1
|
Jaiswal S, Fatima S, Velarde de la Cruz E, Kumar S. Unraveling the role of the immune landscape in tuberculosis granuloma. Tuberculosis (Edinb) 2025; 152:102615. [PMID: 40020281 DOI: 10.1016/j.tube.2025.102615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/26/2025] [Accepted: 02/12/2025] [Indexed: 03/03/2025]
Abstract
Despite significant advances in research over the past century, Tuberculosis (TB) remains a formidable global health concern. TB granulomas are organized structures composed of immune cells, that serve as the body's primary defense against the spread of Mycobacterium tuberculosis (Mtb). The immune landscape of TB granulomas involves a complex array of immune cells, including CD4+ and CD8+ T cells, B cells, NK cells, and others, which collectively influence the fate of the granuloma. B cells contribute to the formation of the granuloma's germinal center, while the functional state of T cells-particularly their ability to control infection-dictates whether the granuloma is controlling or proliferative. The intricate interplay between T cells and the dynamic microenvironment of the granuloma plays a pivotal role in determining the outcome of the infection. However, several aspects of the immunological basis of tuberculosis are still unknown. This review delves into the immunological landscape of TB granuloma, focusing on the dynamic cellular interplay within the granuloma and its profound influence on disease pathogenesis.
Collapse
|
2
|
Ma Y, Zhang Y, Huang Y, Chen Z, Xian Q, Su R, Jiang Q, Wang X, Xiao G. One-Pot Assembly of Mannose-Capped Lipoarabinomannan Motifs up to 101-Mer from the Mycobacterium tuberculosis Cell Wall. J Am Chem Soc 2024; 146:4112-4122. [PMID: 38226918 DOI: 10.1021/jacs.3c12815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Lipoarabinomannan (LAM) from the Mycobacterium tuberculosis cell envelope represents important targets for the development of new therapeutic agents against tuberculosis, which is a deadly disease that has plagued mankind for a long time. However, the accessibility of long, branched, and complex lipoarabinomannan over 100-mer remains a long-standing challenge. Herein, we report the modular synthesis of mannose-capped lipoarabinomannan 101-mer from the M. tuberculosis cell wall using a one-pot assembly strategy on the basis of glycosyl ortho-(1-phenylvinyl)benzoates (PVB), which not only accelerates the modular synthesis but also precludes the potential problems associated with one-pot glycosylation with thioglycosides. Shorter sequences including 18-mer, 19-mer, and 27-mer are also synthesized for in-depth structure-activity relationship biological studies. Current synthetic routes also highlight the following features: (1) streamlined synthesis of various linear and branched glycans using one-pot orthogonal glycosylation on the combination of glycosyl N-phenyltrifluoroacetimidates, glycosyl ortho-alkynylbenzoates, and glycosyl PVB; (2) highly stereoselective construction of 10 1,2-cis-arabinofuranosyl linkages using 5-O-(2-quinolinecarbonyl)-directing 1,2-cis-arabinofuranosylation via a hydrogen-bond-mediated aglycone delivery strategy; and (3) convergent [(18 + 19) × 2 + 27] one-pot synthesis of the 101-mer LAM polysaccharide. The present work demonstrates that this orthogonal one-pot glycosylation strategy can highly streamline the chemical synthesis of long, branched, and complex polysaccharides.
Collapse
Affiliation(s)
- Yuxin Ma
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming 650201, China
| | - Yunqin Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming 650201, China
| | - Yingying Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming 650201, China
- Department of Chemistry, Kunming University, 2 Puxing Road, Kunming 650214, China
| | - Zixi Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming 650201, China
- Department of Chemistry, Kunming University, 2 Puxing Road, Kunming 650214, China
| | - Qingyun Xian
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming 650201, China
| | - Rui Su
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming 650201, China
| | - Qiong Jiang
- Department of Chemistry, Kunming University, 2 Puxing Road, Kunming 650214, China
| | - Xiufang Wang
- Department of Chemistry, Kunming University, 2 Puxing Road, Kunming 650214, China
| | - Guozhi Xiao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
3
|
Jackson S, McShane H. Challenges in Developing a Controlled Human Tuberculosis Challenge Model. Curr Top Microbiol Immunol 2024; 445:229-255. [PMID: 35332386 DOI: 10.1007/82_2022_252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Controlled human infection models (CHIMs) have provided pivotal scientific advancements, contributing to the licensure of new vaccines for many pathogens. Despite being one of the world's oldest known pathogens, there are still significant gaps in our knowledge surrounding the immunobiology of Mycobacterium tuberculosis (M. tb). Furthermore, the only licensed vaccine, BCG, is a century old and demonstrates limited efficacy in adults from endemic areas. Despite good global uptake of BCG, tuberculosis (TB) remains a silent epidemic killing 1.4 million in 2019 (WHO, Global tuberculosis report 2020). A mycobacterial CHIM could expedite the development pipeline of novel TB vaccines and provide critical understanding on the immune response to TB. However, developing a CHIM for such a complex organism is a challenging process. The first hurdle to address is which challenge agent to use, as it would not be ethical to use virulent M. tb. This chapter describes the current progress and outstanding issues in the development of a TB CHIM. Previous and current human studies include both aerosol and intradermal models using either BCG or purified protein derivative (PPD) as a surrogate agent. Future work investigating the use of attenuated M. tb is underway.
Collapse
Affiliation(s)
- Susan Jackson
- Centre for Clinical Vaccinology and Tropical Medicine, Jenner Institute, Oxford University, Oxford, UK
| | - Helen McShane
- Centre for Clinical Vaccinology and Tropical Medicine, Jenner Institute, Oxford University, Oxford, UK.
| |
Collapse
|
4
|
Proteome Profile Changes Induced by Heterologous Overexpression of Mycobacterium tuberculosis-Derived Antigens PstS-1 (Rv0934) and Ag85B (Rv1886c) in Mycobacterium microti. Biomolecules 2022; 12:biom12121836. [PMID: 36551264 PMCID: PMC9775975 DOI: 10.3390/biom12121836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/01/2022] [Accepted: 11/26/2022] [Indexed: 12/13/2022] Open
Abstract
The development of new tuberculosis vaccines remains a global priority, and recombinant vaccines are a frequently investigated option. These vaccines follow a molecular strategy that may enhance protective efficacy. However, their functional differences, particularly with respect to glycosylation, remain unknown. Recent studies have shown that glycosylation plays a key role in the host-pathogen interactions during immune recognition. The aim of this study was to determine the differences in the glycosylation profiles of two recombinant strains of Mycobacterium microti, overexpressing Ag85B (Rv1886c) and PstS-1 (Rv0934) antigens of M. tuberculosis. For each strain, the glycosylation profile was determined by Western blotting with lectins. The results showed the presence of mannosylated proteins and evidence of linked sialic acid proteins. Interestingly, different proteome and glycoproteome profiles were observed between the two recombinant strains and the wild-type strain. We have shown here that the construction of the recombinant strains of M. microti has altered the proteome and glycosylation profiles of these strains, leading us to ask what impact these changes might have on the immune response.
Collapse
|
5
|
Evaluating Strategies For Tuberculosis to Achieve the Goals of WHO in China: A Seasonal Age-Structured Model Study. Bull Math Biol 2022; 84:61. [PMID: 35486232 DOI: 10.1007/s11538-022-01019-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 03/28/2022] [Indexed: 11/02/2022]
Abstract
Although great progress has been made in the prevention and mitigation of TB in the past 20 years, China is still the third largest contributor to the global burden of new TB cases, accounting for 833,000 new cases in 2019. Improved mitigation strategies, such as vaccines, diagnostics, and treatment, are needed to meet goals of WHO. Given the huge variability in the prevalence of TB across age-groups in China, the vaccination, diagnostic techniques, and treatment for different age-groups may have different effects. Moreover, the statistics data of TB cases show significant seasonal fluctuations in China. In view of the above facts, we propose a non-autonomous differential equation model with age structure and seasonal transmission rate. We derive the basic reproduction number, [Formula: see text], and prove that the unique disease-free periodic solution, [Formula: see text] is globally asymptotically stable when [Formula: see text], while the disease is uniformly persistent and at least one positive periodic solution exists when [Formula: see text]. We estimate that the basic reproduction number [Formula: see text] ([Formula: see text]), which means that TB is uniformly persistent. Our results demonstrate that vaccinating susceptible individuals whose ages are over 65 and between 20 and 24 is much more effective in reducing the prevalence of TB, and each of the improved vaccination strategy, diagnostic strategy, and treatment strategy leads to substantial reductions in the prevalence of TB per 100,000 individuals compared with current approaches, and the combination of the three strategies is more effective. Scenario A (i.e., coverage rate [Formula: see text], diagnosis rate [Formula: see text], relapse rate [Formula: see text]) is the best and can reduce the prevalence of TB per 100,000 individuals by [Formula: see text] and [Formula: see text] in 2035 and 2050, respectively. Although the improved strategies will significantly reduce the incidence rate of TB, it is challenging to achieve the goal of WHO in 2050. Our findings can provide guidance for public health authorities in projecting effective mitigation strategies of TB.
Collapse
|
6
|
Kumar A, Sharma P, Arun A, Meena LS. Development of peptide vaccine candidate using highly antigenic PE-PGRS family proteins to stimulate the host immune response against Mycobacterium tuberculosis H 37Rv: an immuno-informatics approach. J Biomol Struct Dyn 2022; 41:3382-3404. [PMID: 35293852 DOI: 10.1080/07391102.2022.2048079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Tuberculosis (TB) is a fast spreading; transmissible disease caused by the Mycobacterium tuberculosis (M. tuberculosis). M. tuberculosis has a high death rate in its endemic regions due to a lack of appropriate treatment and preventative measures. We have used a vaccinomics strategy to create an effective multi-epitope vaccine against M. tuberculosis. The antigenic proteins with the highest antigenicity were utilised to predict cytotoxic T-lymphocyte (CTL), helper T-lymphocyte (HTL), and linear B-lymphocyte (LBL) epitopes. CTL and HTL epitopes were covered in 99.97% of the population. Seven epitopes each of CTL, HTL, and LBL were ultimately selected and utilised to develop a multi-epitope vaccine. A vaccine design was developed by combining these epitopes with suitable linkers and LprG adjuvant. The vaccine chimera was revealed to be highly immunogenic, non-allergenic, and non-toxic. To ensure a better expression within the Escherichia coli K12 (E. coli K12) host system, codon adaptation and in silico cloning were accomplished. Following that, various validation studies were conducted, including molecular docking, molecular dynamics simulation, and immunological simulation, all of which indicated that the designed vaccine would be stable in the biological environment and effective against M. tuberculosis infection. The immune simulation revealed higher levels of T-cell and B-cell activity, which corresponded to the actual immune response. Exposure simulations were repeated several times, resulting in increased clonal selection and faster antigen clearance. These results suggest that, if proposed vaccine chimera would test both in-vitro and in-vivo, it could be a viable treatment and preventive strategy for TB.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ajit Kumar
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC, Ghaziabad, Uttar Pradesh, India
| | - Priyanka Sharma
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Akanksha Arun
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC, Ghaziabad, Uttar Pradesh, India
| | - Laxman S Meena
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC, Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
7
|
Elkhalifa S, Chinoy H. The avalanche of antirheumatic therapy and COVID-19 vaccinations. Rheumatology (Oxford) 2021; 60:3490-3491. [PMID: 33871593 PMCID: PMC8083214 DOI: 10.1093/rheumatology/keab366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 04/14/2021] [Indexed: 12/25/2022] Open
Affiliation(s)
- Shuayb Elkhalifa
- Department of Immunology, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Salford, UK.,Centre for Musculoskeletal Research, Faculty of Biology, Medicine and Health, Manchester, UK
| | - Hector Chinoy
- Centre for Musculoskeletal Research, Faculty of Biology, Medicine and Health, Manchester, UK.,National Institute for Health Research Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, The University of Manchester, Manchester, UK.,Department of Rheumatology, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Salford, UK
| |
Collapse
|
8
|
Flynn O, Dillane K, Lanza JS, Marshall JM, Jin J, Silk SE, Draper SJ, Moore AC. Low Adenovirus Vaccine Doses Administered to Skin Using Microneedle Patches Induce Better Functional Antibody Immunogenicity as Compared to Systemic Injection. Vaccines (Basel) 2021; 9:vaccines9030299. [PMID: 33810085 PMCID: PMC8005075 DOI: 10.3390/vaccines9030299] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/23/2021] [Accepted: 02/27/2021] [Indexed: 01/02/2023] Open
Abstract
Adenovirus-based vaccines are demonstrating promising clinical potential for multiple infectious diseases, including COVID-19. However, the immunogenicity of the vector itself decreases its effectiveness as a boosting vaccine due to the induction of strong anti-vector neutralizing immunity. Here we determined how dissolvable microneedle patches (DMN) for skin immunization can overcome this issue, using a clinically-relevant adenovirus-based Plasmodium falciparum malaria vaccine, AdHu5–PfRH5, in mice. Incorporation of vaccine into patches significantly enhanced its thermostability compared to the liquid form. Conventional high dose repeated immunization by the intramuscular (IM) route induced low antigen-specific IgG titres and high anti-vector immunity. A low priming dose of vaccine, by the IM route, but more so using DMN patches, induced the most efficacious immune responses, assessed by parasite growth inhibitory activity (GIA) assays. Administration of low dose AdHu5–PfRH5 using patches to the skin, boosted by high dose IM, induced the highest antigen-specific serum IgG response after boosting, the greatest skewing of the antibody response towards the antigen and away from the vector, and the highest efficacy. This study therefore demonstrates that repeated use of the same adenovirus vaccine can be highly immunogenic towards the transgene if a low dose is used to prime the response. It also provides a method of stabilizing adenovirus vaccine, in easy-to-administer dissolvable microneedle patches, permitting storage and distribution out of cold chain.
Collapse
Affiliation(s)
- Olivia Flynn
- School of Pharmacy, University College Cork, T12 XF62 Cork, Ireland; (O.F.); (K.D.); (J.S.L.)
| | - Kate Dillane
- School of Pharmacy, University College Cork, T12 XF62 Cork, Ireland; (O.F.); (K.D.); (J.S.L.)
| | - Juliane Sousa Lanza
- School of Pharmacy, University College Cork, T12 XF62 Cork, Ireland; (O.F.); (K.D.); (J.S.L.)
| | - Jennifer M. Marshall
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK; (J.M.M.); (J.J.); (S.E.S.); (S.J.D.)
| | - Jing Jin
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK; (J.M.M.); (J.J.); (S.E.S.); (S.J.D.)
| | - Sarah E. Silk
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK; (J.M.M.); (J.J.); (S.E.S.); (S.J.D.)
| | - Simon J. Draper
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK; (J.M.M.); (J.J.); (S.E.S.); (S.J.D.)
| | - Anne C. Moore
- School of Pharmacy, University College Cork, T12 XF62 Cork, Ireland; (O.F.); (K.D.); (J.S.L.)
- School of Biochemistry and Cell Biology, University College Cork, T12 XF62 Cork, Ireland
- Correspondence:
| |
Collapse
|
9
|
Liu Y, Tong Z, Shi J, Li R, Upton M, Wang Z. Drug repurposing for next-generation combination therapies against multidrug-resistant bacteria. Theranostics 2021; 11:4910-4928. [PMID: 33754035 PMCID: PMC7978324 DOI: 10.7150/thno.56205] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/29/2021] [Indexed: 12/12/2022] Open
Abstract
Antimicrobial resistance has been a global health challenge that threatens our ability to control and treat life-threatening bacterial infections. Despite ongoing efforts to identify new drugs or alternatives to antibiotics, no new classes of antibiotic or their alternatives have been clinically approved in the last three decades. A combination of antibiotics and non-antibiotic compounds that could inhibit bacterial resistance determinants or enhance antibiotic activity offers a sustainable and effective strategy to confront multidrug-resistant bacteria. In this review, we provide a brief overview of the co-evolution of antibiotic discovery and the development of bacterial resistance. We summarize drug-drug interactions and uncover the art of repurposing non-antibiotic drugs as potential antibiotic adjuvants, including discussing classification and mechanisms of action, as well as reporting novel screening platforms. A pathogen-by-pathogen approach is then proposed to highlight the critical value of drug repurposing and its therapeutic potential. Finally, general advantages, challenges and development trends of drug combination strategy are discussed.
Collapse
Affiliation(s)
- Yuan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ziwen Tong
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jingru Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ruichao Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Mathew Upton
- School of Biomedical Sciences, University of Plymouth, Drake Circus, Plymouth, UK
| | - Zhiqiang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
10
|
Preclinical Progress of Subunit and Live Attenuated Mycobacterium tuberculosis Vaccines: A Review following the First in Human Efficacy Trial. Pharmaceutics 2020; 12:pharmaceutics12090848. [PMID: 32899930 PMCID: PMC7559421 DOI: 10.3390/pharmaceutics12090848] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 12/24/2022] Open
Abstract
Tuberculosis (TB) is the global leading cause of death from an infectious agent with approximately 10 million new cases of TB and 1.45 million deaths in 2018. Bacille Calmette-Guérin (BCG) remains the only approved vaccine for Mycobacterium tuberculosis (M. tb, causative agent of TB), however clinical studies have shown BCG has variable effectiveness ranging from 0–80% in adults. With 1.7 billion people latently infected, it is becoming clear that vaccine regimens aimed at both post-exposure and pre-exposure to M. tb will be crucial to end the TB epidemic. The two main strategies to improve or replace BCG are subunit and live attenuated vaccines. However, following the failure of the MVA85A phase IIb trial in 2013, more varied and innovative approaches are being developed. These include recombinant BCG strains, genetically attenuated M. tb and naturally attenuated mycobacteria strains, novel methods of immunogenic antigen discovery including for hypervirulent M. tb strains, improved antigen recognition and delivery strategies, and broader selection of viral vectors. This article reviews preclinical vaccine work in the last 5 years with focus on those tested against M. tb challenge in relevant animal models.
Collapse
|
11
|
Komine-Aizawa S, Jiang J, Mizuno S, Hayakawa S, Matsuo K, Boyd LF, Margulies DH, Honda M. MHC-restricted Ag85B-specific CD8 + T cells are enhanced by recombinant BCG prime and DNA boost immunization in mice. Eur J Immunol 2019; 49:1399-1414. [PMID: 31135967 PMCID: PMC6722017 DOI: 10.1002/eji.201847988] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 05/09/2019] [Accepted: 05/23/2019] [Indexed: 12/21/2022]
Abstract
Despite efforts to develop effective treatments and vaccines, Mycobacterium tuberculosis (Mtb), particularly pulmonary Mtb, continues to provide major health challenges worldwide. To improve immunization against the persistent health challenge of Mtb infection, we have studied the CD8+ T cell response to Bacillus Calmette-Guérin (BCG) and recombinant BCG (rBCG) in mice. Here, we generated CD8+ T cells with an rBCG-based vaccine encoding the Ag85B protein of M. kansasii, termed rBCG-Mkan85B, followed by boosting with plasmid DNA expressing the Ag85B gene (DNA-Mkan85B). We identified two MHC-I (H2-Kd )-restricted epitopes that induce cross-reactive responses to Mtb and other related mycobacteria in both BALB/c (H2d ) and CB6F1 (H2b/d ) mice. The H2-Kd -restricted peptide epitopes elicited polyfunctional CD8+ T cell responses that were also highly cross-reactive with those of other proteins of the Ag85 complex. Tetramer staining indicated that the two H2-Kd -restricted epitopes elicit distinct CD8+ T cell populations, a result explained by the X-ray structure of the two peptide/H2-Kd complexes. These results suggest that rBCG-Mkan85B vector-based immunization and DNA-Mkan85B boost may enhance CD8+ T cell response to Mtb, and might help to overcome the limited effectiveness of the current BCG in eliciting tuberculosis immunity.
Collapse
Affiliation(s)
- Shihoko Komine-Aizawa
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine
| | - Jiansheng Jiang
- Molecular Biology Section, Laboratory of Immune System Biology, NIAID, National Institutes of Health
| | - Satoru Mizuno
- Japan BCG Laboratory
- The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association
| | - Satoshi Hayakawa
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine
| | - Kazuhiro Matsuo
- Japan BCG Laboratory
- The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association
| | - Lisa F. Boyd
- Molecular Biology Section, Laboratory of Immune System Biology, NIAID, National Institutes of Health
| | - David H. Margulies
- Molecular Biology Section, Laboratory of Immune System Biology, NIAID, National Institutes of Health
| | - Mitsuo Honda
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine
| |
Collapse
|
12
|
Dedloff MR, Effler CS, Holban AM, Gestal MC. Use of Biopolymers in Mucosally-Administered Vaccinations for Respiratory Disease. MATERIALS 2019; 12:ma12152445. [PMID: 31370286 PMCID: PMC6695719 DOI: 10.3390/ma12152445] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/23/2019] [Accepted: 07/28/2019] [Indexed: 12/20/2022]
Abstract
Communicable respiratory infections are the cause of a significant number of infectious diseases. The introduction of vaccinations has greatly improved this situation. Moreover, adjuvants have allowed for vaccines to be more effective with fewer adverse side effects. However, there is still space for improvement because while the more common injected formulations induce a systematic immunity, they do not confer the mucosal immunity needed for more thorough prevention of the spread of respiratory disease. Intranasal formulations provide systemic and mucosal immune protection, but they have the potential for more serious side effects and a less robust immune response. This review looks at seven different adjuvants—chitosan, starch, alginate, gellan, β-glucan, emulsan and hyaluronic acid—and their prospective ability to improve intranasal vaccines as adjuvants and antigen delivery systems.
Collapse
Affiliation(s)
| | - Callie S Effler
- Department of Natural Sciences and Mathematics, College of Arts and Sciences, Lee University, Cleveland, TN 37311, USA
| | - Alina Maria Holban
- Department of Microbiology, Faculty of Biology, University of Bucharest, 030018 Bucuresti, Romania
- Research Institute of the University of Bucharest (ICUB), 050107 Bucharest, Romania
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania
| | - Monica C Gestal
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
13
|
Guillermina Guerrero Manriquez G. Immunogenetic and Immunotherapy in Tuberculosis. Immunogenetics 2019. [DOI: 10.5772/intechopen.83030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
14
|
Chang Y, Meng X, Li Y, Liang J, Li T, Meng D, Zhu T, Yu P. Synthesis and immunogenicity of the Mycobacterium tuberculosis arabinomannan-CRM197 conjugate. MEDCHEMCOMM 2019; 10:543-553. [PMID: 31057734 DOI: 10.1039/c8md00546j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 02/15/2019] [Indexed: 01/06/2023]
Abstract
Lipoarabinomannan (LAM) is a major structural surface component of Mycobacterium tuberculosis. This study describes the synthesis of the well-defined lipoarabinomannan (LAM) specific dodecasaccharide-protein conjugate and immunological studies. Arabinomannan (AM) dodecasaccharide has been efficiently synthesized and covalently conjugated to carrier proteins, including cross reactive mutant (CRM197) diphtheria toxoid and bovine serum albumin (BSA) for novel neoglycoconjugates, creating a potent T-dependent conjugate vaccine. Preliminary mice immunization studies on the neoglycoconjugate revealed that it could give rise to a strong IgG antibody titer in mice at 4.0 μg dose with an aluminum phosphate adjuvant. AM-CRM197 shows potential as an excellent candidate for a new carbohydrate-based vaccine that would be capable of eliciting a protective immune response against tuberculosis.
Collapse
Affiliation(s)
- Yunsong Chang
- Key Laboratory of Industrial Microbiology , Ministry of Education , College of Biotechnology , Tianjin University of Science and Technology , Tianjin 300457 , PR China . ; ; ; Tel: +86 22 60912562
| | - Xin Meng
- Key Laboratory of Industrial Microbiology , Ministry of Education , College of Biotechnology , Tianjin University of Science and Technology , Tianjin 300457 , PR China . ; ; ; Tel: +86 22 60912562
| | - Yaxin Li
- Key Laboratory of Industrial Microbiology , Ministry of Education , College of Biotechnology , Tianjin University of Science and Technology , Tianjin 300457 , PR China . ; ; ; Tel: +86 22 60912562
| | - Jianmei Liang
- Key Laboratory of Industrial Microbiology , Ministry of Education , College of Biotechnology , Tianjin University of Science and Technology , Tianjin 300457 , PR China . ; ; ; Tel: +86 22 60912562
| | - Tingshen Li
- Key Laboratory of Industrial Microbiology , Ministry of Education , College of Biotechnology , Tianjin University of Science and Technology , Tianjin 300457 , PR China . ; ; ; Tel: +86 22 60912562
| | - Demei Meng
- State Key Laboratory of Food Nutrition and Safety , College of Food Engineering and Biotechnology , Tianjin University of Science & Technology , Tianjin , 300457 , PR China
| | - Tao Zhu
- Key Laboratory of Industrial Microbiology , Ministry of Education , College of Biotechnology , Tianjin University of Science and Technology , Tianjin 300457 , PR China . ; ; ; Tel: +86 22 60912562.,CanSino Biologics Inc. , Tianjin 300457 , PR China
| | - Peng Yu
- Key Laboratory of Industrial Microbiology , Ministry of Education , College of Biotechnology , Tianjin University of Science and Technology , Tianjin 300457 , PR China . ; ; ; Tel: +86 22 60912562
| |
Collapse
|
15
|
Kilpeläinen A, Maya-Hoyos M, Saubí N, Soto CY, Joseph Munne J. Advances and challenges in recombinant Mycobacterium bovis BCG-based HIV vaccine development: lessons learned. Expert Rev Vaccines 2018; 17:1005-1020. [PMID: 30300040 DOI: 10.1080/14760584.2018.1534588] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Human Immunodeficiency Virus/Acquired Immune Deficiency Syndrome, tuberculosis, and malaria are responsible for most human deaths produced by infectious diseases worldwide. Vaccination against HIV requires generation of memory T cells and neutralizing antibodies, mucosal immunity, and stimulation of an innate immune responses. In this context, the use of Mycobacterium bovis bacillus Calmette-Guérin (BCG) as a live vaccine vehicle is a promising approach for T-cell induction. AREAS COVERED In this review, we provide a comprehensive summary of the literature regarding immunogenicity studies in animal models performed since 2005. Furthermore, we provide expert commentary and 5-year view on how the development of potential recombinant BCG-based HIV vaccines involves careful selection of the HIV antigen, expression vectors, promoters, BCG strain, preclinical animal models, influence of preexisting immunity, and safety issues, for the rational design of recombinant BCG:HIV vaccines to prevent HIV transmission in the general population. EXPERT COMMENTARY The three critical issues to be considered when developing a rBCG:HIV vaccine are codon optimization, antigen localization, and plasmid stability in vivo. The use of integrative expression vectors are likely to improve the mycobacterial vaccine stability and immunogenicity to develop not only recombinant BCG-based vaccines expressing second generation of HIV-1 immunogens but also other major pediatric pathogens to prime protective responses shortly following birth.
Collapse
Affiliation(s)
- Athina Kilpeläinen
- a Catalan Center for HIV Vaccine Research and Development, AIDS Research Unit, Infectious Diseases Department, Hospital Clínic/IDIBAPS, School of Medicine , University of Barcelona , Barcelona , Spain
| | - Milena Maya-Hoyos
- b Chemistry Department, Faculty of Sciences , Universidad Nacional de Colombia, Ciudad Universitaria , Bogotá , Colombia
| | - Narcís Saubí
- a Catalan Center for HIV Vaccine Research and Development, AIDS Research Unit, Infectious Diseases Department, Hospital Clínic/IDIBAPS, School of Medicine , University of Barcelona , Barcelona , Spain
| | - Carlos Y Soto
- b Chemistry Department, Faculty of Sciences , Universidad Nacional de Colombia, Ciudad Universitaria , Bogotá , Colombia
| | - Joan Joseph Munne
- a Catalan Center for HIV Vaccine Research and Development, AIDS Research Unit, Infectious Diseases Department, Hospital Clínic/IDIBAPS, School of Medicine , University of Barcelona , Barcelona , Spain
| |
Collapse
|
16
|
Chen Y, Cao S, Liu Y, Zhang X, Wang W, Li C. Potential role for Rv2026c- and Rv2421c- specific antibody responses in diagnosing active tuberculosis. Clin Chim Acta 2018; 487:369-376. [PMID: 30195451 DOI: 10.1016/j.cca.2018.09.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/04/2018] [Accepted: 09/05/2018] [Indexed: 10/28/2022]
Abstract
The current diagnostic methods for tuberculosis (TB) have several limitations. Although commercial serological tests based on antibody detection are available, their variable accuracies limit their roles in the clinic. The aim of this study was to discover the improved biomarkers for TB disease by investigating the serum profiles of IgG and IgM antibodies against nearly all Mycobacterium tuberculosis (MTB) antigens in 36 active TB patients and 18 healthy controls (HCs) using proteome microarrays. Our results revealed that multiple antigens could induce stronger serum IgG or IgM responses in TB patients compared to HCs, among them, Rv2026c and Rv2421c were further validated by ELISA with sera from 221 samples and showed the moderate performance in diagnosing TB by receiver operating characteristic analysis. Moreover, logistic regression analysis was performed to establish a combined panel that provided better sensitivity and specificity at 82.5% and 88.12%, respectively, than single antigens in the diagnosis of active TB. Furthermore, the antibody reactivity against Rv2026c and Rv2421c was correlated with clinical backgrounds. These results suggest that the combination of different antigens and classes of antibodies could provide promise and encouragement in developing an efficient serological test for the diagnosis of active TB.
Collapse
Affiliation(s)
- Yanqing Chen
- Institute for Geriatrics and Rehabilitation, Beijing Geriatric Hospital, Beijing University of Chinese Medicine, Beijing 100095, China.; Department of Laboratory Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Shuhui Cao
- Institute for Geriatrics and Rehabilitation, Beijing Geriatric Hospital, Beijing University of Chinese Medicine, Beijing 100095, China.; Department of Bacteriology and Immunology, Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Yi Liu
- Institute for Geriatrics and Rehabilitation, Beijing Geriatric Hospital, Beijing University of Chinese Medicine, Beijing 100095, China
| | - Xuxia Zhang
- Institute for Geriatrics and Rehabilitation, Beijing Geriatric Hospital, Beijing University of Chinese Medicine, Beijing 100095, China
| | - Wei Wang
- Institute for Geriatrics and Rehabilitation, Beijing Geriatric Hospital, Beijing University of Chinese Medicine, Beijing 100095, China
| | - Chuanyou Li
- Institute for Geriatrics and Rehabilitation, Beijing Geriatric Hospital, Beijing University of Chinese Medicine, Beijing 100095, China..
| |
Collapse
|
17
|
Ahn SK, Tran V, Leung A, Ng M, Li M, Liu J. Recombinant BCG Overexpressing phoP-phoR Confers Enhanced Protection against Tuberculosis. Mol Ther 2018; 26:2863-2874. [PMID: 30274790 PMCID: PMC6277425 DOI: 10.1016/j.ymthe.2018.08.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 08/23/2018] [Accepted: 08/24/2018] [Indexed: 11/29/2022] Open
Abstract
The live tuberculosis vaccine Mycobacterium bovis BCG (Bacille Calmette-Guérin) comprises a number of genetically distinct substrains. In BCG-Prague, phoP of the PhoP-PhoR two-component system is a pseudogene due to a single insertion mutation. We hypothesized that this mutation partially accounts for the low immunogenicity of BCG-Prague observed in the 1970s. In this study, we showed that complementation with the M. bovis allele of phoP restored BCG-Prague’s immunogenicity. Furthermore, we showed that overexpression of the M. bovis allele of phoP-phoR in BCG-Japan, a strain already containing a copy of phoP-phoR, further enhanced immunogenicity and protective efficacy. Vaccination of C57BL/6 mice with the recombinant strain rBCG-Japan/PhoPR induced higher levels of interferon-γ (IFN-γ) production by CD4+ T cells than that with the parental BCG. Guinea pigs vaccinated with rBCG-Japan/PhoPR were better protected against challenge with Mycobacterium tuberculosis than those immunized with the parental BCG, showing significantly longer survival time, reduced bacterial burdens, and less severe pathology. Taken together, our study has identified a genetic modification that could be generally applied to generate new recombinant BCG vaccines.
Collapse
Affiliation(s)
- Sang Kyun Ahn
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Vanessa Tran
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Andrea Leung
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Mark Ng
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Ming Li
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Jun Liu
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1M1, Canada.
| |
Collapse
|
18
|
Mycobacterium tuberculosis protein Rv2220 induces maturation and activation of dendritic cells. Cell Immunol 2018; 328:70-78. [PMID: 29625705 DOI: 10.1016/j.cellimm.2018.03.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 03/26/2018] [Accepted: 03/30/2018] [Indexed: 11/23/2022]
Abstract
Tuberculosis remains a serious health problem worldwide. Characterization of the dendritic cell (DC)-activating mycobacterial proteins has driven the development of effective TB vaccine candidates besides improving the understanding of immune responses. Some studies have emphasized the essential role of protein Rv2220 from M. tuberculosis in mycobacterial growth. Nonetheless, little is known about cellular immune responses to Rv2220. In this study, our aim was to test whether protein Rv2220 induces maturation and activation of DCs. Rv2220-activated DCs appeared to be in a mature state with elevated expression of relevant surface molecules and proinflammatory cytokines. DC maturation caused by Rv2220 was mediated by MAPK and NF-κB signaling pathways. Specifically, Rv2220-matured DCs induced the expansion of memory CD62LlowCD44highCD4+ T cells in the spleen of mycobacteria-infected mice. Our results suggest that Rv2220 regulates host immune responses through maturation of DCs, a finding that points to a new vaccine candidate against tuberculosis.
Collapse
|
19
|
Liu W, Li J, Niu H, Lin X, Li R, Wang Y, Xin Q, Yu H, Wu Y, Zhu B, Tan J. Immunogenicity and protective efficacy of multistage vaccine candidates (Mtb8.4-HspX and HspX-Mtb8.4) against Mycobacterium tuberculosis infection in mice. Int Immunopharmacol 2017; 53:83-89. [PMID: 29045910 DOI: 10.1016/j.intimp.2017.10.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 10/11/2017] [Accepted: 10/12/2017] [Indexed: 01/02/2023]
Abstract
In this study, Mtb8.4 and HspX, which are expressed at proliferating and dormant stages of Mycobacterium tuberculosis (M. tuberculosis), respectively, were chosen to construct two fusion proteins, Mtb8.4-HspX (8.4H) and HspX-Mtb8.4 (H8.4), and we investigated whether the antigen dose and protein sequential order could impact the immunogenicity and protective efficacy of these fusion protein vaccines against M. tuberculosis. C57BL/6 mice were vaccinated with new constructions containing a fusion protein with adjuvant of N, N'-dimethyl-N, N'-dioctadecylammonium bromide (DDA) or a mixed adjuvant composed of DDA, polyribocytidylic acid and gelatin (DPG), and the antigen specific immune responses and protective efficacy against M. tuberculosis H37Rv were evaluated. The results showed that both antigens, Mtb8.4-HspX and HspX-Mtb8.4, could elicit strong human T cell responses. With the existing of DDA adjuvant, HspX-Mtb8.4 induced significantly higher secretion level of IFN-γ and TNF-α in spleen cells than Mtb8.4-HspX (p<0.05). In its protective efficacy study, the isolated bacterial Colony Form Unit (CFU) in H8.4-DPG group was significantly reduced compared to 8.4H-DPG group (p<0.05). Furthermore, with the stimulation of Mtb8.4 in vitro, the secretion of IFN-γ and TNF-α from mice immunized with 20μg of H8.4 exhibited relative higher level than the group immunized by 7μg of H8.4 (p<0.05), whereas, IL-2 secreting showed contrary result. The data suggest that the antigen sequential order and dose selection should be considered when a tuberculosis protein vaccine is to be constructed and its immune strategy is to be planned.
Collapse
Affiliation(s)
- Wanbo Liu
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation & Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China, 730000; Institute of Immunology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China, 730000
| | - Jingjing Li
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation & Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China, 730000; Institute of Immunology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China, 730000
| | - Hongxia Niu
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation & Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China, 730000; Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Xiaofa Lin
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation & Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China, 730000; Institute of Immunology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China, 730000
| | - Ruiying Li
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation & Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China, 730000; Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Yue Wang
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation & Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China, 730000; Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Qi Xin
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation & Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China, 730000; Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Hongjuan Yu
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation & Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China, 730000; Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Yumin Wu
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation & Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China, 730000; Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Bingdong Zhu
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation & Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China, 730000; Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.
| | - Jiying Tan
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation & Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China, 730000; Institute of Immunology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China, 730000.
| |
Collapse
|
20
|
IFN- α Boosting of Mycobacterium bovis Bacillus Calmette Güerin-Vaccine Promoted Th1 Type Cellular Response and Protection against M. tuberculosis Infection. BIOMED RESEARCH INTERNATIONAL 2017; 2017:8796760. [PMID: 29090221 PMCID: PMC5635274 DOI: 10.1155/2017/8796760] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/13/2017] [Accepted: 06/22/2017] [Indexed: 12/13/2022]
Abstract
The role of type I IFNs in the pathogenesis and control of mycobacterial infection is still controversial. It has been reported that type I IFNs exacerbated M. tuberculosis infection through hampering Th1 type cellular immune response. However, under certain conditions they can act as natural immune adjuvants for commercial vaccines. At this point, we have reported recently that successive IFN-alpha boosting of Mycobacterium bovis Bacillus Calmette Güerin (BCG) vaccinated mice protected adult mice from intradermal M. lepraemurium infection and a difference in iNOS was observed. In the present work, we have found that intramuscular IFN-α boosting of Mycobacterium bovis Bacillus Calmette Güerin (BCG) vaccine, either in vitro (human cell line or macrophages derived from PBMC) or in vivo (aerosol mouse model of MTb infection), promoted mostly the development of specific anti-antimycobacterial Th1 type cytokines (IFN-γ; IL-12, TNF-alpha, and IL-17; IL1β) while bacterial load reduction (0.9 logs versus PBS or BCG vaccine) was observed. These findings indicate that, under the experimental settings reported here, interferon alpha can drive or affect the TH cellular immune response in favour of BCG-inducing immunity against M. tuberculosis infection.
Collapse
|
21
|
van Zyl-Smit RN, Esmail A, Bateman ME, Dawson R, Goldin J, van Rikxoort E, Douoguih M, Pau MG, Sadoff JC, McClain JB, Snowden MA, Benko J, Hokey DA, Rutkowski KT, Graves A, Shepherd B, Ishmukhamedov S, Kagina BMN, Abel B, Hanekom WA, Scriba TJ, Bateman ED. Safety and Immunogenicity of Adenovirus 35 Tuberculosis Vaccine Candidate in Adults with Active or Previous Tuberculosis. A Randomized Trial. Am J Respir Crit Care Med 2017; 195:1171-1180. [PMID: 28060545 DOI: 10.1164/rccm.201603-0654oc] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
RATIONALE Administration of tuberculosis (TB) vaccines in participants with previous or current pulmonary TB may have the potential for causing harmful postvaccination immunologic (Koch-type) reactions. OBJECTIVES To assess the safety and immunogenicity of three dose levels of the AERAS-402 live, replication-deficient adenovirus 35-vectored TB candidate vaccine, containing three mycobacterial antigens, in individuals with current or previous pulmonary TB. METHODS We performed a phase II randomized, placebo-controlled, double-blinded dose-escalation study in an HIV-negative adult South African cohort (n = 72) with active pulmonary TB (on treatment for 1-4 mo) or pulmonary TB treated at least 12 months before study entry and considered cured. Safety endpoints included clinical assessment, flow volume curves, diffusing capacity of the lung for carbon monoxide, pulse oximetry, chest radiograph, and high-resolution thoracic computerized tomography scans. Cytokine expression by CD4 and CD8 T cells, after stimulation with Ag85A, Ag85B, and TB10.4 peptide pools, was examined by intracellular cytokine staining. MEASUREMENTS AND MAIN RESULTS No apparent temporal or dose-related changes in clinical status (specifically acute, Koch phenomenon-like reactions), lung function, or radiology attributable to vaccine were observed. Injection site reactions were mild or moderate. Hematuria (by dipstick only) occurred in 25 (41%) of 61 AERAS-402 recipients and 3 (27%) of 11 placebo recipients, although no gross hematuria was reported. AERAS-402 induced robust CD8+ and moderate CD4+ T-cell responses, mainly to Ag85B in both vaccine groups. CONCLUSIONS Administration of the AERAS-402 candidate TB vaccine to participants with current or previous pulmonary TB induced a robust immune response and is not associated with clinically significant pulmonary complications. Clinical trial registered with www.clinicaltrials.gov (NCT 02414828) and in the South African National Clinical Trials Register ( www.sanctr.gov.za DOH 27-0808-2060).
Collapse
Affiliation(s)
- Richard N van Zyl-Smit
- 1 University of Cape Town Lung Institute, Division of Pulmonology, Department of Medicine
| | - Aliasgar Esmail
- 1 University of Cape Town Lung Institute, Division of Pulmonology, Department of Medicine
| | - Mary E Bateman
- 1 University of Cape Town Lung Institute, Division of Pulmonology, Department of Medicine
| | - Rodney Dawson
- 1 University of Cape Town Lung Institute, Division of Pulmonology, Department of Medicine
| | | | - Eva van Rikxoort
- 3 Department of Radiology, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Macaya Douoguih
- 4 Crucell Holland B.V., a Janssen Pharmaceutical company of Johnson & Johnson, Leiden, the Netherlands
| | - Maria Grazia Pau
- 4 Crucell Holland B.V., a Janssen Pharmaceutical company of Johnson & Johnson, Leiden, the Netherlands
| | - Jerald C Sadoff
- 4 Crucell Holland B.V., a Janssen Pharmaceutical company of Johnson & Johnson, Leiden, the Netherlands
| | | | | | | | | | | | | | | | | | - Benjamin M N Kagina
- 6 South African TB Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, and.,7 Vaccines for Africa Initiative, Division of Medical Microbiology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Brian Abel
- 6 South African TB Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, and.,8 Singapore Immunology Network, Agency for Science, Technology and Research, Singapore
| | - Willem A Hanekom
- 6 South African TB Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, and
| | - Thomas J Scriba
- 6 South African TB Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, and
| | - Eric D Bateman
- 1 University of Cape Town Lung Institute, Division of Pulmonology, Department of Medicine
| |
Collapse
|
22
|
Mycobacterium tuberculosis Rv3615c is a highly immunodominant antigen and specifically induces potent Th1-type immune responses in tuberculosis pleurisy. Clin Sci (Lond) 2017; 131:1859-1876. [PMID: 28588103 DOI: 10.1042/cs20170205] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 06/04/2017] [Accepted: 06/06/2017] [Indexed: 02/05/2023]
Abstract
T-cell responses have been demonstrated to be essential for preventing Mycobacterium tuberculosis infection. The Th1-cytokines produced by T cells, such as INF-γ, IL-2, and TNF-α, not only limit the invasion of M. tuberculosis but also eliminate the pathogen at the site of infection. Bacillus Calmette-Guérin (BCG) is known to induce Th1-type responses but the protection is inadequate. Identification of immunogenic components, in addition to those expressed in BCG, and induction of a broad spectrum of Th1-type responses provide options for generating sufficient adaptive immunity. Here, we studied human pulmonary T-cell responses induced by the M. tuberculosis-specific antigen Rv3615c, a protein with a similar size and sequence homology to ESAT-6 and CFP-10, which induced dominant CD4+ T-cell responses in human tuberculosis (TB) models. We characterized T-cell responses including cytokine profiling, kinetics of activation, expansion, differentiation, TCR usage, and signaling of activation induced by Rv3615c compared with other M. tuberculosis-specific antigens. The expanded CD4+ T cells induced by Rv3615c predominately produced Th1, but less Th2 and Th17, cytokines and displayed effector/memory phenotypes (CD45RO+CD27-CD127-CCR7-). The magnitude of expansion and cytokine production was comparable to those induced by well-characterized the 6 kDa early secreted antigenic target (ESAT-6), the 10 kDa culture filtrate protein (CFP-10) and BCG. Rv3615c contained multiple epitopes Rv3615c1-15, Rv3615c6-20, Rv3615c66-80, Rv3615c71-85 and Rv3615c76-90 that activated CD4+ T cells. The Rv3615c-specific CD4+ T cells shared biased of T-cell receptor variable region of β chain (TCR Vβ) 1, 2, 4, 5.1, 7.1, 7.2 and/or 22 chains to promote their differentiation and proliferation respectively, by triggering a signaling cascade. Our data suggest that Rv3615c is a major target of Th1-type responses and can be a highly immunodominant antigen specific for M. tuberculosis infection.
Collapse
|
23
|
Liu W, Xu Y, Shen H, Yan J, Yang E, Wang H. Recombinant Bacille Calmette-Guérin coexpressing Ag85B-IFN-γ enhances the cell-mediated immunity in C57BL/6 mice. Exp Ther Med 2017; 13:2339-2347. [PMID: 28565847 PMCID: PMC5443280 DOI: 10.3892/etm.2017.4273] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 01/31/2017] [Indexed: 12/16/2022] Open
Abstract
The only available vaccine against pulmonary tuberculosis is Bacille Calmette-Guérin (BCG). As the efficacy reported of the vaccine is not up to the mark, there is an urgent need to develop improved anti-tuberculosis vaccines. Antigen 85B (Ag85B) is a very promising vaccine candidate molecule of Mycobacterium tuberculosis and interferon (IFN)-γ and has been considered the most attractive correlate of protective immunity. The aim of this study was to construct a novel recombinant BCG (rBCG) to secrete Ag85B and mouse IFN-γ under control of the Mycobacterial heat shock protein 60 (hsp60) promoter and the antigen signal sequence. Second aim of the present study is to evaluate the immune response in C57BL/6 elicted by the new rBCG. Expression of the fusion protein was readily detectable by western blotting and IFN-γ bioactivity was detected indirectly by enzyme-linked immunosorbent assay (ELISA). Compared with BCG, rBCG::Ag85B-IFN-γ was substantially more active in inducing the production of IFN-γ and tumor necrosis factor (TNF)-α from mouse splenocytes. ELISA analysis for IgG, IgG1 and IgG2c showed that rBCG::Ag85B-IFN-γ induced higher titer of Ag85B and facilitated Th1 type immune response. rBCG::Ag85B-IFN-γ also improved nitric oxide production levels and enhanced antigen-specific splenocyte proliferation. Moreover, rBCG::Ag85B-IFN-γ induced human monocytes such as THP-1 cells to enhance expression of CD80, CD86, CD40 and HLA-DR. Flow cytometry analysis confirmed that rBCG::Ag85B-IFN-γ significantly activated CD4+ T cells. Assessing combinations of IFN-γ, TNF-α and interleukin-2 at the single-cell level by multiparameter flow cytometry, we found that rBCG::Ag85B-IFN-γ improved the multifunctional T cells level in comparison to BCG. In conclusion, the present study indicates that rBCG::Ag85B-IFN-γ increases cell mediated immune response and is a potential candidate vaccine for immunotherapeutic protocols against pulmonary tuberculosis.
Collapse
Affiliation(s)
- Wei Liu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, P.R. China
| | - Ying Xu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, P.R. China
| | - Hongbo Shen
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, P.R. China
| | - Jingran Yan
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, P.R. China
| | - Enzhuo Yang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, P.R. China
| | - Honghai Wang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, P.R. China
| |
Collapse
|
24
|
Xiang ZH, Sun RF, Lin C, Chen FZ, Mai JT, Liu YX, Xu ZY, Zhang L, Liu J. Immunogenicity and Protective Efficacy of a Fusion Protein Tuberculosis Vaccine Combining Five Esx Family Proteins. Front Cell Infect Microbiol 2017; 7:226. [PMID: 28620588 PMCID: PMC5449442 DOI: 10.3389/fcimb.2017.00226] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 05/16/2017] [Indexed: 11/13/2022] Open
Abstract
One strategy to develop the next generation of tuberculosis vaccines is to construct subunit vaccines based on T cell antigens. In this study, we have evaluated the vaccine potential of a fusion protein combining EsxB, EsxD, EsxG, EsxU, and EsxM of Mycobacterium tuberculosis (M. tb). This recombinant protein, named BM, was expressed in and purified from Escherichia coli. Immunization of C57BL/6 mice with purified BM protein formulated in Freund's incomplete adjuvant induced the production of Th1 cytokines (IFN-γ, TNF, and IL-2) and multifunctional CD4+ T cells. Vaccination of BALB/c mice with BM protein followed by intravenous challenge with Mycobacterium bovis BCG resulted in better levels of protection than the two leading antigens, Ag85A and PPE18. Taken together, these results indicate that BM is a protective antigen. Future studies to combine BM with other antigens and evaluate its effectiveness as a booster of BCG or as a therapeutic vaccine are warranted.
Collapse
Affiliation(s)
- Zhi-Hao Xiang
- State Key Laboratory of Genetic Engineering, School of Life Science, Institute of Genetics, Fudan UniversityShanghai, China
| | - Rui-Feng Sun
- State Key Laboratory of Genetic Engineering, School of Life Science, Institute of Genetics, Fudan UniversityShanghai, China
| | - Chen Lin
- State Key Laboratory of Genetic Engineering, School of Life Science, Institute of Genetics, Fudan UniversityShanghai, China
| | - Fu-Zeng Chen
- State Key Laboratory of Genetic Engineering, School of Life Science, Institute of Genetics, Fudan UniversityShanghai, China
| | - Jun-Tao Mai
- Department of Molecular Genetics, University of TorontoToronto, ON, Canada
| | - Yu-Xiao Liu
- State Key Laboratory of Genetic Engineering, School of Life Science, Institute of Genetics, Fudan UniversityShanghai, China
| | - Zi-Yan Xu
- State Key Laboratory of Genetic Engineering, School of Life Science, Institute of Genetics, Fudan UniversityShanghai, China
| | - Lu Zhang
- State Key Laboratory of Genetic Engineering, School of Life Science, Institute of Genetics, Fudan UniversityShanghai, China.,Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Fudan UniversityShanghai, China.,Shanghai Engineering Research Center of Industrial MicroorganismsShanghai, China
| | - Jun Liu
- State Key Laboratory of Genetic Engineering, School of Life Science, Institute of Genetics, Fudan UniversityShanghai, China.,Department of Molecular Genetics, University of TorontoToronto, ON, Canada
| |
Collapse
|
25
|
Engineering Mycobacteria for the Production of Self-Assembling Biopolyesters Displaying Mycobacterial Antigens for Use as a Tuberculosis Vaccine. Appl Environ Microbiol 2017; 83:AEM.02289-16. [PMID: 28087528 PMCID: PMC5311400 DOI: 10.1128/aem.02289-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 12/09/2016] [Indexed: 12/30/2022] Open
Abstract
Tuberculosis (TB) is a disease caused by Mycobacterium tuberculosis or Mycobacterium bovis and still remains one of the world's biggest global health burdens. Recently, engineered polyhydroxyalkanoate (PHA) biobeads that were produced in both Escherichia coli and Lactococcus lactis and displayed mycobacterial antigens were found to induce significant cell-mediated immune responses in mice. We observed that such PHA beads contained host cell proteins as impurities, which we hypothesized to have the potential to induce immunity. In this study, we aimed to develop PHA beads produced in mycobacteria (mycobacterial PHA biobeads [MBB]) and test their potential as a TB vaccine in a mouse model. As a model organism, nonpathogenic Mycobacterium smegmatis was engineered to produce MBB or MBB with immobilized mycobacterial antigens Ag85A and ESAT-6 on their surface (A:E-MBB). Three key enzymes involved in the poly(3-hydroxybutyric acid) pathway, namely, β-ketothiolase (PhaA), acetoacetyl-coenzyme A reductase (PhaB), and PHA synthase (PhaC), were engineered into E. coli-Mycobacterium shuttle plasmids and expressed in trans. Immobilization of specific antigens to the surface of the MBB was achieved by creating a fusion with the PHA synthase which remains covalently attached to the polyester core, resulting in PHA biobeads displaying covalently immobilized antigens. MBB, A:E-MBB, and an M. smegmatis vector control (MVC) were used in a mouse immunology trial, with comparison to phosphate-buffered saline (PBS)-vaccinated and Mycobacterium bovis BCG-vaccinated groups. We successfully produced MBB and A:E-MBB and used them as vaccines to induce a cellular immune response to mycobacterial antigens. IMPORTANCE Tuberculosis (TB) is a disease caused by Mycobacterium tuberculosis or Mycobacterium bovis and still remains one of the world's biggest global health burdens. In this study, we produced polyhydroxyalkanoate (PHA) biobeads in mycobacteria and used them as vaccines to induce a cellular immune response to mycobacterial antigens.
Collapse
|
26
|
Pandey H, Tripathi S, Srivastava K, Tripathi DK, Srivastava M, Kant S, Srivastava KK, Arora A. Characterization of culture filtrate proteins Rv1197 and Rv1198 of ESAT-6 family from Mycobacterium tuberculosis H37Rv. Biochim Biophys Acta Gen Subj 2017; 1861:396-408. [DOI: 10.1016/j.bbagen.2016.10.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 10/01/2016] [Accepted: 10/13/2016] [Indexed: 12/15/2022]
|
27
|
Stephen-Victor E, Sharma VK, Das M, Karnam A, Saha C, Lecerf M, Galeotti C, Kaveri SV, Bayry J. IL-1β, But Not Programed Death-1 and Programed Death Ligand Pathway, Is Critical for the Human Th17 Response to Mycobacterium tuberculosis. Front Immunol 2016; 7:465. [PMID: 27867382 PMCID: PMC5095489 DOI: 10.3389/fimmu.2016.00465] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 10/17/2016] [Indexed: 01/29/2023] Open
Abstract
The programed death-1 (PD-1)–programed death ligand-1 (PD-L1) and PD-L2 co-inhibitory pathway has been implicated in the evasion strategies of Mycobacterium tuberculosis. Specifically, M. tuberculosis-induced PD-L1 orchestrates expansion of regulatory T cells and suppression of Th1 response. However, the role of PD pathway in regulating Th17 response to M. tuberculosis has not been investigated. In the present report, we demonstrate that M. tuberculosis and M. tuberculosis-derived antigen fractions have differential abilities to mediate human monocyte- and dendritic cell (DC)-mediated Th17 response and were independent of expression of PD-L1 or PD-L2 on aforementioned antigen-presenting cells. Importantly, we observed that blockade of PD-L1 or PD-1 did not significantly modify either the frequencies of Th17 cells or the production of IL-17 from CD4+ T cells though IFN-γ response was significantly enhanced. On the contrary, IL-1β from monocytes and DCs were critical for the Th17 response to M. tuberculosis. Together, our results indicate that IL-1β, but not members of the programed death pathway, is critical for human Th17 response to M. tuberculosis.
Collapse
Affiliation(s)
- Emmanuel Stephen-Victor
- Institut National de la Santé et de la Recherche Médicale Unité 1138, Paris, France; UMR S 1138, Sorbonne Universités, UPMC Univ Paris, Paris, France; Centre de Recherche des Cordeliers, Equipe - Immunopathology and Therapeutic Immunointervention, Paris, France
| | - Varun Kumar Sharma
- Institut National de la Santé et de la Recherche Médicale Unité 1138, Paris, France; Centre de Recherche des Cordeliers, Equipe - Immunopathology and Therapeutic Immunointervention, Paris, France
| | - Mrinmoy Das
- Institut National de la Santé et de la Recherche Médicale Unité 1138, Paris, France; UMR S 1138, Sorbonne Universités, UPMC Univ Paris, Paris, France; Centre de Recherche des Cordeliers, Equipe - Immunopathology and Therapeutic Immunointervention, Paris, France
| | - Anupama Karnam
- Institut National de la Santé et de la Recherche Médicale Unité 1138, Paris, France; UMR S 1138, Sorbonne Universités, UPMC Univ Paris, Paris, France; Centre de Recherche des Cordeliers, Equipe - Immunopathology and Therapeutic Immunointervention, Paris, France
| | - Chaitrali Saha
- Institut National de la Santé et de la Recherche Médicale Unité 1138, Paris, France; Centre de Recherche des Cordeliers, Equipe - Immunopathology and Therapeutic Immunointervention, Paris, France
| | - Maxime Lecerf
- Institut National de la Santé et de la Recherche Médicale Unité 1138, Paris, France; UMR S 1138, Sorbonne Universités, UPMC Univ Paris, Paris, France; Centre de Recherche des Cordeliers, Equipe - Immunopathology and Therapeutic Immunointervention, Paris, France; UMR S 1138, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Caroline Galeotti
- Institut National de la Santé et de la Recherche Médicale Unité 1138, Paris, France; UMR S 1138, Sorbonne Universités, UPMC Univ Paris, Paris, France; Centre de Recherche des Cordeliers, Equipe - Immunopathology and Therapeutic Immunointervention, Paris, France
| | - Srinivas V Kaveri
- Institut National de la Santé et de la Recherche Médicale Unité 1138, Paris, France; UMR S 1138, Sorbonne Universités, UPMC Univ Paris, Paris, France; Centre de Recherche des Cordeliers, Equipe - Immunopathology and Therapeutic Immunointervention, Paris, France; UMR S 1138, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Jagadeesh Bayry
- Institut National de la Santé et de la Recherche Médicale Unité 1138, Paris, France; UMR S 1138, Sorbonne Universités, UPMC Univ Paris, Paris, France; Centre de Recherche des Cordeliers, Equipe - Immunopathology and Therapeutic Immunointervention, Paris, France; UMR S 1138, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
28
|
Montes de Oca M, Kumar R, Rivera FDL, Amante FH, Sheel M, Faleiro RJ, Bunn PT, Best SE, Beattie L, Ng SS, Edwards CL, Boyle GM, Price RN, Anstey NM, Loughland JR, Burel J, Doolan DL, Haque A, McCarthy JS, Engwerda CR. Type I Interferons Regulate Immune Responses in Humans with Blood-Stage Plasmodium falciparum Infection. Cell Rep 2016; 17:399-412. [PMID: 27705789 PMCID: PMC5082731 DOI: 10.1016/j.celrep.2016.09.015] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 07/19/2016] [Accepted: 09/04/2016] [Indexed: 12/14/2022] Open
Abstract
The development of immunoregulatory networks is important to prevent disease. However, these same networks allow pathogens to persist and reduce vaccine efficacy. Here, we identify type I interferons (IFNs) as important regulators in developing anti-parasitic immunity in healthy volunteers infected for the first time with Plasmodium falciparum. Type I IFNs suppressed innate immune cell function and parasitic-specific CD4+ T cell IFNγ production, and they promoted the development of parasitic-specific IL-10-producing Th1 (Tr1) cells. Type I IFN-dependent, parasite-specific IL-10 production was also observed in P. falciparum malaria patients in the field following chemoprophylaxis. Parasite-induced IL-10 suppressed inflammatory cytokine production, and IL-10 levels after drug treatment were positively associated with parasite burdens before anti-parasitic drug administration. These findings have important implications for understanding the development of host immune responses following blood-stage P. falciparum infection, and they identify type I IFNs and related signaling pathways as potential targets for therapies or vaccine efficacy improvement.
Collapse
Affiliation(s)
- Marcela Montes de Oca
- QIMR Berghofer Medical Research Institute, Royal Brisbane and Women's Hospital, Brisbane, QLD 4006, Australia; School of Medicine, University of Queensland, Brisbane, QLD 4072, Australia
| | - Rajiv Kumar
- QIMR Berghofer Medical Research Institute, Royal Brisbane and Women's Hospital, Brisbane, QLD 4006, Australia; Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Fabian de Labastida Rivera
- QIMR Berghofer Medical Research Institute, Royal Brisbane and Women's Hospital, Brisbane, QLD 4006, Australia
| | - Fiona H Amante
- QIMR Berghofer Medical Research Institute, Royal Brisbane and Women's Hospital, Brisbane, QLD 4006, Australia
| | - Meru Sheel
- QIMR Berghofer Medical Research Institute, Royal Brisbane and Women's Hospital, Brisbane, QLD 4006, Australia
| | - Rebecca J Faleiro
- QIMR Berghofer Medical Research Institute, Royal Brisbane and Women's Hospital, Brisbane, QLD 4006, Australia; Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - Patrick T Bunn
- QIMR Berghofer Medical Research Institute, Royal Brisbane and Women's Hospital, Brisbane, QLD 4006, Australia; Institute of Glycomics, Griffith University, Gold Coast, Southport, QLD 4215, Australia
| | - Shannon E Best
- QIMR Berghofer Medical Research Institute, Royal Brisbane and Women's Hospital, Brisbane, QLD 4006, Australia
| | - Lynette Beattie
- QIMR Berghofer Medical Research Institute, Royal Brisbane and Women's Hospital, Brisbane, QLD 4006, Australia
| | - Susanna S Ng
- QIMR Berghofer Medical Research Institute, Royal Brisbane and Women's Hospital, Brisbane, QLD 4006, Australia; School of Natural Sciences, Griffith University, Nathan, QLD 4111, Australia
| | - Chelsea L Edwards
- QIMR Berghofer Medical Research Institute, Royal Brisbane and Women's Hospital, Brisbane, QLD 4006, Australia; School of Medicine, University of Queensland, Brisbane, QLD 4072, Australia
| | - Glen M Boyle
- QIMR Berghofer Medical Research Institute, Royal Brisbane and Women's Hospital, Brisbane, QLD 4006, Australia
| | - Ric N Price
- Menzies School of Health Research, Darwin, NT 0811, Australia; Charles Darwin University, Darwin, NT 0810, Australia; Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Nicholas M Anstey
- Menzies School of Health Research, Darwin, NT 0811, Australia; Charles Darwin University, Darwin, NT 0810, Australia
| | - Jessica R Loughland
- Menzies School of Health Research, Darwin, NT 0811, Australia; Charles Darwin University, Darwin, NT 0810, Australia
| | - Julie Burel
- QIMR Berghofer Medical Research Institute, Royal Brisbane and Women's Hospital, Brisbane, QLD 4006, Australia
| | - Denise L Doolan
- QIMR Berghofer Medical Research Institute, Royal Brisbane and Women's Hospital, Brisbane, QLD 4006, Australia
| | - Ashraful Haque
- QIMR Berghofer Medical Research Institute, Royal Brisbane and Women's Hospital, Brisbane, QLD 4006, Australia
| | - James S McCarthy
- QIMR Berghofer Medical Research Institute, Royal Brisbane and Women's Hospital, Brisbane, QLD 4006, Australia; School of Medicine, University of Queensland, Brisbane, QLD 4072, Australia.
| | - Christian R Engwerda
- QIMR Berghofer Medical Research Institute, Royal Brisbane and Women's Hospital, Brisbane, QLD 4006, Australia.
| |
Collapse
|
29
|
Mycobacterium indicus pranii as a booster vaccine enhances BCG induced immunity and confers higher protection in animal models of tuberculosis. Tuberculosis (Edinb) 2016; 101:164-173. [PMID: 27865389 DOI: 10.1016/j.tube.2016.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/29/2016] [Accepted: 10/01/2016] [Indexed: 11/20/2022]
Abstract
BCG, the only approved vaccine protects against severe form of childhood tuberculosis but its protective efficacy wanes in adolescence. BCG has reduced the incidence of infant TB considerably in endemic areas; therefore prime-boost strategy is the most realistic measure for control of tuberculosis in near future. Mycobacterium indicus pranii (MIP) shares significant antigenic repertoire with Mtb and BCG and has been shown to impart significant protection in animal models of tuberculosis. In this study, MIP was given as a booster to BCG vaccine which enhanced the BCG mediated immune response, resulting in higher protection. MIP booster via aerosol route was found to be more effective in protection than subcutaneous route of booster immunization. Pro-inflammatory cytokines like IFN-γ, IL-12 and IL-17 were induced at higher level in infected lungs of 'BCG-MIP' group both at mRNA expression level and in secretory form when compared with 'only BCG' group. BCG-MIP groups had increased frequency of multifunctional T cells with high MFI for IFN-γ and TNF-α in Mtb infected mice. Our data demonstrate for the first time, potential application of MIP as a booster to BCG vaccine for efficient protection against tuberculosis. This could be very cost effective strategy for efficient control of tuberculosis.
Collapse
|
30
|
Liu Y, Chen S, Pan B, Guan Z, Yang Z, Duan L, Cai H. A subunit vaccine based on rH-NS induces protection against Mycobacterium tuberculosis infection by inducing the Th1 immune response and activating macrophages. Acta Biochim Biophys Sin (Shanghai) 2016; 48:909-922. [PMID: 27563010 DOI: 10.1093/abbs/gmw078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 07/07/2016] [Indexed: 11/12/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) is a Gram-positive pathogen which causes tuberculosis in both animals and humans. All tested rH-NS formulations induced a specific Th1 response, as indicated by increased production of interferon γ (IFN-γ) and interleukin 2 (IL-2) by lymphocytes in the spleen of mice which were immunized with rH-NS alone or with rH-NS and the adjuvant cyclic GMP-AMP (cGAMP). Serum from mice immunized with rH-NS with or without adjuvant also had higher levels of IL-12p40 and TNF-α, compared with those from control mice immunized with phosphate-buffered saline. Both vaccines increased protective efficacy in mice which were challenged with Mtb H37Rv, as measured by reduced relative CFU counts in the lungs. We found that rH-NS induced the production of TNF-α, IL-6, and IL-12p40, which relied on the activation of mitogen-activated protein kinases by stimulating the rapid phosphorylation of ERK1/2, p38, and JNK, and on the activation of transcription factor NF-κB in macrophages. Additionally, we also found that rH-NS could interact with TLR2 but not TLR4 in pull-down assays. The rH-NS-induced cytokine production from TLR2-silenced RAW264.7 cells was lower than that from BALB/c macrophages. Prolonged exposure (>24 h) of RAW264.7 cells to rH-NS resulted in a significant enhancement in IFN-γ-induced MHC II expression, which was not found in shTLR2-treated RAW264.7 cells. These results suggest that rH-NS is a TLR2 agonist which induces the production of cytokines by macrophages and up-regulates macrophage function.
Collapse
Affiliation(s)
- Yuan Liu
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Suting Chen
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing 101149, China
| | - Bowen Pan
- State Key Laboratory of Natural and Biomimetic Drugs, Peking Universtiy Health Science Center, Beijing 100191, China
| | - Zhu Guan
- State Key Laboratory of Natural and Biomimetic Drugs, Peking Universtiy Health Science Center, Beijing 100191, China
| | - Zhenjun Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Peking Universtiy Health Science Center, Beijing 100191, China
| | - Linfei Duan
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Hong Cai
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
31
|
Tran V, Ahn SK, Ng M, Li M, Liu J. Loss of Lipid Virulence Factors Reduces the Efficacy of the BCG Vaccine. Sci Rep 2016; 6:29076. [PMID: 27357109 PMCID: PMC4928182 DOI: 10.1038/srep29076] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 06/14/2016] [Indexed: 11/09/2022] Open
Abstract
Bacille Calmette-Guérin (BCG), an attenuated strain of Mycobacterium bovis, is the only vaccine available for tuberculosis (TB) control. BCG comprises a number of substrains that exhibit genetic and biochemical differences. Whether and how these differences affect BCG efficacy remain unknown. Compared to other BCG strains, BCG-Japan, -Moreau, and -Glaxo are defective in the production of phthiocerol dimycocerosates (PDIMs) and phenolic glycolipids (PGLs), two lipid virulence factors. To determine if the loss of PDIMs/PGLs affects BCG efficacy, we constructed a PDIM/PGL-deficient strain of BCG-Pasteur by deleting fadD28, and compared virulence, immunogenicity, and protective efficacy in animal models. SCID mouse infection experiments showed that ∆fadD28 was more attenuated than wild type (WT). The ∆fadD28 and WT strains induced equivalent levels of antigen specific IFN-γ by CD4+ and CD8+ T cells; however, ∆fadD28 was less effective against Mycobacterium tuberculosis challenge in both BALB/c mice and guinea pigs. These results indicate that the loss of PIDMs/PGLs reduces the virulence and protective efficacy of BCG. Since the loss of PDIMs/PGLs occurs naturally in a subset of BCG strains, it also suggests that these strains may have been over-attenuated, which compromises their effectiveness. Our finding has important implications for current BCG programs and future vaccine development.
Collapse
Affiliation(s)
- Vanessa Tran
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Sang Kyun Ahn
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Mark Ng
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Ming Li
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Jun Liu
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
32
|
Gu D, Chen W, Mi Y, Gong X, Luo T, Bao L. The Mycobacterium bovis BCG prime-Rv0577 DNA boost vaccination induces a durable Th1 immune response in mice. Acta Biochim Biophys Sin (Shanghai) 2016; 48:385-90. [PMID: 26922320 DOI: 10.1093/abbs/gmw010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 11/23/2015] [Indexed: 01/09/2023] Open
Abstract
Tuberculosis remains a major global health problem and effective vaccines are urgently needed. In this study, we used the combined DNA- and protein-based vaccines of immunodominant antigen Rv0577 to boost BCG and evaluated their immunogenicity in BALB/c mice. Our data suggest that the booster vaccine may substantially enhance the immunogenicity of BCG and strengthen both CD4+ T cell-mediated Th1 and CD8+ T cell-mediated cytolytic responses. Compared with the protein-based vaccine, the DNA-based vaccine can induce more durable Th1 immune response, characterized by high levels of antibody response, proliferation response, percentages of CD4+/CD8+ and cytokine secretion in antigen-stimulated splenocyte cultures. In conclusion, we for the first time, developed a protein- and plasmid DNA-based booster vaccine based on Rv0577. Our findings suggest that antigen Rv0577-based DNA vaccine is immunogenic and can efficiently boost BCG, which could be helpful in the design of an efficient vaccination strategy against TB.
Collapse
Affiliation(s)
- Dongqing Gu
- Laboratory of Infection and Immunity, School of Basic Medical Sciences, West China Center of Medical Science, Sichuan University, Chengdu 610041, China
| | - Wei Chen
- Laboratory of Infection and Immunity, School of Basic Medical Sciences, West China Center of Medical Science, Sichuan University, Chengdu 610041, China
| | - Youjun Mi
- Laboratory of Infection and Immunity, School of Basic Medical Sciences, West China Center of Medical Science, Sichuan University, Chengdu 610041, China
| | - Xueli Gong
- Laboratory of Infection and Immunity, School of Basic Medical Sciences, West China Center of Medical Science, Sichuan University, Chengdu 610041, China
| | - Tao Luo
- Laboratory of Infection and Immunity, School of Basic Medical Sciences, West China Center of Medical Science, Sichuan University, Chengdu 610041, China
| | - Lang Bao
- Laboratory of Infection and Immunity, School of Basic Medical Sciences, West China Center of Medical Science, Sichuan University, Chengdu 610041, China
| |
Collapse
|
33
|
Current perspective in tuberculosis vaccine development for high TB endemic regions. Tuberculosis (Edinb) 2016; 98:149-58. [PMID: 27156631 DOI: 10.1016/j.tube.2016.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 03/10/2016] [Accepted: 03/21/2016] [Indexed: 12/25/2022]
Abstract
Tuberculosis (TB) continues to be a global epidemic, despite of the availability of Bacillus Calmette Guerin (BCG) vaccine for more than six decades. In an effort to eradicate TB, vaccinologist around the world have made considerable efforts to develop improved vaccine candidates, based on the understanding of BCG failure in developing world and immune response thought to be protective against TB. The present review represents a current perspective on TB vaccination research, including additional research strategies needed for increasing the efficacy of BCG, and for the development of new effective vaccines for high TB endemic regions.
Collapse
|
34
|
Amini Y, Tebianian M, Mosavari N, Fasihi Ramandi M, Ebrahimi SM, Najminejad H, Dabaghian M, Abdollahpour M. Development of an effective delivery system for intranasal immunization against Mycobacterium tuberculosis ESAT-6 antigen. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2016; 45:291-296. [PMID: 26924121 DOI: 10.3109/21691401.2016.1146735] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Introduction The early secreted antigenic target 6-kDa protein (ESAT-6) plays an important role in immune protection against Tuberculosis. Owing to its great potential to increase immune response, chitosan can be considered as a suitable biodegradable polymer for intranasal administration. Methods The physiochemical properties of the nanoparticle were measured in vitro. Two weeks after the last intranasal administration, blood samples were collected and specific IgG, IFN-gama, and IL-4 levels were measured by ELISA. Results Chitosan nanoparticles containing ESAT-6 demonstrated stronger ability to induce IFN-gama, IL-4, and IgG antibody level than the control groups. Conclusion Administration of chitosan nanoparticles can be a suitable method to induce more appropriate immune responses against low inherent immunogenic tuberculosis proteins through intranasal routs.
Collapse
Affiliation(s)
- Yousef Amini
- a Microbiology & Virology Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences , Mashhad , Iran
| | | | | | - Mahdi Fasihi Ramandi
- c Molecular Biology Research Center, Baqiyatallah University of Medical Sciences , Tehran , Iran
| | | | | | | | | |
Collapse
|
35
|
Flores-Valdez MA. Vaccines Directed Against Microorganisms or Their Products Present During Biofilm Lifestyle: Can We Make a Translation as a Broad Biological Model to Tuberculosis? Front Microbiol 2016; 7:14. [PMID: 26834732 PMCID: PMC4720741 DOI: 10.3389/fmicb.2016.00014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 01/08/2016] [Indexed: 01/08/2023] Open
Abstract
Tuberculosis (TB) remains as a global public health problem. In recent years, experimental evidence suggesting the relevance of in vitro pellicle (a type of biofilm formed at the air-liquid interface) production as a phenotype mimicking aspects found by Mycobacterium tuberculosis-complex bacteria during in vivo infection has started to accumulate. There are still opportunities for better diagnostic tools, therapeutic molecules as well as new vaccine candidates to assist in TB control programs worldwide and particularly in less developed nations. Regarding vaccines, despite the availability of a live, attenuated strain (Mycobacterium bovis BCG) since almost a century ago, its variable efficacy and lack of protection against pulmonary and latent disease has prompted basic and applied research leading to preclinical and clinical evaluation of up to 15 new candidates. In this work, I present examples of vaccines based on whole cells grown as biofilms, or specific proteins expressed under such condition, and the effect they have shown in relevant animal models or directly in the natural host. I also discuss why it might be worthwhile to explore these approaches, for constructing and developing new vaccine candidates for testing their efficacy against TB.
Collapse
Affiliation(s)
- Mario A Flores-Valdez
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. Biotecnología Médica y Farmaceútica Guadalajara, Mexico
| |
Collapse
|
36
|
Chen YY, Yang FL, Wu SH, Lin TL, Wang JT. Mycobacterium marinum mmar_2318 and mmar_2319 are Responsible for Lipooligosaccharide Biosynthesis and Virulence Toward Dictyostelium. Front Microbiol 2016; 6:1458. [PMID: 26779131 PMCID: PMC4703794 DOI: 10.3389/fmicb.2015.01458] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 12/04/2015] [Indexed: 12/15/2022] Open
Abstract
Resistance to phagocyte killing is an important virulence factor in mycobacteria. Dictyostelium has been used to study the interaction between phagocytes and bacteria, given its similarity to the mammalian macrophage. Here, we investigated the genes responsible for virulence to Dictyostelium by screening 1728 transposon mutants of the Mycobacterium marinum NTUH-M6094 strain. A total of 30 mutants that permissive for Dictyostelium growth were identified. These mutants revealed interruptions in 20 distinct loci. Of the 20 loci, six genes (losA, mmar_2318, mmar_2319, wecE, mmar_2323 and mmar_2353) were located in the lipooligosaccharide (LOS) synthesis cluster. LOS are antigenic glycolipids and the core LOS structure from LOS-I to LOS-IV have been reported to exist in M. marinum. Two-dimensional thin-layer chromatography (2D-TLC) glycolipid profiles revealed that deletion of mmar_2318 or mmar_2319 resulted in the accumulation of LOS-III and deficiency of LOS-IV. Deletion and complementation of mmar_2318 or mmar_2319 confirmed that these genes both contributed to virulence toward Dictyostelium but not entry and replication inside Dictyostelium. Co-incubation with a murine macrophage cell line J774a.1 or PMA-induced human monocytic cell line THP-1 demonstrated that mmar_2318 or mmar_2319 deletion mutant could grow in macrophages, and their initial entry rate was not affected in J774a.1 but significantly increased in THP-1. In conclusion, although mmar_2319 has been reported to involve LOS biosynthesis in a previous study, we identified a new gene, mmar_2318 that is also involved in the biosynthesis of LOS. Deletion of mmar_2318 or mmar_2319 both exhibits reduction of virulence toward Dictyostelium and increased entry into THP-1 cells.
Collapse
Affiliation(s)
- Yi-Yin Chen
- Department of Microbiology, National Taiwan University College of Medicine Taipei, Taiwan
| | - Feng-Ling Yang
- Institute of Biological Chemistry, Academia Sinica Taipei, Taiwan
| | - Shih-Hsiung Wu
- Institute of Biological Chemistry, Academia Sinica Taipei, Taiwan
| | - Tzu-Lung Lin
- Department of Microbiology, National Taiwan University College of Medicine Taipei, Taiwan
| | - Jin-Town Wang
- Department of Microbiology, National Taiwan University College of MedicineTaipei, Taiwan; Department of Internal Medicine, National Taiwan University HospitalTaipei, Taiwan
| |
Collapse
|
37
|
Zhang L, Ru HW, Chen FZ, Jin CY, Sun RF, Fan XY, Guo M, Mai JT, Xu WX, Lin QX, Liu J. Variable Virulence and Efficacy of BCG Vaccine Strains in Mice and Correlation With Genome Polymorphisms. Mol Ther 2015; 24:398-405. [PMID: 26643797 PMCID: PMC4817822 DOI: 10.1038/mt.2015.216] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 11/22/2015] [Indexed: 01/20/2023] Open
Abstract
Bacille Calmette–Guérin (BCG), an attenuated strain of Mycobacterium bovis, is the only vaccine available for tuberculosis (TB) control. However, BCG is not an ideal vaccine and has two major limitations: BCG exhibits highly variable effectiveness against the development of TB both in pediatric and adult populations and can cause disseminated BCG disease in immunocompromised individuals. BCG comprises a number of substrains that are genetically distinct. Whether and how these genetic differences affect BCG efficacy remains largely unknown. In this study, we performed comparative analyses of the virulence and efficacy of 13 BCG strains, representing different genetic lineages, in SCID and BALB/c mice. Our results show that BCG strains of the DU2 group IV (BCG-Phipps, BCG-Frappier, BCG-Pasteur, and BCG-Tice) exhibit the highest levels of virulence, and BCG strains of the DU2 group II (BCG-Sweden, BCG-Birkhaug) are among the least virulent group. These distinct levels of virulence may be explained by strain-specific duplications and deletions of genomic DNA. There appears to be a general trend that more virulent BCG strains are also more effective in protection against Mycobacterium tuberculosis challenge. Our findings have important implications for current BCG vaccine programs and for future TB vaccine development.
Collapse
Affiliation(s)
- Lu Zhang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China; Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Fudan University, Shanghai, China; Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, China
| | - Huan-Wei Ru
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| | - Fu-Zeng Chen
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| | - Chun-Yan Jin
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| | - Rui-Feng Sun
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| | - Xiao-Yong Fan
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Ming Guo
- Center for Animal Experiment/Animal Biosafety Level III Laboratory, State Key Laboratory of Virology, Wuhan University, Wuhan, China
| | - Jun-Tao Mai
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Wen-Xi Xu
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Qing-Xia Lin
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| | - Jun Liu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
38
|
Minhinnick A, Harris S, Wilkie M, Peter J, Stockdale L, Manjaly-Thomas ZR, Vermaak S, Satti I, Moss P, McShane H. Optimization of a Human Bacille Calmette-Guérin Challenge Model: A Tool to Evaluate Antimycobacterial Immunity. J Infect Dis 2015; 213:824-30. [PMID: 26450421 PMCID: PMC4747614 DOI: 10.1093/infdis/jiv482] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 09/30/2015] [Indexed: 11/25/2022] Open
Abstract
Background. There is an urgent need for an improved tuberculosis vaccine. The lack of a validated correlate of protection slows progress in achieving this goal. A human mycobacterial challenge model, using bacille Calmette-Guérin (BCG) as a surrogate for a Mycobacterium tuberculosis challenge, would facilitate vaccine selection for field efficacy testing. Optimization of this model is required. Methods. Healthy BCG-naive adults were assigned to receive intradermal standard-dose BCG SSI (group A), standard-dose BCG TICE (group B), high-dose BCG SSI (group C), and high-dose BCG TICE (group D). Two weeks after BCG challenge, skin biopsy of the challenge site was performed. BCG mycobacterial load was quantified by solid culture and quantitative polymerase chain reaction. Results. BCG was well tolerated, and reactogenicity was similar between groups, regardless of strain and dose. There was significantly greater recovery of BCG from the high-dose challenge groups, compared with standard-dose challenge. BCG strain did not significantly affect BCG recovery. Conclusions. BCG challenge dose affects sensitivity of this model. We have selected high-dose BCG SSI to take forward in future challenge studies. Assessment of candidate tuberculosis vaccine effectiveness with this optimized model could contribute to vaccine selection for efficacy trials. Clinical Trials Registration. NCT02088892.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Iman Satti
- The Jenner Institute, University of Oxford
| | - Paul Moss
- School of Cancer Sciences, University of Birmingham, United Kingdom
| | | |
Collapse
|
39
|
In vitro antimycobacterial activity of six Cameroonian medicinal plants using microplate alamarBlue assay. Int J Mycobacteriol 2015; 4:306-11. [PMID: 26964813 DOI: 10.1016/j.ijmyco.2015.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 08/13/2015] [Accepted: 08/15/2015] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVE/BACKGROUND The latest incidence of tuberculosis (TB) (per 100,000 people) in Cameroon was 243.00 as of 2011. Over the past 21 years, the value for this indicator has fluctuated between 112.00 in 1990 and 320.00 in 2003. Worldwide, this incidence has also increased, bringing back TB as a reemerging disease. On the same note, resistance to anti-TB drugs has increased, urging the search for new molecules. METHODS This study was carried out to evaluate the antimycobacterial activity of six medicinal plants on the virulent strain, H37Rv, using the microplate alamarBlue assay. Mycobacterium tuberculosis (H37Rv strain) was incubated with decreased concentrations of six plant extracts, ranging from 250 μg/mL to 31.25 μg/mL. After 7 days of incubation at 37 °C, the effects of these plant extracts on the viability of the mycobacteria were evaluated. For each plant extract, the minimal inhibitory concentration was determined. RESULTS The results showed that the compounds MBC1, MBC24, MBC68, MBC81, MBC117, and MBC118 were the best candidates with minimal inhibitory concentrations of 31.25, 62.5, 125, 62.5, and 125 μg/mL, respectively. CONCLUSION These results confirm and validate the traditional use of these plants to treat respiratory diseases, which could be good sources and alternatives of plant metabolites for anti-TB-drug development.
Collapse
|
40
|
Rodrigues RF, Zárate-Bladés CR, Rios WM, Soares LS, Souza PRM, Brandão IT, Masson AP, Arnoldi FGC, Ramos SG, Letourneur F, Jacques S, Cagnard N, Chiocchia G, Silva CL. Synergy of chemotherapy and immunotherapy revealed by a genome-scale analysis of murine tuberculosis. J Antimicrob Chemother 2015; 70:1774-83. [PMID: 25687643 DOI: 10.1093/jac/dkv023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 01/05/2015] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVES Although TB immunotherapy improves the results of conventional drug treatment, the effects of combining chemotherapy and immunotherapy have never been systematically evaluated. We used a comprehensive lung transcriptome analysis to directly compare the activity of combined chemotherapy and immunotherapy with that of single treatments in a mouse model of TB. METHODS Mycobacterium tuberculosis-infected mice in the chronic phase of the disease (day 30) received: (i) isoniazid and rifampicin (drugs) daily for 30 days; (ii) DNA immunotherapy (DNA), consisting of four 100 μg injections at 10 day intervals; (iii) both therapies (DNA + drugs); or (iv) saline. The effects were evaluated 10 days after the end of treatment (day 70 post-infection). RESULTS In all groups a systemic reduction in the load of bacilli was observed, bacilli became undetectable in the drugs and DNA + drugs groups, but the whole lung transcriptome analysis showed 867 genes exclusively modulated by the DNA + drugs combination. Gene enrichment analysis indicated that DNA + drugs treatment provided synergistic effects, including the down-regulation of proinflammatory cytokines and mediators of fibrosis, as confirmed by real-time PCR, ELISA, histopathology and hydroxyproline assay. CONCLUSIONS Our results provide a molecular basis for the advantages of TB treatment using combined chemotherapy and DNA immunotherapy and demonstrate the synergistic effects obtained with this strategy.
Collapse
Affiliation(s)
- Rodrigo F Rodrigues
- The Centre for Tuberculosis Research, Department of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, São Paulo, Ribeirao Preto, 14049-900, Brazil
| | - Carlos R Zárate-Bladés
- The Centre for Tuberculosis Research, Department of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, São Paulo, Ribeirao Preto, 14049-900, Brazil
| | - Wendy M Rios
- The Centre for Tuberculosis Research, Department of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, São Paulo, Ribeirao Preto, 14049-900, Brazil
| | - Luana S Soares
- The Centre for Tuberculosis Research, Department of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, São Paulo, Ribeirao Preto, 14049-900, Brazil
| | - Patricia R M Souza
- The Centre for Tuberculosis Research, Department of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, São Paulo, Ribeirao Preto, 14049-900, Brazil
| | - Izaíra T Brandão
- The Centre for Tuberculosis Research, Department of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, São Paulo, Ribeirao Preto, 14049-900, Brazil
| | - Ana P Masson
- The Centre for Tuberculosis Research, Department of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, São Paulo, Ribeirao Preto, 14049-900, Brazil
| | - Frederico G C Arnoldi
- The Centre for Tuberculosis Research, Department of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, São Paulo, Ribeirao Preto, 14049-900, Brazil
| | - Simone G Ramos
- Department of Pathology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirao Preto, São Paulo, 14049-900, Brazil
| | - Franck Letourneur
- Université Paris-Descartes, Institut Cochin and INSERM U1016, CNRS (CMRS 8104), Paris, 75014, France
| | - Sébastien Jacques
- Université Paris-Descartes, Institut Cochin and INSERM U1016, CNRS (CMRS 8104), Paris, 75014, France
| | - Nicolas Cagnard
- Université Paris-Descartes, Institut Cochin and INSERM U1016, CNRS (CMRS 8104), Paris, 75014, France Hôpital Necker, Paris, 75015, France
| | - Gilles Chiocchia
- Université Paris-Descartes, Institut Cochin and INSERM U1016, CNRS (CMRS 8104), Paris, 75014, France
| | - Celio L Silva
- The Centre for Tuberculosis Research, Department of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, São Paulo, Ribeirao Preto, 14049-900, Brazil
| |
Collapse
|
41
|
Husain AA, Warke SR, Kalorey DR, Daginawala HF, Taori GM, Kashyap RS. Comparative evaluation of booster efficacies of BCG, Ag85B, and Ag85B peptides based vaccines to boost BCG induced immunity in BALB/c mice: a pilot study. Clin Exp Vaccine Res 2015; 4:83-7. [PMID: 25649326 PMCID: PMC4313113 DOI: 10.7774/cevr.2015.4.1.83] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 10/23/2014] [Accepted: 10/24/2014] [Indexed: 11/15/2022] Open
Abstract
Purpose In the present study booster efficacies of Ag85 B, Bacillus Calmette-Guerin (BCG), and Ag85B peptides were evaluated using prime boost regimes in BALB/c mice. Materials and Methods Mice were primed with BCG vaccine and subsequently boosted with Ag85B, BCG and cocktail of Ag85B peptides. Results Based on analysis of immune response it was observed mice boosted with Ag85B peptides showed significant (p < 0.001) cytokines levels (interferon γ, interleukin 12) and BCG specific antibodies (anti-BCG and anti-purified protein derivative titre) compared to booster dose of BCG, Ag85B and BCG alone. Conclusion Our pilot results suggest that prime boost regimes with Ag85B peptides can boost waning BCG induced immunity and may improve immunogenicity of BCG vaccine. However, lot of work is further needed using experimental model of tuberculosis infection to justify the result.
Collapse
Affiliation(s)
- Aliabbas A Husain
- Biochemistry Research Laboratory, Central India Institute of Medical Sciences, Nagpur, India
| | - Shubhangi R Warke
- Department of Veterinary Microbiology and Animal Biotechnology, Nagpur Veterinary College, Nagpur, India
| | - Dewanand R Kalorey
- Department of Veterinary Microbiology and Animal Biotechnology, Nagpur Veterinary College, Nagpur, India
| | - Hatim F Daginawala
- Biochemistry Research Laboratory, Central India Institute of Medical Sciences, Nagpur, India
| | - Girdhar M Taori
- Biochemistry Research Laboratory, Central India Institute of Medical Sciences, Nagpur, India
| | - Rajpal S Kashyap
- Biochemistry Research Laboratory, Central India Institute of Medical Sciences, Nagpur, India
| |
Collapse
|
42
|
Haning K, Cho SH, Contreras LM. Small RNAs in mycobacteria: an unfolding story. Front Cell Infect Microbiol 2014; 4:96. [PMID: 25105095 PMCID: PMC4109619 DOI: 10.3389/fcimb.2014.00096] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 07/03/2014] [Indexed: 01/10/2023] Open
Abstract
Mycobacteria represent a class of powerful pathogens, including those causing tuberculosis and leprosy, which continue to be worldwide health challenges. In the last 20 years, an abundance of non-coding, small RNAs (sRNAs) have been discovered in model bacteria and gained significant attention as regulators of cellular responses, including pathogenesis. Naturally, a search in mycobacteria followed, revealing over 200 sRNAs thus far. Characterization of these sRNAs is only beginning, but differential expression under environmental stresses suggests relevance to mycobacterial pathogenesis. This review provides a comprehensive overview of the current knowledge of sRNAs in mycobacteria, including historical perspective and techniques used for identification and characterization.
Collapse
Affiliation(s)
- Katie Haning
- McKetta Department of Chemical Engineering, Cockrell School of Engineering, The University of Texas at AustinAustin, TX, USA
| | - Seung Hee Cho
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at AustinAustin, TX, USA
| | - Lydia M. Contreras
- McKetta Department of Chemical Engineering, Cockrell School of Engineering, The University of Texas at AustinAustin, TX, USA
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at AustinAustin, TX, USA
| |
Collapse
|
43
|
Kaur IP, Singh H. Nanostructured drug delivery for better management of tuberculosis. J Control Release 2014; 184:36-50. [DOI: 10.1016/j.jconrel.2014.04.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 04/03/2014] [Accepted: 04/03/2014] [Indexed: 01/27/2023]
|
44
|
Tailoring the Immune Response via Customization of Pathogen Gene Expression. J Pathog 2014; 2014:651568. [PMID: 24719769 PMCID: PMC3955589 DOI: 10.1155/2014/651568] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 12/23/2013] [Indexed: 12/27/2022] Open
Abstract
The majority of studies focused on the construction and reengineering of bacterial pathogens have mainly relied on the knocking out of virulence factors or deletion/mutation of amino acid residues to then observe the microbe's phenotype and the resulting effect on the host immune response. These knockout bacterial strains have also been proposed as vaccines to combat bacterial disease. Theoretically, knockout strains would be unable to cause disease since their virulence factors have been removed, yet they could induce a protective memory response. While knockout strains have been valuable tools to discern the role of virulence factors in host immunity and bacterial pathogenesis, they have been unable to yield clinically relevant vaccines. The advent of synthetic biology and enhanced user-directed gene customization has altered this binary process of knockout, followed by observation. Recent studies have shown that a researcher can now tailor and customize a given microbe's gene expression to produce a desired immune response. In this commentary, we highlight these studies as a new avenue for controlling the inflammatory response as well as vaccine development.
Collapse
|
45
|
Tameris M, Geldenhuys H, Luabeya AK, Smit E, Hughes JE, Vermaak S, Hanekom WA, Hatherill M, Mahomed H, McShane H, Scriba TJ. The candidate TB vaccine, MVA85A, induces highly durable Th1 responses. PLoS One 2014; 9:e87340. [PMID: 24498312 PMCID: PMC3911992 DOI: 10.1371/journal.pone.0087340] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 12/20/2013] [Indexed: 12/16/2022] Open
Abstract
Background Vaccination against tuberculosis (TB) should provide long-term protective immunity against Mycobacterium tuberculosis (M.tb). The current TB vaccine, Bacille Calmette-Guerin (BCG), protects against disseminated childhood TB, but protection against lung TB in adolescents and adults is variable and mostly poor. One potential reason for the limited durability of protection may be waning of immunity through gradual attrition of BCG-induced T cells. We determined if a MVA85A viral-vector boost could enhance the durability of mycobacteria-specific T cell responses above those induced by BCG alone. Methods We describe a long-term follow-up study of persons previously vaccinated with MVA85A. We performed a medical history and clinical examination, a tuberculin skin test and measured vaccine-specific T cell responses in persons previously enrolled as adults, adolescents, children or infants into three different Phase II trials, between 2005 and 2011. Results Of 252 potential participants, 183 (72.6%) consented and completed the study visit. Vaccine-induced Ag85A-specific CD4+ T cell responses were remarkably persistent in healthy, HIV-uninfected adults, adolescents, children and infants, up to 6 years after MVA85A vaccination. Specific CD4+ T cells expressed surface markers consistent with either CD45RA−CCR7+ central memory or CD45RA−CCR7− effector memory T cells. Similarly durable Ag85A-specific CD4+ T cell responses were detected in HIV-infected persons who were on successful antiretroviral therapy when MVA85A was administered. By contrast, Ag85A-specific CD4+ T cell frequencies in untreated MVA85A-vaccinated HIV-infected persons were mostly undetectable 3–5 years after vaccination. Conclusion MVA85A induces remarkably durable T cell responses in immunocompetent persons. However, results from a recent phase IIb trial of MVA85A, conducted in infants from the same geographic area and study population, showed no vaccine efficacy, suggesting that these durable T cell responses do not enhance BCG-induced protection against TB in infants.
Collapse
Affiliation(s)
- Michele Tameris
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and School of Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
- * E-mail:
| | - Hennie Geldenhuys
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and School of Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Angelique KanyKany Luabeya
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and School of Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Erica Smit
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and School of Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Jane E. Hughes
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and School of Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Samantha Vermaak
- Jenner Institute, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Willem A. Hanekom
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and School of Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Mark Hatherill
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and School of Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Hassan Mahomed
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and School of Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Helen McShane
- Jenner Institute, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Thomas J. Scriba
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and School of Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
46
|
Fraser CK, Diener KR, Brown MP, Hayball JD. Improving vaccines by incorporating immunological coadjuvants. Expert Rev Vaccines 2014; 6:559-78. [PMID: 17669010 DOI: 10.1586/14760584.6.4.559] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
While vaccination continues to be the most successful interventionist health policy to date, infectious disease remains a significant cause of death worldwide. A primary reason that vaccination is not able to generate effective immunity is a lack of appropriate adjuvants capable of initiating the desired immune response. Adjuvant combinations can potentially overcome this problem; however, the possible permutations to consider, which include the route and kinetics of vaccination, as well as combinations of adjuvants, are practically limitless. This review aims to summarize the current understanding of adjuvants and related immunological processes and how this knowledge can and has been applied to the strategic selection of adjuvant combinations as components of vaccines against human infectious disease.
Collapse
Affiliation(s)
- Cara K Fraser
- Experimental Therapeutics Laboratory, Hanson Institute, and School of Pharmacy and Medical Sciences, Sansom Institute, University of South Australia, Australia.
| | | | | | | |
Collapse
|
47
|
Tu HAT, Vu HD, Rozenbaum MH, Woerdenbag HJ, Postma MJ. A review of the literature on the economics of vaccination against TB. Expert Rev Vaccines 2014; 11:303-17. [DOI: 10.1586/erv.11.197] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
48
|
Kawano M, Matsui M, Handa H. SV40 virus-like particles as an effective delivery system and its application to a vaccine carrier. Expert Rev Vaccines 2014; 12:199-210. [DOI: 10.1586/erv.12.149] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
49
|
Dover LG, Bhatt A, Bhowruth V, Willcox BE, Besra GS. New drugs and vaccines for drug-resistantMycobacterium tuberculosisinfections. Expert Rev Vaccines 2014; 7:481-97. [DOI: 10.1586/14760584.7.4.481] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
50
|
Pérez de Val B, Vidal E, Villarreal-Ramos B, Gilbert SC, Andaluz A, Moll X, Martín M, Nofrarías M, McShane H, Vordermeier HM, Domingo M. A multi-antigenic adenoviral-vectored vaccine improves BCG-induced protection of goats against pulmonary tuberculosis infection and prevents disease progression. PLoS One 2013; 8:e81317. [PMID: 24278420 PMCID: PMC3836889 DOI: 10.1371/journal.pone.0081317] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 10/11/2013] [Indexed: 01/01/2023] Open
Abstract
The “One world, one health” initiative emphasizes the need for new strategies to control human and animal tuberculosis (TB) based on their shared interface. A good example would be the development of novel universal vaccines against Mycobacterium tuberculosis complex (MTBC) infection. This study uses the goat model, a natural TB host, to assess the protective effectiveness of a new vaccine candidate in combination with Bacillus Calmette-Guerin (BCG) vaccine. Thirty-three goat kids were divided in three groups: Group 1) vaccinated with BCG (week 0), Group 2) vaccinated with BCG and boosted 8 weeks later with a recombinant adenovirus expressing the MTBC antigens Ag85A, TB10.4, TB9.8 and Acr2 (AdTBF), and Group 3) unvaccinated controls. Later on, an endobronchial challenge with a low dose of M. caprae was performed (week 15). After necropsy (week 28), the pulmonary gross pathology was quantified using high resolution Computed Tomography. Small granulomatous pulmonary lesions (< 0.5 cm diameter) were also evaluated through a comprehensive qualitative histopathological analysis. M. caprae CFU were counted from pulmonary lymph nodes. The AdTBF improved the effects of BCG reducing gross lesion volume and bacterial load, as well as increasing weight gain. The number of Ag85A-specific gamma interferon-producing memory T-cells was identified as a predictor of vaccine efficacy. Specific cellular and humoral responses were measured throughout the 13-week post-challenge period, and correlated with the severity of lesions. Unvaccinated goats exhibited the typical pathological features of active TB in humans and domestic ruminants, while vaccinated goats showed only very small lesions. The data presented in this study indicate that multi-antigenic adenoviral vectored vaccines boosts protection conferred by vaccination with BCG.
Collapse
Affiliation(s)
- Bernat Pérez de Val
- Centre de Recerca en Sanitat Animal, Universitat autonoma de Barcelona–Investigación y tecnología Agroalimentarias, Campus de la Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
- * E-mail:
| | - Enric Vidal
- Centre de Recerca en Sanitat Animal, Universitat autonoma de Barcelona–Investigación y tecnología Agroalimentarias, Campus de la Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
| | - Bernardo Villarreal-Ramos
- TB Research Group, Animal Health and Veterinary Laboratories Agency-Weybridge, New Haw, Addlestone, Surrey, United Kingdom
| | - Sarah C. Gilbert
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, United Kingdom
| | - Anna Andaluz
- Departament de Medicina i Cirugia Animals, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
| | - Xavier Moll
- Departament de Medicina i Cirugia Animals, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
| | - Maite Martín
- Centre de Recerca en Sanitat Animal, Universitat autonoma de Barcelona–Investigación y tecnología Agroalimentarias, Campus de la Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
| | - Miquel Nofrarías
- Centre de Recerca en Sanitat Animal, Universitat autonoma de Barcelona–Investigación y tecnología Agroalimentarias, Campus de la Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
| | - Helen McShane
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, United Kingdom
| | - H. Martin Vordermeier
- TB Research Group, Animal Health and Veterinary Laboratories Agency-Weybridge, New Haw, Addlestone, Surrey, United Kingdom
| | - Mariano Domingo
- Centre de Recerca en Sanitat Animal, Universitat autonoma de Barcelona–Investigación y tecnología Agroalimentarias, Campus de la Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
| |
Collapse
|