1
|
Lucidi M, Capecchi G, Spagnoli C, Basile A, Artuso I, Persichetti L, Fardelli E, Capellini G, Visaggio D, Imperi F, Rampioni G, Leoni L, Visca P. The response to desiccation in Acinetobacter baumannii. Virulence 2025; 16:2490209. [PMID: 40220276 PMCID: PMC12005421 DOI: 10.1080/21505594.2025.2490209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 02/10/2025] [Accepted: 04/02/2025] [Indexed: 04/14/2025] Open
Abstract
The long-term resistance to desiccation on abiotic surfaces is a key determinant of the adaptive success of Acinetobacter baumannii as a healthcare-associated bacterial pathogen. Here, the cellular and molecular mechanisms enabling A. baumannii to resist desiccation and persist on abiotic surfaces were investigated. Experiments were set up to mimic the A. baumannii response to air-drying that would occur when bacterial cells contaminate fomites in hospitals. Resistance to desiccation and transition to the "viable but nonculturable" (VBNC) state were determined in the laboratory-adapted strain ATCC 19606T and the epidemic strain ACICU. Culturability, membrane integrity, metabolic activity, virulence, and gene expression profile were compared between the two strains at different stages of desiccation. Upon desiccation, ATCC 19606T and ACICU cells lose culturability and membrane integrity, lower their metabolism, and enter the VBNC state. However, desiccated A. baumannii cells fully recover culturability and virulence in an insect infection model following rehydration in physiological buffers or human biological fluids. Transcriptome and chemical analyses of A. baumannii cells during desiccation unveiled the production of protective metabolites (L-cysteine and L-glutamate) and decreased energetic metabolism consequent to activation of the glyoxylate shunt (GS) pathway, as confirmed by reduced resuscitation efficiency of aceA mutants, lacking the key enzyme of the GS pathway. VBNC cell formation and extensive metabolic reprogramming provide a biological basis for the response of A. baumannii to desiccation, with implications on environmental control measures aimed at preventing the transmission of A. baumannii infection in hospitals.
Collapse
Affiliation(s)
- Massimiliano Lucidi
- Department of Science, Roma Tre University, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | | | | | | | - Irene Artuso
- Department of Science, Roma Tre University, Rome, Italy
| | | | | | | | - Daniela Visaggio
- Department of Science, Roma Tre University, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
- Santa Lucia Foundation IRCCS, Rome, Italy
| | - Francesco Imperi
- Department of Science, Roma Tre University, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
- Santa Lucia Foundation IRCCS, Rome, Italy
| | - Giordano Rampioni
- Department of Science, Roma Tre University, Rome, Italy
- Santa Lucia Foundation IRCCS, Rome, Italy
| | - Livia Leoni
- Department of Science, Roma Tre University, Rome, Italy
| | - Paolo Visca
- Department of Science, Roma Tre University, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
- Santa Lucia Foundation IRCCS, Rome, Italy
| |
Collapse
|
2
|
Wang Y, Liu L, Hou S. Surface engineering as a potential strategy to enhance desiccation tolerance of beneficial bacteria. Front Microbiol 2025; 16:1576511. [PMID: 40291806 PMCID: PMC12021878 DOI: 10.3389/fmicb.2025.1576511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 03/31/2025] [Indexed: 04/30/2025] Open
Abstract
Desiccation can diminish the viability of beneficial bacteria by over 90%, threatening their effectiveness in agricultural productivity and probiotic applications. Bacterial surface engineering, already proven to combat acidic environments and oxidative damage, offers promising avenues for mitigating desiccation stress. This Perspective explores and adapts these approaches-spanning bioinspired coatings, encapsulation methods, and nanotechnology-to significantly improve bacterial survival under dehydration. By slowing water loss, preserving membrane integrity, and minimizing oxidative damage, surface engineering paves the way for scalable and effective strategies to bolster bacterial resilience in demanding environments.
Collapse
Affiliation(s)
| | - Lei Liu
- Institute of Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, China
| | - Shuai Hou
- Institute of Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
3
|
Maphosa S, Steyn M, Lebre PH, Gokul JK, Convey P, Marais E, Maggs-Kölling G, Cowan DA. Rhizosphere bacterial communities of Namib Desert plant species: Evidence of specialised plant-microbe associations. Microbiol Res 2025; 293:128076. [PMID: 39884152 DOI: 10.1016/j.micres.2025.128076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/30/2024] [Accepted: 01/19/2025] [Indexed: 02/01/2025]
Abstract
Rhizosphere microbial communities are intimately associated with plant root surfaces. The rhizosphere microbiome is recruited from the surrounding soil and is known to impact positively on the plant host via enhanced resistance to pathogens, increased nutrient availability, growth stimulation and increased resistance to desiccation. Desert ecosystems harbour a diversity of perennial and annual plant species, generally exhibiting considerable physiological adaptation to the low-water environment. In this study, we explored the rhizosphere bacterial microbiomes associated with selected desert plant species. The rhizosphere bacterial communities of 11 plant species from the central Namib Desert were assessed using 16S rRNA gene-dependent phylogenetic analyses. The rhizosphere microbial community of each host plant species was compared with control soils collected from their immediate vicinity, and with those of all other host plants. Rhizosphere and control soil bacterial communities differed significantly and were influenced by both location and plant species. Rhizosphere-associated genera included 67 known plant growth-promoting taxa, including Rhizobium, Bacillus, Microvirga, Kocuria and Paenibacillus. Other than Kocuria, these genera constituted the 'core' rhizosphere bacterial microbiome, defined as being present in > 90 % of the rhizosphere communities. Nine of the 11 desert plant species harboured varying numbers and proportions of species-specific microbial taxa. Predictive analyses of functional pathways linked to rhizosphere microbial taxa showed that these were significantly enriched in the biosynthesis or degradation of a variety of substances such as sugars, secondary metabolites, phenolic compounds and antimicrobials. Overall, our data suggest that plant species in the Namib Desert recruit unique taxa to their rhizosphere bacterial microbiomes that may contribute to their resilience in this extreme environment.
Collapse
Affiliation(s)
- Silindile Maphosa
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa
| | - Mégan Steyn
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria 0028, South Africa
| | - Pedro H Lebre
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa
| | - Jarishma K Gokul
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa; Department of Plant and Soil Sciences, University of Pretoria, Pretoria 0028, South Africa
| | - Peter Convey
- British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET, United Kingdom; Department of Zoology, University of Johannesburg, Auckland Park, 2006, South Africa; School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Eugene Marais
- Gobabeb-Namib Research Institute, Walvis Bay, Namibia
| | | | - Don A Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa.
| |
Collapse
|
4
|
Tebele SM, Marks RA, Farrant JM. Microbial survival strategies in desiccated roots of Myrothamnus flabellifolia. Front Microbiol 2025; 16:1560114. [PMID: 40226100 PMCID: PMC11985526 DOI: 10.3389/fmicb.2025.1560114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 02/24/2025] [Indexed: 04/15/2025] Open
Abstract
Introduction Root-associated microbiomes are critical to plant vigor, particularly under drought stress. The spatial dynamics of microbial community diversity and composition are strongly influenced by plant root and environmental factors. While the desiccation tolerance of the resurrection plant Myrothamnus flabellifolia using leaf tissue has been previously investigated, the transcriptional responses of its root-associated microbiomes under desiccation remain completely unexplored. Methods Here, we conducted metatranscriptome sequencing on root samples of M. flabellifolia collected in the field across four states: dry, desiccated, partially hydrated, and fully hydrated. Results Bacterial transcripts dominated the root metatranscriptome across all conditions. Desiccated roots exhibited a significant increase in transcripts from Actinomycetota, whereas fully hydrated roots showed an enrichment of Pseudomonadota. Under desiccation, root-associated bacteria upregulated genes involved in antioxidant systems, trehalose biosynthesis, and hormonal regulation. Discussion These findings highlight microbial adaptive mechanisms to withstand extreme water loss. In contrast, the bacterial transcriptional response in hydrated roots was characterized by genes linked to peptidoglycan biosynthesis, sugar transporters, and chemotaxis. Taken together, our findings indicate that root-associated bacteria deploy defense mechanisms analogous to those of their host plant to adapt to extreme drought stress, highlighting their crucial role in plant resilience.
Collapse
Affiliation(s)
- Shandry M. Tebele
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, South Africa
| | - Rose A. Marks
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, South Africa
- Department of Plant Biology, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Jill M. Farrant
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, South Africa
| |
Collapse
|
5
|
Ellington AJ, Schult TJ, Reisch CR, Christner BC. The Genetic Determinants of Extreme UV Radiation and Desiccation Tolerance in a Bacterium Recovered from the Stratosphere. Microorganisms 2025; 13:756. [PMID: 40284593 PMCID: PMC12029717 DOI: 10.3390/microorganisms13040756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/17/2025] [Accepted: 03/19/2025] [Indexed: 04/29/2025] Open
Abstract
Microbes that survive transport to and in the stratosphere endure extremes of low temperature, atmospheric pressure, and relative humidity, as well as high fluxes in ultraviolet radiation (UVR). The high atmosphere thus provides an ideal environment to explore the genetic and physiological determinants conveying high tolerance to desiccation and UVR. In this study, we examined Curtobacterium aetherium L6-1, an actinobacterium obtained from stratospheric aerosol sampling that displays high resistance to desiccation and UVR. We found that its phylogenetic relatives are resistant to desiccation, but only C. aetherium displayed a high tolerance to UVR. Comparative genome analysis and directed evolution experiments implicated genes encoding photolyase, DNA nucleases and helicases, and catalases as responsible for UVR resistance in C. aetherium. Differential gene expression analysis revealed the upregulation of DNA repair and stress response mechanisms when cells were exposed to UVR, while genes encoding sugar transporters, sugar metabolism enzymes, and antioxidants were induced upon desiccation. Based on changes in gene expression as a function of water content, C. aetherium can modulate its metabolism through transcriptional regulation at very low moisture levels (Xw < 0.25 g H2O per gram dry weight). Uncovering the genetic underpinnings of desiccation and UVR resistance in C. aetherium provides new insights into how bacterial DNA repair and antioxidant mechanisms function to exhibit traits at the extreme ends of phenotypic distributions.
Collapse
Affiliation(s)
- Adam J. Ellington
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL 32611, USA
- Meso Scale Diagnostics, LLC, Rockville, MD 20850, USA
| | - Tyler J. Schult
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL 32611, USA
| | - Christopher R. Reisch
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL 32611, USA
- Genomatica, San Diego, CA 92121, USA
| | - Brent C. Christner
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
6
|
Xu HF, Dai GZ, Li RH, Bai Y, Zuo AW, Zhao L, Cui SR, Shang JL, Cheng C, Wang YJ, Feng GF, Duanmu D, Kaplan A, Qiu BS. Red-light signaling pathway activates desert cyanobacteria to prepare for desiccation tolerance. Proc Natl Acad Sci U S A 2025; 122:e2502034122. [PMID: 40112114 PMCID: PMC11962455 DOI: 10.1073/pnas.2502034122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 02/20/2025] [Indexed: 03/22/2025] Open
Abstract
Desiccation-tolerant cyanobacteria are able to survive frequent cycles of hydration and dehydration, which are closely linked to diurnal light oscillations. Previous studies have shown that light serves as a crucial anticipatory cue, activating desert cyanobacteria to prepare for desiccation. However, the mechanisms underlying their light-coupled desiccation tolerance remain largely unknown. Here, we demonstrate that red-light-induced photosynthetic genes are positively regulated by a LuxR family transcription factor NfSrr1. We further identified the cyanobacteriochrome NfPixJ as interacting with NfSrr1 and functioning as a red light sensor. Phenotypic analysis revealed that the red-light signaling module NfPixJ-NfSrr1 plays a key role in preparing cyanobacteria for desiccation tolerance. This module also regulates the synthesis of protective compatible solutes, suggesting that red light functions as a global regulatory signal for the broader stress response. Phylogenetic analysis indicates that the presence of this red-light signaling pathway, mediated by NfPixJ-NfSrr1 module, correlates with the ability of cyanobacteria to thrive in water-deficit habitats. Overall, our findings uncover a red-light signaling pathway that enhances desiccation tolerance as desert cyanobacteria encounter red light at dawn, before water limitation. These results provide insights into the mechanisms behind light-induced anticipatory stress tolerance in photosynthetic organisms.
Collapse
Affiliation(s)
- Hai-Feng Xu
- School of Life Sciences, Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei430079, China
| | - Guo-Zheng Dai
- School of Life Sciences, Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei430079, China
| | - Ren-Han Li
- School of Life Sciences, Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei430079, China
| | - Yang Bai
- School of Life Sciences, Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei430079, China
| | - Ai-Wei Zuo
- School of Life Sciences, Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei430079, China
| | - Lei Zhao
- School of Life Sciences, Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei430079, China
| | - Shu-Ren Cui
- School of Life Sciences, Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei430079, China
| | - Jin-Long Shang
- School of Life Sciences, Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei430079, China
| | - Chao Cheng
- School of Life Sciences, Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei430079, China
| | - Yu-Jie Wang
- School of Life Sciences, Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei430079, China
| | - Gui-Fang Feng
- School of Life Sciences, Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei430079, China
| | - Deqiang Duanmu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei430070, China
| | - Aaron Kaplan
- Department of Plant and Environmental Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem9190401, Israel
| | - Bao-Sheng Qiu
- School of Life Sciences, Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei430079, China
| |
Collapse
|
7
|
Liang X, Ma Y, Li J, Ye Y, Li J. Impact of microplastics on microbial diversity and pathogen distribution in aquaculture ecosystems: A seasonal analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 368:125796. [PMID: 39914565 DOI: 10.1016/j.envpol.2025.125796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/27/2024] [Accepted: 02/03/2025] [Indexed: 02/10/2025]
Abstract
Microplastics, as a prominent emerging pollutant in marine environments, pose a serious threat to the stability of marine ecosystems due to their resistance to biodegradation. MPs act as substrates for biofouling and potentially promote the spread of harmful microorganisms. Research indicates that human activities exacerbate MPs pollution in aquaculture environments, significantly increasing their abundance. This study focused on the aquaculture environment of the large yellow croaker (Larimichthys crocea), one of the most extensively farmed fish species in coastal regions. We conducted a comprehensive analysis of microbial diversity on the biofilms covering MPs and in the surrounding aquaculture water, with a focus on the distribution of pathogens on MPs. Furthermore, this study investigated the impact of seasonal variations on the microbial communities within these biofilms. Sequencing analysis revealed that the α-diversity of microbial communities on MPs was lower than that in aquaculture water during winter but higher in summer, indicating a seasonal shift in microbial community structure. PICRUSt predictions suggested that microbes on MPs possess unique metabolic pathways. Co-occurrence network analysis demonstrated that during summer, the microbial communities on MPs revealed increased connectivity and functional modularity, whereas microbial communities in aquaculture water showed stronger interactions in winter. Additionally, several potential pathogens, including Vibrio and Pseudomonas, were detected in the MPs biofilms. These findings underscore the ways in which MPs influence the microbial community structure in aquaculture environments, increasing health risks to the ecosystem. This research offers significant insights into the ecological impacts of MPs pollution on microbial communities in aquaculture ecosystems.
Collapse
Affiliation(s)
- Xinjie Liang
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, 316000, China
| | - Yanwen Ma
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, 316000, China
| | - Jing Li
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, 316000, China
| | - Yingying Ye
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, 316000, China
| | - Jiji Li
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, 316000, China.
| |
Collapse
|
8
|
Kanojiya P, Haldar T, Saroj SD. Environmental desiccation stress induces viable but non culturable state in Neisseria meningitidis. Arch Microbiol 2025; 207:46. [PMID: 39878836 DOI: 10.1007/s00203-025-04249-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 01/16/2025] [Indexed: 01/31/2025]
Abstract
Environmental factors play a crucial role in bacterial virulence. During transmission, in a non-host environment bacteria are exposed to various environmental stress which could alter bacterial physiology and virulence. N. meningitidis is transmitted from person to person through direct contact. However, the role of environmental desiccation in the virulence of bacterial pathogens is not clearly understood. Therefore, the effect of environmental desiccation on survival, transmission, and virulence needs further investigation. We demonstrate that N. meningitidis was sensitive to desiccation stress. The viable counts reduced significantly (p < 0.05) after desiccation. It was found that desiccation induces a viable but non-culturable state (VBNC) in N. meningitidis. We considered cells to be in VBNC when no viable counts were obtained on growth media and live cells were detected after live-dead staining. After resuscitation, N. meningitidis retained virulence characteristics which indicate that it can transit between the host in VBNC state. Furthermore, the relative expression of capsule increased significantly after 12 and 24 h of desiccation. The observations indicate that the environmental desiccation might induce capsule biosynthesis in N. meningitidis, leading to enhanced virulence and survival in macrophages.
Collapse
Affiliation(s)
- Poonam Kanojiya
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University)Lavale, Pune, Maharashtra, 412115, India
| | - Tiyasa Haldar
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University)Lavale, Pune, Maharashtra, 412115, India
| | - Sunil D Saroj
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University)Lavale, Pune, Maharashtra, 412115, India.
| |
Collapse
|
9
|
Huang P, Shi H, Jiang L, Zhu D, Zhou Z, Hou Z, Ma X. Soil microbial community and influencing factors of different vegetation restoration types in a typical agricultural pastoral ecotone. Front Microbiol 2025; 15:1514234. [PMID: 39917267 PMCID: PMC11799253 DOI: 10.3389/fmicb.2024.1514234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 12/24/2024] [Indexed: 02/09/2025] Open
Abstract
Microbial network complexity is an important indicator for assessing the effectiveness of vegetation restoration. However, the response of the microbial network complexity of bacteria and fungi to different vegetation restoration types is unclear. Therefore, in this study, we selected four vegetation restoration types (Pinus sylvestris var. mongholica, Larix principis- rupprechtii, Populus tomentosa, and Ulmus pumila), while selected the nature grassland as a control, in the Zhangjiakou Tunken Forest Farm, which is a typical agricultural pastoral ecotone in northern China, to investigate the response of soil microbial diversity and network complexity to different vegetation restoration types. Our result showed that the bacterial Shannon and Chao indices of P. sylvestris var. mongholica were significantly 7.77 and 22.39% higher than those of grassland in the 20-40 cm soil layer, respectively. The fungal Chao indices of U. pumila were significantly 85.70 and 146.86% higher than those of grassland in the 20-40 cm and 40-60 cm soil layer, respectively. Compared to natural grassland, soil microbial networks became more complex in plantation forests restoration types (P. sylvestris var. mongholica, L. principis- rupprechtii, P. tomentosa, and U. pumila). Microbial network complexity increased with soil carbon and nitrogen. P. tomentosa is suitable for planting in the agricultural pastoral ecotone of Zhangjiakou, because of its high soil carbon, nitrogen and microbial network complexity. Bacterial community composition was found to be closely related to soil organic carbon (SOC), total nitrogen (TN), while that of fungi was closely related to SOC, clay and silt content. This improvement in microbial complexity enhances the ecological service function of the agricultural pastoral ecotone. These findings offer theoretical basis and technical support for the vegetation restoration of ecologically fragile areas in agricultural pastoral ecotone.
Collapse
Affiliation(s)
- Pei Huang
- College of Life Science, Capital Normal University, Beijing, China
- Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
- State Forestry Administration Dunhuang Desert Ecosystem Location Research Station, Dunhuang, China
| | - Hanyu Shi
- Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
- State Forestry Administration Dunhuang Desert Ecosystem Location Research Station, Dunhuang, China
| | - Lina Jiang
- Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
| | - Duoping Zhu
- Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
- State Forestry Administration Dunhuang Desert Ecosystem Location Research Station, Dunhuang, China
| | - Zefeng Zhou
- Institute of Forest Resource Information Techniques, Chinese Academy of Forestry, Beijing, China
| | - Zhenhong Hou
- Graduate Department, Chinese Academy of Forestry, Beijing, China
| | - Xingyu Ma
- Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
- State Forestry Administration Dunhuang Desert Ecosystem Location Research Station, Dunhuang, China
| |
Collapse
|
10
|
Salinas-García MÁ, Fernbach J, Rinnan R, Priemé A. Extreme smells-microbial production of volatile organic compounds at the limits of life. FEMS Microbiol Rev 2025; 49:fuaf004. [PMID: 39880796 PMCID: PMC11837334 DOI: 10.1093/femsre/fuaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 01/24/2025] [Accepted: 01/28/2025] [Indexed: 01/31/2025] Open
Abstract
Microbial volatile organic compounds (MVOCs) are diverse molecules produced by microorganisms, ranging from mere waste byproducts to important signalling molecules. While the interest in MVOCs has been increasing steadily, there is a significant gap in our knowledge of MVOCs in extreme environments with e.g. extreme temperatures or acidity. Microorganisms in these conditions are subjected to additional stress compared to their counterparts in moderate environments and in many cases have evolved unique adaptations, including the production of specialized MVOCs. This review highlights the diversity of MVOCs identified in extreme environments or produced by isolated extremophiles. Furthermore, we explore potential applications already investigated and discuss broader implications for biotechnology, environmental biology, and astrobiology.
Collapse
Affiliation(s)
- Miguel Ángel Salinas-García
- Centre for Exolife Sciences (CELS), Niels Bohr Institute, University of Copenhagen, Øster Voldgade 5, DK-1350 Copenhagen, Denmark
- Center for Volatile Interactions (VOLT), Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
- Section of Microbiology, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| | - Jonas Fernbach
- Centre for Exolife Sciences (CELS), Niels Bohr Institute, University of Copenhagen, Øster Voldgade 5, DK-1350 Copenhagen, Denmark
| | - Riikka Rinnan
- Center for Volatile Interactions (VOLT), Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| | - Anders Priemé
- Centre for Exolife Sciences (CELS), Niels Bohr Institute, University of Copenhagen, Øster Voldgade 5, DK-1350 Copenhagen, Denmark
- Center for Volatile Interactions (VOLT), Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
- Section of Microbiology, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| |
Collapse
|
11
|
Qiqige B, Liu J, Li M, Hu X, Guo W, Wang P, Ding Y, Zhi Q, Wu Y, Guan X, Li J. Different Flooding Conditions Affected Microbial Diversity in Riparian Zone of Huihe Wetland. Microorganisms 2025; 13:154. [PMID: 39858922 PMCID: PMC11767682 DOI: 10.3390/microorganisms13010154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 12/26/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
The soil microbiome plays an important role in wetland ecosystem services and functions. However, the impact of soil hydrological conditions on wetland microorganisms is not well understood. This study investigated the effects of wetted state (WS); wetting-drying state (WDS); and dried state (DS) on the diversity of soil bacteria, fungi, and archaea. The Shannon index of bacterial diversity was not significantly different in various flooding conditions (p > 0.05), however, fungal diversity and archaeal communities were significantly different in different flooding conditions (p < 0.05). Significant differences were found in the beta diversity of bacterial, fungal, and archaeal communities (p < 0.05). Additionally, the composition of bacteria, fungi, and archaea varied. Bacteria were predominantly composed of Proteobacteria and Actinobacteria, fungi mainly consisted of Ascomycota and Mucoromycota, and archaea were primarily represented by Crenarchaeota and Euryarchaeota. Bacteria exhibited correlations with vegetation coverage, fungi with plant diversity, and archaea with aboveground vegetation biomass. The pH influenced bacterial and archaeal communities, while soil bulk density, moisture, soil carbon, soil nitrogen, and plant community diversity impacted fungal communities. This study provides a scientific basis for understanding the effects of different hydrological conditions on microbial communities in the Huihe Nature Reserve; highlighting their relationship with vegetation and soil properties, and offers insights for the ecological protection of the Huihe wetland.
Collapse
Affiliation(s)
- Bademu Qiqige
- China Geological Survey Comprehensive Survey Command Center for Natural Resources, Beijing 100055, China; (B.Q.); (M.L.); (X.H.); (W.G.); (P.W.); (Y.D.)
| | - Jingjing Liu
- Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (J.L.); (Q.Z.); (Y.W.)
| | - Ming Li
- China Geological Survey Comprehensive Survey Command Center for Natural Resources, Beijing 100055, China; (B.Q.); (M.L.); (X.H.); (W.G.); (P.W.); (Y.D.)
| | - Xiaosheng Hu
- China Geological Survey Comprehensive Survey Command Center for Natural Resources, Beijing 100055, China; (B.Q.); (M.L.); (X.H.); (W.G.); (P.W.); (Y.D.)
| | - Weiwei Guo
- China Geological Survey Comprehensive Survey Command Center for Natural Resources, Beijing 100055, China; (B.Q.); (M.L.); (X.H.); (W.G.); (P.W.); (Y.D.)
| | - Ping Wang
- China Geological Survey Comprehensive Survey Command Center for Natural Resources, Beijing 100055, China; (B.Q.); (M.L.); (X.H.); (W.G.); (P.W.); (Y.D.)
| | - Yi Ding
- China Geological Survey Comprehensive Survey Command Center for Natural Resources, Beijing 100055, China; (B.Q.); (M.L.); (X.H.); (W.G.); (P.W.); (Y.D.)
| | - Qiuying Zhi
- Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (J.L.); (Q.Z.); (Y.W.)
- College of Ecology, Lanzhou University, Lanzhou 730020, China
| | - Yuxuan Wu
- Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (J.L.); (Q.Z.); (Y.W.)
| | - Xiao Guan
- Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (J.L.); (Q.Z.); (Y.W.)
| | - Junsheng Li
- China Geological Survey Comprehensive Survey Command Center for Natural Resources, Beijing 100055, China; (B.Q.); (M.L.); (X.H.); (W.G.); (P.W.); (Y.D.)
| |
Collapse
|
12
|
Yan Y, Cao M, Ma J, Suo J, Bai X, Ge W, Lü X, Zhang Q, Chen J, Cui S, Yang B. Mechanisms of thermal, acid, desiccation and osmotic tolerance of Cronobacter spp. Crit Rev Food Sci Nutr 2025:1-23. [PMID: 39749527 DOI: 10.1080/10408398.2024.2447304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Cronobacter spp. exhibit remarkable resilience to extreme environmental stresses, including thermal, acidic, desiccation, and osmotic conditions, posing significant challenges to food safety. Their thermotolerance relies on heat shock proteins (HSPs), thermotolerance genomic islands, enhanced DNA repair mechanisms, and metabolic adjustments, ensuring survival under high-temperature conditions. Acid tolerance is achieved through internal pH regulation, acid efflux pumps, and acid tolerance proteins, allowing survival in acidic food matrices and the gastrointestinal tract. Desiccation tolerance is mediated by the accumulation of protective osmolytes like trehalose, stabilizing proteins and membranes to withstand dryness, especially in dry food products. Similarly, osmotic stress resilience is supported by compatible solutes such as trehalose and glycine betaine, along with metabolic adaptations to balance osmotic pressures. These mechanisms highlight the adaptability of Cronobacter spp. to diverse environments. Moreover, exposure to sublethal stresses, including heat, osmotic, dry, and pH stresses, may induce homologous or cross-resistance, complicating control strategies. Understanding these survival mechanisms is essential to mitigate the risks of Cronobacter spp., especially in powdered infant formula (PIF), and ensure food safety.
Collapse
Affiliation(s)
- Yanfei Yan
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Mengyuan Cao
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Jiaqi Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Jia Suo
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xiaobao Bai
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Wupeng Ge
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Qiang Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Jia Chen
- College of Chemical Technology, Shijiazhuang University, Shijiazhuang, China
| | - Shenghui Cui
- National Institutes for Food and Drug Control, Beijing, China
| | - Baowei Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
13
|
Basile A, Riggio FP, Tescari M, Chebbi A, Sodo A, Bartoli F, Imperi F, Caneva G, Visca P. Metagenome-resolved functional traits of Rubrobacter species implicated in rosy discoloration of ancient frescoes in two Georgian Cathedrals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:178135. [PMID: 39705954 DOI: 10.1016/j.scitotenv.2024.178135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/13/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
Pink biofilm formation on stone monuments and mural paintings poses serious harm to cultural heritage preservation. Pink biofilms are globally widespread and recalcitrant to eradication, often causing recurrences after restoration. Yet, the ecological drivers of pink biofilm formation and the metabolic functions sustaining the growth of pigment-producing biodeteriogens remain unclear. In this study, a combined approach integrating physicochemical investigations, scanning electron microscopy, 16S rRNA sequence-based analysis of the prokaryotic community, metagenomic deep sequencing, and metabolic profiling, was applied to determine the etiology of rosy discoloration of ancient frescoes in the Gelati and the Martvili Cathedrals (Georgia). Martvili samples showed greater diversity than Gelati samples, though Actinomycetota predominated in both samples. Rubrobacter-related sequences were detected in all sampling sites, showing an overwhelming abundance in Gelati samples. Reconstruction of metagenome-assembled genomes (MAGs) and phylogenetic analyses highlighted significant intra-genus diversity for Rubrobacter-related sequences, most of which could not be assigned to any formally described Rubrobacter species. Metabolic profiling of the Gelati metagenomes suggests that carbon-fixing autotrophic bacteria and proteinaceous substances in the plaster could contribute to sustaining the chemoorganotrophic members of the community. Complete pathways for β-carotene and bacterioruberin synthesis were identified in Rubrobacter MAGs, consistent with the Raman spectroscopy-based detection of these pigments in fresco samples. Gene clusters for the synthesis of secondary metabolites endowed with antibiotic activity were predicted from the annotation of Rubrobacter MAGs, along with genes conferring resistance to several antimicrobials and biocides. In conclusion, genome-resolved metagenomics provided robust evidence of a causal relationship between contamination by Rubrobacter-related carotenoid-producing bacteria and the rosy discoloration of Georgian frescoes, with relevant implications for rational biodeteriogen-targeted restoration strategies.
Collapse
Affiliation(s)
- Arianna Basile
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy
| | | | - Marco Tescari
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy; Biology Laboratory, Supporto ALES S.p.A. c/o Istituto Centrale per il Restauro (ICR), Via di S. Michele, 25, 00153 Rome, Italy
| | - Alif Chebbi
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy
| | - Armida Sodo
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy
| | - Flavia Bartoli
- Institute of Heritage Science (ISPC), National Research Center (CNR), SP35d, 9, 00010 Montelibretti, Rome, Italy
| | - Francesco Imperi
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy; NBFC, National Biodiversity Future Center, Piazza Marina, 61, 90133 Palermo, Italy
| | - Giulia Caneva
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy; NBFC, National Biodiversity Future Center, Piazza Marina, 61, 90133 Palermo, Italy.
| | - Paolo Visca
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy; NBFC, National Biodiversity Future Center, Piazza Marina, 61, 90133 Palermo, Italy.
| |
Collapse
|
14
|
Lucidi M, Visaggio D, Migliaccio A, Capecchi G, Visca P, Imperi F, Zarrilli R. Pathogenicity and virulence of Acinetobacter baumannii: Factors contributing to the fitness in healthcare settings and the infected host. Virulence 2024; 15:2289769. [PMID: 38054753 PMCID: PMC10732645 DOI: 10.1080/21505594.2023.2289769] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/27/2023] [Indexed: 12/07/2023] Open
Abstract
Acinetobacter baumannii is a common cause of healthcare-associated infections and hospital outbreaks, particularly in intensive care units. Much of the success of A. baumannii relies on its genomic plasticity, which allows rapid adaptation to adversity and stress. The capacity to acquire novel antibiotic resistance determinants and the tolerance to stresses encountered in the hospital environment promote A. baumannii spread among patients and long-term contamination of the healthcare setting. This review explores virulence factors and physiological traits contributing to A. baumannii infection and adaptation to the hospital environment. Several cell-associated and secreted virulence factors involved in A. baumannii biofilm formation, cell adhesion, invasion, and persistence in the host, as well as resistance to xeric stress imposed by the healthcare settings, are illustrated to give reasons for the success of A. baumannii as a hospital pathogen.
Collapse
Affiliation(s)
- Massimiliano Lucidi
- Department of Science, Roma Tre University, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Daniela Visaggio
- Department of Science, Roma Tre University, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
- Santa Lucia Foundation IRCCS, Rome, Italy
| | | | | | - Paolo Visca
- Department of Science, Roma Tre University, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
- Santa Lucia Foundation IRCCS, Rome, Italy
| | - Francesco Imperi
- Department of Science, Roma Tre University, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
- Santa Lucia Foundation IRCCS, Rome, Italy
| | - Raffaele Zarrilli
- Department of Public Health, University of Naples Federico II, Naples, Italy
| |
Collapse
|
15
|
Lin Z, Liang Z, He S, Chin FWL, Huang D, Hong Y, Wang X, Li D. Salmonella dry surface biofilm: morphology, single-cell landscape, and sanitization. Appl Environ Microbiol 2024; 90:e0162324. [PMID: 39494899 PMCID: PMC11577771 DOI: 10.1128/aem.01623-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/03/2024] [Indexed: 11/05/2024] Open
Abstract
In this study, Salmonella Typhimurium dry surface biofilm (DSB) formation was investigated in comparison with wet surface biofilm (WSB) development. Confocal laser scanning microscopic analysis revealed a prominent green cell signal during WSB formation, whereas a red signal predominated during DSB formation. Electron microscopy was also used to compare the features of DSB and WSB. Overall, WSB was unevenly scattered over the surface, whereas DSB was evenly dispersed. In contrast to WSB cells, which have a distinct plasma membrane and outer membrane layer, DSB cells are contained in large capsules and compressed. Next, microbiome single-cell transcriptomics was used to investigate the functional heterogeneity of the Salmonella DSB microbiome, with nine clusters successfully identified. Although over 60% of the dried cells were metabolically inactive, the rest of the Salmonella cells still demonstrated specific antioxidative and virulence capabilities, suggesting a possible concern for low-moisture food (LMF) safety. Finally, because sanitization in LMF industries must be conducted without water, a list of 39 flavonoids was tested for their combined effect with 70% isopropyl alcohol (IPA) against DSB, and morin induced the greatest reduction in the green:red ratio from 3.67 to 0.43. Significantly higher reductions of Salmonella viability in DSB were achieved by 10-, 100-, 1,000-, and 10,000-µg/mL morin (1.69 ± 0.25, 3.21 ± 0.23, 4.32 ± 0.24, and 5.18 ± 0.16 log CFU/sample reductions) than 70% IPA alone (1.55 ± 0.20 log CFU/sample reduction) (P < 0.05), indicating the potential to be formulated as a dry sanitizer for the LMF industry.IMPORTANCEDSB growth of foodborne pathogens in LMF processing environments is associated with food safety, financial loss, and compromised consumer trust. This work is the first comprehensive examination of the characteristics of Salmonella DSB while exploring its underlying survival mechanisms. Furthermore, morin dissolved in 70% IPA was proposed as an efficient dry sanitizer against DSB to provide insights into biofilm control during LMF processing.
Collapse
Affiliation(s)
- Zejia Lin
- Department of Food Science and Technology, National University of Singapore, , Singapore
| | - Zhiqian Liang
- Department of Food Science and Technology, National University of Singapore, , Singapore
| | - Shuang He
- Department of Food Science and Technology, National University of Singapore, , Singapore
| | - Fion Wei Lin Chin
- Department of Food Science and Technology, National University of Singapore, , Singapore
| | - Dejian Huang
- Department of Food Science and Technology, National University of Singapore, , Singapore
- National University of Singapore (Suzhou) Research Institute, Suzhou, China
| | - Yi Hong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Xiang Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Dan Li
- Department of Food Science and Technology, National University of Singapore, , Singapore
- National University of Singapore (Suzhou) Research Institute, Suzhou, China
| |
Collapse
|
16
|
Cuartero J, Querejeta JI, Prieto I, Frey B, Alguacil MM. Warming and rainfall reduction alter soil microbial diversity and co-occurrence networks and enhance pathogenic fungi in dryland soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175006. [PMID: 39069184 DOI: 10.1016/j.scitotenv.2024.175006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/10/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
In this 9-year manipulative field experiment, we examined the impacts of experimental warming (2 °C, W), rainfall reduction (30 % decrease in annual rainfall, RR), and their combination (W + RR) on soil microbial communities and native vegetation in a semi-arid shrubland in south-eastern Spain. Warming had strong negative effects on plant performance across five coexisting native shrub species, consistently reducing their aboveground biomass growth and long-term survival. The impacts of rainfall reduction on plant growth and survival were species-specific and more variable. Warming strongly altered the soil microbial community alpha-diversity and changed the co-occurrence network structure. The relative abundance of symbiotic arbuscular mycorrhizal fungi (AMF) increased under W and W + RR, which could help buffer the direct negative impacts of climate change on their host plants nutrition and enhance their resistance to heat and drought stress. Indicator microbial taxa analyses evidenced that the marked sequence abundance of many plant pathogenic fungi, such as Phaeoacremonium, Cyberlindnera, Acremonium, Occultifur, Neodevriesia and Stagonosporopsis, increased significantly in the W and W + RR treatments. Moreover, the relative abundance of fungal animal pathogens and mycoparasites in soil also increased significantly under climate warming. Our findings indicate that warmer and drier conditions sustained over several years can alter the soil microbial community structure, composition, and network topology. The projected warmer and drier climate favours pathogenic fungi, which could offset the benefits of increased AMF abundance under warming and further aggravate the severe detrimental impacts of increased abiotic stress on native vegetation performance and ecosystem services in drylands.
Collapse
Affiliation(s)
- J Cuartero
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland.
| | - J I Querejeta
- Departamento de Conservación de Suelos y Agua, Centro de Edafología y Biología Aplicada del Segura - Consejo Superior de Investigaciones Científicas, Murcia, Spain
| | - I Prieto
- Departamento de Conservación de Suelos y Agua, Centro de Edafología y Biología Aplicada del Segura - Consejo Superior de Investigaciones Científicas, Murcia, Spain; Area de Ecología, Facultad de Ciencias Biológicas y Ambientales, Departamento de Biodiversidad y Gestión Ambiental, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - B Frey
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland
| | - M M Alguacil
- Departamento de Conservación de Suelos y Agua, Centro de Edafología y Biología Aplicada del Segura - Consejo Superior de Investigaciones Científicas, Murcia, Spain
| |
Collapse
|
17
|
Nielsen LS, Šantl-Temkiv T, Palomeque Sánchez M, Massling A, Ward JC, Jensen PB, Boesen T, Petters M, Finster K, Bilde M, Rosati B. Water Uptake of Airborne Cells of P. syringae Measured with a Hygroscopicity Tandem Differential Mobility Analyzer. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19211-19221. [PMID: 39425695 DOI: 10.1021/acs.est.4c01817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Airborne microorganisms impact cloud formation and are involved in disease spreading. The ability of airborne cells to survive and express genes may be limited by reduced water availability in the atmosphere and depend on the ability of the cells to attract water vapor at subsaturated conditions, i.e., their hygroscopicity. We assessed hygroscopic properties of the plant pathogen Pseudomonas syringae, known to participate in cloud formation. We used a hygroscopicity tandem differential mobility analyzer to examine both hydration and dehydration behavior in the relative humidity (RH) range 5-90%. The cells were aerosolized either from Milli-Q water or from a 35 g L-1 NaCl solution, resulting in pure cells or cells associated with NaCl. Pure cells exhibited no deliquescence/efflorescence and a small gradual water uptake reaching a maximum growth factor (GF) of 1.09 ± 0.01 at 90% RH. For cells associated with NaCl, we observed deliquescence and a much larger maximum GF of 1.74 ± 0.03 at 90% RH. Deliquescence RH was comparable to that of pure NaCl, highlighting the major role of the salt associated with the cells. It remains to be investigated how the observed hygroscopic properties relate to survival, metabolic, and ice-nucleation activities of airborne P. syringae.
Collapse
Affiliation(s)
- Lærke Sloth Nielsen
- Department of Biology, Aarhus University, Aarhus 8000, Denmark
- Department of Chemistry, Aarhus University, Aarhus 8000, Denmark
- Interdisciplinary Center for Climate Change, Aarhus University, Roskilde 4000, Denmark
- Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Aarhus 8000, Denmark
| | - Tina Šantl-Temkiv
- Department of Biology, Aarhus University, Aarhus 8000, Denmark
- Interdisciplinary Center for Climate Change, Aarhus University, Roskilde 4000, Denmark
- Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Aarhus 8000, Denmark
| | | | - Andreas Massling
- Interdisciplinary Center for Climate Change, Aarhus University, Roskilde 4000, Denmark
- Department of Environmental Science, Aarhus University, Roskilde 4000, Denmark
| | - Josephine Caroline Ward
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus 8000, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus 8000, Denmark
| | - Pia Bomholt Jensen
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus 8000, Denmark
| | - Thomas Boesen
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus 8000, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus 8000, Denmark
| | - Markus Petters
- Department of Chemistry, Aarhus University, Aarhus 8000, Denmark
- Marine, Earth and Atmospheric Sciences, NC State University, Raleigh, North Carolina 27695, United States
- Department of Chemical and Environmental Engineering, University of California Riverside, Riverside, California 92521, United States
- Center for Environmental Research and Technology (CE-CERT), University of California Riverside, Riverside, California 92507, United States
| | - Kai Finster
- Department of Biology, Aarhus University, Aarhus 8000, Denmark
- Interdisciplinary Center for Climate Change, Aarhus University, Roskilde 4000, Denmark
- Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Aarhus 8000, Denmark
| | - Merete Bilde
- Department of Chemistry, Aarhus University, Aarhus 8000, Denmark
| | | |
Collapse
|
18
|
Laskowska E, Kuczyńska-Wiśnik D, Stojowska-Swędrzyńska K. Role of protein aggregates in bacteria. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 145:73-112. [PMID: 40324851 DOI: 10.1016/bs.apcsb.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Protein misfolding and aggregation in bacteria, induced by a variety of intrinsic and environmental stresses, have often been associated with proteostasis disruption and toxic effects. However, a growing body of evidence suggests that these aggregates may also serve as functional membrane-less organelles (MLOs), playing a protective role in bacterial cells. The main mechanism responsible for the formation of MLOs is liquid-liquid phase separation (LLPS), a process that transforms a homogenous solution of macromolecules into dense condensates (liquid droplets) and a diluted phase. Over time, these liquid droplets can be transformed into solid aggregates. Bacterial MLOs, containing one dominant component or hundreds of cytoplasmic proteins, have been shown to be involved in various processes, including replication, transcription, cell division, and stress tolerance. The protective function of bacterial MLOs involves sequestration and protection of proteins and RNA from irreversible inactivation or degradation, upregulation of molecular chaperones, and induction of a dormant state. This protective role is particularly significant in the case of pathogenic bacteria exposed to antibiotic therapy. In a dormant state triggered by protein aggregation, pathogens can survive antibiotic therapy as persisters and, after resuming growth, can cause recurrent infections. Recent research has explored the potential use of bacterial MLOs as nanoreactors that catalyze biochemical reactions or serve as protein reservoirs and biosensors, highlighting their potential in biotechnology.
Collapse
Affiliation(s)
- Ewa Laskowska
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Gdansk, Poland.
| | - Dorota Kuczyńska-Wiśnik
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | | |
Collapse
|
19
|
Zimmerman AE, Graham EB, McDermott J, Hofmockel KS. Estimating the Importance of Viral Contributions to Soil Carbon Dynamics. GLOBAL CHANGE BIOLOGY 2024; 30:e17524. [PMID: 39450620 DOI: 10.1111/gcb.17524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 10/26/2024]
Abstract
Biogeochemical models for predicting carbon dynamics increasingly include microbial processes, reflecting the importance of microorganisms in regulating the movement of carbon between soils and the atmosphere. Soil viruses can redirect carbon among various chemical pools, indicating a need for quantification and development soil carbon models that explicitly represent viral dynamics. In this opinion, we derive a global estimate of carbon potentially released from microbial biomass by viral infections in soils and synthesize a quantitative soil carbon budget from existing literature that explicitly includes viral impacts. We then adapt known mechanisms by which viruses influence carbon cycles in marine ecosystems into a soil-explicit framework. Finally, we explore the diversity of virus-host interactions during infection and conceptualize how infection mode may impact soil carbon fate. Our synthesis highlights key knowledge gaps hindering the incorporation of viruses into soil carbon cycling research and generates specific hypotheses to test in the pursuit of better quantifying microbial dynamics that explain ecosystem-scale carbon fluxes. The importance of identifying critical drivers behind soil carbon dynamics, including these elusive but likely pervasive viral mechanisms of carbon redistribution, becomes more pressing with climate change.
Collapse
Affiliation(s)
- Amy E Zimmerman
- Earth and Biological Sciences Directorate, Pacific Northwest National Lab, Richland, Washington, USA
| | - Emily B Graham
- Earth and Biological Sciences Directorate, Pacific Northwest National Lab, Richland, Washington, USA
- School of Biological Sciences, Washington State University, Pullman, Washington, USA
| | - Jason McDermott
- Earth and Biological Sciences Directorate, Pacific Northwest National Lab, Richland, Washington, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
| | - Kirsten S Hofmockel
- Earth and Biological Sciences Directorate, Pacific Northwest National Lab, Richland, Washington, USA
- Department of Agronomy, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
20
|
Chai L, Zaburdaev V, Kolter R. How bacteria actively use passive physics to make biofilms. Proc Natl Acad Sci U S A 2024; 121:e2403842121. [PMID: 39264745 PMCID: PMC11459164 DOI: 10.1073/pnas.2403842121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024] Open
Abstract
Modern molecular microbiology elucidates the organizational principles of bacterial biofilms via detailed examination of the interplay between signaling and gene regulation. A complementary biophysical approach studies the mesoscopic dependencies at the cellular and multicellular levels with a distinct focus on intercellular forces and mechanical properties of whole biofilms. Here, motivated by recent advances in biofilm research and in other, seemingly unrelated fields of biology and physics, we propose a perspective that links the biofilm, a dynamic multicellular organism, with the physical processes occurring in the extracellular milieu. Using Bacillus subtilis as an illustrative model organism, we specifically demonstrate how such a rationale explains biofilm architecture, differentiation, communication, and stress responses such as desiccation tolerance, metabolism, and physiology across multiple scales-from matrix proteins and polysaccharides to macroscopic wrinkles and water-filled channels.
Collapse
Affiliation(s)
- Liraz Chai
- Institute of Chemistry, Hebrew University of Jerusalem, Jerusalem9190401, Israel
- The Harvey M. Krueger Family Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem9190401, Israel
- Max Planck Queensland Centre, Queensland University of Technology, Brisbane, QLD4000, Australia
| | - Vasily Zaburdaev
- Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen91058, Germany
- Max-Planck-Zentrum für Physik und Medizin, Erlangen91058, Germany
| | - Roberto Kolter
- Department of Microbiology, Harvard Medical School, Boston, MA02115
| |
Collapse
|
21
|
Baker NR, Zhalnina K, Yuan M, Herman D, Ceja-Navarro JA, Sasse J, Jordan JS, Bowen BP, Wu L, Fossum C, Chew A, Fu Y, Saha M, Zhou J, Pett-Ridge J, Northen TR, Firestone MK. Nutrient and moisture limitations reveal keystone metabolites linking rhizosphere metabolomes and microbiomes. Proc Natl Acad Sci U S A 2024; 121:e2303439121. [PMID: 39093948 PMCID: PMC11317588 DOI: 10.1073/pnas.2303439121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 06/03/2024] [Indexed: 08/04/2024] Open
Abstract
Plants release a wealth of metabolites into the rhizosphere that can shape the composition and activity of microbial communities in response to environmental stress. The connection between rhizodeposition and rhizosphere microbiome succession has been suggested, particularly under environmental stress conditions, yet definitive evidence is scarce. In this study, we investigated the relationship between rhizosphere chemistry, microbiome dynamics, and abiotic stress in the bioenergy crop switchgrass grown in a marginal soil under nutrient-limited, moisture-limited, and nitrogen (N)-replete, phosphorus (P)-replete, and NP-replete conditions. We combined 16S rRNA amplicon sequencing and LC-MS/MS-based metabolomics to link rhizosphere microbial communities and metabolites. We identified significant changes in rhizosphere metabolite profiles in response to abiotic stress and linked them to changes in microbial communities using network analysis. N-limitation amplified the abundance of aromatic acids, pentoses, and their derivatives in the rhizosphere, and their enhanced availability was linked to the abundance of bacterial lineages from Acidobacteria, Verrucomicrobia, Planctomycetes, and Alphaproteobacteria. Conversely, N-amended conditions increased the availability of N-rich rhizosphere compounds, which coincided with proliferation of Actinobacteria. Treatments with contrasting N availability differed greatly in the abundance of potential keystone metabolites; serotonin and ectoine were particularly abundant in N-replete soils, while chlorogenic, cinnamic, and glucuronic acids were enriched in N-limited soils. Serotonin, the keystone metabolite we identified with the largest number of links to microbial taxa, significantly affected root architecture and growth of rhizosphere microorganisms, highlighting its potential to shape microbial community and mediate rhizosphere plant-microbe interactions.
Collapse
Affiliation(s)
- Nameer R. Baker
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA94720
| | - Kateryna Zhalnina
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - Mengting Yuan
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA94720
| | - Don Herman
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA94720
| | - Javier A. Ceja-Navarro
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ86011
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - Joelle Sasse
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
- Institute for Plant and Microbial Biology, University of Zurich, CH-8008Zurich, Switzerland
| | - Jacob S. Jordan
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
- Department of Chemistry, University of California, Berkeley, CA94720
| | - Benjamin P. Bowen
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - Liyou Wu
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK73019
| | - Christina Fossum
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA94720
| | - Aaron Chew
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA94720
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA94550
| | - Ying Fu
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK73019
| | - Malay Saha
- Noble Research Institute, Ardmore, OK73401
| | - Jizhong Zhou
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK73019
| | - Jennifer Pett-Ridge
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA94550
- Life and Environmental Sciences Department, University of California Merced, Merced, CA95343
| | - Trent R. Northen
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - Mary K. Firestone
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA94720
| |
Collapse
|
22
|
Fardelli E, Di Gioacchino M, Lucidi M, Capecchi G, Bruni F, Sodo A, Visca P, Capellini G. Evidence of Correlation between Membrane Phase Transition and Clonogenicity in Dehydrating Acinetobacter baumannii: A Combined Micro-Raman and AFM Study. J Phys Chem B 2024; 128:6806-6815. [PMID: 38959442 DOI: 10.1021/acs.jpcb.4c01246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The Gram-negative bacterium Acinetobacter baumannii is one of the most resilient multidrug-resistant pathogens in hospitals. Among Gram-negative bacteria, it is particularly resistant to dehydration (anhydrobiosis), and this feature allows A. baumannii to persist in hospital environments for long periods, subjected to unfavorable conditions. We leverage the combination of μ-Raman spectroscopy and atomic force microscopy (AFM) to investigate the anhydrobiotic mechanisms in A. baumannii cells by monitoring the membrane (both inner and outer membranes) properties of four A. baumannii strains during a 16-week dehydration period and in response to temperature excursions. We noted that the membranes of A. baumannii remained intact during the dehydration period despite undergoing a liquid-crystal-to-gel-phase transition, accompanied by changes in the mechanical properties of the membrane. This was evident from the AFM images, which showed the morphology of the bacterial cells alongside modifications of their superficial mechanical properties, and from the alteration in the intensity ratio of μ-Raman features linked to the CH3 and CH2 symmetric stretching modes. Furthermore, employing a universal power law revealed a significant correlation between this ratio and bacterial fitness across all tested strains. Additionally, we subjected dry A. baumannii to a temperature-dependent experiment, the results of which supported the correlation between the Raman ratio and culturability, demonstrating that the phase transition becomes irreversible when A. baumannii cells undergo different temperature cycles. Besides the relevance to the present study, we argue that μ-Raman can be used as a powerful nondestructive tool to assess the health status of bacterial cells based on membrane properties with a relatively high throughput.
Collapse
Affiliation(s)
- Elisa Fardelli
- Dipartimento di Scienze, Università degli Studi di Roma Tre, Viale Marconi 446, 00146 Rome, Italy
| | - Michael Di Gioacchino
- Dipartimento di Scienze, Università degli Studi di Roma Tre, Viale Marconi 446, 00146 Rome, Italy
| | - Massimiliano Lucidi
- Dipartimento di Scienze, Università degli Studi di Roma Tre, Viale Marconi 446, 00146 Rome, Italy
- National Biodiversity Future Center, piazza Marina 61, 90133 Palermo, Italy
| | - Giulia Capecchi
- Dipartimento di Scienze, Università degli Studi di Roma Tre, Viale Marconi 446, 00146 Rome, Italy
| | - Fabio Bruni
- Dipartimento di Scienze, Università degli Studi di Roma Tre, Viale Marconi 446, 00146 Rome, Italy
| | - Armida Sodo
- Dipartimento di Scienze, Università degli Studi di Roma Tre, Viale Marconi 446, 00146 Rome, Italy
| | - Paolo Visca
- Dipartimento di Scienze, Università degli Studi di Roma Tre, Viale Marconi 446, 00146 Rome, Italy
- Fondazione Santa Lucia, Via Ardeatina, 306/354, 00179 Rome, Italy
| | - Giovanni Capellini
- Dipartimento di Scienze, Università degli Studi di Roma Tre, Viale Marconi 446, 00146 Rome, Italy
- IHP Leibniz Institut für innovative Mikroelektronik, Im Technologiepark 25, 15236 Frankfurt (Oder), Germany
| |
Collapse
|
23
|
Caro-Astorga J, Meyerowitz JT, Stork DA, Nattermann U, Piszkiewicz S, Vimercati L, Schwendner P, Hocher A, Cockell C, DeBenedictis E. Polyextremophile engineering: a review of organisms that push the limits of life. Front Microbiol 2024; 15:1341701. [PMID: 38903795 PMCID: PMC11188471 DOI: 10.3389/fmicb.2024.1341701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/16/2024] [Indexed: 06/22/2024] Open
Abstract
Nature exhibits an enormous diversity of organisms that thrive in extreme environments. From snow algae that reproduce at sub-zero temperatures to radiotrophic fungi that thrive in nuclear radiation at Chernobyl, extreme organisms raise many questions about the limits of life. Is there any environment where life could not "find a way"? Although many individual extremophilic organisms have been identified and studied, there remain outstanding questions about the limits of life and the extent to which extreme properties can be enhanced, combined or transferred to new organisms. In this review, we compile the current knowledge on the bioengineering of extremophile microbes. We summarize what is known about the basic mechanisms of extreme adaptations, compile synthetic biology's efforts to engineer extremophile organisms beyond what is found in nature, and highlight which adaptations can be combined. The basic science of extremophiles can be applied to engineered organisms tailored to specific biomanufacturing needs, such as growth in high temperatures or in the presence of unusual solvents.
Collapse
Affiliation(s)
| | | | - Devon A. Stork
- Pioneer Research Laboratories, San Francisco, CA, United States
| | - Una Nattermann
- Pioneer Research Laboratories, San Francisco, CA, United States
| | | | - Lara Vimercati
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, United States
| | | | - Antoine Hocher
- London Institute of Medical Sciences, London, United Kingdom
| | - Charles Cockell
- UK Centre for Astrobiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Erika DeBenedictis
- The Francis Crick Institute, London, United Kingdom
- Pioneer Research Laboratories, San Francisco, CA, United States
| |
Collapse
|
24
|
Bosch J, Lebre PH, Marais E, Maggs‐Kölling G, Cowan DA. Kinetics and pathways of sub-lithic microbial community (hypolithon) development. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13290. [PMID: 38923208 PMCID: PMC11194044 DOI: 10.1111/1758-2229.13290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/03/2024] [Indexed: 06/28/2024]
Abstract
Type I hypolithons are microbial communities dominated by Cyanobacteria. They adhere to the underside of semi-translucent rocks in desert pavements, providing them with a refuge from the harsh abiotic stresses found on the desert soil surface. Despite their crucial role in soil nutrient cycling, our understanding of their growth rates and community development pathways remains limited. This study aimed to quantify the dynamics of hypolithon formation in the pavements of the Namib Desert. We established replicate arrays of sterile rock tiles with varying light transmission in two areas of the Namib Desert, each with different annual precipitation regimes. These were sampled annually over 7 years, and the samples were analysed using eDNA extraction and 16S rRNA gene amplicon sequencing. Our findings revealed that in the zone with higher precipitation, hypolithon formation became evident in semi-translucent rocks 3 years after the arrays were set up. This coincided with a Cyanobacterial 'bloom' in the adherent microbial community in the third year. In contrast, no visible hypolithon formation was observed at the array set up in the hyper-arid zone. This study provides the first quantitative evidence of the kinetics of hypolithon development in hot desert environments, suggesting that development rates are strongly influenced by precipitation regimes.
Collapse
Affiliation(s)
- Jason Bosch
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and MicrobiologyUniversity of PretoriaPretoriaSouth Africa
- Institute of Microbiology of the Czech Academy of SciencesCzech Academy of SciencesPrahaCzech Republic
| | - Pedro H. Lebre
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and MicrobiologyUniversity of PretoriaPretoriaSouth Africa
| | | | | | - Don A. Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and MicrobiologyUniversity of PretoriaPretoriaSouth Africa
| |
Collapse
|
25
|
Imminger S, Meier DV, Schintlmeister A, Legin A, Schnecker J, Richter A, Gillor O, Eichorst SA, Woebken D. Survival and rapid resuscitation permit limited productivity in desert microbial communities. Nat Commun 2024; 15:3056. [PMID: 38632260 PMCID: PMC11519504 DOI: 10.1038/s41467-024-46920-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 03/13/2024] [Indexed: 04/19/2024] Open
Abstract
Microbial activity in drylands tends to be confined to rare and short periods of rain. Rapid growth should be key to the maintenance of ecosystem processes in such narrow activity windows, if desiccation and rehydration cause widespread cell death due to osmotic stress. Here, simulating rain with 2H2O followed by single-cell NanoSIMS, we show that biocrust microbial communities in the Negev Desert are characterized by limited productivity, with median replication times of 6 to 19 days and restricted number of days allowing growth. Genome-resolved metatranscriptomics reveals that nearly all microbial populations resuscitate within minutes after simulated rain, independent of taxonomy, and invest their activity into repair and energy generation. Together, our data reveal a community that makes optimal use of short activity phases by fast and universal resuscitation enabling the maintenance of key ecosystem functions. We conclude that desert biocrust communities are highly adapted to surviving rapid changes in soil moisture and solute concentrations, resulting in high persistence that balances limited productivity.
Collapse
Affiliation(s)
- Stefanie Imminger
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
- University of Vienna, Doctoral School in Microbiology and Environmental Science, Vienna, Austria
| | - Dimitri V Meier
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
- Department of Ecological Microbiology, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
| | - Arno Schintlmeister
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
- Large-Instrument Facility for Environmental and Isotope Mass Spectrometry, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Anton Legin
- Faculty of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Vienna, Austria
| | - Jörg Schnecker
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Andreas Richter
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Osnat Gillor
- Zuckerberg Institute for Water Research, Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Midreshet Ben Gurion, Israel
| | - Stephanie A Eichorst
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Dagmar Woebken
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria.
| |
Collapse
|
26
|
Jaffari ZH, Na S, Abbas A, Park KY, Cho KH. Digital imaging-in-flow (FlowCAM) and probabilistic machine learning to assess the sonolytic disinfection of cyanobacteria in sewage wastewater. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133762. [PMID: 38402678 DOI: 10.1016/j.jhazmat.2024.133762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/25/2024] [Accepted: 02/08/2024] [Indexed: 02/27/2024]
Abstract
Assessing the cyanobacteria disinfection in sewage and its compliance with international-standards requires determining the concentration and viability, which can be achieve using Imaging Flow Cytometry device called FlowCAM. The objective is to thoroughly investigate the sonolytic morphological changes and disinfection-performance towards toxic cyanobacteria existing in sewage using the FlowCAM. After optimizing the process conditions, over 80% decline in cyanobacterial cell counts was observed, accompanied by an additional 10-15% of cells exhibiting injuries, as confirmed through morphological investigation. Moreover, for the first time, the experimentally collected data was utilized to build deep-learning probabilistic-neural-networks (PNN) and natural-gradient-boosting (NGBoost) models for predicting disinfection efficiency and ABD area as target outputs. The findings suggest that the NGBoost model exhibited superior prediction performance for both targets, with high test coefficient of determination (R2 > 0.87) and lower test errors (RMSE < 7.10, MAE < 4.14). The confidence interval examination in NGBoost prediction performance showed a minute variation from the experimentally calculated values, suggesting a high accuracy in model prediction. Finally, SHAP analysis suggests the sonolytic time alone contributes around 50% to the cyanobacteria disinfection. Overall, the findings demonstrate the effectiveness of the FlowCAM device and the potential of machine-learning modeling in predicting disinfection outcomes.
Collapse
Affiliation(s)
- Zeeshan Haider Jaffari
- Department of Civil and Environmental Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Seongyeon Na
- Department of Civil, Urban, Earth and Environmental Engineering, Ulsan National Institute of Science and Tehchnology (UNIST), UNIST-gil 50, Ulsan 44919, Republic of Korea
| | - Ather Abbas
- Physical Science and Engineering Division, 4700 King Abdullah University of Science and Technology, Thuwal, Mecca, Saudi Arabia
| | - Ki Young Park
- Department of Civil and Environmental Engineering, Konkuk University, Seoul 05029, Republic of Korea.
| | - Kyung Hwa Cho
- School of Civil, Environmental, and Architectural Engineering, Korea University, Seoul 02841, South Korea.
| |
Collapse
|
27
|
Khorsand FR, Uversky VN. Liquid-liquid phase separation as triggering factor of fibril formation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 206:143-182. [PMID: 38811080 DOI: 10.1016/bs.pmbts.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Liquid-liquid phase separation (LLPS) refers to the phenomenon, where a homogeneous solution spontaneously undergoes a transition into two or more immiscible phases. Through transient weak multivalent macromolecular interactions, a homogeneous solution can spontaneously separate into two phases: one rich in biomolecules and the other poor in biomolecules. Phase separation is believed to serve as the physicochemical foundation for the formation of membrane-less organelles (MLOs) and bio-molecular condensates within cells. Moreover, numerous biological processes depend on LLPS, such as transcription, immunological response, chromatin architecture, DNA damage response, stress granule formation, viral infection, etc. Abnormalities in phase separation can lead to diseases, such as cancer, neurodegeneration, and metabolic disorders. LLPS is regulated by various factors, such as concentration of molecules undergoing LLPS, salt concentration, pH, temperature, post-translational modifications, and molecular chaperones. Recent research on LLPS of biomolecules has progressed rapidly and led to the development of databases containing information pertaining to various aspects of the biomolecule separation analysis. However, more comprehensive research is still required to fully comprehend the specific molecular mechanisms and biological effects of LLPS.
Collapse
Affiliation(s)
| | - Vladimir N Uversky
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Pushchino, Moscow, Russia; Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.
| |
Collapse
|
28
|
Claudia MV, Javiera AA, Sebastián NS, José FR, Gloria L. Interplay between desiccation and oxidative stress responses in iron-oxidizing acidophilic bacteria. J Biotechnol 2024; 383:64-72. [PMID: 38311245 DOI: 10.1016/j.jbiotec.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/15/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
Variations in water availability represent a foremost stress factor affecting the growth and survival of microorganisms. Acidophilic bioleaching bacteria are industrially applied for releasing metals from mineral sulphides, and they are considered extremely tolerant to oxidative conditions prevailing in acidic bioleaching environments. Such processes usually are performed in heaps and thus these microorganisms are also exposed to intermittent desiccations or high osmolarity periods that reduce the water availability. However, the tolerance to water stress and the molecular basis of adaptation to it are still largely unknown. The aim of this work was to determine the cellular response to desiccation stress and establish its relationship to oxidative stress response in the acidophilic iron-oxidizing bacteria Acidithiobacillus ferrooxidans ATCC 23270 and Leptospirillum ferriphilum DSM 14647. Results showed that the exposure of cell cultures to desiccation (0-120 min) led to a significant reduction in cell growth, and to an increase in content in reactive oxygen species in both bacteria. However, Leptospirillum ferriphilum turned out to be more tolerant than Acidithiobacillus ferrooxidans. In addition, the pre-treatment of the cell cultures with compatible solutes (trehalose and ectoine), and antioxidants (glutathione and cobalamin) restored all stress parameters to levels exhibited by the control cultures. To evaluate the role of the osmotic and redox homeostasis mechanisms in coping with desiccation stress, the relative expression of a set of selected genes was approached by RT-qPCR experiments in cells exposed to desiccation for 30 min. Results showed a generalized upregulation of genes that code for mechanosensitive channels, and enzymes related to the biosynthesis of compatible solutes and oxidative stress response in both bacteria. These data suggest that acidophiles show variable tolerance to desiccation and allow to establish that water stress can trigger oxidative stress, and thus anti-oxidative protection capability can be a relevant mechanism when cells are challenged by desiccation or other anhydrobiosis states.
Collapse
Affiliation(s)
- Muñoz-Villagrán Claudia
- Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile (USACH), Av. Libertador Bernardo O'Higgins, Santiago 3363, Chile
| | - Acevedo-Arbunic Javiera
- Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile (USACH), Av. Libertador Bernardo O'Higgins, Santiago 3363, Chile
| | - Navarro-Salazar Sebastián
- Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile (USACH), Av. Libertador Bernardo O'Higgins, Santiago 3363, Chile
| | - Fuentes-Rubio José
- Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile (USACH), Av. Libertador Bernardo O'Higgins, Santiago 3363, Chile
| | - Levicán Gloria
- Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile (USACH), Av. Libertador Bernardo O'Higgins, Santiago 3363, Chile.
| |
Collapse
|
29
|
Thweatt JL, Harman CE, Araújo MN, Marlow JJ, Oliver GC, Sabuda MC, Sevgen S, Wilpiszeki RL. Chapter 6: The Breadth and Limits of Life on Earth. ASTROBIOLOGY 2024; 24:S124-S142. [PMID: 38498824 DOI: 10.1089/ast.2021.0131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Scientific ideas about the potential existence of life elsewhere in the universe are predominantly informed by knowledge about life on Earth. Over the past ∼4 billion years, life on Earth has evolved into millions of unique species. Life now inhabits nearly every environmental niche on Earth that has been explored. Despite the wide variety of species and diverse biochemistry of modern life, many features, such as energy production mechanisms and nutrient requirements, are conserved across the Tree of Life. Such conserved features help define the operational parameters required by life and therefore help direct the exploration and evaluation of habitability in extraterrestrial environments. As new diversity in the Tree of Life continues to expand, so do the known limits of life on Earth and the range of environments considered habitable elsewhere. The metabolic processes used by organisms living on the edge of habitability provide insights into the types of environments that would be most suitable to hosting extraterrestrial life, crucial for planning and developing future astrobiology missions. This chapter will introduce readers to the breadth and limits of life on Earth and show how the study of life at the extremes can inform the broader field of astrobiology.
Collapse
Affiliation(s)
- Jennifer L Thweatt
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, Pennsylvania, USA. (Former)
| | - C E Harman
- Planetary Systems Branch, NASA Ames Research Center, Moffett Field, California, USA
| | - M N Araújo
- Biochemistry Department, University of São Paulo, São Carlos, Brazil
| | - Jeffrey J Marlow
- Department of Biology, Boston University, Boston, Massachusetts, USA
| | - Gina C Oliver
- Department of Geology, San Bernardino Valley College, San Bernardino, California, USA
| | - Mary C Sabuda
- Department of Earth and Environmental Sciences, University of Minnesota-Twin Cities, Minneapolis, Minnesota, USA
- Biotechnology Institute, University of Minnesota-Twin Cities, St. Paul, Minnesota, USA
| | - Serhat Sevgen
- Institute of Marine Sciences, Middle East Technical University, Erdemli, Mersin, Turkey
- Blue Marble Space Institute of Science, Seattle, Washington, USA
| | | |
Collapse
|
30
|
Wang XY, Li P, Du XJ, Wang S. Effect of glutathione-transport-related gene gsiD on desiccation tolerance of Cronobacter sakazakii and its related regulatory mechanism. Appl Environ Microbiol 2024; 90:e0156223. [PMID: 38289135 PMCID: PMC10880603 DOI: 10.1128/aem.01562-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/16/2023] [Indexed: 02/22/2024] Open
Abstract
The outstanding desiccation tolerance of Cronobacter sakazakii (C. sakazakii) enables long-term persistence in food products with low-water activity to increase the infection risk, especially in low-birth-weight, immuno-compromised neonates, and infants less than 4 weeks of age. In our previous study, the disruption of glutathione transport-related gene gsiD by transposon was found to significantly increase its inactivation rate under drying stress challenges. However, the mechanism underlying the association between glutathione transport and desiccation tolerance of C. sakazakii remains to be clarified. In this study, the mechanism underlying their association was investigated in detail by constructing the gsiD gene deletion mutant. gsiD gene deletion was found to cause the dysfunction of the glutathione transport system GsiABCD and the limitation of glutathione import. The resulting decrease in intracellular glutathione caused the decreased potassium ions uptake and increased potassium ions efflux, inhibited the proline synthesis process, limited extracellular glutathione utilization, increased oxidant stress, reduced biofilm formation, and increased outer membrane permeability, which may be the main reasons for the significant reduction of the desiccation tolerance of C. sakazakii.IMPORTANCEContributing to its superior environmental adaptability, Cronobacter sakazakii can survive under many abiotic stress conditions. The outstanding desiccation tolerance makes this species persist in low-water activity foods, which increases harm to humans. For decades, many studies have focused on the desiccation tolerance of C. sakazakii, but the existing research is still insufficient. Our study found that gsiD gene deletion inhibited glutathione uptake and further decreased intracellular glutathione content, causing a decrease in desiccation tolerance and biofilm formation and an increase in outer membrane permeability. Moreover, the expression level of relative genes verified that gsiD gene deletion made the mutant not conducive to surviving in dry conditions due to restricting potassium ions uptake and efflux, inhibiting the conversion of glutamate to compatible solute proline, and increasing the oxidative stress of C. sakazakii. The above results enrich our knowledge of the desiccation tolerance mechanism of C. sakazakii.
Collapse
Affiliation(s)
- Xiao-yi Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Ping Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Xin-jun Du
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
- Tianjin Key Laboratory of Food Science and Health, College of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
31
|
León-Sobrino C, Ramond JB, Coclet C, Kapitango RM, Maggs-Kölling G, Cowan D. Temporal dynamics of microbial transcription in wetted hyperarid desert soils. FEMS Microbiol Ecol 2024; 100:fiae009. [PMID: 38299778 PMCID: PMC10913055 DOI: 10.1093/femsec/fiae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 12/15/2023] [Accepted: 01/30/2024] [Indexed: 02/02/2024] Open
Abstract
Rainfall is rare in hyperarid deserts but, when it occurs, it triggers large biological responses essential for the long-term maintenance of the ecosystem. In drylands, microbes play major roles in nutrient cycling, but their responses to short-lived opportunity windows are poorly understood. Due to its ephemeral nature, mRNA is ideally suited to study microbiome dynamics upon abrupt changes in the environment. We analyzed microbial community transcriptomes after simulated rainfall in a Namib Desert soil over 7 days. Using total mRNA from dry and watered plots we infer short-term functional responses in the microbiome. A rapid two-phase cycle of activation and return to basal state was completed in a short period. Motility systems activated immediately, whereas competition-toxicity increased in parallel to predator taxa and the drying of soils. Carbon fixation systems were downregulated, and reactivated upon return to a near-dry state. The chaperone HSP20 was markedly regulated by watering across all major bacteria, suggesting a particularly important role in adaptation to desiccated ecosystems. We show that transcriptomes provide consistent and high resolution information on microbiome processes in a low-biomass environment, revealing shared patterns across taxa. We propose a structured dispersal-predation dynamic as a central driver of desert microbial responses to rainfall.
Collapse
Affiliation(s)
- Carlos León-Sobrino
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, 0002 Pretoria, South Africa
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| | - Jean-Baptiste Ramond
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, 0002 Pretoria, South Africa
- Extreme Ecosystem Microbiomics and Ecogenomics (E²ME) Lab., Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Clément Coclet
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, 0002 Pretoria, South Africa
| | | | | | - Don A Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, 0002 Pretoria, South Africa
| |
Collapse
|
32
|
Li S, Xu W, Lin M, Lu Z, Ma Z, Chen S, Yang Y, Zhang H. Heat Resistance, Virulence, and Gene Expression of Desiccation-Adapted Salmonella Enteritidis During Long-Term Storage in Low-Water Activity Foods. Foodborne Pathog Dis 2024; 21:119-126. [PMID: 38010814 DOI: 10.1089/fpd.2023.0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Abstract
Desiccation stress could induce crossprotection and even affect virulence of Salmonella enterica. However, the influence of food matrices with low-water activity on desiccation adaptation of Salmonella still remains unclear. This study investigated the survival and adaptation of Salmonella Enteritidis in skim milk powder, ginger powder, and chocolate powder under desiccation storage conditions for a total of 12 weeks. High survival rates of Salmonella Enteritidis in all food matrices maintained over the long-term desiccation storage. Desiccation-adapted Salmonella Enteritidis enhanced heat resistance (p < 0.05) with the increase of storage time. Food composition plays an important role in the induction of crossresistance of desiccation-adapted Salmonella. After desiccation storage, Salmonella Enteritidis in ginger powder was most tolerant to heat treatment. Salmonella Enteritidis in skim milk powder was most resistant to the gastrointestinal simulation environment, and had strongest adhesion to Caco-2 cells. The effects of food composition on gene expression (rpoS, proV, otsA, otsB, grpE, dnaK, rpoH, and sigDE) in desiccation-adapted Salmonella Enteritidis were not significant (p > 0.05). At initial desiccation storage, osmotic protection-related genes (fadA, proV, otsA, and otsB), stress response regulator (rpoS), and heat-resistance-related genes (grpE, dnaK, and rpoH) were all significantly upregulated (p < 0.05). However, after 4-week storage, the expression level of desiccation-related genes, proV, otsA, otsB, grpE, dnaK, and rpoH, significantly decreased (p < 0.05). This study enables a better understanding of Salmonella's responses to long-term desiccation stress in different kinds of low-water activity foods.
Collapse
Affiliation(s)
- Shaoting Li
- Department of Biological Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Weiying Xu
- Department of Biological Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Mengzhe Lin
- Department of Biological Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Ziying Lu
- Department of Biological Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Zhuolin Ma
- Department of Biological Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Siyi Chen
- Department of Biological Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Yuheng Yang
- Department of Biological Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Hongmei Zhang
- Department of Biological Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| |
Collapse
|
33
|
Maza-Márquez P, Lee MD, Bebout BM. Community ecology and functional potential of bacteria, archaea, eukarya and viruses in Guerrero Negro microbial mat. Sci Rep 2024; 14:2561. [PMID: 38297006 PMCID: PMC10831059 DOI: 10.1038/s41598-024-52626-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 01/22/2024] [Indexed: 02/02/2024] Open
Abstract
In this study, the microbial ecology, potential environmental adaptive mechanisms, and the potential evolutionary interlinking of genes between bacterial, archaeal and viral lineages in Guerrero Negro (GN) microbial mat were investigated using metagenomic sequencing across a vertical transect at millimeter scale. The community composition based on unique genes comprised bacteria (98.01%), archaea (1.81%), eukarya (0.07%) and viruses (0.11%). A gene-focused analysis of bacteria archaea, eukarya and viruses showed a vertical partition of the community. The greatest coverages of genes of bacteria and eukarya were detected in first layers, while the highest coverages of genes of archaea and viruses were found in deeper layers. Many genes potentially related to adaptation to the local environment were detected, such as UV radiation, multidrug resistance, oxidative stress, heavy metals, salinity and desiccation. Those genes were found in bacterial, archaeal and viral lineages with 6477, 44, and 1 genes, respectively. The evolutionary histories of those genes were studied using phylogenetic analysis, showing an interlinking between domains in GN mat.
Collapse
Affiliation(s)
- P Maza-Márquez
- Exobiology Branch, NASA Ames Research Center, Moffett Field, CA, USA.
- University of Granada, Granada, Spain.
| | - M D Lee
- Exobiology Branch, NASA Ames Research Center, Moffett Field, CA, USA
- Blue Marble Space Institute of Science, Seattle, WA, USA
| | - B M Bebout
- Exobiology Branch, NASA Ames Research Center, Moffett Field, CA, USA
| |
Collapse
|
34
|
Smenderovac E, Emilson C, Rheault K, Brazeau É, Morency MJ, Gagné P, Venier L, Martineau C. Drying as an effective method to store soil samples for DNA-based microbial community analyses: a comparative study. Sci Rep 2024; 14:1725. [PMID: 38242898 PMCID: PMC10798986 DOI: 10.1038/s41598-023-50541-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/21/2023] [Indexed: 01/21/2024] Open
Abstract
Soil sampling for environmental DNA in remote and semi-remote locations is often limited due to logistical constraints surrounding sample preservation, including no or limited access to a freezer. Freezing at - 20 °C is a common DNA preservation strategy, however, other methods such as desiccation, ethanol or commercial preservatives are available as potential alternative DNA preservation methods for room temperature storage. In this study, we assessed five preservation methods (CD1 solution, 95% Ethanol, Dry & Dry silica gel packs, RNAlater, LifeGuard) along with freezing at - 20 °C, against immediate extraction on organic and mineral soils for up to three weeks of preservation. We assessed direct effects on DNA concentration and quality, and used DNA metabarcoding to assess effects on bacterial and fungal communities. Drying with Dry & Dry led to no significant differences from immediate extraction. RNAlater led to lower DNA concentrations, but effects on community structures were comparable to freezing. CD1, LifeGuard and Ethanol either caused immediate significant shifts in community structure, degradation of DNA quality or changes in diversity metrics. Overall, our study supports the use of drying with silica gel packs as a cost-effective, and easily applied method for the short-term storage at room temperature for DNA-based microbial community analyses.
Collapse
Affiliation(s)
| | - Caroline Emilson
- Canadian Forest Service, Natural Resources Canada, Ottawa, Canada
| | - Karelle Rheault
- Canadian Forest Service, Natural Resources Canada, Ottawa, Canada
| | - Élodie Brazeau
- Canadian Forest Service, Natural Resources Canada, Ottawa, Canada
| | | | - Patrick Gagné
- Canadian Forest Service, Natural Resources Canada, Ottawa, Canada
| | - Lisa Venier
- Canadian Forest Service, Natural Resources Canada, Ottawa, Canada
| | | |
Collapse
|
35
|
Coleine C, Delgado-Baquerizo M, DiRuggiero J, Guirado E, Harfouche AL, Perez-Fernandez C, Singh BK, Selbmann L, Egidi E. Dryland microbiomes reveal community adaptations to desertification and climate change. THE ISME JOURNAL 2024; 18:wrae056. [PMID: 38552152 PMCID: PMC11031246 DOI: 10.1093/ismejo/wrae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/19/2024] [Accepted: 03/27/2024] [Indexed: 04/21/2024]
Abstract
Drylands account for 45% of the Earth's land area, supporting ~40% of the global population. These regions support some of the most extreme environments on Earth, characterized by extreme temperatures, low and variable rainfall, and low soil fertility. In these biomes, microorganisms provide vital ecosystem services and have evolved distinctive adaptation strategies to endure and flourish in the extreme. However, dryland microbiomes and the ecosystem services they provide are under threat due to intensifying desertification and climate change. In this review, we provide a synthesis of our current understanding of microbial life in drylands, emphasizing the remarkable diversity and adaptations of these communities. We then discuss anthropogenic threats, including the influence of climate change on dryland microbiomes and outline current knowledge gaps. Finally, we propose research priorities to address those gaps and safeguard the sustainability of these fragile biomes.
Collapse
Affiliation(s)
- Claudia Coleine
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, 01100, Italy
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Sevilla, E-41012, Spain
| | - Jocelyne DiRuggiero
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, United States
- Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, MD 21218, United States
| | - Emilio Guirado
- Multidisciplinary Institute for Environment Studies “Ramón Margalef”, Universidad de Alicante, Alicante E-03071, Spain
| | - Antoine L Harfouche
- Department for Innovation in Biological, Agro-Food and Forest systems, University of Tuscia, Viterbo 01100, Italy
| | | | - Brajesh K Singh
- Global Centre for Land-Based Innovation, Western Sydney University, Penrith 2750, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith 2750, Australia
| | - Laura Selbmann
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, 01100, Italy
- Mycological Section, Italian Antarctic National Museum (MNA), Genoa 16128, Italy
| | - Eleonora Egidi
- Global Centre for Land-Based Innovation, Western Sydney University, Penrith 2750, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith 2750, Australia
| |
Collapse
|
36
|
Ujaoney AK, Anaganti N, Padwal MK, Basu B. Tracing the serendipitous genesis of radiation resistance. Mol Microbiol 2024; 121:142-151. [PMID: 38082498 DOI: 10.1111/mmi.15208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/01/2023] [Accepted: 11/27/2023] [Indexed: 01/15/2024]
Abstract
Free-living organisms frequently encounter unfavorable abiotic environmental factors. Those who adapt and cope with sudden changes in the external environment survive. Desiccation is one of the most common and frequently encountered stresses in nature. On the contrary, ionizing radiations are limited to high local concentrations of naturally occurring radioactive materials and related anthropogenic activities. Yet, resistance to high doses of ionizing radiation is evident across the tree of life. The evolution of desiccation resistance has been linked to the evolution of ionizing radiation resistance, although, evidence to support the idea that the evolution of desiccation tolerance is a necessary precursor to ionizing radiation resistance is lacking. Moreover, the presence of radioresistance in hyperthermophiles suggests multiple paths lead to radiation resistance. In this minireview, we focus on the molecular aspects of damage dynamics and damage response pathways comprising protective and restorative functions with a definitive survival advantage, to explore the serendipitous genesis of ionizing radiation resistance.
Collapse
Affiliation(s)
- Aman Kumar Ujaoney
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Narasimha Anaganti
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Mahesh Kumar Padwal
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Bhakti Basu
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
37
|
Li XH, Yu CWH, Gomez-Navarro N, Stancheva V, Zhu H, Murthy A, Wozny M, Malhotra K, Johnson CM, Blackledge M, Santhanam B, Liu W, Huang J, Freund SMV, Miller EA, Babu MM. Dynamic conformational changes of a tardigrade group-3 late embryogenesis abundant protein modulate membrane biophysical properties. PNAS NEXUS 2024; 3:pgae006. [PMID: 38269070 PMCID: PMC10808001 DOI: 10.1093/pnasnexus/pgae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/26/2023] [Indexed: 01/26/2024]
Abstract
A number of intrinsically disordered proteins (IDPs) encoded in stress-tolerant organisms, such as tardigrade, can confer fitness advantage and abiotic stress tolerance when heterologously expressed. Tardigrade-specific disordered proteins including the cytosolic-abundant heat-soluble proteins are proposed to confer stress tolerance through vitrification or gelation, whereas evolutionarily conserved IDPs in tardigrades may contribute to stress tolerance through other biophysical mechanisms. In this study, we characterized the mechanism of action of an evolutionarily conserved, tardigrade IDP, HeLEA1, which belongs to the group-3 late embryogenesis abundant (LEA) protein family. HeLEA1 homologs are found across different kingdoms of life. HeLEA1 is intrinsically disordered in solution but shows a propensity for helical structure across its entire sequence. HeLEA1 interacts with negatively charged membranes via dynamic disorder-to-helical transition, mainly driven by electrostatic interactions. Membrane interaction of HeLEA1 is shown to ameliorate excess surface tension and lipid packing defects. HeLEA1 localizes to the mitochondrial matrix when expressed in yeast and interacts with model membranes mimicking inner mitochondrial membrane. Yeast expressing HeLEA1 shows enhanced tolerance to hyperosmotic stress under nonfermentative growth and increased mitochondrial membrane potential. Evolutionary analysis suggests that although HeLEA1 homologs have diverged their sequences to localize to different subcellular organelles, all homologs maintain a weak hydrophobic moment that is characteristic of weak and reversible membrane interaction. We suggest that such dynamic and weak protein-membrane interaction buffering alterations in lipid packing could be a conserved strategy for regulating membrane properties and represent a general biophysical solution for stress tolerance across the domains of life.
Collapse
Affiliation(s)
- Xiao-Han Li
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Conny W H Yu
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | | | | - Hongni Zhu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Andal Murthy
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Michael Wozny
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Ketan Malhotra
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | | - Martin Blackledge
- Université Grenoble Alpes, CNRS, Commissariat à l’Energie Atomique et aux Energies Alternatives, Institut de Biologie Structurale, 38000 Grenoble, France
| | - Balaji Santhanam
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
- Department of Structural Biology, Center of Excellence for Data-Driven Discovery, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Wei Liu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Jinqing Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | | | | | - M Madan Babu
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
- Department of Structural Biology, Center of Excellence for Data-Driven Discovery, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
38
|
Wang Z, Peng D, Fu C, Luo X, Guo S, Li L, Yin H. Pan-metagenome reveals the abiotic stress resistome of cigar tobacco phyllosphere microbiome. FRONTIERS IN PLANT SCIENCE 2023; 14:1248476. [PMID: 38179476 PMCID: PMC10765411 DOI: 10.3389/fpls.2023.1248476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/03/2023] [Indexed: 01/06/2024]
Abstract
The important role of microbial associations in mediating plant protection and responses to abiotic stresses has been widely recognized. However, there have been limited studies on the functional profile of the phyllosphere microbiota from tobacco (Nicotiana tabacum), hindering our understanding of the mechanisms underlying stress resilience in this representative and easy-to-cultivate model species from the solanaceous family. To address this knowledge gap, our study employed shotgun metagenomic sequencing for the first time to analyze the genetic catalog and identify putative plant growth promoting bacteria (PGPB) candidates that confer abiotic stress resilience throughout the growth period of cigar tobacco in the phyllosphere. We identified abundant genes from specific bacterial lineages, particularly Pseudomonas, within the cigar tobacco phyllospheric microbiome. These genes were found to confer resilience against a wide range of stressors, including osmotic and drought stress, heavy metal toxicity, temperature perturbation, organic pollutants, oxidative stress, and UV light damage. In addition, we conducted a virome mining analysis on the metagenome to explore the potential roles of viruses in driving microbial adaptation to environmental stresses. Our results identified a total of 3,320 scaffolds predicted to be viral from the cigar tobacco phyllosphere metagenome, with various phages infecting Pseudomonas, Burkholderia, Enterobacteria, Ralstonia, and related viruses. Within the virome, we also annotated genes associated with abiotic stress resilience, such as alkaline phosphatase D (phoD) for nutrient solubilization and glutamate-5-semialdehyde dehydrogenase (proA) for osmolyte synthesis. These findings shed light on the unexplored roles of viruses in facilitating and transferring abiotic stress resilience in the phyllospheric microbiome through beneficial interactions with their hosts. The findings from this study have important implications for agricultural practices, as they offer potential strategies for harnessing the capabilities of the phyllosphere microbiome to enhance stress tolerance in crop plants.
Collapse
Affiliation(s)
- Zhenhua Wang
- Zhangjiajie Tobacco Company of Hunan Province, Zhangjiajie, China
| | - Deyuan Peng
- Zhangjiajie Tobacco Company of Hunan Province, Zhangjiajie, China
| | - Changwu Fu
- Zhangjiajie Tobacco Company of Hunan Province, Zhangjiajie, China
| | - Xianxue Luo
- Zhangjiajie Tobacco Company of Hunan Province, Zhangjiajie, China
| | - Shijie Guo
- Zhangjiajie Tobacco Company of Hunan Province, Zhangjiajie, China
| | - Liangzhi Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| |
Collapse
|
39
|
Lane JR, Tata M, Yasmin R, Im H, Briles DE, Orihuela CJ. PspA-mediated aggregation protects Streptococcus pneumoniae against desiccation on fomites. mBio 2023; 14:e0263423. [PMID: 37982608 PMCID: PMC10746202 DOI: 10.1128/mbio.02634-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/10/2023] [Indexed: 11/21/2023] Open
Abstract
IMPORTANCE Spn is a dangerous human pathogen capable of causing pneumonia and invasive disease. The virulence factor PspA has been studied for nearly four decades with well-established roles in pneumococcal evasion of C-reactive protein and neutralization of lactoferricin. Herein, we show that mammalian (m)GAPDH in mucosal secretions promotes aggregation of pneumococci in a PspA-dependent fashion, whereas lactoferrin counters this effect. PspA-mediated GAPDH-dependent bacterial aggregation protected Spn in nasal lavage elutes and grown in vitro from desiccation on fomites. Furthermore, surviving pneumococci within these aggregates retained their ability to colonize naïve hosts after desiccation. We report that Spn binds to and forms protein complexes on its surface composed of PspA, mGAPDH, and lactoferrin. Changes in the levels of these proteins therefore most likely have critical implications on Spn colonization, survival on fomites, and transmission.
Collapse
Affiliation(s)
- Jessica R. Lane
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Muralidhar Tata
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Rahena Yasmin
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Hansol Im
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - David E. Briles
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Carlos J. Orihuela
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
40
|
Scales NC, Huynh KT, Weihe C, Martiny JBH. Desiccation induces varied responses within a soil bacterial genus. Environ Microbiol 2023; 25:3075-3086. [PMID: 37664956 DOI: 10.1111/1462-2920.16494] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/02/2023] [Indexed: 09/05/2023]
Abstract
Desiccation impacts a suite of physiological processes in microbes by elevating levels of damaging reactive oxygen species and inducing DNA strand breaks. In response to desiccation-induced stress, microbes have evolved specialized mechanisms to help them survive. Here, we performed a 128-day lab desiccation experiment on nine strains from three clades of an abundant soil bacterium, Curtobacterium. We sequenced RNA from each strain at three time points to investigate their response. Curtobacterium was highly resistant to desiccation, outlasting both Escherichia coli and a famously DNA damage-resistant bacterium, Deinococcus radiodurans. However, within the genus, there were also 10-fold differences in survival rates among strains. Transcriptomic profiling revealed responses shared within the genus including up-regulation of genes involved in DNA damage repair, osmolyte production, and efflux pumps, but also up-regulation of pathways and genes unique to the three clades. For example, trehalose synthesis gene otsB, the chaperone groEL, and the oxygen scavenger katA were all found in either one or two clades but not the third. Here, we provide evidence of considerable variation in closely related strains, and further elucidation of the phylogenetic conservation of desiccation tolerance remains an important goal for microbial ecologists.
Collapse
Affiliation(s)
- N C Scales
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA
| | - K T Huynh
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA
| | - C Weihe
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA
| | - J B H Martiny
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA
| |
Collapse
|
41
|
Love AC, Wagner GP. Stress, harshness, and evolutionary history. Trends Ecol Evol 2023; 38:903-904. [PMID: 37301667 DOI: 10.1016/j.tree.2023.05.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023]
Affiliation(s)
- Alan C Love
- Department of Philosophy and Minnesota Center for Philosophy of Science, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Günter P Wagner
- Department of Ecology and Evolutionary Biology and Yale Systems Biology Institute, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
42
|
Lane JR, Tata M, Yasmin R, Im H, Briles DE, Orihuela CJ. PspA-mediated aggregation protects Streptococcus pneumoniae against desiccation on fomites. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.27.559802. [PMID: 37808718 PMCID: PMC10557681 DOI: 10.1101/2023.09.27.559802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Streptococcus pneumoniae (Spn) resides in the nasopharynx where it can disseminate to cause disease. One key Spn virulence factor is pneumococcal surface protein A (PspA), which promotes survival by blocking the antimicrobial peptide lactoferricin. PspA has also been shown to mediate attachment to dying epithelial cells in the lower airway due to its binding of cell surface-bound mammalian (m)GAPDH. Importantly, the role of PspA during colonization is not well understood. Wildtype Spn was present in nasal lavage elutes collected from asymptomatically colonized mice at levels ~10-fold higher that its isogenic PspA-deficient mutant (ΔpspA). Wildtype Spn also formed aggregates in mucosal secretions composed of sloughed epithelial cells and hundreds of pneumococci, whereas ΔpspA did not. Spn within the center of these aggregates better survived prolonged desiccation on fomites than individual pneumococci and were capable of infecting naïve mice, indicating PspA-mediated aggregation conferred a survival/transmission advantage. Incubation of Spn in saline containing mGAPDH also enhanced tolerance to desiccation, but only for wildtype Spn. mGAPDH was sufficient to cause low-level aggregation of wildtype Spn but not ΔpspA. In strain WU2, the subdomain of PspA responsible for binding GAPDH (aa230-281) is ensconced within the lactoferrin (LF)-binding domain (aa167-288). We observed that LF inhibited GAPDH-mediated aggregation and desiccation tolerance. Using surface plasmon resonance, we determined that Spn forms multimeric complexes of PspA-GAPDH-LF on its surface and that LF dislodges GAPDH. Our findings have important implications regarding pneumococcal colonization/transmission processes and ongoing PspA-focused immunization efforts for this deadly pathogen.
Collapse
Affiliation(s)
- Jessica R. Lane
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, 35209, United States
| | - Muralidhar Tata
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, 35209, United States
| | - Rahena Yasmin
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, 35209, United States
| | - Hansol Im
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, 35209, United States
| | - David E. Briles
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, 35209, United States
| | - Carlos J. Orihuela
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, 35209, United States
| |
Collapse
|
43
|
Moore RA, Azua-Bustos A, González-Silva C, Carr CE. Unveiling metabolic pathways involved in the extreme desiccation tolerance of an Atacama cyanobacterium. Sci Rep 2023; 13:15767. [PMID: 37737281 PMCID: PMC10516996 DOI: 10.1038/s41598-023-41879-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 09/01/2023] [Indexed: 09/23/2023] Open
Abstract
Gloeocapsopsis dulcis strain AAB1 is an extremely xerotolerant cyanobacterium isolated from the Atacama Desert (i.e., the driest and oldest desert on Earth) that holds astrobiological significance due to its ability to biosynthesize compatible solutes at ultra-low water activities. We sequenced and assembled the G. dulcis genome de novo using a combination of long- and short-read sequencing, which resulted in high-quality consensus sequences of the chromosome and two plasmids. We leveraged the G. dulcis genome to generate a genome-scale metabolic model (iGd895) to simulate growth in silico. iGd895 represents, to our knowledge, the first genome-scale metabolic reconstruction developed for an extremely xerotolerant cyanobacterium. The model's predictive capability was assessed by comparing the in silico growth rate with in vitro growth rates of G. dulcis, in addition to the synthesis of trehalose. iGd895 allowed us to explore simulations of key metabolic processes such as essential pathways for water-stress tolerance, and significant alterations to reaction flux distribution and metabolic network reorganization resulting from water limitation. Our study provides insights into the potential metabolic strategies employed by G. dulcis, emphasizing the crucial roles of compatible solutes, metabolic water, energy conservation, and the precise regulation of reaction rates in their adaptation to water stress.
Collapse
Affiliation(s)
- Rachel A Moore
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, 275 Ferst Dr. NW, Atlanta, GA, 30332, USA.
| | - Armando Azua-Bustos
- Centro de Astrobiología (CSIC-INTA), Madrid, Spain
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | | | - Christopher E Carr
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, 275 Ferst Dr. NW, Atlanta, GA, 30332, USA
- Daniel Guggenheim School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
44
|
Konno A, Okubo T, Enoeda Y, Uno T, Sato T, Yokota SI, Yano R, Yamaguchi H. Human pathogenic bacteria on high-touch dry surfaces can be controlled by warming to human-skin temperature under moderate humidity. PLoS One 2023; 18:e0291765. [PMID: 37729194 PMCID: PMC10511134 DOI: 10.1371/journal.pone.0291765] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 09/05/2023] [Indexed: 09/22/2023] Open
Abstract
Healthcare-associated infections have become a major health issue worldwide. One route of transmission of pathogenic bacteria is through contact with "high-touch" dry surfaces, such as handrails. Regular cleaning of surfaces with disinfectant chemicals is insufficient against pathogenic bacteria and alternative control methods are therefore required. We previously showed that warming to human-skin temperature affected the survival of pathogenic bacteria on dry surfaces, but humidity was not considered in that study. Here, we investigated environmental factors that affect the number of live bacteria on dry surfaces in hospitals by principal component analysis of previously-collected data (n = 576, for CFU counts), and experimentally verified the effect of warming to human-skin temperature on the survival of pathogenic bacteria on dry surfaces under humidity control. The results revealed that PCA divided hospital dry surfaces into four groups (Group 1~4) and hospital dry surfaces at low temperature and low humidity (Group 3) had much higher bacterial counts as compared to the others (Group 1 and 4) (p<0.05). Experimentally, warming to human-skin temperature (37°C with 90% humidity) for 18~72h significantly suppressed the survival of pathogenic bacteria on dry surfaces, such as plastic surfaces [p<0.05 vs. 15°C (Escherichia coli DH5α, Staphylococcus aureus, Pseudomonas aeruginosa, Acinetobacter baumannii, and blaNDM-5 E. coli)] or handrails [p<0.05 vs. 15~25°C (E. coli DH5α, S. aureus, P. aeruginosa, A. baumannii)], under moderate 55% humidity. Furthermore, intermittent heating to human-skin temperature reduced the survival of spore-forming bacteria (Bacillus subtilis) (p<0.01 vs. continuous heating to human-skin temperature). NhaA, an Na+/H+ antiporter, was found to regulate the survival of bacteria on dry surfaces, and the inhibitor 2-aminoperimidine enhanced the effect of warming at human-skin temperature on the survival of pathogenic bacteria (E. coli DH5α, S. aureus, A. baumannii) on dry surfaces. Thus, warming to human-skin temperature under moderate humidity is a useful method for impairing live pathogenic bacteria on high-touch surfaces, thereby helping to prevent the spread of healthcare-associated infections.
Collapse
Affiliation(s)
- Ayano Konno
- Faculty of Health Sciences, Department of Medical Laboratory Science, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Torahiko Okubo
- Faculty of Health Sciences, Department of Medical Laboratory Science, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Yoshiaki Enoeda
- Faculty of Health Sciences, Department of Medical Laboratory Science, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Tomoko Uno
- Department of Nursing, Sapporo Medical University School of Medicine, Chuo-ku, Sapporo, Japan
- Faculty of Health Sciences, Department of Fundamental Nursing, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Toyotaka Sato
- Department of Microbiology, Sapporo Medical University School of Medicine, Chuo-ku, Sapporo, Japan
- Faculty of Veterinary Medicine, Laboratory of Veterinary Hygiene, Hokkaido University, Kita-ku, Sapporo, Japan
- Graduate School of Infectious Diseases, Hokkaido University, Kita-ku, Sapporo, Japan
- One Health Research Center, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Shin-ichi Yokota
- Department of Microbiology, Sapporo Medical University School of Medicine, Chuo-ku, Sapporo, Japan
| | - Rika Yano
- Faculty of Health Sciences, Department of Fundamental Nursing, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Hiroyuki Yamaguchi
- Faculty of Health Sciences, Department of Medical Laboratory Science, Hokkaido University, Kita-ku, Sapporo, Japan
| |
Collapse
|
45
|
Abstract
Biological soil crusts are thin, inconspicuous communities along the soil atmosphere ecotone that, until recently, were unrecognized by ecologists and even more so by microbiologists. In its broadest meaning, the term biological soil crust (or biocrust) encompasses a variety of communities that develop on soil surfaces and are powered by photosynthetic primary producers other than higher plants: cyanobacteria, microalgae, and cryptogams like lichens and mosses. Arid land biocrusts are the most studied, but biocrusts also exist in other settings where plant development is constrained. The minimal requirement is that light impinge directly on the soil; this is impeded by the accumulation of plant litter where plants abound. Since scientists started paying attention, much has been learned about their microbial communities, their composition, ecological extent, and biogeochemical roles, about how they alter the physical behavior of soils, and even how they inform an understanding of early life on land. This has opened new avenues for ecological restoration and agriculture.
Collapse
Affiliation(s)
- Ferran Garcia-Pichel
- Center for Fundamental and Applied Microbiomics and School of Life Sciences, Arizona State University, Tempe, Arizona, USA;
| |
Collapse
|
46
|
Kuczyńska-Wiśnik D, Stojowska-Swędrzyńska K, Laskowska E. Liquid-Liquid Phase Separation and Protective Protein Aggregates in Bacteria. Molecules 2023; 28:6582. [PMID: 37764358 PMCID: PMC10534466 DOI: 10.3390/molecules28186582] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/09/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Liquid-liquid phase separation (LLPS) and the formation of membraneless organelles (MLOs) contribute to the spatiotemporal organization of various physiological processes in the cell. These phenomena have been studied and characterized mainly in eukaryotic cells. However, increasing evidence indicates that LLPS-driven protein condensation may also occur in prokaryotes. Recent studies indicate that aggregates formed during proteotoxic stresses may also play the role of MLOs and increase the fitness of bacteria under stress. The beneficial effect of aggregates may result from the sequestration and protection of proteins against irreversible inactivation or degradation, activation of the protein quality control system and induction of dormancy. The most common stress that bacteria encounter in the natural environment is water loss. Therefore, in this review, we focus on protein aggregates formed in E. coli upon desiccation-rehydration stress. In silico analyses suggest that various mechanisms and interactions are responsible for their formation, including LLPS, disordered sequences and aggregation-prone regions. These data support findings that intrinsically disordered proteins and LLPS may contribute to desiccation tolerance not only in eukaryotic cells but also in bacteria. LLPS-driven aggregation may be a strategy used by pathogens to survive antibiotic treatment and desiccation stress in the hospital environment.
Collapse
Affiliation(s)
| | | | - Ewa Laskowska
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (D.K.-W.); (K.S.-S.)
| |
Collapse
|
47
|
Rekadwad BN, Li WJ, Gonzalez JM, Punchappady Devasya R, Ananthapadmanabha Bhagwath A, Urana R, Parwez K. Extremophiles: the species that evolve and survive under hostile conditions. 3 Biotech 2023; 13:316. [PMID: 37637002 PMCID: PMC10457277 DOI: 10.1007/s13205-023-03733-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 06/26/2023] [Indexed: 08/29/2023] Open
Abstract
Extremophiles possess unique cellular and molecular mechanisms to assist, tolerate, and sustain their lives in extreme habitats. These habitats are dominated by one or more extreme physical or chemical parameters that shape existing microbial communities and their cellular and genomic features. The diversity of extremophiles reflects a long list of adaptations over millions of years. Growing research on extremophiles has considerably uncovered and increased our understanding of life and its limits on our planet. Many extremophiles have been greatly explored for their application in various industrial processes. In this review, we focused on the characteristics that microorganisms have acquired to optimally thrive in extreme environments. We have discussed cellular and molecular mechanisms involved in stability at respective extreme conditions like thermophiles, psychrophiles, acidophiles, barophiles, etc., which highlight evolutionary aspects and the significance of extremophiles for the benefit of mankind.
Collapse
Affiliation(s)
- Bhagwan Narayan Rekadwad
- Present Address: Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018 Karnataka India
- National Centre for Microbial Resource (NCMR), DBT-National Centre for Cell Science (DBT-NCCS), Savitribai Phule Pune University Campus, Ganeshkhind Road, Pune, 411007 Maharashtra India
- Institute of Bioinformatics and Biotechnology (IBB), Savitribai Phule Pune University (SPPU), Ganeshkhind Road, Pune, 411007 Maharashtra India
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275 People’s Republic of China
| | - Juan M. Gonzalez
- Microbial Diversity and Microbiology of Extreme Environments Research Group, Agencia Estatal Consejo Superior De Investigaciones Científicas, IRNAS-CSIC, Avda. Reina Mercedes, 10, 41012 Seville, Spain
| | - Rekha Punchappady Devasya
- Present Address: Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018 Karnataka India
| | - Arun Ananthapadmanabha Bhagwath
- Present Address: Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018 Karnataka India
- Yenepoya Institute of Arts, Science, Commerce and Management, A Constituent Unit of Yenepoya (Deemed to be University), Yenepoya Complex, Balmatta, Mangalore, 575002 Karnataka India
| | - Ruchi Urana
- Department of Environmental Science and Engineering, Faculty of Environmental and Bio Sciences and Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001 India
| | - Khalid Parwez
- Department of Microbiology, Shree Narayan Medical Institute and Hospital, Saharsa, Bihar 852201 India
| |
Collapse
|
48
|
Zhong H, Wu M, Sonne C, Lam SS, Kwong RW, Jiang Y, Zhao X, Sun X, Zhang X, Li C, Li Y, Qu G, Jiang F, Shi H, Ji R, Ren H. The hidden risk of microplastic-associated pathogens in aquatic environments. ECO-ENVIRONMENT & HEALTH 2023; 2:142-151. [PMID: 38074987 PMCID: PMC10702891 DOI: 10.1016/j.eehl.2023.07.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/01/2023] [Accepted: 07/10/2023] [Indexed: 06/16/2024]
Abstract
Increasing studies of plastisphere have raised public concern about microplastics (MPs) as vectors for pathogens, especially in aquatic environments. However, the extent to which pathogens affect human health through MPs remains unclear, as controversies persist regarding the distinct pathogen colonization on MPs as well as the transmission routes and infection probability of MP-associated pathogens from water to humans. In this review, we critically discuss whether and how pathogens approach humans via MPs, shedding light on the potential health risks involved. Drawing on cutting-edge multidisciplinary research, we show that some MPs may facilitate the growth and long-range transmission of specific pathogens in aquatic environments, ultimately increasing the risk of infection in humans. We identify MP- and pathogen-rich settings, such as wastewater treatment plants, aquaculture farms, and swimming pools, as possible sites for human exposure to MP-associated pathogens. This review emphasizes the need for further research and targeted interventions to better understand and mitigate the potential health risks associated with MP-mediated pathogen transmission.
Collapse
Affiliation(s)
- Huan Zhong
- School of Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing 210023, China
| | - Mengjie Wu
- School of Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing 210023, China
| | - Christian Sonne
- Department of Bioscience, Arctic Research Centre, Aarhus University, Roskilde, Denmark
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
- University Centre for Research and Development, Department of Chemistry, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Raymond W.M. Kwong
- Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| | - Yuelu Jiang
- Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xuemei Sun
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Xuxiang Zhang
- School of Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing 210023, China
| | - Chengjun Li
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Feng Jiang
- School of Environmental Science and Engineering, Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Huahong Shi
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Rong Ji
- School of Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing 210023, China
| | - Hongqiang Ren
- School of Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing 210023, China
| |
Collapse
|
49
|
Bertrans-Tubau L, Menard Y, Batisson I, Creusot N, Mazzella N, Millan-Navarro D, Moreira A, Morin S, Ponsá S, Abril M, Proia L, Romaní AM, Artigas J. Dissipation of pesticides by stream biofilms is influenced by hydrological histories. FEMS Microbiol Ecol 2023; 99:fiad083. [PMID: 37480243 DOI: 10.1093/femsec/fiad083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/23/2023] Open
Abstract
To evaluate the effects of hydrological variability on pesticide dissipation capacity by stream biofilms, we conducted a microcosm study. We exposed biofilms to short and frequent droughts (daily frequency), long and less frequent droughts (weekly frequency) and permanently immersed controls, prior to test their capacities to dissipate a cocktail of pesticides composed of tebuconazole, terbuthylazine, imidacloprid, glyphosate and its metabolite aminomethylphosphonic acid. A range of structural and functional descriptors of biofilms (algal and bacterial biomass, extracellular polymeric matrix (EPS) concentration, microbial respiration, phosphorus uptake and community-level physiological profiles) were measured to assess drought effects. In addition, various parameters were measured to characterise the dynamics of pesticide dissipation by biofilms in the different hydrological treatments (% dissipation, peak asymmetry, bioconcentration factor, among others). Results showed higher pesticide dissipation rates in biofilms exposed to short and frequent droughts, despite of their lower biomass and EPS concentration, compared to biofilms in immersed controls or exposed to long and less frequent droughts. High accumulation of hydrophobic pesticides (tebuconazole and terbuthylazine) was measured in biofilms despite the short exposure time (few minutes) in our open-flow microcosm approach. This research demonstrated the stream biofilms capacity to adsorb hydrophobic pesticides even in stressed drought environments.
Collapse
Affiliation(s)
- Lluís Bertrans-Tubau
- BETA Technological Centre- University of Vic-Central University of Catalunya (BETA-UVic-UCC), Carretera de Roda 70, 08500 Vic, Barcelona, Spain
| | - Yoann Menard
- CNRS, Laboratoire Microorganismes: Génome et Environnement (LMGE), Université Clermont Auvergne, Campus Universitaire des Cézeaux, 1 Impasse Amélie Murat. F-63000 Clermont-Ferrand, France
| | - Isabelle Batisson
- CNRS, Laboratoire Microorganismes: Génome et Environnement (LMGE), Université Clermont Auvergne, Campus Universitaire des Cézeaux, 1 Impasse Amélie Murat. F-63000 Clermont-Ferrand, France
| | | | | | | | | | - Soizic Morin
- INRAE, UR EABX, 50 avenue de Verdun, F-33612 Cestas, France
| | - Sergio Ponsá
- BETA Technological Centre- University of Vic-Central University of Catalunya (BETA-UVic-UCC), Carretera de Roda 70, 08500 Vic, Barcelona, Spain
| | - Meritxell Abril
- BETA Technological Centre- University of Vic-Central University of Catalunya (BETA-UVic-UCC), Carretera de Roda 70, 08500 Vic, Barcelona, Spain
| | - Lorenzo Proia
- BETA Technological Centre- University of Vic-Central University of Catalunya (BETA-UVic-UCC), Carretera de Roda 70, 08500 Vic, Barcelona, Spain
| | - Anna M Romaní
- Institute of Aquatic Ecology, University of Girona, Campus Montilivi, 17005 Girona, Spain
| | - Joan Artigas
- CNRS, Laboratoire Microorganismes: Génome et Environnement (LMGE), Université Clermont Auvergne, Campus Universitaire des Cézeaux, 1 Impasse Amélie Murat. F-63000 Clermont-Ferrand, France
| |
Collapse
|
50
|
Cowan DA, Cary SC, DiRuggiero J, Eckardt F, Ferrari B, Hopkins DW, Lebre PH, Maggs-Kölling G, Pointing SB, Ramond JB, Tribbia D, Warren-Rhodes K. 'Follow the Water': Microbial Water Acquisition in Desert Soils. Microorganisms 2023; 11:1670. [PMID: 37512843 PMCID: PMC10386458 DOI: 10.3390/microorganisms11071670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/12/2023] [Accepted: 06/16/2023] [Indexed: 07/30/2023] Open
Abstract
Water availability is the dominant driver of microbial community structure and function in desert soils. However, these habitats typically only receive very infrequent large-scale water inputs (e.g., from precipitation and/or run-off). In light of recent studies, the paradigm that desert soil microorganisms are largely dormant under xeric conditions is questionable. Gene expression profiling of microbial communities in desert soils suggests that many microbial taxa retain some metabolic functionality, even under severely xeric conditions. It, therefore, follows that other, less obvious sources of water may sustain the microbial cellular and community functionality in desert soil niches. Such sources include a range of precipitation and condensation processes, including rainfall, snow, dew, fog, and nocturnal distillation, all of which may vary quantitatively depending on the location and geomorphological characteristics of the desert ecosystem. Other more obscure sources of bioavailable water may include groundwater-derived water vapour, hydrated minerals, and metabolic hydro-genesis. Here, we explore the possible sources of bioavailable water in the context of microbial survival and function in xeric desert soils. With global climate change projected to have profound effects on both hot and cold deserts, we also explore the potential impacts of climate-induced changes in water availability on soil microbiomes in these extreme environments.
Collapse
Affiliation(s)
- Don A Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0002, South Africa
| | - S Craig Cary
- School of Biological Sciences, University of Waikato, Hamilton 3216, New Zealand
| | - Jocelyne DiRuggiero
- Departments of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
- Departments of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Frank Eckardt
- Department of Environmental and Geographical Science, University of Cape Town, Cape Town 7701, South Africa
| | - Belinda Ferrari
- School of Biotechnology and Biological Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - David W Hopkins
- Scotland's Rural College, West Mains Road, Edinburgh EH9 3JG, UK
| | - Pedro H Lebre
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0002, South Africa
| | | | - Stephen B Pointing
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Jean-Baptiste Ramond
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0002, South Africa
- Departamento Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Dana Tribbia
- School of Biotechnology and Biological Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | | |
Collapse
|