement components are also used as biomarkers for pregnancy complications. However, the mechanisms of detrimental role of complement in pregnancy is poorly understood. C5a is the most potent anaphylatoxin and generates multiple immune reactions via two transmembrane receptors, C5aR1 and C5aR2. C5aR1 is pro-inflammatory, but the role of C5aR2 remains largely elusive. Interestingly, murine NK cells have been shown to express C5aR2 without the usual co-expression of C5aR1. Furthermore, C5aR2 appears to regulate IFN-γ production by NK cells in vitro. As IFN-γ produced by uterine NK cells is one of the major factors for the successful development of a vital pregnancy, we investigated the role anaphylatoxin C5a and its receptors in the establishment of pregnancy and the regulation of uterine NK cells by examinations of murine C5ar2-/- pregnancies and human placental samples. C5ar2-/- mice have significantly reduced numbers of implantation sites and a maternal C5aR2 deficiency results in increased IL-12, IL-18 and IFN-γ mRNA expression as well as reduced uNK cell infiltration at the maternal-fetal interface. Human decidual leukocytes have similar C5a receptor expression patterns showing clinical relevance. In conclusion, this study identifies C5aR2 as a key contributor to dNK infiltration and pregnancy success.
Collapse
Affiliation(s)
- Fenna Froehlich
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Luebeck, Germany
| | - Konstanze Landerholm
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Luebeck, Germany
| | - Johanna Neeb
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Luebeck, Germany
| | - Ann-Kathrin Meß
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Luebeck, Germany
| | - Daniel Leonard Seiler
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Luebeck, Germany
| | - Tamara Tilburgs
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | | |
Collapse
|
10
|
Schuster IS, Andoniou CE, Degli-Esposti MA. Tissue-resident memory NK cells: Homing in on local effectors and regulators. Immunol Rev 2024; 323:54-60. [PMID: 38568046 PMCID: PMC11102295 DOI: 10.1111/imr.13332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 05/18/2024]
Abstract
Natural killer (NK) cells are the prototype innate effector lymphocyte population that plays an important role in controlling viral infections and tumors. Studies demonstrating that NK cells form long-lived memory populations, akin to those generated by adaptive immune cells, prompted a revaluation of the potential functions of NK cells. Recent data demonstrating that NK cells are recruited from the circulation into tissues where they form long-lived memory-like populations further emphasize that NK cells have properties that mirror those of adaptive immune cells. NK cells that localize in non-lymphoid tissues are heterogeneous, and there is a growing appreciation that immune responses occurring within tissues are subject to tissue-specific regulation. Here we discuss both the immune effector and immunoregulatory functions of NK cells, with a particular emphasis on the role of NK cells within non-lymphoid tissues and how the tissue microenvironment shapes NK cell-dependent outcomes.
Collapse
Affiliation(s)
- Iona S Schuster
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University; Clayton, Victoria, Australia
- Centre for Experimental Immunology, Lions Eye Institute; Nedlands, Western Australia, Australia
| | - Christopher E Andoniou
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University; Clayton, Victoria, Australia
- Centre for Experimental Immunology, Lions Eye Institute; Nedlands, Western Australia, Australia
| | - Mariapia A Degli-Esposti
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University; Clayton, Victoria, Australia
- Centre for Experimental Immunology, Lions Eye Institute; Nedlands, Western Australia, Australia
| |
Collapse
|
11
|
Nagai H, Karube R. Late-Stage Ovarian Cancer With Systemic Multiple Metastases Shows Marked Shrinkage Using a Combination of Wilms' Tumor Antigen 1 (WT1) Dendritic Cell Vaccine, Natural Killer (NK) Cell Therapy, and Nivolumab. Cureus 2024; 16:e56685. [PMID: 38523872 PMCID: PMC10960621 DOI: 10.7759/cureus.56685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2024] [Indexed: 03/26/2024] Open
Abstract
A patient with bilateral ovarian cancer, peritoneal dissemination, and multiple liver and lung metastases was found with a sudden accumulation of ascites six months after delivery. Chemotherapy was started, but the prognosis was judged to be poor, so immuno-cell therapy was combined with chemotherapy. After multiple cycles of Wilms' tumor antigen 1 (WT1) dendritic cell vaccine therapy and highly activated natural killer (NK) cell therapy, the patient showed a disappearance of ascites and a remarkable reduction of multiple cancers in the whole body. Furthermore, there were no side effects other than reactive fever caused by the administration of immune cells, and no damage to the patient's body was observed. This case suggests that not only the combined effects of chemotherapy and immunotherapy but also the combined use of various types of immuno-cell therapy may provide beneficial clinical effects in patients with extremely poor prognoses and few options for standard treatment.
Collapse
Affiliation(s)
- Hisashi Nagai
- Human and Environmental Studies, Tokai University, Hiratsuka, JPN
- Oncology, Ginza Phoenix Clinic, Tokyo, JPN
| | | |
Collapse
|
12
|
Karmakar S, Mishra A, Pal P, Lal G. Effector and cytolytic function of natural killer cells in anticancer immunity. J Leukoc Biol 2024; 115:235-252. [PMID: 37818891 DOI: 10.1093/jleuko/qiad126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/13/2023] Open
Abstract
Adaptive immune cells play an important role in mounting antigen-specific antitumor immunity. The contribution of innate immune cells such as monocytes, macrophages, natural killer (NK) cells, dendritic cells, and gamma-delta T cells is well studied in cancer immunology. NK cells are innate lymphoid cells that show effector and regulatory function in a contact-dependent and contact-independent manner. The cytotoxic function of NK cells plays an important role in killing the infected and transformed host cells and controlling infection and tumor growth. However, several studies have also ascribed the role of NK cells in inducing pathophysiology in autoimmune diseases, promoting immune tolerance in the uterus, and antitumor function in the tumor microenvironment. We discuss the fundamentals of NK cell biology, its distribution in different organs, cellular and molecular interactions, and its cytotoxic and noncytotoxic functions in cancer biology. We also highlight the use of NK cell-based adoptive cellular therapy in cancer.
Collapse
Affiliation(s)
- Surojit Karmakar
- Laboratory of Autoimmunity and Tolerance, National Centre for Cell Science, Ganeshkhind, Pune, MH-411007, India
| | - Amrita Mishra
- Laboratory of Autoimmunity and Tolerance, National Centre for Cell Science, Ganeshkhind, Pune, MH-411007, India
| | - Pradipta Pal
- Laboratory of Autoimmunity and Tolerance, National Centre for Cell Science, Ganeshkhind, Pune, MH-411007, India
| | - Girdhari Lal
- Laboratory of Autoimmunity and Tolerance, National Centre for Cell Science, Ganeshkhind, Pune, MH-411007, India
| |
Collapse
|
13
|
Baghy K, Ladányi A, Reszegi A, Kovalszky I. Insights into the Tumor Microenvironment-Components, Functions and Therapeutics. Int J Mol Sci 2023; 24:17536. [PMID: 38139365 PMCID: PMC10743805 DOI: 10.3390/ijms242417536] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/25/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Similarly to our healthy organs, the tumor tissue also constitutes an ecosystem. This implies that stromal cells acquire an altered phenotype in tandem with tumor cells, thereby promoting tumor survival. Cancer cells are fueled by abnormal blood vessels, allowing them to develop and proliferate. Tumor-associated fibroblasts adapt their cytokine and chemokine production to the needs of tumor cells and alter the peritumoral stroma by generating more collagen, thereby stiffening the matrix; these processes promote epithelial-mesenchymal transition and tumor cell invasion. Chronic inflammation and the mobilization of pro-tumorigenic inflammatory cells further facilitate tumor expansion. All of these events can impede the effective administration of tumor treatment; so, the successful inhibition of tumorous matrix remodeling could further enhance the success of antitumor therapy. Over the last decade, significant progress has been made with the introduction of novel immunotherapy that targets the inhibitory mechanisms of T cell activation. However, extensive research is also being conducted on the stromal components and other cell types of the tumor microenvironment (TME) that may serve as potential therapeutic targets.
Collapse
Affiliation(s)
- Kornélia Baghy
- Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary;
| | - Andrea Ladányi
- Department of Surgical and Molecular Pathology and the National Tumor Biology Laboratory, National Institute of Oncology, 1122 Budapest, Hungary;
| | - Andrea Reszegi
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32610, USA;
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, 1091 Budapest, Hungary
| | - Ilona Kovalszky
- Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary;
| |
Collapse
|
14
|
Kandalla PK, Subburayalu J, Cocita C, de Laval B, Tomasello E, Iacono J, Nitsche J, Canali MM, Cathou W, Bessou G, Mossadegh‐Keller N, Huber C, Mouchiroud G, Bourette RP, Grasset M, Bornhäuser M, Sarrazin S, Dalod M, Sieweke MH. M-CSF directs myeloid and NK cell differentiation to protect from CMV after hematopoietic cell transplantation. EMBO Mol Med 2023; 15:e17694. [PMID: 37635627 PMCID: PMC10630876 DOI: 10.15252/emmm.202317694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
Therapies reconstituting autologous antiviral immunocompetence may represent an important prophylaxis and treatment for immunosuppressed individuals. Following hematopoietic cell transplantation (HCT), patients are susceptible to Herpesviridae including cytomegalovirus (CMV). We show in a murine model of HCT that macrophage colony-stimulating factor (M-CSF) promoted rapid antiviral activity and protection from viremia caused by murine CMV. M-CSF given at transplantation stimulated sequential myeloid and natural killer (NK) cell differentiation culminating in increased NK cell numbers, production of granzyme B and interferon-γ. This depended upon M-CSF-induced myelopoiesis leading to IL15Rα-mediated presentation of IL-15 on monocytes, augmented by type I interferons from plasmacytoid dendritic cells. Demonstrating relevance to human HCT, M-CSF induced myelomonocytic IL15Rα expression and numbers of functional NK cells in G-CSF-mobilized hematopoietic stem and progenitor cells. Together, M-CSF-induced myelopoiesis triggered an integrated differentiation of myeloid and NK cells to protect HCT recipients from CMV. Thus, our results identify a rationale for the therapeutic use of M-CSF to rapidly reconstitute antiviral activity in immunocompromised individuals, which may provide a general paradigm to boost innate antiviral immunocompetence using host-directed therapies.
Collapse
Affiliation(s)
- Prashanth K Kandalla
- Center for Regenerative Therapies Dresden (CRTD)Technical University DresdenDresdenGermany
- Aix Marseille University, CNRS, INSERMCIMLMarseilleFrance
| | - Julien Subburayalu
- Center for Regenerative Therapies Dresden (CRTD)Technical University DresdenDresdenGermany
- Department of Internal Medicine IUniversity Hospital Carl Gustav Carus DresdenDresdenGermany
| | - Clément Cocita
- Aix Marseille University, CNRS, INSERMCIMLMarseilleFrance
- Aix‐Marseille University, CNRS, INSERMCIML, Turing Center for Living SystemsMarseilleFrance
| | | | - Elena Tomasello
- Aix Marseille University, CNRS, INSERMCIMLMarseilleFrance
- Aix‐Marseille University, CNRS, INSERMCIML, Turing Center for Living SystemsMarseilleFrance
| | - Johanna Iacono
- Aix Marseille University, CNRS, INSERMCIMLMarseilleFrance
| | - Jessica Nitsche
- Center for Regenerative Therapies Dresden (CRTD)Technical University DresdenDresdenGermany
| | - Maria M Canali
- Aix Marseille University, CNRS, INSERMCIMLMarseilleFrance
| | | | - Gilles Bessou
- Aix Marseille University, CNRS, INSERMCIMLMarseilleFrance
- Aix‐Marseille University, CNRS, INSERMCIML, Turing Center for Living SystemsMarseilleFrance
| | | | - Caroline Huber
- Aix Marseille University, CNRS, INSERMCIMLMarseilleFrance
| | | | - Roland P Bourette
- CNRS, INSERM, CHU Lille, University LilleUMR9020‐U1277 ‐ CANTHER – Cancer Heterogeneity Plasticity and Resistance to TherapiesLilleFrance
| | | | - Martin Bornhäuser
- Center for Regenerative Therapies Dresden (CRTD)Technical University DresdenDresdenGermany
- Department of Internal Medicine IUniversity Hospital Carl Gustav Carus DresdenDresdenGermany
- National Center for Tumor Diseases (NCT), DresdenDresdenGermany
| | - Sandrine Sarrazin
- Center for Regenerative Therapies Dresden (CRTD)Technical University DresdenDresdenGermany
- Aix Marseille University, CNRS, INSERMCIMLMarseilleFrance
| | - Marc Dalod
- Aix Marseille University, CNRS, INSERMCIMLMarseilleFrance
- Aix‐Marseille University, CNRS, INSERMCIML, Turing Center for Living SystemsMarseilleFrance
| | - Michael H Sieweke
- Center for Regenerative Therapies Dresden (CRTD)Technical University DresdenDresdenGermany
- Aix Marseille University, CNRS, INSERMCIMLMarseilleFrance
| |
Collapse
|
15
|
Lepretre F, Gras D, Chanez P, Duez C. Natural killer cells in the lung: potential role in asthma and virus-induced exacerbation? Eur Respir Rev 2023; 32:230036. [PMID: 37437915 DOI: 10.1183/16000617.0036-2023] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/23/2023] [Indexed: 07/14/2023] Open
Abstract
Asthma is a chronic inflammatory airway disorder whose pathophysiological and immunological mechanisms are not completely understood. Asthma exacerbations are mostly driven by respiratory viral infections and characterised by worsening of symptoms. Despite current therapies, asthma exacerbations can still be life-threatening. Natural killer (NK) cells are innate lymphoid cells well known for their antiviral activity and are present in the lung as circulating and resident cells. However, their functions in asthma and its exacerbations are still unclear. In this review, we will address NK cell activation and functions, which are particularly relevant for asthma and virus-induced asthma exacerbations. Then, the role of NK cells in the lungs at homeostasis in healthy individuals will be described, as well as their functions during pulmonary viral infections, with an emphasis on those associated with asthma exacerbations. Finally, we will discuss the involvement of NK cells in asthma and virus-induced exacerbations and examine the effect of asthma treatments on NK cells.
Collapse
Affiliation(s)
- Florian Lepretre
- Aix-Marseille Université, INSERM, INRAE, C2VN, Marseille, France
| | - Delphine Gras
- Aix-Marseille Université, INSERM, INRAE, C2VN, Marseille, France
| | - Pascal Chanez
- Aix-Marseille Université, INSERM, INRAE, C2VN, Marseille, France
- APHM, Hôpital Nord, Clinique des Bronches, de l'allergie et du sommeil, Marseille, France
| | - Catherine Duez
- Aix-Marseille Université, INSERM, INRAE, C2VN, Marseille, France
| |
Collapse
|
16
|
Jiang D, Zhang J, Mao Z, Shi J, Ma P. Driving natural killer cell-based cancer immunotherapy for cancer treatment: An arduous journey to promising ground. Biomed Pharmacother 2023; 165:115004. [PMID: 37352703 DOI: 10.1016/j.biopha.2023.115004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/25/2023] Open
Abstract
Immunotherapy represents one of the most effective strategies for cancer treatment. Recently, progress has been made in using natural killer (NK) cells for cancer therapy. NK cells can directly kill tumor cells without pre-sensitization and thus show promise in clinical applications, distinct from the use of T cells. Whereas, research and development on NK cell-based immunotherapy is still in its infancy, and enhancing the therapeutic effects of NK cells remains a key problem to be solved. An incompletely understanding of the mechanisms of action of NK cells, immune resistance in the tumor microenvironment, and obstacles associated with the delivery of therapeutic agents in vivo, represent three mountains that need to be scaled. Here, we firstly describe the mechanisms underlying the development, activity, and maturation of NK cells, and the formation of NK‑cell immunological synapses. Secondly, we discuss strategies for NK cell-based immunotherapy strategies, including adoptive transfer of NK cell therapy and treatment with cytokines, monoclonal antibodies, and immune checkpoint inhibitors targeting NK cells. Finally, we review the use of nanotechnology to overcome immune resistance, including enhancing the anti-tumor efficiency of chimeric antigen receptor-NK, cytokines and immunosuppressive-pathways inhibitors, promoting NK cell homing and developing NK cell-based nano-engagers.
Collapse
Affiliation(s)
- Dandan Jiang
- Department of Pharmacy, Henan Provincial People's Hospital; People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Jingya Zhang
- Patent Examination Cooperation (Henan) Center of the Patent office, China National Intellectual Property Administration, Henan 450046, China
| | - Zhenkun Mao
- Department of Pharmacy, Henan Provincial People's Hospital; People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Jinjin Shi
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, China.
| | - Peizhi Ma
- Department of Pharmacy, Henan Provincial People's Hospital; People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450003, China.
| |
Collapse
|
17
|
Park SH, Bae MH, Park CJ, Cho YU, Jang S, Lee JH, Lee KH. Effect of changes in lymphocyte subsets at diagnosis in acute myeloid leukemia on prognosis: association with complete remission rates and relapse free survivals. J Hematop 2023; 16:73-84. [PMID: 38175440 DOI: 10.1007/s12308-023-00536-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 02/26/2023] [Indexed: 03/09/2023] Open
Abstract
We prospectively investigated whether the characteristics of lymphocyte subsets at diagnosis in acute myeloid leukemia (AML) patients are different from healthy controls and affect treatment outcomes. A total of 91 AML patients classified into 3 genetic risk subgroups (favorable/intermediate/poor) according to 2022 NCCN guidelines were enrolled. We measured lymphocyte subsets by flow cytometry with peripheral blood samples at diagnosis and compared results with healthy controls. Influences of lymphocyte subsets on complete remission (CR) rates and survivals were also evaluated. AML patients had significantly lower numbers and proportions of CD56dimCD16+ natural killer (NK) cells, central memory T cells, and regulatory T cells than healthy controls. Higher proportion of helper/inducer T cells, CD4+CD31+ naïve T cells, and decreased proportion of NK cells significantly increased CR rates in 65 non-promyelocytic leukemia patients (P = 0.034, 0.027, and 0.019, respectively), and it was also significant in multivariable analysis with age/risk adjusted (P = 0.014, 0.016, and 0.045, respectively). NK cells < 4.8% of lymphocytes demonstrated significantly shorter relapse free survivals (RFS) in both univariate and multivariate analyses with risk adjusted (P = 0.006 and 0.037, respectively). AML patients showed significant lower numbers of CD56dimCD16+ NK cells, central memory T cells, and regulatory T cells than healthy controls at diagnosis. Higher proportion of helper/inducer T cells and CD4+CD31+ naïve T cells and decreased proportion of NK cells at diagnosis were independent factor of increasing probability of CR, and proportion of NK cells < 4.8% at diagnosis had adverse impact in RFS.
Collapse
Affiliation(s)
- Sang Hyuk Park
- Department of Laboratory Medicine, University of Ulsan College of Medicine, Ulsan University Hospital, 877, Bangeojin Sunhwando-ro, Dong-gu, Ulsan, South Korea.
| | - Mi-Hyun Bae
- Department of Laboratory Medicine, Hanyang University College of Medicine, Hanyang University Guri Hospital, 153, Gyeongchun-ro, Guri, Gyeonggi-do, South Korea
| | - Chan-Jeoung Park
- Department of Laboratory Medicine, University of Ulsan College of Medicine and Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea.
| | - Young-Uk Cho
- Department of Laboratory Medicine, University of Ulsan College of Medicine and Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea
| | - Seongsoo Jang
- Department of Laboratory Medicine, University of Ulsan College of Medicine and Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea
| | - Je-Hwan Lee
- Department of Hematology, University of Ulsan College of Medicine and Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, South Korea
| | - Kyoo-Hyung Lee
- Department of Hematology, University of Ulsan College of Medicine and Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, South Korea
| |
Collapse
|
18
|
Basílio-Queirós D, Mischak-Weissinger E. Natural killer cells- from innate cells to the discovery of adaptability. Front Immunol 2023; 14:1172437. [PMID: 37275911 PMCID: PMC10232812 DOI: 10.3389/fimmu.2023.1172437] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/04/2023] [Indexed: 06/07/2023] Open
Abstract
Natural Killer (NK) cells have come a long way since their first description in the 1970's. The most recent reports of their adaptive-like behavior changed the way the immune system dichotomy is described. Adaptive NK cells present characteristics of both the innate and adaptive immune system. This NK cell subpopulation undergoes a clonal-like expansion in response to an antigen and secondary encounters with the same antigen result in an increased cytotoxic response. These characteristics can be of extreme importance in the clinical setting, especially as adoptive immunotherapies, since NK cells present several advantages compared other cell types. This review will focus on the discovery and the path to the current knowledge of the adaptive NK cell population.
Collapse
|
19
|
Schuster IS, Sng XYX, Lau CM, Powell DR, Weizman OE, Fleming P, Neate GEG, Voigt V, Sheppard S, Maraskovsky AI, Daly S, Koyama M, Hill GR, Turner SJ, O'Sullivan TE, Sun JC, Andoniou CE, Degli-Esposti MA. Infection induces tissue-resident memory NK cells that safeguard tissue health. Immunity 2023; 56:531-546.e6. [PMID: 36773607 PMCID: PMC10360410 DOI: 10.1016/j.immuni.2023.01.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 10/17/2022] [Accepted: 01/17/2023] [Indexed: 02/12/2023]
Abstract
Tissue health is dictated by the capacity to respond to perturbations and then return to homeostasis. Mechanisms that initiate, maintain, and regulate immune responses in tissues are therefore essential. Adaptive immunity plays a key role in these responses, with memory and tissue residency being cardinal features. A corresponding role for innate cells is unknown. Here, we have identified a population of innate lymphocytes that we term tissue-resident memory-like natural killer (NKRM) cells. In response to murine cytomegalovirus infection, we show that circulating NK cells were recruited in a CX3CR1-dependent manner to the salivary glands where they formed NKRM cells, a long-lived, tissue-resident population that prevented autoimmunity via TRAIL-dependent elimination of CD4+ T cells. Thus, NK cells develop adaptive-like features, including long-term residency in non-lymphoid tissues, to modulate inflammation, restore immune equilibrium, and preserve tissue health. Modulating the functions of NKRM cells may provide additional strategies to treat inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Iona S Schuster
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia; Centre for Experimental Immunology, Lions Eye Institute, Nedlands, WA, Australia.
| | - Xavier Y X Sng
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Colleen M Lau
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David R Powell
- Monash Bioinformatics Platform, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Orr-El Weizman
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Peter Fleming
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia; Centre for Experimental Immunology, Lions Eye Institute, Nedlands, WA, Australia
| | - Georgia E G Neate
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Valentina Voigt
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia; Centre for Experimental Immunology, Lions Eye Institute, Nedlands, WA, Australia
| | - Sam Sheppard
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andreas I Maraskovsky
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia; Centre for Experimental Immunology, Lions Eye Institute, Nedlands, WA, Australia
| | - Sheridan Daly
- Centre for Experimental Immunology, Lions Eye Institute, Nedlands, WA, Australia
| | - Motoko Koyama
- Translational Science and Therapeutics, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Geoffrey R Hill
- Translational Science and Therapeutics, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Stephen J Turner
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Timothy E O'Sullivan
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Joseph C Sun
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Christopher E Andoniou
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia; Centre for Experimental Immunology, Lions Eye Institute, Nedlands, WA, Australia
| | - Mariapia A Degli-Esposti
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia; Centre for Experimental Immunology, Lions Eye Institute, Nedlands, WA, Australia.
| |
Collapse
|
20
|
Rahmani S, Yazdanpanah N, Rezaei N. Natural killer cells and acute myeloid leukemia: promises and challenges. Cancer Immunol Immunother 2022; 71:2849-2867. [PMID: 35639116 PMCID: PMC10991240 DOI: 10.1007/s00262-022-03217-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 04/26/2022] [Indexed: 10/18/2022]
Abstract
Acute myeloid leukemia (AML) is considered as one of the most malignant conditions of the bone marrow. Over the past few decades, despite substantial progresses in the management of AML, relapse remission remains a major problem. Natural killer cells (NK cells) are known as a unique component of the innate immune system. Due to swift tumor detection, distinct cytotoxic action, and extensive immune interaction, NK cells have been used in various cancer settings for decades. It has been a growing knowledge of therapeutic magnitudes ranging from adoptive NK cell transfer to chimeric antigen receptor NK cells, aiming to achieve better therapeutic responses in patients with AML. In this article, the potentials of NK cells for treatment of AML are highlighted, and challenges for such therapeutic methods are discussed. In addition, the clinical application of NK cells, mainly in patients with AML, is pictured according to the existing evidence.
Collapse
Affiliation(s)
- Shayan Rahmani
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Niloufar Yazdanpanah
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, 14194, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, 14194, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
Singh R, Gupta U, Srivastava P, Paladhi A, Sk UH, Hira SK, Manna PP. γc cytokine-aided crosstalk between dendritic cells and natural killer cells together with doxorubicin induces a healer response in experimental lymphoma by downregulating FOXP3 and programmed cell death protein 1. Cytotherapy 2022; 24:1232-1244. [PMID: 36057496 DOI: 10.1016/j.jcyt.2022.07.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/01/2022] [Accepted: 07/31/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND AIMS The stimulatory natural killer-dendritic cell axis in the tumor microenvironment could play a critical role in stimulating cytotoxic T cells and driving immune responses against cancer. METHODS We established a novel treatment protocol by adroitly combining chemotherapy with doxorubicin and immunotherapy with dendritic cells and natural killer cells against a highly aggressive and malignant lymphoma called Dalton's lymphoma. RESULTS Our data suggest that binary application of adoptive cell therapy and chemotherapy nearly cures (95%) early-stage experimental lymphoma. In the case of mid-stage cancer, the success rate was significantly lower but still impressive (75%). Our results demonstrated that the application of combination therapy in early-stage cancer significantly reduced the tumor volume and extended the lifespan of the experimental animal in addition to reinvigorating the immune system, including restoring the effector functions of dendritic cells and natural killer cells. The novel protocol limits the metastasis of tumor cells in vascularized organs and rearms the adaptive immune response mediated by dendritic cells and CD4+ and CD8+ T cells. CONCLUSIONS Combination therapy in the early stage alters the cytokine profile, increases interferon-γ and tumor necrosis factor-α in the serum of treated animals and downregulates programmed cell death protein 1 expression in CD8+ T cells. Thus, cooperative and cognitive interactions between dendritic cells and natural killer cells in addition to therapy with doxorubicin promote the immune response and tumoricidal activities against lymphoma.
Collapse
Affiliation(s)
- Ranjeet Singh
- Immunobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Uttam Gupta
- Immunobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Prateek Srivastava
- Immunobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Ankush Paladhi
- Cellular Immunology Laboratory, Department of Zoology, The University of Burdwan, PurbaBardhhaman, India
| | | | - Sumit Kumar Hira
- Immunobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India; Cellular Immunology Laboratory, Department of Zoology, The University of Burdwan, PurbaBardhhaman, India.
| | - Partha Pratim Manna
- Immunobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India.
| |
Collapse
|
22
|
Wang R, Zeng M, Zhang B, Zhang Q, Jia J, Cao B, Liu M, Guo P, Zhang Y, Zheng X, Feng W. β-Sitosterol inhibits ovalbumin-induced asthma-related inflammation by regulating dendritic cells. Immunopharmacol Immunotoxicol 2022; 44:1013-1021. [PMID: 35850599 DOI: 10.1080/08923973.2022.2102990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AIM To investigate the effects of β-sitosterol (B-SIT) and the underlying mechanisms of action in an ovalbumin-induced rat model of asthma. METHODS The pathological and morphological changes in lung and tracheal tissues were observed by H&E, PAS, and Masson's staining. The levels of IgE, TNF-α, and IFN-γ in the bronchoalveolar lavage fluid (BALF) and those of IL-6, TGF-β1, and IL-10 in serum were measured by ELISA. The relative expression levels of IL-5, IL-13, IL-21, CD11c, CD80, and CD86 mRNA in lung tissue were examined by RT-qPCR. Flow cytometry was performed to assess the levels of immune cells, including macrophages and neutrophils in spleen tissue and Th cells, Tc cells, NK cells, and DCs in peripheral blood. The protein expression levels of CD68, MPO, CD11c, CD80, and CD86 were detected by western blotting or immunohistochemistry. RESULTS B-SIT improved the injury in OVA-induced pathology, decreased the levels of inflammatory factors of IgE, TNF-α, IL-6, TGF-β1, IL-5, IL-13, and IL-21 and increased the levels of IFN-γ and IL-10. In addition, B-SIT decreased the number of macrophages and neutrophils and the relative expression levels of CD68 and MPO in the spleen. Moreover, B-SIT increased the number of Th cells, Tc cells, NK cells, and DCs in peripheral blood and upregulated the levels of CD11c, CD80, and CD86 in the spleen and lung. CONCLUSION B-SIT improved symptoms in a rat model of asthma likely via the inhibition of inflammation by regulating dendritic cells.
Collapse
Affiliation(s)
- Ru Wang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Mengnan Zeng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Beibei Zhang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Qinqin Zhang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Jufang Jia
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Bing Cao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Meng Liu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Pengli Guo
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Yuhan Zhang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Xiaoke Zheng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China.,Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P. R., Henan University of Chinese Medicine, Zhengzhou, China
| | - Weisheng Feng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China.,Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P. R., Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
23
|
lncRNA MANCR Inhibits NK Cell Killing Effect on Lung Adenocarcinoma by Targeting miRNA-30d-5p. Cell Microbiol 2022. [DOI: 10.1155/2022/4928635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background. NK cells are imperative in spontaneous antitumor response of various cancers. Currently, lncRNAs are considered important modulators of the tumor microenvironment. This study investigated the molecular mechanism by which mitotically associated long noncoding RNA (MANCR) controls killing effect of NK cells on lung adenocarcinoma (LUAD) in the tumor microenvironment. Methods. The interplay between MANCR and miRNA-30d-5p was analyzed by bioinformatics. Expression of MANCR mRNA and miRNA-30d-5p was examined using qRT-PCR. Dual-luciferase reporter and RIP assays were utilized to verify the targeted relationship between MANCR and miRNA-30d-5p. To investigate regulation of MANCR/miRNA-30d-5p axis in NK cell killing effect on LUAD cells, western blot tested the protein level of perforin and granzyme B. ELISA determined the level of IFN-γ. CytoTox 96 Non-Radioactive Cytotoxicity Assay kit was applied for cytotoxicity detection of NK cells. Perforin and granzyme B fluorescence intensity was measured via immunofluorescence, and cell apoptosis levels were also revealed via flow cytometry. Results. MANCR was found to be upregulated, while miRNA-30d-5p expression was downregulated in LUAD tissues. Overexpression of MANCR in LUAD cells significantly reduced NK cell IFN-γ secretion, expression of granzyme B and perforin, and NK cell killing effect. In addition, MANCR could target and downregulate miRNA-30d-5p expression, and miRNA-30d-5p overexpression reversed the inhibition of NK cell killing effect caused by MANCR overexpression. Conclusion. MANCR inhibited the killing effect of NK cells on LUAD via targeting and downregulating miRNA-30d-5p and provided new ideas for antitumor therapy based on tumor microenvironment.
Collapse
|
24
|
Vaněk O, Kalousková B, Abreu C, Nejadebrahim S, Skořepa O. Natural killer cell-based strategies for immunotherapy of cancer. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 129:91-133. [PMID: 35305726 DOI: 10.1016/bs.apcsb.2022.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Natural killer (NK) cells are a family of lymphocytes with a natural ability to kill infected, harmed, or malignantly transformed cells. As these cells are part of the innate immunity, the cytotoxic mechanisms are activated upon recognizing specific patterns without prior antigen sensitization. This recognition is crucial for NK cell function in the maintenance of homeostasis and immunosurveillance. NK cells not only act directly toward malignant cells but also participate in the complex immune response by producing cytokines or cross-talk with other immune cells. Cancer may be seen as a break of all immune defenses when malignant cells escape the immunity and invade surrounding tissues creating a microenvironment supporting tumor progression. This process may be reverted by intervening immune response with immunotherapy, which may restore immune recognition. NK cells are important effector cells for immunotherapy. They may be used for adoptive cell transfer, genetically modified with chimeric antigen receptors, or triggered with appropriate antibodies and other antibody-fragment-based recombinant therapeutic proteins tailored specifically for NK cell engagement. NK cell receptors, responsible for target recognition and activation of cytotoxic response, could also be targeted in immunotherapy, for example, by various bi-, tri-, or multi-specific fusion proteins designed to bridge the gap between tumor markers present on target cells and activation receptors expressed on NK cells. However, this kind of immunoactive therapeutics may be developed only with a deep functional and structural knowledge of NK cell receptor: ligand interactions. This review describes the recent developments in the fascinating protein-engineering field of NK cell immunotherapeutics.
Collapse
Affiliation(s)
- Ondřej Vaněk
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic.
| | - Barbora Kalousková
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Celeste Abreu
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Shiva Nejadebrahim
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Ondřej Skořepa
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
25
|
Bunting MD, Vyas M, Requesens M, Langenbucher A, Schiferle EB, Manguso RT, Lawrence MS, Demehri S. Extracellular matrix proteins regulate NK cell function in peripheral tissues. SCIENCE ADVANCES 2022; 8:eabk3327. [PMID: 35294229 PMCID: PMC8926340 DOI: 10.1126/sciadv.abk3327] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Natural killer (NK) cells reject major histocompatibility complex class I (MHC-I)-deficient bone marrow through direct cytotoxicity but not solid organ transplants devoid of MHC-I. Here, we demonstrate an immediate switch in NK cell function upon exit from the circulation, characterized by a shift from direct cytotoxicity to chemokine/cytokine production. In the skin transplant paradigm, combining an NK cell-specific activating ligand, m157, with missing self MHC-I resulted in complete graft rejection, which was dependent on NK cells as potential helpers and T cells as effectors. Extracellular matrix proteins, collagen I, collagen III, and elastin, blocked NK cell cytotoxicity and promoted their chemokine/cytokine production. NK cell cytotoxicity against MHC-I-deficient melanoma in the skin was markedly increased by blocking tumor collagen deposition. MHC-I down-regulation occurred in solid human cancers but not leukemias, which could be directly targeted by circulating cytotoxic NK cells. Our findings uncover a fundamental mechanism that restricts direct NK cell cytotoxicity in peripheral tissues.
Collapse
Affiliation(s)
- Mark D. Bunting
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Maulik Vyas
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Marta Requesens
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Adam Langenbucher
- Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Erik B. Schiferle
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Robert T. Manguso
- Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Michael S. Lawrence
- Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Shadmehr Demehri
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Corresponding author.
| |
Collapse
|
26
|
Abstract
CD4+ T cells are key to controlling cytomegalovirus infections. Salivary gland infection by murine cytomegalovirus (MCMV) provides a way to identify mechanisms. CD11c+ dendritic cells (DC) disseminate MCMV to the salivary glands, where they transfer infection to acinar cells. Antiviral CD4+ T cells are often considered to be directly cytotoxic for cells expressing major histocompatibility complex class II (MHCII). However, persistently infected salivary gland acinar cells are MHCII- and are presumably inaccessible to direct CD4 T cell recognition. Here, we show that CD4+ T cell depletion amplified infection of MHCII- acinar cells but not MHCII+ cells. MCMV-infected mice with disrupted MHCII on CD11c+ cells showed increased MHCII- acinar infection; antiviral CD4+ T cells were still primed, but their recruitment to the salivary glands was reduced, suggesting that engagement with local MHCII+ DC is important for antiviral protection. As MCMV downregulates MHCII on infected DC, the DC participating in CD4 protection may thus be uninfected. NK cells and gamma interferon (IFN-γ) may also contribute to CD4+ T cell-dependent virus control: CD4 T cell depletion reduced NK cell recruitment to the salivary glands, and both NK cell and IFN-γ depletion equalized infection between MHCII-disrupted and control mice. Taken together, these results suggest that CD4+ T cells protect indirectly against infected acinar cells in the salivary gland via DC engagement, requiring the recruitment of NK cells and the action of IFN-γ. Congruence of these results with an established CD4+ T cell/NK cell axis of gammaherpesvirus infection control suggests a common mode of defense against evasive viruses. IMPORTANCE Cytomegalovirus infections commonly cause problems in immunocompromised patients and in pregnancy. We lack effective vaccines. CD4+ T cells play an important role in normal infection control, yet how they act has been unknown. Using murine cytomegalovirus as an accessible model, we show that CD4+ T cells are unlikely to recognize infected cells directly. We propose that CD4+ T cells interact with uninfected cells that present viral antigens and recruit other immune cells to attack infected targets. These data present a new outlook on understanding how CD4+ T cell-directed control protects against persistent cytomegalovirus infection.
Collapse
|
27
|
Gan X, Gu J, Ju Z, Lu L. Diverse Roles of Immune Cells in Transplant Rejection and Immune Tolerance. ENGINEERING 2022; 10:44-56. [DOI: 10.1016/j.eng.2021.03.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
28
|
Sliz A, Yokoyama WM. NK Cells and ILC1s in Cancer Biology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1365:41-55. [DOI: 10.1007/978-981-16-8387-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Elemam NM, Ramakrishnan RK, Hundt JE, Halwani R, Maghazachi AA, Hamid Q. Innate Lymphoid Cells and Natural Killer Cells in Bacterial Infections: Function, Dysregulation, and Therapeutic Targets. Front Cell Infect Microbiol 2021; 11:733564. [PMID: 34804991 PMCID: PMC8602108 DOI: 10.3389/fcimb.2021.733564] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
Infectious diseases represent one of the largest medical challenges worldwide. Bacterial infections, in particular, remain a pertinent health challenge and burden. Moreover, such infections increase over time due to the continuous use of various antibiotics without medical need, thus leading to several side effects and bacterial resistance. Our innate immune system represents our first line of defense against any foreign pathogens. This system comprises the innate lymphoid cells (ILCs), including natural killer (NK) cells that are critical players in establishing homeostasis and immunity against infections. ILCs are a group of functionally heterogenous but potent innate immune effector cells that constitute tissue-resident sentinels against intracellular and extracellular bacterial infections. Being a nascent subset of innate lymphocytes, their role in bacterial infections is not clearly understood. Furthermore, these pathogens have developed methods to evade the host immune system, and hence permit infection spread and tissue damage. In this review, we highlight the role of the different ILC populations in various bacterial infections and the possible ways of immune evasion. Additionally, potential immunotherapies to manipulate ILC responses will be briefly discussed.
Collapse
Affiliation(s)
- Noha Mousaad Elemam
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Rakhee K Ramakrishnan
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Jennifer E Hundt
- Lübeck Institute for Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Rabih Halwani
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Prince Abdullah Ben Khaled Celiac Disease Chair, Department of Pediatrics, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Azzam A Maghazachi
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Qutayba Hamid
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Meakins-Christie Laboratories, McGill University, Montreal, QC, Canada
| |
Collapse
|
30
|
Jin X, Yan ZH, Lu L, Lu S, Zhang G, Lin W. Peripheral Immune Cells Exhaustion and Functional Impairment in Patients With Chronic Hepatitis B. Front Med (Lausanne) 2021; 8:759292. [PMID: 34782855 PMCID: PMC8589627 DOI: 10.3389/fmed.2021.759292] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 09/17/2021] [Indexed: 12/30/2022] Open
Abstract
After infection of hepatitis B virus (HBV), the virus induces a variety of immune disorders in the host, leading to immune escape and, finally, the chronicity of the disease. This study investigated immune cell defects and functional impairment in patients with chronic hepatitis B (CHB). We analyzed the percentage, function, and phenotypes of various immune cell subpopulations in the peripheral blood along with the concentrations of cytokines in the plasma. We compared the results between patients with CHB and healthy individuals. It was found that in patients with CHB, the cell function was impaired and, there was increased expression of inhibitory receptors, such as NKG2A and PD-1 in both NK and T cells. The impairment of function was mainly in cytokine secretion, and the cytotoxicity was not significantly diminished. We also found that the proportion of dendritic cells (DC) decreased and regulatory B cells (Breg) increased in CHB. In addition, the Breg cells were negatively correlated with T cell cytokine and positively correlated with ALT and HBV viral load. Taken together, various disorders and functional impairments were found in the immune cells of peripheral blood in CHB patients, especially NK and T cells. These cells showed exhaustion and the increase of regulatory B cells may be one of the reasons for this phenomenon.
Collapse
Affiliation(s)
- Xin Jin
- Department of Clinical Laboratory, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Zhi-Han Yan
- Department of Hepatology, Wuxi Fifth People's Hospital, Wuxi, China
| | - Lingna Lu
- Department of Clinical Laboratory, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Shengjia Lu
- Department of Infectious Diseases, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Guoping Zhang
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Wei Lin
- Department of Otolaryngology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| |
Collapse
|
31
|
Functional NK Cell Activation by Ovalbumin Immunization with a Monophosphoryl Lipid A and Poly I:C Combination Adjuvant Promoted Dendritic Cell Maturation. Vaccines (Basel) 2021; 9:vaccines9101061. [PMID: 34696169 PMCID: PMC8540815 DOI: 10.3390/vaccines9101061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/19/2021] [Accepted: 09/19/2021] [Indexed: 12/02/2022] Open
Abstract
Natural killer (NK) cells are one of the types of innate immune cells to remove pathogen-infected cells and modulate inflammatory immune responses. Recent studies have revealed that NK cells could enhance vaccine efficacy by coordinating the innate and adaptive immune responses. In this study, we have evaluated the efficacy of intranasal ovalbumin (OVA) immunization with a monophosphoryl lipid A (MPL) and polyriboinosinic polyribocytidylic acid (poly I:C) combination adjuvant in promoting NK cell recruitment, differentiation, and activation. The frequencies of NK cells were positively correlated with those of dendritic cells (DCs) at the site of immunization. Moreover, the activated NK cells and DCs by the MPL + poly I:C combination adjuvant induced activations of each other cells in vitro. Taken together, this study suggested that the MPL and poly I:C combination adjuvant in OVA vaccination mediated NK cell activation and cellular crosstalk between NK cells and DCs, suggesting a promising vaccine adjuvant candidate for promoting cellular immune responses.
Collapse
|
32
|
Tuscano JM, Poh C, Kaesberg P, Luxardi G, Merleev A, Marusina A, Brunson A, Rosenberg A, Jonas B, Maverakis E. Long-term Follow-up and Correlative Analysis of Two Phase II Trials of Rituximab and Lenalidomide Followed by Continuous Lenalidomide in Untreated and Relapsed/Refractory Indolent Lymphoma. Clin Cancer Res 2021; 27:4726-4736. [PMID: 34088724 PMCID: PMC9262142 DOI: 10.1158/1078-0432.ccr-20-4622] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 03/01/2021] [Accepted: 05/27/2021] [Indexed: 01/26/2023]
Abstract
PURPOSE Rituximab and lenalidomide are effective for previously untreated and relapsed/refractory (R/R) indolent non-Hodgkin lymphoma (iNHL). However, long-term survival and predictive biomarkers are not well described. PATIENTS AND METHODS We conducted two phase II open-label trials involving 60 patients with previously untreated and R/R advanced-stage iNHL. Patients received lenalidomide and rituximab induction followed by continuous lenalidomide until disease progression or unacceptable toxicity. The primary endpoint was overall response rate (ORR). Correlative studies included plasma cytokine monitoring, flow cytometry of peripheral blood mononuclear cells (PBMC; days 0, 15, 30, and 60), and RNA sequencing (RNA-seq) of pretreatment tumor biopsies. RESULTS At a median follow-up of 63 months for previously untreated and 100 months for R/R, ORR was 82% for both. The 11 R/R patients who achieved complete remission remained in continuous remission for 16 to 141 months, thereafter. Median overall survival (OS) was not reached in the previously untreated and was 140 months (95% confidence interval, 53.4-140) in the R/R group. A mixed-effects linear regression model identified significant associations between Granzyme B+ (GranB+) CD8+ T cells and long-term complete response (LTCR; P = 5.3e-4). Furthermore, prior to start of therapy, treatment response could be predicted by B-cell and GranB+ CD8+ T-cell levels (% total lymphocytes). CONCLUSIONS Rituximab plus lenalidomide followed by continuous lenalidomide is effective with manageable toxicity in patients with previously untreated and R/R iNHL. This regimen produces durable remissions, even in heavily pretreated patients, with some lasting greater than 10 years. GranB+ CD8+ T cells, B cells, and plasma IFNγ allowed prediction of LTCR but need validation in larger trials.
Collapse
Affiliation(s)
- Joseph M. Tuscano
- University of California, Davis Comprehensive Cancer Center, Sacramento, CA USA,Veterans Administration Northern California Healthcare System, Sacramento, CA, USA
| | - Christina Poh
- University of California, Davis Comprehensive Cancer Center, Sacramento, CA USA,University of Washington, Division of Medical Oncology, Seattle, WA USA
| | - Paul Kaesberg
- University of California, Davis Comprehensive Cancer Center, Sacramento, CA USA
| | - Guillaume Luxardi
- University of California, Davis, Department of Dermatology, Sacramento, CA USA
| | - Alexander Merleev
- University of California, Davis, Department of Dermatology, Sacramento, CA USA
| | - Alina Marusina
- University of California, Davis, Department of Dermatology, Sacramento, CA USA
| | - Ann Brunson
- University of California, Davis Comprehensive Cancer Center, Sacramento, CA USA
| | - Aaron Rosenberg
- University of California, Davis Comprehensive Cancer Center, Sacramento, CA USA
| | - Brian Jonas
- University of California, Davis Comprehensive Cancer Center, Sacramento, CA USA
| | - Emanual Maverakis
- University of California, Davis, Department of Dermatology, Sacramento, CA USA
| |
Collapse
|
33
|
Khalil M, Wang D, Hashemi E, Terhune SS, Malarkannan S. Implications of a 'Third Signal' in NK Cells. Cells 2021; 10:cells10081955. [PMID: 34440725 PMCID: PMC8393955 DOI: 10.3390/cells10081955] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/17/2022] Open
Abstract
Innate and adaptive immune systems are evolutionarily divergent. Primary signaling in T and B cells depends on somatically rearranged clonotypic receptors. In contrast, NK cells use germline-encoded non-clonotypic receptors such as NCRs, NKG2D, and Ly49H. Proliferation and effector functions of T and B cells are dictated by unique peptide epitopes presented on MHC or soluble humoral antigens. However, in NK cells, the primary signals are mediated by self or viral proteins. Secondary signaling mediated by various cytokines is involved in metabolic reprogramming, proliferation, terminal maturation, or memory formation in both innate and adaptive lymphocytes. The family of common gamma (γc) cytokine receptors, including IL-2Rα/β/γ, IL-7Rα/γ, IL-15Rα/β/γ, and IL-21Rα/γ are the prime examples of these secondary signals. A distinct set of cytokine receptors mediate a ‘third’ set of signaling. These include IL-12Rβ1/β2, IL-18Rα/β, IL-23R, IL-27R (WSX-1/gp130), IL-35R (IL-12Rβ2/gp130), and IL-39R (IL-23Rα/gp130) that can prime, activate, and mediate effector functions in lymphocytes. The existence of the ‘third’ signal is known in both innate and adaptive lymphocytes. However, the necessity, context, and functional relevance of this ‘third signal’ in NK cells are elusive. Here, we define the current paradigm of the ‘third’ signal in NK cells and enumerate its clinical implications.
Collapse
Affiliation(s)
- Mohamed Khalil
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI 53226, USA; (M.K.); (D.W.); (E.H.)
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Dandan Wang
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI 53226, USA; (M.K.); (D.W.); (E.H.)
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Elaheh Hashemi
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI 53226, USA; (M.K.); (D.W.); (E.H.)
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Scott S. Terhune
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Correspondence: (S.S.T.); (S.M.)
| | - Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI 53226, USA; (M.K.); (D.W.); (E.H.)
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Correspondence: (S.S.T.); (S.M.)
| |
Collapse
|
34
|
Teng Y, Huang Z, Yao L, Wang Y, Li T, Guo J, Wei R, Xia L, Wu Q. Emerging roles of long non-coding RNAs in allotransplant rejection. Transpl Immunol 2021; 70:101408. [PMID: 34015462 DOI: 10.1016/j.trim.2021.101408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/09/2021] [Accepted: 05/14/2021] [Indexed: 01/10/2023]
Abstract
Allotransplantation has extensively been employed for managing end-stage organ failure and malignant tumors. Acute and chronic post-transplant rejections are major causes of late morbidity and mortality after allotransplantation. However, there are no objective diagnostic criteria and specific therapy for post-transplant rejections. Owing to key advances in high-throughput RNA sequencing techniques, a wealth of studies have disclosed that long noncoding RNA (lncRNA) expression increased or decreased evidently in biopsies, blood, plasma, urine and specific cells of rejecting patients, and the dysregulated lncRNAs affected the cellular functions and differentiation of the immune system. Hence, we present an overview of the functions of lncRNAs expressed in various immune cells related to allotransplant rejection. Moreover, our review explores the regulatory interplay of relevant lncRNAs and recipients with or without allograft rejection after solid organ transplantations or hematopoietic stem cell transplantation, then discuss whether these relevant lncRNAs can be molecular biomarkers for diagnosis and new therapeutic targets in the management of post-transplanted patients.
Collapse
Affiliation(s)
- Yao Teng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenli Huang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lan Yao
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yajun Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tingting Li
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingjing Guo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruowen Wei
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Linghui Xia
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Qiuling Wu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
35
|
Yu Z, Liu W, He Y, Sun M, Yu J, Jiao X, Han Q, Tang H, Zhang B, Xian Y, Qi J, Gong J, Xin W, Shi G, Shan F, Zhang R, Li J, Wei M. HLA-A2.1-restricted ECM1-derived epitope LA through DC cross-activation priming CD8 + T and NK cells: a novel therapeutic tumour vaccine. J Hematol Oncol 2021; 14:71. [PMID: 33910591 PMCID: PMC8082934 DOI: 10.1186/s13045-021-01081-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 04/15/2021] [Indexed: 12/22/2022] Open
Abstract
Background CD8+ T cell-mediated adaptive cellular immunity and natural killer (NK) cell-mediated innate immunity both play important roles in tumour immunity. This study aimed to develop therapeutic tumour vaccines based on double-activation of CD8+ T and NK cells. Methods The immune Epitope database, Molecular Operating Environment software, and enzyme-linked immunosorbent assay were used for epitope identification. Flow cytometry, confocal microscopy, UPLC-QTOF-MS, and RNA-seq were utilized for evaluating immunity of PBMC-derived DCs, CD8+ T or NK cells and related pathways. HLA-A2.1 transgenic mice combined with immunologically reconstituted tumour-bearing mice were used to examine the antitumour effect and safety of epitope vaccines. Results We identified novel HLA-A2.1-restricted extracellular matrix protein 1(ECM1)-derived immunodominant epitopes in which LA induced a potent immune response. We also found that LA-loaded DCs upregulated the frequency of CD3+/CD8+ T cells, CD45RO+/CD69+ activated memory T cells, and CD3−/CD16+/CD56+ NK cells. We demonstrated cytotoxic granule release of LA/DC-CTLs or LA/DC-NK cells and cytotoxicity against tumour cells and microtissue blocks via the predominant IFN-γ/perforin/granzyme B cell death pathway. Further investigating the mechanism of LA-mediated CD8+ T activation, we found that LA could be internalized into DCs through phagocytosis and then formed a LA-MHC-I complex presented onto the DC surface for recognition of the T cell receptor to upregulate Zap70 phosphorylation levels to further activate CD8+ T cells by DC-CTL interactions. In addition, LA-mediated DC-NK crosstalk through stimulation of the TLR4-p38 MAPK pathway increased MICA/B expression on DCs to interact with NKG2D for NK activation. Promisingly, LA could activate CD8+ T cells and NK cells simultaneously via interacting with DCs to suppress tumours in vivo. Moreover, the safety of LA was confirmed. Conclusions LA-induced immune antitumour activity through DC cross-activation with CD8+ T and NK cells, which demonstrated proof-of-concept evidence for the capability and safety of a novel therapeutic tumour vaccine. Supplementary Information The online version contains supplementary material available at 10.1186/s13045-021-01081-7.
Collapse
Affiliation(s)
- Zhaojin Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, No. 13, Beihai Road, Dadong District, Shenyang, Liaoning Province, China.,Liaoning Key Laboratory of Molecular Targeted Antitumour Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Centre, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumours, Ministry of Education, China Medical University, No.77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, China
| | - Wensi Liu
- Department of Pharmacology, School of Pharmacy, China Medical University, No. 13, Beihai Road, Dadong District, Shenyang, Liaoning Province, China.,Liaoning Key Laboratory of Molecular Targeted Antitumour Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Centre, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumours, Ministry of Education, China Medical University, No.77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, China
| | - Ying He
- Department of Pharmacology, School of Pharmacy, China Medical University, No. 13, Beihai Road, Dadong District, Shenyang, Liaoning Province, China.,Liaoning Key Laboratory of Molecular Targeted Antitumour Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Centre, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumours, Ministry of Education, China Medical University, No.77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, China.,The Third Department of Medical Oncology, The Fourth Hospital of China Medical University, Shenyang City, Liaoning Province, China
| | - Mingli Sun
- Department of Pharmacology, School of Pharmacy, China Medical University, No. 13, Beihai Road, Dadong District, Shenyang, Liaoning Province, China.,Liaoning Key Laboratory of Molecular Targeted Antitumour Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Centre, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumours, Ministry of Education, China Medical University, No.77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, China
| | - Jiankun Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, No. 13, Beihai Road, Dadong District, Shenyang, Liaoning Province, China.,Liaoning Key Laboratory of Molecular Targeted Antitumour Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Centre, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumours, Ministry of Education, China Medical University, No.77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, China
| | - Xue Jiao
- Department of Pharmacology, School of Pharmacy, China Medical University, No. 13, Beihai Road, Dadong District, Shenyang, Liaoning Province, China.,Liaoning Key Laboratory of Molecular Targeted Antitumour Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Centre, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumours, Ministry of Education, China Medical University, No.77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, China
| | - Qiang Han
- Department of Pharmacology, School of Pharmacy, China Medical University, No. 13, Beihai Road, Dadong District, Shenyang, Liaoning Province, China.,Department of Pharmacy, Harrison International Peace Hospital, Hengshui, Hebei Province, China
| | - Haichao Tang
- Department of Pharmacology, School of Pharmacy, China Medical University, No. 13, Beihai Road, Dadong District, Shenyang, Liaoning Province, China.,Liaoning Key Laboratory of Molecular Targeted Antitumour Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Centre, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumours, Ministry of Education, China Medical University, No.77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, China
| | - Bing Zhang
- Department of Pharmacology, School of Pharmacy, China Medical University, No. 13, Beihai Road, Dadong District, Shenyang, Liaoning Province, China.,Liaoning Key Laboratory of Molecular Targeted Antitumour Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Centre, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumours, Ministry of Education, China Medical University, No.77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, China
| | - Yunkai Xian
- Department of Pharmacology, School of Pharmacy, China Medical University, No. 13, Beihai Road, Dadong District, Shenyang, Liaoning Province, China.,Liaoning Key Laboratory of Molecular Targeted Antitumour Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Centre, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumours, Ministry of Education, China Medical University, No.77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, China
| | - Jing Qi
- Department of Pharmacology, School of Pharmacy, China Medical University, No. 13, Beihai Road, Dadong District, Shenyang, Liaoning Province, China.,Liaoning Key Laboratory of Molecular Targeted Antitumour Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Centre, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumours, Ministry of Education, China Medical University, No.77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, China
| | - Jing Gong
- Department of Pharmacology, School of Pharmacy, China Medical University, No. 13, Beihai Road, Dadong District, Shenyang, Liaoning Province, China.,Liaoning Key Laboratory of Molecular Targeted Antitumour Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Centre, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumours, Ministry of Education, China Medical University, No.77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, China
| | - Wang Xin
- Liaoning Medical Diagnosis and Treatment R&D Centre Co. Ltd., Shenyang, Liaoning Province, China
| | - Gang Shi
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Intitute, No.77, Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, China
| | - Fengping Shan
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning Province, China
| | - Rui Zhang
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Intitute, No.77, Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, China.
| | - Jianping Li
- Department of Pharmacology, School of Pharmacy, China Medical University, No. 13, Beihai Road, Dadong District, Shenyang, Liaoning Province, China. .,Transfusion Medicine Institute, Liaoning Blood Centre, Shenyang, Liaoning Province, China. .,Transfusion Medicine Institute, Harbin Blood Centre, Harbin, Heilongjiang Province, China.
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, No. 13, Beihai Road, Dadong District, Shenyang, Liaoning Province, China. .,Liaoning Key Laboratory of Molecular Targeted Antitumour Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Centre, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumours, Ministry of Education, China Medical University, No.77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, China.
| |
Collapse
|
36
|
Abstract
Natural killer (NK) cells are innate lymphocytes that provide critical host defense against pathogens and cancer. Originally heralded for their early and rapid effector activity, NK cells have been recognized over the last decade for their ability to undergo adaptive immune processes, including antigen-driven clonal expansion and generation of long-lived memory. This review presents an overview of how NK cells lithely partake in both innate and adaptive responses and how this versatility is manifest in human NK cell-mediated immunity.
Collapse
Affiliation(s)
- Adriana M Mujal
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Rebecca B Delconte
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Joseph C Sun
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; .,Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
37
|
Hill GR, Betts BC, Tkachev V, Kean LS, Blazar BR. Current Concepts and Advances in Graft-Versus-Host Disease Immunology. Annu Rev Immunol 2021; 39:19-49. [PMID: 33428454 PMCID: PMC8085043 DOI: 10.1146/annurev-immunol-102119-073227] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Worldwide, each year over 30,000 patients undergo an allogeneic hema-topoietic stem cell transplantation with the intent to cure high-risk hematologic malignancy, immunodeficiency, metabolic disease, or a life-threatening bone marrow failure syndrome. Despite substantial advances in donor selection and conditioning regimens and greater availability of allograft sources, transplant recipients still endure the morbidity and mortality of graft-versus-host disease (GVHD). Herein, we identify key aspects of acute and chronic GVHD pathophysiology, including host/donor cell effectors, gut dysbiosis, immune system and cytokine imbalance, and the interface between inflammation and tissue fibrosis. In particular, we also summarize the translational application of this heightened understanding of immune dysregulation in the design of novel therapies to prevent and treat GVHD.
Collapse
Affiliation(s)
- Geoffrey R Hill
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA;
- Division of Medical Oncology University of Washington, Seattle, Washington 98109, USA
| | - Brian C Betts
- Division of Hematology, Oncology, and Blood and Marrow Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Victor Tkachev
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; ,
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02215, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Leslie S Kean
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; ,
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02215, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Bruce R Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota 55455, USA;
| |
Collapse
|
38
|
Fenton SE, Saleiro D, Platanias LC. Type I and II Interferons in the Anti-Tumor Immune Response. Cancers (Basel) 2021; 13:1037. [PMID: 33801234 PMCID: PMC7957896 DOI: 10.3390/cancers13051037] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/14/2022] Open
Abstract
The interferons (IFNs) are essential components of the immune response against infections and malignancies. IFNs are potent promoters of the anti-tumor response, but there is also evidence that feedback mechanisms regulated by IFNs negatively control immune responses to avoid hyper-activation and limit inflammation. This balance of responses plays an important role in cancer surveillance, immunoediting and response to anticancer therapeutic approaches. Here we review the roles of both type I and type II IFNs on the control of the immune response against malignancies in the context of effects on both malignant cells and cells of the immune system in the tumor microenvironment.
Collapse
Affiliation(s)
- Sarah E. Fenton
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL 60611, USA; (S.E.F.); (D.S.)
- Division of Hematology-Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Diana Saleiro
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL 60611, USA; (S.E.F.); (D.S.)
- Division of Hematology-Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Leonidas C. Platanias
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL 60611, USA; (S.E.F.); (D.S.)
- Division of Hematology-Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
39
|
Kucuksezer UC, Aktas Cetin E, Esen F, Tahrali I, Akdeniz N, Gelmez MY, Deniz G. The Role of Natural Killer Cells in Autoimmune Diseases. Front Immunol 2021; 12:622306. [PMID: 33717125 PMCID: PMC7947192 DOI: 10.3389/fimmu.2021.622306] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/07/2021] [Indexed: 12/15/2022] Open
Abstract
Natural killer (NK) cells, the large granular lymphocytes differentiated from the common lymphoid progenitors, were discovered in early 1970's. They are members of innate immunity and were initially defined by their strong cytotoxicity against virus-infected cells and by their important effector functions in anti-tumoral immune responses. Nowadays, NK cells are classified among the recently discovered innate lymphoid cell subsets and have capacity to influence both innate and adaptive immune responses. Therefore, they can be considered as innate immune cells that stands between the innate and adaptive arms of immunity. NK cells don't express T or B cell receptors and are recognized by absence of CD3. There are two major subgroups of NK cells according to their differential expression of CD16 and CD56. While CD16+CD56dim subset is best-known by their cytotoxic functions, CD16-CD56bright NK cell subset produces a bunch of cytokines comparable to CD4+ T helper cell subsets. Another subset of NK cells with production of interleukin (IL)-10 was named as NK regulatory cells, which has suppressive properties and could take part in immune-regulatory responses. Activation of NK cells is determined by a delicate balance of cell-surface receptors that have either activating or inhibitory properties. On the other hand, a variety of cytokines including IL-2, IL-12, IL-15, and IL-18 influence NK cell activity. NK-derived cytokines and their cytotoxic functions through induction of apoptosis take part in regulation of the immune responses and could contribute to the pathogenesis of many immune mediated diseases including ankylosing spondylitis, Behçet's disease, multiple sclerosis, rheumatoid arthritis, psoriasis, systemic lupus erythematosus and type-1 diabetes. Dysregulation of NK cells in autoimmune disorders may occur through multiple mechanisms. Thanks to the rapid developments in biotechnology, progressive research in immunology enables better characterization of cells and their delicate roles in the complex network of immunity. As NK cells stand in between innate and adaptive arms of immunity and "bridge" them, their contribution in inflammation and immune regulation deserves intense investigations. Better understanding of NK-cell biology and their contribution in both exacerbation and regulation of inflammatory disorders is a requisite for possible utilization of these multi-faceted cells in novel therapeutic interventions.
Collapse
Affiliation(s)
- Umut Can Kucuksezer
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Esin Aktas Cetin
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Fehim Esen
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
- Department of Ophthalmology, Medical Faculty, Istanbul Medeniyet University, Istanbul, Turkey
| | - Ilhan Tahrali
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Nilgun Akdeniz
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Metin Yusuf Gelmez
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Gunnur Deniz
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
40
|
Chinnery F, King CA, Elliott T, Bateman AR, James E. Viral antigen mediated NKp46 activation of NK cells results in tumor rejection via NK-DC crosstalk. Oncoimmunology 2021; 1:874-883. [PMID: 23162755 PMCID: PMC3489743 DOI: 10.4161/onci.20636] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Natural killer (NK) cells play a critical role in antitumor immunity, their activation being regulated through NK cell receptors. Although the endogenous ligands for these receptors are largely unknown, viral ligands have been identified. We investigated the ability of an activating NK receptor ligand derived from the mumps virus, haemagglutinin-neuraminidase (HN) to enhance NK activation against tumor cells. HN-expressing B16.OVA tumor cells induced stronger activation of NK cells compared with B16.OVA cells and also promoted dendritic cell (DC) activation toward a DC1 phenotype, in vitro. Moreover, incubation of DCs, NK cells and HN-expressing B16-OVA cells further enhanced NK cell activation through the NK-DC crosstalk, in a cell-to-cell contact- and IL-12-dependent fashion. Immunization of mice with HN-expressing B16-OVA cells resulted in > 85% survival rate after subsequent challenge with parental B16 or B16.OVA tumor cells. Tumor rejection was dependent on both NK and CD8+ T cells but not on CD4+ T cells, demonstrating induction of an effective adaptive immune response through innate immune cell activation. Our data indicate the potential of using robust NK cell activation, which through the NK-DC crosstalk stimulates effective antitumor responses, providing an alternate vaccine strategy.
Collapse
Affiliation(s)
- Fay Chinnery
- Cancer Sciences Unit; Faculty of Medicine; University of Southampton; Southampton, UK
| | | | | | | | | |
Collapse
|
41
|
Novel TLR 7/8 agonists for improving NK cell mediated antibody-dependent cellular cytotoxicity (ADCC). Sci Rep 2021; 11:3346. [PMID: 33558639 PMCID: PMC7870826 DOI: 10.1038/s41598-021-83005-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/07/2021] [Indexed: 02/08/2023] Open
Abstract
There is a significant interest in designing therapeutic agents that can enhance ADCC and thereby improve clinical responses with approved antibodies. We recently reported the combination of an imidazoquinoline-based TLR7/8 agonist (522) with a monoclonal antibody improved ADCC in vitro and in vivo. In the present study, we tested several new small molecule TLR7/8 agonists that induce significantly higher cytokines compared to both the FDA-approved TLR7 agonist, imiquimod, and 522. We evaluated these agonists in combination with monoclonal antibody therapy, with the main goal of enhancing ADCC. Our studies show these TLR7/8 agonists induce robust pro-inflammatory cytokine secretion and activate NK cells. Specifically, we found the agonists 574 and 558 significantly enhanced NK cell-mediated ADCC in vitro as well as enhanced the anti-cancer efficacy of monoclonal antibodies in two different in vivo mouse models. Additionally, we found the agonists were able to stimulate CD8 T cells, likely indicative of an early adaptive immune response.
Collapse
|
42
|
Natural Compounds of Marine Origin as Inducers of Immunogenic Cell Death (ICD): Potential Role for Cancer Interception and Therapy. Cells 2021; 10:cells10020231. [PMID: 33504012 PMCID: PMC7912082 DOI: 10.3390/cells10020231] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/20/2021] [Accepted: 01/20/2021] [Indexed: 12/22/2022] Open
Abstract
Regulated cell death (RCD) has always been considered a tolerogenic event. Immunogenic cell death (ICD) occurs as a consequence of tumour cell death accompanied by the release of damage-associated molecular patterns (DAMPs), triggering an immune response. ICD plays a major role in stimulating the function of the immune system in cancer during chemotherapy and radiotherapy. ICD can therefore represent one of the routes to boost anticancer immune responses. According to the recommendations of the Nomenclature Committee on Cell Death (2018), apoptosis (type I cell death) and necrosis (type II cell death) represent are not the only types of RCD, which also includes necroptosis, pyroptosis, ferroptosis and others. Specific downstream signalling molecules and death-inducing stimuli can regulate distinct forms of ICD, which develop and promote the immune cell response. Dying cells deliver different potential immunogenic signals, such as DAMPs, which are able to stimulate the immune system. The acute exposure of DAMPs can prime antitumour immunity by inducing activation of antigen-presenting cells (APC), such as dendritic cells (DC), leading to the downstream response by cytotoxic T cells and natural killer cells (NK). As ICD represents an important target to direct and develop new pharmacological interventions, the identification of bioactive natural products, which are endowed with low side effects, higher tolerability and preferentially inducing immunogenic programmed cell death, represents a priority in biomedical research. The ability of ICD to drive the immune response depends on two major factors, neither of which is intrinsic to cell death: ‘Antigenicity and adjuvanticity’. Indeed, the use of natural ICD-triggering molecules, alone or in combination with different (immuno)therapies, can result in higher efficacy and tolerability. Here, we focused on natural (marine) compounds, particularly on marine microalgae derived molecules such as exopolysaccharides, sulphated polysaccharides, glycopeptides, glycolipids, phospholipids, that are endowed with ICD-inducing properties and sulfavants. Here, we discuss novel and repurposed small-molecule ICD triggers, as well as their ability to target important molecular pathways including the IL-6, TNF-α and interferons (IFNs), leading to immune stimulation, which could be used alone or in combinatorial immunotherapeutic strategies in cancer prevention and therapies.
Collapse
|
43
|
Soluble and Exosome-Bound α-Galactosylceramide Mediate Preferential Proliferation of Educated NK Cells with Increased Anti-Tumor Capacity. Cancers (Basel) 2021; 13:cancers13020298. [PMID: 33467442 PMCID: PMC7830699 DOI: 10.3390/cancers13020298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/09/2021] [Accepted: 01/12/2021] [Indexed: 12/27/2022] Open
Abstract
Natural killer (NK) cells can kill target cells via the recognition of stress molecules and down-regulation of major histocompatibility complex class I (MHC-I). Some NK cells are educated to recognize and kill cells that have lost their MHC-I expression, e.g., tumor or virus-infected cells. A desired property of cancer immunotherapy is, therefore, to activate educated NK cells during anti-tumor responses in vivo. We here analyze NK cell responses to α-galactosylceramide (αGC), a potent activator of invariant NKT (iNKT) cells, or to exosomes loaded with αGC. In mouse strains which express different MHC-I alleles using an extended NK cell flow cytometry panel, we show that αGC induces a biased NK cell proliferation of educated NK cells. Importantly, iNKT cell-induced activation of NK cells selectively increased in vivo missing self-responses, leading to more effective rejection of tumor cells. Exosomes from antigen-presenting cells are attractive anti-cancer therapy tools as they may induce both innate and adaptive immune responses, thereby addressing the hurdle of tumor heterogeneity. Adding αGC to antigen-loaded dendritic-cell-derived exosomes also led to an increase in missing self-responses in addition to boosted T and B cell responses. This study manifests αGC as an attractive adjuvant in cancer immunotherapy, as it increases the functional capacity of educated NK cells and enhances the innate, missing self-based antitumor response.
Collapse
|
44
|
Abstract
Natural killer cells are powerful effectors of innate immunity that constitute a first line of defense against cancer. NK cells express an array of germline-encoded receptors which allow them to eliminate transformed cells and spare normal, healthy cells. Owing to their ability to kill circulating tumor cells, NK cells play a major role in the protection against cancer metastases. There is also convincing evidence that NK cells protect against some hematological cancers such as acute myeloid leukemia. However, the importance of NK cells for the control of established solid tumors is rather uncertain. Several mechanisms impede NK cell-mediated elimination of solid tumors, starting with the incapacity of NK cells to infiltrate the core of the tumor. In addition, immune escape mechanisms are at play in both solid and hematological cancers. These include the immunoediting of tumor cells and aberrant chronic inflammation that renders NK cells ineffective. In this chapter, I review the phenotypic characteristics of NK cells within the tumor microenvironment. Furthermore, I describe the mechanisms by which NK cells contribute to antitumor immunity. Finally, I review the different immune-evasion factors that impair NK cell activity against cancer.
Collapse
|
45
|
Domagala J, Lachota M, Klopotowska M, Graczyk-Jarzynka A, Domagala A, Zhylko A, Soroczynska K, Winiarska M. The Tumor Microenvironment-A Metabolic Obstacle to NK Cells' Activity. Cancers (Basel) 2020; 12:cancers12123542. [PMID: 33260925 PMCID: PMC7761432 DOI: 10.3390/cancers12123542] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023] Open
Abstract
NK cells have unique capabilities of recognition and destruction of tumor cells, without the requirement for prior immunization of the host. Maintaining tolerance to healthy cells makes them an attractive therapeutic tool for almost all types of cancer. Unfortunately, metabolic changes associated with malignant transformation and tumor progression lead to immunosuppression within the tumor microenvironment, which in turn limits the efficacy of various immunotherapies. In this review, we provide a brief description of the metabolic changes characteristic for the tumor microenvironment. Both tumor and tumor-associated cells produce and secrete factors that directly or indirectly prevent NK cell cytotoxicity. Here, we depict the molecular mechanisms responsible for the inhibition of immune effector cells by metabolic factors. Finally, we summarize the strategies to enhance NK cell function for the treatment of tumors.
Collapse
Affiliation(s)
- Joanna Domagala
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (J.D.); (A.G.-J.); (A.Z.); (K.S.)
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Mieszko Lachota
- Department of Clinical Immunology, Medical University of Warsaw, 02-006 Warsaw, Poland; (M.L.); (M.K.)
| | - Marta Klopotowska
- Department of Clinical Immunology, Medical University of Warsaw, 02-006 Warsaw, Poland; (M.L.); (M.K.)
| | - Agnieszka Graczyk-Jarzynka
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (J.D.); (A.G.-J.); (A.Z.); (K.S.)
| | - Antoni Domagala
- Institute of Medical Sciences, Collegium Medicum, Jan Kochanowski University of Kielce, 25-317 Kielce, Poland;
- Department of Urology, Holy Cross Cancer Center, 25-734 Kielce, Poland
| | - Andriy Zhylko
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (J.D.); (A.G.-J.); (A.Z.); (K.S.)
| | - Karolina Soroczynska
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (J.D.); (A.G.-J.); (A.Z.); (K.S.)
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Magdalena Winiarska
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (J.D.); (A.G.-J.); (A.Z.); (K.S.)
- Correspondence: ; Tel.: +48-225-992-199
| |
Collapse
|
46
|
Methe K, Nayakawde NB, Banerjee D, Sihlbom C, Agbajogu C, Travnikova G, Olausson M. Differential Activation of Immune Cells for Genetically Different Decellularized Cardiac Tissues. Tissue Eng Part A 2020; 26:1180-1198. [DOI: 10.1089/ten.tea.2020.0055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Ketaki Methe
- Laboratory for Transplantation and Regenerative Medicine, Gothenburg University, Gothenburg, Sweden
| | - Nikhil B. Nayakawde
- Laboratory for Transplantation and Regenerative Medicine, Gothenburg University, Gothenburg, Sweden
| | - Debashish Banerjee
- Laboratory for Transplantation and Regenerative Medicine, Gothenburg University, Gothenburg, Sweden
| | - Carina Sihlbom
- Proteomics Core Facility, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | - Galyna Travnikova
- Laboratory for Transplantation and Regenerative Medicine, Gothenburg University, Gothenburg, Sweden
| | - Michael Olausson
- Laboratory for Transplantation and Regenerative Medicine, Gothenburg University, Gothenburg, Sweden
- Department of Transplantation Surgery at Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
47
|
Sherwani S, Khan MWA. Cytokine Response in SARS-CoV-2 Infection in the Elderly. J Inflamm Res 2020; 13:737-747. [PMID: 33116752 PMCID: PMC7585778 DOI: 10.2147/jir.s276091] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 09/29/2020] [Indexed: 01/08/2023] Open
Abstract
The last few months of 2019 witnessed the emergence, rise and rapid spread of a novel coronavirus known as severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), causing an acute respiratory disease called coronavirus disease 2019 or Covid-19. Severe pathological manifestations of the disease in the infected population with comorbidities are linked to acute respiratory distress syndrome (ARDS), associated with an exaggerated synthesis and expression of cytokines, leading to a systemic inflammatory response also known as a cytokine storm (CS). Elderly patients (>60 years of age) showed more deaths in Covid-19 infection. Age-related immune imbalance increases patient susceptibility to CS. In acute Covid-19 infection, it is difficult to minimize or control the overproduction of cytokines; hence, limited medical treatments are effective. This review aims to provide an overview of the current knowledge of involvement of cytokines in SARS-CoV-2 infection, susceptibility factors for the accompanying cytokine storm in severe Covid-19 cases and possible treatment strategies.
Collapse
Affiliation(s)
- Subuhi Sherwani
- Department of Biology, College of Sciences, University of Ha’il, Ha’il2440, Saudi Arabia
| | - Mohd Wajid Ali Khan
- Department of Chemistry, College of Sciences, University of Ha’il, Ha’il2440, Saudi Arabia
| |
Collapse
|
48
|
Cho JM, Chae J, Jeong SR, Moon MJ, Shin DY, Lee JH. Immune activation of Bio-Germanium in a randomized, double-blind, placebo-controlled clinical trial with 130 human subjects: Therapeutic opportunities from new insights. PLoS One 2020; 15:e0240358. [PMID: 33075061 PMCID: PMC7572073 DOI: 10.1371/journal.pone.0240358] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 09/15/2020] [Indexed: 12/29/2022] Open
Abstract
Germanium has long been considered a therapeutic agent with anticancer, antitumor, antiaging, antiviral and anti-inflammatory effects. Numerous clinical studies have explored the promising therapeutic effects of organic germanium on cancer, arthritis and senile osteoporosis. The immune activation property of organic germanium is considered the foundation of its various therapeutic effects. However, previous human clinical studies investigating immune activation with organic germanium compounds have certain limitations, as some studies did not strictly follow a randomized, double-blind, placebo-controlled design. To build a more clinically substantiated foundation for the mechanism underlying its immunostimulation, we structured by far the most rigorous clinical study to-date with a group of 130 human subjects to examine changes in immune profiles following germanium supplementation. We used Bio-Germanium, an organic germanium compound naturally synthesized via a yeast fermentation process. An 8-week randomized, double-blind, placebo-controlled study was conducted with 130 subjects with leukocyte counts of 4–8 (×103/μL) divided into the Bio-Germanium group and the placebo group. Anthropometric measurements; blood collection; biochemical analysis; urinalysis; and natural killer cell activity, cytokine and immunoglobulin assays were conducted. Results showed the Bio-Germanium group exhibited NK cell activity increases at effector cell:target cell (E:T) ratios of 50:1, 10:1, 5:1 and 2.5:1 (12.60±32.91%, 10.19±23.88%, 9.28±16.49% and 7.27±15.28%, respectively), but the placebo group showed decreases (P<0.01). The difference in the IgG1 change from baseline to follow-up between the Bio-Germanium and placebo groups was significant (P = 0.044). Our results and earlier clinical study of Bio-Germanium confirm that Bio-Germanium acts as an effective immunostimulant by increasing the cytotoxicity of NK cells and activating immunoglobulin, B cells and tumor necrosis factor (TNF)-α (P<0.05). As we have added newly discovered clinical findings for germanium’s immunostimulation mechanism, we believe Bio-Germanium is a highly promising therapeutic agent and should certainly be further explored for potential development opportunities in immunotherapy.
Collapse
Affiliation(s)
- Jung Min Cho
- National Leading Research Laboratory of Clinical Nutrigenetics/Nutrigenomics, Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul, Republic of Korea
- Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul, Republic of Korea
| | - Jisuk Chae
- National Leading Research Laboratory of Clinical Nutrigenetics/Nutrigenomics, Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul, Republic of Korea
- Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul, Republic of Korea
| | - Sa Rang Jeong
- National Leading Research Laboratory of Clinical Nutrigenetics/Nutrigenomics, Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul, Republic of Korea
- Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul, Republic of Korea
| | - Min Jung Moon
- National Leading Research Laboratory of Clinical Nutrigenetics/Nutrigenomics, Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul, Republic of Korea
- Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul, Republic of Korea
| | - Dong Yeob Shin
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jong Ho Lee
- National Leading Research Laboratory of Clinical Nutrigenetics/Nutrigenomics, Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul, Republic of Korea
- Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
49
|
The impaired anti-tumoral effect of immune surveillance cells in the immune microenvironment of gastric cancer. Clin Immunol 2020; 219:108551. [DOI: 10.1016/j.clim.2020.108551] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/07/2020] [Accepted: 07/28/2020] [Indexed: 12/11/2022]
|
50
|
Al-Ani M, Elemam NM, Hundt JE, Maghazachi AA. Drugs for Multiple Sclerosis Activate Natural Killer Cells: Do They Protect Against COVID-19 Infection? Infect Drug Resist 2020; 13:3243-3254. [PMID: 33061471 PMCID: PMC7519863 DOI: 10.2147/idr.s269797] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 09/07/2020] [Indexed: 12/15/2022] Open
Abstract
COVID-19 infection caused by the newly discovered coronavirus severe acute respiratory distress syndrome virus-19 (SARS-CoV-2) has become a pandemic issue across the globe. There are currently many investigations taking place to look for specific, safe and potent anti-viral agents. Upon transmission and entry into the human body, SARS-CoV-2 triggers multiple immune players to be involved in the fight against the viral infection. Amongst these immune cells are NK cells that possess robust antiviral activity, and which do not require prior sensitization. However, NK cell count and activity were found to be impaired in COVID-19 patients and hence, could become a potential therapeutic target for COVID-19. Several drugs, including glatiramer acetate (GA), vitamin D3, dimethyl fumarate (DMF), monomethyl fumarate (MMF), natalizumab, ocrelizumab, and IFN-β, among others have been previously described to increase the biological activities of NK cells especially their cytolytic potential as reported by upregulation of CD107a, and the release of perforin and granzymes. In this review, we propose that such drugs could potentially restore NK cell activity allowing individuals to be more protective against COVID-19 infection and its complications.
Collapse
Affiliation(s)
- Mena Al-Ani
- Department of Clinical Sciences, College of Medicine and the Immuno-Oncology Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Noha Mousaad Elemam
- Department of Clinical Sciences, College of Medicine and the Immuno-Oncology Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| | | | - Azzam A Maghazachi
- Department of Clinical Sciences, College of Medicine and the Immuno-Oncology Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|