1
|
Kamp DL, Kerwin AH, McAnulty SJ, Nyholm SV. Organ structure and bacterial microbiogeography in a reproductive organ of the Hawaiian bobtail squid reveal dimensions of a defensive symbiosis. Appl Environ Microbiol 2025; 91:e0216324. [PMID: 40231847 DOI: 10.1128/aem.02163-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 03/09/2025] [Indexed: 04/16/2025] Open
Abstract
Many plants and animals house symbiotic microorganisms in specialized tissues or organs. Here, we used multidimensional in situ imaging techniques to illuminate how host organ structure and bacterial microbiogeography contribute to the symbiotic function of an organ in the Hawaiian bobtail squid, Euprymna scolopes. Along with the well-studied light organ, female E. scolopes harbor a community of bacteria in the accessory nidamental gland (ANG). The ANG is a dense network of epithelium-lined tubules, some of which are dominated by a single bacterial taxon. These bacteria are deposited into squid eggs, where they defend the developing embryos from harmful biofouling. This study used a combination of imaging techniques to visualize different dimensions of the ANG and its bacterial communities. Imaging entire organs with light sheet microscopy revealed that the ANG is a composite tissue of individual, non-intersecting tubules that each harbor their own bacterial population. The organ is bisected, with tubules converging toward two points at the posterior end. At these points, tubules empty into a space where bacteria can mix with squid jelly to be deposited onto eggs. Observations of the symbiotic community correlated bacterial taxa with cell morphology and revealed that tubule populations varied: some tubules contained populations of mixed taxa, whereas others contained only one bacterial genus. Together, these data shed light on how bacterial populations interact within the ANG and how the host uses physical structure to maintain and employ a symbiotic bacterial population in a defensive context.IMPORTANCESequence-based microbiome studies have revealed much about how hosts interact with communities of symbiotic microbiota but often lack a spatial understanding of how microbes relate to each other and the host in which they reside. This study uses a combination of microscopy techniques to reveal how the structure of a symbiotic organ in the female bobtail squid, Euprymna scolopes, houses diverse, beneficial bacterial populations and deploys them for egg defense. These findings suggest that spatial partitioning may be key to harboring a diverse population of antimicrobial-producing bacteria and establishing a foundation for further understanding how host structures mediate symbiotic interactions.
Collapse
Affiliation(s)
- Derrick L Kamp
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Allison H Kerwin
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
- Department of Biology, McDaniel College, Westminster, Maryland, USA
| | - Sarah J McAnulty
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
- Skype a Scientist, Philadelphia, Pennsylvania, USA
| | - Spencer V Nyholm
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
2
|
Liu F, Xiao J, Wang XF, Wang YX, Yang HH, Cai YB, Lai FX, Fu Q, Wan PJ. Role of carbohydrate-active enzymes in brown planthopper virulence and adaptability. FRONTIERS IN PLANT SCIENCE 2025; 16:1554498. [PMID: 40303855 PMCID: PMC12038449 DOI: 10.3389/fpls.2025.1554498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 03/13/2025] [Indexed: 05/02/2025]
Abstract
Introduction Herbivorous insects, including the brown planthopper (BPH), Nilaparvata lugens, are among the most damaging pests to agricultural crops worldwide, particularly rice. These insects employ a variety of strategies to overcome plant defenses, including the secretion of carbohydrate-active enzymes (CAZymes) that degrade plant cell walls. While CAZymes are well-studied in other insect species, their role in BPH virulence remains largely unexplored. Methods This study aims to address this gap by analyzing CAZymes in 182 insect genomes, followed by a detailed genomic and transcriptomic analysis of BPH. Results We identified 644 CAZymes in BPH, including enzymes related to plant cell wall degradation. Through quantitative real-time PCR (RT-qPCR) and subcellular localization experiments, we found that 5 candidate genes exhibited increased expression during feeding on the susceptible rice variety TN1, a well-characterized variety highly susceptible to BPH and these genes were localized to the plasma membrane. Our results suggest that BPH CAZymes play a critical role in the insect's ability to feed and damage rice plants. Discussion This study provides valuable insights into the molecular mechanisms underlying insect adaptation and virulence in the co-evolutionary process between plants and herbivorous insects. By exploring the function of pest-related genes in the BPH and examining their differential responses in rice varieties with varying resistance to BPH, we aim to contribute to the development of targeted pest management strategies.
Collapse
Affiliation(s)
- Fang Liu
- The National Key Laboratory of Rice Biological Breeding, China National Rice Research Institute, Hangzhou, Zhejiang, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jing Xiao
- The National Key Laboratory of Rice Biological Breeding, China National Rice Research Institute, Hangzhou, Zhejiang, China
| | - Xin-Feng Wang
- The National Key Laboratory of Rice Biological Breeding, China National Rice Research Institute, Hangzhou, Zhejiang, China
| | - Ya-Xuan Wang
- The National Key Laboratory of Rice Biological Breeding, China National Rice Research Institute, Hangzhou, Zhejiang, China
| | - Hou-Hong Yang
- The National Key Laboratory of Rice Biological Breeding, China National Rice Research Institute, Hangzhou, Zhejiang, China
| | - Yu-Biao Cai
- The National Key Laboratory of Rice Biological Breeding, China National Rice Research Institute, Hangzhou, Zhejiang, China
| | - Feng-Xiang Lai
- The National Key Laboratory of Rice Biological Breeding, China National Rice Research Institute, Hangzhou, Zhejiang, China
| | - Qiang Fu
- The National Key Laboratory of Rice Biological Breeding, China National Rice Research Institute, Hangzhou, Zhejiang, China
| | - Pin-Jun Wan
- The National Key Laboratory of Rice Biological Breeding, China National Rice Research Institute, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Cheng H, Yan X, Lin C, Chen Y, Ma L, Fu L, Dong X, Liu C. Exploring Bacterial Communities and Functions in Phytophagous Halyomorpha halys and Predatory Arma chinensis. INSECTS 2025; 16:146. [PMID: 40003776 PMCID: PMC11855761 DOI: 10.3390/insects16020146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/25/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025]
Abstract
The phytophagous Halyomorpha halys (Hemiptera: Pentatomidae) is a global agricultural pest that damages many crops. Conversely, the predatory Arma chinensis (Hemiptera: Pentatomidae) shows promise as a biological control agent against lepidopteran and coleopteran pests. Halyomorpha halys and A. chinensis are closely related species with different feeding habits, as confirmed via genomic and morphological analyses. However, no study investigating the implications of these differences has been reported. Herein, 16S rRNA sequencing technology was employed to analyze the microbiota diversity and function in different tissues (salivary glands, gut, sperm, and ovaries) of H. halys and A. chinensis to elucidate these differences from a microbial perspective. Additionally, the adult male-to-female ratio in A. chinensis organs was statistically similar, while that in H. halys was not. Based on the dominance of the symbionts in the two bug species, we inferred that Sodalis is involved in reproduction and digestion in A. chinensis, while Spiroplasma and Pantoea play essential roles in H. halys reproduction and digestion. We analyzed the data on the microbial diversity of two bug species, laying a foundation for further understanding microbial symbiosis in A. chinensis and H. halys, which may inform the development of biological control strategies.
Collapse
Affiliation(s)
- Hongmei Cheng
- Sino-American Biological Control Laboratory, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.C.); (C.L.); (L.F.)
| | - Xiaoyu Yan
- Department of Entomology, Yangtze University, Jingzhou 434023, China; (X.Y.); (Y.C.); (L.M.); (X.D.)
| | - Changjin Lin
- Sino-American Biological Control Laboratory, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.C.); (C.L.); (L.F.)
| | - Yu Chen
- Department of Entomology, Yangtze University, Jingzhou 434023, China; (X.Y.); (Y.C.); (L.M.); (X.D.)
| | - Le Ma
- Department of Entomology, Yangtze University, Jingzhou 434023, China; (X.Y.); (Y.C.); (L.M.); (X.D.)
| | - Luyao Fu
- Sino-American Biological Control Laboratory, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.C.); (C.L.); (L.F.)
| | - Xiaolin Dong
- Department of Entomology, Yangtze University, Jingzhou 434023, China; (X.Y.); (Y.C.); (L.M.); (X.D.)
| | - Chenxi Liu
- Sino-American Biological Control Laboratory, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.C.); (C.L.); (L.F.)
| |
Collapse
|
4
|
Drahun I, Morrison K, Poole EA, van Herk WG, Cassone BJ. Characterisation of the bacteriomes harboured by major wireworm pest species in the Canadian Prairies. INSECT MOLECULAR BIOLOGY 2025; 34:203-217. [PMID: 39381854 PMCID: PMC11705518 DOI: 10.1111/imb.12962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/19/2024] [Indexed: 10/10/2024]
Abstract
Nearly all insects harbour bacterial communities that can have a profound effect on their life history, including regulating and shaping host metabolism, development, immunity and fitness. The bacteriomes of several coleopterans have been described; however, very little has been reported for wireworms. These long-lived larvae of click beetles (Coleoptera: Elateridae) are major agricultural pests of a variety of crops grown in the Canadian Prairies. Consequently, the goal of this study was to characterise the bacteriomes of five of the most significant pest species within the region: Limonius californicus, Hypnoidus abbreviatus, H. bicolor, Aeolus mellillus and Dalopius spp. To do this, we collected larvae from southern Manitoba fields (pre-seeding) and carried out 16S rRNA sequencing on individual specimens. Our results indicate wireworms have diverse and taxon-rich bacterial communities, with over 400 genera identified predominately from the phyla Proteobacteria, Actinobacteriota, Bacteroidota and Firmicutes. However, each species had nine or fewer genera comprising >80% of their bacteriome. Network analyses revealed some community structuring consistent among species, which may culminate in shaping/regulating host biology. Moreover, the microbial signatures were influenced by both ontogeny (early vs. late stage larvae) and reproductive strategy (sexual vs. parthenogenetic), with a myriad of other factors likely contributing to bacterial diversity that are impossible to resolve from our study. Overall, this metagenomics study represents the first to characterise the bacteriomes of wireworms in the Canadian Prairies and the findings could assist in the development of sustainable management strategies for these important agricultural pests.
Collapse
Affiliation(s)
- Ivan Drahun
- Department of BiologyBrandon UniversityBrandonManitobaCanada
| | - Keagan Morrison
- Department of BiologyBrandon UniversityBrandonManitobaCanada
| | - Elise A. Poole
- Department of BiologyBrandon UniversityBrandonManitobaCanada
| | - Willem G. van Herk
- Agassiz Research and Development CentreAgriculture and Agri‐Food CanadaAgassizBritish ColumbiaCanada
| | | |
Collapse
|
5
|
Hussain MD, Farooq T, Kamran A, Basit A, Wang Y, Smagghe G, Chen X. Endosymbionts as hidden players in tripartite pathosystem of interactions and potential candidates for sustainable viral disease management. Crit Rev Biotechnol 2025:1-23. [PMID: 39848650 DOI: 10.1080/07388551.2024.2449403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/26/2024] [Accepted: 12/02/2024] [Indexed: 01/25/2025]
Abstract
The convoluted relationships between plants, viruses, and arthropod vectors housing bacterial endosymbionts are pivotal in the spread of harmful plant viral diseases. Endosymbionts play key roles in: manipulating host responses, influencing insect resistance to pesticides, shaping insect evolution, and bolstering virus acquisition, retention, and transmission. This interplay presents an innovative approach for developing sustainable strategies to manage plant diseases. Recent progress in targeting specific endosymbionts through genetic modifications, biotechnological advancements, and RNA interference shows potential for curbing viral spread and disease progression. Additionally, employing synthetic biology techniques like CRISPR/Cas9 to engineer endosymbionts and disrupt crucial interactions necessary for viral transmission in arthropod vectors holds promise for effective control measures. In this review, these obligate and facultative bacterial cruxes have been discussed to elaborate on their mechanistic involvement in the regulation and/or inhibition of tripartite pathways of interactions. Furthermore, we provide an in-depth understanding of endosymbionts' synergistic and antagonistic effects on: insect biology, plant immunity, and virus acquisition and transmission. Finally, we point out open questions for future research and provide research directions concerning the deployment of genetically engineered symbionts to affect plant-virus-vector interactions for sustainable disease management. By addressing existing knowledge gaps and charting future research paths, a deeper comprehension of the role of endosymbionts in plant-virus-vector interactions can pave the way for innovative and successful disease management strategies. The exploration of antiviral therapies, paratransgenesis, and pathogen-blocking tactics using engineered endosymbionts introduces pioneering solutions for lessening the impact of plant viral diseases and green pest management.
Collapse
Affiliation(s)
- Muhammad Dilshad Hussain
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, P.R. China
| | - Tahir Farooq
- Plant Protection Research Institute and Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, P.R. China
| | - Ali Kamran
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, P.R. China
| | - Abdul Basit
- Institute of Entomology, Guizhou University, Guiyang, P.R. China
| | - Yong Wang
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, P.R. China
- Institute of Plant Health and Medicine, College of Agriculture, Guizhou University, Guiyang, P.R. China
| | - Guy Smagghe
- Institute of Entomology, Guizhou University, Guiyang, P.R. China
- Cellular and Molecular Life Sciences, Department of Biology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Department of Plants and Crops, Ghent University, Ghent, Belgium
| | - Xiangru Chen
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, P.R. China
| |
Collapse
|
6
|
Giger GH, Ernst C, Richter I, Gassler T, Field CM, Sintsova A, Kiefer P, Gäbelein CG, Guillaume-Gentil O, Scherlach K, Bortfeld-Miller M, Zambelli T, Sunagawa S, Künzler M, Hertweck C, Vorholt JA. Inducing novel endosymbioses by implanting bacteria in fungi. Nature 2024; 635:415-422. [PMID: 39358514 PMCID: PMC11560845 DOI: 10.1038/s41586-024-08010-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 09/03/2024] [Indexed: 10/04/2024]
Abstract
Endosymbioses have profoundly impacted the evolution of life and continue to shape the ecology of a wide range of species. They give rise to new combinations of biochemical capabilities that promote innovation and diversification1,2. Despite the many examples of known endosymbioses across the tree of life, their de novo emergence is rare and challenging to uncover in retrospect3-5. Here we implant bacteria into the filamentous fungus Rhizopus microsporus to follow the fate of artificially induced endosymbioses. Whereas Escherichia coli implanted into the cytosol induced septum formation, effectively halting endosymbiogenesis, Mycetohabitans rhizoxinica was transmitted vertically to the progeny at a low frequency. Continuous positive selection on endosymbiosis mitigated initial fitness constraints by several orders of magnitude upon adaptive evolution. Phenotypic changes were underscored by the accumulation of mutations in the host as the system stabilized. The bacterium produced rhizoxin congeners in its new host, demonstrating the transfer of a metabolic function through induced endosymbiosis. Single-cell implantation thus provides a powerful experimental approach to study critical events at the onset of endosymbiogenesis and opens opportunities for synthetic approaches towards designing endosymbioses with desired traits.
Collapse
Affiliation(s)
- Gabriel H Giger
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Chantal Ernst
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Ingrid Richter
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, HKI, Jena, Germany
| | - Thomas Gassler
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Christopher M Field
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Anna Sintsova
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Patrick Kiefer
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Christoph G Gäbelein
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Whitehead Institute, Cambridge, MA, USA
| | | | - Kirstin Scherlach
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, HKI, Jena, Germany
| | | | - Tomaso Zambelli
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, Zurich, Switzerland
| | - Shinichi Sunagawa
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Markus Künzler
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, HKI, Jena, Germany
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| | - Julia A Vorholt
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
7
|
Michalik A, C. Franco D, Szklarzewicz T, Stroiński A, Łukasik P. Facultatively intrabacterial localization of a planthopper endosymbiont as an adaptation to its vertical transmission. mSystems 2024; 9:e0063424. [PMID: 38934538 PMCID: PMC11264691 DOI: 10.1128/msystems.00634-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Transovarial transmission is the most reliable way of passing on essential nutrient-providing endosymbionts from mothers to offspring. However, not all endosymbiotic microbes follow the complex path through the female host tissues to oocytes on their own. Here, we demonstrate an unusual transmission strategy adopted by one of the endosymbionts of the planthopper Trypetimorpha occidentalis (Hemiptera: Tropiduchidae) from Bulgaria. In this species, an Acetobacteraceae endosymbiont is transmitted transovarially within deep invaginations of cellular membranes of an ancient endosymbiont Sulcia-strikingly resembling recently described plant virus transmission. However, in males, Acetobacteraceae colonizes the same bacteriocytes as Sulcia but remains unenveloped. Then, the unusual endobacterial localization of Acetobacteraceae observed in females appears to be a unique adaptation to maternal transmission. Further, the symbiont's genomic features, including encoding essential amino acid biosynthetic pathways and its similarity to a recently described psyllid symbiont, suggest a unique combination of the ability to horizontally transmit among species and confer nutritional benefits. The close association with Acetobacteraceae symbiont correlates with the so-far-unreported level of genomic erosion of ancient nutritional symbionts of this planthopper. In Sulcia, this is reflected in substantial changes in genomic organization, reported for the first time in the symbiont renowned for its genomic stability. In Vidania, substantial gene loss resulted in one of the smallest genomes known, at 108.6 kb. Thus, the symbionts of T. occidentalis display a combination of unusual adaptations and genomic features that expand our understanding of how insect-microbe symbioses may transmit and evolve.IMPORTANCEReliable transmission across host generations is a major challenge for bacteria that associate with insects, and independently established symbionts have addressed this challenge in different ways. The facultatively endobacterial localization of Acetobacteraceae symbiont, enveloped by cells of ancient nutritional endosymbiont Sulcia in females but not males of the planthopper Trypetimorpha occidentalis, appears to be a unique adaptation to maternal transmission. Acetobacteraceae's genomic features indicate its unusual evolutionary history, and the genomic erosion experienced by ancient nutritional symbionts demonstrates the apparent consequences of such close association. Combined, this multi-partite symbiosis expands our understanding of the diversity of strategies that insect symbioses form and some of their evolutionary consequences.
Collapse
Affiliation(s)
- Anna Michalik
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Diego C. Franco
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Teresa Szklarzewicz
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Adam Stroiński
- Museum and Institute of Zoology, Polish Academy of Sciences, Warsaw, Poland
| | - Piotr Łukasik
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
8
|
Bennett GM, Kwak Y, Maynard R. Endosymbioses Have Shaped the Evolution of Biological Diversity and Complexity Time and Time Again. Genome Biol Evol 2024; 16:evae112. [PMID: 38813885 PMCID: PMC11154151 DOI: 10.1093/gbe/evae112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 05/31/2024] Open
Abstract
Life on Earth comprises prokaryotes and a broad assemblage of endosymbioses. The pages of Molecular Biology and Evolution and Genome Biology and Evolution have provided an essential window into how these endosymbiotic interactions have evolved and shaped biological diversity. Here, we provide a current perspective on this knowledge by drawing on decades of revelatory research published in Molecular Biology and Evolution and Genome Biology and Evolution, and insights from the field at large. The accumulated work illustrates how endosymbioses provide hosts with novel phenotypes that allow them to transition between adaptive landscapes to access environmental resources. Such endosymbiotic relationships have shaped and reshaped life on Earth. The early serial establishment of mitochondria and chloroplasts through endosymbioses permitted massive upscaling of cellular energetics, multicellularity, and terrestrial planetary greening. These endosymbioses are also the foundation upon which all later ones are built, including everything from land-plant endosymbioses with fungi and bacteria to nutritional endosymbioses found in invertebrate animals. Common evolutionary mechanisms have shaped this broad range of interactions. Endosymbionts generally experience adaptive and stochastic genome streamlining, the extent of which depends on several key factors (e.g. mode of transmission). Hosts, in contrast, adapt complex mechanisms of resource exchange, cellular integration and regulation, and genetic support mechanisms to prop up degraded symbionts. However, there are significant differences between endosymbiotic interactions not only in how partners have evolved with each other but also in the scope of their influence on biological diversity. These differences are important considerations for predicting how endosymbioses will persist and adapt to a changing planet.
Collapse
Affiliation(s)
- Gordon M Bennett
- Department of Life and Environmental Sciences, University of California, Merced, CA, USA
- National Science Foundation Biological Integration Institute—INSITE, University of California, Merced, CA, USA
| | - Younghwan Kwak
- Department of Life and Environmental Sciences, University of California, Merced, CA, USA
- National Science Foundation Biological Integration Institute—INSITE, University of California, Merced, CA, USA
| | - Reo Maynard
- Department of Life and Environmental Sciences, University of California, Merced, CA, USA
| |
Collapse
|
9
|
Bin X, Wang P, Shen Y, Xiang X, Jafir M, Wan X. Investigation of Fungal Community Structure in the Gut of the Stag Beetle Dorcus hopei (Coleoptera; Lucanidae): Comparisons Among Developmental Stages. MICROBIAL ECOLOGY 2024; 87:70. [PMID: 38740585 PMCID: PMC11090938 DOI: 10.1007/s00248-024-02379-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/08/2024] [Indexed: 05/16/2024]
Abstract
Stag beetles, recognized as common saproxylic insects, are valued for their vibrant coloration and distinctive morphology. These beetles play a crucial ecological role in decomposition and nutrient cycling, serving as a vital functional component in ecosystem functioning. Although previous studies have confirmed that stag beetles are predominantly fungivores, the fluctuations in their intestinal fungal communities at different developmental stages remain poorly understood. In the current study, high-throughput sequencing was employed to investigate the dynamic changes within intestinal fungal communities at various developmental stages in the stag beetle Dorcus hopei. Results showed that microbial diversity was higher during the larval stage than during the pupal and adult stages. Furthermore, significant differences were identified in the composition of the intestinal fungal communities across the larval, pupal, and adult stages, suggesting that developmental transitions may be crucial factors contributing to variations in fungal community composition and diversity. Dominant genera included Candida, Scheffersomyces, Phaeoacremonium, and Trichosporon. Functional predictions indicated a greater diversity and relative abundance of endosymbiotic fungi in the larval gut, suggesting a potential dependency of larvae on beneficial gut fungi for nutrient acquisition. Additionally, the application of abundance-based β-null deviation and niche width analyses revealed that the adult gut exerted a stronger selection pressure on its fungal community, favoring certain taxa. This selection process culminates in a more robust co-occurrence network of fungal communities within the adult gut, thereby enhancing their adaptability to environmental fluctuations. This study advances our understanding of the intestinal fungal community structure in stag beetles, providing a crucial theoretical foundation for the development of saproxylic beetle resources, biomass energy utilization, plastic degradation strategies, and beetle conservation efforts.
Collapse
Affiliation(s)
- Xiaoyan Bin
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Hefei, 230601, China
| | - Pan Wang
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Hefei, 230601, China
| | - Yagang Shen
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Hefei, 230601, China
| | - Xingjia Xiang
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Hefei, 230601, China
| | - Muhammad Jafir
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Hefei, 230601, China
| | - Xia Wan
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China.
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Hefei, 230601, China.
| |
Collapse
|
10
|
Renoz F, Parisot N, Baa-Puyoulet P, Gerlin L, Fakhour S, Charles H, Hance T, Calevro F. PacBio Hi-Fi genome assembly of Sipha maydis, a model for the study of multipartite mutualism in insects. Sci Data 2024; 11:450. [PMID: 38704391 PMCID: PMC11069519 DOI: 10.1038/s41597-024-03297-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 04/23/2024] [Indexed: 05/06/2024] Open
Abstract
Dependence on multiple nutritional endosymbionts has evolved repeatedly in insects feeding on unbalanced diets. However, reference genomes for species hosting multi-symbiotic nutritional systems are lacking, even though they are essential for deciphering the processes governing cooperative life between insects and anatomically integrated symbionts. The cereal aphid Sipha maydis is a promising model for addressing these issues, as it has evolved a nutritional dependence on two bacterial endosymbionts that complement each other. In this study, we used PacBio High fidelity (HiFi) long-read sequencing to generate a highly contiguous genome assembly of S. maydis with a length of 410 Mb, 3,570 contigs with a contig N50 length of 187 kb, and BUSCO completeness of 95.5%. We identified 117 Mb of repetitive sequences, accounting for 29% of the genome assembly, and predicted 24,453 protein-coding genes, of which 2,541 were predicted enzymes included in an integrated metabolic network with the two aphid-associated endosymbionts. These resources provide valuable genetic and metabolic information for understanding the evolution and functioning of multi-symbiotic systems in insects.
Collapse
Affiliation(s)
- François Renoz
- Biodiversity Research Centre, Earth and Life Institute, UCLouvain, Louvain-la-Neuve, 1348, Belgium.
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR203, Villeurbanne, F-69621, France.
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, 305-8634, Japan.
| | - Nicolas Parisot
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR203, Villeurbanne, F-69621, France.
| | | | - Léo Gerlin
- Univ Lyon, INRAE, INSA Lyon, BF2I, UMR203, Villeurbanne, F-69621, France
| | - Samir Fakhour
- Biodiversity Research Centre, Earth and Life Institute, UCLouvain, Louvain-la-Neuve, 1348, Belgium
- Department of Plant Protection, National Institute for Agricultural Research (INRA), Béni-Mellal, 23000, Morocco
| | - Hubert Charles
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR203, Villeurbanne, F-69621, France
| | - Thierry Hance
- Biodiversity Research Centre, Earth and Life Institute, UCLouvain, Louvain-la-Neuve, 1348, Belgium
| | - Federica Calevro
- Univ Lyon, INRAE, INSA Lyon, BF2I, UMR203, Villeurbanne, F-69621, France.
| |
Collapse
|
11
|
Vasquez YM, Li Z, Xue AZ, Bennett GM. Chromosome-level genome assembly of the aster leafhopper (Macrosteles quadrilineatus) reveals the role of environment and microbial symbiosis in shaping pest insect genome evolution. Mol Ecol Resour 2024; 24:e13919. [PMID: 38146900 DOI: 10.1111/1755-0998.13919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/12/2023] [Accepted: 12/13/2023] [Indexed: 12/27/2023]
Abstract
Leafhoppers comprise over 20,000 plant-sap feeding species, many of which are important agricultural pests. Most species rely on two ancestral bacterial symbionts, Sulcia and Nasuia, for essential nutrition lacking in their phloem and xylem plant sap diets. To understand how pest leafhopper genomes evolve and are shaped by microbial symbioses, we completed a chromosomal-level assembly of the aster leafhopper's genome (ALF; Macrosteles quadrilineatus). We compared ALF's genome to three other pest leafhoppers, Nephotettix cincticeps, Homalodisca vitripennis, and Empoasca onukii, which have distinct ecologies and symbiotic relationships. Despite diverging ~155 million years ago, leafhoppers have high levels of chromosomal synteny and gene family conservation. Conserved genes include those involved in plant chemical detoxification, resistance to various insecticides, and defence against environmental stress. Positive selection acting upon these genes further points to ongoing adaptive evolution in response to agricultural environments. In relation to leafhoppers' general dependence on symbionts, species that retain the ancestral symbiont, Sulcia, displayed gene enrichment of metabolic processes in their genomes. Leafhoppers with both Sulcia and its ancient partner, Nasuia, showed genomic enrichment in genes related to microbial population regulation and immune responses. Finally, horizontally transferred genes (HTGs) associated with symbiont support of Sulcia and Nasuia are only observed in leafhoppers that maintain symbionts. In contrast, HTGs involved in non-symbiotic functions are conserved across all species. The high-quality ALF genome provides deep insights into how host ecology and symbioses shape genome evolution and a wealth of genetic resources for pest control targets.
Collapse
Affiliation(s)
- Yumary M Vasquez
- Department of Life and Environmental Sciences, University of California, Merced, Merced, California, USA
| | - Zheng Li
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| | - Allen Z Xue
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| | - Gordon M Bennett
- Department of Life and Environmental Sciences, University of California, Merced, Merced, California, USA
| |
Collapse
|
12
|
Kaweesi T, Colvin J, Campbell L, Visendi P, Maslen G, Alicai T, Seal S. In silico prediction of candidate gene targets for the management of African cassava whitefly ( Bemisia tabaci, SSA1-SG1), a key vector of viruses causing cassava brown streak disease. PeerJ 2024; 12:e16949. [PMID: 38410806 PMCID: PMC10896082 DOI: 10.7717/peerj.16949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/24/2024] [Indexed: 02/28/2024] Open
Abstract
Whiteflies (Bemisia tabaci sensu lato) have a wide host range and are globally important agricultural pests. In Sub-Saharan Africa, they vector viruses that cause two ongoing disease epidemics: cassava brown streak disease and cassava mosaic virus disease. These two diseases threaten food security for more than 800 million people in Sub-Saharan Africa. Efforts are ongoing to identify target genes for the development of novel management options against the whitefly populations that vector these devastating viral diseases affecting cassava production in Sub-Saharan Africa. This study aimed to identify genes that mediate osmoregulation and symbiosis functions within cassava whitefly gut and bacteriocytes and evaluate their potential as key gene targets for novel whitefly control strategies. The gene expression profiles of dissected guts, bacteriocytes and whole bodies were compared by RNAseq analysis to identify genes with significantly enriched expression in the gut and bacteriocytes. Phylogenetic analyses identified three candidate osmoregulation gene targets: two α-glucosidases, SUC 1 and SUC 2 with predicted function in sugar transformations that reduce osmotic pressure in the gut; and a water-specific aquaporin (AQP1) mediating water cycling from the distal to the proximal end of the gut. Expression of the genes in the gut was enriched 23.67-, 26.54- and 22.30-fold, respectively. Genome-wide metabolic reconstruction coupled with constraint-based modeling revealed four genes (argH, lysA, BCAT & dapB) within the bacteriocytes as potential targets for the management of cassava whiteflies. These genes were selected based on their role and essentiality within the different essential amino acid biosynthesis pathways. A demonstration of candidate osmoregulation and symbiosis gene targets in other species of the Bemisia tabaci species complex that are orthologs of the empirically validated osmoregulation genes highlights the latter as promising gene targets for the control of cassava whitefly pests by in planta RNA interference.
Collapse
Affiliation(s)
- Tadeo Kaweesi
- Natural Resources Institute, University of greenwich, Chatham Maritime, Kent, United Kingdom
- Rwebitaba Zonal Agricultural Research and Development Institute, National Agricultural Research Organization, Fort Portal, Kabarole, Uganda
- National Crops Resources Research Institute, National Agricultural Research Organization, Kampala, Uganda
| | - John Colvin
- Natural Resources Institute, University of greenwich, Chatham Maritime, Kent, United Kingdom
| | - Lahcen Campbell
- Wellcome Genome Campus, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridge, United Kingdom
| | - Paul Visendi
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Gareth Maslen
- Wellcome Genome Campus, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridge, United Kingdom
| | - Titus Alicai
- National Crops Resources Research Institute, National Agricultural Research Organization, Kampala, Uganda
| | - Susan Seal
- Natural Resources Institute, University of greenwich, Chatham Maritime, Kent, United Kingdom
| |
Collapse
|
13
|
Luan JB. Insect Bacteriocytes: Adaptation, Development, and Evolution. ANNUAL REVIEW OF ENTOMOLOGY 2024; 69:81-98. [PMID: 38270981 DOI: 10.1146/annurev-ento-010323-124159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Bacteriocytes are host cells specialized to harbor symbionts in certain insect taxa. The adaptation, development, and evolution of bacteriocytes underlie insect symbiosis maintenance. Bacteriocytes carry enriched host genes of insect and bacterial origin whose transcription can be regulated by microRNAs, which are involved in host-symbiont metabolic interactions. Recognition proteins of peptidoglycan, the bacterial cell wall component, and autophagy regulate symbiont abundance in bacteriocytes. Horizontally transferred genes expressed in bacteriocytes influence the metabolism of symbiont peptidoglycan, which may affect the bacteriocyte immune response against symbionts. Bacteriocytes release or transport symbionts into ovaries for symbiont vertical transmission. Bacteriocyte development and death, regulated by transcriptional factors, are variable in different insect species. The evolutionary origin of insect bacteriocytes remains unclear. Future research should elucidate bacteriocyte cell biology, the molecular interplay between bacteriocyte metabolic and immune functions, the genetic basis of bacteriocyte origin, and the coordination between bacteriocyte function and host biology in diverse symbioses.
Collapse
Affiliation(s)
- Jun-Bo Luan
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China;
| |
Collapse
|
14
|
Liu Q, Sun T, Wang P, Wang L, Frantova H, Hartmann D, Perner J, Sun W, Pan B. Significant role of symbiotic bacteria in the blood digestion and reproduction of Dermanyssus gallinae mites. ISME COMMUNICATIONS 2024; 4:ycae127. [PMID: 39526132 PMCID: PMC11550332 DOI: 10.1093/ismeco/ycae127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/24/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Endosymbiotic bacteria significantly impact the fitness of their arthropod hosts. Dermanyssus gallinae, the poultry red mite, is a blood-feeding ectoparasite that exclusively feeds on avian blood. While there is a relatively comprehensive understanding of its microbial community structures across developmental stages based on 16S rRNA sequencing, the functional integration of these microbes within the host's physiology remains elusive. This study aims to elucidate the role of symbiotic bacteria in D. gallinae biology. 16S rRNA amplicon sequencing and fluorescence in situ hybridization revealed a prominent midgut-confinement bacterial microbiota with considerable diversity, out of which Kocuria and Bartonella A acted as the predominant bacterial genera inhabiting D. gallinae. The relative abundance of Bartonella A increased rapidly after blood-sucking, suggesting its adaptation to a blood-based diet and its pivotal role in post-engorgement activities. Some of the isolated bacterial strains from D. gallinae display hemolytic activity on blood agar, potentially aiding blood digestion. To corroborate this in vivo, antibiotic-mediated clearance was exploited to generate dysbiosed cohorts of D. gallinae mites, lacking some of the key bacterial species. Phenotypic assessments revealed that dysbiosed mites experienced delayed blood digestion and diminished reproductive capacity. Whole-genome sequencing identified Bartonella A as a new species within the genus Bartonella, exhibiting characteristics of an obligate symbiont. These findings underscore the significance of microbiota in poultry red mites and suggest microbiota-targeted strategies for controlling mite populations in poultry farms.
Collapse
Affiliation(s)
- Qi Liu
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Hai Dian District, Beijing 100193, China
| | - Tiancong Sun
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Hai Dian District, Beijing 100193, China
| | - Penglong Wang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Hai Dian District, Beijing 100193, China
| | - Lifang Wang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Hai Dian District, Beijing 100193, China
| | - Helena Frantova
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - David Hartmann
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Jan Perner
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Weiwei Sun
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Hai Dian District, Beijing 100193, China
| | - Baoliang Pan
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Hai Dian District, Beijing 100193, China
| |
Collapse
|
15
|
Michalik A, Bauer E, Szklarzewicz T, Kaltenpoth M. Nutrient supplementation by genome-eroded Burkholderia symbionts of scale insects. THE ISME JOURNAL 2023; 17:2221-2231. [PMID: 37833524 PMCID: PMC10689751 DOI: 10.1038/s41396-023-01528-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023]
Abstract
Hemipterans are known as hosts to bacterial or fungal symbionts that supplement their unbalanced diet with essential nutrients. Among them, scale insects (Coccomorpha) are characterized by a particularly large diversity of symbiotic systems. Here, using microscopic and genomic approaches, we functionally characterized the symbionts of two scale insects belonging to the Eriococcidae family, Acanthococcus aceris and Gossyparia spuria. These species host Burkholderia bacteria that are localized in the cytoplasm of the fat body cells. Metagenome sequencing revealed very similar and highly reduced genomes (<900KBp) with a low GC content (~38%), making them the smallest and most AT-biased Burkholderia genomes yet sequenced. In their eroded genomes, both symbionts retain biosynthetic pathways for the essential amino acids leucine, isoleucine, valine, threonine, lysine, arginine, histidine, phenylalanine, and precursors for the semi-essential amino acid tyrosine, as well as the cobalamin-dependent methionine synthase MetH. A tryptophan biosynthesis pathway is conserved in the symbiont of G. spuria, but appeared pseudogenized in A. aceris, suggesting differential availability of tryptophan in the two host species' diets. In addition to the pathways for essential amino acid biosynthesis, both symbionts maintain biosynthetic pathways for multiple cofactors, including riboflavin, cobalamin, thiamine, and folate. The localization of Burkholderia symbionts and their genome traits indicate that the symbiosis between Burkholderia and eriococcids is younger than other hemipteran symbioses, but is functionally convergent. Our results add to the emerging picture of dynamic symbiont replacements in sap-sucking Hemiptera and highlight Burkholderia as widespread and versatile intra- and extracellular symbionts of animals, plants, and fungi.
Collapse
Affiliation(s)
- Anna Michalik
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland.
| | - Eugen Bauer
- Department for Evolutionary Ecology, Institute for Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Teresa Szklarzewicz
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Martin Kaltenpoth
- Department for Evolutionary Ecology, Institute for Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany.
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany.
| |
Collapse
|
16
|
Lei T, Luo N, Song C, Yu J, Zhou Y, Qi X, Liu Y. Comparative Genomics Reveals Three Genetic Groups of the Whitefly Obligate Endosymbiont Candidatus Portiera aleyrodidarum. INSECTS 2023; 14:888. [PMID: 37999087 PMCID: PMC10672337 DOI: 10.3390/insects14110888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
Maternally inherited obligate endosymbionts codiverge with their invertebrate hosts and reflect their host's evolutionary history. Whiteflies (Hemiptera: Aleyrodidae) harbor one obligate endosymbiont, Candidatus Portiera aleyrodidarum (hereafter Portiera). Portiera was anciently acquired by whitefly and has been coevolving with its host ever since. Uncovering the divergence of endosymbionts provides a fundamental basis for inspecting the coevolutionary processes between the bacteria and their hosts. To illustrate the divergence of Portiera lineages across different whitefly species, we sequenced the Portiera genome from Aleyrodes shizuokensis and conducted a comparative analysis on the basic features and gene evolution with bacterial genomes from five whitefly genera, namely Aleurodicus, Aleyrodes, Bemisia, Pealius, and Trialeurodes. The results indicated that Portiera from Bemisia possessed significantly larger genomes, fewer coding sequences (CDSs), and a lower coding density. Their gene arrangement differed notably from those of other genera. The phylogeny of the nine Portiera lineages resembled that of their hosts. Moreover, the lineages were classified into three distinct genetic groups based on the genetic distance, one from Aleurodicus (Aleurodicinae), one from Bemisia (Aleyrodinae), and another from Aleyrodes, Pealius, and Trialeurrodes (Aleyrodinae). Synonymous and nonsynonymous rate analyses, parity rule 2 plot analyses, neutrality plot analyses, and effective number of codons analyses supported the distinction of the three genetic groups. Our results indicated that Portiera from distant hosts exhibit distinct genomic contents, implying codivergence between hosts and their endosymbionts. This work will enhance our understanding of coevolution between hosts and their endosymbionts.
Collapse
Affiliation(s)
- Teng Lei
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou 318000, China; (T.L.)
| | - Ning Luo
- Natural Resources and Planning Bureau of Linhai City, Linhai 317000, China
| | - Chao Song
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou 318000, China; (T.L.)
| | - Junwei Yu
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou 318000, China; (T.L.)
| | - Yuhang Zhou
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou 318000, China; (T.L.)
| | - Xin Qi
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou 318000, China; (T.L.)
| | - Yinquan Liu
- Ministry of Agriculture and Rural Affairs Key Laboratory of Agricultural Entomology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
17
|
Kolasa M, Kajtoch Ł, Michalik A, Maryańska-Nadachowska A, Łukasik P. Till evolution do us part: The diversity of symbiotic associations across populations of Philaenus spittlebugs. Environ Microbiol 2023; 25:2431-2446. [PMID: 37525959 DOI: 10.1111/1462-2920.16473] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 07/15/2023] [Indexed: 08/02/2023]
Abstract
Symbiotic bacteria have played crucial roles in the evolution of sap-feeding insects and can strongly affect host function. However, their diversity and distribution within species are not well understood; we do not know to what extent environmental factors or associations with other species may affect microbial community profiles. We addressed this question in Philaenus spittlebugs by surveying both insect and bacterial marker gene amplicons across multiple host populations. Host mitochondrial sequence data confirmed morphology-based identification of six species and revealed two divergent clades of Philaenus spumarius. All of them hosted the primary symbiont Sulcia that was almost always accompanied by Sodalis. Interestingly, populations and individuals often differed in the presence of Sodalis sequence variants, suggestive of intra-genome 16S rRNA variant polymorphism combined with rapid genome evolution and/or recent additional infections or replacements of the co-primary symbiont. The prevalence of facultative endosymbionts, including Wolbachia, Rickettsia, and Spiroplasma, varied among populations. Notably, cytochrome I oxidase (COI) amplicon data also showed that nearly a quarter of P. spumarius were infected by parasitoid flies (Verralia aucta). One of the Wolbachia operational taxonomic units (OTUs) was exclusively present in Verralia-parasitized specimens, suggestive of parasitoids as their source and highlighting the utility of host gene amplicon sequencing in microbiome studies.
Collapse
Affiliation(s)
- Michał Kolasa
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Krakow, Poland
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Krakow, Poland
| | - Łukasz Kajtoch
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Krakow, Poland
| | - Anna Michalik
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | | | - Piotr Łukasik
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
18
|
Qin M, Jiang L, Qiao G, Chen J. Phylosymbiosis: The Eco-Evolutionary Pattern of Insect-Symbiont Interactions. Int J Mol Sci 2023; 24:15836. [PMID: 37958817 PMCID: PMC10650905 DOI: 10.3390/ijms242115836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Insects harbor diverse assemblages of bacterial and fungal symbionts, which play crucial roles in host life history. Insects and their various symbionts represent a good model for studying host-microbe interactions. Phylosymbiosis is used to describe an eco-evolutionary pattern, providing a new cross-system trend in the research of host-associated microbiota. The phylosymbiosis pattern is characterized by a significant positive correlation between the host phylogeny and microbial community dissimilarities. Although host-symbiont interactions have been demonstrated in many insect groups, our knowledge of the prevalence and mechanisms of phylosymbiosis in insects is still limited. Here, we provide an order-by-order summary of the phylosymbiosis patterns in insects, including Blattodea, Coleoptera, Diptera, Hemiptera, Hymenoptera, and Lepidoptera. Then, we highlight the potential contributions of stochastic effects, evolutionary processes, and ecological filtering in shaping phylosymbiotic microbiota. Phylosymbiosis in insects can arise from a combination of stochastic and deterministic mechanisms, such as the dispersal limitations of microbes, codiversification between symbionts and hosts, and the filtering of phylogenetically conserved host traits (incl., host immune system, diet, and physiological characteristics).
Collapse
Affiliation(s)
- Man Qin
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (M.Q.); (L.J.)
| | - Liyun Jiang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (M.Q.); (L.J.)
| | - Gexia Qiao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (M.Q.); (L.J.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Chen
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (M.Q.); (L.J.)
| |
Collapse
|
19
|
Tame A, Maruyama T, Ikuta T, Chikaraishi Y, Ogawa NO, Tsuchiya M, Takishita K, Tsuda M, Hirai M, Takaki Y, Ohkouchi N, Fujikura K, Yoshida T. mTORC1 regulates phagosome digestion of symbiotic bacteria for intracellular nutritional symbiosis in a deep-sea mussel. SCIENCE ADVANCES 2023; 9:eadg8364. [PMID: 37611098 PMCID: PMC10446485 DOI: 10.1126/sciadv.adg8364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/27/2023] [Indexed: 08/25/2023]
Abstract
Phagocytosis is one of the methods used to acquire symbiotic bacteria to establish intracellular symbiosis. A deep-sea mussel, Bathymodiolus japonicus, acquires its symbiont from the environment by phagocytosis of gill epithelial cells and receives nutrients from them. However, the manner by which mussels retain the symbiont without phagosome digestion remains unknown. Here, we show that controlling the mechanistic target of rapamycin complex 1 (mTORC1) in mussels leads to retaining symbionts in gill cells. The symbiont is essential for the host mussel nutrition; however, depleting the symbiont's energy source triggers the phagosome digestion of symbionts. Meanwhile, the inhibition of mTORC1 by rapamycin prevented the digestion of the resident symbionts and of the engulfed exogenous dead symbionts in gill cells. This indicates that mTORC1 promotes phagosome digestion of symbionts under reduced nutrient supply from the symbiont. The regulation mechanism of phagosome digestion by mTORC1 through nutrient signaling with symbionts is key for maintaining animal-microbe intracellular nutritional symbiosis.
Collapse
Affiliation(s)
- Akihiro Tame
- Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
- School of Marine Biosciences, University of Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
- Faculty of Medical Sciences, Life Science Research Laboratory, University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193, Japan
| | - Tadashi Maruyama
- School of Marine Biosciences, University of Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Tetsuro Ikuta
- Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
| | - Yoshihito Chikaraishi
- Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo 060-0819, Japan
| | - Nanako O. Ogawa
- Research Institute for Marine Resources Utilization, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
| | - Masashi Tsuchiya
- Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
| | - Kiyotaka Takishita
- Department of Environmental Science, Fukuoka Women's University, Kasumigaoka 1-1-1, Higashi-ku, Fukuoka 813-8529, Japan
| | - Miwako Tsuda
- Institute for Extra-cutting-edge Science and Technology Avant-grade Research, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
| | - Miho Hirai
- Institute for Extra-cutting-edge Science and Technology Avant-grade Research, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
| | - Yoshihiro Takaki
- Institute for Extra-cutting-edge Science and Technology Avant-grade Research, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
| | - Naohiko Ohkouchi
- Research Institute for Marine Resources Utilization, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
| | - Katsunori Fujikura
- Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
| | - Takao Yoshida
- Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
- School of Marine Biosciences, University of Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| |
Collapse
|
20
|
Brown JJ, Jandová A, Jeffs CT, Higgie M, Nováková E, Lewis OT, Hrček J. Microbiome Structure of a Wild Drosophila Community along Tropical Elevational Gradients and Comparison to Laboratory Lines. Appl Environ Microbiol 2023; 89:e0009923. [PMID: 37154737 DOI: 10.1128/aem.00099-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
Variation along environmental gradients in host-associated microbial communities is not well understood compared to free-living microbial communities. Because elevational gradients may serve as natural proxies for climate change, understanding patterns along these gradients can inform our understanding of the threats hosts and their symbiotic microbes face in a warming world. In this study, we analyzed bacterial microbiomes from pupae and adults of four Drosophila species native to Australian tropical rainforests. We sampled wild individuals at high and low elevations along two mountain gradients to determine natural diversity patterns. Further, we sampled laboratory-reared individuals from isofemale lines established from the same localities to see if any natural patterns are retained in the lab. In both environments, we controlled for diet to help elucidate other deterministic patterns of microbiome composition. We found small but significant differences in Drosophila bacterial community composition across elevation, with some notable taxonomic differences between different Drosophila species and sites. Further, we found that field-collected fly pupae had significantly richer microbiomes than laboratory-reared pupae. We also found similar microbiome composition in both types of provided diet, suggesting that the significant differences found among Drosophila microbiomes are the products of surrounding environments with different bacterial species pools, possibly bound to elevational differences in temperature. Our results suggest that comparative studies between lab and field specimens help reveal the true variability in microbiome communities that can exist within a single species. IMPORTANCE Bacteria form microbial communities inside most higher-level organisms, but we know little about how the microbiome varies along environmental gradients and between natural host populations and laboratory colonies. To explore such effects on insect-associated microbiomes, we studied the gut microbiome in four Drosophila species over two mountain gradients in tropical Australia. We also compared these data to individuals kept in the laboratory to understand how different settings changed microbiome communities. We found that field-sampled individuals had significantly higher microbiome diversity than those from the lab. In wild Drosophila populations, elevation explains a small but significant amount of the variation in their microbial communities. Our study highlights the importance of environmental bacterial sources for Drosophila microbiome composition across elevational gradients and shows how comparative studies help reveal the true flexibility in microbiome communities that can exist within a species.
Collapse
Affiliation(s)
- Joel J Brown
- University of South Bohemia, Faculty of Science, České Budějovice, Czech Republic
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Anna Jandová
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | | | - Megan Higgie
- College of Science & Engineering, James Cook University, Townsville, Queensland, Australia
| | - Eva Nováková
- University of South Bohemia, Faculty of Science, České Budějovice, Czech Republic
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Owen T Lewis
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Jan Hrček
- University of South Bohemia, Faculty of Science, České Budějovice, Czech Republic
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| |
Collapse
|
21
|
Michalik A, Franco DC, Deng J, Szklarzewicz T, Stroiński A, Kobiałka M, Łukasik P. Variable organization of symbiont-containing tissue across planthoppers hosting different heritable endosymbionts. Front Physiol 2023; 14:1135346. [PMID: 37035661 PMCID: PMC10073718 DOI: 10.3389/fphys.2023.1135346] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/10/2023] [Indexed: 04/11/2023] Open
Abstract
Sap-feeding hemipteran insects live in associations with diverse heritable symbiotic microorganisms (bacteria and fungi) that provide essential nutrients deficient in their hosts' diets. These symbionts typically reside in highly specialized organs called bacteriomes (with bacterial symbionts) or mycetomes (with fungal symbionts). The organization of these organs varies between insect clades that are ancestrally associated with different microbes. As these symbioses evolve and additional microorganisms complement or replace the ancient associates, the organization of the symbiont-containing tissue becomes even more variable. Planthoppers (Hemiptera: Fulgoromorpha) are ancestrally associated with bacterial symbionts Sulcia and Vidania, but in many of the planthopper lineages, these symbionts are now accompanied or have been replaced by other heritable bacteria (e.g., Sodalis, Arsenophonus, Purcelliella) or fungi. We know the identity of many of these microbes, but the symbiont distribution within the host tissues and the bacteriome organization have not been systematically studied using modern microscopy techniques. Here, we combine light, fluorescence, and transmission electron microscopy with phylogenomic data to compare symbiont tissue distributions and the bacteriome organization across planthoppers representing 15 families. We identify and describe seven primary types of symbiont localization and seven types of the organization of the bacteriome. We show that Sulcia and Vidania, when present, usually occupy distinct bacteriomes distributed within the body cavity. The more recently acquired gammaproteobacterial and fungal symbionts generally occupy separate groups of cells organized into distinct bacteriomes or mycetomes, distinct from those with Sulcia and Vidania. They can also be localized in the cytoplasm of fat body cells. Alphaproteobacterial symbionts colonize a wider range of host body habitats: Asaia-like symbionts often colonize the host gut lumen, whereas Wolbachia and Rickettsia are usually scattered across insect tissues and cell types, including cells containing other symbionts, bacteriome sheath, fat body cells, gut epithelium, as well as hemolymph. However, there are exceptions, including Gammaproteobacteria that share bacteriome with Vidania, or Alphaproteobacteria that colonize Sulcia cells. We discuss how planthopper symbiont localization correlates with their acquisition and replacement patterns and the symbionts' likely functions. We also discuss the evolutionary consequences, constraints, and significance of these findings.
Collapse
Affiliation(s)
- Anna Michalik
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Diego Castillo Franco
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Junchen Deng
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kraków, Poland
| | - Teresa Szklarzewicz
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Adam Stroiński
- Museum and Institute of Zoology, Polish Academy of Sciences, Warsaw, Poland
| | - Michał Kobiałka
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Piotr Łukasik
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
22
|
Microbiome comparison of Dermanyssus gallinae populations from different farm rearing systems and the presence of common endosymbiotic bacteria at developmental stages. Parasitol Res 2023; 122:227-235. [PMID: 36401143 DOI: 10.1007/s00436-022-07721-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/05/2022] [Indexed: 11/21/2022]
Abstract
The hematophagous arthropod, Dermanyssus gallinae (Poultry red mite, PRM) can cause remarkable economic losses in the poultry industry across the globe. Although overall composition of endosymbiotic bacteria has been shown in previous studies, how farm habitats influence the microbiome remains unclear. In the present study, we compared the bacterial communities of D. gallinae populations collected from the cage and free-range farms using next-generation sequences targeting the V3-V4 hypervariable region of the 16S rRNA gene. The QIIME2 pipeline was followed in bioinformatic analyses. Proteobacteria represented a great majority of the total bacterial community of D. gallinae from both farming systems. More specifically, Bartonella-like bacteria (40.8%) and Candidatus Cardinium (21.5%) were found to be predominant genera in free-range and cage rearing systems, respectively. However, the microbiome variation based on farming systems was not statistically significant. In addition, the presence of the five common endosymbiotic bacteria (Wolbachia, Cardinium, Rickettsiella, Spiroplasma, and Schineria) was screened in different developmental stages of D. gallinae. Cardinium was detected in all developmental stages of D. gallinae. On the other hand, Wolbachia and Rickettsiella were only found in adults/nymphs, but neither in the eggs nor larvae. To our knowledge, this study provides the first microbiome comparison at genus-level in D. gallinae populations collected from different farm habitats and will contribute to the knowledge of the biology of D. gallinae.
Collapse
|
23
|
Martoni F, Bulman SR, Piper AM, Pitman A, Taylor GS, Armstrong KF. Insect phylogeny structures the bacterial communities in the microbiome of psyllids (Hemiptera: Psylloidea) in Aotearoa New Zealand. PLoS One 2023; 18:e0285587. [PMID: 37186593 PMCID: PMC10184942 DOI: 10.1371/journal.pone.0285587] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 04/27/2023] [Indexed: 05/17/2023] Open
Abstract
The bacterial microbiome of psyllids has been studied for decades, with a strong focus on the primary and secondary endosymbionts capable of providing essential amino acids for the insects' diet and therefore playing a key role in the insects' ability to radiate on novel plant hosts. Here, we combine metabarcoding analysis of the bacterial communities hosted by psyllids with a multi-gene phylogenetic analysis of the insect hosts to determine what factors influence the bacterial diversity of the psyllids' microbiomes, especially in the context of the dispersal and evolutionary radiation of these insects in Aotearoa New Zealand. Using multi-gene phylogenetics with COI, 18S and EF-1α sequences from 102 psyllid species, we confirmed for the first time monophyly for all the six genera of native/endemic Aotearoa New Zealand psyllids, with indications that they derive from at least six dispersal events to the country. This also revealed that, after its ancestral arrival, the genus Powellia has radiated onto a larger and more diverse range of plants than either Psylla or Ctenarytaina, which is uncommon amongst monophyletic psyllids globally. DNA metabarcoding of the bacterial 16S gene here represents the largest dataset analysed to date from psyllids, including 246 individuals from 73 species. This provides novel evidence that bacterial diversity across psyllid species is strongly associated with psyllid phylogenetic structure, and to a lesser degree to their host plant association and geographic distribution. Furthermore, while the strongest co-phylogenetic signals were derived from the primary and secondary symbionts, a signal of phylosymbiosis was still retained among the remaining taxa of the bacterial microbiome, suggesting potential vertical transmission of bacterial lineages previously unknown to have symbiotic roles.
Collapse
Affiliation(s)
- Francesco Martoni
- Bio-Protection Research Centre, Lincoln University, Lincoln, New Zealand
- Plant Biosecurity Cooperative Research Centre, University of Canberra, Canberra, ACT, Australia
- Agriculture Victoria, AgriBio Centre, Bundoora, VIC, Australia
| | - Simon R Bulman
- The New Zealand Institute for Plant & Food Research Ltd, Lincoln, New Zealand
- Better Border Biosecurity (B3), Lincoln, New Zealand
| | | | - Andrew Pitman
- Better Border Biosecurity (B3), Lincoln, New Zealand
- Foundation of Arable Research, Hornby, Christchurch, New Zealand
| | - Gary S Taylor
- The University of Adelaide, Adelaide, South Australia
| | - Karen F Armstrong
- Bio-Protection Research Centre, Lincoln University, Lincoln, New Zealand
- Plant Biosecurity Cooperative Research Centre, University of Canberra, Canberra, ACT, Australia
- Better Border Biosecurity (B3), Lincoln, New Zealand
- Agricultural and Life Sciences Faculty, Lincoln University, Lincoln, New Zealand
| |
Collapse
|
24
|
Giannotti D, Boscaro V, Husnik F, Vannini C, Keeling PJ. At the threshold of symbiosis: the genome of obligately endosymbiotic ' Candidatus Nebulobacter yamunensis' is almost indistinguishable from that of a cultivable strain. Microb Genom 2022; 8:mgen000909. [PMID: 36748607 PMCID: PMC9837558 DOI: 10.1099/mgen.0.000909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Comparing obligate endosymbionts with their free-living relatives is a powerful approach to investigate the evolution of symbioses, and it has led to the identification of several genomic traits consistently associated with the establishment of symbiosis. 'Candidatus Nebulobacter yamunensis' is an obligate bacterial endosymbiont of the ciliate Euplotes that seemingly depends on its host for survival. A subsequently characterized bacterial strain with an identical 16S rRNA gene sequence, named Fastidiosibacter lacustris, can instead be maintained in pure culture. We analysed the genomes of 'Candidatus Nebulobacter' and Fastidiosibacter seeking to identify key differences between their functional traits and genomic structure that might shed light on a recent transition to obligate endosymbiosis. Surprisingly, we found almost no such differences: the two genomes share a high level of sequence identity, the same overall structure, and largely overlapping sets of genes. The similarities between the genomes of the two strains are at odds with their different ecological niches, confirmed here with a parallel growth experiment. Although other pairs of closely related symbiotic/free-living bacteria have been compared in the past, 'Candidatus Nebulobacter' and Fastidiosibacter represent an extreme example proving that a small number of (unknown) factors might play a pivotal role in the earliest stages of obligate endosymbiosis establishment.
Collapse
Affiliation(s)
- Daniele Giannotti
- Department of Biology, University of Pisa, Pisa, Italy,Department of Botany, University of British Columbia, Vancouver, Canada
| | - Vittorio Boscaro
- Department of Botany, University of British Columbia, Vancouver, Canada,*Correspondence: Vittorio Boscaro,
| | - Filip Husnik
- Department of Botany, University of British Columbia, Vancouver, Canada,Okinawa Institute of Science and Technology, Okinawa, Japan
| | | | | |
Collapse
|
25
|
El Hamss H, Maruthi MN, Ally HM, Omongo CA, Wang HL, van Brunschot S, Colvin J, Delatte H. Spatio-temporal changes in endosymbiont diversity and composition in the African cassava whitefly, Bemisia tabaci SSA1. Front Microbiol 2022; 13:986226. [DOI: 10.3389/fmicb.2022.986226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/29/2022] [Indexed: 11/20/2022] Open
Abstract
Sap-sucking insects, including whiteflies, are amongst the most devastating and widely distributed organisms on the planet. They are often highly invasive and endosymbiont communities within these insects help them adapt to new or changing environments. Bemisia tabaci (Gennadius; Hemiptera: Aleyrodidae) whitefly species are vectors of more than 500 known plant-viruses and harbour highly diverse endosymbionts communities. To date, however, whitefly–endosymbiont interactions, community structure and their spatio-temporal changes are still poorly understood. In this study, we investigated the spatio-temporal changes in the composition and diversity of bacterial endosymbionts in the agricultural crop pest whitefly species, Bemisia tabaci sub-Saharan Africa 1-subgroup 1 and 2 (SSA1-SG1 and SSA1-SG2). 16S rRNA amplicon sequencing analysis was carried out to characterise endosymbiont compositionsin field-collected SSA1 (SSA1-SG1 and SSA1-SG2) populations infesting cassava in Uganda in 1997 and 2017. We detected Portiera, Arsenophonus, Wolbachia, Hamiltonella and Hemipteriphilus, with Arsenophonus and Wolbachia infections being predominant. Hemipteriphilus and Hamiltonella frequencies were very low and were detected in seven and two samples, respectively. Bacterial diversity based on three independent parameters including Simpson index, number of haplotypes and Bray–Curtis dissimilarity matrix was significantly higher in 1997 than in 2017. This period also coincided with the advent of super-abundant cassava-whitefly populations on cassava crops in Uganda. We discuss how endosymbionts may influence the biology and behaviour of whiteflies leading to population explosions.
Collapse
|
26
|
Gäbelein C, Reiter MA, Ernst C, Giger GH, Vorholt JA. Engineering Endosymbiotic Growth of E. coli in Mammalian Cells. ACS Synth Biol 2022; 11:3388-3396. [PMID: 36194551 PMCID: PMC9594318 DOI: 10.1021/acssynbio.2c00292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Endosymbioses are cellular mergers in which one cell lives within another cell and have led to major evolutionary transitions, most prominently to eukaryogenesis. Generation of synthetic endosymbioses aims to provide a defined starting point for studying fundamental processes in emerging endosymbiotic systems and enable the engineering of cells with novel properties. Here, we tested the potential of different bacteria for artificial endosymbiosis in mammalian cells. To this end, we adopted the fluidic force microscopy technology to inject diverse bacteria directly into the cytosol of HeLa cells and examined the endosymbiont-host interactions by real-time fluorescence microscopy. Among them, Escherichia coli grew exponentially within the cytoplasm, however, at a faster pace than its host cell. To slow down the intracellular growth of E. coli, we introduced auxotrophies in E. coli and demonstrated that the intracellular growth rate can be reduced by limiting the uptake of aromatic amino acids. In consequence, the survival of the endosymbiont-host pair was prolonged. The presented experimental framework enables studying endosymbiotic candidate systems at high temporal resolution and at the single cell level. Our work represents a starting point for engineering a stable, vertically inherited endosymbiosis.
Collapse
|
27
|
Schuler H, Dittmer J, Borruso L, Galli J, Fischnaller S, Anfora G, Rota‐Stabelli O, Weil T, Janik K. Investigating the microbial community of Cacopsylla spp. as potential factor in vector competence of phytoplasma. Environ Microbiol 2022; 24:4771-4786. [PMID: 35876309 PMCID: PMC9804460 DOI: 10.1111/1462-2920.16138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 07/11/2022] [Accepted: 07/15/2022] [Indexed: 01/05/2023]
Abstract
Phytoplasmas are obligatory intracellular bacteria that colonize the phloem of many plant species and cause hundreds of plant diseases worldwide. In nature, phytoplasmas are primarily transmitted by hemipteran vectors. While all phloem-feeding insects could in principle transmit phytoplasmas, only a limited number of species have been confirmed as vectors. Knowledge about factors that might determine the vector capacity is currently scarce. Here, we characterized the microbiomes of vector and non-vector species of apple proliferation (AP) phytoplasma 'Candidatus Phytoplasma mali' to investigate their potential role in the vector capacity of the host. We performed high-throughput 16S rRNA metabarcoding of the two principal AP-vectors Cacopsylla picta and Cacopsylla melanoneura and eight Cacopsylla species, which are not AP-vectors but co-occur in apple orchards. The microbiomes of all species are dominated by Carsonella, the primary endosymbiont of psyllids and a second uncharacterized Enterobacteriaceae endosymbiont. Each Cacopsylla species harboured a species-specific phylotype of both symbionts. Moreover, we investigated differences between the microbiomes of AP-vector versus non-vector species and identified the predominant endosymbionts but also Wolbachia and several minor taxa as potential indicator species. Our study highlights the importance of considering the microbiome in future investigations of potential factors influencing host vector competence. We investigated the potential role of symbiotic bacteria in the acquisition and transmission of phytoplasma. By comparing the two main psyillid vector species of Apple proliferation (AP) phytoplasma and eight co-occurring species, which are not able to vector AP-phytoplasma, we found differences in the microbial communities of AP-vector and non-vector species, which appear to be driven by the predominant symbionts in both vector species and Wolbachia and several minor taxa in the non-vector species. In contrast, infection with AP-phytoplasma did not affect microbiome composition in both vector species. Our study provides new insights into the endosymbiont diversity of Cacopsylla spp. and highlights the importance of considering the microbiome when investigating potential factors influencing host vector competence.
Collapse
Affiliation(s)
- Hannes Schuler
- Faculty of Science and TechnologyFree University of Bozen‐BolzanoBozen‐BolzanoItaly,Competence Centre for Plant HealthFree University of Bozen‐BolzanoBozen‐BolzanoItaly
| | - Jessica Dittmer
- Faculty of Science and TechnologyFree University of Bozen‐BolzanoBozen‐BolzanoItaly,Université d'Angers, Institut Agro, INRAE, IRHS, SFR QuasavAngersFrance
| | - Luigimaria Borruso
- Faculty of Science and TechnologyFree University of Bozen‐BolzanoBozen‐BolzanoItaly
| | - Jonas Galli
- Department of Forest and Soil Sciences, BOKUUniversity of Natural Resources and Life Sciences ViennaViennaAustria
| | | | - Gianfranco Anfora
- Research and Innovation CenterFondazione Edmund MachSan Michele all'AdigeItaly,Center Agriculture Food EnvironmentUniversity of TrentoSan Michele all'AdigeItaly
| | - Omar Rota‐Stabelli
- Research and Innovation CenterFondazione Edmund MachSan Michele all'AdigeItaly,Center Agriculture Food EnvironmentUniversity of TrentoSan Michele all'AdigeItaly
| | - Tobias Weil
- Research and Innovation CenterFondazione Edmund MachSan Michele all'AdigeItaly
| | - Katrin Janik
- Center Agriculture Food EnvironmentUniversity of TrentoSan Michele all'AdigeItaly
| |
Collapse
|
28
|
Ren X, Cao S, Akami M, Mansour A, Yang Y, Jiang N, Wang H, Zhang G, Qi X, Xu P, Guo T, Niu C. Gut symbiotic bacteria are involved in nitrogen recycling in the tephritid fruit fly Bactrocera dorsalis. BMC Biol 2022; 20:201. [PMID: 36104720 PMCID: PMC9476588 DOI: 10.1186/s12915-022-01399-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 09/02/2022] [Indexed: 11/23/2022] Open
Abstract
Background Nitrogen is considered the most limiting nutrient element for herbivorous insects. To alleviate nitrogen limitation, insects have evolved various symbiotically mediated strategies that enable them to colonize nitrogen-poor habitats or exploit nitrogen-poor diets. In frugivorous tephritid larvae developing in fruit pulp under nitrogen stress, it remains largely unknown how nitrogen is obtained and larval development is completed. Results In this study, we used metagenomics and metatranscriptomics sequencing technologies as well as in vitro verification tests to uncover the mechanism underlying the nitrogen exploitation in the larvae of Bactrocera dorsalis. Our results showed that nitrogenous waste recycling (NWR) could be successfully driven by symbiotic bacteria, including Enterobacterales, Lactobacillales, Orbales, Pseudomonadales, Flavobacteriales, and Bacteroidales. In this process, urea hydrolysis in the larval gut was mainly mediated by Morganella morganii and Klebsiella oxytoca. In addition, core bacteria mediated essential amino acid (arginine excluded) biosynthesis by ammonium assimilation and transamination. Conclusions Symbiotic bacteria contribute to nitrogen transformation in the larvae of B. dorsalis in fruit pulp. Our findings suggest that the pattern of NWR is more likely to be applied by B. dorsalis, and M. morganii, K. oxytoca, and other urease-positive strains play vital roles in hydrolysing nitrogenous waste and providing metabolizable nitrogen for B. dorsalis. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01399-9.
Collapse
|
29
|
Szklarzewicz T, Kalandyk‐Kołodziejczyk M, Michalik A. Ovary structure and symbiotic associates of a ground mealybug, Rhizoecus albidus (Hemiptera, Coccomorpha: Rhizoecidae) and their phylogenetic implications. J Anat 2022; 241:860-872. [PMID: 35686658 PMCID: PMC9358763 DOI: 10.1111/joa.13712] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/29/2022] [Accepted: 05/19/2022] [Indexed: 11/27/2022] Open
Abstract
The ovary structure and the organization of its symbiotic system of the ground mealybug, Rhizoecus albidus (Rhizoecidae), were examined by means of microscopic and molecular methods. Each of the paired elongated ovaries of R. albidus is composed of circa one hundred short telotrophic-meroistic ovarioles, which are radially arranged along the distal part of the lateral oviduct. Analysis of serial sections revealed that each ovariole contains four germ cells: three trophocytes (nurse cells) occupying the tropharium and a single oocyte in the vitellarium. The ovaries are accompanied by giant cells termed bacteriocytes which are tightly packed with large pleomorphic bacteria. Their identity as Brownia rhizoecola (Bacteroidetes) was confirmed by means of amplicon sequencing and fluorescence in situ hybridization techniques. Moreover, to our knowledge, this is the first report on the morphology and ultrastructure of the Brownia rhizoecola bacterium. In the bacteriocyte cytoplasm bacteria Brownia co-reside with sporadic rod-shaped smaller bacteria, namely Wolbachia (Proteobacteria: Alphaproteobacteria). Both symbionts are transmitted to the next generation vertically (maternally), that is, via female germline cells. We documented that, at the time when ovarioles contain oocytes at the vitellogenic stage, these symbionts leave the bacteriocytes and move toward the neck region of ovarioles (i.e. the region between tropharium and vitellarium). Next, the bacteria enter the cytoplasm of follicular cells surrounding the basal part of the tropharium, leave them and enter the space between the follicular epithelium and surface of the nutritive cord connecting the tropharium and vitellarium. Finally, they gather in the deep depression of the oolemma at the anterior pole of the oocyte in the form of a 'symbiont ball'. Our results provide further arguments strongly supporting the validity of the recent changes in the classification of mealybugs, which involved excluding ground mealybugs from the Pseudococcidae family and raising them to the rank of their own family Rhizoecidae.
Collapse
Affiliation(s)
- Teresa Szklarzewicz
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology and Biomedical Research, Faculty of BiologyJagiellonian UniversityKrakówPoland
| | | | - Anna Michalik
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology and Biomedical Research, Faculty of BiologyJagiellonian UniversityKrakówPoland
| |
Collapse
|
30
|
Renoz F, Ambroise J, Bearzatto B, Fakhour S, Parisot N, Ribeiro Lopes M, Gala JL, Calevro F, Hance T. The Di-Symbiotic Systems in the Aphids Sipha maydis and Periphyllus lyropictus Provide a Contrasting Picture of Recent Co-Obligate Nutritional Endosymbiosis in Aphids. Microorganisms 2022; 10:microorganisms10071360. [PMID: 35889078 PMCID: PMC9317480 DOI: 10.3390/microorganisms10071360] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 11/25/2022] Open
Abstract
Dependence on multiple nutritional bacterial symbionts forming a metabolic unit has repeatedly evolved in many insect species that feed on nutritionally unbalanced diets such as plant sap. This is the case for aphids of the subfamilies Lachninae and Chaitophorinae, which have evolved di-symbiotic systems in which the ancient obligate nutritional symbiont Buchnera aphidicola is metabolically complemented by an additional nutritional symbiont acquired more recently. Deciphering how different symbionts integrate both metabolically and anatomically in such systems is crucial to understanding how complex nutritional symbiotic systems function and evolve. In this study, we sequenced and analyzed the genomes of the symbionts B. aphidicola and Serratia symbiotica associated with the Chaitophorinae aphids Sipha maydis and Periphyllus lyropictus. Our results show that, in these two species, B. aphidicola and S. symbiotica complement each other metabolically (and their hosts) for the biosynthesis of essential amino acids and vitamins, but with distinct metabolic reactions supported by each symbiont depending on the host species. Furthermore, the S. symbiotica symbiont associated with S. maydis appears to be strictly compartmentalized into the specialized host cells housing symbionts in aphids, the bacteriocytes, whereas the S. symbiotica symbiont associated with P. lyropictus exhibits a highly invasive phenotype, presumably because it is capable of expressing a larger set of virulence factors, including a complete flagellum for bacterial motility. Such contrasting levels of metabolic and anatomical integration for two S. symbiotica symbionts that were recently acquired as nutritional co-obligate partners reflect distinct coevolutionary processes specific to each association.
Collapse
Affiliation(s)
- François Renoz
- Biodiversity Research Centre, Earth and Life Institute, Université Catholique de Louvain (UCLouvain), 1348 Louvain-la-Neuve, Belgium;
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR203, F-69621 Villeurbanne, France; (N.P.); (M.R.L.); (F.C.)
- Correspondence:
| | - Jérôme Ambroise
- Center for Applied Molecular Technologies, Institute of Experimental and Clinical Research, Université Catholique de Louvain (UCLouvain), 1200 Woluwe-Saint-Lambert, Belgium; (J.A.); (B.B.); (J.-L.G.)
| | - Bertrand Bearzatto
- Center for Applied Molecular Technologies, Institute of Experimental and Clinical Research, Université Catholique de Louvain (UCLouvain), 1200 Woluwe-Saint-Lambert, Belgium; (J.A.); (B.B.); (J.-L.G.)
| | - Samir Fakhour
- Department of Plant Protection, National Institute of Agricultural Research, Avenue Ennasr, BP 415 Rabat Principale, Rabat 10090, Morocco;
| | - Nicolas Parisot
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR203, F-69621 Villeurbanne, France; (N.P.); (M.R.L.); (F.C.)
| | - Mélanie Ribeiro Lopes
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR203, F-69621 Villeurbanne, France; (N.P.); (M.R.L.); (F.C.)
| | - Jean-Luc Gala
- Center for Applied Molecular Technologies, Institute of Experimental and Clinical Research, Université Catholique de Louvain (UCLouvain), 1200 Woluwe-Saint-Lambert, Belgium; (J.A.); (B.B.); (J.-L.G.)
| | - Federica Calevro
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR203, F-69621 Villeurbanne, France; (N.P.); (M.R.L.); (F.C.)
| | - Thierry Hance
- Biodiversity Research Centre, Earth and Life Institute, Université Catholique de Louvain (UCLouvain), 1348 Louvain-la-Neuve, Belgium;
| |
Collapse
|
31
|
Renoz F, Lopes MR, Gaget K, Duport G, Eloy MC, Geelhand de Merxem B, Hance T, Calevro F. Compartmentalized into Bacteriocytes but Highly Invasive: the Puzzling Case of the Co-Obligate Symbiont Serratia symbiotica in the Aphid Periphyllus lyropictus. Microbiol Spectr 2022; 10:e0045722. [PMID: 35647657 PMCID: PMC9241954 DOI: 10.1128/spectrum.00457-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/18/2022] [Indexed: 01/02/2023] Open
Abstract
Dependence on multiple nutritional symbionts that form a metabolic unit has evolved many times in insects. Although it has been postulated that host dependence on these metabolically interconnected symbionts is sustained by their high degree of anatomical integration (these symbionts are often housed in distinct symbiotic cells, the bacteriocytes, assembled into a common symbiotic organ, the bacteriome), the developmental aspects of such multipartner systems have received little attention. Aphids of the subfamilies Chaitophorinae and Lachninae typically harbor disymbiotic systems in which the metabolic capabilities of the ancient obligate symbiont Buchnera aphidicola are complemented by those of a more recently acquired nutritional symbiont, often belonging to the species Serratia symbiotica. Here, we used microscopy approaches to finely characterize the tissue tropism and infection dynamics of the disymbiotic system formed by B. aphidicola and S. symbiotica in the Norway maple aphid Periphyllus lyropictus (Chaitophorinae). Our observations show that, in this aphid, the co-obligate symbiont S. symbiotica exhibits a dual lifestyle: intracellular by being housed in large syncytial bacteriocytes embedded between B. aphidicola-containing bacteriocytes in a well-organized compartmentalization pattern, and extracellular by massively invading the digestive tract and other tissues during embryogenesis. This is the first reported case of an obligate aphid symbiont that is internalized in bacteriocytes but simultaneously adopts an extracellular lifestyle. This unusual infection pattern for an obligate insect symbiont suggests that some bacteriocyte-associated obligate symbionts, despite their integration into a cooperative partnership, still exhibit invasive behavior and escape strict compartmentalization in bacteriocytes. IMPORTANCE Multipartner nutritional endosymbioses have evolved many times in insects. In Chaitophorinae aphids, the eroded metabolic capabilities of the ancient obligate symbiont B. aphidicola are complemented by those of more recently acquired symbionts. Here, we report the atypical case of the co-obligate S. symbiotica symbiont associated with P. lyropictus. This bacterium is compartmentalized into bacteriocytes nested into the ones harboring the more ancient symbiont B. aphidicola, reflecting metabolic convergences between the two symbionts. At the same time, S. symbiotica exhibits highly invasive behavior by colonizing various host tissues, including the digestive tract during embryogenesis. The discovery of this unusual phenotype for a co-obligate symbiont reveals a new face of multipartner nutritional endosymbiosis in insects. In particular, it shows that co-obligate symbionts can retain highly invasive traits and suggests that host dependence on these bacterial partners may evolve prior to their strict compartmentalization into specialized host structures.
Collapse
Affiliation(s)
- François Renoz
- Biodiversity Research Centre, Earth and Life Institute, UCLouvain, Louvain-la-Neuve, Belgium
- Université de Lyon, INSA Lyon, INRAE, BF2I, UMR203, Villeurbanne, France
| | | | - Karen Gaget
- Université de Lyon, INSA Lyon, INRAE, BF2I, UMR203, Villeurbanne, France
| | - Gabrielle Duport
- Université de Lyon, INSA Lyon, INRAE, BF2I, UMR203, Villeurbanne, France
| | - Marie-Christine Eloy
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| | | | - Thierry Hance
- Biodiversity Research Centre, Earth and Life Institute, UCLouvain, Louvain-la-Neuve, Belgium
| | - Federica Calevro
- Université de Lyon, INSA Lyon, INRAE, BF2I, UMR203, Villeurbanne, France
| |
Collapse
|
32
|
Csorba AB, Fora CG, Bálint J, Felföldi T, Szabó A, Máthé I, Loxdale HD, Kentelky E, Nyárádi II, Balog A. Endosymbiotic Bacterial Diversity of Corn Leaf Aphid, Rhopalosiphum maidis Fitch (Hemiptera: Aphididae) Associated with Maize Management Systems. Microorganisms 2022; 10:microorganisms10050939. [PMID: 35630383 PMCID: PMC9145372 DOI: 10.3390/microorganisms10050939] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 12/07/2022] Open
Abstract
In this study, different maize fields cultivated under different management systems were sampled to test corn leaf aphid, Rhopalosiphum maidis, populations in terms of total and endosymbiotic bacterial diversity. Corn leaf aphid natural populations were collected from traditionally managed maize fields grown under high agricultural and natural landscape diversity as well as conventionally treated high-input agricultural fields grown in monoculture and with fertilizers use, hence with low natural landscape diversity. Total bacterial community assessment by DNA sequencing was performed using the Illumina MiSeq platform. In total, 365 bacterial genera were identified and 6 endosymbiont taxa. A high abundance of the primary endosymbiont Buchnera and secondary symbionts Serratia and Wolbachia were detected in all maize crops. Their frequency was found to be correlated with the maize management system used, probably with fertilizer input. Three other facultative endosymbionts (“Candidatus Hamiltonella”, an uncultured Rickettsiales genus, and Spiroplasma) were also recorded at different frequencies under the two management regimes. Principal components analyses revealed that the relative contribution of the obligate and dominant symbiont Buchnera to the aphid endosymbiotic bacterial community was 72%, whereas for the managed system this was only 16.3%. When facultative symbionts alone were considered, the effect of management system revealed a DNA diversity of 23.3%.
Collapse
Affiliation(s)
- Artúr Botond Csorba
- Department of Horticulture, Faculty of Technical and Human Sciences, Sapientia Hungarian University of Transylvania, Aleea Sighișoarei 2, 540485 Târgu Mureș, Romania; (A.B.C.); (J.B.); (E.K.)
| | - Ciprian George Fora
- Faculty of Horticulture and Forestry, Banat’s University of Agricultural Sciences and Veterinary Medicine King Michael I of Romania from Timișoara, Calea Aradului 119, 300645 Timișoara, Romania
- Correspondence: (C.G.F.); (I.-I.N.); (A.B.)
| | - János Bálint
- Department of Horticulture, Faculty of Technical and Human Sciences, Sapientia Hungarian University of Transylvania, Aleea Sighișoarei 2, 540485 Târgu Mureș, Romania; (A.B.C.); (J.B.); (E.K.)
| | - Tamás Felföldi
- Department of Microbiology, Eötvös Loránd University, Pázmány Péter Sétány 1/c, 1117 Budapest, Hungary;
| | - Attila Szabó
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Lennart 756-51 Hjelms Väg 9, 750 07 Uppsala, Sweden;
| | - István Máthé
- Department of Bioengineering, Sapientia Hungarian University of Transylvania, Piaţa Libertăţii 1, 530104 Miercurea Ciuc, Romania;
| | - Hugh D. Loxdale
- School of Biosciences, Cardiff University, The Sir Martin Evans Building, Museum Avenue, Cardiff, Wales CF10 3AX, UK;
| | - Endre Kentelky
- Department of Horticulture, Faculty of Technical and Human Sciences, Sapientia Hungarian University of Transylvania, Aleea Sighișoarei 2, 540485 Târgu Mureș, Romania; (A.B.C.); (J.B.); (E.K.)
| | - Imre-István Nyárádi
- Department of Horticulture, Faculty of Technical and Human Sciences, Sapientia Hungarian University of Transylvania, Aleea Sighișoarei 2, 540485 Târgu Mureș, Romania; (A.B.C.); (J.B.); (E.K.)
- Correspondence: (C.G.F.); (I.-I.N.); (A.B.)
| | - Adalbert Balog
- Department of Horticulture, Faculty of Technical and Human Sciences, Sapientia Hungarian University of Transylvania, Aleea Sighișoarei 2, 540485 Târgu Mureș, Romania; (A.B.C.); (J.B.); (E.K.)
- Correspondence: (C.G.F.); (I.-I.N.); (A.B.)
| |
Collapse
|
33
|
Wangkeeree J, Suwanchaisri K, Roddee J, Hanboonsong Y. Selective Elimination of Wolbachia from the Leafhopper Yamatotettix flavovittatus Matsumura. Curr Microbiol 2022; 79:173. [PMID: 35488963 DOI: 10.1007/s00284-022-02822-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 02/21/2022] [Indexed: 11/30/2022]
Abstract
Wolbachia infections affect the reproductive system and various biological traits of the host insect. There is a high frequency of Wolbachia infection in the leafhopper Yamatotettix flavovittatus Matsumura. To investigate the potential roles of Wolbachia in the host, it is important to generate a non-Wolbachia-infected line. The efficacy of antibiotics in eliminating Wolbachia from Y. flavovittatus remains unknown. This leafhopper harbors the mutualistic bacterium Candidatus Sulcia muelleri, which has an important function in the biological traits. The presence of Ca. S. muelleri raises a major concern regarding the use of antibiotics. We selectively eliminated Wolbachia, considering the influence of antibiotics on leafhopper survival and Ca. S. muelleri prevalence. The effect of artificial diets containing different doses of tetracycline and rifampicin on survival was optimized; high dose (0.5 mg/ml) of antibiotics induces a high mortality. A concentration of 0.2 mg/ml was chosen for the subsequent experiments. Antibiotic treatments significantly reduced the Wolbachia infection, and the Wolbachia density in the treated leafhoppers sharply declined. Wolbachia recurred in tetracycline-treated offspring, regardless of antibiotic exposure. However, Wolbachia is unable to be transmitted and restored in rifampicin-treated offspring. The dose and treatment duration had no significant effect on the infection and density of Ca. S. muelleri in the antibiotic-treated offspring. In conclusion, Wolbachia in Y. flavovittatus was stably eliminated using rifampicin, and the Wolbachia-free line was generated at least two generations after treatment. This report provides additional experimental procedures for removing Wolbachia from insects, particularly in host species with the coexistence of Ca. S. muelleri.
Collapse
Affiliation(s)
- Jureemart Wangkeeree
- Department of Agricultural Technology, Faculty of Science and Technology, Thammasat University, Rangsit Centre, Khlong Nueng, Klong Luang, Pathum Thani, Thailand.
| | - Kamonrat Suwanchaisri
- Department of Agricultural Technology, Faculty of Science and Technology, Thammasat University, Rangsit Centre, Khlong Nueng, Klong Luang, Pathum Thani, Thailand
| | - Jariya Roddee
- School of Crop Production Technology, Institute of Agricultural Technology, Suranaree University of Technology, Suranaree, Muang, Nakhon Ratchasima, Thailand
| | - Yupa Hanboonsong
- Department of Entomology, Faculty of Agriculture, Khon Kaen University, Nai Muang, Muang, Khon Kaen, Thailand
| |
Collapse
|
34
|
Abundance and Localization of Symbiotic Bacterial Communities in the Fly Parasitoid Spalangia cameroni. Appl Environ Microbiol 2022; 88:e0254921. [PMID: 35420439 PMCID: PMC9088259 DOI: 10.1128/aem.02549-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Multicellular eukaryotes often host multiple microbial symbionts that may cooperate or compete for host resources, such as space and nutrients. Here, we studied the abundances and localization of four bacterial symbionts, Rickettsia, Wolbachia, Sodalis, and Arsenophonus, in the parasitic wasp Spalangia cameroni. Using quantitative PCR (qPCR), we measured the symbionts' titers in wasps that harbor different combinations of these symbionts. We found that the titer of each symbiont decreased as the number of symbiont species in the community increased. Symbionts' titers were higher in females than in males. Rickettsia was the most abundant symbiont in all the communities, followed by Sodalis and Wolbachia. The titers of these three symbionts were positively correlated in some of the colonies. Fluorescence in situ hybridization was in line with the qPCR results: Rickettsia, Wolbachia, and Sodalis were observed in high densities in multiple organs, including brain, muscles, gut, Malpighian tubules, fat body, ovaries, and testes, while Arsenophonus was localized to fewer organs and in lower densities. Sodalis and Arsenophonus were observed in ovarian follicle cells but not within oocytes or laid eggs. This study highlights the connection between symbionts' abundance and localization. We discuss the possible connections between our findings to symbiont transmission success. IMPORTANCE Many insects carry intracellular bacterial symbionts (bacteria that reside within the cells of the insect). When multiple symbiont species cohabit in a host, they may compete or cooperate for space, nutrients, and transmission, and the nature of such interactions would be reflected in the abundance of each symbiont species. Given the widespread occurrence of coinfections with maternally transmitted symbionts in insects, it is important to learn more about how they interact, where they are localized, and how these two aspects affect their co-occurrence within individual insects. Here, we studied the abundance and the localization of four symbionts, Rickettsia, Wolbachia, Sodalis, and Arsenophonus, that cohabit the parasitic wasp Spalangia cameroni. We found that symbionts' titers differed between symbiotic communities. These results were corroborated by microscopy, which shows differential localization patterns. We discuss the findings in the contexts of community ecology, possible symbiont-symbiont interactions, and host control mechanisms that may shape the symbiotic community structure.
Collapse
|
35
|
Shigenobu S, Yorimoto S. Aphid hologenomics: current status and future challenges. CURRENT OPINION IN INSECT SCIENCE 2022; 50:100882. [PMID: 35150917 DOI: 10.1016/j.cois.2022.100882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/18/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Aphids are important model organisms in ecological, developmental, and evolutionary studies of, for example, symbiosis, insect-plant interactions, pest management, and developmental polyphenism. Here, we review the recent progress made in the genomics of aphids and their symbionts: hologenomics. The reference genome of Acyrthosiphon pisum has been greatly improved, and chromosome-level assembly is now available. The genomes of over 20 aphid species have been sequenced, and comparative genomic analyses have revealed pervasive gene duplication and dynamic chromosomal rearrangements. Over 120 symbiont genomes (both obligate and facultative) have been sequenced, and modern deep-sequencing technologies have identified novel symbionts. The advances in hologenomics have helped to elucidate the dynamic evolution of facultative and co-obligate symbionts with the ancient obligate symbiont Buchnera.
Collapse
Affiliation(s)
- Shuji Shigenobu
- Laboratory of Evolutionary Genomics, National Institute for Basic Biology, Okazaki, 444-8585, Japan; Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies, SOKENDAI, Nishigonaka 38, Myodaiji, Okazaki, 444-8585, Japan.
| | - Shunta Yorimoto
- Laboratory of Evolutionary Genomics, National Institute for Basic Biology, Okazaki, 444-8585, Japan; Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies, SOKENDAI, Nishigonaka 38, Myodaiji, Okazaki, 444-8585, Japan
| |
Collapse
|
36
|
Moustafa MAM, Mohamed WMA, Lau AC, Chatanga E, Qiu Y, Hayashi N, Naguib D, Sato K, Takano A, Mastuno K, Nonaka N, Taylor D, Kawabata H, Nakao R. Novel symbionts and potential human pathogens excavated from argasid tick microbiomes that are shaped by dual or single symbiosis. Comput Struct Biotechnol J 2022; 20:1979-1992. [PMID: 35521555 PMCID: PMC9062450 DOI: 10.1016/j.csbj.2022.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/15/2022] [Accepted: 04/15/2022] [Indexed: 11/27/2022] Open
Abstract
Research on vector-associated microbiomes has been expanding due to increasing emergence of vector-borne pathogens and awareness of the importance of symbionts in the vector physiology. However, little is known about microbiomes of argasid (or soft-bodied) ticks due to limited access to specimens. We collected four argasid species (Argas japonicus, Carios vespertilionis, Ornithodoros capensis, and Ornithodoros sawaii) from the nests or burrows of their vertebrate hosts. One laboratory-reared argasid species (Ornithodoros moubata) was also included. Attempts were then made to isolate and characterize potential symbionts/pathogens using arthropod cell lines. Microbial community structure was distinct for each tick species. Coxiella was detected as the predominant symbiont in four tick species where dual symbiosis between Coxiella and Rickettsia or Coxiella and Francisella was observed in C. vespertilionis and O. moubata, respectively. Of note, A. japonicus lacked Coxiella and instead had Occidentia massiliensis and Thiotrichales as alternative symbionts. Our study found strong correlation between tick species and life stage. We successfully isolated Oc. massiliensis and characterized potential pathogens of genera Ehrlichia and Borrelia. The results suggest that there is no consistent trend of microbiomes in relation to tick life stage that fit all tick species and that the final interpretation should be related to the balance between environmental bacterial exposure and endosymbiont ecology. Nevertheless, our findings provide insights on the ecology of tick microbiomes and basis for future investigations on the capacity of argasid ticks to carry novel pathogens with public health importance.
Collapse
|
37
|
Nitrogen Acquisition Strategies Mediated by Insect Symbionts: A Review of Their Mechanisms, Methodologies, and Case Studies. INSECTS 2022; 13:insects13010084. [PMID: 35055927 PMCID: PMC8781418 DOI: 10.3390/insects13010084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 12/10/2022]
Abstract
Simple Summary Nitrogen acquisition strategies mediated by insect symbionts through biological nitrogen fixation (BNF) and nitrogenous waste recycling (NWR) were reviewed and compared in our paper, and a model for nitrogen provisioning in insects was then constructed. In our model, (1) insects acquired nitrogen nutrition from food stuffs directly, and the subprime channels (e.g., BNF or NWR) for nitrogen provisioning were accelerated when the available nitrogen in diets could not fully support the normal growth and development of insects; (2) the NWR strategy was more accessible to more insects due to its energy conservation and mild reaction conditions; (3) ammonia produced by different channels was used for essential nitrogenous metabolites synthesis via the glutamine synthetase and glutamate synthase pathways. Abstract Nitrogen is usually a restrictive nutrient that affects the growth and development of insects, especially of those living in low nitrogen nutrient niches. In response to the low nitrogen stress, insects have gradually developed symbiont-based stress response strategies—biological nitrogen fixation and nitrogenous waste recycling—to optimize dietary nitrogen intake. Based on the above two patterns, atmospheric nitrogen or nitrogenous waste (e.g., uric acid, urea) is converted into ammonia, which in turn is incorporated into the organism via the glutamine synthetase and glutamate synthase pathways. This review summarized the reaction mechanisms, conventional research methods and the various applications of biological nitrogen fixation and nitrogenous waste recycling strategies. Further, we compared the bio-reaction characteristics and conditions of two strategies, then proposed a model for nitrogen provisioning based on different strategies.
Collapse
|
38
|
Mazzucco R, Schlötterer C. Long-term gut microbiome dynamics in Drosophila melanogaster reveal environment-specific associations between bacterial taxa at the family level. Proc Biol Sci 2021; 288:20212193. [PMID: 34905708 PMCID: PMC8670958 DOI: 10.1098/rspb.2021.2193] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The influence of the microbiome on its host is well-documented, but the interplay of its members is not yet well-understood. Even for simple microbiomes, the interaction among members of the microbiome is difficult to study. Longitudinal studies provide a promising approach to studying such interactions through the temporal covariation of different taxonomic units. By contrast to most longitudinal studies, which span only a single host generation, we here present a post hoc analysis of a whole-genome dataset of 81 samples that follows microbiome composition for up to 180 host generations, which cover nearly 10 years. The microbiome diversity remained rather stable in replicated Drosophila melanogaster populations exposed to two different temperature regimes. The composition changed, however, systematically across replicates of the two temperature regimes. Significant associations between families, mostly specific to one temperature regime, indicate functional interdependence of different microbiome components. These associations also involve moderately abundant families, which emphasizes their functional importance, and highlights the importance of looking beyond the common constituents of the Drosophila microbiome.
Collapse
Affiliation(s)
- Rupert Mazzucco
- Institut für Populationsgenetik, Veterinärmedizinische Universität Wien, Veterinärplatz 1, Wien 1210, Austria
| | - Christian Schlötterer
- Institut für Populationsgenetik, Veterinärmedizinische Universität Wien, Veterinärplatz 1, Wien 1210, Austria
| |
Collapse
|
39
|
Markevich D, Walczak M, Borodin O, Szwedo J, Brożek J. Morphological reassessment of the movable calcar of delphacid planthoppers (Hemiptera: Fulgoromorpha: Delphacidae). Sci Rep 2021; 11:22294. [PMID: 34785713 PMCID: PMC8595309 DOI: 10.1038/s41598-021-01771-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 11/01/2021] [Indexed: 11/08/2022] Open
Abstract
This study presents the morphology of calcar in adult Delphacidae based on representatives of the genera Ugyops Guérin-Meneville, 1834, Notuchus Fennah, 1969 (Ugyopini), Asiraca Latreille, 1798 (Asiracini), Kelisia Fieber, 1866, (Kelisini), Stenocranus Fieber, 1866 (Stenocranini), Chloriona Fieber, 1866, Megadelphax Wagner, 1963, Muellerianella Wagner, 1963, Javesella Fennah, 1963, Conomelus Fieber, 1866, Euconomelus Haupt, 1929, Hyledelphax Vilbaste, 1968, Stiroma Fieber, 1866, Struebingianella Wagner, 1963 and Xanthodelphax Wagner, 1963 (Delphacini). We used SEM electron microscopy, to define seven types of calcar structure (Types 1, 2, 5, 6, 7, 8, and 9) based on combinations of characters including shape, number of teeth and differentiation of sensory structures in species from fifteen genera. Additionally, two other types (Types 3 and 4) were determined based on the calcar descriptions from previous studies. Similarities and differences in calcar structure and function were discussed and emerging relationships between planthopper species and their particular habitats were indicated.
Collapse
Affiliation(s)
- Darya Markevich
- State Scientific and Production Amalgamation The Scientific and Practical Center for Bioresources, Laboratory of Terrestrial Invertebrates, National Academy of Sciences of Belarus, 27, Akademicheskaya Str., 220050, Minsk, Belarus
| | - Marcin Walczak
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 9, Bankowa St., 40007, Katowice, Poland
| | - Oleg Borodin
- Institute of Systematic Biology, Daugavpils University, 13 - 229 Vienības Street, Daugavpils, 5401, Latvia
| | - Jacek Szwedo
- Laboratory of Evolutionary Entomology and Museum of Amber Inclusions, Department of Invertebrate Zoology and Parasitology, Faculty of Biology, University of Gdańsk, 59, Wita Stwosza St., 80309, Gdańsk, Poland.
| | - Jolanta Brożek
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 9, Bankowa St., 40007, Katowice, Poland.
| |
Collapse
|
40
|
Salazar MM, Pupo MT, Brown AMV. Co-Occurrence of Viruses, Plant Pathogens, and Symbionts in an Underexplored Hemipteran Clade. Front Cell Infect Microbiol 2021; 11:715998. [PMID: 34513731 PMCID: PMC8426549 DOI: 10.3389/fcimb.2021.715998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/30/2021] [Indexed: 12/05/2022] Open
Abstract
Interactions between insect symbionts and plant pathogens are dynamic and complex, sometimes involving direct antagonism or synergy and sometimes involving ecological and evolutionary leaps, as insect symbionts transmit through plant tissues or plant pathogens transition to become insect symbionts. Hemipterans such as aphids, whiteflies, psyllids, leafhoppers, and planthoppers are well-studied plant pests that host diverse symbionts and vector plant pathogens. The related hemipteran treehoppers (family Membracidae) are less well-studied but offer a potentially new and diverse array of symbionts and plant pathogenic interactions through their distinct woody plant hosts and ecological interactions with diverse tending hymenopteran taxa. To explore membracid symbiont–pathogen diversity and co-occurrence, this study performed shotgun metagenomic sequencing on 20 samples (16 species) of treehopper, and characterized putative symbionts and pathogens using a combination of rapid blast database searches and phylogenetic analysis of assembled scaffolds and correlation analysis. Among the 8.7 billion base pairs of scaffolds assembled were matches to 9 potential plant pathogens, 12 potential primary and secondary insect endosymbionts, numerous bacteriophages, and other viruses, entomopathogens, and fungi. Notable discoveries include a divergent Brenneria plant pathogen-like organism, several bee-like Bombella and Asaia strains, novel strains of Arsenophonus-like and Sodalis-like symbionts, Ralstonia sp. and Ralstonia-type phages, Serratia sp., and APSE-type phages and bracoviruses. There were several short Phytoplasma and Spiroplasma matches, but there was no indication of plant viruses in these data. Clusters of positively correlated microbes such as yeast-like symbionts and Ralstonia, viruses and Serratia, and APSE phage with parasitoid-type bracoviruses suggest directions for future analyses. Together, results indicate membracids offer a rich palette for future study of symbiont–plant pathogen interactions.
Collapse
Affiliation(s)
- McKinlee M Salazar
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| | - Mônica T Pupo
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Amanda M V Brown
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
41
|
Michalik A, Castillo Franco D, Kobiałka M, Szklarzewicz T, Stroiński A, Łukasik P. Alternative Transmission Patterns in Independently Acquired Nutritional Cosymbionts of Dictyopharidae Planthoppers. mBio 2021; 12:e0122821. [PMID: 34465022 PMCID: PMC8406288 DOI: 10.1128/mbio.01228-21] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/20/2021] [Indexed: 11/20/2022] Open
Abstract
Sap-sucking hemipterans host specialized, heritable microorganisms that supplement their diet with essential nutrients. These microbes show unusual features that provide a unique perspective on the coevolution of host-symbiont systems but are still poorly understood. Here, we combine microscopy with high-throughput sequencing to revisit 80-year-old reports on the diversity of symbiont transmission modes in a broadly distributed planthopper family, Dictyopharidae. We show that in seven species examined, the ancestral nutritional symbionts Sulcia and Vidania producing essential amino acids are complemented by co-primary symbionts, either Arsenophonus or Sodalis, acquired several times independently by different host lineages and contributing to the biosynthesis of B vitamins. These symbionts reside within separate bacteriomes within the abdominal cavity, although in females Vidania also occupies bacteriocytes in the rectal organ. Notably, the symbionts are transovarially transmitted from mothers to offspring in two alternative ways. In most examined species, all nutritional symbionts simultaneously infect the posterior end of the full-grown oocytes and next gather in their perivitelline space. In contrast, in other species, Sodalis colonizes the cytoplasm of the anterior pole of young oocytes, forming a cluster separate from the "symbiont ball" formed by late-invading Sulcia and Vidania. Our results show how newly arriving microbes may utilize different strategies to establish long-term heritable symbiosis. IMPORTANCE Sup-sucking hemipterans host ancient heritable microorganisms that supplement their unbalanced diet with essential nutrients and have repeatedly been complemented or replaced by other microorganisms. These symbionts need to be reliably transmitted to subsequent generations through the reproductive system, and often they end up using the same route as the most ancient ones. We show for the first time that in a single family of planthoppers, the complementing symbionts that have established infections independently utilize different transmission strategies, one of them novel, with the transmission of different microbes separated spatially and temporally. These data show how newly arriving microbes may utilize different strategies to establish long-term heritable symbioses.
Collapse
Affiliation(s)
- Anna Michalik
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Diego Castillo Franco
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Michał Kobiałka
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Teresa Szklarzewicz
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Adam Stroiński
- Museum and Institute of Zoology, Polish Academy of Sciences, Warsaw, Poland
| | - Piotr Łukasik
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
42
|
Altinli M, Schnettler E, Sicard M. Symbiotic Interactions Between Mosquitoes and Mosquito Viruses. Front Cell Infect Microbiol 2021; 11:694020. [PMID: 34527601 PMCID: PMC8435781 DOI: 10.3389/fcimb.2021.694020] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/12/2021] [Indexed: 11/29/2022] Open
Abstract
Mosquitoes not only transmit human and veterinary pathogens called arboviruses (arthropod-borne viruses) but also harbor mosquito-associated insect-specific viruses (mosquito viruses) that cannot infect vertebrates. In the past, studies investigating mosquito viruses mainly focused on highly pathogenic interactions that were easier to detect than those without visible symptoms. However, the recent advances in viral metagenomics have highlighted the abundance and diversity of viruses which do not generate mass mortality in host populations. Over the last decade, this has facilitated the rapid growth of virus discovery in mosquitoes. The circumstances around the discovery of mosquito viruses greatly affected how they have been studied so far. While earlier research mainly focused on the pathogenesis caused by DNA and some double-stranded RNA viruses during larval stages, more recently discovered single-stranded RNA mosquito viruses were heavily studied for their putative interference with arboviruses in female adults. Thus, many aspects of mosquito virus interactions with their hosts and host-microbiota are still unknown. In this context, considering mosquito viruses as endosymbionts can help to identify novel research areas, in particular in relation to their long-term interactions with their hosts (e.g. relationships during all life stages, the stability of the associations at evolutionary scales, transmission routes and virulence evolution) and the possible context-dependent range of interactions (i.e. beneficial to antagonistic). Here, we review the symbiotic interactions of mosquito viruses considering different aspects of their ecology, such as transmission, host specificity, host immune system and interactions with other symbionts within the host cellular arena. Finally, we highlight related research gaps in mosquito virus research.
Collapse
Affiliation(s)
- Mine Altinli
- Molecular Entomology, Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany
- German Centre for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel-Riems, Hamburg, Germany
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Esther Schnettler
- Molecular Entomology, Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany
- German Centre for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel-Riems, Hamburg, Germany
- Faculty of Mathematics, Informatics and Natural Sciences, University Hamburg, Hamburg, Germany
| | - Mathieu Sicard
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| |
Collapse
|
43
|
Kinjo Y, Lo N, Martín PV, Tokuda G, Pigolotti S, Bourguignon T. Enhanced Mutation Rate, Relaxed Selection, and the "Domino Effect" are associated with Gene Loss in Blattabacterium, A Cockroach Endosymbiont. Mol Biol Evol 2021; 38:3820-3831. [PMID: 34426845 PMCID: PMC8382890 DOI: 10.1093/molbev/msab159] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Intracellular endosymbionts have reduced genomes that progressively lose genes at a timescale of tens of million years. We previously reported that gene loss rate is linked to mutation rate in Blattabacterium, however, the mechanisms causing gene loss are not yet fully understood. Here, we carried out comparative genomic analyses on the complete genome sequences of a representative set of 67 Blattabacterium strains, with sizes ranging between 511 and 645 kb. We found that 200 of the 566 analyzed protein-coding genes were lost in at least one lineage of Blattabacterium, with the most extreme case being one gene that was lost independently in 24 lineages. We found evidence for three mechanisms influencing gene loss in Blattabacterium. First, gene loss rates were found to increase exponentially with the accumulation of substitutions. Second, genes involved in vitamin and amino acid metabolism experienced relaxed selection in Cryptocercus and Mastotermes, possibly triggered by their vertically inherited gut symbionts. Third, we found evidence of epistatic interactions among genes leading to a "domino effect" of gene loss within pathways. Our results highlight the complexity of the process of genome erosion in an endosymbiont.
Collapse
Affiliation(s)
- Yukihiro Kinjo
- Okinawa Institute of Science & Technology Graduate University, Tancha, Onna-son, Okinawa, Japan
| | - Nathan Lo
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Paula Villa Martín
- Okinawa Institute of Science & Technology Graduate University, Tancha, Onna-son, Okinawa, Japan
| | - Gaku Tokuda
- Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Simone Pigolotti
- Okinawa Institute of Science & Technology Graduate University, Tancha, Onna-son, Okinawa, Japan
| | - Thomas Bourguignon
- Okinawa Institute of Science & Technology Graduate University, Tancha, Onna-son, Okinawa, Japan
| |
Collapse
|
44
|
Marra A, Masson F, Lemaitre B. The iron transporter Transferrin 1 mediates homeostasis of the endosymbiotic relationship between Drosophila melanogaster and Spiroplasma poulsonii. MICROLIFE 2021; 2:uqab008. [PMID: 37223258 PMCID: PMC10117857 DOI: 10.1093/femsml/uqab008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/23/2021] [Indexed: 05/25/2023]
Abstract
Iron is involved in numerous biological processes in both prokaryotes and eukaryotes and is therefore subject to a tug-of-war between host and microbes upon pathogenic infections. In the fruit fly Drosophila melanogaster, the iron transporter Transferrin 1 (Tsf1) mediates iron relocation from the hemolymph to the fat body upon infection as part of the nutritional immune response. The sequestration of iron in the fat body renders it less available for pathogens, hence limiting their proliferation and enhancing the host ability to fight the infection. Here we investigate the interaction between host iron homeostasis and Spiroplasma poulsonii, a facultative, vertically transmitted, endosymbiont of Drosophila. This low-pathogenicity bacterium is devoid of cell wall and is able to thrive in the host hemolymph without triggering pathogen-responsive canonical immune pathways. However, hemolymph proteomics revealed an enrichment of Tsf1 in infected flies. We find that S. poulsonii induces tsf1 expression and triggers an iron sequestration response similarly to pathogenic bacteria. We next demonstrate that free iron cannot be used by Spiroplasma while Tsf1-bound iron promotes bacterial growth, underlining the adaptation of Spiroplasma to the intra-host lifestyle where iron is mostly protein-bound. Our results show that Tsf1 is used both by the fly to sequester iron and by Spiroplasma to forage host iron, making it a central protein in endosymbiotic homeostasis.
Collapse
Affiliation(s)
- Alice Marra
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Florent Masson
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Bruno Lemaitre
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
45
|
Yan XT, Ye ZX, Wang X, Zhang CX, Chen JP, Li JM, Huang HJ. Insight into different host range of three planthoppers by transcriptomic and microbiomic analysis. INSECT MOLECULAR BIOLOGY 2021; 30:287-296. [PMID: 33452691 DOI: 10.1111/imb.12695] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/03/2021] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Brown planthopper (BPH), white-backed planthopper (WBPH) and small brown planthopper (SBPH), are the closely related rice pests that perform differentially on wheat plants. Using fecundity as a fitness measure, we found that SBPH well-adapted on wheat plants, followed by WBPH, while BPH had the worst performance. The transcriptomic responses of SBPH and BPH to wheat plants have been compared previously. To understand the different fitness mechanisms of three planthoppers, this study first investigated the transcriptomic responses of WBPH to rice and wheat plants. Genes involved in detoxification, transportation and proteasome were significantly enriched in WBPH in response to different diets. Moreover, comparative analysis demonstrated that most co-regulated genes in BPH and SBPH showed different expression changes; whereas most co-regulated genes in BPH and WBPH exhibited similar expression changes. Subsequently, this study also investigated the influences of host plants on the bacterial community of three planthoppers. The three planthoppers harboured distant diversity of bacterial communities. However, there was no dramatic change in bacterial diversity or relative abundance in planthoppers colonized on different hosts. This study illustrates generic and species-specific changes of three rice planthoppers in response to different plants, which deepen our understanding towards the host fitness for planthopper species.
Collapse
Affiliation(s)
- X-T Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Z-X Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - X Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - C-X Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - J-P Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - J-M Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - H-J Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| |
Collapse
|
46
|
Johnson CA, Smith GP, Yule K, Davidowitz G, Bronstein JL, Ferrière R. Coevolutionary transitions from antagonism to mutualism explained by the Co-Opted Antagonist Hypothesis. Nat Commun 2021; 12:2867. [PMID: 34001894 PMCID: PMC8129128 DOI: 10.1038/s41467-021-23177-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 04/07/2021] [Indexed: 11/13/2022] Open
Abstract
There is now good evidence that many mutualisms evolved from antagonism; why or how, however, remains unclear. We advance the Co-Opted Antagonist (COA) Hypothesis as a general mechanism explaining evolutionary transitions from antagonism to mutualism. COA involves an eco-coevolutionary process whereby natural selection favors co-option of an antagonist to perform a beneficial function and the interacting species coevolve a suite of phenotypic traits that drive the interaction from antagonism to mutualism. To evaluate the COA hypothesis, we present a generalized eco-coevolutionary framework of evolutionary transitions from antagonism to mutualism and develop a data-based, fully ecologically-parameterized model of a small community in which a lepidopteran insect pollinates some of its larval host plant species. More generally, our theory helps to reconcile several major challenges concerning the mechanisms of mutualism evolution, such as how mutualisms evolve without extremely tight host fidelity (vertical transmission) and how ecological context influences evolutionary outcomes, and vice-versa. While there is strong evidence that many mutualisms evolved from antagonism, how or why remains unclear. A study combining theory and a data-based model sheds light on how mutualisms evolve without extremely tight host fidelity and how ecological context affects evolutionary outcomes and vice-versa.
Collapse
Affiliation(s)
- Christopher A Johnson
- Dept. of Ecology and Evolutionary Biology, University of Arizona, P.O. Box 210088, Tucson, AZ, USA. .,Institute of Integrative Biology, ETH Zürich, Universitäetstrasse 16, Zürich, Switzerland. .,Dept. of Ecology and Evolutionary Biology, Princeton University, 106a Guyot Hall, Princeton, NJ, USA.
| | - Gordon P Smith
- Dept. of Ecology and Evolutionary Biology, University of Arizona, P.O. Box 210088, Tucson, AZ, USA.,Dept. of Neurobiology and Behavior, Cornell University, 215 Tower Road, Ithaca, NY, USA
| | - Kelsey Yule
- Dept. of Ecology and Evolutionary Biology, University of Arizona, P.O. Box 210088, Tucson, AZ, USA.,Biodiversity Knowledge Integration Center, Arizona State University, 734W Alameda Drive, Tempe, AZ, USA
| | - Goggy Davidowitz
- Dept. of Entomology, University of Arizona, 1140 E. South Campus Dr., Tucson, AZ, USA
| | - Judith L Bronstein
- Dept. of Ecology and Evolutionary Biology, University of Arizona, P.O. Box 210088, Tucson, AZ, USA
| | - Régis Ferrière
- Dept. of Ecology and Evolutionary Biology, University of Arizona, P.O. Box 210088, Tucson, AZ, USA.,Institut de Biologie de l'ENS (IBENS), École Normale Supérieure CNRS UMR 8197, 46 rue d'Ulm, Paris, France.,iGLOBES International Research Laboratory, École Normale Supérieure, Université Paris Sciences & Lettres CNRS UMI 3157, University of Arizona, 845N Park Avenue, Tucson, AZ, USA
| |
Collapse
|
47
|
Masson F, Rommelaere S, Marra A, Schüpfer F, Lemaitre B. Dual proteomics of Drosophila melanogaster hemolymph infected with the heritable endosymbiont Spiroplasma poulsonii. PLoS One 2021; 16:e0250524. [PMID: 33914801 PMCID: PMC8084229 DOI: 10.1371/journal.pone.0250524] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/07/2021] [Indexed: 11/19/2022] Open
Abstract
Insects are frequently infected with heritable bacterial endosymbionts. Endosymbionts have a dramatic impact on their host physiology and evolution. Their tissue distribution is variable with some species being housed intracellularly, some extracellularly and some having a mixed lifestyle. The impact of extracellular endosymbionts on the biofluids they colonize (e.g. insect hemolymph) is however difficult to appreciate because biofluid composition can depend on the contribution of numerous tissues. Here we investigate Drosophila hemolymph proteome changes in response to the infection with the endosymbiont Spiroplasma poulsonii. S. poulsonii inhabits the fly hemolymph and gets vertically transmitted over generations by hijacking the oogenesis in females. Using dual proteomics on infected hemolymph, we uncovered a weak, chronic activation of the Toll immune pathway by S. poulsonii that was previously undetected by transcriptomics-based approaches. Using Drosophila genetics, we also identified candidate proteins putatively involved in controlling S. poulsonii growth. Last, we also provide a deep proteome of S. poulsonii, which, in combination with previously published transcriptomics data, improves our understanding of the post-transcriptional regulations operating in this bacterium.
Collapse
Affiliation(s)
- Florent Masson
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Samuel Rommelaere
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Alice Marra
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Fanny Schüpfer
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Bruno Lemaitre
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
48
|
Finding Needles in Haystacks and Inferring Their Function: Challenges and Successes in Beneficial Symbiosis Research. mSystems 2021; 6:6/2/e00243-21. [PMID: 33824196 PMCID: PMC8546974 DOI: 10.1128/msystems.00243-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Symbioses between hosts and beneficial microbes are key drivers of biological innovation and diversity. While a range of systems have emerged that provide foundational insights into how symbioses function and evolve, we still have a limited understanding of the vast diversity of organisms that engage in such interactions. Recent advances in molecular tools, theory, and interdisciplinary approaches now permit researchers to expand our knowledge and to press forward the frontiers of symbiosis research. As described in a recent issue of mSystems, Myers and colleagues (K. N. Myers, D. Conn, and A. M. V. Brown, mSystems, 6:e01048-20, 2021, https://doi.org/10.1128/mSystems.01048-20) conducted a genome skimming approach to understand the role of obligate beneficial symbionts in plant-parasitic dagger nematodes. Nematodes are extraordinarily abundant and key players in ecosystem function and health. However, they are difficult to harness in the lab. The approach used by Myers et al. ameliorates these challenges to illustrate a relatively complete picture of a poorly understood beneficial symbiosis.
Collapse
|
49
|
Quides KW, Salaheldine F, Jariwala R, Sachs JL. Dysregulation of host-control causes interspecific conflict over host investment into symbiotic organs. Evolution 2021; 75:1189-1200. [PMID: 33521949 DOI: 10.1111/evo.14173] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 10/31/2020] [Accepted: 01/08/2021] [Indexed: 12/14/2022]
Abstract
Microbial mutualists provide substantial benefits to hosts that feed back to enhance the fitness of the associated microbes. In many systems, beneficial microbes colonize symbiotic organs, specialized host structures that house symbionts and mediate resources exchanged between parties. Mutualisms are characterized by net benefits exchanged among members of different species, however, inequalities in the magnitude of these exchanges could result in evolutionary conflict, destabilizing the mutualism. We investigated joint fitness effects of root nodule formation, the symbiotic organ of legumes that house nitrogen-fixing rhizobia in planta. We quantified host and symbiont fitness parameters dependent on the number of nodules formed using near-isogenic Lotus japonicus and Mesorhizobium loti mutants, respectively. Empirically estimated fitness functions suggest that legume and rhizobia fitness is aligned as the number of nodules formed increases from zero until the host optimum is reached, a point where aligned fitness interests shift to diverging fitness interests between host and symbiont. However, fitness conflict was only inferred when analyzing wild-type hosts along with their mutants dysregulated for control over nodule formation. These data demonstrate that to avoid conflict, hosts must tightly regulate investment into symbiotic organs maximizing their benefit to cost ratio of associating with microbes.
Collapse
Affiliation(s)
- Kenjiro W Quides
- Department of Evolution Ecology and Organismal Biology, University of California, Riverside, California, 92521, USA.,Current Institution: Schmid College of Science and Technology, Chapman University, Orange, California, USA
| | - Fathi Salaheldine
- Department of Evolution Ecology and Organismal Biology, University of California, Riverside, California, 92521, USA
| | - Ruchi Jariwala
- Department of Evolution Ecology and Organismal Biology, University of California, Riverside, California, 92521, USA
| | - Joel L Sachs
- Department of Evolution Ecology and Organismal Biology, University of California, Riverside, California, 92521, USA.,Institute for Integrative Genome Biology, University of California, Riverside, California, USA
| |
Collapse
|
50
|
Spencer HG. Beyond Equilibria: The Neglected Role of History in Ecology and Evolution. THE QUARTERLY REVIEW OF BIOLOGY 2020. [DOI: 10.1086/711803] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|