1
|
Eom H, Choi YJ, Nandre R, Kim M, Oh YL, Kim S, Nakazawa T, Honda Y, Ro HS. Targeted insertion of heterogenous DNA using Cas9-gRNA ribonucleoprotein-mediated gene editing in Ganoderma lucidum. Bioengineered 2025; 16:2458376. [PMID: 39879084 PMCID: PMC11781247 DOI: 10.1080/21655979.2025.2458376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/05/2024] [Accepted: 10/09/2024] [Indexed: 01/31/2025] Open
Abstract
Gene editing is emerging as a powerful tool for introducing novel functionalities in mushrooms. While CRISPR/Cas9-induced double-strand breaks (DSBs) typically rely on non-homologous end joining (NHEJ) for gene disruption, precise insertion of heterologous DNA in mushrooms is less explored. Here, we evaluated the efficacy of inserting donor DNAs (8-1008 bp) with or without homologous arms at Cas9-gRNA RNP-induced DSBs. Co-transformation of donor DNAs with RNP targeting the pyrG gene in Ganoderma lucidum yielded 184 transformants without homologous arms and 781 with 300-bp homologous arms (HR_donor DNAs). Restriction analysis and sequencing identified 122 hR_donor DNA transformants with complete donor DNA sequences, achieving 15.6% HDR efficiency (122/781), contrasting with 8 instances via NHEJ from the 184 transformants. These findings highlight the viability of HDR for precise genomic editing in mushrooms, enabling targeted modifications to enhance functionalities.
Collapse
Affiliation(s)
- Hyerang Eom
- Department of BioMedical Bigdata (BK21) and Research Institute of Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Yeon-Jae Choi
- Department of BioMedical Bigdata (BK21) and Research Institute of Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Rutuja Nandre
- Department of BioMedical Bigdata (BK21) and Research Institute of Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Minseek Kim
- Mushroom Science Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong, Republic of Korea
| | - Youn-Lee Oh
- Mushroom Science Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong, Republic of Korea
| | - Sinil Kim
- Biological Resources Utilization Division, National Institute of Biological Resources(NIBR), Incheon, Republic of Korea
| | - Takehito Nakazawa
- Laboratory of Forest Biochemistry, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yoichi Honda
- Laboratory of Forest Biochemistry, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Hyeon-Su Ro
- Department of BioMedical Bigdata (BK21) and Research Institute of Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
2
|
Liao X, Li Y, Wu Y, Li X, Shang X. Deep Learning-Based Classification of CRISPR Loci Using Repeat Sequences. ACS Synth Biol 2025; 14:1813-1828. [PMID: 40261207 DOI: 10.1021/acssynbio.5c00174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
With the widespread application of the CRISPR-Cas system in gene editing and related fields, along with the increasing availability of metagenomic data, the demand for detecting and classifying CRISPR-Cas systems in metagenomic data sets has grown significantly. Traditional classification methods for CRISPR-Cas systems primarily rely on identifying cas genes near CRISPR arrays. However, in cases where cas gene information is absent, such as in metagenomes or fragmented genome assemblies, traditional methods may fail. Here, we present a deep learning-based method, CRISPRclassify-CNN-Att, which classifies CRISPR loci solely based on repeat sequences. CRISPRclassify-CNN-Att utilizes convolutional neural networks (CNNs) and self-attention mechanisms to extract features from repeat sequences. It employs a stacking strategy to address the imbalance of samples across different subtypes and uses transfer learning to improve classification accuracy for subtypes with fewer samples. CRISPRclassify-CNN-Att demonstrates outstanding performance in classifying multiple subtypes, particularly those with larger sample sizes. Although CRISPR loci classification traditionally depends on cas genes, CRISPRclassify-CNN-Att offers a novel approach that serves as a significant complement to cas-based methods, enabling the classification of orphan or distant CRISPR loci. The proposed tool is freely accessible via https://github.com/Xingyu-Liao/CRISPRclassify-CNN-Att.
Collapse
Affiliation(s)
- Xingyu Liao
- School of Computer Science, Northwestern Polytechnical University, Xi'an, Shanxi 710072, China
| | - Yanyan Li
- School of Computer Science, Northwestern Polytechnical University, Xi'an, Shanxi 710072, China
| | - Yingfu Wu
- School of Computer Science, Northwestern Polytechnical University, Xi'an, Shanxi 710072, China
| | - Xingyi Li
- School of Computer Science, Northwestern Polytechnical University, Xi'an, Shanxi 710072, China
| | - Xuequn Shang
- School of Computer Science, Northwestern Polytechnical University, Xi'an, Shanxi 710072, China
| |
Collapse
|
3
|
Rust S, Randau L. Real-time imaging of bacterial colony growth dynamics for cells with Type IV-A1 CRISPR-Cas activity. MICROLIFE 2025; 6:uqaf006. [PMID: 40230958 PMCID: PMC11995694 DOI: 10.1093/femsml/uqaf006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/08/2025] [Accepted: 03/31/2025] [Indexed: 04/16/2025]
Abstract
The Type IV-A1 CRISPR-Cas system of Pseudomonas oleovorans provides defense against mobile genetic elements in the absence of target DNA degradation. In recent studies, Escherichia coli BL21-AI cells with Type IV-A1 CRISPR-Cas activity displayed a heterogeneous colony growth phenotype. Here, we developed a convenient smartphone-mediated automatic remote-controlled time-lapse imaging system (SMARTIS), that enables monitoring of growing bacteria over time. The system's design includes a custom-built imaging box equipped with LED lights, an adjustable heating system and a smartphone that can be remotely controlled using freely available, user-friendly applications. SMARTIS allowed long-term observation of growing colonies and was utilized to analyze different growth behaviors of E. coli cells expressing Type IV-A1 CRISPR ribonucleoproteins. Our findings reveal that heterogeneity in colonies can emerge within hours of initial growth. We further examined the influence of different expression systems on bacterial growth and CRISPR interference activity and demonstrated that the observed heterogeneity of colony-forming units is strongly influenced by plasmid design and backbone identity. This study highlights the importance of careful assessment of heterogenous colony growth dynamics and describes a real-time imaging system with wide applications beyond the study of CRISPR-Cas activity in bacterial hosts.
Collapse
Affiliation(s)
- Selina Rust
- Prokaryotic RNA Biology, Department of Biology, Philipps-Universität Marburg, D-35043 Marburg, Germany
| | - Lennart Randau
- Prokaryotic RNA Biology, Department of Biology, Philipps-Universität Marburg, D-35043 Marburg, Germany
- SYNMIKRO, Center for Synthetic Microbiology, D-35043 Marburg, Germany
| |
Collapse
|
4
|
Wang X, Ding H, Sun Y, Ma Y, Wang G, Chen J, Choo J, Chen L. CRISPR/HCR-powered ratiometric fluorescence aptasensor for ochratoxin A detection. Food Chem 2025; 468:142437. [PMID: 39700796 DOI: 10.1016/j.foodchem.2024.142437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/27/2024] [Accepted: 12/09/2024] [Indexed: 12/21/2024]
Abstract
To address the need for highly sensitive and reliable detection of trace ochratoxin A (OTA) in food matrices, we developed a ratiometric fluorescent aptasensor by integrating CRISPR/Cas12a, hybridization chain reaction (HCR), and horseradish peroxidase (HRP)-induced inner filter effect (IFE). The mechanism involves OTA releasing an activator that initiates CRISPR/Cas12a trans-cleavage, blocking HCR assembly. This reduces HRP levels, limiting the conversion of o-phenylenediamine (OPD) to fluorescent 2,3-diaminophenazine (DAP) (emitting at 562 nm) while maintaining strong emission from 2-amino terephthalic acid (BDC-NH2) at 426 nm. The F426/F562 ratio serves as a "signal-on" indicator, enabling sensitive OTA detection over 0.1 pM to 10 nM, with a detection limit of 0.0417 pM. The method exhibits excellent reproducibility, with intra-day and inter-day relative standard deviations (RSDs) of 1.91 %-3.87 % and 1.79 %, respectively, along with recovery rates of 90.1 %-110.6 % in real samples. These advantages highlight its significant potential for CRISPR/Cas-based OTA detection.
Collapse
Affiliation(s)
- Xiaokun Wang
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Hao Ding
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yinghui Sun
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yanling Ma
- Qingdao Academy of Agricultural Sciences, Qingdao 266100, China
| | - Guoqing Wang
- Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Jiadong Chen
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Lingxin Chen
- Coastal Zone Ecological Environment Monitoring Technology and Equipment Shandong Engineering Research Center, CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Centre for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| |
Collapse
|
5
|
Zou X, Mo Z, Wang L, Chen S, Lee SY. Overcoming Bacteriophage Contamination in Bioprocessing: Strategies and Applications. SMALL METHODS 2025; 9:e2400932. [PMID: 39359025 DOI: 10.1002/smtd.202400932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/14/2024] [Indexed: 10/04/2024]
Abstract
Bacteriophage contamination has a devastating impact on the viability of bacterial hosts and can significantly reduce the productivity of bioprocesses in biotechnological industries. The consequences range from widespread fermentation failure to substantial economic losses, highlighting the urgent need for effective countermeasures. Conventional prevention methods, which focus primarily on the physical removal of bacteriophages from equipment, bioprocess units, and the environment, have proven ineffective in preventing phage entry and contamination. The coevolutionary dynamics between phages and their bacterial hosts have spurred the development of a diverse repertoire of antiviral defense mechanisms within microbial communities. These naturally occurring defense strategies can be harnessed through genetic engineering to convert phage-sensitive hosts into robust, phage-resistant cell factories, providing a strategic approach to mitigate the threats posed by bacteriophages to industrial bacterial processes. In this review, an overview of the various defense strategies and immune systems that curb the propagation of bacteriophages and highlight their applications in fermentation bioprocesses to combat phage contamination is provided. Additionally, the tactics employed by phages to circumvent these defense strategies are also discussed, as preventing the emergence of phage escape mutants is a key component of effective contamination management.
Collapse
Affiliation(s)
- Xuan Zou
- Intensive Care Unit, Shenzhen Key Laboratory of Microbiology in Genomic Modification & Editing and Application, Shenzhen Institute of Translational Medicine, Medical Innovation Technology Transformation Center of Shenzhen Second People's Hospital, Shenzhen Univeristy Medical School, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, 518035, China
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Synthetic Biology Research Center, Shenzhen University, Shenzhen, Guangdong, 518035, China
| | - Ziran Mo
- Department of Respiratory Diseases, Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen, Guangdong, 518026, China
- Department of Gastroenterology, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Taikang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Lianrong Wang
- Department of Respiratory Diseases, Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen, Guangdong, 518026, China
- Department of Gastroenterology, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Taikang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Shi Chen
- Intensive Care Unit, Shenzhen Key Laboratory of Microbiology in Genomic Modification & Editing and Application, Shenzhen Institute of Translational Medicine, Medical Innovation Technology Transformation Center of Shenzhen Second People's Hospital, Shenzhen Univeristy Medical School, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, 518035, China
- Synthetic Biology Research Center, Shenzhen University, Shenzhen, Guangdong, 518035, China
- Department of Gastroenterology, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Taikang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, 34141, Republic of Korea
- BioProcess Engineering Research Center and BioInformatics Research Center, KAIST, Daejeon, 34141, Republic of Korea
- Graduate School of Engineering Biology, KAIST, Daejeon, 34141, Republic of Korea
| |
Collapse
|
6
|
Pandova M, Kizheva Y, Hristova P. Relationship Between CRISPR-Cas Systems and Acquisition of Tetracycline Resistance in Non-Clinical Enterococcus Populations in Bulgaria. Antibiotics (Basel) 2025; 14:145. [PMID: 40001389 PMCID: PMC11852239 DOI: 10.3390/antibiotics14020145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/30/2025] [Accepted: 01/31/2025] [Indexed: 02/27/2025] Open
Abstract
Non-clinical enterococci are relatively poorly studied by means of acquired antibiotic resistance to tetracycline and by the distribution, functionality and role of their CRISPR systems. Background: In our study, 72 enterococcal strains, isolated from various non-clinical origins, were investigated for their phenotypic and genotypic (tet(M), tet(O), tet(S), tet(L), tet(K), tet(T) and tet(W)) tetracycline resistance. Methods: The genetic determinants for HGT (MGEs (Int-Tn and prgW), inducible pheromones (cpd, cop and cff), aggregation substances (agg, asa1, prgB and asa373) and CRISPR-Cas systems were characterized by PCR and whole-genome sequencing. Results: Four tet genes (tetM, tetO, tetS and tetT) were detected in 39% (n = 28) of our enterococcal population, with tetM (31%) being dominant. The gene location was linked to the Tn6009 transposon. All strains that contained tet genes also had genes for HGT. No tet genes were found in E. casseliflavus and E. gilvus. In our study, 79% of all tet-positive strains correlated with non-functional CRISPR systems. The strain E. faecalis BM15 was the only one containing a combination of a functional CRISPR system (cas1, cas2, csn2 and csn1/cas9) and tet genes. The CRISPR subtype repeats II-A, III-B, IV-A2 and VI-B1 were identified among E. faecalis strains (CM4-II-A, III-B and VI-B1; BM5-IV-A2, II-A and III-B; BM12 and BM15-II-A). The subtype II-A was the most present. These repeats enclosed a great number of spacers (1-10 spacers) with lengths of 31 to 36 bp. One CRISPR locus was identified in plasmid (p.Firmicutes1 in strain E. faecalis BM5). We described the presence of CRISPR loci in the species E. pseudoavium, E. pallens and E. devriesei and their lack in E. gilvus, E. malodoratus and E. mundtii. Conclusions: Our findings generally describe the acquisition of foreign DNA as a consequence of CRISPR inactivation, and self-targeting spacers as the main cause.
Collapse
Affiliation(s)
| | - Yoana Kizheva
- Department of General and Industrial Microbiology, Faculty of Biology, Sofia University, 1164 Sofia, Bulgaria; (M.P.); (P.H.)
| | | |
Collapse
|
7
|
Chopra A, Bhuvanagiri G, Natu K, Chopra A. Role of CRISPR-Cas systems in periodontal disease pathogenesis and potential for periodontal therapy: A review. Mol Oral Microbiol 2025; 40:1-16. [PMID: 39224035 DOI: 10.1111/omi.12483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/05/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPRs) are DNA sequences capable of editing a host genome sequence. CRISPR and its specific CRISPR-associated (Cas) protein complexes have been adapted for various applications. These include activating or inhibiting specific genetic sequences or acting as molecular scissors to cut and modify the host DNA precisely. CRISPR-Cas systems are also naturally present in many oral bacteria, where they aid in nutrition, biofilm formation, inter- and intraspecies communication (quorum sensing), horizontal gene transfer, virulence, inflammation modulation, coinfection, and immune response evasion. It even functions as an adaptive immune system, defending microbes against invading viruses and foreign genetic elements from other bacteria by targeting and degrading their DNA. Recently, CRISPR-Cas systems have been tested as molecular editing tools to manipulate specific genes linked with periodontal disease (such as periodontitis) and as novel methods of delivering antimicrobial agents to overcome antimicrobial resistance. With the rapidly increasing role of CRISPR in treating inflammatory diseases, its application in periodontal disease is also becoming popular. Therefore, this review aims to discuss the different types of CRISPR-Cas in oral microbes and their role in periodontal disease pathogenesis and precision periodontal therapy.
Collapse
Affiliation(s)
- Aditi Chopra
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Geeta Bhuvanagiri
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Kshitija Natu
- School of Dentistry, University of California, Los Angeles, California, USA
| | - Avneesh Chopra
- Department of Periodontology, Oral Medicine and Oral Surgery, Institute for Dental and Craniofacial Sciences, Charité-University Medicine Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
8
|
Papudeshi B, Roach MJ, Mallawaarachchi V, Bouras G, Grigson SR, Giles SK, Harker CM, Hutton ALK, Tarasenko A, Inglis LK, Vega AA, Souza C, Boling L, Hajama H, Cobián Güemes AG, Segall AM, Dinsdale EA, Edwards RA. Sphae: an automated toolkit for predicting phage therapy candidates from sequencing data. BIOINFORMATICS ADVANCES 2025; 5:vbaf004. [PMID: 39897948 PMCID: PMC11783317 DOI: 10.1093/bioadv/vbaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/23/2024] [Accepted: 01/09/2025] [Indexed: 02/04/2025]
Abstract
Motivation Phage therapy offers a viable alternative for bacterial infections amid rising antimicrobial resistance. Its success relies on selecting safe and effective phage candidates that require comprehensive genomic screening to identify potential risks. However, this process is often labor intensive and time-consuming, hindering rapid clinical deployment. Results We developed Sphae, an automated bioinformatics pipeline designed to streamline the therapeutic potential of a phage in under 10 minutes. Using Snakemake workflow manager, Sphae integrates tools for quality control, assembly, genome assessment, and annotation tailored specifically for phage biology. Sphae automates the detection of key genomic markers, including virulence factors, antimicrobial resistance genes, and lysogeny indicators such as integrase, recombinase, and transposase, which could preclude therapeutic use. Among the 65 phage sequences analyzed, 28 showed therapeutic potential, 8 failed due to low sequencing depth, 22 contained prophage or virulent markers, and 23 had multiple phage genomes. This workflow produces a report to assess phage safety and therapy suitability quickly. Sphae is scalable and portable, facilitating efficient deployment across most high-performance computing and cloud platforms, accelerating the genomic evaluation process. Availability and implementation Sphae source code is freely available at https://github.com/linsalrob/sphae, with installation supported on Conda, PyPi, Docker containers.
Collapse
Affiliation(s)
- Bhavya Papudeshi
- Flinders Accelerator for Microbiome Exploration, College of Science of Engineering, Flinders University, Adelaide, South Australia 5042, Australia
| | - Michael J Roach
- Flinders Accelerator for Microbiome Exploration, College of Science of Engineering, Flinders University, Adelaide, South Australia 5042, Australia
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, South Australia 5042, Australia
| | - Vijini Mallawaarachchi
- Flinders Accelerator for Microbiome Exploration, College of Science of Engineering, Flinders University, Adelaide, South Australia 5042, Australia
| | - George Bouras
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia 5070, Australia
- The Department of Surgery—Otolaryngology Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Adelaide, South Australia 5070, Australia
| | - Susanna R Grigson
- Flinders Accelerator for Microbiome Exploration, College of Science of Engineering, Flinders University, Adelaide, South Australia 5042, Australia
| | - Sarah K Giles
- Flinders Accelerator for Microbiome Exploration, College of Science of Engineering, Flinders University, Adelaide, South Australia 5042, Australia
| | - Clarice M Harker
- Flinders Accelerator for Microbiome Exploration, College of Science of Engineering, Flinders University, Adelaide, South Australia 5042, Australia
| | - Abbey L K Hutton
- Flinders Accelerator for Microbiome Exploration, College of Science of Engineering, Flinders University, Adelaide, South Australia 5042, Australia
| | - Anita Tarasenko
- Flinders Accelerator for Microbiome Exploration, College of Science of Engineering, Flinders University, Adelaide, South Australia 5042, Australia
| | - Laura K Inglis
- Flinders Accelerator for Microbiome Exploration, College of Science of Engineering, Flinders University, Adelaide, South Australia 5042, Australia
| | - Alejandro A Vega
- Department of Biology, San Diego State University, San Diego, CA 92182, United States
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, United States
| | - Cole Souza
- Department of Biology, San Diego State University, San Diego, CA 92182, United States
| | - Lance Boling
- Department of Biology, San Diego State University, San Diego, CA 92182, United States
| | - Hamza Hajama
- Department of Biology, San Diego State University, San Diego, CA 92182, United States
| | | | - Anca M Segall
- Department of Biology, San Diego State University, San Diego, CA 92182, United States
| | - Elizabeth A Dinsdale
- Flinders Accelerator for Microbiome Exploration, College of Science of Engineering, Flinders University, Adelaide, South Australia 5042, Australia
| | - Robert A Edwards
- Flinders Accelerator for Microbiome Exploration, College of Science of Engineering, Flinders University, Adelaide, South Australia 5042, Australia
| |
Collapse
|
9
|
Lee D, Muir P, Lundberg S, Lundholm A, Sandegren L, Koskiniemi S. A CRISPR-Cas9 system protecting E. coli against acquisition of antibiotic resistance genes. Sci Rep 2025; 15:1545. [PMID: 39789078 PMCID: PMC11718013 DOI: 10.1038/s41598-025-85334-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025] Open
Abstract
Antimicrobial resistance (AMR) is an increasing problem worldwide, and new treatment options for bacterial infections are direly needed. Engineered probiotics show strong potential in treating or preventing bacterial infections. However, one concern with the use of live bacteria is the risk of the bacteria acquiring genes encoding for AMR or virulence factors through horizontal gene transfer (HGT), and the transformation of the probiotic into a superbug. Therefore, we developed an engineered CRISPR-Cas9 system that protects bacteria from horizontal gene transfer. We synthesized a CRISPR locus targeting eight AMR genes and cloned this with the Cas9 and transacting tracrRNA on a medium copy plasmid. We next evaluated the efficiency of the system to block HGT through transformation, transduction, and conjugation. Our results show that expression of the CRISPR-Cas9 system successfully protects E. coli MG1655 from acquiring the targeted resistance genes by transformation or transduction with 2-3 logs of protection depending on the system for transfer and the target gene. Furthermore, we show that the system blocks conjugation of a set of clinical plasmids, and that the system is also able to protect the probiotic bacterium E. coli Nissle 1917 from acquiring AMR genes.
Collapse
Affiliation(s)
- Danna Lee
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Petra Muir
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Sara Lundberg
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - August Lundholm
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Linus Sandegren
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
| | - Sanna Koskiniemi
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
10
|
Bogut A, Kołodziejek A, Minnich SA, Hovde CJ. CRISPR/Cas Systems as Diagnostic and Potential Therapeutic Tools for Enterohemorrhagic Escherichia coli. Arch Immunol Ther Exp (Warsz) 2025; 73:aite-2025-0003. [PMID: 39773393 DOI: 10.2478/aite-2025-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 11/04/2024] [Indexed: 01/11/2025]
Abstract
Following its discovery as an adaptive immune system in prokaryotes, the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated proteins (Cas) system has been developed into a multifaceted genome editing tool. This review compiles findings aimed at implementation of this technology for selective elimination or attenuation of enterohemorrhagic Escherichia coli (EHEC). EHEC are important zoonotic foodborne pathogens that cause hemorrhagic colitis and can progress to the life-threatening hemolytic uremic syndrome (HUS). Advancements in the application of CRISPR methodology include laboratory detection and identification of EHEC, genotyping, screening for pathogenic potential, and engineering probiotics to reduce microbial shedding by cattle, the primary source of human infection. Genetically engineered phages or conjugative plasmids have been designed to target and inactivate genes whose products are critical for EHEC virulence.
Collapse
Affiliation(s)
- Agnieszka Bogut
- Chair and Department of Medical Microbiology, Medical University of Lublin, Lublin, Poland
| | - Anna Kołodziejek
- Department of Animal, Veterinary, and Food Science, University of Idaho, Moscow, Idaho, USA
| | - Scott A Minnich
- Department of Animal, Veterinary, and Food Science, University of Idaho, Moscow, Idaho, USA
| | - Carolyn J Hovde
- Department of Animal, Veterinary, and Food Science, University of Idaho, Moscow, Idaho, USA
| |
Collapse
|
11
|
Yazdi ZF, Roshannezhad S, Sharif S, Abbaszadegan MR. Recent progress in prompt molecular detection of liquid biopsy using Cas enzymes: innovative approaches for cancer diagnosis and analysis. J Transl Med 2024; 22:1173. [PMID: 39741289 DOI: 10.1186/s12967-024-05908-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 11/20/2024] [Indexed: 01/02/2025] Open
Abstract
Creating fast, non-invasive, precise, and specific diagnostic tests is crucial for enhancing cancer treatment outcomes. Among diagnostic methods, those relying on nucleic acid detection are highly sensitive and specific. Recent developments in diagnostic technologies, particularly those leveraging Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR), are revolutionizing cancer detection, providing accurate and timely results. In clinical oncology, liquid biopsy has become a noninvasive and early-detectable alternative to traditional biopsies over the last two decades. Analyzing the nucleic acid content of liquid biopsy samples, which include Circulating Tumor Cells (CTCs), Circulating Tumor DNA (ctDNA), Circulating Cell-Free RNA (cfRNA), and tumor extracellular vesicles, provides a noninvasive method for cancer detection and monitoring. In this review, we explore how the characteristics of various Cas (CRISPR-associated) enzymes have been utilized in diagnostic assays for cancer liquid biopsy and highlight their main applications of innovative approaches in monitoring, as well as early and rapid detection of cancers.
Collapse
Affiliation(s)
- Zahra Farshchian Yazdi
- Department of Medical Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Samaneh Sharif
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Mashhad University of Medical Sciences, Azadi Square, Mashhad, Iran.
| | - Mohammad Reza Abbaszadegan
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Mashhad University of Medical Sciences, Azadi Square, Mashhad, Iran.
| |
Collapse
|
12
|
Mamatha Bhanu LS, Kataki S, Chatterjee S. CRISPR: New promising biotechnological tool in wastewater treatment. J Microbiol Methods 2024; 227:107066. [PMID: 39491556 DOI: 10.1016/j.mimet.2024.107066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 10/30/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
The increasing demand for water resources with increase in population has sparked interest in reusing produced water, especially in water-scarce regions. The clustered regularly interspaced short palindromic repeats (CRISPR) technology is an emerging genome editing tool that has the potential to trigger significant impact with broad application scope in wastewater treatment. We provide a comprehensive overview of the scope of CRISPR-Cas based tool for treating wastewater that may bring new scope in wastewater management in future in controlling harmful contaminants and pathogens. As an advanced versatile genome engineering tool, focusing on particular genes and enzymes that are accountable for pathogen identification, regulation of antibiotic/antimicrobial resistance, and enhancing processes for wastewater bioremediation constitute the primary focal points of research associated with this technology. The technology is highly recommended for targeted mutations to incorporate desirable microalgal characteristics and the development of strains capable of withstanding various wastewater stresses. However, concerns about gene leakage from strains with modified genome and off target mutations should be considered during field application. A comprehensive interdisciplinary approach involving various fields and an intense research focus concerning delivery systems, target genes, detection, environmental conditions, and monitoring at both lab and ground level should be considered to ensure its successful application in sustainable and safe wastewater treatment.
Collapse
Affiliation(s)
- L S Mamatha Bhanu
- Department of Biotechnology, Yuvaraja's College, University of Mysore, Mysuru, Karnataka, India
| | - Sampriti Kataki
- Biodegradation Technology Division, Defence Research Laboratory, DRDO, Tezpur, Assam, India
| | - Soumya Chatterjee
- Biodegradation Technology Division, Defence Research Laboratory, DRDO, Tezpur, Assam, India.
| |
Collapse
|
13
|
Papudeshi B, Roach MJ, Mallawaarachchi V, Bouras G, Grigson SR, Giles SK, Harker CM, Hutton ALK, Tarasenko A, Inglis LK, Vega AA, Souza C, Boling L, Hajama H, Cobián Güemes AG, Segall AM, Dinsdale EA, Edwards RA. phage therapy candidates from Sphae: An automated toolkit for predicting sequencing data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.18.624194. [PMID: 39605506 PMCID: PMC11601643 DOI: 10.1101/2024.11.18.624194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Motivation Phage therapy is a viable alternative for treating bacterial infections amidst the escalating threat of antimicrobial resistance. However, the therapeutic success of phage therapy depends on selecting safe and effective phage candidates. While experimental methods focus on isolating phages and determining their lifecycle and host range, comprehensive genomic screening is critical to identify markers that indicate potential risks, such as toxins, antimicrobial resistance, or temperate lifecycle traits. These analyses are often labor-intensive and time-consuming, limiting the rapid deployment of phage in clinical settings. Results We developed Sphae, an automated bioinformatics pipeline designed to streamline therapeutic potential of a phage in under ten minutes. Using Snakemake workflow manager, Sphae integrates tools for quality control, assembly, genome assessment, and annotation tailored specifically for phage biology. Sphae automates the detection of key genomic markers, including virulence factors, antimicrobial resistance genes, and lysogeny indicators like integrase, recombinase, and transposase, which could preclude therapeutic use. Benchmarked on 65 phage sequences, 28 phage samples showed therapeutic potential, 8 failed during assembly due to low sequencing depth, 22 samples included prophage or virulent markers, and the remaining 23 samples included multiple phage genomes per sample. This workflow outputs a comprehensive report, enabling rapid assessment of phage safety and suitability for phage therapy under these criteria. Sphae is scalable, portable, facilitating efficient deployment across most high-performance computing (HPC) and cloud platforms, expediting the genomic evaluation process. Availability Sphae is source code and freely available at https://github.com/linsalrob/sphae, with installation supported on Conda, PyPi, Docker containers.
Collapse
Affiliation(s)
- Bhavya Papudeshi
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, SA, 5042, Australia
| | - Michael J. Roach
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, SA, 5042, Australia
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA, 5042, Australia
| | - Vijini Mallawaarachchi
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, SA, 5042, Australia
| | - George Bouras
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
- The Department of Surgery - Otolaryngology Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, South Australia, Australia
| | - Susanna R. Grigson
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, SA, 5042, Australia
| | - Sarah K. Giles
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, SA, 5042, Australia
| | - Clarice M. Harker
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, SA, 5042, Australia
| | - Abbey L. K. Hutton
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, SA, 5042, Australia
| | - Anita Tarasenko
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, SA, 5042, Australia
| | - Laura K. Inglis
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, SA, 5042, Australia
| | - Alejandro A. Vega
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Cole Souza
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Lance Boling
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Hamza Hajama
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Ana Georgina Cobián Güemes
- Department of Pathology, University of San Diego, 500 Gilman Drive, MC 0612, La Jolla, San Diego, CA, 92093-0612, USA
| | - Anca M. Segall
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Elizabeth A. Dinsdale
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, SA, 5042, Australia
| | - Robert A. Edwards
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, SA, 5042, Australia
| |
Collapse
|
14
|
Sanchez-Londono M, Rust S, Hernández-Tamayo R, Gomes-Filho J, Thanbichler M, Randau L. Visualization of Type IV-A1 CRISPR-mediated repression of gene expression and plasmid replication. Nucleic Acids Res 2024; 52:12592-12603. [PMID: 39380487 PMCID: PMC11551745 DOI: 10.1093/nar/gkae879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/10/2024] Open
Abstract
Type IV CRISPR-Cas (clustered regularly interspaced short palindromic repeats and CRISPR-associated proteins) effector complexes are often encoded on plasmids and are proposed to prevent the replication of competing plasmids. The Type IV-A1 CRISPR-Cas system of Pseudomonas oleovorans additionally harbors a CRISPR RNA (crRNA) that tightly regulates the transcript levels of a chromosomal target and represents a natural CRISPR interference (CRISPRi) tool. This study investigates CRISPRi effects of this system using synthetic crRNAs against genome and plasmid sequences. Targeting of reporter genes revealed extended interference in P. oleovorans and Escherichia coli cells producing recombinant CRISPR ribonucleoprotein (crRNP) complexes. RNA sequencing (RNA-seq) analyses of Type IV-A1 CRISPRi-induced transcriptome alterations demonstrated highly effective long-range downregulation of histidine operon expression, whereas CRISPRi effects of dCas9 remained limited to the vicinity of its binding site. Single-molecule microscopy uncovered the localization dynamics of crRNP complexes. The tracks of fluorescently labeled crRNPs co-localized with regions of increased plasmid replication, supporting efficient plasmid targeting. These results identify mechanistic principles that facilitate the application of Type IV-A1 CRISPRi for the regulation of gene expression and plasmid replication.
Collapse
Affiliation(s)
- Mariana Sanchez-Londono
- Department of Biology, Philipps-Universität Marburg, Hans-Meerwein-Str. 6, 35043 Marburg, Germany
| | - Selina Rust
- Department of Biology, Philipps-Universität Marburg, Hans-Meerwein-Str. 6, 35043 Marburg, Germany
| | - Rogelio Hernández-Tamayo
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Strasse 10, 35043 Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch-Straße 14, 35043 Marburg, Germany
| | - José Vicente Gomes-Filho
- Department of Biology, Philipps-Universität Marburg, Hans-Meerwein-Str. 6, 35043 Marburg, Germany
| | - Martin Thanbichler
- Department of Biology, Philipps-Universität Marburg, Hans-Meerwein-Str. 6, 35043 Marburg, Germany
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Strasse 10, 35043 Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch-Straße 14, 35043 Marburg, Germany
| | - Lennart Randau
- Department of Biology, Philipps-Universität Marburg, Hans-Meerwein-Str. 6, 35043 Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch-Straße 14, 35043 Marburg, Germany
| |
Collapse
|
15
|
Costa P, Pereira C, Romalde JL, Almeida A. A game of resistance: War between bacteria and phages and how phage cocktails can be the solution. Virology 2024; 599:110209. [PMID: 39186863 DOI: 10.1016/j.virol.2024.110209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024]
Abstract
While phages hold promise as an antibiotic alternative, they encounter significant challenges in combating bacterial infections, primarily due to the emergence of phage-resistant bacteria. Bacterial defence mechanisms like superinfection exclusion, CRISPR, and restriction-modification systems can hinder phage effectiveness. Innovative strategies, such as combining different phages into cocktails, have been explored to address these challenges. This review delves into these defence mechanisms and their impact at each stage of the infection cycle, their challenges, and the strategies phages have developed to counteract them. Additionally, we examine the role of phage cocktails in the evolving landscape of antibacterial treatments and discuss recent studies that highlight the effectiveness of diverse phage cocktails in targeting essential bacterial receptors and combating resistant strains.
Collapse
Affiliation(s)
- Pedro Costa
- CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Carla Pereira
- CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Jesús L Romalde
- Department of Microbiology and Parasitology, CRETUS & CIBUS - Faculty of Biology, University of Santiago de Compostela, CP 15782 Santiago de Compostela, Spain.
| | - Adelaide Almeida
- CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
16
|
Tabibian M, Moghaddam FS, Motevaseli E, Ghafouri-Fard S. Targeting mRNA-coding genes in prostate cancer using CRISPR/Cas9 technology with a special focus on androgen receptor signaling. Cell Commun Signal 2024; 22:504. [PMID: 39420406 PMCID: PMC11484332 DOI: 10.1186/s12964-024-01833-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Prostate cancer is among prevalent cancers in men. Numerous strategies have been proposed to intervene with the important prostate cancer-related signaling pathways. Among the most promising strategies is CRISPR/Cas9 strategy. This strategy has been used to modify expression of a number of genes in prostate cancer cells. AIMS This review summarizes the most recent progresses in the application of CRISPR/Cas9 strategy in modification of prostate cancer-related phenotypes with an especial focus on pathways related to androgen receptor signaling. CONCLUSION CRISPR/Cas9 technology has successfully targeted several genes in the prostate cancer cells. Moreover, the efficiency of this technique in reducing tumor burden has been tested in animal models of prostate cancer. Most of targeted genes have been related with the androgen receptor signaling. Targeted modulation of these genes have affected growth of castration-resistant prostate cancer. PI3K/AKT/mTOR signaling and immune response-related genes have been other targets that have been successfully modulated by CRISPR/Cas9 technology in prostate cancer. Based on the rapid translation of this technology into the clinical application, it is anticipated that novel treatments based on this technique change the outcome of this malignancy in future.
Collapse
Affiliation(s)
- Mobina Tabibian
- Department of Cellular and Molecular Biology, Faculty of Life Sciences and Biotechnologies, Shahid Beheshti University, Tehran, Iran
| | | | - Elahe Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Luo S, Wu J, Zhong M, Sun J, Ao H, Cao X, Liu J, Ju H. An electrochemiluminescent imaging strategy based on CRISPR/Cas12a for ultrasensitive detection of nucleic acid. Anal Chim Acta 2024; 1324:343040. [PMID: 39218584 DOI: 10.1016/j.aca.2024.343040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/07/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Persistent infection with human papillomavirus (HPV) significantly contributes to the development of cervical cancer. Thus, it is urgent to develop rapid and accurate methods for HPV detection. Herein, we present an ultrasensitive CRISPR/Cas12a-based electrochemiluminescent (ECL) imaging technique for the detection of HPV-18 DNA. RESULT The ECL DNA sensor array is constructed by applying black hole quencher (BHQ) and polymer dots (Pdots) co-labeled hairpin DNA (hpDNA) onto a gold-coated indium tin oxide slide (Au-ITO). The ECL imaging method involves an incubation process of target HPV-18 with a mixture of crRNA and Cas12a to activate Cas12a, followed by an incubation of the active Cas12a with the ECL sensor. This interaction causes the indiscriminate cleavage of BHQ from Pdots by digesting hpDNA on the sensor surface, leading to the restoration of the ECL signal of Pdots. The ECL brightness readout demonstrates superior performance of the ECL imaging technique, with a linear detection range of 10 fM-500 pM and a limit-of-detection (LOD) of 5.3 fM. SIGNIFICANCE The Cas12a-based ECL imaging approach offers high sensitivity and a broad detection range, making it highly promising for nucleic acid detection applications.
Collapse
Affiliation(s)
- Sijian Luo
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, 646000, Sichuan, China; State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jie Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Min Zhong
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, 646000, Sichuan, China; State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jun Sun
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Hang Ao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xu Cao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jinbo Liu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, 646000, Sichuan, China.
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
18
|
Kim D, Lee S, Ha H, Park H. Structural basis of Cas3 activation in type I-C CRISPR-Cas system. Nucleic Acids Res 2024; 52:10563-10574. [PMID: 39180405 PMCID: PMC11417383 DOI: 10.1093/nar/gkae723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/29/2024] [Accepted: 08/07/2024] [Indexed: 08/26/2024] Open
Abstract
CRISPR-Cas systems function as adaptive immune mechanisms in bacteria and archaea and offer protection against phages and other mobile genetic elements. Among many types of CRISPR-Cas systems, Type I CRISPR-Cas systems are most abundant, with target interference depending on a multi-subunit, RNA-guided complex known as Cascade that recruits a transacting helicase nuclease, Cas3, to degrade the target. While structural studies on several other types of Cas3 have been conducted long ago, it was only recently that the structural study of Type I-C Cas3 in complex with Cascade was revealed, shedding light on how Cas3 achieve its activity in the Cascade complex. In the present study, we elucidated the first structure of standalone Type I-C Cas3 from Neisseria lactamica (NlaCas3). Structural analysis revealed that the histidine-aspartate (HD) nuclease active site of NlaCas3 was bound to two Fe2+ ions that inhibited its activity. Moreover, NlaCas3 could cleave both single-stranded and double-stranded DNA in the presence of Ni2+ or Co2+, showing the highest activity in the presence of both Ni2+ and Mg2+ ions. By comparing the structural studies of various Cas3 proteins, we determined that our NlaCas3 stays in an inactive conformation, allowing us to understand the structural changes associated with its activation and their implication.
Collapse
Affiliation(s)
- Do Yeon Kim
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul 06974, Republic of Korea
| | - So Yeon Lee
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hyun Ji Ha
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hyun Ho Park
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
19
|
Siopi M, Skliros D, Paranos P, Koumasi N, Flemetakis E, Pournaras S, Meletiadis J. Pharmacokinetics and pharmacodynamics of bacteriophage therapy: a review with a focus on multidrug-resistant Gram-negative bacterial infections. Clin Microbiol Rev 2024; 37:e0004424. [PMID: 39072666 PMCID: PMC11391690 DOI: 10.1128/cmr.00044-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024] Open
Abstract
SUMMARYDespite the early recognition of their therapeutic potential and the current escalation of multidrug-resistant (MDR) pathogens, the adoption of bacteriophages into mainstream clinical practice is hindered by unfamiliarity with their basic pharmacokinetic (PK) and pharmacodynamic (PD) properties, among others. Given the self-replicative nature of bacteriophages in the presence of host bacteria, the adsorption rate, and the clearance by the host's immunity, their PK/PD characteristics cannot be estimated by conventional approaches, and thus, the introduction of new considerations is required. Furthermore, the multitude of different bacteriophage types, preparations, and treatment schedules impedes drawing general conclusions on their in vivo PK/PD features. Additionally, the drawback of acquired bacteriophage resistance of MDR pathogens with clinical and environmental implications should be taken into consideration. Here, we provide an overview of the current state of the field of PK and PD of bacteriophage therapy with a focus on its application against MDR Gram-negative infections, highlighting the potential knowledge gaps and the challenges in translation from the bench to the bedside. After reviewing the in vitro PKs and PDs of bacteriophages against the four major MDR Gram-negative pathogens, Klebsiella pneumoniae, Acinetobacter baumannii complex, Pseudomonas aeruginosa, and Escherichia coli, specific data on in vivo PKs (tissue distribution, route of administration, and basic PK parameters in animals and humans) and PDs (survival and reduction of bacterial burden in relation to the route of administration, timing of therapy, dosing regimens, and resistance) are summarized. Currently available data merit close scrutiny, and optimization of bacteriophage therapy in the context of a better understanding of the underlying PK/PD principles is urgent to improve its therapeutic effect and to minimize the occurrence of bacteriophage resistance.
Collapse
Affiliation(s)
- Maria Siopi
- Clinical Microbiology Laboratory, Attikon University General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Skliros
- Laboratory of Molecular Biology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Paschalis Paranos
- Clinical Microbiology Laboratory, Attikon University General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikoletta Koumasi
- Clinical Microbiology Laboratory, Attikon University General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Emmanouil Flemetakis
- Laboratory of Molecular Biology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Spyros Pournaras
- Clinical Microbiology Laboratory, Attikon University General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Joseph Meletiadis
- Clinical Microbiology Laboratory, Attikon University General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
20
|
Dorado-Morales P, Lambérioux M, Mazel D. Unlocking the potential of microbiome editing: A review of conjugation-based delivery. Mol Microbiol 2024; 122:273-283. [PMID: 37658686 DOI: 10.1111/mmi.15147] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/09/2023] [Accepted: 08/16/2023] [Indexed: 09/03/2023]
Abstract
In recent decades, there has been a rapid increase in the prevalence of multidrug-resistant pathogens, posing a challenge to modern antibiotic-based medicine. This has highlighted the need for novel treatments that can specifically affect the target microorganism without disturbing other co-inhabiting species, thus preventing the development of dysbiosis in treated patients. Moreover, there is a pressing demand for tools to effectively manipulate complex microbial populations. One of the approaches suggested to address both issues was to use conjugation as a tool to modify the microbiome by either editing the genome of specific bacterial species and/or the removal of certain taxonomic groups. Conjugation involves the transfer of DNA from one bacterium to another, which opens up the possibility of introducing, modifying or deleting specific genes in the recipient. In response to this proposal, there has been a significant increase in the number of studies using this method for gene delivery in bacterial populations. This MicroReview aims to provide a detailed overview on the use of conjugation for microbiome engineering, and at the same time, to initiate a discussion on the potential, limitations and possible future directions of this approach.
Collapse
Affiliation(s)
- Pedro Dorado-Morales
- Institut Pasteur, Université de Paris, Unité Plasticité du Génome Bactérien, et CNRS, UMR3525, Paris, France
| | - Morgan Lambérioux
- Institut Pasteur, Université de Paris, Unité Plasticité du Génome Bactérien, et CNRS, UMR3525, Paris, France
| | - Didier Mazel
- Institut Pasteur, Université de Paris, Unité Plasticité du Génome Bactérien, et CNRS, UMR3525, Paris, France
| |
Collapse
|
21
|
Kim DY, Han JH, Lee SY, Ha HJ, Park HH. Novel structure of the anti-CRISPR protein AcrIE3 and its implication on the CRISPR-Cas inhibition. Biochem Biophys Res Commun 2024; 722:150164. [PMID: 38797150 DOI: 10.1016/j.bbrc.2024.150164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 05/14/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
As a response to viral infections, bacteria have evolved the CRISPR-Cas system as an adaptive immune mechanism, enabling them to target and eliminate viral genetic material introduced during infection. However, viruses have also evolved mechanisms to counteract this bacterial defense, including anti-CRISPR proteins, which can inactivate the CRISPR-Cas adaptive immune system, thus aiding the viruses in their survival and replication within bacterial hosts. In this study, we establish the high-resolution crystal structure of the Type IE anti-CRISPR protein, AcrIE3. Our structural examination showed that AcrIE3 adopts a helical bundle fold comprising four α-helices, with a notably extended loop at the N-terminus. Additionally, surface analysis of AcrIE3 revealed the presence of three acidic regions, which potentially play a crucial role in the inhibitory function of this protein. The structural information we have elucidated for AcrIE3 will provide crucial insights into fully understanding its inhibitory mechanism. Furthermore, this information is anticipated to be important for the application of the AcrIE family in genetic editing, paving the way for advancements in gene editing technologies.
Collapse
Affiliation(s)
- Do Yeon Kim
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Ju Hee Han
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, 06974, Republic of Korea
| | - So Yeon Lee
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Hyun Ji Ha
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Hyun Ho Park
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
22
|
Chang C, Zhou G, Gao Y. Observing one-divalent-metal-ion-dependent and histidine-promoted His-Me family I-PpoI nuclease catalysis in crystallo. eLife 2024; 13:RP99960. [PMID: 39141555 PMCID: PMC11325842 DOI: 10.7554/elife.99960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024] Open
Abstract
Metal-ion-dependent nucleases play crucial roles in cellular defense and biotechnological applications. Time-resolved crystallography has resolved catalytic details of metal-ion-dependent DNA hydrolysis and synthesis, uncovering the essential roles of multiple metal ions during catalysis. The histidine-metal (His-Me) superfamily nucleases are renowned for binding one divalent metal ion and requiring a conserved histidine to promote catalysis. Many His-Me family nucleases, including homing endonucleases and Cas9 nuclease, have been adapted for biotechnological and biomedical applications. However, it remains unclear how the single metal ion in His-Me nucleases, together with the histidine, promotes water deprotonation, nucleophilic attack, and phosphodiester bond breakage. By observing DNA hydrolysis in crystallo with His-Me I-PpoI nuclease as a model system, we proved that only one divalent metal ion is required during its catalysis. Moreover, we uncovered several possible deprotonation pathways for the nucleophilic water. Interestingly, binding of the single metal ion and water deprotonation are concerted during catalysis. Our results reveal catalytic details of His-Me nucleases, which is distinct from multi-metal-ion-dependent DNA polymerases and nucleases.
Collapse
Affiliation(s)
- Caleb Chang
- Department of Biosciences, Rice UniversityHoustonUnited States
| | - Grace Zhou
- Department of Biosciences, Rice UniversityHoustonUnited States
| | - Yang Gao
- Department of Biosciences, Rice UniversityHoustonUnited States
| |
Collapse
|
23
|
Ji P, Li Y, Wang Z, Jia S, Jiang X, Chen H, Wang Q. Advances in precision gene editing for liver fibrosis: From technology to therapeutic applications. Biomed Pharmacother 2024; 177:117003. [PMID: 38908207 DOI: 10.1016/j.biopha.2024.117003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024] Open
Abstract
This review presents a comprehensive exploration of gene editing technologies and their potential applications in the treatment of liver fibrosis, a condition often leading to serious complications such as liver cancer. Through an in-depth review of current literature and critical analysis, the study delves into the intricate signaling pathways underlying liver fibrosis development and examines the promising role of gene editing in alleviating this disease burden. Gene editing technologies offer precise, efficient, and reproducible tools for manipulating genetic material, holding significant promise for basic research and clinical practice. The manuscript highlights the challenges and potential risks associated with gene editing technology. By synthesizing existing knowledge and exploring future perspectives, this study aims to provide valuable insights into the potential of precision gene editing to combat liver fibrosis and its associated complications, ultimately contributing to advances in liver fibrosis research and therapy.
Collapse
Affiliation(s)
- Peng Ji
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, PR China; Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 310000, PR China
| | - Yan Li
- Department of International Medicine, The Second Hospital of Dalian Medical University, Dalian 116000, PR China
| | - Zihan Wang
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, PR China
| | - Siyu Jia
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, PR China
| | - Xinyi Jiang
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, PR China
| | - Hui Chen
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, PR China
| | - Qun Wang
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, PR China.
| |
Collapse
|
24
|
Han Y, Jia Z, Xu K, Li Y, Lu S, Guan L. CRISPR-Cpf1 system and its applications in animal genome editing. Mol Genet Genomics 2024; 299:75. [PMID: 39085660 DOI: 10.1007/s00438-024-02166-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 07/11/2024] [Indexed: 08/02/2024]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR) and their associated protein (Cas) system is a gene editing technology guided by RNA endonuclease. The CRISPR-Cas12a (also known as CRISPR-Cpf1) system is extensively utilized in genome editing research due to its accuracy and high efficiency. In this paper, we primarily focus on the application of CRISPR-Cpf1 technology in the construction of disease models and gene therapy. Firstly, the structure and mechanism of the CRISPR-Cas system are introduced. Secondly, the similarities and differences between CRISPR-Cpf1 and CRISPR-Cas9 technologies are compared. Thirdly, the main focus is on the application of the CRISPR-Cpf1 system in cell and animal genome editing. Finally, the challenges faced by CRISPR-Cpf1 technology and corresponding strategies are analyzed. Although CRISPR-Cpf1 technology has certain off-target effects, it can effectively and accurately edit cell and animal genomes, and has significant advantages in the preclinical research.
Collapse
Affiliation(s)
- Yawei Han
- College of Tobacco Science and Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, Henan, China
| | - Zisen Jia
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Number 601, Jinsui Road, Xinxiang, 453003, Henan, China
| | - Keli Xu
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Number 601, Jinsui Road, Xinxiang, 453003, Henan, China
| | - Yangyang Li
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Number 601, Jinsui Road, Xinxiang, 453003, Henan, China
| | - Suxiang Lu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China
| | - Lihong Guan
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Number 601, Jinsui Road, Xinxiang, 453003, Henan, China.
| |
Collapse
|
25
|
Chang C, Zhou G, Gao Y. Observing one-divalent-metal-ion dependent and histidine-promoted His-Me family I-PpoI nuclease catalysis in crystallo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.02.592236. [PMID: 38746211 PMCID: PMC11092635 DOI: 10.1101/2024.05.02.592236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Metal-ion-dependent nucleases play crucial roles in cellular defense and biotechnological applications. Time-resolved crystallography has resolved catalytic details of metal-ion-dependent DNA hydrolysis and synthesis, uncovering the essential roles of multiple metal ions during catalysis. The histidine-metal (His-Me) superfamily nucleases are renowned for binding one divalent metal ion and requiring a conserved histidine to promote catalysis. Many His-Me family nucleases, including homing endonucleases and Cas9 nuclease, have been adapted for biotechnological and biomedical applications. However, it remains unclear how the single metal ion in His-Me nucleases, together with the histidine, promotes water deprotonation, nucleophilic attack, and phosphodiester bond breakage. By observing DNA hydrolysis in crystallo with His-Me I-PpoI nuclease as a model system, we proved that only one divalent metal ion is required during its catalysis. Moreover, we uncovered several possible deprotonation pathways for the nucleophilic water. Interestingly, binding of the single metal ion and water deprotonation are concerted during catalysis. Our results reveal catalytic details of His-Me nucleases, which is distinct from multi-metal-ion-dependent DNA polymerases and nucleases.
Collapse
Affiliation(s)
- Caleb Chang
- Department of Biosciences, Rice University, Houston, Texas, 77005, USA
| | - Grace Zhou
- Department of Biosciences, Rice University, Houston, Texas, 77005, USA
| | - Yang Gao
- Department of Biosciences, Rice University, Houston, Texas, 77005, USA
| |
Collapse
|
26
|
Kim GE, Park HH. AcrIIA28 is a metalloprotein that specifically inhibits targeted-DNA loading to SpyCas9 by binding to the REC3 domain. Nucleic Acids Res 2024; 52:6459-6471. [PMID: 38726868 PMCID: PMC11194106 DOI: 10.1093/nar/gkae357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/15/2024] [Accepted: 04/23/2024] [Indexed: 06/25/2024] Open
Abstract
CRISPR-Cas systems serve as adaptive immune systems in bacteria and archaea, protecting against phages and other mobile genetic elements. However, phages and archaeal viruses have developed countermeasures, employing anti-CRISPR (Acr) proteins to counteract CRISPR-Cas systems. Despite the revolutionary impact of CRISPR-Cas systems on genome editing, concerns persist regarding potential off-target effects. Therefore, understanding the structural and molecular intricacies of diverse Acrs is crucial for elucidating the fundamental mechanisms governing CRISPR-Cas regulation. In this study, we present the structure of AcrIIA28 from Streptococcus phage Javan 128 and analyze its structural and functional features to comprehend the mechanisms involved in its inhibition of Cas9. Our current study reveals that AcrIIA28 is a metalloprotein that contains Zn2+ and abolishes the cleavage activity of Cas9 only from Streptococcus pyrogen (SpyCas9) by directly interacting with the REC3 domain of SpyCas9. Furthermore, we demonstrate that the AcrIIA28 interaction prevents the target DNA from being loaded onto Cas9. These findings indicate the molecular mechanisms underlying AcrIIA28-mediated Cas9 inhibition and provide valuable insights into the ongoing evolutionary battle between bacteria and phages.
Collapse
Affiliation(s)
- Gi Eob Kim
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hyun Ho Park
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
27
|
Khosravi A, Chen Q, Echterhof A, Koff JL, Bollyky PL. Phage Therapy for Respiratory Infections: Opportunities and Challenges. Lung 2024; 202:223-232. [PMID: 38772946 PMCID: PMC11570333 DOI: 10.1007/s00408-024-00700-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/13/2024] [Indexed: 05/23/2024]
Abstract
We are entering the post-antibiotic era. Antimicrobial resistance (AMR) is a critical problem in chronic lung infections resulting in progressive respiratory failure and increased mortality. In the absence of emerging novel antibiotics to counter AMR infections, bacteriophages (phages), viruses that infect bacteria, have become a promising option for chronic respiratory infections. However, while personalized phage therapy is associated with improved outcomes in individual cases, clinical trials demonstrating treatment efficacy are lacking, limiting the therapeutic potential of this approach for respiratory infections. In this review, we address the current state of phage therapy for managing chronic respiratory diseases. We then discuss how phage therapy may address major microbiologic obstacles which hinder disease resolution of chronic lung infections with current antibiotic-based treatment practices. Finally, we highlight the challenges that must be addressed for successful phage therapy clinical trials. Through this discussion, we hope to expand on the potential of phages as an adjuvant therapy in chronic lung infections, as well as the microbiologic challenges that need to be addressed for phage therapy to expand beyond personalized salvage therapy.
Collapse
Affiliation(s)
- Arya Khosravi
- Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, CA, USA.
- Division of Infectious Diseases, Department of Medicine, Stanford University, 279 Campus Drive, Beckman Center, Room B237, Stanford, CA, 94305, USA.
| | - Qingquan Chen
- Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, CA, USA
| | - Arne Echterhof
- Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, CA, USA
| | - Jonathan L Koff
- Section of Pulmonary, Critical Care & Sleep Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Paul L Bollyky
- Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
28
|
Shi L, Gu R, Long J, Duan G, Yang H. Application of CRISPR-cas-based technology for the identification of tuberculosis, drug discovery and vaccine development. Mol Biol Rep 2024; 51:466. [PMID: 38551745 DOI: 10.1007/s11033-024-09424-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 03/06/2024] [Indexed: 04/02/2024]
Abstract
Tuberculosis (TB), which caused by Mycobacterium tuberculosis, is the leading cause of death from a single infectious agent and continues to be a major public health burden for the global community. Despite being the only globally licenced prophylactic vaccine, Bacillus Calmette-Guérin (BCG) has multiple deficiencies, and effective diagnostic and therapeutic options are limited. Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas (CRISPR-associated proteins) is an adaptive immune system that is found in bacteria and has great potential for the development of novel antituberculosis drugs and vaccines. In addition, CRISPR-Cas is currently recognized as a prospective tool for the development of therapies for TB infection with potential diagnostic and therapeutic value, and CRISPR-Cas may become a viable tool for eliminating TB in the future. Herein, we systematically summarize the current applications of CRISPR-Cas-based technology for TB detection and its potential roles in drug discovery and vaccine development.
Collapse
Affiliation(s)
- Liqin Shi
- Department of Epidemiology, School of Public Health, Zhengzhou University, No. 100 of Science Avenue, Zhengzhou, 450001, China
| | - Ruiqi Gu
- School of Public Health, Fudan University, Shanghai, 200032, China
| | - Jinzhao Long
- Department of Epidemiology, School of Public Health, Zhengzhou University, No. 100 of Science Avenue, Zhengzhou, 450001, China
| | - Guangcai Duan
- Department of Epidemiology, School of Public Health, Zhengzhou University, No. 100 of Science Avenue, Zhengzhou, 450001, China
| | - Haiyan Yang
- Department of Epidemiology, School of Public Health, Zhengzhou University, No. 100 of Science Avenue, Zhengzhou, 450001, China.
| |
Collapse
|
29
|
He W, Liu X, Na J, Bian H, Zhong L, Li G. Application of CRISPR/Cas13a-based biosensors in serum marker detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1426-1438. [PMID: 38385279 DOI: 10.1039/d3ay01927f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
The detection of serum markers is important for the early diagnosis and monitoring of diseases, but conventional detection methods have the problem of low specificity or sensitivity. CRISPR/Cas13a-based biosensors have the characteristics of simple detection methods and high sensitivity, which have a certain potential to solve the problems of conventional detection. This paper focuses on the research progress of CRISPR/Cas13a-based biosensors in serum marker detection, introduces the principles and applications of fluorescence, electrochemistry, colorimetric, and other biosensors based on CRISPR/Cas13a in the detection of serum markers, compares and analyzes the differences between the above CRISPR/Cas13a-based biosensors, and looks forward to the future development direction of CRISPR/Cas13a-based biosensors.
Collapse
Affiliation(s)
- Wei He
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China.
| | - Xiyu Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China.
| | - Jintong Na
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China.
| | - Huimin Bian
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China.
| | - Liping Zhong
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China.
| | - Guiyin Li
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China.
- College of Chemistry, Guangdong University of Petrochemical Technology, Guandu Road, Maoming, Guangdong 525000, China
| |
Collapse
|
30
|
Jiang H, Tang M, Xu Z, Wang Y, Li M, Zheng S, Zhu J, Lin Z, Zhang M. CRISPR/Cas9 system and its applications in nervous system diseases. Genes Dis 2024; 11:675-686. [PMID: 37692518 PMCID: PMC10491921 DOI: 10.1016/j.gendis.2023.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/05/2023] [Indexed: 09/12/2023] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system is an acquired immune system of many bacteria and archaea, comprising CRISPR loci, Cas genes, and its associated proteins. This system can recognize exogenous DNA and utilize the Cas9 protein's nuclease activity to break DNA double-strand and to achieve base insertion or deletion by subsequent DNA repair. In recent years, multiple laboratory and clinical studies have revealed the therapeutic role of the CRISPR/Cas9 system in neurological diseases. This article reviews the CRISPR/Cas9-mediated gene editing technology and its potential for clinical application against neurological diseases.
Collapse
Affiliation(s)
- Haibin Jiang
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Mengyan Tang
- The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zidi Xu
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yanan Wang
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Mopu Li
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Shuyin Zheng
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jianghu Zhu
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang 325000, China
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, Wenzhou, Zhejiang 325027, China
| | - Zhenlang Lin
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang 325000, China
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, Wenzhou, Zhejiang 325027, China
| | - Min Zhang
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang 325000, China
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, Wenzhou, Zhejiang 325027, China
| |
Collapse
|
31
|
Zhang Y, Li S, Li R, Qiu X, Fan T, Wang B, Zhang B, Zhang L. Advances in application of CRISPR-Cas13a system. Front Cell Infect Microbiol 2024; 14:1291557. [PMID: 38524179 PMCID: PMC10958658 DOI: 10.3389/fcimb.2024.1291557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/26/2024] [Indexed: 03/26/2024] Open
Abstract
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) and CRISPR-associated (Cas) proteins serve as an adaptive immune system that safeguards prokaryotes and some of the viruses that infect prokaryotes from foreign nucleic acids (such as viruses and plasmids). The genomes of the majority of archaea and about half of all bacteria contain various CRISPR-Cas systems. CRISPR-Cas systems depend on CRISPR RNAs (crRNAs). They act as a navigation system to specifically cut and destroy foreign nucleic acids by recognizing invading foreign nucleic acids and binding Cas proteins. In this review, we provide a brief overview of the evolution and classification of the CRISPR-Cas system, focusing on the functions and applications of the CRISPR-Cas13a system. We describe the CRISPR-Cas13a system and discuss its RNA-directed ribonuclease function. Meanwhile, we briefly introduce the mechanism of action of the CRISPR-Cas13a system and summarize the applications of the CRISPR-Cas13a system in pathogen detection, eukaryotes, agriculture, biosensors, and human gene therapy. We are right understanding of CRISPR-Cas13a has been broadened, and the CRISPR-Cas13a system will be useful for developing new RNA targeting tools. Therefore, understanding the basic details of the structure, function, and biological characterization of CRISPR-Cas13a effector proteins is critical for optimizing RNA targeting tools.
Collapse
Affiliation(s)
- Yue Zhang
- The Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Shengjun Li
- The Department of Clinical Laboratory, Qingdao Women and Children’s Hospital, Qingdao, Shandong, China
| | - Rongrong Li
- The Department of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xu Qiu
- The Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Tianyu Fan
- The Department of Hematology, Taian City Central Hospital, Taian, Shandong, China
| | - Bin Wang
- The Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Bei Zhang
- The Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Li Zhang
- The Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
32
|
Cheung GYC, Lee JH, Liu R, Lawhon SD, Yang C, Otto M. Methicillin Resistance Elements in the Canine Pathogen Staphylococcus pseudintermedius and Their Association with the Peptide Toxin PSM-mec. Antibiotics (Basel) 2024; 13:130. [PMID: 38391516 PMCID: PMC10886032 DOI: 10.3390/antibiotics13020130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
Staphylococcus pseudintermedius is a frequent cause of infections in dogs. Infectious isolates of this coagulase-positive staphylococcal species are often methicillin- and multidrug-resistant, which complicates therapy. In staphylococci, methicillin resistance is encoded by determinants found on mobile genetic elements called Staphylococcal Chromosome Cassette mec (SCCmec), which, in addition to methicillin resistance factors, sometimes encode additional genes, such as further resistance factors and, rarely, virulence determinants. In this study, we analyzed SCCmec in a collection of infectious methicillin-resistant S. pseudintermedius (MRSP) isolates from predominant lineages in the United States. We found that several lineages characteristically have specific types of SCCmec elements and Agr types and harbor additional factors in their SCCmec elements that may promote virulence or affect DNA uptake. All isolates had SCCmec-encoded restriction-modification (R-M) systems of types I or II, and sequence types (STs) ST84 and ST64 had one type II and one type I R-M system, although the latter lacked a complete methylation enzyme gene. ST68 isolates also had an SCCmec-encoded CRISPR system. ST71 isolates had a psm-mec gene, which, in all but apparently Agr-dysfunctional isolates, produced a PSM-mec peptide toxin, albeit at relatively small amounts. This study gives detailed insight into the composition of SCCmec elements in infectious isolates of S. pseudintermedius and lays the genetic foundation for further efforts directed at elucidating the contribution of identified accessory SCCmec factors in impacting SCCmec-encoded and thus methicillin resistance-associated virulence and resistance to DNA uptake in this leading canine pathogen.
Collapse
Affiliation(s)
- Gordon Y C Cheung
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), US National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Ji Hyun Lee
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), US National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Ryan Liu
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), US National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Sara D Lawhon
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Ching Yang
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY 11548, USA
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), US National Institutes of Health (NIH), Bethesda, MD 20892, USA
| |
Collapse
|
33
|
Martins PMM, Granato LM, Morgan T, Nalin JL, Takita MA, Alfenas-Zerbini P, de Souza AA. Analysis of CRISPR-Cas loci distribution in Xanthomonas citri and its possible control by the quorum sensing system. FEMS Microbiol Lett 2024; 371:fnae005. [PMID: 38244227 DOI: 10.1093/femsle/fnae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 10/04/2023] [Accepted: 01/18/2024] [Indexed: 01/22/2024] Open
Abstract
Xanthomonas is an important genus of plant-associated bacteria that causes significant yield losses of economically important crops worldwide. Different approaches have assessed genetic diversity and evolutionary interrelationships among the Xanthomonas species. However, information from clustered regularly interspaced short palindromic repeats (CRISPRs) has yet to be explored. In this work, we analyzed the architecture of CRISPR-Cas loci and presented a sequence similarity-based clustering of conserved Cas proteins in different species of Xanthomonas. Although absent in many investigated genomes, Xanthomonas harbors subtype I-C and I-F CRISPR-Cas systems. The most represented species, Xanthomonas citri, presents a great diversity of genome sequences with an uneven distribution of the CRISPR-Cas systems among the subspecies/pathovars. Only X. citri subsp. citri and X. citri pv. punicae have these systems, exclusively of subtype I-C system. Moreover, the most likely targets of the X. citri CRISPR spacers are viruses (phages). At the same time, few are plasmids, indicating that CRISPR/Cas system is possibly a mechanism to control the invasion of foreign DNA. We also showed in X. citri susbp. citri that the cas genes are regulated by the diffusible signal factor, the quorum sensing (QS) signal molecule, according to cell density increases, and under environmental stress like starvation. These results suggest that the regulation of CRISPR-Cas by QS occurs to activate the gene expression only during phage infection or due to environmental stresses, avoiding a possible reduction in fitness. Although more studies are needed, CRISPR-Cas systems may have been selected in the Xanthomonas genus throughout evolution, according to the cost-benefit of protecting against biological threats and fitness maintenance in challenging conditions.
Collapse
Affiliation(s)
| | - Laís Moreira Granato
- Citrus Research Center "Sylvio Moreira", Agronomic Institute (IAC), Cordeiropolis-SP 13490-970, Brazil
| | - Túlio Morgan
- Department of Microbiology, Institute of Biotechnology Applied to Agriculture (BIOAGRO), Federal University of Viçosa, Viçosa-MG 36570-900, Brazil
| | - Julia Lopes Nalin
- Citrus Research Center "Sylvio Moreira", Agronomic Institute (IAC), Cordeiropolis-SP 13490-970, Brazil
| | - Marco Aurélio Takita
- Citrus Research Center "Sylvio Moreira", Agronomic Institute (IAC), Cordeiropolis-SP 13490-970, Brazil
| | - Poliane Alfenas-Zerbini
- Department of Microbiology, Institute of Biotechnology Applied to Agriculture (BIOAGRO), Federal University of Viçosa, Viçosa-MG 36570-900, Brazil
| | - Alessandra Alves de Souza
- Citrus Research Center "Sylvio Moreira", Agronomic Institute (IAC), Cordeiropolis-SP 13490-970, Brazil
| |
Collapse
|
34
|
Abadikhah M, Persson F, Farewell A, Wilén BM, Modin O. Viral diversity and host associations in microbial electrolysis cells. ISME COMMUNICATIONS 2024; 4:ycae143. [PMID: 39660013 PMCID: PMC11629682 DOI: 10.1093/ismeco/ycae143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/24/2024] [Accepted: 11/14/2024] [Indexed: 12/12/2024]
Abstract
In microbial electrolysis cells (MECs), microbial communities catalyze conversions between dissolved organic compounds, electrical energy, and energy carriers such as hydrogen and methane. Bacteria and archaea, which catalyze reactions on the anode and cathode of MECs, interact with phages; however, phage communities have previously not been examined in MECs. In this study, we used metagenomic sequencing to study prokaryotes and phages in nine MECs. A total of 852 prokaryotic draft genomes representing 278 species, and 1476 phage contigs representing 873 phage species were assembled. Among high quality prokaryotic genomes (>95% completion), 55% carried a prophage, and the three Desulfobacterota spp. that dominated the anode communities all carried prophages. Geobacter anodireducens, one of the bacteria dominating the anode communities, carried a CRISPR spacer showing evidence of a previous infection by a Peduoviridae phage present in the liquid of some MECs. Methanobacteriaceae spp. and an Acetobacterium sp., which dominated the cathodes, had several associations with Straboviridae spp. The results of this study show that phage communities in MECs are diverse and interact with functional microorganisms on both the anode and cathode.
Collapse
Affiliation(s)
- Marie Abadikhah
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, Sven Hultins gata 6, SE-412 96 Gothenburg, Sweden
| | - Frank Persson
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, Sven Hultins gata 6, SE-412 96 Gothenburg, Sweden
| | - Anne Farewell
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Britt-Marie Wilén
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, Sven Hultins gata 6, SE-412 96 Gothenburg, Sweden
| | - Oskar Modin
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, Sven Hultins gata 6, SE-412 96 Gothenburg, Sweden
| |
Collapse
|
35
|
Khademi Z, Mahmoudi Z, Sukhorukov VN, Jamialahmadi T, Sahebkar A. CRISPR/Cas9 Technology: A Novel Approach to Obesity Research. Curr Pharm Des 2024; 30:1791-1803. [PMID: 38818919 DOI: 10.2174/0113816128301465240517065848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 06/01/2024]
Abstract
Gene editing technology, particularly Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) has transformed medical research. As a newly developed genome editing technique, CRISPR technology has strongly assisted scientists in enriching their comprehension of the roles of individual genes and their influences on a vast spectrum of human malignancies. Despite considerable progress in elucidating obesity's molecular pathways, current anti-obesity medications fall short in effectiveness. A thorough understanding of the genetic foundations underlying various neurobiological pathways related to obesity, as well as the neuro-molecular mechanisms involved, is crucial for developing effective obesity treatments. Utilizing CRISPR-based technologies enables precise determination of the roles of genes that encode transcription factors or enzymes involved in processes, such as lipogenesis, lipolysis, glucose metabolism, and lipid storage within adipose tissue. This innovative approach allows for the targeted suppression or activation of genes regulating obesity, potentially leading to effective weight management strategies. In this review, we have provided a detailed overview of obesity's molecular genetics, the fundamentals of CRISPR/Cas9 technology, and how this technology contributes to the discovery and therapeutic targeting of new genes associated with obesity.
Collapse
Affiliation(s)
- Zahra Khademi
- Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Zahra Mahmoudi
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Vasily N Sukhorukov
- Institute of General Pathology and Pathophysiology, The Russian Academy of Medical Sciences, 8 Baltiiskaya Street, Moscow 125315, Russia
| | - Tannaz Jamialahmadi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
36
|
Jordá J, Lorenzo-Rebenaque L, Montoro-Dasi L, Marco-Fuertes A, Vega S, Marin C. Phage-Based Biosanitation Strategies for Minimizing Persistent Salmonella and Campylobacter Bacteria in Poultry. Animals (Basel) 2023; 13:3826. [PMID: 38136863 PMCID: PMC10740442 DOI: 10.3390/ani13243826] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/05/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023] Open
Abstract
Control strategies to minimize pathogenic bacteria in food animal production are one of the key components in ensuring safer food for consumers. The most significant challenges confronting the food industry, particularly in the major poultry and swine sectors, are antibiotic resistance and resistance to cleaning and disinfection in zoonotic bacteria. In this context, bacteriophages have emerged as a promising tool for zoonotic bacteria control in the food industry, from animals and farm facilities to the final product. Phages are viruses that infect bacteria, with several advantages as a biocontrol agent such as high specificity, self-replication, self-limitation, continuous adaptation, low inherent toxicity and easy isolation. Their development as a biocontrol agent is of particular interest, as it would allow the application of a promising and even necessary "green" technology to combat pathogenic bacteria in the environment. However, bacteriophage applications have limitations, including selecting appropriate phages, legal restrictions, purification, dosage determination and bacterial resistance. Overcoming these limitations is crucial to enhance phage therapy's effectiveness against zoonotic bacteria in poultry. Thus, this review aims to provide a comprehensive view of the phage-biosanitation strategies for minimizing persistent Salmonella and Campylobacter bacteria in poultry.
Collapse
Affiliation(s)
- Jaume Jordá
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Calle Santiago Ramón y Cajal 20, 46115 Alfara del Patriarca, Spain; (J.J.); (L.M.-D.); (A.M.-F.); (S.V.)
| | - Laura Lorenzo-Rebenaque
- Institute of Animal Science and Technology, Universitat Politècnica de València, 46022 Valencia, Spain;
| | - Laura Montoro-Dasi
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Calle Santiago Ramón y Cajal 20, 46115 Alfara del Patriarca, Spain; (J.J.); (L.M.-D.); (A.M.-F.); (S.V.)
| | - Ana Marco-Fuertes
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Calle Santiago Ramón y Cajal 20, 46115 Alfara del Patriarca, Spain; (J.J.); (L.M.-D.); (A.M.-F.); (S.V.)
| | - Santiago Vega
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Calle Santiago Ramón y Cajal 20, 46115 Alfara del Patriarca, Spain; (J.J.); (L.M.-D.); (A.M.-F.); (S.V.)
| | - Clara Marin
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Calle Santiago Ramón y Cajal 20, 46115 Alfara del Patriarca, Spain; (J.J.); (L.M.-D.); (A.M.-F.); (S.V.)
| |
Collapse
|
37
|
Gunitseva N, Evteeva M, Korzhenkov A, Patrushev M. A New RNA-Dependent Cas12g Nuclease. Int J Mol Sci 2023; 24:17105. [PMID: 38069429 PMCID: PMC10707612 DOI: 10.3390/ijms242317105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/18/2023] Open
Abstract
The development of RNA-targeting CRISPR-Cas systems represents a major step forward in the field of gene editing and regulation. RNA editing presents a viable alternative to genome editing in certain scenarios as it offers a reversible and manageable approach, reducing the likelihood of runaway mutant variants. One of the most promising applications is in the treatment of genetic disorders caused by mutations in RNA molecules. In this study, we investigate a previously undescribed Cas12g nuclease which was found in metagenomes from promising thermophilic microbial communities during the expedition to the Republic of North Ossetia-Alania in 2020. The method outlined in this study can be applied to other Cas orthologs and variants, leading to a better understanding of the CRISPR-Cas system and its enzymatic activities. The cis-cleavage activity of the new type V-G Cas effector was indicated by in vitro RNA cleavage experiments. While CRISPR-Cas systems are known for their high specificity, there is still a risk of unintended cleavage of nontargeted RNA molecules. Ultimately, the search for new genome editing tools and the study of their properties will remove barriers to research in this area. With continued research and development, we may be able to unlock their full potential.
Collapse
Affiliation(s)
- Natalia Gunitseva
- Complex of NBICS Technologies, National Research Center “Kurchatov Institute”, 123182 Moscow, Russia (M.P.)
| | - Martha Evteeva
- Complex of NBICS Technologies, National Research Center “Kurchatov Institute”, 123182 Moscow, Russia (M.P.)
| | | | | |
Collapse
|
38
|
Zhao J, Xi Y, Zhang J, Jin Y, Yang H, Duan G, Chen S, Long J. Characterization and diversity of CRISPR/Cas systems in Klebsiella oxytoca. Mol Genet Genomics 2023; 298:1407-1417. [PMID: 37684555 DOI: 10.1007/s00438-023-02065-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023]
Abstract
CRISPR (clustered regularly interspaced short palindromic repeats)/Cas (CRISPR-associated protein) system is a crucial adaptive immune system for bacteria to resist foreign DNA infection. In this study, we investigated the prevalence and diversity of CRISPR/Cas systems in 175 Klebsiella oxytoca (K. oxytoca) strains. Specifically, 58.86% (103/175) of these strains possessed at least one confirmed CRISPR locus. Two CRISPR/Cas system types, I-F and IV-A3, were identified in 69 strains. Type I-F system was the most prevalent in this species, which correlated well with MLST. Differently, type IV-A3 system was randomly distributed. Moreover, the type IV-A3 system was separated into two subgroups, with subgroup-specific cas genes and repeat sequences. In addition, spacer origin analysis revealed that approximately one-fifth of type I-F spacers and one-third of type IV-A3 spacers had a significant match to MGEs. The phage tail tape measure protein and conjunctive transfer system protein were important targets of type I-F and IV-A3 systems in K. oxytoca, respectively. PAM sequences were inferred to be 5'-NCC-3' for type I-F, 5'-AAG-3' for subgroup IV-A3-a, and 5'-AAN-3' for subgroup IV-A3-b. Collectively, our findings will shed light on the prevalence, diversity, and functional effects of the CRISPR/Cas system in K. oxytoca.
Collapse
Affiliation(s)
- Jiaxue Zhao
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
| | - Yanyan Xi
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
| | | | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
| | - Haiyan Yang
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
- Henan Key Laboratory of Molecular Medicine, Zhengzhou, Henan, China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, 450001, Henan, China.
| | - Jinzhao Long
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
39
|
Abante J, Wang PL, Salzman J. DIVE: a reference-free statistical approach to diversity-generating and mobile genetic element discovery. Genome Biol 2023; 24:240. [PMID: 37864197 PMCID: PMC10589994 DOI: 10.1186/s13059-023-03038-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 08/14/2023] [Indexed: 10/22/2023] Open
Abstract
Diversity-generating and mobile genetic elements are key to microbial and viral evolution and can result in evolutionary leaps. State-of-the-art algorithms to detect these elements have limitations. Here, we introduce DIVE, a new reference-free approach to overcome these limitations using information contained in sequencing reads alone. We show that DIVE has improved detection power compared to existing reference-based methods using simulations and real data. We use DIVE to rediscover and characterize the activity of known and novel elements and generate new biological hypotheses about the mobilome. Building on DIVE, we develop a reference-free framework capable of de novo discovery of mobile genetic elements.
Collapse
Affiliation(s)
- Jordi Abante
- Biomedical Data Science, Stanford University, 1265 Welch Rd, Palo Alto, 94305, CA, USA
- Center for Computational, Evolutionary and Human Genomics, Stanford University, 327 Campus Drive, Stanford, 94305, CA, USA
- Current address: Department of Biomedical Sciences, Universitat de Barcelona, Casanova 143, Barcelona, 08036, Spain
| | - Peter L Wang
- Biomedical Data Science, Stanford University, 1265 Welch Rd, Palo Alto, 94305, CA, USA
- Department of Biochemistry, Stanford University, 279 Campus Drive, Stanford, 94305, CA, USA
| | - Julia Salzman
- Biomedical Data Science, Stanford University, 1265 Welch Rd, Palo Alto, 94305, CA, USA.
- Department of Biochemistry, Stanford University, 279 Campus Drive, Stanford, 94305, CA, USA.
- Department of Statistics, Stanford University, 390 Serra Mall, Stanford, 94305, CA, USA.
| |
Collapse
|
40
|
Barnett SE, Buckley DH. Metagenomic stable isotope probing reveals bacteriophage participation in soil carbon cycling. Environ Microbiol 2023; 25:1785-1795. [PMID: 37139849 DOI: 10.1111/1462-2920.16395] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 04/25/2023] [Indexed: 05/05/2023]
Abstract
Soil viruses are important components of the carbon (C) cycle, yet we still know little about viral ecology in soils. We added diverse 13 C-labelled carbon sources to soil and we used metagenomic-SIP to detect 13 C assimilation by viruses and their putative bacterial hosts. These data allowed us to link a 13 C-labelled bacteriophage to its 13 C-labelled Streptomyces putative host, and we used qPCR to track the dynamics of the putative host and phage in response to C inputs. Following C addition, putative host numbers increased rapidly for 3 days, and then more gradually, reaching maximal abundance on Day 6. Viral abundance and virus:host ratio increased dramatically over 6 days, and remained high thereafter (8.42 ± 2.94). From Days 6 to 30, virus:host ratio remained high, while putative host numbers declined more than 50%. Putative host populations were 13 C-labelled on Days 3-30, while 13 C-labelling of phage was detected on Days 14 and 30. This dynamic suggests rapid growth and 13 C-labelling of the host fueled by new C inputs, followed by extensive host mortality driven by phage lysis. These findings indicate that the viral shunt promotes microbial turnover in soil following new C inputs, thereby altering microbial community dynamics, and facilitating soil organic matter production.
Collapse
Affiliation(s)
- Samuel E Barnett
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Daniel H Buckley
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
- Department of Microbiology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
41
|
Kang YJ, Kim JH, Lee GH, Ha HJ, Park YH, Hong E, Park HH. The structure of AcrIC9 revealing the putative inhibitory mechanism of AcrIC9 against the type IC CRISPR-Cas system. IUCRJ 2023; 10:624-634. [PMID: 37668219 PMCID: PMC10478522 DOI: 10.1107/s2052252523007236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/17/2023] [Indexed: 09/06/2023]
Abstract
CRISPR-Cas systems are known to be part of the bacterial adaptive immune system that provides resistance against intruders such as viruses, phages and other mobile genetic elements. To combat this bacterial defense mechanism, phages encode inhibitors called Acrs (anti-CRISPR proteins) that can suppress them. AcrIC9 is the most recently identified member of the AcrIC family that inhibits the type IC CRISPR-Cas system. Here, the crystal structure of AcrIC9 from Rhodobacter capsulatus is reported, which comprises a novel fold made of three central antiparallel β-strands surrounded by three α-helixes, a structure that has not been detected before. It is also shown that AcrIC9 can form a dimer via disulfide bonds generated by the Cys69 residue. Finally, it is revealed that AcrIC9 directly binds to the type IC cascade. Analysis and comparison of its structure with structural homologs indicate that AcrIC9 belongs to DNA-mimic Acrs that directly bind to the cascade complex and hinder the target DNA from binding to the cascade.
Collapse
Affiliation(s)
- Yong Jun Kang
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul 06974, Republic of Korea
| | - Ju Hyeong Kim
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul 06974, Republic of Korea
| | - Gwan Hee Lee
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hyun Ji Ha
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Young-Hoon Park
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Eunmi Hong
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Hyun Ho Park
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
42
|
Yadalam PK, Arumuganainar D, Anegundi RV, Shrivastava D, Alftaikhah SAA, Almutairi HA, Alobaida MA, Alkaberi AA, Srivastava KC. CRISPR-Cas-Based Adaptive Immunity Mediates Phage Resistance in Periodontal Red Complex Pathogens. Microorganisms 2023; 11:2060. [PMID: 37630620 PMCID: PMC10459013 DOI: 10.3390/microorganisms11082060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/23/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Periodontal diseases are polymicrobial immune-inflammatory diseases that can severely destroy tooth-supporting structures. The critical bacteria responsible for this destruction include red complex bacteria such as Porphoromonas gingivalis, Tanerella forsythia and Treponema denticola. These organisms have developed adaptive immune mechanisms against bacteriophages/viruses, plasmids and transposons through clustered regularly interspaced short palindromic repeats (CRISPR) and their associated proteins (Cas). The CRISPR-Cas system contributes to adaptive immunity, and this acquired genetic immune system of bacteria may contribute to moderating the microbiome of chronic periodontitis. The current research examined the role of the CRISPR-Cas system of red complex bacteria in the dysbiosis of oral bacteriophages in periodontitis. Whole-genome sequences of red complex bacteria were obtained and investigated for CRISPR using the CRISPR identification tool. Repeated spacer sequences were analyzed for homologous sequences in the bacteriophage genome and viromes using BLAST algorithms. The results of the BLAST spacer analysis for T. denticola spacers had a 100% score (e value with a bacillus phage), and the results for T. forsthyia and P. gingivalis had a 56% score with a pectophage and cellulophage (e value: 0.21), respectively. The machine learning model of the identified red complex CRISPR sequences predicts with area an under the curve (AUC) accuracy of 100 percent, indicating phage inhibition. These results infer that red complex bacteria could significantly inhibit viruses and phages with CRISPR immune sequences. Therefore, the role of viruses and bacteriophages in modulating sub-gingival bacterial growth in periodontitis is limited or questionable.
Collapse
Affiliation(s)
- Pradeep Kumar Yadalam
- Department of Periodontics, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Dental College and Hospitals, Saveetha University, Chennai 600077, India;
| | - Deepavalli Arumuganainar
- Department of Periodontics, Ragas Dental College and Hospital, 2/102, East Coast Road, Uthandi, Chennai 600119, India;
| | - Raghavendra Vamsi Anegundi
- Department of Periodontics, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Dental College and Hospitals, Saveetha University, Chennai 600077, India;
| | - Deepti Shrivastava
- Periodontics Division, Preventive Dentistry Department, College of Dentistry, Jouf University, Sakaka 72345, Saudi Arabia
| | | | - Haifa Ali Almutairi
- College of Dentistry, Jouf University, Sakaka 72345, Saudi Arabia; (S.A.A.A.); (H.A.A.)
| | - Muhanad Ali Alobaida
- General Dentist, Ministry of Health, Riyadh 12613, Saudi Arabia; (M.A.A.); (A.A.A.)
| | | | - Kumar Chandan Srivastava
- Oral Medicine & Maxillofacial Radiology Division, Department of Oral & Maxillofacial Surgery & Diagnostic Sciences, College of Dentistry, Jouf University, Sakaka 72345, Saudi Arabia;
- Department of Oral Medicine and Radiology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, India
| |
Collapse
|
43
|
Kannadasan AB, Sumantran VN, Vaidyanathan R. A Global Comprehensive Study of the Distribution of Type I-E and Type I-E* CRISPR-Cas Systems in Klebsiella pneumoniae. Indian J Community Med 2023; 48:567-572. [PMID: 37662134 PMCID: PMC10470566 DOI: 10.4103/ijcm.ijcm_486_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 05/03/2023] [Indexed: 09/05/2023] Open
Abstract
Background The CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated proteins) systems are the short DNA sequences and RNA-dependent nuclease involved in the adaptive immunity in bacteria and archaea. The type of CRISPR-Cas system influences antibiotic susceptibility in Klebsiella pneumoniae. Here, our objective was to study the diversity of CRISPR-Cas system in the genome of K. pneumoniae from the available whole genome sequencing (WGS) data. Material and Methods We identified the CRISPR-Cas systems of K. pneumoniae using the CRISPR-CasFinder database. The complete genome sequence and its submission details were obtained from the National Center for Biotechnology Information (NCBI) database. Results A total of 1607 K. pneumoniae whole genome sequences were analyzed. The major contributors of WGS data of K. pneumoniae were China (26.6%), United States (21.5%), Australia (10%), South Korea (8%), India (5.5%), and United Kingdom (4.9%). Out of 1607 genomes analyzed, almost one-fourth were CRISPR-Cas positive (403/1607) and three-fourth were CRISPR-Cas negative (1204/1607). Among CRISPR-Cas positive strains, 220 belonged to type I-E* and 183 were type I-E. Furthermore, type I-E* CRISPR-Cas systems were significantly higher in Asia (P < 0.001), whereas type I-E were significantly higher in Europe (P < 0.01). Among countries, typically, type I-E* strains were found to be higher in China (P < 0.01) and India (P < 0.01), whereas type I-E strains were higher in Germany (P < 0.01). Conclusion Hence, it is important to know the type of CRISPR-Cas systems in K. pneumoniae strains across the countries and it can help to understand the diversity of CRISPR-Cas systems worldwide.
Collapse
Affiliation(s)
- Anand Babu Kannadasan
- Dr. A.P.J. Abdul Kalam Center of Excellence in Innovation and Entrepreneurship, Dr. MGR Educational and Research Institute, Adayalampattu, Chennai, Tamil Nadu, India
| | - Venil Naranan Sumantran
- Dr. A.P.J. Abdul Kalam Center of Excellence in Innovation and Entrepreneurship, Dr. MGR Educational and Research Institute, Adayalampattu, Chennai, Tamil Nadu, India
| | - Rama Vaidyanathan
- Dr. A.P.J. Abdul Kalam Center of Excellence in Innovation and Entrepreneurship, Dr. MGR Educational and Research Institute, Adayalampattu, Chennai, Tamil Nadu, India
| |
Collapse
|
44
|
Ali Y, Inusa I, Sanghvi G, Mandaliya V, Bishoyi AK. The current status of phage therapy and its advancement towards establishing standard antimicrobials for combating multi drug-resistant bacterial pathogens. Microb Pathog 2023:106199. [PMID: 37336428 DOI: 10.1016/j.micpath.2023.106199] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/21/2023]
Abstract
Phage therapy; a revived antimicrobial weapon, has great therapeutic advantages with the main ones being its ability to eradicate multidrug-resistant pathogens as well as selective toxicity, which ensures that beneficial microbiota is not harmed, unlike antibiotics. These therapeutic properties make phage therapy a novel approach for combating resistant pathogens. Since millions of people across the globe succumb to multidrug-resistant infections, the implementation of phage therapy as a standard antimicrobial could transform global medicine as it offers greater therapeutic advantages than conventional antibiotics. Although phage therapy has incomplete clinical data, such as a lack of standard dosage and the ideal mode of administration, the conducted clinical studies report its safety and efficacy in some case studies, and therefore, this could lessen the concerns of its skeptics. Since its discovery, the development of phage therapeutics has been in a smooth progression. Concerns about phage resistance in populations of pathogenic bacteria are raised when bacteria are exposed to phages. Bacteria can use restriction-modification, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein (Cas) defense, or mutations in the phage receptors to prevent phage invasion. Phage resistance, however, is often costly for the bacteria and may lead to a reduction in its virulence. The ongoing competition between bacteria and phage, on the other hand, ensures the emergence of phage strains that have evolved to infect resistant bacteria. A phage can quickly adapt by altering one or more aspects of its mode of infection, evading a resistance mechanism through genetic modifications, or directly thwarting the CRISPR-Cas defense. Using phage-bacterium coevolution as a technique could be crucial in the development of phage therapy as well. Through its recent advancement, gene-editing tools such as CRISPR-Cas allow the bioengineering of phages to produce phage cocktails that have broad spectrum activities, which could maximize the treatment's efficacy. This review presents the current state of phage therapy and its progression toward establishing standard medicine for combating antibiotic resistance. Recent clinical trials of phage therapy, some important case studies, and other ongoing clinical studies of phage therapy are all presented in this review. Furthermore, the recent advancement in the development of phage therapeutics, its application in various sectors, and concerns regarding its implementation are also highlighted here. Phage therapy has great potential and could help the fight against drug-resistant bacterial pathogens.
Collapse
Affiliation(s)
- Yussuf Ali
- Department of Microbiology, Marwadi University, Gujarat, India
| | - Ibrahim Inusa
- Department of Information Technology, Marwadi University, Gujarat, India
| | - Gaurav Sanghvi
- Department of Microbiology, Marwadi University, Gujarat, India
| | | | | |
Collapse
|
45
|
Lin J, Guo Y, Yao J, Tang K, Wang X. Applications of toxin-antitoxin systems in synthetic biology. ENGINEERING MICROBIOLOGY 2023; 3:100069. [PMID: 39629251 PMCID: PMC11610964 DOI: 10.1016/j.engmic.2023.100069] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 12/07/2024]
Abstract
Toxin-antitoxin (TA) systems are ubiquitous in bacteria and archaea. Most are composed of two neighboring genetic elements, a stable toxin capable of inhibiting crucial cellular processes, including replication, transcription, translation, cell division and membrane integrity, and an unstable antitoxin to counteract the toxicity of the toxin. Many new discoveries regarding the biochemical properties of the toxin and antitoxin components have been made since the first TA system was reported nearly four decades ago. The physiological functions of TA systems have been hotly debated in recent decades, and it is now increasingly clear that TA systems are important immune systems in prokaryotes. In addition to being involved in biofilm formation and persister cell formation, these modules are antiphage defense systems and provide host defenses against various phage infections via abortive infection. In this review, we explore the potential applications of TA systems based on the recent progress made in elucidating TA functions. We first describe the most recent classification of TA systems and then introduce the biochemical functions of toxins and antitoxins, respectively. Finally, we primarily focus on and devote considerable space to the application of TA complexes in synthetic biology.
Collapse
Affiliation(s)
- Jianzhong Lin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunxue Guo
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianyun Yao
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Kaihao Tang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Xiaoxue Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
46
|
Hamdi I, Boni F, Shen Q, Moukendza L, Peibo LI, Jianping X. Characteristics of subtype III-A CRISPR-Cas system in Mycobacterium tuberculosis: An overview. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 112:105445. [PMID: 37217031 DOI: 10.1016/j.meegid.2023.105445] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 04/03/2023] [Accepted: 05/19/2023] [Indexed: 05/24/2023]
Abstract
CRISPR-Cas systems are the only RNA- guided adaptive immunity pathways that trigger the detection and destruction of invasive phages and plasmids in bacteria and archaea. Due to its prevalence and mystery, the Class 1 CRISPR-Cas system has lately been the subject of several studies. This review highlights the specificity of CRISPR-Cas system III-A in Mycobacterium tuberculosis, the tuberculosis-causing pathogen, for over twenty years. We discuss the difference between the several subtypes of Type III and their defence mechanisms. The anti-CRISPRs (Acrs) recently described, the critical role of Reverse transcriptase (RT) and housekeeping nuclease for type III CRISPR-Cas systems, and the use of this cutting-edge technology, its impact on the search for novel anti-tuberculosis drugs.
Collapse
Affiliation(s)
- Insaf Hamdi
- Institute of Modern Biopharmaceuticals State Key Laboratory, Breeding Base Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400700, China
| | - Funmilayo Boni
- Institute of Modern Biopharmaceuticals State Key Laboratory, Breeding Base Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400700, China
| | - Qinglei Shen
- Institute of Modern Biopharmaceuticals State Key Laboratory, Breeding Base Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400700, China
| | - Liadrine Moukendza
- Institute of Modern Biopharmaceuticals State Key Laboratory, Breeding Base Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400700, China
| | - L I Peibo
- Chongqing Public Health Medical Center, Southwest University Public Health Hospital, China
| | - Xie Jianping
- Institute of Modern Biopharmaceuticals State Key Laboratory, Breeding Base Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400700, China; Chongqing Public Health Medical Center, Southwest University Public Health Hospital, China.
| |
Collapse
|
47
|
Wang G, Wang C, Chu T, Wu X, Anderson CM, Huang D, Li J. Deleting Specific Residues From the HNH Linkers Creates A CRISPR-SpCas9 Variant With High Fidelity and Efficiency. J Biotechnol 2023; 368:42-52. [PMID: 37116617 DOI: 10.1016/j.jbiotec.2023.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/20/2023] [Accepted: 04/23/2023] [Indexed: 04/30/2023]
Abstract
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated (Cas) systems are immunological defenses used in archaea and bacteria to recognize and destroy DNA from external invaders. The CRISPR-SpCas9 system harnessed from Streptococcus pyogenes (SpCas9) has become the most widely utilized genome editing tool and shows promise for clinical application. However, the off-target effect is still the major challenge for the genome editing of CRISPR-SpCas9. Based on analysis of the structure and cleavage procedures, we proposed two strategies to modify the SpCas9 structure and reduce off-target effects. Shortening the HNH or REC3 linkers (Strategy #1) aimed to move the primary position of HNH or REC3 far away from the single-guide RNA (sgRNA)/DNA hybrid (hybrid), while elongating the helix around the sgRNA (Strategy #2) aimed to strengthen the contacts between SpCas9 and the sgRNA/DNA. We designed 11 SpCas9 variants (variant No.1- variant No.11) and verified their efficiencies on the classic genome site EMX1-1, EMX1-1-OT1, and EMX1-1-OT2. The top three effective SpCas9 variants, variant No.1, variant No.2, and variant No.5, were additionally validated on other genome sites. The further selected variant No.1 was compared with two previous SpCas9 variants, HypaCas9 (a hyper-accurate Cas9 variant released in 2017) and eSpCas9 (1.1) (an "enhanced specificity" SpCas9 variant released in 2016), on two genome sites, EMX1-1 and FANCF-1. The results revealed that the deletion of Thr769 and Gly906 could substantially decrease off-target effects, while maintaining robust on-target efficiency in most of the selected genome sites.
Collapse
Affiliation(s)
- Guohua Wang
- School of Food and Biotechnology, Guangdong Industry Polytechnic, Guangzhou 510300, China
| | - Canmao Wang
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Pharmacy, Southern University of Science and Technology Hospital (SUS Tech Hospital), Shenzhen 518000, China
| | - Teng Chu
- Sangon Biotech (Shanghai) Co., Ltd., Shanghai 201611, China
| | - Xinjun Wu
- Lineberger Comprehensive Cancer Center, the University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27517, USA
| | | | - Dongwei Huang
- Pharmaceutical and Material Engineering School, Jinhua Polytechnic, Jinhua 321007, China
| | - Juan Li
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
48
|
Shah SA, Deng L, Thorsen J, Pedersen AG, Dion MB, Castro-Mejía JL, Silins R, Romme FO, Sausset R, Jessen LE, Ndela EO, Hjelmsø M, Rasmussen MA, Redgwell TA, Leal Rodríguez C, Vestergaard G, Zhang Y, Chawes B, Bønnelykke K, Sørensen SJ, Bisgaard H, Enault F, Stokholm J, Moineau S, Petit MA, Nielsen DS. Expanding known viral diversity in the healthy infant gut. Nat Microbiol 2023; 8:986-998. [PMID: 37037943 PMCID: PMC10159846 DOI: 10.1038/s41564-023-01345-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 02/17/2023] [Indexed: 04/12/2023]
Abstract
The gut microbiome is shaped through infancy and impacts the maturation of the immune system, thus protecting against chronic disease later in life. Phages, or viruses that infect bacteria, modulate bacterial growth by lysis and lysogeny, with the latter being especially prominent in the infant gut. Viral metagenomes (viromes) are difficult to analyse because they span uncharted viral diversity, lacking marker genes and standardized detection methods. Here we systematically resolved the viral diversity in faecal viromes from 647 1-year-olds belonging to Copenhagen Prospective Studies on Asthma in Childhood 2010, an unselected Danish cohort of healthy mother-child pairs. By assembly and curation we uncovered 10,000 viral species from 248 virus family-level clades (VFCs). Most (232 VFCs) were previously unknown, belonging to the Caudoviricetes viral class. Hosts were determined for 79% of phage using clustered regularly interspaced short palindromic repeat spacers within bacterial metagenomes from the same children. Typical Bacteroides-infecting crAssphages were outnumbered by undescribed phage families infecting Clostridiales and Bifidobacterium. Phage lifestyles were conserved at the viral family level, with 33 virulent and 118 temperate phage families. Virulent phages were more abundant, while temperate ones were more prevalent and diverse. Together, the viral families found in this study expand existing phage taxonomy and provide a resource aiding future infant gut virome research.
Collapse
Affiliation(s)
- Shiraz A Shah
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Herlev-Gentofte, Gentofte, Denmark.
| | - Ling Deng
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | - Jonathan Thorsen
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Herlev-Gentofte, Gentofte, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anders G Pedersen
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Moïra B Dion
- Département de biochimie, de microbiologie, et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, Quebec, Canada
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, Quebec, Canada
| | | | - Ronalds Silins
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | - Fie O Romme
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | - Romain Sausset
- Université Paris-Saclay, INRAE, Agroparistech, Micalis institute, Jouy-en-Josas, France
| | - Leon E Jessen
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Herlev-Gentofte, Gentofte, Denmark
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Eric Olo Ndela
- Lab de Microorganismes: Génome et Environnement, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Mathis Hjelmsø
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Herlev-Gentofte, Gentofte, Denmark
| | - Morten A Rasmussen
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Herlev-Gentofte, Gentofte, Denmark
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | - Tamsin A Redgwell
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Herlev-Gentofte, Gentofte, Denmark
| | - Cristina Leal Rodríguez
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Herlev-Gentofte, Gentofte, Denmark
| | - Gisle Vestergaard
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Yichang Zhang
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | - Bo Chawes
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Herlev-Gentofte, Gentofte, Denmark
| | - Klaus Bønnelykke
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Herlev-Gentofte, Gentofte, Denmark
| | - Søren J Sørensen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Hans Bisgaard
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Herlev-Gentofte, Gentofte, Denmark
| | - Francois Enault
- Lab de Microorganismes: Génome et Environnement, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Jakob Stokholm
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Herlev-Gentofte, Gentofte, Denmark
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | - Sylvain Moineau
- Département de biochimie, de microbiologie, et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, Quebec, Canada
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, Quebec, Canada
- Félix d'Hérelle Reference Center for Bacterial Viruses, Université Laval, Québec City, Quebec, Canada
| | - Marie-Agnès Petit
- Université Paris-Saclay, INRAE, Agroparistech, Micalis institute, Jouy-en-Josas, France
| | - Dennis S Nielsen
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
49
|
Ramakrishnan N, Malachowski T, Verma P. A high-content flow cytometry and dual CRISPR-Cas9 based platform to quantify genetic interactions. Methods Cell Biol 2023; 182:299-312. [PMID: 38359984 DOI: 10.1016/bs.mcb.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Probing epistasis between two genes can be a critical first step in identifying the molecular players in a cellular pathway. The advent of CRISPR-Cas mediated genetic screen has enabled studying of these genetic interactions at a genomic scale. However, when combining depletion of two genes using CRISPR Cas9, reduced targeting efficiencies due to competition for Cas loading and recombination in the cloning step have emerged as key challenges. Moreover, given conventional CRISPR screens typically involve comparison between the initial and final time point, it is difficult to parse the time kinetics with which a perturbed genetic interaction impacts viability, and it also becomes challenging to assess epistasis with essential genes. Here, we discuss a high-throughput flow-based approach to study genetic interactions. By utilizing two different Cas9 orthologs and monitoring viability at multiple time points, this approach helps to effectively mitigate the limitations of Cas9 competition and enables assessment of genetic interactions with both essential and non-essential genes at a high temporal resolution.
Collapse
Affiliation(s)
- Natasha Ramakrishnan
- Division of Oncology, Department of Medicine, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Taylor Malachowski
- Division of Oncology, Department of Medicine, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Priyanka Verma
- Division of Oncology, Department of Medicine, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, United States.
| |
Collapse
|
50
|
Platani M, Sokefun O, Bassil E, Apidianakis Y. Genetic engineering and genome editing in plants, animals and humans: Facts and myths. Gene 2023; 856:147141. [PMID: 36574935 DOI: 10.1016/j.gene.2022.147141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 12/17/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022]
Abstract
Human history is inextricably linked to the introduction of desirable heritable traits in plants and animals. Selective breeding (SB) predates our historical period and has been practiced since the advent of agriculture and farming more than ten thousand years ago. Since the 1970s, methods of direct plant and animal genome manipulation are constantly being developed. These are collectively described as "genetic engineering" (GE). Plant GE aims to improve nutritional value, insect resistance and weed control. Animal GE has focused on livestock improvement and disease control. GE applications also involve medical improvements intended to treat human disease. The scientific consensus built around marketed products of GE organisms (GEOs) is usually well established, noting significant benefits and low risks. GEOs are exhaustively scrutinized in the EU and many non-EU countries for their effects on human health and the environment, but scrutiny should be equally applied to all previously untested organisms derived directly from nature or through selective breeding. In fact, there is no evidence to suggest that natural or selectively bred plants and animals are in principle safer to humans than GEOs. Natural and selectively bred strains evolve over time via genetic mutations that can be as risky to humans and the environment as the mutations found in GEOs. Thus, previously untested plant and animal strains aimed for marketing should be proven useful or harmful to humans only upon comparative testing, regardless of their origin. Highlighting the scientific consensus declaring significant benefits and rather manageable risks provided by equitably accessed GEOs, can mitigate negative predispositions by policy makers and the public. Accordingly, we provide an overview of the underlying technologies and the scientific consensus to help resolve popular myths about the safety and usefulness of GEOs.
Collapse
Affiliation(s)
- Maria Platani
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Owolabi Sokefun
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Elias Bassil
- Horticultural Sciences Department, University of Florida, Gainesville, USA
| | | |
Collapse
|