1
|
Torices L, Nunes‐Xavier CE, Pulido R. Therapeutic Potential of Translational Readthrough at Disease-Associated Premature Termination Codons From Tumor Suppressor Genes. IUBMB Life 2025; 77:e70018. [PMID: 40317855 PMCID: PMC12046619 DOI: 10.1002/iub.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/27/2025] [Accepted: 04/14/2025] [Indexed: 05/07/2025]
Abstract
Tumor suppressor genes are frequently targeted by mutations introducing premature termination codons (PTC) in the protein coding sequence, both in sporadic cancers and in the germline of patients with cancer predisposition syndromes. These mutations have a high pathogenic impact since they generate C-terminal truncated proteins with altered stability and function. In addition, PTC mutations trigger transcript degradation by nonsense-mediated mRNA decay. Suppression of PTC by translational readthrough restores protein biosynthesis and stabilizes the PTC-targeted mRNA, making a suitable therapeutic approach the reconstitution of active full-length tumor suppressor proteins by pharmacologically-induced translational readthrough. Here, we review the recent advances in small molecule pharmacological induction of translational readthrough of disease-associated PTC from tumor suppressor genes, and discuss the therapeutic potential of translational readthrough in specific groups of patients with hereditary syndromic cancers.
Collapse
Affiliation(s)
| | - Caroline E. Nunes‐Xavier
- Biobizkaia Health Research InstituteBarakaldoSpain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, CIBERERISCIIISpain
- Institute for Cancer ResearchOslo University HospitalOsloNorway
| | - Rafael Pulido
- Biobizkaia Health Research InstituteBarakaldoSpain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, CIBERERISCIIISpain
- IkerbasqueThe Basque Foundation for ScienceBilbaoSpain
| |
Collapse
|
2
|
Dematteis G, Lecchi G, Boni G, Pendin D, Distasi C, Grilli M, Lim D, Fresu LG, Talmon M. ATM knock out alters calcium signalling and augments contraction in skeletal muscle cells differentiated from human urine-derived stem cells. Cell Death Discov 2025; 11:177. [PMID: 40234386 PMCID: PMC12000312 DOI: 10.1038/s41420-025-02485-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 04/03/2025] [Accepted: 04/08/2025] [Indexed: 04/17/2025] Open
Abstract
Ataxia-telangiectasia (A-T) is a rare neurodegenerative disorder caused by the deficiency of the serine/threonine kinase ataxia telangiectasia mutated (ATM) protein, whose loss of function leads to altered cell cycle, apoptosis, oxidative stress balance and DNA repair after damage. The clinical manifestations are multisystemic, among them cerebellar degeneration and muscular ataxia. The molecular mechanism by which ATM loss leads to A-T is still uncertain and, currently only symptomatic treatments are available. In this study, we generated a functional skeletal muscle cell model that recapitulates A-T and highlights the role of ATM in calcium signalling and muscle contraction. To this aim, by using CRISPR/Cas9 technology, we knocked out the ATM protein in urine-derived stem cells (USCs) from healthy donors. The resulting USCs-ATM-KO maintained stemness but showed G2/S cell cycle progression and an inability to repair DNA after UV damage. Moreover, they showed increased cytosolic calcium release after ATP stimulation to the detriment of the mitochondria. The alterations of calcium homoeostasis were maintained after differentiation of USCs-ATM-KO into skeletal muscle cells (USC-SkMCs) and correlated with impaired cell contraction. Indeed, USC-SkMCs-ATM-KO contraction kinetics were dramatically accelerated compared to control cells. These results highlight the relevant function of ATM in skeletal muscle, which is not only dependent on a non-functional neuronal communication, paving the way for future studies on a muscular interpretation of A-T ataxia.
Collapse
Grants
- C13C22000590006 - ID T4-AN-04 Ministry of Health, Italy | Agenzia Italiana del Farmaco, Ministero della Salute (Italian Medicines Agency)
- C13C22000590006 - ID T4-AN-04 Ministry of Health, Italy | Agenzia Italiana del Farmaco, Ministero della Salute (Italian Medicines Agency)
- C13C22000590006 - ID T4-AN-04 Ministry of Health, Italy | Agenzia Italiana del Farmaco, Ministero della Salute (Italian Medicines Agency)
- C13C22000590006 - ID T4-AN-04 Ministry of Health, Italy | Agenzia Italiana del Farmaco, Ministero della Salute (Italian Medicines Agency)
- C13C22000590006 - ID T4-AN-04 Ministry of Health, Italy | Agenzia Italiana del Farmaco, Ministero della Salute (Italian Medicines Agency)
- C13C22000590006 - ID T4-AN-04 Ministry of Health, Italy | Agenzia Italiana del Farmaco, Ministero della Salute (Italian Medicines Agency)
- C13C22000590006 - ID T4-AN-04 Ministry of Health, Italy | Agenzia Italiana del Farmaco, Ministero della Salute (Italian Medicines Agency)
- C13C22000590006 - ID T4-AN-04 Ministry of Health, Italy | Agenzia Italiana del Farmaco, Ministero della Salute (Italian Medicines Agency)
Collapse
Affiliation(s)
- Giulia Dematteis
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Giulia Lecchi
- Department of Health Sciences, School of Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Giulia Boni
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Diana Pendin
- Neuroscience Institute, Padua Section, National Research Council, Padua, Italy
| | - Carla Distasi
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Mariagrazia Grilli
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Dmitry Lim
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy.
| | - Luigia Grazia Fresu
- Department of Health Sciences, School of Medicine, Università del Piemonte Orientale, Novara, Italy.
| | - Maria Talmon
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
| |
Collapse
|
3
|
Safyan RA, Zhang K, Apisarnthanarax S, Sham JG, Pillarisetty VG, Kugel S, Dubard-Gault M, Pritchard CC, Konnick EQ, Sahani D, Chiorean EG. Long-Term Survival Following Chemoradiation in Locoregional Recurrent Germline ATM Mutated Pancreatic Ductal Adenocarcinoma. Adv Radiat Oncol 2025; 10:101742. [PMID: 40161544 PMCID: PMC11950966 DOI: 10.1016/j.adro.2025.101742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 02/05/2025] [Indexed: 04/02/2025] Open
Affiliation(s)
- Rachael A. Safyan
- University of Washington School of Medicine, Seattle, Washington
- Fred Hutchinson Cancer Center, Seattle, Washington
| | - Keven Zhang
- University of Washington School of Medicine, Seattle, Washington
| | - Smith Apisarnthanarax
- University of Washington School of Medicine, Seattle, Washington
- Fred Hutchinson Cancer Center, Seattle, Washington
| | - Jonathan G. Sham
- University of Washington School of Medicine, Seattle, Washington
- Fred Hutchinson Cancer Center, Seattle, Washington
| | - Venu G. Pillarisetty
- University of Washington School of Medicine, Seattle, Washington
- Fred Hutchinson Cancer Center, Seattle, Washington
| | - Sita Kugel
- Fred Hutchinson Cancer Center, Seattle, Washington
| | | | | | - Eric Q. Konnick
- University of Washington School of Medicine, Seattle, Washington
| | - Dushyant Sahani
- University of Washington School of Medicine, Seattle, Washington
| | - E. Gabriela Chiorean
- University of Washington School of Medicine, Seattle, Washington
- Fred Hutchinson Cancer Center, Seattle, Washington
| |
Collapse
|
4
|
Lee JH. ATM in immunobiology: From lymphocyte development to cancer immunotherapy. Transl Oncol 2025; 52:102268. [PMID: 39752906 PMCID: PMC11754496 DOI: 10.1016/j.tranon.2024.102268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/14/2024] [Accepted: 12/30/2024] [Indexed: 01/25/2025] Open
Abstract
Ataxia Telangiectasia Mutated (ATM) is a protein kinase traditionally known for its role in DNA damage response and cell cycle regulation. However, emerging research has revealed its multifaceted and crucial functions in the immune system. This comprehensive review explores the diverse roles of ATM in immune regulation, from lymphocyte development to its involvement in cancer immunotherapy. The review describes ATM's critical functions in V(D)J recombination and class switch recombination, highlighting its importance in adaptive immunity. It examines ATM's role in innate immunity, particularly in NF-κB signaling and cytokine production. Furthermore, the review analyzes the impact of ATM deficiency on oxidative stress and mitochondrial function in immune cells, providing insights into the immunological defects observed in Ataxia Telangiectasia (A-T). The article explores ATM's significance in maintaining hematopoietic stem cell function and its implications for bone marrow transplantation and gene therapy. Additionally, it addresses ATM's involvement in inflammation and immune senescence, linking DNA damage response to age-related immune decline. Finally, this review highlights the emerging role of ATM in cancer immunotherapy, where its inhibition shows promise in enhancing immune checkpoint blockade therapy. This review synthesizes current knowledge on ATM's functions in the immune system, offering insights into the pathophysiology of ATM-related disorders and potential therapeutic strategies for immune-related conditions and cancer immunotherapy.
Collapse
Affiliation(s)
- Ji-Hoon Lee
- Department of Biological Sciences, Research Center of Ecomimetics, Chonnam National University, Gwangju 61186, South Korea.
| |
Collapse
|
5
|
Ma W, Yan H, Ma H, Xu Z, Dai W, Wu Y, Zhang H, Li Y. Roles of leukemia inhibitory factor receptor in cancer. Int J Cancer 2025; 156:262-273. [PMID: 39279155 DOI: 10.1002/ijc.35157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/19/2024] [Accepted: 07/29/2024] [Indexed: 09/18/2024]
Abstract
Leukemia inhibitory factor receptor (LIFR), in complex with glycoprotein 130 (gp130) as the receptor for leukemia inhibitory factor (LIF), can bind to a variety of cytokines and subsequently activate a variety of signaling pathways, including Janus kinase/signal transducer and activator of transcription 3. LIF, the most multifunctional cytokines of the interleukin-6 family acts as both a growth factor and a growth inhibitor in different types of tumors. LIF/LIFR signaling regulates a broad array of tumor-related processes including proliferation, apoptosis, migration, invasion. However, due to the activation of different signaling pathways, opposite regulatory effects are observed in certain tumor cells. Therefore, the role of LIFR in human cancers varies across different tumor and tissue, despite their recognized value in tumor treatment and prognosis observation is affirmed. Given its aberrant expression in numerous tumor cells and crucial regulatory function in tumorigenesis and progression, LIFR is considered as a promising targeted therapeutic agent. This review provides an overview of LIFR's initiating signaling pathway function as a cytokine receptor and summarize the current literature on the role of LIFR in cancer and its possible use in therapy.
Collapse
Affiliation(s)
- Wei Ma
- School of Stomatology, China Medical University, Shenyang, China
| | - Haixu Yan
- Department of Clinical Medicine, China Medical University, Shenyang, China
| | - Haoyuan Ma
- Department of Clinical Medicine, China Medical University, Shenyang, China
| | - Zengyan Xu
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Wei Dai
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Yudan Wu
- School of Nursing, China Medical University, Shenyang, China
| | - Hongyan Zhang
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Yanshu Li
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| |
Collapse
|
6
|
Ma J, Yang L, Wu J, Huang Z, Zhang J, Liu M, Li M, Luo J, Wang H. Unraveling the Molecular Mechanisms of SIRT7 in Angiogenesis: Insights from Substrate Clues. Int J Mol Sci 2024; 25:11578. [PMID: 39519130 PMCID: PMC11546391 DOI: 10.3390/ijms252111578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/20/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Angiogenesis, a vital physiological or pathological process regulated by complex molecular networks, is widely implicated in organismal development and the pathogenesis of various diseases. SIRT7, a member of the Sirtuin family of nicotinamide adenine dinucleotide + (NAD+) dependent deacetylases, plays crucial roles in cellular processes such as transcriptional regulation, cell metabolism, cell proliferation, and genome stability maintenance. Characterized by its enzymatic activities, SIRT7 targets an array of substrates, several of which exert regulatory effects on angiogenesis. Experimental evidence from in vitro and in vivo studies consistently demonstrates the effects of SIRT7 in modulating angiogenesis, mediated through various molecular mechanisms. Consequently, understanding the regulatory role of SIRT7 in angiogenesis holds significant promise, offering novel avenues for therapeutic interventions targeting either SIRT7 or angiogenesis. This review delineates the putative molecular mechanisms by which SIRT7 regulates angiogenesis, taking its substrates as a clue, endeavoring to elucidate experimental observations by integrating knowledge of SIRT7 substrates and established angiogenenic mechanisms.
Collapse
Affiliation(s)
- Junjie Ma
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; (J.M.); (L.Y.); (J.W.); (Z.H.); (J.Z.); (J.L.)
| | - Liqian Yang
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; (J.M.); (L.Y.); (J.W.); (Z.H.); (J.Z.); (J.L.)
| | - Jiaxing Wu
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; (J.M.); (L.Y.); (J.W.); (Z.H.); (J.Z.); (J.L.)
| | - Zhihong Huang
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; (J.M.); (L.Y.); (J.W.); (Z.H.); (J.Z.); (J.L.)
| | - Jiaqi Zhang
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; (J.M.); (L.Y.); (J.W.); (Z.H.); (J.Z.); (J.L.)
| | - Minghui Liu
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing 100191, China; (M.L.); (M.L.)
| | - Meiting Li
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing 100191, China; (M.L.); (M.L.)
| | - Jianyuan Luo
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; (J.M.); (L.Y.); (J.W.); (Z.H.); (J.Z.); (J.L.)
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing 100191, China; (M.L.); (M.L.)
| | - Haiying Wang
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; (J.M.); (L.Y.); (J.W.); (Z.H.); (J.Z.); (J.L.)
| |
Collapse
|
7
|
Joo YK, Ramirez C, Kabeche L. A TRilogy of ATR's Non-Canonical Roles Throughout the Cell Cycle and Its Relation to Cancer. Cancers (Basel) 2024; 16:3536. [PMID: 39456630 PMCID: PMC11506335 DOI: 10.3390/cancers16203536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/12/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Ataxia Telangiectasia and Rad3-related protein (ATR) is an apical kinase of the DNA Damage Response (DDR) pathway responsible for detecting and resolving damaged DNA. Because cancer cells depend heavily on the DNA damage checkpoint for their unchecked proliferation and propagation, ATR has gained enormous popularity as a cancer therapy target in recent decades. Yet, ATR inhibitors have not been the silver bullets as anticipated, with clinical trials demonstrating toxicity and mixed efficacy. To investigate whether the toxicity and mixed efficacy of ATR inhibitors arise from their off-target effects related to ATR's multiple roles within and outside the DDR pathway, we have analyzed recently published studies on ATR's non-canonical roles. Recent studies have elucidated that ATR plays a wide role throughout the cell cycle that is separate from its function in the DDR. This includes maintaining nuclear membrane integrity, detecting mechanical forces, and promoting faithful chromosome segregation during mitosis. In this review, we summarize the canonical, DDR-related roles of ATR and also focus on the non-canonical, multifaceted roles of ATR throughout the cell cycle and their clinical relevance. Through this summary, we also address the need for re-assessing clinical strategies targeting ATR as a cancer therapy based on these newly discovered roles for ATR.
Collapse
Affiliation(s)
- Yoon Ki Joo
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Carlos Ramirez
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Lilian Kabeche
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| |
Collapse
|
8
|
Elitzur S, Shiloh R, Loeffen JLC, Pastorczak A, Takagi M, Bomken S, Baruchel A, Lehrnbecher T, Tasian SK, Abla O, Arad-Cohen N, Astigarraga I, Ben-Harosh M, Bodmer N, Brozou T, Ceppi F, Chugaeva L, Dalla Pozza L, Ducassou S, Escherich G, Farah R, Gibson A, Hasle H, Hoveyan J, Jacoby E, Jazbec J, Junk S, Kolenova A, Lazic J, Lo Nigro L, Mahlaoui N, Miller L, Papadakis V, Pecheux L, Pillon M, Sarouk I, Stary J, Stiakaki E, Strullu M, Tran TH, Ussowicz M, Verdu-Amoros J, Wakulinska A, Zawitkowska J, Stoppa-Lyonnet D, Taylor AM, Shiloh Y, Izraeli S, Minard-Colin V, Schmiegelow K, Nirel R, Attarbaschi A, Borkhardt A. ATM germ line pathogenic variants affect outcomes in children with ataxia-telangiectasia and hematological malignancies. Blood 2024; 144:1193-1205. [PMID: 38917355 DOI: 10.1182/blood.2024024283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024] Open
Abstract
ABSTRACT Ataxia-telangiectasia (A-T) is an autosomal-recessive disorder caused by pathogenic variants (PVs) of the ATM gene, predisposing children to hematological malignancies. We investigated their characteristics and outcomes to generate data-based treatment recommendations. In this multinational, observational study we report 202 patients aged ≤25 years with A-T and hematological malignancies from 25 countries. Ninety-one patients (45%) presented with mature B-cell lymphomas, 82 (41%) with acute lymphoblastic leukemia/lymphoma, 21 (10%) with Hodgkin lymphoma and 8 (4%) with other hematological malignancies. Four-year overall survival and event-free survival (EFS) were 50.8% (95% confidence interval [CI], 43.6-59.1) and 47.9% (95% CI 40.8-56.2), respectively. Cure rates have not significantly improved over the last four decades (P = .76). The major cause of treatment failure was treatment-related mortality (TRM) with a four-year cumulative incidence of 25.9% (95% CI, 19.5-32.4). Germ line ATM PVs were categorized as null or hypomorphic and patients with available genetic data (n = 110) were classified as having absent (n = 81) or residual (n = 29) ATM kinase activity. Four-year EFS was 39.4% (95% CI, 29-53.3) vs 78.7% (95% CI, 63.7-97.2), (P < .001), and TRM rates were 37.6% (95% CI, 26.4-48.7) vs 4.0% (95% CI, 0-11.8), (P = .017), for those with absent and residual ATM kinase activity, respectively. Absence of ATM kinase activity was independently associated with decreased EFS (HR = 0.362, 95% CI, 0.16-0.82; P = .009) and increased TRM (hazard ratio [HR] = 14.11, 95% CI, 1.36-146.31; P = .029). Patients with A-T and leukemia/lymphoma may benefit from deescalated therapy for patients with absent ATM kinase activity and near-standard therapy regimens for those with residual kinase activity.
Collapse
Affiliation(s)
- Sarah Elitzur
- Department of Pediatric Hematology and Oncology, Schneider Children's Medical Center and Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ruth Shiloh
- Department of Pediatric Hematology and Oncology, Schneider Children's Medical Center and Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Felsenstein Medical Research Center, Faculty of Medicine, Tel Aviv University, Petah Tikva, Israel
| | - Jan L C Loeffen
- Department of Hemato-Oncology, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Agata Pastorczak
- Department of Pediatrics, Oncology and Hematology, and Department of Genetic Predisposition to Cancer, Medical University of Lodz, Lodz, Poland
| | - Masatoshi Takagi
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Simon Bomken
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Andre Baruchel
- Department of Pediatric Hemato-Immunology, Hôpital Robert Debré, Paris, France
| | - Thomas Lehrnbecher
- Division of Hematology, Oncology and Hemostaseology, Department of Pediatrics, Goethe University Frankfurt, Frankfurt/Main, Germany
| | - Sarah K Tasian
- Division of Oncology and Center for Childhood Cancer Research, Department of Pediatrics and Abramson Cancer Center, University of Pennsylvania School of Medicine and Children's Hospital of Philadelphia, Philadelphia, PA
| | - Oussama Abla
- Division of Hematology/Oncology, Hospital For Sick Children, Toronto, ON, Canada
| | - Nira Arad-Cohen
- Department of Pediatric Hemato-Oncology, Rambam Health Care Campus, Haifa, Israel
| | - Itziar Astigarraga
- Pediatrics Department, Hospital Universitario Cruces, Osakidetza, Pediatric Oncology Group, Bizkaia Health Research Institute, Pediatric Department, Universidad del País Vasco UPV/EHU, Barakaldo, Spain
| | - Miriam Ben-Harosh
- Department of Pediatric Hematology-Oncology, Soroka Medical Center, Beer Sheva, Israel
| | - Nicole Bodmer
- Department of Oncology, University Children's Hospital Zurich, Zurich, Switzerland
| | - Triantafyllia Brozou
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Francesco Ceppi
- Division of Pediatrics, Pediatric Hematology-Oncology Unit, University Hospital of Lausanne and University of Lausanne, Lausanne, Switzerland
| | - Liliia Chugaeva
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Luciano Dalla Pozza
- Cancer Centre for Children, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - Stephane Ducassou
- Department of Pediatric Hemato-Oncology, CHU Bordeaux, Bordeaux, France
| | - Gabriele Escherich
- Clinic of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Roula Farah
- Department of Pediatrics and Pediatric Hematology/Oncology, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
| | - Amber Gibson
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Henrik Hasle
- Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Julieta Hoveyan
- Pediatric Cancer and Blood Disorders Center of Armenia, Yeolyan Hematology and Oncology Center and Immune Oncology Research Institute, Yerevan, Armenia
| | - Elad Jacoby
- Department of Pediatric Hematology-Oncology, Safra Children's Hospital, Sheba Medical Center and Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Janez Jazbec
- Department of Pediatric Hematology and Oncology, University Children's Hospital, Faculty of Medicine, University of Ljubljan, Ljubljana, Slovenia
| | - Stefanie Junk
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Alexandra Kolenova
- Department of Pediatric Hematology and Oncology, National Institute of Children's Diseases, Comenius University Children's Hospital, Bratislava, Slovakia
| | - Jelena Lazic
- Department of Hematology and Oncology, University Children's Hospital, School of Medicine University of Belgrade, Belgrade, Serbia
| | - Luca Lo Nigro
- Azienda Policlinico, San Marco, Center of Pediatric Hematology Oncology, Catania, Italy
| | - Nizar Mahlaoui
- Immuno-Haematology and Rheumatology Unit, Necker Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris, French National Reference Center for Primary Immune Deficiencies, Necker Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Lane Miller
- Cancers and Blood Disorders Program, Children's Minnesota, Minneapolis, MN
| | - Vassilios Papadakis
- Department of Pediatric Hematology-Oncology, Agia Sofia Children's Hospital, Athens, Greece
| | - Lucie Pecheux
- Department of Pediatric Hematology-Oncology, Stollery Children Hospital, University of Alberta, Edmonton, Canada
| | - Marta Pillon
- Pediatric Hematology, Oncology and Stem Cell Transplant Center, University of Padua, Padua, Italy
| | - Ifat Sarouk
- Pediatric Pulmonology Unit and Ataxia Telangiectasia Center, The Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
| | - Jan Stary
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University, University Hospital Motol, Prague, Czech Republic
| | - Eftichia Stiakaki
- Department of Pediatric Hematology-Oncology, University Hospital of Heraklion, Heraklion Crete, Greece
| | - Marion Strullu
- Department of Pediatric Hemato-Immunology, Hôpital Robert Debré, Paris, France
| | - Thai Hoa Tran
- Division of Pediatric Hematology Oncology, CHU Sainte Justine, Montreal, QC, Canada
| | - Marek Ussowicz
- Clinical Department of Paediatric Bone Marrow Transplantation, Oncology and Haematology, Wroclaw Medical University, Wroclaw, Poland
| | - Jaime Verdu-Amoros
- Department of Pediatric Hematology and Oncology, University Hospital Valencia, INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Anna Wakulinska
- Department of Oncology, The Children's Memorial Health Institute, Warsaw, Poland
| | - Joanna Zawitkowska
- Department of Pediatric Hematology, Oncology and Transplantation, Medical University of Lublin, Lublin, Poland
| | | | - A Malcolm Taylor
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Yosef Shiloh
- Department of Human Molecular Genetics and Biochemistry, Tel Aviv University School of Medicine, Tel Aviv, Israel
| | - Shai Izraeli
- Department of Pediatric Hematology and Oncology, Schneider Children's Medical Center and Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Veronique Minard-Colin
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Kjeld Schmiegelow
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet University Hospital, Copenhagen, Denmark
| | - Ronit Nirel
- Department of Statistics and Data Science, Hebrew University, Jerusalem, Israel
| | - Andishe Attarbaschi
- Department of Pediatric Hematology and Oncology, St Anna Children's Hospital, Medical University of Vienna, Vienna, Austria
- St Anna Children's Cancer Research Institute, Vienna, Austria
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
9
|
Lim B, Matsui Y, Jung S, Djekidel MN, Qi W, Yuan ZF, Wang X, Yang X, Connolly N, Pilehroud AS, Pan H, Wang F, Pruett-Miller SM, Kavdia K, Pagala V, Fan Y, Peng J, Xu B, Peng JC. Phosphorylation of the DNA damage repair factor 53BP1 by ATM kinase controls neurodevelopmental programs in cortical brain organoids. PLoS Biol 2024; 22:e3002760. [PMID: 39226322 PMCID: PMC11398655 DOI: 10.1371/journal.pbio.3002760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/13/2024] [Accepted: 07/19/2024] [Indexed: 09/05/2024] Open
Abstract
53BP1 is a well-established DNA damage repair factor that has recently emerged to critically regulate gene expression for tumor suppression and neural development. However, its precise function and regulatory mechanisms remain unclear. Here, we showed that phosphorylation of 53BP1 at serine 25 by ATM is required for neural progenitor cell proliferation and neuronal differentiation in cortical brain organoids. Dynamic phosphorylation of 53BP1-serine 25 controls 53BP1 target genes governing neuronal differentiation and function, cellular response to stress, and apoptosis. Mechanistically, ATM and RNF168 govern 53BP1's binding to gene loci to directly affect gene regulation, especially at genes for neuronal differentiation and maturation. 53BP1 serine 25 phosphorylation effectively impedes its binding to bivalent or H3K27me3-occupied promoters, especially at genes regulating H3K4 methylation, neuronal functions, and cell proliferation. Beyond 53BP1, ATM-dependent phosphorylation displays wide-ranging effects, regulating factors in neuronal differentiation, cytoskeleton, p53 regulation, as well as key signaling pathways such as ATM, BDNF, and WNT during cortical organoid differentiation. Together, our data suggest that the interplay between 53BP1 and ATM orchestrates essential genetic programs for cell morphogenesis, tissue organization, and developmental pathways crucial for human cortical development.
Collapse
Affiliation(s)
- Bitna Lim
- Department of Developmental Neurobiology, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Yurika Matsui
- Department of Developmental Neurobiology, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Seunghyun Jung
- Department of Developmental Neurobiology, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Mohamed Nadhir Djekidel
- Center for Applied Bioinformatics, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Wenjie Qi
- Center for Applied Bioinformatics, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Zuo-Fei Yuan
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Xusheng Wang
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Xiaoyang Yang
- Department of Developmental Neurobiology, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Nina Connolly
- Department of Developmental Neurobiology, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Abbas Shirinifard Pilehroud
- Department of Developmental Neurobiology, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Haitao Pan
- Department of Biostatistics, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Fang Wang
- Department of Biostatistics, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Shondra M. Pruett-Miller
- Department of Cell & Molecular Biology, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Kanisha Kavdia
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Vishwajeeth Pagala
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Yiping Fan
- Center for Applied Bioinformatics, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Junmin Peng
- Department of Developmental Neurobiology, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
- Department of Structural Biology, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Beisi Xu
- Center for Applied Bioinformatics, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Jamy C. Peng
- Department of Developmental Neurobiology, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| |
Collapse
|
10
|
Aydar Y, Rambukkanage SS, Brown L, Wang J, Seo JS, Li K, Cheng Y, Biddlestone-Thorpe L, Boyd C, Sule A, Valerie K. ATM Kinase Small Molecule Inhibitors Prevent Radiation-Induced Apoptosis of Mouse Neurons In Vivo. KINASES AND PHOSPHATASES 2024; 2:268-278. [PMID: 40207186 PMCID: PMC11981642 DOI: 10.3390/kinasesphosphatases2030017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
ATM kinase is becoming an important therapeutic target for tumor radiosensitization. Radiation is known to cause neuro-inflammation and neurodegeneration; however, the effects of small molecule ATM inhibitors (ATMi's) and radiation on normal tissue, including healthy brain, are largely unexplored. Therefore, we examined the mouse CNS after ATMi radiosensitization with a focus on the fate of neurons. We used several approaches to assess the effects on the DNA damage response (DDR) and apoptosis of neurons using immunostaining. In vivo, a significant decrease in viable neurons and increase in degenerating neurons and apoptosis was observed in mice treated with radiation alone. On the other hand, an ATMi alone had little to no effect on neuron viability and did not induce apoptosis. Importantly, the ATMi's did not further increase radiation toxicity. In fact, multiplex immunostaining showed that a clinical candidate ATMi (AZD1390) protected mouse neurons from apoptosis by 90% at 4 h after radiation. We speculate that the lack of toxicity to neurons is due to a normal ATM-p53 response that, if blocked transiently with an ATMi, is protective. Altogether, in line with previous work using ATM knockout mice, we provide evidence that ATM kinase inhibition using small molecules does not add to neuronal radiation toxicity, and might, in fact, protect them from radiation-induced apoptosis at least in the short term.
Collapse
Affiliation(s)
- Yüksel Aydar
- Department of Anatomy, Medical School of Osmangazi University, Eskisehir 26040, Turkiye
| | - Sanara S. Rambukkanage
- Massey Comprehensive Cancer Center, Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Lauryn Brown
- Massey Comprehensive Cancer Center, Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Juan Wang
- Massey Comprehensive Cancer Center, Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Ji Sung Seo
- Massey Comprehensive Cancer Center, Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Keming Li
- Massey Comprehensive Cancer Center, Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Yong Cheng
- Massey Comprehensive Cancer Center, Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Laura Biddlestone-Thorpe
- Massey Comprehensive Cancer Center, Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Caila Boyd
- Massey Comprehensive Cancer Center, Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Amrita Sule
- Massey Comprehensive Cancer Center, Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Kristoffer Valerie
- Massey Comprehensive Cancer Center, Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
11
|
Shah Y, Dahiya DS, Tiwari A, Kumar H, Gangwani MK, Ali H, Hayat U, Alsakarneh S, Singh S, Malik S, Sohail AH, Chandan S, Ali MA, Inamdar S. Advancements in Early Detection and Screening Strategies for Pancreatic Cancer: From Genetic Susceptibility to Novel Biomarkers. J Clin Med 2024; 13:4706. [PMID: 39200847 PMCID: PMC11355237 DOI: 10.3390/jcm13164706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
Pancreatic cancer is a rare but lethal cancer due to its biologically aggressive nature, advanced stage at the time of diagnosis, and poor response to oncologic therapies. The risk of pancreatic cancer is significantly higher to 5% in certain high-risk individuals with inherited genetic susceptibility. Screening for pancreatic cancer in these individuals from high-risk groups can help with the early detection of pancreatic cancer as well as the detection of precursor lesions leading to early surgical resection and improved overall outcomes. The advancements in radiological imaging as well as advanced endoscopic procedures has made a significant impact on the early diagnosis, surveillance, and staging of pancreatic cancer. There is also a significant advancement in the development of biomarkers for the early detection of pancreatic cancer, which has also led to the development of liquid biopsy, allowing for microRNA detection in serum and circulating tumor cells. Various societies and organizations have provided guidelines for pancreatic cancer screening and surveillance in high-risk individuals. In this review, we aim to discuss the hereditary risk factors for developing pancreatic cancer, summarize the screening recommendations by different societies, and discuss the development of novel biomarkers and areas for future research in pancreatic cancer screening for high-risk individuals.
Collapse
Affiliation(s)
- Yash Shah
- Department of Internal Medicine, Trinity Health Oakland/Wayne State University, Pontiac, MI 48341, USA
| | - Dushyant Singh Dahiya
- Division of Gastroenterology, Hepatology & Motility, The University of Kansas School of Medicine, Kansas City, KS 66160, USA
| | - Angad Tiwari
- Department of Internal Medicine, Maharani Laxmi Bai Medical College, Jhansi 284001, Uttar Pradesh, India
| | - Harendra Kumar
- Department of Internal Medicine, Dow University of Health Sciences, Karachi 74200, Pakistan
| | - Manesh Kumar Gangwani
- Department of Gastroenterology and Hepatology, University of Arkansas For Medical Sciences, Little Rock, AR 72205, USA
| | - Hassam Ali
- Division of Gastroenterology, Hepatology & Nutrition, East Carolina University/Brody School of Medicine, Greenville, NC 27834, USA
| | - Umar Hayat
- Department of Internal Medicine, Geisinger Wyoming Valley Medical Center, Wilkes Barre, PA 18711, USA
| | - Saqr Alsakarneh
- Department of Internal Medicine, University of Missouri-Kansas City, Kansas City, MO 64110, USA
| | - Sahib Singh
- Department of Internal Medicine, Sinai Hospital, Baltimore, MD 21215, USA
| | - Sheza Malik
- Department of Internal Medicine, Rochester General Hospital, Rochester, NY 14621, USA
| | - Amir H. Sohail
- Department of Surgery, University of New Mexico, Albuquerque, NM 87131, USA
| | - Saurabh Chandan
- Center for Interventional Endoscopy (CIE), Advent Health, Orlando, FL 32803, USA
| | - Meer A. Ali
- Department of Gastroenterology and Hepatology, University of Arkansas For Medical Sciences, Little Rock, AR 72205, USA
| | - Sumant Inamdar
- Department of Gastroenterology and Hepatology, University of Arkansas For Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
12
|
Omidvar S, Vahedian V, Sourani Z, Yari D, Asadi M, Jafari N, Khodavirdilou L, Bagherieh M, Shirzad M, Hosseini V. The molecular crosstalk between innate immunity and DNA damage repair/response: Interactions and effects in cancers. Pathol Res Pract 2024; 260:155405. [PMID: 38981346 DOI: 10.1016/j.prp.2024.155405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 06/08/2024] [Accepted: 06/12/2024] [Indexed: 07/11/2024]
Abstract
DNA damage can lead to erroneous alterations and mutations which in turn can result into wide range of disease condition including aging, severe inflammation, and, most importantly, cancer. Due to the constant exposure to high-risk factors such as exogenous and endogenous DNA-damaging agents, cells may experience DNA damage impairing stability and integrity of the genome. These perturbations in DNA structure can arise from several mutations in the genome. Therefore, DNA Damage Repair/Response (DDR) detects and then corrects these potentially tumorigenic problems by inducing processes such as DNA repair, cell cycle arrest, apoptosis, etc. Additionally, DDR can activate signaling pathways related to immune system as a protective mechanism against genome damage. These protective machineries are ignited and spread through a network of molecules including DNA damage sensors, transducers, kinases and downstream effectors. In this review, we are going to discuss the molecular crosstalk between innate immune system and DDR, as well as their potential effects on cancer pathophysiology.
Collapse
Affiliation(s)
- Sahar Omidvar
- Cancer Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| | - Vahid Vahedian
- Department of Hematology, Transfusion Medicine and Cellular Therapy, Division of Hematology/Oncology, Clinical Hospital, Faculty of Medicine, University of Sao Paulo (FMUSP-HC), Sao Paulo, Brazil; Department of Clinical Medicine, Division of Medical Investigation Laboratory (LIM-31), Clinical Hospital, Faculty of Medicine, University of Sao Paulo (FMUSP-HC), Sao Paulo, Brazil; Comprehensive Center for Translational and Precision Oncology (CTO), SP State Cancer Institute (ICESP), Sao Paulo, Brazil.
| | - Zahra Sourani
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| | - Davood Yari
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| | - Mehrdad Asadi
- Department of Medical Laboratory Sciences and Microbiology, Faculty of Medical Sciences, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran.
| | - Negin Jafari
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Lida Khodavirdilou
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), Amarillo, TX, USA.
| | - Molood Bagherieh
- Ramsar Campus, Mazandaran University of Medical Sciences, Ramsar, Iran.
| | - Moein Shirzad
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| | - Vahid Hosseini
- Department of Medical Laboratory Sciences and Microbiology, Faculty of Medical Sciences, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran; Infectious Diseases Research Center, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran.
| |
Collapse
|
13
|
Liu X, Mao X, Zhu C, Liu H, Fang Y, Fu T, Fan L, Liu M, Xiong Z, Tang H, Hu P, Le A. COMMD10 inhibited DNA damage to promote the progression of gastric cancer. J Cancer Res Clin Oncol 2024; 150:305. [PMID: 38871970 PMCID: PMC11176250 DOI: 10.1007/s00432-024-05817-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/22/2024] [Indexed: 06/15/2024]
Abstract
PURPOSE The copper metabolism MURR1 domain 10 (COMMD10) plays a role in a variety of tumors. Here, we investigated its role in gastric cancer (GC). METHODS Online prediction tools, quantitative real-time PCR, western blotting and immunohistochemistry were used to evaluate the expression of COMMD10 in GC. The effect of COMMD10 knockdown was investigated in the GC cell lines and in in vivo xenograft tumor experiments. Western blotting and immunofluorescence were used to explore the relationships between COMMD10 and DNA damage. RESULTS The expression of COMMD10 was upregulated in GC compared to that in para-cancerous tissue and correlated with a higher clinical TNM stage (P = 0.044) and tumor size (P = 0.0366). High COMMD10 expression predicted poor prognosis in GC. Knockdown of COMMD10 resulted in the suppression of cell proliferation, migration, and invasion, accompanied by cell cycle arrest and an elevation in apoptosis rate. Moreover, the protein expression of COMMD10 was decreased in cisplatin-induced DNA-damaged GC cells. Suppression of COMMD10 impeded DNA damage repair, intensified DNA damage, and activated ATM-p53 signaling pathway in GC. Conversely, restoration of COMMD10 levels suppressed DNA damage and activation of the ATM-p53 signaling cascade. Additionally, knockdown of COMMD10 significantly restrained the growth of GC xenograft tumors while inhibiting DNA repair, augmenting DNA damage, and activating the ATM-p53 signaling pathway in xenograft tumor tissue. CONCLUSION COMMD10 is involved in DNA damage repair and maintains genomic stability in GC; knockdown of COMMD10 impedes the development of GC by exacerbating DNA damage, suggesting that COMMD10 may be new target for GC therapy.
Collapse
Affiliation(s)
- Xiaohua Liu
- Department of Blood Transfusion, Key Laboratory of Jiangxi Province for Transfusion Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 Dongyue Avenue, Nanchang, Jiangxi, People's Republic of China
| | - Xiaocheng Mao
- Department of Blood Transfusion, Key Laboratory of Jiangxi Province for Transfusion Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 Dongyue Avenue, Nanchang, Jiangxi, People's Republic of China
| | - Chao Zhu
- Department of Blood Transfusion, Key Laboratory of Jiangxi Province for Transfusion Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 Dongyue Avenue, Nanchang, Jiangxi, People's Republic of China
| | - Hongfei Liu
- Department of Blood Transfusion, Key Laboratory of Jiangxi Province for Transfusion Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 Dongyue Avenue, Nanchang, Jiangxi, People's Republic of China
| | - Yangyang Fang
- Department of Blood Transfusion, Key Laboratory of Jiangxi Province for Transfusion Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 Dongyue Avenue, Nanchang, Jiangxi, People's Republic of China
| | - Tianmei Fu
- Department of Blood Transfusion, Key Laboratory of Jiangxi Province for Transfusion Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 Dongyue Avenue, Nanchang, Jiangxi, People's Republic of China
| | - Linwei Fan
- Department of Blood Transfusion, Key Laboratory of Jiangxi Province for Transfusion Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 Dongyue Avenue, Nanchang, Jiangxi, People's Republic of China
| | - Mengwei Liu
- Department of Blood Transfusion, Key Laboratory of Jiangxi Province for Transfusion Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 Dongyue Avenue, Nanchang, Jiangxi, People's Republic of China
| | - Ziqing Xiong
- Department of Blood Transfusion, Key Laboratory of Jiangxi Province for Transfusion Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 Dongyue Avenue, Nanchang, Jiangxi, People's Republic of China
| | - Hong Tang
- Department of Blood Transfusion, Key Laboratory of Jiangxi Province for Transfusion Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 Dongyue Avenue, Nanchang, Jiangxi, People's Republic of China
| | - Piaoping Hu
- Department of Blood Transfusion, Key Laboratory of Jiangxi Province for Transfusion Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 Dongyue Avenue, Nanchang, Jiangxi, People's Republic of China.
| | - Aiping Le
- Department of Blood Transfusion, Key Laboratory of Jiangxi Province for Transfusion Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 Dongyue Avenue, Nanchang, Jiangxi, People's Republic of China.
| |
Collapse
|
14
|
Pilié PG, Giuliani V, Wang WL, McGrail DJ, Bristow CA, Ngoi NY, Kyewalabye K, Wani KM, Le H, Campbell E, Sanchez NS, Yang D, Gheeya JS, Goswamy RV, Holla V, Shaw KR, Meric-Bernstam F, Liu CY, Ma X, Feng N, Machado AA, Bardenhagen JP, Vellano CP, Marszalek JR, Rajendra E, Piscitello D, Johnson TI, Likhatcheva M, Elinati E, Majithiya J, Neves J, Grinkevich V, Ranzani M, Luzarraga MR, Boursier M, Armstrong L, Geo L, Lillo G, Tse WY, Lazar AJ, Kopetz SE, Geck Do MK, Lively S, Johnson MG, Robinson HM, Smith GC, Carroll CL, Di Francesco ME, Jones P, Heffernan TP, Yap TA. Ataxia-Telangiectasia Mutated Loss-of-Function Displays Variant and Tissue-Specific Differences across Tumor Types. Clin Cancer Res 2024; 30:2121-2139. [PMID: 38416404 PMCID: PMC11094420 DOI: 10.1158/1078-0432.ccr-23-1763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/31/2023] [Accepted: 02/21/2024] [Indexed: 02/29/2024]
Abstract
PURPOSE Mutations in the ATM gene are common in multiple cancers, but clinical studies of therapies targeting ATM-aberrant cancers have yielded mixed results. Refinement of ATM loss of function (LOF) as a predictive biomarker of response is urgently needed. EXPERIMENTAL DESIGN We present the first disclosure and preclinical development of a novel, selective ATR inhibitor, ART0380, and test its antitumor activity in multiple preclinical cancer models. To refine ATM LOF as a predictive biomarker, we performed a comprehensive pan-cancer analysis of ATM variants in patient tumors and then assessed the ATM variant-to-protein relationship. Finally, we assessed a novel ATM LOF biomarker approach in retrospective clinical data sets of patients treated with platinum-based chemotherapy or ATR inhibition. RESULTS ART0380 had potent, selective antitumor activity in a range of preclinical cancer models with differing degrees of ATM LOF. Pan-cancer analysis identified 10,609 ATM variants in 8,587 patient tumors. Cancer lineage-specific differences were seen in the prevalence of deleterious (Tier 1) versus unknown/benign (Tier 2) variants, selective pressure for loss of heterozygosity, and concordance between a deleterious variant and ATM loss of protein (LOP). A novel ATM LOF biomarker approach that accounts for variant classification, relationship to ATM LOP, and tissue-specific penetrance significantly enriched for patients who benefited from platinum-based chemotherapy or ATR inhibition. CONCLUSIONS These data help to better define ATM LOF across tumor types in order to optimize patient selection and improve molecularly targeted therapeutic approaches for patients with ATM LOF cancers.
Collapse
Affiliation(s)
- Patrick G. Pilié
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Virginia Giuliani
- TRACTION (Translational Research to Advance Therapeutics and Innovation in Oncology), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wei-Lien Wang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Daniel J. McGrail
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, Ohio
| | - Christopher A. Bristow
- TRACTION (Translational Research to Advance Therapeutics and Innovation in Oncology), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Natalie Y.L. Ngoi
- Department of Investigational Cancer Therapeutics (Phase I Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Keith Kyewalabye
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Khalida M. Wani
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hung Le
- Department of Investigational Cancer Therapeutics (Phase I Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Erick Campbell
- Department of Investigational Cancer Therapeutics (Phase I Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nora S. Sanchez
- Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Dong Yang
- Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jinesh S. Gheeya
- The University of Texas Health Science Center at Houston, Houston, Texas
| | | | - Vijaykumar Holla
- Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kenna Rael Shaw
- Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics (Phase I Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Chiu-Yi Liu
- TRACTION (Translational Research to Advance Therapeutics and Innovation in Oncology), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - XiaoYan Ma
- TRACTION (Translational Research to Advance Therapeutics and Innovation in Oncology), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ningping Feng
- TRACTION (Translational Research to Advance Therapeutics and Innovation in Oncology), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Annette A. Machado
- TRACTION (Translational Research to Advance Therapeutics and Innovation in Oncology), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jennifer P. Bardenhagen
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Christopher P. Vellano
- TRACTION (Translational Research to Advance Therapeutics and Innovation in Oncology), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Joseph R. Marszalek
- TRACTION (Translational Research to Advance Therapeutics and Innovation in Oncology), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Eeson Rajendra
- Artios Pharma, the Glenn Berge Building, Babraham Research Campus, Cambridge, United Kingdom
| | - Desiree Piscitello
- Artios Pharma, the Glenn Berge Building, Babraham Research Campus, Cambridge, United Kingdom
| | - Timothy I. Johnson
- Artios Pharma, the Glenn Berge Building, Babraham Research Campus, Cambridge, United Kingdom
| | - Maria Likhatcheva
- Artios Pharma, the Glenn Berge Building, Babraham Research Campus, Cambridge, United Kingdom
| | - Elias Elinati
- Artios Pharma, the Glenn Berge Building, Babraham Research Campus, Cambridge, United Kingdom
| | - Jayesh Majithiya
- Artios Pharma, the Glenn Berge Building, Babraham Research Campus, Cambridge, United Kingdom
| | - Joana Neves
- Artios Pharma, the Glenn Berge Building, Babraham Research Campus, Cambridge, United Kingdom
| | - Vera Grinkevich
- Artios Pharma, the Glenn Berge Building, Babraham Research Campus, Cambridge, United Kingdom
| | - Marco Ranzani
- Artios Pharma, the Glenn Berge Building, Babraham Research Campus, Cambridge, United Kingdom
| | - Marina Roy Luzarraga
- Artios Pharma, the Glenn Berge Building, Babraham Research Campus, Cambridge, United Kingdom
| | - Marie Boursier
- Artios Pharma, the Glenn Berge Building, Babraham Research Campus, Cambridge, United Kingdom
| | - Lucy Armstrong
- Artios Pharma, the Glenn Berge Building, Babraham Research Campus, Cambridge, United Kingdom
| | - Lerin Geo
- Artios Pharma, the Glenn Berge Building, Babraham Research Campus, Cambridge, United Kingdom
| | - Giorgia Lillo
- Artios Pharma, the Glenn Berge Building, Babraham Research Campus, Cambridge, United Kingdom
| | - Wai Yiu Tse
- Artios Pharma, the Glenn Berge Building, Babraham Research Campus, Cambridge, United Kingdom
| | - Alexander J. Lazar
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Genomic Medicine, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Scott E. Kopetz
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mary K. Geck Do
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sarah Lively
- ChemPartner Corporation, San Francisco, California
| | | | - Helen M.R. Robinson
- Artios Pharma, the Glenn Berge Building, Babraham Research Campus, Cambridge, United Kingdom
| | - Graeme C.M. Smith
- Artios Pharma, the Glenn Berge Building, Babraham Research Campus, Cambridge, United Kingdom
| | - Christopher L. Carroll
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - M. Emilia Di Francesco
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Philip Jones
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Timothy P. Heffernan
- TRACTION (Translational Research to Advance Therapeutics and Innovation in Oncology), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Timothy A. Yap
- Department of Investigational Cancer Therapeutics (Phase I Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
15
|
Beyraghi-Tousi M, Sahebkar A, Houra M, Sarvghadi P, Jamialahmadi T, Bagheri R, Tavallaie S, Gumpricht E, Saberi-Karimian M. Efficacy and safety of N-acetyl-L-leucine in patients with ataxia telangiectasia: A randomized, double-blind, placebo-controlled, crossover clinical trial. Eur J Paediatr Neurol 2024; 50:57-63. [PMID: 38669738 DOI: 10.1016/j.ejpn.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 01/19/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND Ataxia telangiectasia (AT) is an autosomal recessive multisystem disorder. Most patients have progressive cerebellar ataxia, oculocutaneous telangiectasia, frequent pulmonary infection, and an increased risk of malignancies. Although N-acetyl-dl-leucine (ADLL) has shown some efficacy in patients with AT, its more pharmacologically active enantiomer, N-acetyl-l-leucine (NALL), has just recently been investigated in ataxic individuals. The current study assessed the efficacy of NALL in patients with AT. METHODS This 2 × 2 crossover, double-blind, randomized clinical trial was conducted on 20 patients with AT. After excluding four patients, 16 subjects (eight females, eight males; mean age 9.8 ± 3.5 years) with a definitive genetic diagnosis of AT were randomly assigned to one of two study groups, with one group receiving 1-4 g/day NALL or a placebo for six weeks. Subjects then had a 4-week washout before crossing over to the other treatment for an additional six weeks. The Spinocerebellar Ataxia Functional Index (SCAFI) and the Scale for Assessment and Rating of Ataxia (SARA) score assessed patients' motor function. Quality of life (QOL) was evaluated by a specialist using the PedsQL questionnaire. Fasting blood samples were taken from all subjects before and after each intervention to determine potential side effects. RESULTS Although patients' nausea and constipation were improved, the results failed to reveal any significant benefits of NALL treatment on ataxia symptoms. NALL treatment had no significant effects on SARA, SCAFI-9HPT (9-hole peg test) nondominant, SCAFI-9HPT dominant, or SCAFI-8WMT (8 m walking time) (p > 0.05). Our patient's Physical Health score in Child self-report and Parent proxy-report did not significantly change in the treatment group compared to the placebo (p > 0.05). Furthermore, there were no significant changes in energy and macronutrient intake after NALL treatment. None of the volunteers reported serious or moderate side effects. CONCLUSIONS To the best of our knowledge, this was the first placebo-controlled, randomized clinical trial exploring NALL's potential effects for treating AT. Despite improvements in some symptomss, NALL intervention failed to improve motor function significantly. However, patients' nausea and constipation were improved by NALL, which can be a relevant benefit clinically.
Collapse
Affiliation(s)
- Mehran Beyraghi-Tousi
- Department of Pediatric Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhosein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahsa Houra
- Department of Midwifery, School of Nursing and Midwifery, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Tannaz Jamialahmadi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Bagheri
- Lung Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shima Tavallaie
- Metabolic Syndrome Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Maryam Saberi-Karimian
- Lung Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
16
|
Deacon S, Dalleywater W, Peat C, Paine SML, Dineen RA. Disproportionate Expression of ATM in Cerebellar Cortex During Human Neurodevelopment. CEREBELLUM (LONDON, ENGLAND) 2024; 23:502-511. [PMID: 37120494 PMCID: PMC10951037 DOI: 10.1007/s12311-023-01560-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/20/2023] [Indexed: 05/01/2023]
Abstract
Cerebellar neurodegeneration is a classical feature of ataxia telangiectasia (A-T), an autosomal recessive condition caused by loss-of-function mutation of the ATM gene, a gene with multiple regulatory functions. The increased vulnerability of cerebellar neurones to degeneration compared to cerebral neuronal populations in individuals with ataxia telangiectasia implies a specific importance of intact ATM function in the cerebellum. We hypothesised that there would be elevated transcription of ATM in the cerebellar cortex relative to ATM expression in other grey matter regions during neurodevelopment in individuals without A-T. Using ATM transcription data from the BrainSpan Atlas of the Developing Human Brain, we demonstrate a rapid increase in cerebellar ATM expression relative to expression in other brain regions during gestation and remaining elevated during early childhood, a period corresponding to the emergence of cerebellar neurodegeneration in ataxia telangiectasia patients. We then used gene ontology analysis to identify the biological processes represented in the genes correlated with cerebellar ATM expression. This analysis demonstrated that multiple processes are associated with expression of ATM in the cerebellum, including cellular respiration, mitochondrial function, histone methylation, and cell-cycle regulation, alongside its canonical role in DNA double-strand break repair. Thus, the enhanced expression of ATM in the cerebellum during early development may be related to the specific energetic demands of the cerebellum and its role as a regulator of these processes.
Collapse
Affiliation(s)
- Simon Deacon
- Department of Cellular Pathology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - William Dalleywater
- Department of Cellular Pathology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Charles Peat
- Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| | - Simon M L Paine
- Department of Neuropathology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Rob A Dineen
- Mental Health and Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, UK.
- NIHR Nottingham Biomedical Research Centre, Nottingham, UK.
| |
Collapse
|
17
|
Zhang C, Xiang C, Zhou K, Liu X, Qiao G, Zhao Y, Dong K, Sun K, Liu Z. Intestinal lysozyme1 deficiency alters microbiota composition and impacts host metabolism through the emergence of NAD +-secreting ASTB Qing110 bacteria. mSystems 2024; 9:e0121423. [PMID: 38364095 PMCID: PMC10949482 DOI: 10.1128/msystems.01214-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/26/2024] [Indexed: 02/18/2024] Open
Abstract
The intestine plays a pivotal role in nutrient absorption and host defense against pathogens, orchestrated in part by antimicrobial peptides secreted by Paneth cells. Among these peptides, lysozyme has multifaceted functions beyond its bactericidal activity. Here, we uncover the intricate relationship between intestinal lysozyme, the gut microbiota, and host metabolism. Lysozyme deficiency in mice led to altered body weight, energy expenditure, and substrate utilization, particularly on a high-fat diet. Interestingly, these metabolic benefits were linked to changes in the gut microbiota composition. Cohousing experiments revealed that the metabolic effects of lysozyme deficiency were microbiota-dependent. 16S rDNA sequencing highlighted differences in microbial communities, with ASTB_g (OTU60) highly enriched in lysozyme knockout mice. Subsequently, a novel bacterium, ASTB Qing110, corresponding to ASTB_g (OTU60), was isolated. Metabolomic analysis revealed that ASTB Qing110 secreted high levels of NAD+, potentially influencing host metabolism. This study sheds light on the complex interplay between intestinal lysozyme, the gut microbiota, and host metabolism, uncovering the potential role of ASTB Qing110 as a key player in modulating metabolic outcomes. IMPORTANCE The impact of intestinal lumen lysozyme on intestinal health is complex, arising from its multifaceted interactions with the gut microbiota. Lysozyme can both mitigate and worsen certain health conditions, varying with different scenarios. This underscores the necessity of identifying the specific bacterial responses elicited by lysozyme and understanding their molecular foundations. Our research reveals that a deficiency in intestinal lysozyme1 may offer protection against diet-induced obesity by altering bacterial populations. We discovered a strain of bacterium, ASTB Qing110, which secretes NAD+ and is predominantly found in lyz1-deficient mice. Qing110 demonstrates positive effects in both C. elegans and mouse models of ataxia telangiectasia. This study sheds light on the intricate role of lysozyme in influencing intestinal health.
Collapse
Affiliation(s)
- Chengye Zhang
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing, China
| | - Chen Xiang
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing, China
| | - Kaichen Zhou
- Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xingchen Liu
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Guofeng Qiao
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing, China
| | - Yabo Zhao
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing, China
| | - Kemeng Dong
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Ke Sun
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing, China
| | - Zhihua Liu
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
18
|
Chen W, Chen Z, Jia Y, Guo Y, Zheng L, Yao S, Shao Y, Li M, Mao R, Jiang Y. Circ_0008657 regulates lung DNA damage induced by hexavalent chromium through the miR-203a-3p/ATM axis. ENVIRONMENT INTERNATIONAL 2024; 185:108515. [PMID: 38394914 DOI: 10.1016/j.envint.2024.108515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/17/2023] [Accepted: 02/17/2024] [Indexed: 02/25/2024]
Abstract
Hexavalent chromium [Cr (VI)] is an important environmental pollutant and may cause lung injury when inhaled into the human body. Cr (VI) is genotoxic and can cause DNA damage, although the underlying epigenetic mechanisms remain unclear. To simulate the real-life workplace exposure to Cr (VI), we used a novel exposure dose calculation method. We evaluated the effect of Cr (VI) on DNA damage in human bronchial epithelial cells (16HBE and BEAS-2B) by calculating the equivalent real-time exposure dose of Cr (VI) (0 to 10 μM) in an environmental population. Comet experiments and olive tail moment measurements revealed increased DNA damage in cells exposed to Cr (VI). Cr (VI) treatment increased nuclear γ-H2AX foci and γ-H2AX protein expression, and caused DNA damage in the lung tissues of mice. An effective Cr (VI) dose (6 μM) was determined and used for cell treatment. Cr (VI) exposure upregulated circ_0008657, and knockdown of circ_0008657 decreased Cr (VI)-induced DNA damage, whereas circ_0008657 overexpression had the opposite effect. Mechanistically, we found that circ_0008657 binds to microRNA (miR)-203a-3p and subsequently regulates ATM serine/threonine kinase (ATM), a key protein involved in homologous recombination repair downstream of miR-203a-3p, thereby regulating DNA damage induced by Cr (VI). The present findings suggest that circ_0008657 competitively binds to miR-203a-3p to activate the ATM pathway and regulate the DNA damage response after environmental chemical exposure in vivo and in vitro.
Collapse
Affiliation(s)
- Wei Chen
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China
| | - Zehao Chen
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China
| | - Yangyang Jia
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China
| | - Yaozheng Guo
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China
| | - Liting Zheng
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China
| | - Shuwei Yao
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China
| | - Yueting Shao
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China
| | - Meizhen Li
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China
| | - Rulin Mao
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China
| | - Yiguo Jiang
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
19
|
Leem J, Lee C, Choi DY, Oh JS. Distinct characteristics of the DNA damage response in mammalian oocytes. Exp Mol Med 2024; 56:319-328. [PMID: 38355825 PMCID: PMC10907590 DOI: 10.1038/s12276-024-01178-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/15/2023] [Accepted: 12/07/2023] [Indexed: 02/16/2024] Open
Abstract
DNA damage is a critical threat that poses significant challenges to all cells. To address this issue, cells have evolved a sophisticated molecular and cellular process known as the DNA damage response (DDR). Among the various cell types, mammalian oocytes, which remain dormant in the ovary for extended periods, are particularly susceptible to DNA damage. The occurrence of DNA damage in oocytes can result in genetic abnormalities, potentially leading to infertility, birth defects, and even abortion. Therefore, understanding how oocytes detect and repair DNA damage is of paramount importance in maintaining oocyte quality and preserving fertility. Although the fundamental concept of the DDR is conserved across various cell types, an emerging body of evidence reveals striking distinctions in the DDR between mammalian oocytes and somatic cells. In this review, we highlight the distinctive characteristics of the DDR in oocytes and discuss the clinical implications of DNA damage in oocytes.
Collapse
Affiliation(s)
- Jiyeon Leem
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Crystal Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Da Yi Choi
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Jeong Su Oh
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea.
| |
Collapse
|
20
|
Amandi ARD, Jabbarpour N, Shiva S, Bonyadi M. Identification of Two Novel Pathogenic Variants of the ATM Gene in the Iranian-Azeri Turkish Ethnic Group by Applying Whole Exome Sequencing. Curr Genomics 2023; 24:345-353. [PMID: 38327652 PMCID: PMC10845066 DOI: 10.2174/0113892029268949231104165301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/26/2023] [Accepted: 10/10/2023] [Indexed: 02/09/2024] Open
Abstract
Background The ATM gene encodes a multifunctional kinase involved in important cellular functions, such as checkpoint signaling and apoptosis, in response to DNA damage. Bi-allelic pathogenic variants in this gene cause Ataxia Telangiectasia (AT), while carriers of ATM pathogenic variants are at increased risk of cancer depending on the pathogenicity of the variant they carry. Identifying pathogenic variants can aid in the management of the disease in carriers. Methods Whole-exome sequencing (WES) was performed on three unrelated patients from the Iranian-Azeri Turkish ethnic group referred to a genetic center for analysis. WES was also conducted on 400 individuals from the same ethnic group to determine the frequencies of all ATM variants. Blood samples were collected from the patients and their family members for DNA extraction, and PCR-Sanger sequencing was performed to confirm the WES results. Results The first proband with AT disease had two novel compound heterozygote variants (c.2639-2A>T, c.8708delC) in the ATM gene revealed by WES analysis, which was potentially/likely pathogenic. The second proband with bi-lateral breast cancer had a homozygous pathogenic variant (c.6067G>A) in the ATM gene identified by WES analysis. The third case with a family history of cancer had a heterozygous synonymous pathogenic variant (c.7788G>A) in the ATM gene found by WES analysis. Sanger sequencing confirmed the WES results, and bioinformatics analysis of the mutated ATM RNA and protein structure added evidence for the potential pathogenicity of the novel variants. WES analysis of the cohort revealed 38 different variants, including a variant (rs1800057, ATM:c.3161C>G, p.P1054R) associated with prostate cancer that had a higher frequency in our cohort. Conclusion Genetic analysis of three unrelated families with ATM-related disorders discovered two novel pathogenic variants. A homozygous missense pathogenic variant was identified in a woman with bi-lateral breast cancer, and a synonymous but pathogenic variant was found in a family with a history of different cancers.
Collapse
Affiliation(s)
- Amir-Reza Dalal Amandi
- Animal Biology Department, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Neda Jabbarpour
- Animal Biology Department, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Shadi Shiva
- Pediatric Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mortaza Bonyadi
- Animal Biology Department, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
- Center of Excellence for Biodiversity, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| |
Collapse
|
21
|
Vokes NI, Galan Cobo A, Fernandez-Chas M, Molkentine D, Treviño S, Druker V, Qian Y, Patel S, Schmidt S, Hong L, Lewis J, Rinsurongkawong W, Rinsurongkawong V, Lee JJ, Negrao MV, Gibbons DL, Vaporciyan A, Le X, Wu J, Zhang J, Rigney U, Iyer S, Dean E, Heymach JV. ATM Mutations Associate with Distinct Co-Mutational Patterns and Therapeutic Vulnerabilities in NSCLC. Clin Cancer Res 2023; 29:4958-4972. [PMID: 37733794 PMCID: PMC10690143 DOI: 10.1158/1078-0432.ccr-23-1122] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/16/2023] [Accepted: 09/15/2023] [Indexed: 09/23/2023]
Abstract
PURPOSE Ataxia-telangiectasia mutated (ATM) is the most frequently mutated DNA damage repair gene in non-small cell lung cancer (NSCLC). However, the molecular correlates of ATM mutations and their clinical implications have not been fully elucidated. EXPERIMENTAL DESIGN Clinicopathologic and genomic data from 26,587 patients with NSCLC from MD Anderson, public databases, and a de-identified nationwide (US-based) NSCLC clinicogenomic database (CGDB) were used to assess the co-mutation landscape, protein expression, and mutational processes in ATM-mutant tumors. We used the CGDB to evaluate ATM-associated outcomes in patients treated with immune checkpoint inhibitors (ICI) with or without chemotherapy, and assessed the effect of ATM loss on STING signaling and chemotherapy sensitivity in preclinical models. RESULTS Nonsynonymous mutations in ATM were observed in 11.2% of samples (2,980/26,587) and were significantly associated with mutations in KRAS, but mutually exclusive with EGFR (q < 0.1). KRAS mutational status constrained the ATM co-mutation landscape, with strong mutual exclusivity with TP53 and KEAP1 within KRAS-mutated samples. Those ATM mutations that co-occurred with TP53 were more likely to be missense mutations and associate with high mutational burden, suggestive of non-functional passenger mutations. In the CGDB cohort, dysfunctional ATM mutations associated with improved OS only in patients treated with ICI-chemotherapy, and not ICI alone. In vitro analyses demonstrated enhanced upregulation of STING signaling in ATM knockout cells with the addition of chemotherapy. CONCLUSIONS ATM mutations define a distinct subset of NSCLC associated with KRAS mutations, increased TMB, decreased TP53 and EGFR co-occurrence, and potential increased sensitivity to ICIs in the context of DNA-damaging chemotherapy.
Collapse
Affiliation(s)
- Natalie I. Vokes
- Department of Thoracic and Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ana Galan Cobo
- Department of Molecular Diagnostics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - David Molkentine
- Department of Thoracic and Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Santiago Treviño
- Department of Thoracic and Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Vitaly Druker
- Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Yu Qian
- Department of Thoracic and Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sonia Patel
- Department of Thoracic and Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Stephanie Schmidt
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lingzhi Hong
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jeff Lewis
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Waree Rinsurongkawong
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - J. Jack Lee
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Marcelo V. Negrao
- Department of Thoracic and Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Don L. Gibbons
- Department of Thoracic and Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ara Vaporciyan
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xiuning Le
- Department of Thoracic and Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jia Wu
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jianjun Zhang
- Department of Thoracic and Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Una Rigney
- Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Sonia Iyer
- Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Emma Dean
- Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - John V. Heymach
- Department of Thoracic and Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
22
|
Jin Y, Li Y, He S, Ge Y, Zhao Y, Zhu K, He A, Li S, Yan S, Cao C. ATM participates in fine particulate matter-induced airway inflammation through regulating DNA damage and DNA damage response. ENVIRONMENTAL TOXICOLOGY 2023; 38:2668-2678. [PMID: 37483094 DOI: 10.1002/tox.23901] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/20/2023] [Accepted: 07/06/2023] [Indexed: 07/25/2023]
Abstract
The relationship between fine particulate matter (PM2.5) and chronic airway inflammatory diseases, such as chronic obstructive pulmonary disease and asthma, have garnered public attention, while the detailed mechanisms of PM2.5-induced airway inflammation remain unclear. This study reveals that PM2.5 induces airway inflammation both in vivo and in vitro, and, moreover, identifies DNA damage and DNA damage repair (DDR) as results of this exposure. Ataxia telangiectasia-mutated heterozygous (ATM+/- ) and wild-type C57BL/6 (WT) mice were exposed to PM2.5. The results show that, following exposure to PM2.5, the number of neutrophils in broncho alveolar lavage fluid and the mRNA expression of CXCL-1 in lung tissues of the ATM+/- mice were lower than those of the WT mice. The mRNA expression of FANCD2 and FANCI were also down-regulated. Human bronchial epithelial (HBE) cells were transfected with ATM-siRNA to induce down-regulation of ATM gene expression and were subsequently stimulated with PM2.5. The results show that the mRNA expression of TNF-α decreased in the ATM-siRNA-transfected cells. The mRNA expression of CXCL-1 and CXCL-2 in peritoneal macrophages, derived from ATM-null mice in which experiments showed that the protein expression of FANCD2 and FANCI decreased, were also decreased after PM2.5 exposure in ATM-siRNA-transfected HBE cells. In conclusion, PM2.5-induced airway inflammation is alleviated in ATM+/- mice compared with WT mice. ATM promotes PM2.5-induced airway inflammation, which may be attributed to the regulation of DNA damage and DDR.
Collapse
Affiliation(s)
- Yan Jin
- Department of Respiratory and Critical Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, China
- Department of Respiratory and Critical Care Medicine, Municipal Hospital Affiliated to Taizhou University, Taizhou, China
| | - Yiting Li
- Department of Respiratory and Critical Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Shiyi He
- Department of Respiratory and Critical Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Yijun Ge
- Department of Respiratory and Critical Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Yun Zhao
- Department of Respiratory and Critical Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Ke Zhu
- Department of Respiratory and Critical Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Andong He
- Department of Respiratory and Critical Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Siyu Li
- Department of Respiratory and Critical Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Siyu Yan
- Department of Respiratory and Critical Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Chao Cao
- Department of Respiratory and Critical Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
23
|
Ünsal O, Güvercin B, Özet A, Ergün MA. Analysis of Turkish Breast Cancer Patients With ATM-Heterozygous Germline Mutation According to Clinicopathological Features. Cureus 2023; 15:e47324. [PMID: 38021491 PMCID: PMC10657162 DOI: 10.7759/cureus.47324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
OBJECTIVE The ATM gene is one of the most common breast cancer (BC) susceptibility genes after BRCA1/2 and has been shown to be a moderate BC susceptibility gene. The association between ATM germline mutation and clinical features of BC is now unknown. In this article, clinicopathological features of BC patients with ATM germline heterozygous mutation were investigated. MATERIALS AND METHODS Patients admitted to the Medical Genetics department of a tertiary hospital between January 2020 and December 2022 were examined. Only invasive BC patients with pathogenic mutation, likely pathogenic mutation, or variants of uncertain significance (VUS) were included in the study. RESULTS In all, 121 patients were included in the study. The median age at the first cancer diagnosis of the patients was 44 years. Of the total number of patients, 75.2% (91) had the histological subtype of infiltrating ductal carcinoma, and 43% (52) had Luminal B molecular subtype features. At a median follow-up of 16 months, 5.8% (7) of patients developed cancer in the contralateral breast. In addition, 7.4% (9) of the patients developed a second primary cancer during follow-up. When the patients were compared according to ATM variant classification, the localization, histologic types, and molecular subtypes of the BC were not different between all groups (respectively; p=0.68, p=0.65, p=0.32). CONCLUSIONS To the best of our knowledge, this is the first publication that evaluates the clinical and pathological characteristics of BC patients with germline heterozygous ATM mutations in the Turkish population. When patients were compared according to variant classifications of ATM mutation, patients' histological and molecular subtypes were similar.
Collapse
Affiliation(s)
- Oktay Ünsal
- Department of Medical Oncology, Gazi University Faculty of Medicine, Ankara, TUR
| | - Büşra Güvercin
- Department of Internal Medicine, Gazi University Faculty of Medicine, Ankara, TUR
| | - Ahmet Özet
- Department of Medical Oncology, Gazi University Faculty of Medicine, Ankara, TUR
| | - Mehmet Ali Ergün
- Department of Medical Genetics, Gazi University Faculty of Medicine, Ankara, TUR
| |
Collapse
|
24
|
Li Q, Qian W, Zhang Y, Hu L, Chen S, Xia Y. A new wave of innovations within the DNA damage response. Signal Transduct Target Ther 2023; 8:338. [PMID: 37679326 PMCID: PMC10485079 DOI: 10.1038/s41392-023-01548-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/01/2023] [Accepted: 06/27/2023] [Indexed: 09/09/2023] Open
Abstract
Genome instability has been identified as one of the enabling hallmarks in cancer. DNA damage response (DDR) network is responsible for maintenance of genome integrity in cells. As cancer cells frequently carry DDR gene deficiencies or suffer from replicative stress, targeting DDR processes could induce excessive DNA damages (or unrepaired DNA) that eventually lead to cell death. Poly (ADP-ribose) polymerase (PARP) inhibitors have brought impressive benefit to patients with breast cancer gene (BRCA) mutation or homologous recombination deficiency (HRD), which proves the concept of synthetic lethality in cancer treatment. Moreover, the other two scenarios of DDR inhibitor application, replication stress and combination with chemo- or radio- therapy, are under active clinical exploration. In this review, we revisited the progress of DDR targeting therapy beyond the launched first-generation PARP inhibitors. Next generation PARP1 selective inhibitors, which could maintain the efficacy while mitigating side effects, may diversify the application scenarios of PARP inhibitor in clinic. Albeit with unavoidable on-mechanism toxicities, several small molecules targeting DNA damage checkpoints (gatekeepers) have shown great promise in preliminary clinical results, which may warrant further evaluations. In addition, inhibitors for other DNA repair pathways (caretakers) are also under active preclinical or clinical development. With these progresses and efforts, we envision that a new wave of innovations within DDR has come of age.
Collapse
Affiliation(s)
- Qi Li
- Domestic Discovery Service Unit, WuXi AppTec, 200131, Shanghai, China
| | - Wenyuan Qian
- Domestic Discovery Service Unit, WuXi AppTec, 200131, Shanghai, China
| | - Yang Zhang
- Domestic Discovery Service Unit, WuXi AppTec, 200131, Shanghai, China
| | - Lihong Hu
- Domestic Discovery Service Unit, WuXi AppTec, 200131, Shanghai, China
| | - Shuhui Chen
- Domestic Discovery Service Unit, WuXi AppTec, 200131, Shanghai, China
| | - Yuanfeng Xia
- Domestic Discovery Service Unit, WuXi AppTec, 200131, Shanghai, China.
| |
Collapse
|
25
|
Kumar V, Bauer C, Stewart JH. Cancer cell-specific cGAS/STING Signaling pathway in the era of advancing cancer cell biology. Eur J Cell Biol 2023; 102:151338. [PMID: 37423035 DOI: 10.1016/j.ejcb.2023.151338] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 07/11/2023] Open
Abstract
Pattern-recognition receptors (PRRs) are critical to recognizing endogenous and exogenous threats to mount a protective proinflammatory innate immune response. PRRs may be located on the outer cell membrane, cytosol, and nucleus. The cGAS/STING signaling pathway is a cytosolic PRR system. Notably, cGAS is also present in the nucleus. The cGAS-mediated recognition of cytosolic dsDNA and its cleavage into cGAMP activates STING. Furthermore, STING activation through its downstream signaling triggers different interferon-stimulating genes (ISGs), initiating the release of type 1 interferons (IFNs) and NF-κB-mediated release of proinflammatory cytokines and molecules. Activating cGAS/STING generates type 1 IFN, which may prevent cellular transformation and cancer development, growth, and metastasis. The current article delineates the impact of the cancer cell-specific cGAS/STING signaling pathway alteration in tumors and its impact on tumor growth and metastasis. This article further discusses different approaches to specifically target cGAS/STING signaling in cancer cells to inhibit tumor growth and metastasis in conjunction with existing anticancer therapies.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Science Center (LSUHSC), 1700 Tulane Avenue, New Orleans, LA 70012, USA.
| | - Caitlin Bauer
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Science Center (LSUHSC), 1700 Tulane Avenue, New Orleans, LA 70012, USA
| | - John H Stewart
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Science Center (LSUHSC), 1700 Tulane Avenue, New Orleans, LA 70012, USA; Louisiana Children's Medical Center Cancer Center, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Science Center (LSUHSC), 1700 Tulane Avenue, New Orleans, LA 70012, USA.
| |
Collapse
|
26
|
Sun JKL, Wong GCN, Chow KHM. Cross-talk between DNA damage response and the central carbon metabolic network underlies selective vulnerability of Purkinje neurons in ataxia-telangiectasia. J Neurochem 2023; 166:654-677. [PMID: 37319113 DOI: 10.1111/jnc.15881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/17/2023]
Abstract
Cerebellar ataxia is often the first and irreversible outcome in the disease of ataxia-telangiectasia (A-T), as a consequence of selective cerebellar Purkinje neuronal degeneration. A-T is an autosomal recessive disorder resulting from the loss-of-function mutations of the ataxia-telangiectasia-mutated ATM gene. Over years of research, it now becomes clear that functional ATM-a serine/threonine kinase protein product of the ATM gene-plays critical roles in regulating both cellular DNA damage response and central carbon metabolic network in multiple subcellular locations. The key question arises is how cerebellar Purkinje neurons become selectively vulnerable when all other cell types in the brain are suffering from the very same defects in ATM function. This review intended to comprehensively elaborate the unexpected linkages between these two seemingly independent cellular functions and the regulatory roles of ATM involved, their integrated impacts on both physical and functional properties, hence the introduction of selective vulnerability to Purkinje neurons in the disease will be addressed.
Collapse
Affiliation(s)
- Jacquelyne Ka-Li Sun
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong
| | - Genper Chi-Ngai Wong
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong
| | - Kim Hei-Man Chow
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong
- Nexus of Rare Neurodegenerative Diseases, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
27
|
Hernandez-Martinez JM, Rosell R, Arrieta O. Somatic and germline ATM variants in non-small-cell lung cancer: Therapeutic implications. Crit Rev Oncol Hematol 2023:104058. [PMID: 37343657 DOI: 10.1016/j.critrevonc.2023.104058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/16/2023] [Indexed: 06/23/2023] Open
Abstract
ATM is an apical kinase of the DNA damage response involved in the repair of DNA double-strand breaks. Germline ATM variants (gATM) have been associated with an increased risk of developing lung adenocarcinoma (LUAD), and approximately 9% of LUAD tumors harbor somatic ATM mutations (sATM). Biallelic carriers of pathogenic gATM exhibit a plethora of immunological abnormalities, but few studies have evaluated the contribution of immune dysfunction to lung cancer susceptibility. Indeed, little is known about the clinicopathological characteristics of lung cancer patients with sATM or gATM alterations. The introduction of targeted therapies and immunotherapies, and the increasing number of clinical trials evaluating treatment combinations, warrants a careful reexamination of the benefits and harms that different therapeutic approaches have had in lung cancer patients with sATM or gATM. This review will discuss the role of ATM in the pathogenesis of lung cancer, highlighting potential therapeutic approaches to manage ATM-deficient lung cancers.
Collapse
Affiliation(s)
- Juan-Manuel Hernandez-Martinez
- Thoracic Oncology Unit and Experimental Oncology Laboratory, Instituto Nacional de Cancerología de México (INCan); CONACYT-Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Rafael Rosell
- Institut d'Investigació en Ciències Germans Trias i Pujol, Badalona, Spain; (4)Institut Català d'Oncologia, Hospital Germans Trias i Pujol, Badalona, Spain
| | - Oscar Arrieta
- Thoracic Oncology Unit and Experimental Oncology Laboratory, Instituto Nacional de Cancerología de México (INCan).
| |
Collapse
|
28
|
Lim B, Djekidel MN, Matsui Y, Jung S, Yuan ZF, Wang X, Yang X, Pilehroud AS, Pan H, Wang F, Pruett-Miller S, Kavdia K, Pagala V, Fan Y, Peng J, Xu B, Peng JC. Phosphorylation of 53BP1 by ATM enforce neurodevelopmental programs in cortical organoids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.04.539457. [PMID: 37205560 PMCID: PMC10187281 DOI: 10.1101/2023.05.04.539457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
53BP1 is a well-established DNA damage repair factor recently shown to regulate gene expression and critically influence tumor suppression and neural development. For gene regulation, how 53BP1 is regulated remains unclear. Here, we showed that 53BP1-serine 25 phosphorylation by ATM is required for neural progenitor cell proliferation and neuronal differentiation in cortical organoids. 53BP1-serine 25 phosphorylation dynamics controls 53BP1 target genes for neuronal differentiation and function, cellular response to stress, and apoptosis. Beyond 53BP1, ATM is required for phosphorylation of factors in neuronal differentiation, cytoskeleton, p53 regulation, and ATM, BNDF, and WNT signaling pathways for cortical organoid differentiation. Overall, our data suggest that 53BP1 and ATM control key genetic programs required for human cortical development.
Collapse
|
29
|
Qiu Y, Xu B, Feng J, Wang C, Chen Y, He Y, Xie X, Li Y. Loss of EPS8 sensitizes non-small-cell lung carcinoma to chemotherapy-induced DNA damage. Cancer Gene Ther 2023:10.1038/s41417-023-00606-1. [PMID: 36932195 DOI: 10.1038/s41417-023-00606-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/13/2023] [Accepted: 03/02/2023] [Indexed: 03/19/2023]
Abstract
Epidermal growth factor receptor pathway substrate number 8 (EPS8) has been reported to be critical in mediating tumor progression. However, the molecular and biological consequences of EPS8 overexpression remain unclear. Here we evaluated whether EPS8 increased DNA damage repair in non-small-cell lung carcinoma (NSCLC) cells and the mechanism of EPS8-mediated DNA damage repair which influenced chemosensitivity. Serial studies of functional experiments revealed that EPS8 knockdown inhibited cell growth, induced cell-cycle arrest and increased cisplatin therapeutic effects on NSCLC. EPS8 was found to induce DNA damage repair via upregulation of phosphorylated-ATM and downregulation of the tumor suppressor p53 and G1 cell kinase inhibitor p21. Moreover, in conjunction with cisplatin, decreasing EPS8 protein levels further increased p53 protein level and inhibited ATM signaling. Transplanted tumor studies were also performed to demonstrate that EPS8 knockdown inhibited tumor growth and sensitized tumors to cisplatin treatment. In conclusion, we have described a novel molecular mechanism through which EPS8 is likely to be involved in cancer progression and chemoresistance via DNA damage repair, indicating that EPS8 expression may influence the response to chemotherapy. Therefore, targeting EPS8 may be a potential therapeutic approach for patients with NSCLC.
Collapse
Affiliation(s)
- Yingqi Qiu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, No. 253 Gongye Dadao Zhong, Guangzhou, Guangdong, 510285, P. R. China
| | - Binyan Xu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, No. 253 Gongye Dadao Zhong, Guangzhou, Guangdong, 510285, P. R. China
| | - Jianhua Feng
- Department of Hematology, Zhujiang Hospital, Southern Medical University, No. 253 Gongye Dadao Zhong, Guangzhou, Guangdong, 510285, P. R. China
| | - Chunsheng Wang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, No. 253 Gongye Dadao Zhong, Guangzhou, Guangdong, 510285, P. R. China
| | - Yiran Chen
- Department of Hematology, Zhujiang Hospital, Southern Medical University, No. 253 Gongye Dadao Zhong, Guangzhou, Guangdong, 510285, P. R. China
| | - Yanjie He
- Department of Hematology, Zhujiang Hospital, Southern Medical University, No. 253 Gongye Dadao Zhong, Guangzhou, Guangdong, 510285, P. R. China
| | - Xiaoling Xie
- Department of Hematology, Zhujiang Hospital, Southern Medical University, No. 253 Gongye Dadao Zhong, Guangzhou, Guangdong, 510285, P. R. China.
| | - Yuhua Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, No. 253 Gongye Dadao Zhong, Guangzhou, Guangdong, 510285, P. R. China. .,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, 510005, P. R. China.
| |
Collapse
|
30
|
Maguina M, Kang PB, Tsai AC, Pacak CA. Peripheral neuropathies associated with DNA repair disorders. Muscle Nerve 2023; 67:101-110. [PMID: 36190439 PMCID: PMC10075233 DOI: 10.1002/mus.27721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 09/08/2022] [Accepted: 09/10/2022] [Indexed: 01/25/2023]
Abstract
Repair of genomic DNA is a fundamental housekeeping process that quietly maintains the health of our genomes. The consequences of a genetic defect affecting a component of this delicate mechanism are quite harmful, characterized by a cascade of premature aging that injures a variety of organs, including the nervous system. One part of the nervous system that is impaired in certain DNA repair disorders is the peripheral nerve. Chronic motor, sensory, and sensorimotor polyneuropathies have all been observed in affected individuals, with specific physiologies associated with different categories of DNA repair disorders. Cockayne syndrome has classically been linked to demyelinating polyneuropathies, whereas xeroderma pigmentosum has long been associated with axonal polyneuropathies. Three additional recessive DNA repair disorders are associated with neuropathies, including trichothiodystrophy, Werner syndrome, and ataxia-telangiectasia. Although plausible biological explanations exist for why the peripheral nerves are specifically vulnerable to impairments of DNA repair, specific mechanisms such as oxidative stress remain largely unexplored in this context, and bear further study. It is also unclear why different DNA repair disorders manifest with different types of neuropathy, and why neuropathy is not universally present in those diseases. Longitudinal physiological monitoring of these neuropathies with serial electrodiagnostic studies may provide valuable noninvasive outcome data in the context of future natural history studies, and thus the responses of these neuropathies may become sentinel outcome measures for future clinical trials of treatments currently in development such as adeno-associated virus gene replacement therapies.
Collapse
Affiliation(s)
- Melissa Maguina
- Medical Education Program, Nova Southeastern University, Fort Lauderdale, Florida
| | - Peter B Kang
- Department of Neurology, Paul and Sheila Wellstone Muscular Dystrophy Center, University of Minnesota Medical School, Minneapolis, Minnesota.,Institute for Translational Neuroscience, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Ang-Chen Tsai
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, Florida
| | - Christina A Pacak
- Department of Neurology, Paul and Sheila Wellstone Muscular Dystrophy Center, University of Minnesota Medical School, Minneapolis, Minnesota
| |
Collapse
|
31
|
ATM deficiency aggravates the progression of liver fibrosis induced by carbon tetrachloride in mice. Toxicology 2023; 484:153397. [PMID: 36526012 DOI: 10.1016/j.tox.2022.153397] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Ataxia telangiectasia mutated (ATM) is a pivotal sensor during the DNA damage response that slows cell passage through the cell cycle checkpoints to facilitate DNA repair, and liver fibrosis is an irreversible pathological consequence of the sustained wound-healing process, However, the effects of ATM on the development of liver fibrosis are still not fully understood. Therefore, the aim of the study was to investigate the effects and potential mechanisms of ATM on the progression of liver fibrosis. Wild-type and ATM-deficient were administered with carbon tetrachloride (CCl4, 5 ml/kg, i.p.) for 8 weeks to induce liver fibrosis, and the liver tissues and serum were collected for analysis. KU-55933 (10 μM) was used to investigate the effects of ATM blockage on CCl4-induced hepatocyte injury in vitro. The results showed that ATM deficiency aggravated the increased serum transaminase levels and liver MDA, HYP, and 8-OHdG contents compared with the model group (p < 0.05). Sirius red staining showed that ATM deficiency exacerbated liver collagen deposition in vivo, which was associated with the activation of TGF-β1/Smad2 signaling. Furthermore, blocking ATM with KU-55933 exacerbated the production of ROS and DNA damage caused by CCl4 exposure in HepG2 cells, and KU-55933 treatment also reversed the downregulated expression of CDK1 and CDK2 after CCl4 exposure in vitro. Moreover, the loss of ATM perturbed the regulation of the hepatic cell ChK2-CDC25A/C-CDK1/2 cascade and apoptosis in vivo, which was accompanied by increased Ki67-positive and TUNEL-positive cells after chronic CCl4 treatment. In conclusion, our results indicated that ATM might be a critical regulator of liver fibrosis progression, and the underlying mechanisms of exacerbated liver fibrosis development in ATM-deficient mice might be associated with the dysregulation of hepatic cell proliferation and apoptosis.
Collapse
|
32
|
Luo L, Liu H, Yan F. Dynamic behavior of P53-Mdm2-Wip1 gene regulatory network under the influence of time delay and noise. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:2321-2347. [PMID: 36899536 DOI: 10.3934/mbe.2023109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The tumor suppressor protein P53 can regulate the cell cycle, thereby preventing cell abnormalities. In this paper, we study the dynamic characteristics of the P53 network under the influence of time delay and noise, including stability and bifurcation. In order to study the influence of several factors on the concentration of P53, bifurcation analysis on several important parameters is conducted; the results show that the important parameters could induce P53 oscillations within an appropriate range. Then we study the stability of the system and the existing conditions of Hopf bifurcation by using Hopf bifurcation theory with time delays as the bifurcation parameter. It is found that time delay plays a key role in inducing Hopf bifurcation and regulating the period and amplitude of system oscillation. Meanwhile, the combination of time delays can not only promote the oscillation of the system but it also provides good robustness. Changing the parameter values appropriately can change the bifurcation critical point and even the stable state of the system. In addition, due to the low copy number of the molecules and the environmental fluctuations, the influence of noise on the system is also considered. Through numerical simulation, it is found that noise not only promotes system oscillation but it also induces system state switching. The above results may help us to further understand the regulation mechanism of the P53-Mdm2-Wip1 network in the cell cycle.
Collapse
Affiliation(s)
- LanJiang Luo
- Department of Mathematics, Yunnan Normal University, Kunming 650500, China
- Key Laboratory of Complex System Modeling and Application for Universities in Yunnan, Kunming 650500, China
| | - Haihong Liu
- Department of Mathematics, Yunnan Normal University, Kunming 650500, China
- Key Laboratory of Complex System Modeling and Application for Universities in Yunnan, Kunming 650500, China
| | - Fang Yan
- Department of Mathematics, Yunnan Normal University, Kunming 650500, China
- Key Laboratory of Complex System Modeling and Application for Universities in Yunnan, Kunming 650500, China
| |
Collapse
|
33
|
Donath H, Wölke S, Knop V, Heß U, Duecker RP, Trischler J, Poynard T, Schubert R, Zielen S. Liver Assessment in Patients with Ataxia-Telangiectasia: Transient Elastography Detects Early Stages of Steatosis and Fibrosis. Can J Gastroenterol Hepatol 2023; 2023:2877350. [PMID: 36941982 PMCID: PMC10024628 DOI: 10.1155/2023/2877350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 01/12/2023] [Accepted: 01/31/2023] [Indexed: 03/13/2023] Open
Abstract
Background Ataxia-telangiectasia (A-T) is a rare autosomal-recessive multisystem disorder characterized by pronounced cerebellar ataxia, telangiectasia, cancer predisposition, and altered body composition. Liver diseases with steatosis, fibrosis, and hepatocellular carcinoma are frequent findings in older patients but sensitive noninvasive diagnostic tools are lacking. Objectives To determine the sensitivity of transient elastography (TE) as a screening tool for early hepatic tissue changes and serum biomarkers for liver disease. Methods Thirty-one A-T patients aged 2 to 25 years were examined prospectively from 2016-2018 by TE. In addition, we evaluated the diagnostic performance of liver biomarkers for steatosis and necroinflammatory activity (SteatoTest and ActiTest, Biopredictive, Paris) compared to TE. For calculation and comparison, patients were divided into two groups (<12, >12 years of age). Results TE revealed steatosis in 2/21 (10%) younger patients compared to 9/10 (90%) older patients. Fibrosis was present in 3/10 (30%) older patients as assessed by TE. We found a significant correlation of steatosis with SteatoTest, alpha-fetoprotein (AFP), HbA1c, and triglycerides. Liver stiffness correlated significantly with SteatoTest, ActiTest, HbA1c, and triglycerides. Conclusion Liver disease is a common finding in older A-T patients. TE is an objective measure to detect early stages of steatosis and fibrosis. SteatoTest and ActiTest are a good diagnostic assessment for steatosis and necroinflammatory activity in patients with A-T and confirmed the TE results.
Collapse
Affiliation(s)
- H. Donath
- 1Department for Children and Adolescents, Division of Allergology, Pulmonology and Cystic Fibrosis, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - S. Wölke
- 1Department for Children and Adolescents, Division of Allergology, Pulmonology and Cystic Fibrosis, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - V. Knop
- 2Department of Internal Medicine 1, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - U. Heß
- 1Department for Children and Adolescents, Division of Allergology, Pulmonology and Cystic Fibrosis, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - R. P. Duecker
- 1Department for Children and Adolescents, Division of Allergology, Pulmonology and Cystic Fibrosis, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - J. Trischler
- 1Department for Children and Adolescents, Division of Allergology, Pulmonology and Cystic Fibrosis, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - T. Poynard
- 3Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Hepatology Department, Frankfurt, Germany
| | - R. Schubert
- 1Department for Children and Adolescents, Division of Allergology, Pulmonology and Cystic Fibrosis, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - S. Zielen
- 1Department for Children and Adolescents, Division of Allergology, Pulmonology and Cystic Fibrosis, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| |
Collapse
|
34
|
Staudt DE, Murray HC, Skerrett-Byrne DA, Smith ND, Jamaluddin MFB, Kahl RGS, Duchatel RJ, Germon ZP, McLachlan T, Jackson ER, Findlay IJ, Kearney PS, Mannan A, McEwen HP, Douglas AM, Nixon B, Verrills NM, Dun MD. Phospho-heavy-labeled-spiketide FAIMS stepped-CV DDA (pHASED) provides real-time phosphoproteomics data to aid in cancer drug selection. Clin Proteomics 2022; 19:48. [PMID: 36536316 PMCID: PMC9762002 DOI: 10.1186/s12014-022-09385-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Global high-throughput phosphoproteomic profiling is increasingly being applied to cancer specimens to identify the oncogenic signaling cascades responsible for promoting disease initiation and disease progression; pathways that are often invisible to genomics analysis. Hence, phosphoproteomic profiling has enormous potential to inform and improve individualized anti-cancer treatment strategies. However, to achieve the adequate phosphoproteomic depth and coverage necessary to identify the activated, and hence, targetable kinases responsible for driving oncogenic signaling pathways, affinity phosphopeptide enrichment techniques are required and often coupled with offline high-pressure liquid chromatographic (HPLC) separation prior to nanoflow liquid chromatography-tandem mass spectrometry (nLC-MS/MS). These complex and time-consuming procedures, limit the utility of phosphoproteomics for the analysis of individual cancer patient specimens in real-time, and restrict phosphoproteomics to specialized laboratories often outside of the clinical setting. To address these limitations, here we have optimized a new protocol, phospho-heavy-labeled-spiketide FAIMS Stepped-CV DDA (pHASED), that employs online phosphoproteome deconvolution using high-field asymmetric waveform ion mobility spectrometry (FAIMS) and internal phosphopeptide standards to provide accurate label-free quantitation (LFQ) data in real-time. Compared with traditional single-shot LFQ phosphoproteomics workflows, pHASED provided increased phosphoproteomic depth and coverage (phosphopeptides = 4617 pHASED, 2789 LFQ), whilst eliminating the variability associated with offline prefractionation. pHASED was optimized using tyrosine kinase inhibitor (sorafenib) resistant isogenic FLT3-mutant acute myeloid leukemia (AML) cell line models. Bioinformatic analysis identified differential activation of the serine/threonine protein kinase ataxia-telangiectasia mutated (ATM) pathway, responsible for sensing and repairing DNA damage in sorafenib-resistant AML cell line models, thereby uncovering a potential therapeutic opportunity. Herein, we have optimized a rapid, reproducible, and flexible protocol for the characterization of complex cancer phosphoproteomes in real-time, a step towards the implementation of phosphoproteomics in the clinic to aid in the selection of anti-cancer therapies for patients.
Collapse
Affiliation(s)
- Dilana E. Staudt
- grid.266842.c0000 0000 8831 109XSchool of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308 Australia ,grid.413648.cPrecision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305 Australia
| | - Heather C. Murray
- grid.266842.c0000 0000 8831 109XSchool of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308 Australia ,grid.413648.cPrecision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305 Australia
| | - David A. Skerrett-Byrne
- grid.266842.c0000 0000 8831 109XSchool of Environmental and Life Sciences, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308 Australia ,grid.413648.cInfertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305 Australia
| | - Nathan D. Smith
- grid.266842.c0000 0000 8831 109XAnalytical and Biomolecular Research Facility (ABRF), Research Services, University of Newcastle, NSW, Callaghan, 2308 Australia
| | - M. Fairuz B. Jamaluddin
- grid.266842.c0000 0000 8831 109XSchool of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308 Australia
| | - Richard G. S. Kahl
- grid.266842.c0000 0000 8831 109XSchool of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308 Australia
| | - Ryan J. Duchatel
- grid.266842.c0000 0000 8831 109XSchool of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308 Australia ,grid.413648.cPrecision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305 Australia
| | - Zacary P. Germon
- grid.266842.c0000 0000 8831 109XSchool of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308 Australia ,grid.413648.cPrecision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305 Australia
| | - Tabitha McLachlan
- grid.266842.c0000 0000 8831 109XSchool of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308 Australia ,grid.413648.cPrecision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305 Australia
| | - Evangeline R. Jackson
- grid.266842.c0000 0000 8831 109XSchool of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308 Australia ,grid.413648.cPrecision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305 Australia
| | - Izac J. Findlay
- grid.266842.c0000 0000 8831 109XSchool of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308 Australia ,grid.413648.cPrecision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305 Australia
| | - Padraic S. Kearney
- grid.266842.c0000 0000 8831 109XSchool of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308 Australia ,grid.413648.cPrecision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305 Australia
| | - Abdul Mannan
- grid.266842.c0000 0000 8831 109XSchool of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308 Australia ,grid.413648.cPrecision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305 Australia
| | - Holly P. McEwen
- grid.266842.c0000 0000 8831 109XSchool of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308 Australia ,grid.413648.cPrecision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305 Australia
| | - Alicia M. Douglas
- grid.266842.c0000 0000 8831 109XSchool of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308 Australia
| | - Brett Nixon
- grid.266842.c0000 0000 8831 109XSchool of Environmental and Life Sciences, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308 Australia ,grid.413648.cInfertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305 Australia
| | - Nicole M. Verrills
- grid.266842.c0000 0000 8831 109XSchool of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308 Australia ,grid.413648.cPrecision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305 Australia
| | - Matthew D. Dun
- grid.266842.c0000 0000 8831 109XSchool of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308 Australia ,grid.413648.cPrecision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305 Australia
| |
Collapse
|
35
|
Aditi, McKinnon PJ. Genome integrity and inflammation in the nervous system. DNA Repair (Amst) 2022; 119:103406. [PMID: 36148701 PMCID: PMC9844216 DOI: 10.1016/j.dnarep.2022.103406] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 01/19/2023]
Abstract
Preservation of genomic integrity is crucial for nervous system development and function. DNA repair deficiency results in several human diseases that are characterized by both neurodegeneration and neuroinflammation. Recent research has highlighted a role for compromised genomic integrity as a key factor driving neuropathology and triggering innate immune signaling to cause inflammation. Here we review the mechanisms by which DNA damage engages innate immune signaling and how this may promote neurological disease. We also consider the contributions of different neural cell types towards DNA damage-driven neuroinflammation. A deeper knowledge of genome maintenance mechanisms that prevent aberrant immune activation in neural cells will guide future therapies to ameliorate neurological disease.
Collapse
Affiliation(s)
- Aditi
- Center for Pediatric Neurological Disease Research, St. Jude Pediatric Translational Neuroscience Initiative, Dept. Cell & Mol. Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Peter J McKinnon
- Center for Pediatric Neurological Disease Research, St. Jude Pediatric Translational Neuroscience Initiative, Dept. Cell & Mol. Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
36
|
Zhang Y, Ou G, Ye Z, Zhou Z, Cao Q, Li M, Wang J, Cao J, Yang H. RPRM negatively regulates ATM levels through its nuclear translocation on irradiation mediated by CDK4/6 and IPO11. iScience 2022; 25:105115. [PMID: 36185355 PMCID: PMC9519624 DOI: 10.1016/j.isci.2022.105115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/21/2022] [Accepted: 09/08/2022] [Indexed: 10/25/2022] Open
Abstract
How the ataxia telangiectasia mutated (ATM) protein kinase, a core protein in DNA damage response, is regulated at post-transcription level remains unclear. Here it is identified that protein Reprimo (RPRM) downregulates ATM protein levels, resulting in impaired DNA repair and enhanced cellular radiosensitivity. Mechanistically, although primarily localized in the cytoplasm, RPRM translocates to the nucleus shortly after induced by X-irradiation, interacts with ATM and promotes its nuclear export and proteasomal degradation. The RPRM nuclear translocation involves its phosphorylation at serine 98 mediated by cyclin-dependent kinases 4/6 (CDK4/6), and requires Importin-11 (IPO11). Of importance, IPO11-regulated RPRM nuclear import upon irradiation is essential for its regulation on ATM. Thus, RPRM overexpression and its phosphorylation inhibition sensitize cells to genotoxic agents such as irradiation, whereas RPRM deficiency significantly increases resistance to radiation-induced damage both in vitro and in vivo. These findings establish a crucial regulatory mechanism in which ATM is negatively modulated by RPRM.
Collapse
Affiliation(s)
- Yarui Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province 215123, P. R. China
| | - Guomin Ou
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, P. R. China
| | - Zhujing Ye
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province 215123, P. R. China
| | - Zhou Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province 215123, P. R. China
| | - Qianlin Cao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province 215123, P. R. China
| | - Mengting Li
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province 215123, P. R. China
| | - Jingdong Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province 215123, P. R. China
| | - Jianping Cao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province 215123, P. R. China
| | - Hongying Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province 215123, P. R. China
| |
Collapse
|
37
|
Schaue D, Micewicz ED, Ratikan JA, Iwamoto KS, Vlashi E, McDonald JT, McBride WH. NRF2 Mediates Cellular Resistance to Transformation, Radiation, and Inflammation in Mice. Antioxidants (Basel) 2022; 11:1649. [PMID: 36139722 PMCID: PMC9495793 DOI: 10.3390/antiox11091649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (NRF2) is recognized as a master transcription factor that regulates expression of numerous detoxifying and antioxidant cytoprotective genes. In fact, models of NRF2 deficiency indicate roles not only in redox regulation, but also in metabolism, inflammatory/autoimmune disease, cancer, and radioresistancy. Since ionizing radiation (IR) generates reactive oxygen species (ROS), it is not surprising it activates NRF2 pathways. However, unexpectedly, activation is often delayed for many days after the initial ROS burst. Here, we demonstrate that, as assayed by γ-H2AX staining, rapid DNA double strand break (DSB) formation by IR in primary mouse Nrf2-/- MEFs was not affected by loss of NRF2, and neither was DSB repair to any great extent. In spite of this, basal and IR-induced transformation was greatly enhanced, suggesting that NRF2 protects against late IR-induced genomic instability, at least in murine MEFs. Another possible IR- and NRF2-related event that could be altered is inflammation and NRF2 deficiency increased IR-induced NF-κB pro-inflammatory responses mostly late after exposure. The proclivity of NRF2 to restrain inflammation is also reflected in the reprogramming of tumor antigen-specific lymphocyte responses in mice where Nrf2 k.o. switches Th2 responses to Th1 polarity. Delayed NRF2 responses to IR may be critical for the immune transition from prooxidant inflammation to antioxidant healing as well as in driving cellular radioresistance and survival. Targeting NRF2 to reprogram immunity could be of considerable therapeutic benefit in radiation and immunotherapy.
Collapse
Affiliation(s)
- Dörthe Schaue
- Department of Radiation Oncology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095-1714, USA
| | - Ewa D. Micewicz
- Biotts S.A., Ul. Wrocławska 44C, 55-040 Bielany Wrocławskie, Poland
| | - Josephine A. Ratikan
- Department of Radiation Oncology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095-1714, USA
| | - Keisuke S. Iwamoto
- Department of Radiation Oncology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095-1714, USA
| | - Erina Vlashi
- Department of Radiation Oncology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095-1714, USA
| | - J. Tyson McDonald
- Department of Radiation Medicine, School of Medicine, Georgetown University, Washington, DC 20057, USA
| | - William H. McBride
- Department of Radiation Oncology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095-1714, USA
| |
Collapse
|
38
|
Qin B, Yu J, Zhao F, Huang J, Zhou Q, Lou Z. Dynamic recruitment of UFM1-specific peptidase 2 to the DNA double-strand breaks regulated by WIP1. GENOME INSTABILITY & DISEASE 2022; 3:217-226. [PMID: 36042814 PMCID: PMC9418083 DOI: 10.1007/s42764-022-00076-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/17/2022] [Accepted: 07/24/2022] [Indexed: 10/29/2022]
Abstract
The ufmylation ligase-UFL1 promotes ATM activation by monoufmylating H4 at K31 in a positive-feedback loop after double-strand breaks (DSB) occur, whereas UFM1 Specific Peptidase 2 (UfSP2) suppresses ATM activation, but the mechanism of recruitment of UfSP2 to the DSB finetuning DNA damage response is still not clear. Here, we report that UfSP2 foci formation is delayed compared to UFL1 foci formation following the radiation insult. Mechanistically, UfSP2 binds to the MRN complex in absence of DSB. Irradiation-induced phosphorylation of UfSP2 by ATM leads to the dissociation of UfSP2 from the MRN complex. This phosphorylation can be removed by the phosphatase WIP1, thereby UfSP2 is recruited to the DSBs, deufmylating H4 and suppressing ATM activation. In summary, we identify a mechanism of delicately negative modulation of ATM activation by UfSP2 and rewires ATM activation pathways.
Collapse
Affiliation(s)
- Bo Qin
- Department of Oncology, Mayo Clinic, Rochester, MN 55905 USA
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905 USA
| | - Jia Yu
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905 USA
| | - Fei Zhao
- Department of Oncology, Mayo Clinic, Rochester, MN 55905 USA
| | - Jinzhou Huang
- Department of Oncology, Mayo Clinic, Rochester, MN 55905 USA
| | - Qin Zhou
- Department of Oncology, Mayo Clinic, Rochester, MN 55905 USA
| | - Zhenkun Lou
- Department of Oncology, Mayo Clinic, Rochester, MN 55905 USA
| |
Collapse
|
39
|
Overstreet JM, Gifford CC, Tang J, Higgins PJ, Samarakoon R. Emerging role of tumor suppressor p53 in acute and chronic kidney diseases. Cell Mol Life Sci 2022; 79:474. [PMID: 35941392 PMCID: PMC11072039 DOI: 10.1007/s00018-022-04505-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 02/06/2023]
Abstract
p53 is a major regulator of cell cycle arrest, apoptosis, and senescence. While involvement of p53 in tumorigenesis is well established, recent studies implicate p53 in the initiation and progression of several renal diseases, which is the focus of this review. Ischemic-, aristolochic acid (AA) -, diabetic-, HIV-associated-, obstructive- and podocyte-induced nephropathies are accompanied by activation and/or elevated expression of p53. Studies utilizing chemical or renal-specific inhibition of p53 in mice confirm the pathogenic role of this transcription factor in acute kidney injury and chronic kidney disease. TGF-β1, NOX, ATM/ATR kinases, Cyclin G, HIPK, MDM2 and certain micro-RNAs are important determinants of renal p53 function in response to trauma. AA, cisplatin or TGF-β1-mediated ROS generation via NOXs promotes p53 phosphorylation and subsequent tubular dysfunction. p53-SMAD3 transcriptional cooperation downstream of TGF-β1 orchestrates induction of fibrotic factors, extracellular matrix accumulation and pathogenic renal cell communication. TGF-β1-induced micro-RNAs (such as mir-192) could facilitate p53 activation, leading to renal hypertrophy and matrix expansion in response to diabetic insults while AA-mediated mir-192 induction regulates p53 dependent epithelial G2/M arrest. The widespread involvement of p53 in tubular maladaptive repair, interstitial fibrosis, and podocyte injury indicate that p53 clinical targeting may hold promise as a novel therapeutic strategy for halting progression of certain acute and chronic renal diseases, which affect hundreds of million people worldwide.
Collapse
Affiliation(s)
| | - Cody C Gifford
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, 12208, USA
| | - Jiaqi Tang
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Paul J Higgins
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, 12208, USA.
- Center for Cell Biology and Cancer Research, Albany Medical College, 47 New Scotland Avenue, Albany, NY, 12208, USA.
| | - Rohan Samarakoon
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, 12208, USA.
- Center for Cell Biology and Cancer Research, Albany Medical College, 47 New Scotland Avenue, Albany, NY, 12208, USA.
| |
Collapse
|
40
|
Small-molecule enhancers of CRISPR-induced homology-directed repair in gene therapy: A medicinal chemist's perspective. Drug Discov Today 2022; 27:2510-2525. [PMID: 35738528 DOI: 10.1016/j.drudis.2022.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/19/2022] [Accepted: 06/16/2022] [Indexed: 11/20/2022]
Abstract
CRISPR technologies are increasingly being investigated and utilized for the treatment of human genetic diseases via genome editing. CRISPR-Cas9 first generates a targeted DNA double-stranded break, and a functional gene can then be introduced to replace the defective copy in a precise manner by templated repair via the homology-directed repair (HDR) pathway. However, this is challenging owing to the relatively low efficiency of the HDR pathway compared with a rival random repair pathway known as non-homologous end joining (NHEJ). Small molecules can be employed to increase the efficiency of HDR and decrease that of NHEJ to improve the efficiency of precise knock-in genome editing. This review discusses the potential usage of such small molecules in the context of gene therapy and their drug-likeness, from a medicinal chemist's perspective.
Collapse
|
41
|
CHK2 Promotes Metabolic Stress-Induced Autophagy through ULK1 Phosphorylation. Antioxidants (Basel) 2022; 11:antiox11061166. [PMID: 35740063 PMCID: PMC9219861 DOI: 10.3390/antiox11061166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/03/2022] [Accepted: 06/09/2022] [Indexed: 01/27/2023] Open
Abstract
Reactive oxygen species (ROS) act as a signaling intermediate to promote cellular adaptation to maintain homeostasis by regulating autophagy during pathophysiological stress. However, the mechanism by which ROS promotes autophagy is still largely unknown. Here, we show that the ATM/CHK2/ULK1 axis initiates autophagy to maintain cellular homeostasis by sensing ROS signaling under metabolic stress. We report that ULK1 is a physiological substrate of CHK2, and that the binding of CHK2 to ULK1 depends on the ROS signal and the phosphorylation of threonine 68 of CHK2 under metabolic stress. Further, CHK2 phosphorylates ULK1 on serine 556, and this phosphorylation is dependent on the ATM/CHK2 signaling pathway. CHK2-mediated phosphorylation of ULK1 promotes autophagic flux and inhibits apoptosis induced by metabolic stress. Taken together, these results demonstrate that the ATM/CHK2/ULK1 axis initiates an autophagic adaptive response by sensing ROS, and it protects cells from metabolic stress-induced cellular damage.
Collapse
|
42
|
Qing X, Zhang G, Wang Z. DNA
damage response in neurodevelopment and neuromaintenance. FEBS J 2022. [DOI: 10.1111/febs.16535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/24/2022] [Indexed: 01/01/2023]
Affiliation(s)
- Xiaobing Qing
- Leibniz Institute on Aging – Fritz Lipmann Institute (FLI) Jena Germany
| | - Guangyu Zhang
- Leibniz Institute on Aging – Fritz Lipmann Institute (FLI) Jena Germany
| | - Zhao‐Qi Wang
- Leibniz Institute on Aging – Fritz Lipmann Institute (FLI) Jena Germany
- Faculty of Biological Sciences Friedrich‐Schiller‐University of Jena Germany
| |
Collapse
|
43
|
Zhang H, Chen Y, Jiang Y, Mao Z. DNA double-strand break repair and nucleic acid-related immunity. Acta Biochim Biophys Sin (Shanghai) 2022; 54:828-835. [PMID: 35975605 PMCID: PMC9828507 DOI: 10.3724/abbs.2022061] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
DNA damage repair and innate immunity are two conserved mechanisms that both function in cellular stress responses. Recently, an increasing amount of evidence has uncovered the close relationship between these two ancient biological processes. Here, we review the classical function of factors involved in DNA repair, and especially double-strand break repair, in innate immunity; more importantly, we discuss the novel roles of DNA repair factors in regulating innate immunity and vice versa. In addition, we also review the roles of DNA repair, innate immunity and their crosstalk in human diseases, which suggest that these two pathways may be compelling targets for disease prevention and treatment.
Collapse
Affiliation(s)
| | | | | | - Zhiyong Mao
- Correspondence address. Tel: +86-21-65978166; E-mail:
| |
Collapse
|
44
|
Maleki Dana P, Sadoughi F, Mirzaei H, Asemi Z, Yousefi B. DNA damage response and repair in the development and treatment of brain tumors. Eur J Pharmacol 2022; 924:174957. [DOI: 10.1016/j.ejphar.2022.174957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 04/03/2022] [Accepted: 04/11/2022] [Indexed: 11/03/2022]
|
45
|
Lone M, Shadang M, Akhter Q, Kumar M, Mallick S, Gogia A, Nilima N, Chauhan SS, Mir RA. The Expression of the RUVBL1 Component of the R2TP Complex Correlates with Poor Prognosis in DLBCL. Pathobiology 2022; 89:146-156. [PMID: 35078195 DOI: 10.1159/000520723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 11/01/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Diffuse large B-cell lymphoma (DLBCL) is the most prevalent subtype of non-Hodgkin's lymphoma (NHL) accounting for 30% of adult NHL worldwide and 50% in developing countries like India. DNA damage and Myc-induced transformation are well-known contributing factors towards development of DLBCL. A recently identified HSP90 co-chaperone complex R2TP has been shown to contribute towards DNA damage and Myc-induced transformation. This study aimed to analyse the immunohistochemical (IHC) expression of R2TP complex components RUVBL1, PIH1D1, and RPAP3 in DLBCL patients and correlate with prognosis. METHODS DLBCL (n = 54) histological slides were retrieved from archives, and detailed histomorphological and clinical features were noted. IHC staining of R2TP complex components RUVBL1, PIH1D1, and RPAP3 was performed on 54 cases (FFPE) of DLBCL. Expression data were correlated with survival and clinical features. RESULTS Out of the 54 DLBCL cases, 59.26% (n = 32) stained positive for RUVBL1. The RUVBL1 expression was associated with poor prognosis in both progression-free survival (PFS) (p = 0.0146) and overall survival (OS) (p = 0.0328). The expression was positively correlated with bone marrow involvement (p = 0.0525). The expression of PIH1D1 was observed in 68.51% (n = 32) of DLBCL cases, and positive correlation was observed with international prognostic index score (p = 0.0246); however, no correlation was observed with PFS or OS. Finally, RPAP3 was found immunopositive in only 1 case of DLBCL. CONCLUSIONS Immunopositivity for RUVBL1 is associated with poor prognosis along with a higher relapse rate amongst the DLBCL patients. PIH1D1 immunopositivity correlated with a higher IPI score.
Collapse
Affiliation(s)
- Moien Lone
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Mahaiwon Shadang
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Qulsum Akhter
- Government College for Women, Nawakadal, Srinagar, India
| | - Mithilesh Kumar
- School of Life Sciences, Jaipur National University, Jaipur, India
| | - Saumyaranjan Mallick
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Ajay Gogia
- Department of Medical Oncology, Institute of Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Nilima Nilima
- Department of Biostatistics, All India Institute of Medical Sciences, New Delhi, India
| | - Shyam S Chauhan
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Riyaz A Mir
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
46
|
Saberi‐Karimian M, Beyraghi‐Tousi M, Jamialahmadi T, Sahebkar A. The positive short-term effect of dexamethasone on ataxia symptoms in a patient with ataxia-telangiectasia: A case report. Clin Case Rep 2022; 10:e05895. [PMID: 35600021 PMCID: PMC9122799 DOI: 10.1002/ccr3.5895] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/28/2022] [Accepted: 04/30/2022] [Indexed: 11/24/2022] Open
Abstract
Oral dexamethasone was administered at a dose of 0.075 mg/kg/day for a boy with ataxia-telangiectasia. The SARA score was improved by 7.0 points after dexamethasone treatment over a period of 28 days. The body weight was increased by 1.4 kg after 4 weeks leading to dose titration to 0.05 mg/kg/day.
Collapse
Affiliation(s)
- Maryam Saberi‐Karimian
- Vascular and Endovascular Surgery Research CenterMashhad University of Medical SciencesMashhadIran
- Surgical Oncology Research CenterMashhad University of Medical SciencesMashhadIran
- International UNESCO center for Health Related Basic Sciences and Human NutritionMashhad University of Medical SciencesMashhadIran
| | - Mehran Beyraghi‐Tousi
- Department of Pediatric DiseasesFaculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Tannaz Jamialahmadi
- Surgical Oncology Research CenterMashhad University of Medical SciencesMashhadIran
| | - Amirhossein Sahebkar
- Biotechnology Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
- Applied Biomedical Research CenterMashhad University of Medical SciencesMashhadIran
- School of MedicineThe University of Western AustraliaPerthAustralia
- Department of BiotechnologySchool of PharmacyMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
47
|
DNA Damage Response Inhibitors in Cholangiocarcinoma: Current Progress and Perspectives. Cells 2022; 11:cells11091463. [PMID: 35563769 PMCID: PMC9101358 DOI: 10.3390/cells11091463] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/16/2022] [Accepted: 04/24/2022] [Indexed: 12/27/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a poorly treatable type of cancer and its incidence is dramatically increasing. The lack of understanding of the biology of this tumor has slowed down the identification of novel targets and the development of effective treatments. Based on next generation sequencing profiling, alterations in DNA damage response (DDR)-related genes are paving the way for DDR-targeting strategies in CCA. Based on the notion of synthetic lethality, several DDR-inhibitors (DDRi) have been developed with the aim of accumulating enough DNA damage to induce cell death in tumor cells. Observing that DDRi alone could be insufficient for clinical use in CCA patients, the combination of DNA-damaging regimens with targeted approaches has started to be considered, as evidenced by many emerging clinical trials. Hence, novel therapeutic strategies combining DDRi with patient-specific targeted drugs could be the next level for treating cholangiocarcinoma.
Collapse
|
48
|
Provasek VE, Mitra J, Malojirao VH, Hegde ML. DNA Double-Strand Breaks as Pathogenic Lesions in Neurological Disorders. Int J Mol Sci 2022; 23:ijms23094653. [PMID: 35563044 PMCID: PMC9099445 DOI: 10.3390/ijms23094653] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 02/07/2023] Open
Abstract
The damage and repair of DNA is a continuous process required to maintain genomic integrity. DNA double-strand breaks (DSBs) are the most lethal type of DNA damage and require timely repair by dedicated machinery. DSB repair is uniquely important to nondividing, post-mitotic cells of the central nervous system (CNS). These long-lived cells must rely on the intact genome for a lifetime while maintaining high metabolic activity. When these mechanisms fail, the loss of certain neuronal populations upset delicate neural networks required for higher cognition and disrupt vital motor functions. Mammalian cells engage with several different strategies to recognize and repair chromosomal DSBs based on the cellular context and cell cycle phase, including homologous recombination (HR)/homology-directed repair (HDR), microhomology-mediated end-joining (MMEJ), and the classic non-homologous end-joining (NHEJ). In addition to these repair pathways, a growing body of evidence has emphasized the importance of DNA damage response (DDR) signaling, and the involvement of heterogeneous nuclear ribonucleoprotein (hnRNP) family proteins in the repair of neuronal DSBs, many of which are linked to age-associated neurological disorders. In this review, we describe contemporary research characterizing the mechanistic roles of these non-canonical proteins in neuronal DSB repair, as well as their contributions to the etiopathogenesis of selected common neurological diseases.
Collapse
Affiliation(s)
- Vincent E. Provasek
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77030, USA; (V.E.P.); (V.H.M.)
- College of Medicine, Texas A&M University, College Station, TX 77843, USA
| | - Joy Mitra
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77030, USA; (V.E.P.); (V.H.M.)
- Correspondence: (J.M.); (M.L.H.)
| | - Vikas H. Malojirao
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77030, USA; (V.E.P.); (V.H.M.)
| | - Muralidhar L. Hegde
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77030, USA; (V.E.P.); (V.H.M.)
- College of Medicine, Texas A&M University, College Station, TX 77843, USA
- Department of Neurosciences, Weill Cornell Medical College, New York, NY 11021, USA
- Correspondence: (J.M.); (M.L.H.)
| |
Collapse
|
49
|
Subramanian GN, Yeo AJ, Gatei MH, Coman DJ, Lavin MF. Metabolic Stress and Mitochondrial Dysfunction in Ataxia-Telangiectasia. Antioxidants (Basel) 2022; 11:653. [PMID: 35453338 PMCID: PMC9032508 DOI: 10.3390/antiox11040653] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023] Open
Abstract
The ataxia-telangiectasia mutated (ATM) protein kinase is, as the name implies, mutated in the human genetic disorder ataxia-telangiectasia (A-T). This protein has its "finger in many pies", being responsible for the phosphorylation of many thousands of proteins in different signaling pathways in its role in protecting the cell against a variety of different forms of stress that threaten to perturb cellular homeostasis. The classical role of ATM is the protection against DNA damage, but it is evident that it also plays a key role in maintaining cell homeostasis in the face of oxidative and other forms of non-DNA damaging stress. The presence of ATM is not only in the nucleus to cope with damage to DNA, but also in association with other organelles in the cytoplasm, which suggests a greater protective role. This review attempts to address this greater role of ATM in protecting the cell against both external and endogenous damage.
Collapse
Affiliation(s)
| | - Abrey Jie Yeo
- University of Queensland Centre for Clinical Research, University of Queensland, Brisbane, QLD 4029, Australia
| | - Magtouf Hnaidi Gatei
- University of Queensland Centre for Clinical Research, University of Queensland, Brisbane, QLD 4029, Australia
| | - David John Coman
- Queensland Children's Hospital, Brisbane, QLD 4101, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD 4006, Australia
| | - Martin Francis Lavin
- University of Queensland Centre for Clinical Research, University of Queensland, Brisbane, QLD 4029, Australia
| |
Collapse
|
50
|
Interaction between TMEFF1 and AHNAK proteins in ovarian cancer cells: Implications for clinical prognosis. Int Immunopharmacol 2022; 107:108726. [PMID: 35338959 DOI: 10.1016/j.intimp.2022.108726] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/13/2022] [Accepted: 03/18/2022] [Indexed: 12/23/2022]
Abstract
TMEFF1 is a newly discovered protein involved in the physiological functions of the central nervous system, embryonic development, and other biological processes. Our previous study revealed that TMEFF1 acts as a tumor-promoting gene in ovarian cancer. AHNAK, as a giant scaffolding protein, plays a role in the formation of the blood-brain barrier, cell architecture and the regulation of cardiac calcium channels. However, its role in ovarian cancer remains poorly researched. In this study, we detected the expression of AHNAK and TMEFF1 in 148 different ovarian cancer tissues, determined their relationship with pathological parameters and prognosis, clarified the interaction between the two proteins, and explored the related cancer-promoting mechanisms through immunohistochemistry, immunoprecipitation, immunofluorescence double staining, western blotting, and bioinformatics. The high expression of ANHAK and TMEFF1 in ovarian cancer indicated a higher degree of tumor malignancy and a worse prognosis. Furthermore, the expression of TMEFF1 and AHNAK was significantly positively correlated. The results also showed that AHNAK and TMEFF1 co-localized and interacted with each other in ovarian cancer tissues and cells. And knockdown of AHNAK promoted proliferation, migration and invasion of ovarian cancer cells in vitro. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses showed that AHNAK and related genes were enriched during mitosis regulation, cytoskeleton formation, gene epigenetics, etc., whereas TMEFF1 and related genes are enriched during immune regulation and other processes. We also clarified the network of kinases, microRNA, and transcription factor targets, and the impact of genetic mutations on prognosis. Notably, AHNAK was regulated by the expression of TMEFF1 and can activate the MAPK pathways. Overall, high expression of AHNAK and TMEFF1 in ovarian cancer cells indicated a higher degree of tumor malignancy and a worse prognosis. Therefore, the interaction between AHNAK and TMEFF1 may become a potential anti-tumor target for ovarian cancer treatment.
Collapse
|