1
|
Wang Y, Huang S, He J, Feng Z, Wu W, Guo C, He J. Unveiling the dynamic viral landscape across developmental stages of cold seep ecosystems: Implications for global marine biogeochemistry. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138594. [PMID: 40367785 DOI: 10.1016/j.jhazmat.2025.138594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/08/2025] [Accepted: 05/10/2025] [Indexed: 05/16/2025]
Abstract
Cold seeps are methane-rich ecosystems playing pivotal roles in global biogeochemical cycling, yet their viral communities remain underexplored. We present the first comprehensive viral metagenomic analysis across developmental stages of the Haima Cold Seep. Characterizing viral assemblages from chemoautotrophic, mature, and extinct seep sediments revealed 4272 viral operational taxonomic units, with 77 % representing novel lineages, highlighting cold seeps' unique viral diversity. Viral community structure and diversity varied significantly by seep stage, with highest diversity in the chemoautotrophic stage. While Siphoviridae and Microviridae dominated, their relative abundances shifted with maturity. Gammaproteobacteria emerged as predominant viral hosts, exhibiting distinct interaction patterns across stages. Notably, the chemoautotrophic stage harbored the highest abundance and diversity of virus-encoded auxiliary metabolic genes (AMGs; ∼450 AMGs), with significantly enriched carbohydrate metabolism and central carbon pathway genes (2.2-fold and 1.8-fold higher respectively, p < 0.005), amino acid metabolism (1.9-fold, p = 0.003), and sulfur relay system genes (2.0-fold, p = 0.002). In contrast, the mature stage exhibited distinct enrichment in energy metabolism genes (up to 3.9-fold difference between sites, p < 0.001) and xenobiotics degradation pathways, suggesting stage-specific viral impacts on biogeochemical cycling. Lytic lifestyles prevailed across stages, indicating dynamic virus-host interactions during seep development. These findings unveil complex viral ecology in cold seeps, with potential influences on microbial community structure and biogeochemical processes. Providing a foundation for understanding viral roles in cold seep ecosystem functioning and biogeochemical cycles, this study has implications for marine microbial ecology and environmental biotechnology.
Collapse
Affiliation(s)
- Yuanyuan Wang
- School of Marine Sciences, State Key Laboratory for Biocontrol/Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory of Aquatic Economic Animals/Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Shanzi Huang
- School of Marine Sciences, State Key Laboratory for Biocontrol/Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory of Aquatic Economic Animals/Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Jian He
- School of Marine Sciences, State Key Laboratory for Biocontrol/Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory of Aquatic Economic Animals/Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Zhengqi Feng
- School of Marine Sciences, State Key Laboratory for Biocontrol/Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory of Aquatic Economic Animals/Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Wenbo Wu
- School of Marine Sciences, State Key Laboratory for Biocontrol/Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory of Aquatic Economic Animals/Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Changjun Guo
- School of Marine Sciences, State Key Laboratory for Biocontrol/Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory of Aquatic Economic Animals/Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China.
| | - Jianguo He
- School of Marine Sciences, State Key Laboratory for Biocontrol/Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory of Aquatic Economic Animals/Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| |
Collapse
|
2
|
Liu J, Zhou Y, Feng J, Cai C, Zhang S. Comparative metagenomic analysis reveals the adaptive evolutionary traits of siboglinid tubeworm symbionts. Front Microbiol 2025; 16:1533506. [PMID: 40313410 PMCID: PMC12045306 DOI: 10.3389/fmicb.2025.1533506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 03/28/2025] [Indexed: 05/03/2025] Open
Abstract
Tubeworms flourish in marine cold seeps and hydrothermal vents through the establishment of symbiotic relationships with chemosynthetic bacteria. However, the environmental adaptations and evolutionary relationships of tubeworm symbionts across diverse habitats and hosts remain largely unknown. In this study, we characterized the genomes of 26 siboglinid tubeworm symbionts collected from deep-sea hydrothermal vents, cold seeps, and deep-sea mud, including two sequenced in this study and 24 previously published. Phylogenetic analysis classified the 26 symbiont genomes into five distinct clusters at the genus level. The findings highlight the remarkable diversity in symbiont classification, influenced by the habitat and species of tubeworm, with the symbiont genome characteristics of various genera revealing unique evolutionary strategies. Siboglinid symbionts exhibit functional metabolic diversity, encompassing chemical autotrophic capabilities for carbon, nitrogen, and sulfur metabolism, hydrogen oxidation, and a chemoorganotrophic ability to utilize various amino acids, cofactors, and vitamins. Furthermore, the symbiont's homeostatic mechanisms and CRISPR-Cas system are vital adaptations for survival. Overall, this study highlights the metabolic traits of siboglinid symbionts across different genera and enhances our understanding of how different habitats and hosts influence symbiont evolution, offering valuable insights into the strategies that symbionts use to adapt and thrive in extreme environments.
Collapse
Affiliation(s)
- Jinyi Liu
- Research Centre of Ecology and Environment for Coastal Area and Deep Sea, Guangdong University of Technology, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, China
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong University of Technology, Guangzhou, China
| | - Yingli Zhou
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong University of Technology, Guangzhou, China
| | - Jingchun Feng
- Research Centre of Ecology and Environment for Coastal Area and Deep Sea, Guangdong University of Technology, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, China
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong University of Technology, Guangzhou, China
| | - Chaofeng Cai
- Research Centre of Ecology and Environment for Coastal Area and Deep Sea, Guangdong University of Technology, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, China
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong University of Technology, Guangzhou, China
| | - Si Zhang
- Research Centre of Ecology and Environment for Coastal Area and Deep Sea, Guangdong University of Technology, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, China
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong University of Technology, Guangzhou, China
| |
Collapse
|
3
|
Mou A, Li X, Li Z, Qu L, Dong Y, Wang Z, Zhang X, Xu Q. Comparative analysis of esophageal gland microbes between two body sizes of Gigantopelta aegis, a hydrothermal snail from the Southwest Indian Ridge. Microbiol Spectr 2025; 13:e0295924. [PMID: 39992146 PMCID: PMC11960433 DOI: 10.1128/spectrum.02959-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 01/02/2025] [Indexed: 02/25/2025] Open
Abstract
Microbial communities within animals provide nutritional foundation and energy supply for the hydrothermal ecosystem. The peltospirid snail Gigantopelta aegis forms large aggregation in the Longqi vent field on the Southwest Indian Ridge. This endemic species is characterized by a changeable diet and morphology, especially reflected in internal organs such as remarkably enlarged esophageal glands. Here, 16S full-length rRNA gene analysis was performed to compare the variations in esophageal gland microbiota between two body size groups (small and large) of G. aegis. Phyla Proteobacteria and Bacteroidetes were the dominant featured bacteria contributing to the microbial community. No significant differences between the small and large groups were revealed by the diversity index and principal component analysis (PCA) clustering. The differences were in the relative abundance of bacteria. Compared with small-sized snails, the larger ones housed more Thiogranum (9.94% to 34.86%) and fewer Sediminibacterium (29.38% to 4.54%). Functional prediction for all of the microbiota showed that the pathways related to metabolism appeared highly abundant in smaller G. aegis. However, for the larger ones, the most distinctive pathways were those of environmental information processing. Facultative symbiotic Sulfurovum was marked as a core node in the co-occurrence network and suggested an influence on habitat selection of G. aegis in hydrothermal fields. In summary, variations in bacteria composition and potential functions possibly reflected changes in the anatomical structure and dietary habits of G. aegis. These dominant bacteria shared capabilities in nutritional supplementation and ecological niche expansion in the host, potentially a key adaptation for hydrothermal survival.IMPORTANCEDominant in the Longqi hydrothermal vent Southwest Indian Ridge, Gigantopelta aegis was observed to undergo unique and significant morphological changes and diet shifts known as cryptometamorphosis. During this process, G. aegis developed a specialized bacteria-housing organ, the esophageal gland, in the later life stages. Our research discovered variations in esophageal gland microbes between different body size groups of snails. These bacteria were closely related to the development and health of G. aegis. Full-length 16S rRNA gene analysis revealed more Thiogranum and fewer Sediminibacterium, suggesting a potential association with environmental adaptation. In the small-sized group, the potential functions were enriched in metabolism, while in larger G. aegis individuals, predictions indicated adaptive functions such as environmental information processing. Also, symbiotic Sulfurovum could be one of the factors influencing the habitat selection of G. aegis. Understanding the complex relationship between benthic macrofauna and microbes helps us describe the mechanisms of survival in extreme environments.
Collapse
Affiliation(s)
- Anning Mou
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Xinlong Li
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Zhong Li
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| | - Lingyun Qu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Yue Dong
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| | - Zongling Wang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Xuelei Zhang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
- National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology, Xi'an, China
- Qingdao Marine Engineering Survey, Design and Research Institute Co., Ltd., Qingdao, China
| | - Qinzeng Xu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
- Qingdao Marine Engineering Survey, Design and Research Institute Co., Ltd., Qingdao, China
| |
Collapse
|
4
|
Li C, Cheng J, Liu R, Huang X, Zhou L, Zhang G, Zhu T, Li D, Che Q. The thiodiketopiperazine derivatives shovelmycin A-B and ansamycin derivative divergolide X from the cold-seep-derived Streptomyces olivaceus HDN22-001. J Antibiot (Tokyo) 2025; 78:275-280. [PMID: 40038522 DOI: 10.1038/s41429-025-00812-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/23/2025] [Accepted: 02/16/2025] [Indexed: 03/06/2025]
Abstract
Three new compounds including two thiodiketopiperazine derivatives shovelmycins A-B (1-2), and one ansamycin derivative divergolide X (3) were isolated and identified from the culture extract of Streptomyces olivaceus HDN22-001, a marine actinomycete obtained from the deep-sea cold seep sediment sample collected from the South China Sea. Their structures and absolute configurations were determined by spectroscopic analyses and ECD calculations. Compound 1 exhibited the strongest DPPH radical scavenging activity with an IC50 value of 10.83 μM, which was better than that of the positive control vitamin C. And compound 2 was modestly cytotoxic against NCl-H446 cell with the IC50 value of 26.6 μM.
Collapse
Affiliation(s)
- Chen Li
- School of Medicine and Pharmacy, Key Laboratory of Marine Drugs Ministry of Education, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, People's Republic of China
| | - Jiangli Cheng
- School of Medicine and Pharmacy, Key Laboratory of Marine Drugs Ministry of Education, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, People's Republic of China
| | - Ruojin Liu
- School of Medicine and Pharmacy, Key Laboratory of Marine Drugs Ministry of Education, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, People's Republic of China
| | - Xiaofei Huang
- School of Medicine and Pharmacy, Key Laboratory of Marine Drugs Ministry of Education, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, People's Republic of China
| | - Luning Zhou
- School of Medicine and Pharmacy, Key Laboratory of Marine Drugs Ministry of Education, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, People's Republic of China
| | - Guojian Zhang
- School of Medicine and Pharmacy, Key Laboratory of Marine Drugs Ministry of Education, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao, People's Republic of China
| | - Tianjiao Zhu
- School of Medicine and Pharmacy, Key Laboratory of Marine Drugs Ministry of Education, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao, People's Republic of China
| | - Dehai Li
- School of Medicine and Pharmacy, Key Laboratory of Marine Drugs Ministry of Education, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao, People's Republic of China
| | - Qian Che
- School of Medicine and Pharmacy, Key Laboratory of Marine Drugs Ministry of Education, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, People's Republic of China.
- Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao, People's Republic of China.
| |
Collapse
|
5
|
Carrier TJ, Elder H, Macrander J, Dimond JL, Bingham BL, Reitzel AM. Symbiont-Mediated Metabolic Shift in the Sea Anemone Anthopleura elegantissima. Mol Ecol 2025; 34:e17722. [PMID: 40091861 PMCID: PMC11974494 DOI: 10.1111/mec.17722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 03/03/2025] [Indexed: 03/19/2025]
Abstract
Coral reefs and their photosynthetic algae form one of the most ecologically and economically impactful symbioses in the animal kingdom. The stability of this nutritional mutualism and this ecosystem is, however, at risk due to increasing sea surface temperatures that cause corals to expel their symbionts. Symbioses with these microeukaryotes have independently evolved multiple times, and non-coral cnidarians (e.g., sea anemones) serve as a valuable and insightful comparative system due to their ease of husbandry in the laboratory and their ability to shuffle different strains of their photosymbionts to acclimate to thermal conditions. This breadth of symbiont shuffling is exemplified by the sea anemone Anthopleura elegantissima , which naturally occurs in symbiosis with the dinoflagellate Breviolum muscatinei (formerly Symbiodinium) or the chlorophyte Elliptochloris marina as well as being aposymbiotic. Here, we assembled a draft genome and used multi-omics to characterise multiple physiological levels of each phenotype. We find that A. elegantissima has symbiont-specific transcriptional and metabolomic signatures, but a similar bacterial community dominated by a single Sphingomonas species that is commonly found in the cnidarian microbiome. Symbiosis with either eukaryotic symbiont resulted in differential gene expression and metabolic abundance for diverse processes spanning metabolism and immunity to reproduction and development, with some of these processes being unique to either symbiont. The ability to culture A. elegantissima with its phylogenetically divergent photosymbionts and perform experimental manipulations makes A. elegantissima another tractable sea anemone system to decode the symbiotic conversations of coral reef ecosystems and aid in wider conservation efforts.
Collapse
Affiliation(s)
- Tyler J. Carrier
- Department of Biological SciencesUniversity of North Carolina at CharlotteCharlotteNCUSA
- Center for Computational Intelligence to Predict Health and Environmental RisksUniversity of North Carolina at CharlotteCharlotteNCUSA
| | - Holland Elder
- Department of Integrative BiologyOregon State UniversityCorvallisORUSA
- Australian Institute of Marine ScienceTownsvilleAustralia
| | - Jason Macrander
- Department of Biological SciencesUniversity of North Carolina at CharlotteCharlotteNCUSA
- Biology DepartmentFlorida Southern CollegeLakelandFLUSA
| | - James L. Dimond
- Shannon Point Marine CenterWestern Washington UniversityAnacortesWAUSA
| | - Brian L. Bingham
- Shannon Point Marine CenterWestern Washington UniversityAnacortesWAUSA
- Department of Environmental SciencesWestern Washington UniversityBellinghamWAUSA
| | - Adam M. Reitzel
- Department of Biological SciencesUniversity of North Carolina at CharlotteCharlotteNCUSA
- Center for Computational Intelligence to Predict Health and Environmental RisksUniversity of North Carolina at CharlotteCharlotteNCUSA
| |
Collapse
|
6
|
Maurya AK, Kröninger L, Ehret G, Bäumers M, Marson M, Scheu S, Nowack ECM. A nucleus-encoded dynamin-like protein controls endosymbiont division in the trypanosomatid Angomonas deanei. SCIENCE ADVANCES 2025; 11:eadp8518. [PMID: 40106558 DOI: 10.1126/sciadv.adp8518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 02/13/2025] [Indexed: 03/22/2025]
Abstract
Angomonas deanei is a trypanosomatid of the Strigomonadinae. All members of this subfamily contain a single β-proteobacterial endosymbiont. Intriguingly, cell cycles of host and endosymbiont are synchronized. The molecular mechanisms underlying this notable level of integration are unknown. Previously, we identified a nucleus-encoded dynamin-like protein, called ETP9, that localizes at the endosymbiont division site of A. deanei. Here, we found by comparative genomics that endosymbionts throughout the Strigomonadinae lost the capacity to autonomously form a division septum. We describe the cell cycle-dependent subcellular localization of ETP9 that follows accumulation of the bacterium-encoded division protein FtsZ at the endosymbiont division site. Furthermore, we found that ETP9 is essential in symbiotic but dispensable in aposymbiotic A. deanei that lost the endosymbiont. In the symbiotic strain, ETP9 knockdowns resulted in filamentous, division-impaired endosymbionts. Our work unveiled that in A. deanei an endosymbiont division machinery of dual genetic origin evolved in which a neo-functionalized host protein compensates for losses of endosymbiont division genes.
Collapse
Affiliation(s)
- Anay K Maurya
- Institute of Microbial Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Lena Kröninger
- Institute of Microbial Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Georg Ehret
- Institute of Microbial Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Miriam Bäumers
- Center for Advanced Imaging, Department of Biology, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Marcel Marson
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Stefanie Scheu
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Eva C M Nowack
- Institute of Microbial Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| |
Collapse
|
7
|
Mizutani Y, Orita R, Kimura K, Funabara D. Hypoxia-induced changes in the gill and hepatopancreatic bacterial communities of the ark shell Anadara kagoshimensis. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2025; 27:53. [PMID: 39976704 DOI: 10.1007/s10126-025-10430-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 02/06/2025] [Indexed: 04/25/2025]
Abstract
Coastal hypoxia is an increasing environmental concern affecting marine ecosystems globally, particularly impacting benthic organisms such as bivalves. Although previous studies focused on the physiological responses of bivalves to hypoxic stress, the role of resident bacteria in the host response to hypoxia remains poorly understood. This study investigated changes in the resident bacterial communities in the gills and hepatopancreatic tissues of the ark shell (Anadara kagoshimensis) under hypoxic conditions. Specimens were assigned to three treatment groups: untreated control, hypoxia, and hypoxia with chloramphenicol supplementation (5.0 mg/L). After 3 days, specimens exposed to hypoxia exhibited black precipitation in the culture water, whereas antibiotic treatment reduced these effects. Amplicon sequencing revealed distinct bacterial communities between the tissues, with Arcobacteraceae and Alkalispirochaetaceae dominating in the gills and Metamycoplasmataceae being predominant in the hepatopancreas. The hepatopancreas displayed greater bacterial community changes than the gills under hypoxic conditions, including an increase in the abundance of Metamycoplasmataceae. The predicted metabolic functions suggested that these bacteria contribute to iron sulfide precipitation through sulfate reduction and iron respiration. The antibiotic-treated group displayed bacterial communities more similar to those of the control group, confirming the effectiveness of chloramphenicol in suppressing bacterial changes under hypoxia. This study provided new insights into tissue-specific bacterial responses to hypoxia in A. kagoshimensis and highlighted the potential role of Metamycoplasmataceae in the bivalve's response to hypoxic stress.
Collapse
Affiliation(s)
- Yukino Mizutani
- Graduate School of Bioresources, Mie University, 1577 Kurimamachiya, Tsu, Mie, 514-8507, Japan
- Faculty of Agriculture, Saga University, 1 Honjo, Saga, 840-8502, Japan
| | - Ryo Orita
- Faculty of Agriculture, Saga University, 1 Honjo, Saga, 840-8502, Japan.
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan.
| | - Kei Kimura
- Faculty of Agriculture, Saga University, 1 Honjo, Saga, 840-8502, Japan
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan
| | - Daisuke Funabara
- Graduate School of Bioresources, Mie University, 1577 Kurimamachiya, Tsu, Mie, 514-8507, Japan
| |
Collapse
|
8
|
Das BK, Gadnayak A, Chakraborty HJ, Pradhan SP, Raut SS, Das SK. Exploring microbial players for metagenomic profiling of carbon cycling bacteria in sundarban mangrove soils. Sci Rep 2025; 15:4784. [PMID: 39922935 PMCID: PMC11807184 DOI: 10.1038/s41598-025-89418-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 02/05/2025] [Indexed: 02/10/2025] Open
Abstract
The Sundarbans, the world's largest tidal mangrove forest, acts as a crucial ecosystem for production, conservation, and the cycling of carbon and nitrogen. The study explored the hypothesis that microbial communities in mangrove ecosystems exhibit unique taxonomic and functional traits that play a vital part in carbon cycling and ecosystem resilience. Using metagenomic analysis to evaluate microbial communities in mangrove and non-mangrove environment, evaluating their composition, functional functions, and ecological relevance. The analysis revealed distinct microbial profiles, in mangrove and non-mangrove environments, with bacteria, proteobacteria, and viruses being the most prevalent groups, with varying abundances in each environment. Functional and taxonomical analysis identified genes involved in carbon regulation, including Triacylglycerol lipase, NarG, DsrB, DNA-binding transcriptional dual regulator CRP, Vanillate O-demethylase oxygenase, succinate-CoA ligase, Tetrahydrofolate ligase, Carboxylase, Ribulose-1,5-bisphosphate carboxylase/oxygenase, Glycine hydroxymethyltransferase, MAG: urease, Endosymbiont of Oligobrachia haakonmosbiensis, Ribulose bisphosphate carboxylase, Aconitate hydratase AcnA, and nitrous oxide reductase, suggesting the metabolic versatility of these microbial communities for carbon cycling. The findings emphasize the key role of microbial activity in preserving mangrove ecosystem health and resilience, highlighting the intricate interplay between microbial diversity, functional capabilities, and environmental factors.
Collapse
Affiliation(s)
- Basanta Kumar Das
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, India.
| | - Ayushman Gadnayak
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, India
| | | | | | | | - Sanjoy Kumar Das
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, India
| |
Collapse
|
9
|
Chess MM, Foley S, Ettensohn CA. Horizontal Transfer of msp130 Genes and the Evolution of Metazoan Biocalcification. Genome Biol Evol 2025; 17:evaf028. [PMID: 39960859 PMCID: PMC11878542 DOI: 10.1093/gbe/evaf028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2025] [Indexed: 03/06/2025] Open
Abstract
The formation of calcified skeletons is crucial for the development, physiology, and ecology of many marine metazoans. The evolutionary origins of the genetic toolkit required for biocalcification are widely debated. MSP130 proteins, originally identified through their expression specifically by sea urchin skeletal cells, have been hypothesized to have been acquired by metazoans from bacteria through horizontal gene transfer. Here, we provide support for a horizontal gene transfer-based origin of metazoan MSP130 proteins by conducting phylogenetic and in silico protein analyses utilizing high-quality genomes. We show that msp130 genes underwent duplications within almost all biocalcifying bilaterian phyla and identify highly conserved intron-exon junctions specific to bilaterian msp130 genes. The absence of MSP130 proteins in calcifying, nonbilaterian metazoans and other basal eukaryotes suggests that an ancestral msp130 gene underwent a horizontal gene transfer event that predates bilaterians, but not metazoans. We report striking structural similarities between bilaterian and bacterial MSP130 proteins, with each containing a seven-bladed, barrel-like motif that encompasses a choice-of-anchor domain, and identify highly conserved, predicted Ca2+-binding sites associated with the barrels. These findings point to a conserved, ancient function for MSP130 proteins in biocalcification and support the view that lateral transfer of bacterial genes supported the appearance of calcified animal skeletons.
Collapse
Affiliation(s)
- Macie M Chess
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Saoirse Foley
- Department of Biology, Marian University, Indianapolis, IN, USA
| | - Charles A Ettensohn
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| |
Collapse
|
10
|
Warkhade Y, Schaerer LG, Bigcraft I, Hazen TC, Techtmann SM. Diversity and Distribution of Hydrocarbon-Degrading Genes in the Cold Seeps from the Mediterranean and Caspian Seas. Microorganisms 2025; 13:222. [PMID: 40005589 PMCID: PMC11857318 DOI: 10.3390/microorganisms13020222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/20/2024] [Accepted: 12/22/2024] [Indexed: 02/27/2025] Open
Abstract
Marine cold seeps are unique ecological niches characterized by the emergence of hydrocarbons, including methane, which fosters diverse microbial communities. This study investigates the diversity and distribution of hydrocarbon-degrading genes and organisms in sediments from the Caspian and Mediterranean Seas, utilizing 16S rRNA and metagenomic sequencing to elucidate microbial community structure and functional potential. Our findings reveal distinct differences in hydrocarbon degrading gene profiles between the two seas, with pathways for aerobic and anaerobic hydrocarbon degradation co-existing in sediments from both basins. Aerobic pathways predominate in the surface sediments of the Mediterranean Sea, while anaerobic pathways are favored in the surface sediments of the anoxic Caspian Sea. Additionally, sediment depths significantly influence microbial diversity, with variations in gene abundance and community composition observed at different depths. Aerobic hydrocarbon-degrading genes decrease in diversity with depth in the Mediterranean Sea, whereas the diversity of aerobic hydrocarbon-degrading genes increases with depth in the Caspian Sea. These results enhance our understanding of microbial ecology in cold seep environments and have implications for bioremediation practices targeting hydrocarbon pollutants in marine ecosystems.
Collapse
Affiliation(s)
- Yogita Warkhade
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA; (Y.W.); (L.G.S.); (I.B.)
| | - Laura G. Schaerer
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA; (Y.W.); (L.G.S.); (I.B.)
| | - Isaac Bigcraft
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA; (Y.W.); (L.G.S.); (I.B.)
| | - Terry C. Hazen
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996, USA;
| | - Stephen M. Techtmann
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA; (Y.W.); (L.G.S.); (I.B.)
| |
Collapse
|
11
|
Sun L, Liu X, Zhou L, Wang H, Lian C, Zhong Z, Wang M, Chen H, Li C. Shallow-water mussels (Mytilus galloprovincialis) adapt to deep-sea environment through transcriptomic and metagenomic insights. Commun Biol 2025; 8:46. [PMID: 39806046 PMCID: PMC11729891 DOI: 10.1038/s42003-024-07382-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025] Open
Abstract
Recent studies have unveiled the deep sea as a rich biosphere, populated by species descended from shallow-water ancestors post-mass extinctions. Research on genomic evolution and microbial symbiosis has shed light on how these species thrive in extreme deep-sea conditions. However, early adaptation stages, particularly the roles of conserved genes and symbiotic microbes, remain inadequately understood. This study examined transcriptomic and microbiome changes in shallow-water mussels Mytilus galloprovincialis exposed to deep-sea conditions at the Site-F cold seep in the South China Sea. Results reveal complex gene expression adjustments in stress response, immune defense, homeostasis, and energy metabolism pathways during adaptation. After 10 days of deep-sea exposure, shallow-water mussels and their microbial communities closely resembled those of native deep-sea mussels, demonstrating host and microbiome convergence in response to adaptive shifts. Notably, methanotrophic bacteria, key symbionts in native deep-sea mussels, emerged as a dominant group in the exposed mussels. Host genes involved in immune recognition and endocytosis correlated significantly with the abundance of these bacteria. Overall, our analyses provide insights into adaptive transcriptional regulation and microbiome dynamics of mussels in deep-sea environments, highlighting the roles of conserved genes and microbial community shifts in adapting to extreme environments.
Collapse
Affiliation(s)
- Luyang Sun
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, 266104, Qingdao, China.
- University of Chinese Academy of Sciences, 10049, Beijing, China.
| | - Xiaolu Liu
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, 266104, Qingdao, China
- University of Chinese Academy of Sciences, 10049, Beijing, China
| | - Li Zhou
- University of Chinese Academy of Sciences, 10049, Beijing, China
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, 266071, Qingdao, China
| | - Hao Wang
- University of Chinese Academy of Sciences, 10049, Beijing, China
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, 266071, Qingdao, China
| | - Chao Lian
- University of Chinese Academy of Sciences, 10049, Beijing, China
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, 266071, Qingdao, China
| | - Zhaoshan Zhong
- University of Chinese Academy of Sciences, 10049, Beijing, China
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, 266071, Qingdao, China
| | - Minxiao Wang
- University of Chinese Academy of Sciences, 10049, Beijing, China
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, 266071, Qingdao, China
| | - Hao Chen
- University of Chinese Academy of Sciences, 10049, Beijing, China
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, 266071, Qingdao, China
| | - Chaolun Li
- University of Chinese Academy of Sciences, 10049, Beijing, China.
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, 266071, Qingdao, China.
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 266071, Qingdao, China.
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301, Guangzhou, China.
| |
Collapse
|
12
|
Li Q, Chen Y, Zhang J, Zhang S, Li J. Specificity of benthic invertebrate gill-associated microbiome contributes to host fitness to localized heterogeneous environment in the cold seep. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177861. [PMID: 39644640 DOI: 10.1016/j.scitotenv.2024.177861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/09/2024]
Abstract
The deep hydrocarbon fluids discharged into the water column at cold seeps create diverse and heterogeneous habitats on the seafloor. Symbiosis is essential for the survival of marine life in extreme deep-sea environments. Although the symbiotic relationship between chemoautotrophic bacteria and invertebrates has been reported, our understanding of these host-microbe interactions under heterogeneous environment remains limited. In this study, we evaluated the bacterial community structures, histological and subcellular localization, and potential functions of the gill microbiomes of six invertebrates in the Haima cold seep, South China Sea. The results showed distinct gill-associated microbiomes in these six invertebrates. Gigantidas haimaensis and Archivesica marissinica exhibit a highly dependent symbiotic relationship with their intracellular gill symbionts, characterized by a simple composition. In contrast, Alvinocaris longirostris, Shinkaia crosnieri, Phymorhynchus buccinoides, and Paraescarpia echinospica display a loosely dependent association with their extracellular gill-associated microbes, which are notably complex in composition. Moreover, gill microbiome specificity was seen among six invertebrates and host selection could be an underlying mechanism. The potential functional components of these six invertebrate gill microbiomes contribute to host fitness in heterogeneous local environments. The results obtained from our study provide insights into the ecology and evolution of host-microbe interactions and the underlying mechanisms in extreme marine environments. This information is critical for predicting the responses of benthic fauna to environmental changes in cold seeps.
Collapse
Affiliation(s)
- Qiqi Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Yu Chen
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Jian Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Si Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Jie Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| |
Collapse
|
13
|
Kong X, Wang W, Xia S, Zhi Y, Cai Y, Zhang H, Shen X. Molecular and functional characterization of short peptidoglycan recognition proteins in Vesicomyidae clam. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 162:105284. [PMID: 39489409 DOI: 10.1016/j.dci.2024.105284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Within cold seep environments, the Vesicomyidae clam emerges as a prevalent species, distinguished by its symbiotic relationship with microorganisms housed within its organ gill. Given the extreme conditions and the symbiotic nature of this association, investigating the host's immune genes, particularly immune recognition receptors, is essential for understanding their role in facilitating host-symbiotic interactions. Three short peptidoglycan recognition proteins (PGRPs) were identified in the clam. AmPGRP-S1, -S2, and -S3 were found to possess conserved amidase binding sites and Zn2+ binding sites. Quantitative Real-time PCR (qRT-PCR) analysis revealed differential expression patterns among the PGRPs. AmPGRP-S1 and AmPGRP-S2 exhibited elevated expression levels in the gill, while AmPGRP-S3 displayed the highest expression in the adductor muscle. Functional experiments demonstrated that recombinant AmPGRP-S1, -S2, and -S3 (rAmPGRPs) exhibited binding capabilities to both L-PGN and D-PGN (peptidoglycan). Notably, rAmPGRP-S1 and -S2 possessed Zn2+-independent amidase activity, while rAmPGRP-S3 lacked this enzymatic function. rAmPGRPs were shown to bind to five different bacterial species. Among these, rAmPGRP-S1 inhibited Escherichia coli and Bacillus subtilis, while rAmPGRP-S2 and -S3 inhibited Bacillus subtilis in the absence of Zn2+. In the presence of Zn2+, rAmPGRP-S1 and -S2 exhibited enhanced inhibitory activity against Staphylococcus aureus or Bacillus subtilis. These findings suggest that AmPGRPs may play a pivotal role in mediating the interaction between the host and endosymbiotic bacteria, functioning as PGN and microbe receptors, antibacterial effectors, and regulators of host-microbe symbiosis. These results contribute to our understanding of the adaptive mechanisms of deep-sea organisms to the challenging cold seep environments.
Collapse
Affiliation(s)
- Xue Kong
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222000, China; Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222000, China; Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222000, China; Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361000, China
| | - Wei Wang
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222000, China; Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222000, China
| | - Sunan Xia
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222000, China
| | - Ying Zhi
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222000, China
| | - Yuefeng Cai
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222000, China; Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222000, China; Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222000, China
| | - Haibin Zhang
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China
| | - Xin Shen
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222000, China; Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222000, China; Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222000, China.
| |
Collapse
|
14
|
Liu C, Zhang J, Li Q, Zhang Y, Zhang S, Yu Z, Li J, Li J. Horizontal transmission of symbiotic bacteria and host selective sweep in the giant clam Tridacna crocea. ISME COMMUNICATIONS 2025; 5:ycaf037. [PMID: 40110165 PMCID: PMC11919647 DOI: 10.1093/ismeco/ycaf037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 02/02/2025] [Accepted: 02/24/2025] [Indexed: 03/22/2025]
Abstract
Giant clams, with their significant ecological importance, depend on associated bacteria for their health and development, yet the transmission modes and succession of community dynamics of these bacteria remain poorly understood. This study employed 16S rRNA gene sequencing and microscopy to investigate the transmission and community dynamics of symbiotic bacteria in the giant clam Tridacna crocea during early developmental stages (fertilized eggs, blastocyst, D-larvae, and pediveliger larvae). Fluorescence in situ hybridization and transmission electron microscopy did not detect internal symbiotic bacteria in fertilized eggs and adult gonad gametes, but scanning electron microscopy revealed microbial structures on egg surface microvilli, suggesting their role as microbial carriers. 16S rRNA sequencing confirmed microbial presence in fertilized eggs, indicating bacterial acquisition via external vertical transmission (adherence to microvilli) or horizontal transmission. Given the lack of internalized bacteria in reproductive organs, we prefer to classify the symbiotic bacteria acquisition as horizontal transmission. Microbial community analysis showed that T. crocea acquired a significant portion of its microbiome from seawater throughout its development. Before reaching the pediveliger stage, the bacterial community composition closely resembled that of the surrounding seawater, primarily featuring the family Rhodobacteraceae. As T. crocea matured, the host's selective pressure increased (e.g. deterministic assembly), which simplified the microbial community and reduced diversity. During the pediveliger stage, the genus Endozoicomonas became dominant, forming a large proportion of the bacterial community within the gonads. This highlights the ecological significance of host-microbe interactions in maintaining biodiversity and driving ecosystem stability through dynamic community assembly processes.
Collapse
Affiliation(s)
- Cong Liu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Qiqi Li
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Yuehuan Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Si Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Sanya National Marine Ecosystem Research Station, Chinese Academy of Sciences, Sanya 572000, China
| | - Ziniu Yu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Jun Li
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Sanya National Marine Ecosystem Research Station, Chinese Academy of Sciences, Sanya 572000, China
| | - Jie Li
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Sanya National Marine Ecosystem Research Station, Chinese Academy of Sciences, Sanya 572000, China
| |
Collapse
|
15
|
Li M, Chen H, Wang M, Zhong Z, Lian C, Zhou L, Zhang H, Wang H, Cao L, Li C. Phenotypic plasticity of symbiotic organ highlight deep-sea mussel as model species in monitoring fluid extinction of deep-sea methane hydrate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:178048. [PMID: 39689471 DOI: 10.1016/j.scitotenv.2024.178048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 11/29/2024] [Accepted: 12/09/2024] [Indexed: 12/19/2024]
Abstract
Methane hydrates stored in cold seeps are an important source of energy and carbon for both the endemic chemosynthetic community and humanity. However, the methane fluids may cease and even stop naturally or anthropogenically, calling for a thorough evaluation of its potential impact on the endemic species and local chemosynthetic ecosystems. As one dominant megafauna in cold seeps, some of the deep-sea mussels rely on methanotrophic endosymbionts for nutrition and therefore could serve as a promising model in monitoring the dynamic changes of methane hydrate. However, knowledge on the long-term responses of deep-sea mussels to environmental stresses induced by methane reduction and deprivation, is still lacking. Here, we set up a laboratory system and cultivated methanotrophic deep-sea mussel Gigantidas platifrons without methane supply to survey the phenotypic changes after methane deprivation. While the mussels managed to survive for >10 months after the methane deprivation, drastic changes in the metabolism, function, and development of gill tissue, and in the association with methanotrophic symbionts were observed. In detail, the mussel digested all methanotrophic endosymbionts shortly after methane deprivation for nutrition and remodeled the global metabolism of gill to conserve energy. As the methane deprivation continued, the mussel replaced its bacteriocytes with ciliated cells to support filter-feeding, which is an atavistic trait in non-symbiotic mussels. During the long-term methane deprivation assay, the mussel also retained the generation of new cells to support the phenotypic changes of gill and even promoted the activity after being transplanted back to deep-sea, showing the potential resilience after long-term methane deprivation. Evidences further highlighted the participation of symbiont sterol metabolism in regulating these processes. These results collectively show the phenotypic plasticity of deep-sea mussels and their dynamic responses to methane deprivation, providing essential information in assessing the long-term influence of methane hydrate extinction.
Collapse
Affiliation(s)
- Mengna Li
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; National Deep Sea Center, Qingdao 266071, China
| | - Hao Chen
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Minxiao Wang
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhaoshan Zhong
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Chao Lian
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Li Zhou
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Huan Zhang
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Hao Wang
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Lei Cao
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Chaolun Li
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Laoshan Laboratory, Qingdao 266071, China.
| |
Collapse
|
16
|
Apostolou K, Radea C, Meziti A, Kormas KA. Bacterial Diversity Associated with Terrestrial and Aquatic Snails. Microorganisms 2024; 13:8. [PMID: 39858777 PMCID: PMC11767905 DOI: 10.3390/microorganisms13010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/15/2024] [Accepted: 12/20/2024] [Indexed: 01/27/2025] Open
Abstract
The introduction of the holobiont concept has triggered scientific interest in depicting the structural and functional diversity of animal microbial symbionts, which has resulted in an unprecedented wealth of such cross-domain biological associations. The steadfast technological progress in nucleic acid-based approaches would cause one to expect that scientific works on the microbial symbionts of animals would be balanced at least for the farmed animals of human interest. For some animals, such as ruminants and a few farmed fish species of financial significance, the scientific wealth of the microbial worlds they host is immense and ever growing. The opposite happens for other animals, such as snails, in both the wild and farmed species. Snails are evolutionary old animals, with complex ecophysiological roles, living in rich microbial habitats such as soil and sediments or water. In order to create a stepping stone for future snail microbiome studies, in this literature review, we combined all the available knowledge to date, as documented in scientific papers, on any microbes associated with healthy and diseased terrestrial and aquatic snail species from natural and farmed populations. We conducted a Boolean search in Scopus, Web of Science, and ScienceDirect until June 2024, identifying 137 papers, of which 60 were used for original data on snail bacterial communities in the gastrointestinal tract, hepatopancreas, and feces. We provide a synthesis on how representative this knowledge is towards depicting the possible snail core microbiota, as well as the steps that need to be taken in the immediate future to increase the in-depth and targeted knowledge of the bacterial component in snail holobionts.
Collapse
Affiliation(s)
- Konstantinos Apostolou
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, 384 46 Volos, Greece;
| | - Canella Radea
- Section of Ecology and Taxonomy, Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis Ilissia, 157 84 Athens, Greece;
| | - Alexandra Meziti
- Department of Marine Sciences, University of the Aegean, 811 00 Mytilene, Greece;
| | - Konstantinos Ar. Kormas
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, 384 46 Volos, Greece;
| |
Collapse
|
17
|
Contarini PE, Emboule E, Jean-Louis P, Woyke T, Date SV, Gros O, Volland JM. A novel open-source cultivation system helps establish the first full cycle chemosynthetic symbiosis model system involving the giant ciliate Zoothamnium niveum. Front Microbiol 2024; 15:1491485. [PMID: 39726965 PMCID: PMC11669664 DOI: 10.3389/fmicb.2024.1491485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
Symbiotic interactions drive species evolution, with nutritional symbioses playing vital roles across ecosystems. Chemosynthetic symbioses are globally distributed and ecologically significant, yet the lack of model systems has hindered research progress. The giant ciliate Zoothamnium niveum and its sulfur-oxidizing symbionts represent the only known chemosynthetic symbiosis with a short life span that has been transiently cultivated in the laboratory. While it is experimentally tractable and presents a promising model system, it currently lacks an open-source, simple, and standardized cultivation setup. Following the FABricated Ecosystems (EcoFABs) model, we leveraged 3D printing and polydimethylsiloxane (PDMS) casting to develop simple flow-through cultivation chambers that can be produced and adopted by any laboratory. The streamlined manufacturing process reduces production time by 86% and cuts cost by tenfold compared to the previous system. Benchmarking using previously established optimal growth conditions, the new open-source cultivation system proves stable, efficient, more autonomous, and promotes a more prolific growth of the symbiosis. For the first time, starting from single cells, we successfully cultivated the symbiosis in flow-through chambers for 20 days, spanning multiple generations of colonies that remained symbiotic. They were transferred from chamber to chamber enabling long-term cultivation and eliminating the need for continuous field sampling. The chambers, optimized for live imaging, allowed detailed observation of the synchronized growth between the host and symbiont. Highlighting the benefit of this new system, we here describe a new step in the first hours of development where the host pauses growth, expels a coat, before resuming growth, hinting at a putative symbiont selection mechanism early in the colony life cycle. With this simple, open-source, cultivation setup, Z. niveum holds promises for comparative studies, standardization of research and wide adoption by the symbiosis research community.
Collapse
Affiliation(s)
- P. E. Contarini
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d’Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Pointe-à-Pitre, France
| | - E. Emboule
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d’Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Pointe-à-Pitre, France
| | - P. Jean-Louis
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d’Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Pointe-à-Pitre, France
| | - T. Woyke
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - S. V. Date
- Laboratory for Research in Complex Systems, Menlo Park, CA, United States
| | - O. Gros
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d’Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Pointe-à-Pitre, France
| | - J-M. Volland
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
- Laboratory for Research in Complex Systems, Menlo Park, CA, United States
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
18
|
Sørensen MES, Stiller ML, Kröninger L, Nowack ECM. Protein import into bacterial endosymbionts and evolving organelles. FEBS J 2024. [PMID: 39658314 DOI: 10.1111/febs.17356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/28/2024] [Accepted: 12/03/2024] [Indexed: 12/12/2024]
Abstract
Bacterial endosymbionts are common throughout the eukaryotic tree of life and provide a range of essential functions. The intricate integration of bacterial endosymbionts into a host led to the formation of the energy-converting organelles, mitochondria and plastids, that have shaped eukaryotic evolution. Protein import from the host has been regarded as one of the distinguishing features of organelles as compared to endosymbionts. In recent years, research has delved deeper into a diverse range of endosymbioses and discovered evidence for 'exceptional' instances of protein import outside of the canonical organelles. Here we review the current evidence for protein import into bacterial endosymbionts. We cover both 'recently evolved' organelles, where there is evidence for hundreds of imported proteins, and endosymbiotic systems where currently only single protein import candidates are described. We discuss the challenges of establishing protein import machineries and the diversity of mechanisms that have independently evolved to solve them. Understanding these systems and the different independent mechanisms, they have evolved is critical to elucidate how cellular integration arises and deepens at the endosymbiont to organelle interface. We finish by suggesting approaches that could be used in the future to address the open questions. Overall, we believe that the evidence now suggests that protein import into bacterial endosymbionts is more common than generally realized, and thus that there is an increasing number of partnerships that blur the distinction between endosymbiont and organelle.
Collapse
Affiliation(s)
- Megan E S Sørensen
- Department of Biology, Institute of Microbial Cell Biology, Heinrich Heine University Düsseldorf, Germany
| | - Mygg L Stiller
- Department of Biology, Institute of Microbial Cell Biology, Heinrich Heine University Düsseldorf, Germany
| | - Lena Kröninger
- Department of Biology, Institute of Microbial Cell Biology, Heinrich Heine University Düsseldorf, Germany
| | - Eva C M Nowack
- Department of Biology, Institute of Microbial Cell Biology, Heinrich Heine University Düsseldorf, Germany
| |
Collapse
|
19
|
Zhang H, Zhou Y, Yang Z. Genetic adaptations of marine invertebrates to hydrothermal vent habitats. Trends Genet 2024; 40:1047-1059. [PMID: 39277449 DOI: 10.1016/j.tig.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/17/2024]
Abstract
Hydrothermal vents are unique habitats like an oases of life compared with typical deep-sea, soft-sediment environments. Most animals that live in these habitats are invertebrates, and they have adapted to extreme vent environments that include high temperatures, hypoxia, high sulfide, high metal concentration, and darkness. The advent of next-generation sequencing technology, especially the coming of the new era of omics, allowed more studies to focus on the molecular adaptation of these invertebrates to vent habitats. Many genes linked to hydrothermal adaptation have been studied. We summarize the findings related to these genetic adaptations and discuss which new techniques can facilitate studies in the future.
Collapse
Affiliation(s)
- Haibin Zhang
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China.
| | - Yang Zhou
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Zhuo Yang
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
20
|
Li Y, Ye Z, Lai MC, Liu CS, Paull CK, Lin S, Lai SJ, You YT, Wu SY, Hung CC, Ding JY, Shih CJ, Wu YC, Zhao J, Xiao W, Wu CH, Dong G, Zhang H, Qiu W, Wang S, Chen SC. Microbial Communities in and Around the Siboglinid Tubeworms from the South Yungan East Ridge Cold Seep Offshore Southwestern Taiwan at the Northern South China Sea. Microorganisms 2024; 12:2452. [PMID: 39770655 PMCID: PMC11676240 DOI: 10.3390/microorganisms12122452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
To date, only a few microbial community studies of cold seeps at the South China Sea (SCS) have been reported. The cold seep dominated by tubeworms was discovered at South Yungan East Ridge (SYER) offshore southwestern Taiwan by miniROV. The tubeworms were identified and proposed as Paraescarpia formosa sp. nov. through morphological and phylogenetic analyses. The endosymbionts in the trunk of P. formosa analyzed by a 16S rRNA gene clone library represented only one phylotype, which belonged to the family Sedimenticolaceae in Gammaproteobacteria. In addition, the archaeal and bacterial communities in the habitat of tubeworm P. formosa were investigated by using high-phylogenetic-resolution full-length 16S rRNA gene amplicon sequencing. The results showed that anerobic methane-oxidizing archaea (ANME)-1b was most abundant and ANME-2ab was minor in a consortia of the anerobic oxidation of methane (AOM). The known sulfate-reducing bacteria (SRB) partners in AOM consortia, such as SEEP-SRB1, -SRB2, and -SRB4, Desulfococcus and Desulfobulbus, occurred in a small population (0-5.7%) at the SYER cold seep, and it was suggested that ANME-1b and ANME-2ab might be coupled with multiple SRB in AOM consortia. Besides AOM consortia, various methanogenic archaea, including Bathyarchaeota (Subgroup-8), Methanocellales, Methanomicrobiales, Methanosarcinales, Methanofastidiosales and Methanomassiliicoccales, were identified, and sulfur-oxidizing bacteria Sulfurovum and Sulfurimonas in phylum Epsilonbacteraeota were dominant. This study revealed the first investigation of microbiota in and around tubeworm P. formosa discovered at the SYER cold seep offshore southwestern Taiwan. We could gain insights into the chemosynthetic communities in the deep sea, especially regarding the cold seep ecosystems at the SCS.
Collapse
Affiliation(s)
- Yin Li
- School of Resources and Chemical Engineering, Sanming University, Sanming 365004, China; (Y.L.); (Z.Y.); (J.Z.); (W.X.); (C.-H.W.); (G.D.); (H.Z.); (W.Q.); (S.W.)
- Fujian Provincial Key Laboratory of Resources and Environmental Monitoring and Sustainable Management and Utilization, Sanming University, Sanming 365004, China
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Zhiwei Ye
- School of Resources and Chemical Engineering, Sanming University, Sanming 365004, China; (Y.L.); (Z.Y.); (J.Z.); (W.X.); (C.-H.W.); (G.D.); (H.Z.); (W.Q.); (S.W.)
- Fujian Provincial Key Laboratory of Resources and Environmental Monitoring and Sustainable Management and Utilization, Sanming University, Sanming 365004, China
| | - Mei-Chin Lai
- Department of Life Sciences, National Chung Hsing University, Taichung 402202, Taiwan; (S.-J.L.); (Y.-T.Y.); (S.-Y.W.); (C.-C.H.); (J.-Y.D.)
| | - Char-Shine Liu
- Institute of Oceanography, National Taiwan University, Taipei 106319, Taiwan; (C.-S.L.); (S.L.)
| | - Charles K. Paull
- Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039-9644, USA;
| | - Saulwood Lin
- Institute of Oceanography, National Taiwan University, Taipei 106319, Taiwan; (C.-S.L.); (S.L.)
| | - Shu-Jung Lai
- Department of Life Sciences, National Chung Hsing University, Taichung 402202, Taiwan; (S.-J.L.); (Y.-T.Y.); (S.-Y.W.); (C.-C.H.); (J.-Y.D.)
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung 406040, Taiwan
| | - Yi-Ting You
- Department of Life Sciences, National Chung Hsing University, Taichung 402202, Taiwan; (S.-J.L.); (Y.-T.Y.); (S.-Y.W.); (C.-C.H.); (J.-Y.D.)
| | - Sue-Yao Wu
- Department of Life Sciences, National Chung Hsing University, Taichung 402202, Taiwan; (S.-J.L.); (Y.-T.Y.); (S.-Y.W.); (C.-C.H.); (J.-Y.D.)
| | - Chuan-Chuan Hung
- Department of Life Sciences, National Chung Hsing University, Taichung 402202, Taiwan; (S.-J.L.); (Y.-T.Y.); (S.-Y.W.); (C.-C.H.); (J.-Y.D.)
| | - Jiun-Yan Ding
- Department of Life Sciences, National Chung Hsing University, Taichung 402202, Taiwan; (S.-J.L.); (Y.-T.Y.); (S.-Y.W.); (C.-C.H.); (J.-Y.D.)
| | - Chao-Jen Shih
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu 300193, Taiwan; (C.-J.S.); (Y.-C.W.)
| | - Yen-Chi Wu
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu 300193, Taiwan; (C.-J.S.); (Y.-C.W.)
| | - Jingjing Zhao
- School of Resources and Chemical Engineering, Sanming University, Sanming 365004, China; (Y.L.); (Z.Y.); (J.Z.); (W.X.); (C.-H.W.); (G.D.); (H.Z.); (W.Q.); (S.W.)
- Fujian Provincial Key Laboratory of Resources and Environmental Monitoring and Sustainable Management and Utilization, Sanming University, Sanming 365004, China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350117, China
| | - Wangchuan Xiao
- School of Resources and Chemical Engineering, Sanming University, Sanming 365004, China; (Y.L.); (Z.Y.); (J.Z.); (W.X.); (C.-H.W.); (G.D.); (H.Z.); (W.Q.); (S.W.)
- Fujian Provincial Key Laboratory of Resources and Environmental Monitoring and Sustainable Management and Utilization, Sanming University, Sanming 365004, China
| | - Chih-Hung Wu
- School of Resources and Chemical Engineering, Sanming University, Sanming 365004, China; (Y.L.); (Z.Y.); (J.Z.); (W.X.); (C.-H.W.); (G.D.); (H.Z.); (W.Q.); (S.W.)
- Fujian Provincial Key Laboratory of Resources and Environmental Monitoring and Sustainable Management and Utilization, Sanming University, Sanming 365004, China
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Guowen Dong
- School of Resources and Chemical Engineering, Sanming University, Sanming 365004, China; (Y.L.); (Z.Y.); (J.Z.); (W.X.); (C.-H.W.); (G.D.); (H.Z.); (W.Q.); (S.W.)
- Fujian Provincial Key Laboratory of Resources and Environmental Monitoring and Sustainable Management and Utilization, Sanming University, Sanming 365004, China
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Hangying Zhang
- School of Resources and Chemical Engineering, Sanming University, Sanming 365004, China; (Y.L.); (Z.Y.); (J.Z.); (W.X.); (C.-H.W.); (G.D.); (H.Z.); (W.Q.); (S.W.)
- Fujian Provincial Key Laboratory of Resources and Environmental Monitoring and Sustainable Management and Utilization, Sanming University, Sanming 365004, China
- Medical Plant Exploitation and Utilization Engineering Research Center, Sanming University, Sanming 365004, China
| | - Wanling Qiu
- School of Resources and Chemical Engineering, Sanming University, Sanming 365004, China; (Y.L.); (Z.Y.); (J.Z.); (W.X.); (C.-H.W.); (G.D.); (H.Z.); (W.Q.); (S.W.)
- Fujian Provincial Key Laboratory of Resources and Environmental Monitoring and Sustainable Management and Utilization, Sanming University, Sanming 365004, China
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Song Wang
- School of Resources and Chemical Engineering, Sanming University, Sanming 365004, China; (Y.L.); (Z.Y.); (J.Z.); (W.X.); (C.-H.W.); (G.D.); (H.Z.); (W.Q.); (S.W.)
- Fujian Provincial Key Laboratory of Resources and Environmental Monitoring and Sustainable Management and Utilization, Sanming University, Sanming 365004, China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350117, China
| | - Sheng-Chung Chen
- School of Resources and Chemical Engineering, Sanming University, Sanming 365004, China; (Y.L.); (Z.Y.); (J.Z.); (W.X.); (C.-H.W.); (G.D.); (H.Z.); (W.Q.); (S.W.)
- Fujian Provincial Key Laboratory of Resources and Environmental Monitoring and Sustainable Management and Utilization, Sanming University, Sanming 365004, China
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350108, China
- Department of Life Sciences, National Chung Hsing University, Taichung 402202, Taiwan; (S.-J.L.); (Y.-T.Y.); (S.-Y.W.); (C.-C.H.); (J.-Y.D.)
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350117, China
| |
Collapse
|
21
|
Miwa T, Nagatsuma S, Hirakata Y, Nagai M, Ikarashi T, Takimoto Y, Watari T, Yamaguchi T, Hatamoto M. Combination of a membrane bioreactor with a rotating biological contactor holding several diverse metazoans can reduce excess sludge with fouling mitigation. WATER RESEARCH 2024; 266:122352. [PMID: 39243462 DOI: 10.1016/j.watres.2024.122352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/09/2024]
Abstract
In a membrane bioreactor (MBR) system, in situ sludge reduction techniques induce membrane fouling. To address this challenge, we incorporated a rotating mesh carrier, which can adsorb organic matter and provide a habitat for metazoans, into the anoxic tank of a conventional anoxic/oxic-MBR (A/O-MBR) system, termed rotating biological contactor-MBR (RBC-MBR), and evaluated treatment performance. Over 151 days, lab-scale RBC-MBR and A/O-MBR were used to treat municipal sewage. Both reactors showed similar COD and NH4+ removal rates. However, RBC-MBR reduced excess sludge by approximately 45 % compared with A/O-MBR. Microscopic observation and 18S rRNA gene-based microbial analysis revealed the persistence of microfauna and metazoans (oligochaetes, nematodes, and rotifers) in RBC, which are typically absent in activated sludge. Additionally, the metazoan's population in the RBC-MBR membrane tank was two-fold that of A/O-MBR, indicating enhanced sludge reduction through predation. Despite these reductions, the increase in transmembrane pressure was similar between RBC-MBR and A/O-MBR, suggesting that sludge holding by RBC mesh media degrade fouling substances, such as proteins and polysaccharides and improves sludge filterability, resulting in membrane fouling mitigation. Microbial communities in both reactors were similar, indicating that the installation of RBC did not alter the microbial community of sludge. Network analysis suggested potential symbiotic or prey-predator relationships between bacteria and metazoans. This study reveals that RBC-MBR effectively reduced the excess sludge while mitigating membrane fouling, highlighting one of the promising technology for applying metazoan predation into MBR.
Collapse
Affiliation(s)
- Toru Miwa
- Department of Science of Technology Innovation, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, 940-2188, Japan; Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Shimon Nagatsuma
- Department of Science of Technology Innovation, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, 940-2188, Japan
| | - Yuga Hirakata
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Mami Nagai
- Department of Science of Technology Innovation, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, 940-2188, Japan; National Institute of Technology, Oita College, Department of Civil and Environmental Engineering, 1666 Maki, Oita, 870-0152, Japan
| | - Tomoya Ikarashi
- Department of Civil and Environmental Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, 940-2188, Japan
| | - Yuya Takimoto
- Department of Mechanical Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, 940-2188, Japan
| | - Takahiro Watari
- Department of Civil and Environmental Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, 940-2188, Japan
| | - Takashi Yamaguchi
- Department of Science of Technology Innovation, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, 940-2188, Japan; Department of Civil and Environmental Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, 940-2188, Japan
| | - Masashi Hatamoto
- Department of Civil and Environmental Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, 940-2188, Japan.
| |
Collapse
|
22
|
Guéganton M, Methou P, Aubé J, Noël C, Rouxel O, Cueff‐Gauchard V, Gayet N, Durand L, Pradillon F, Cambon‐Bonavita M. Symbiont Acquisition Strategies in Post-Settlement Stages of Two Co-Occurring Deep-Sea Rimicaris Shrimp. Ecol Evol 2024; 14:e70369. [PMID: 39568770 PMCID: PMC11576329 DOI: 10.1002/ece3.70369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/29/2024] [Accepted: 09/16/2024] [Indexed: 11/22/2024] Open
Abstract
At deep-sea hydrothermal vents, deprived of light, most living communities are fueled by chemosynthetic microorganisms. These can form symbiotic associations with metazoan hosts, which are then called holobionts. Among these, two endemic co-occurring shrimp of the Mid-Atlantic Ridge (MAR), Rimicaris exoculata and Rimicaris chacei are colonized by dense and diversified chemosynthetic symbiotic communities in their cephalothoracic cavity and their digestive system. Although both shrimp harbor similar communities, they exhibit widely different population densities, distribution patterns at small scale and diet, as well as differences in post-settlement morphological modifications leading to the adult stage. These contrasting biological traits may be linked to their symbiotic development success. Consequently, key questions related to the acquisition of the symbiotic communities and the development of the three symbiotic organs are still open. Here we examined symbiotic development in juveniles of R. exoculata and R. chacei from TAG and Snake Pit using 16S metabarcoding to identify which symbiotic lineages are present at each juvenile stage. In addition, we highlighted the abundance and distribution of microorganisms at each stage using Fluorescence in situ Hybridization (FISH) and Scanning Electron Microscopy (SEM). For the first time, Candidatus Microvillispirillaceae family with Candidatus Rimicarispirillum spp. (midgut tube), Candidatus Foregutplasma rimicarensis and Candidatus BG2-rimicarensis (foregut) were identified in late juvenile stages. However, these lineages were absent in early juvenile stages, which coincides for the midgut tube with our observations of an immature tissue, devoid of microvilli. Conversely, symbiotic lineages from the cephalothoracic cavity were present from the earliest juvenile stages of both species and their overall diversities were similar to those of adults. These results suggest different symbiont acquisition dynamics between the cephalothoracic cavity and the digestive system, which may also involve distinct transmission mechanisms.
Collapse
Affiliation(s)
- Marion Guéganton
- Univ Brest, Ifremer, CNRS, Unite Biologie des Environnements Extrêmes marins ProfondsPlouzaneFrance
| | - Pierre Methou
- Univ Brest, Ifremer, CNRS, Unite Biologie des Environnements Extrêmes marins ProfondsPlouzaneFrance
| | - Johanne Aubé
- Univ Brest, Ifremer, CNRS, Unite Biologie des Environnements Extrêmes marins ProfondsPlouzaneFrance
| | - Cyril Noël
- Ifremer, IRSI, SeBiMER Service de Bioinformatique de l'IfremerPlouzanéFrance
| | - Ouafae Rouxel
- Univ Brest, Ifremer, CNRS, Unite Biologie des Environnements Extrêmes marins ProfondsPlouzaneFrance
| | - Valérie Cueff‐Gauchard
- Univ Brest, Ifremer, CNRS, Unite Biologie des Environnements Extrêmes marins ProfondsPlouzaneFrance
| | - Nicolas Gayet
- Univ Brest, Ifremer, CNRS, Unite Biologie des Environnements Extrêmes marins ProfondsPlouzaneFrance
| | - Lucile Durand
- Univ Brest, Ifremer, CNRS, Unite Biologie des Environnements Extrêmes marins ProfondsPlouzaneFrance
| | - Florence Pradillon
- Univ Brest, Ifremer, CNRS, Unite Biologie des Environnements Extrêmes marins ProfondsPlouzaneFrance
| | | |
Collapse
|
23
|
Porras MÁG, Assié A, Tietjen M, Violette M, Kleiner M, Gruber-Vodicka H, Dubilier N, Leisch N. An intranuclear bacterial parasite of deep-sea mussels expresses apoptosis inhibitors acquired from its host. Nat Microbiol 2024; 9:2877-2891. [PMID: 39242818 PMCID: PMC11521996 DOI: 10.1038/s41564-024-01808-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 08/13/2024] [Indexed: 09/09/2024]
Abstract
A limited number of bacteria are able to colonize the nuclei of eukaryotes. 'Candidatus Endonucleobacter' infects the nuclei of deep-sea mussels, where it replicates to ≥80,000 bacteria per nucleus and causes nuclei to swell to 50 times their original size. How these parasites are able to replicate and avoid apoptosis is not known. Dual RNA-sequencing transcriptomes of infected nuclei isolated using laser-capture microdissection revealed that 'Candidatus Endonucleobacter' does not obtain most of its nutrition from nuclear DNA or RNA. Instead, 'Candidatus Endonucleobacter' upregulates genes for importing and digesting sugars, lipids, amino acids and possibly mucin from its host. It likely prevents apoptosis of host cells by upregulating 7-13 inhibitors of apoptosis, proteins not previously seen in bacteria. Comparative phylogenetic analyses revealed that 'Ca. Endonucleobacter' acquired inhibitors of apoptosis through horizontal gene transfer from their hosts. Horizontal gene transfer from eukaryotes to bacteria is assumed to be rare, but may be more common than currently recognized.
Collapse
Affiliation(s)
| | - Adrien Assié
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, USA
| | - Målin Tietjen
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Marlene Violette
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Harald Gruber-Vodicka
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- Zoological Institute, Christian-Albrechts-University, Kiel, Germany
| | - Nicole Dubilier
- Max Planck Institute for Marine Microbiology, Bremen, Germany.
| | - Nikolaus Leisch
- Max Planck Institute for Marine Microbiology, Bremen, Germany.
- European Molecular Biology Laboratory, Heidelberg, Germany.
| |
Collapse
|
24
|
Kong X, Wang W, Chen S, Song M, Zhi Y, Cai Y, Zhang H, Shen X. Comparative study of lysine acetylation in Vesicomyidae clam Archivesica marissinica and the manila clam Ruditapes philippinarum: adaptation mechanisms in cold seep environments. BMC Genomics 2024; 25:1006. [PMID: 39465380 PMCID: PMC11514971 DOI: 10.1186/s12864-024-10916-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/17/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND The deep-sea cold seep zone is characterized by high pressure, low temperature, darkness, and oligotrophy. Vesicomyidae clams are the dominant species within this environment, often forming symbiotic relationships with chemosynthetic microbes. Understanding the mechanisms by which Vesicomyidae clams adapt to the cold seep environment is significant. Acetylation modification of lysine is known to play a crucial role in various metabolic processes. Consequently, investigating the role of lysine acetylation in the adaptation of Vesicomyidae clams to deep-sea environments is worthwhile. So, a comparative study of lysine acetylation in cold seep clam Archivesica marissinica and shallow water shellfish Ruditapes philippinarum was conducted. RESULTS A total of 539 acetylated proteins were identified with 1634 acetylation sites. Conservative motif enrichment analysis revealed that the motifs -KacR-, -KacT-, and -KacF- were the most conserved. Subsequent gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) enrichment analyses were conducted on significantly differentially expressed acetylated proteins. The GO enrichment analysis indicated that acetylated proteins are crucial in various biological processes, including cellular response to stimulation, and other cellular processes ( p < 0.05 and false discovery rate (FDR) < 0.25). The results of KEGG enrichment analysis indicated that acetylated proteins are involved in various cellular processes, including tight junction, motor proteins, gap junction, phagosome, cGMP-PKG signaling pathways, endocytosis, glycolysis/gluconeogenesis, among others (p < 0.05 and FDR < 0.25). Notably, a high abundance of lysine acetylation was observed in the glycolysis/glycogenesis pathways, and the acetylation of glyceraldehyde 3-phosphate dehydrogenase might facilitate ATP production. Subsequent investigation into acetylation modifications associated with deep-sea adaptation revealed the specific identification of key acetylated proteins. Among these, the adaptation of cold seep clam hemoglobin and heat shock protein to high hydrostatic pressure and low temperature might involve an increase in acetylation levels. Acetylation of arginine kinase might be related to ATP production and interaction with symbiotic bacteria. Myosin heavy chain (Ama01085) has the most acetylation sites and might improve the actomyosin system stability through acetylation. Further validation is required for the acetylation modification from Vesicomyidae clams. CONCLUSION A novel comparative analysis was undertaken to investigate the acetylation of lysine in Vesicomyidae clams, yielding novel insights into the regulatory role of lysine acetylation in deep-sea organisms. The findings present many potential proteins for further exploration of acetylation functions in cold seep clams and other deep-sea mollusks.
Collapse
Affiliation(s)
- Xue Kong
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222000, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222000, China
| | - Wei Wang
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222000, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222000, China
| | - Sunan Chen
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222000, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222000, China
| | - Manzong Song
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222000, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222000, China
| | - Ying Zhi
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222000, China
| | - Yuefeng Cai
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222000, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222000, China
| | - Haibin Zhang
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China
| | - Xin Shen
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222000, China.
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222000, China.
| |
Collapse
|
25
|
Gignoux-Wolfsohn S, Garcia Ruiz M, Portugal Barron D, Ruiz G, Lohan K. Bivalve microbiomes are shaped by host species, size, parasite infection, and environment. PeerJ 2024; 12:e18082. [PMID: 39399422 PMCID: PMC11468899 DOI: 10.7717/peerj.18082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 08/20/2024] [Indexed: 10/15/2024] Open
Abstract
Many factors affect an organism's microbiome including its environment, proximity to other organisms, and physiological condition. As filter feeders, bivalves have highly plastic microbiomes that are especially influenced by the surrounding seawater, yet they also maintain a unique core set of microbes. Using 16S ribosomal RNA sequencing, we characterized the bacterial microbiomes of four species of bivalves native to the Mid-Atlantic East Coast of North America: Crassostrea virginica, Macoma balthica, Ameritella mitchelli, and Ischadium recurvum and assessed the impact of their external environment, internal parasites, and size on their microbial communities. We found significant differences in bacterial amplicon sequence variants (ASVs) across species, with each species harboring a core ASV present across all individuals. We further found that some C. virginica co-cultured with I. recurvum had high abundances of the I. recurvum core ASV. We identified ASVs associated with infection by the parasites Perkinsus marinus and Zaops ostreum as well others associated with bivalve size. Several of these ASV are candidates for further investigation as potential probiotics, as they were found positively correlated with bivalve size and health. This research represents the first description of the microbiomes of A. mitchelli, I. recurvum, and M. balthica. We document that all four species have highly plastic microbiomes, while maintaining certain core bacteria, with important implications for growth, health, and adaptation to new environments.
Collapse
Affiliation(s)
- Sarah Gignoux-Wolfsohn
- Biological Sciences, University of Massachusetts at Lowell, Lowell, MA, United States
- Coastal Disease Ecology Laboratory, Smithsonian Environmental Research Center, Edgewater, MD, United States
| | - Monserrat Garcia Ruiz
- Coastal Disease Ecology Laboratory, Smithsonian Environmental Research Center, Edgewater, MD, United States
| | - Diana Portugal Barron
- Coastal Disease Ecology Laboratory, Smithsonian Environmental Research Center, Edgewater, MD, United States
- Department of Neurology, Brain Research Institute, Mary S. Easton Center for Alzheimer’s Research and Care, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Gregory Ruiz
- Marine Invasions Laboratory, Smithsonian Environmental Research Center, Edgewater, MD, United States
| | - Katrina Lohan
- Coastal Disease Ecology Laboratory, Smithsonian Environmental Research Center, Edgewater, MD, United States
| |
Collapse
|
26
|
Sen A, Molina EJ, de Freitas TR, Hess S, Reiss H, Bluhm BA, Renaud PE. Benthic remineralization under future Arctic conditions and evaluating the potential for changes in carbon sequestration in warming sediments. Sci Rep 2024; 14:23336. [PMID: 39375411 PMCID: PMC11458818 DOI: 10.1038/s41598-024-73633-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/19/2024] [Indexed: 10/09/2024] Open
Abstract
Benthic (seafloor) remineralization of organic material determines the fate of carbon in the ocean and its sequestration. Bottom water temperature and labile carbon supply to the seafloor are expected to increase in a warming Arctic and correspondingly, benthic remineralization rates. We provide some of the first experimental data on the response of sediment oxygen demand (SOD), an established proxy for benthic remineralization, to increased temperature and/or food supply across a range of Arctic conditions and regimes. Each factor significantly increased SOD rates (with different degrees of variability); however the largest increases were seen with both factors combined (50% to ten-fold increases), consistently across the four seasons and the spatial gradient covering shelf to deep basin included in our study. This ability of the Arctic benthos to process increased pulses of carbon suggests that increased sedimented carbon under warming conditions is likely to be utilized and processed, not accumulated, impacting carbon storage and decreasing the Arctic's role as a global carbon sink.
Collapse
Affiliation(s)
- Arunima Sen
- Department of Arctic Biology, The University Centre in Svalbard (UNIS), Longyearbyen, Norway.
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway.
| | - Eric Jordà Molina
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | | | - Silvia Hess
- Department of Geosciences, University of Oslo, Oslo, Norway
| | - Henning Reiss
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Bodil A Bluhm
- Department of Arctic Marine Biology, UiT The Arctic University in Norway, Tromsø, Norway
| | - Paul E Renaud
- Department of Arctic Biology, The University Centre in Svalbard (UNIS), Longyearbyen, Norway
- Akvaplan-niva, Tromsø, Norway
| |
Collapse
|
27
|
Wegener G, Molari M, Purser A, Diehl A, Albers E, Walter M, Mertens C, German CR, Boetius A. Hydrothermal vents supporting persistent plumes and microbial chemoautotrophy at Gakkel Ridge (Arctic Ocean). Front Microbiol 2024; 15:1473822. [PMID: 39421557 PMCID: PMC11484012 DOI: 10.3389/fmicb.2024.1473822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/11/2024] [Indexed: 10/19/2024] Open
Abstract
Hydrothermal vents emit hot fluids enriched in energy sources for microbial life. Here, we compare the ecological and biogeochemical effects of hydrothermal venting of two recently discovered volcanic seamounts, Polaris and Aurora of the Gakkel Ridge, in the ice-covered Central Arctic Ocean. At both sites, persistent hydrothermal plumes increased up to 800 m into the deep Arctic Ocean. In the two non-buoyant plumes, rates of microbial carbon fixation were strongly elevated compared to background values of 0.5-1 μmol m-3 day-1 in the Arctic deep water, which suggests increased chemoautotrophy on vent-derived energy sources. In the Polaris plume, free sulfide and up to 360 nM hydrogen enabled microorganisms to fix up to 46 μmol inorganic carbon (IC) m-3 day-1. This energy pulse resulted in a strong increase in the relative abundance of SUP05 by 25% and Candidatus Sulfurimonas pluma by 7% of all bacteria. At Aurora, microorganisms fixed up to 35 μmol IC m-3 day-1. Here, metal sulfides limited the bioavailability of reduced sulfur species, and the putative hydrogen oxidizer Ca. S. pluma constituted 35% and SUP05 10% of all bacteria. In accordance with this data, transcriptomic analysis showed a high enrichment of hydrogenase-coding transcripts in Aurora and an enrichment of transcripts coding for sulfur oxidation in Polaris. There was neither evidence for methane consumption nor a substantial increase in the abundance of putative methanotrophs or their transcripts in either plume. Together, our results demonstrate the dominance of hydrogen and sulfide as energy sources in Arctic hydrothermal vent plumes.
Collapse
Affiliation(s)
- Gunter Wegener
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Massimiliano Molari
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Autun Purser
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Alexander Diehl
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
- Department of Geosciences, University of Bremen, Bremen, Germany
| | - Elmar Albers
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
- Department of Geosciences, University of Bremen, Bremen, Germany
- Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| | - Maren Walter
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
- Institute of Environmental Physics, University of Bremen, Bremen, Germany
| | - Christian Mertens
- Institute of Environmental Physics, University of Bremen, Bremen, Germany
| | | | - Antje Boetius
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| |
Collapse
|
28
|
Wang H, He K, Zhang H, Zhang Q, Cao L, Li J, Zhong Z, Chen H, Zhou L, Lian C, Wang M, Chen K, Qian PY, Li C. Deciphering deep-sea chemosynthetic symbiosis by single-nucleus RNA-sequencing. eLife 2024; 12:RP88294. [PMID: 39102287 PMCID: PMC11299980 DOI: 10.7554/elife.88294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024] Open
Abstract
Bathymodioline mussels dominate deep-sea methane seep and hydrothermal vent habitats and obtain nutrients and energy primarily through chemosynthetic endosymbiotic bacteria in the bacteriocytes of their gill. However, the molecular mechanisms that orchestrate mussel host-symbiont interactions remain unclear. Here, we constructed a comprehensive cell atlas of the gill in the mussel Gigantidas platifrons from the South China Sea methane seeps (1100 m depth) using single-nucleus RNA-sequencing (snRNA-seq) and whole-mount in situ hybridisation. We identified 13 types of cells, including three previously unknown ones, and uncovered unknown tissue heterogeneity. Every cell type has a designated function in supporting the gill's structure and function, creating an optimal environment for chemosynthesis, and effectively acquiring nutrients from the endosymbiotic bacteria. Analysis of snRNA-seq of in situ transplanted mussels clearly showed the shifts in cell state in response to environmental oscillations. Our findings provide insight into the principles of host-symbiont interaction and the bivalves' environmental adaption mechanisms.
Collapse
Affiliation(s)
- Hao Wang
- Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of SciencesQingdaoChina
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Laoshan LaboratoryQingdaoChina
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)GuangzhouChina
- Department of Ocean Science, Hong Kong University of Science and TechnologyHong KongChina
| | - Kai He
- Key Laboratory of Conservation and Application in Biodiversity of South China, School of Life Sciences, Guangzhou UniversityGuangzhouChina
| | - Huan Zhang
- Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of SciencesQingdaoChina
| | - Quanyong Zhang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and TechnologyKunmingJapan
| | - Lei Cao
- Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of SciencesQingdaoChina
| | - Jing Li
- South China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhouChina
| | - Zhaoshan Zhong
- Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of SciencesQingdaoChina
| | - Hao Chen
- Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of SciencesQingdaoChina
| | - Li Zhou
- Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of SciencesQingdaoChina
| | - Chao Lian
- Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of SciencesQingdaoChina
| | - Minxiao Wang
- Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of SciencesQingdaoChina
| | - Kai Chen
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and TechnologyKunmingJapan
| | - Pei-Yuan Qian
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)GuangzhouChina
- Department of Ocean Science, Hong Kong University of Science and TechnologyHong KongChina
| | - Chaolun Li
- Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of SciencesQingdaoChina
- South China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
29
|
Ma C, Xu C, Zhang T, Mu Q, Lv J, Xing Q, Yang Z, Xu Z, Guan Y, Chen C, Ni K, Dai X, Ding W, Hu J, Bao Z, Wang S, Liu P. Tracking the hologenome dynamics in aquatic invertebrates by the holo-2bRAD approach. Commun Biol 2024; 7:827. [PMID: 38972908 PMCID: PMC11228047 DOI: 10.1038/s42003-024-06509-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/26/2024] [Indexed: 07/09/2024] Open
Abstract
The "hologenome" concept is an increasingly popular way of thinking about microbiome-host for marine organisms. However, it is challenging to track hologenome dynamics because of the large amount of material, with tracking itself usually resulting in damage or death of the research object. Here we show the simple and efficient holo-2bRAD approach for the tracking of hologenome dynamics in marine invertebrates (i.e., scallop and shrimp) from one holo-2bRAD library. The stable performance of our approach was shown with high genotyping accuracy of 99.91% and a high correlation of r > 0.99 for the species-level profiling of microorganisms. To explore the host-microbe association underlying mass mortality events of bivalve larvae, core microbial species changed with the stages were found, and two potentially associated host SNPs were identified. Overall, our research provides a powerful tool with various advantages (e.g., cost-effective, simple, and applicable for challenging samples) in genetic, ecological, and evolutionary studies.
Collapse
Affiliation(s)
- Cen Ma
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, China
| | - Chang Xu
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, China
| | - Tianqi Zhang
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Qianqian Mu
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, China
| | - Jia Lv
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, China
| | - Qiang Xing
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, China
| | - Zhihui Yang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, China
| | - Zhenyuan Xu
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, China
| | - Yalin Guan
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Chengqin Chen
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Kuo Ni
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xiaoting Dai
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Institute of Gerontology, Geriatrics Center, University of Michigan, Ann Arbor, MI, USA
| | - Wei Ding
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Jingjie Hu
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, China
| | - Zhenmin Bao
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, China
| | - Shi Wang
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, China
| | - Pingping Liu
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, China.
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, China.
| |
Collapse
|
30
|
Ricci F, Greening C. Chemosynthesis: a neglected foundation of marine ecology and biogeochemistry. Trends Microbiol 2024; 32:631-639. [PMID: 38296716 DOI: 10.1016/j.tim.2023.11.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/06/2023] [Accepted: 11/28/2023] [Indexed: 02/02/2024]
Abstract
Chemosynthesis is a metabolic process that transfers carbon to the biosphere using reduced compounds. It is well recognised that chemosynthesis occurs in much of the ocean, but it is often thought to be a negligible process compared to photosynthesis. Here we propose that chemosynthesis is the underlying process governing primary production in much of the ocean and suggest that it extends to a much wider range of compounds, microorganisms, and ecosystems than previously thought. In turn, this process has had a central role in controlling marine biogeochemistry, ecology, and carbon budgets across the vast realms of the ocean, from the dawn of life to contemporary times.
Collapse
Affiliation(s)
- Francesco Ricci
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Securing Antarctica's Environmental Future, Monash University, Clayton, VIC 3800, Australia.
| | - Chris Greening
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Securing Antarctica's Environmental Future, Monash University, Clayton, VIC 3800, Australia; Centre to Impact AMR, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
31
|
Herruzo-Ruiz AM, Trombini C, Moreno-Garrido I, Blasco J, Alhama J, Michán C. Ions and nanoparticles of Ag and/or Cd metals in a model aquatic microcosm: Effects on the abundance, diversity and functionality of the sediment bacteriome. MARINE POLLUTION BULLETIN 2024; 204:116525. [PMID: 38852299 DOI: 10.1016/j.marpolbul.2024.116525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 06/11/2024]
Abstract
Metals can be adsorbed on particulate matter, settle in sediments and cause alterations in aquatic environments. This study assesses the effect of Ag and/or Cd, both in ionic and nanoparticle (NP) forms, on the microbiome of sediments. For that purpose, aquatic controlled-microcosm experiments were exposed to an environmentally relevant and at tenfold higher doses of each form of the metals. Changes in the bacteriome were inferred by 16S rDNA sequencing. Ionic Ag caused a significant decrease of several bacterial families, whereas the effect was opposite when mixed with Cd, e.g., Desulfuromonadaceae family; in both cases, the bacteriome functionalities were greatly affected, particularly the nitrogen and sulfur metabolism. Compared to ionic forms, metallic NPs produced hardly any change in the abundance of microbial families, although the α-biodiversity of the bacteriome was reduced, and the functionality altered, when exposed to the NPs´ mixture. Our goal is to understand how metals, in different forms and combinations, released into the environment may endanger the health of aquatic ecosystems. This work may help to understand how aquatic metal pollution alters the structure and functionality of the microbiome and biogeochemical cycles, and how these changes can be addressed.
Collapse
Affiliation(s)
- Ana M Herruzo-Ruiz
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071 Córdoba, Spain
| | - Chiara Trombini
- Dpt. Ecology and Coastal Management, ICMAN-CSIC, Campus Rio San Pedro, E-11510 Puerto Real (Cadiz), Spain
| | - Ignacio Moreno-Garrido
- Dpt. Ecology and Coastal Management, ICMAN-CSIC, Campus Rio San Pedro, E-11510 Puerto Real (Cadiz), Spain
| | - Julián Blasco
- Dpt. Ecology and Coastal Management, ICMAN-CSIC, Campus Rio San Pedro, E-11510 Puerto Real (Cadiz), Spain
| | - José Alhama
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071 Córdoba, Spain
| | - Carmen Michán
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071 Córdoba, Spain.
| |
Collapse
|
32
|
Sudo M, Osvatic J, Taylor JD, Dufour SC, Prathep A, Wilkins LGE, Rattei T, Yuen B, Petersen JM. SoxY gene family expansion underpins adaptation to diverse hosts and environments in symbiotic sulfide oxidizers. mSystems 2024; 9:e0113523. [PMID: 38747602 PMCID: PMC11237559 DOI: 10.1128/msystems.01135-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 04/13/2024] [Indexed: 06/19/2024] Open
Abstract
Sulfur-oxidizing bacteria (SOB) have developed distinct ecological strategies to obtain reduced sulfur compounds for growth. These range from specialists that can only use a limited range of reduced sulfur compounds to generalists that can use many different forms as electron donors. Forming intimate symbioses with animal hosts is another highly successful ecological strategy for SOB, as animals, through their behavior and physiology, can enable access to sulfur compounds. Symbioses have evolved multiple times in a range of animal hosts and from several lineages of SOB. They have successfully colonized a wide range of habitats, from seagrass beds to hydrothermal vents, with varying availability of symbiont energy sources. Our extensive analyses of sulfur transformation pathways in 234 genomes of symbiotic and free-living SOB revealed widespread conservation in metabolic pathways for sulfur oxidation in symbionts from different host species and environments, raising the question of how they have adapted to such a wide range of distinct habitats. We discovered a gene family expansion of soxY in these genomes, with up to five distinct copies per genome. Symbionts harboring only the "canonical" soxY were typically ecological "specialists" that are associated with specific host subfamilies or environments (e.g., hydrothermal vents, mangroves). Conversely, symbionts with multiple divergent soxY genes formed versatile associations across diverse hosts in various marine environments. We hypothesize that expansion and diversification of the soxY gene family could be one genomic mechanism supporting the metabolic flexibility of symbiotic SOB enabling them and their hosts to thrive in a range of different and dynamic environments.IMPORTANCESulfur metabolism is thought to be one of the most ancient mechanisms for energy generation in microorganisms. A diverse range of microorganisms today rely on sulfur oxidation for their metabolism. They can be free-living, or they can live in symbiosis with animal hosts, where they power entire ecosystems in the absence of light, such as in the deep sea. In the millions of years since they evolved, sulfur-oxidizing bacteria have adopted several highly successful strategies; some are ecological "specialists," and some are "generalists," but which genetic features underpin these ecological strategies are not well understood. We discovered a gene family that has become expanded in those species that also seem to be "generalists," revealing that duplication, repurposing, and reshuffling existing genes can be a powerful mechanism driving ecological lifestyle shifts.
Collapse
Affiliation(s)
- Marta Sudo
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Vienna, Austria
- Doctoral School in Microbiology and Environmental Science, University of Vienna, Vienna, Austria
| | - Jay Osvatic
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - John D. Taylor
- Life Sciences, The Natural History Museum, London, United Kingdom
| | - Suzanne C. Dufour
- Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| | - Anchana Prathep
- Department of Biology, Faculty of Science, Prince of Songkla University, HatYai, Thailand
| | - Laetitia G. E. Wilkins
- Eco-Evolutionary Interactions Group, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Thomas Rattei
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Vienna, Austria
| | - Benedict Yuen
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Vienna, Austria
- Eco-Evolutionary Interactions Group, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Jillian M. Petersen
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Vienna, Austria
| |
Collapse
|
33
|
Supty MSA, Jahan K, Lee JS, Choi KH. Epiphytic Bacterial Community Analysis of Ulva prolifera in Garorim and Muan Bays, Republic of Korea. Microorganisms 2024; 12:1142. [PMID: 38930524 PMCID: PMC11205692 DOI: 10.3390/microorganisms12061142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/16/2024] [Accepted: 06/02/2024] [Indexed: 06/28/2024] Open
Abstract
The bacterial communities related to seaweed can vary considerably across different locations, and these variations influence the seaweed's nutrition, growth, and development. To study this further, we evaluated the bacteria found on the green marine seaweed Ulva prolifera from Garorim Bay and Muan Bay, two key locations on Republic of Korea's west coast. Our analysis found notable differences in the bacterial communities between the two locations. Garorim Bay hosted a more diverse bacterial population, with the highest number of ASVs (871) compared to Muan Bay's 156 ASVs. In Muan Bay, more than 50% of the bacterial community was dominated by Pseudomonadota. On the other hand, Garorim Bay had a more balanced distribution between Bacteroidota and Pseudomonadota (37% and 35.5%, respectively). Additionally, Cyanobacteria, particularly Cyanothece aeruginosa, were found in significant numbers in Garorim Bay, making up 8% of the community. Mineral analysis indicated that Garorim Bay had higher levels of S, Na, Mg, Ca, and Fe. Function-wise, both locations exhibited bacterial enrichment in amino acid production, nucleosides, and nucleotide pathways. In conclusion, this study broadens our understanding of the bacterial communities associated with Ulva prolifera in Korean waters and provides a foundation for future research on the relationships between U. prolifera and its bacteria.
Collapse
Affiliation(s)
| | | | | | - Keun-Hyung Choi
- Department of Earth, Environmental and Space Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
34
|
Dagar J, Maurya S, Antil S, Abraham JS, Somasundaram S, Lal R, Makhija S, Toteja R. Symbionts of Ciliates and Ciliates as Symbionts. Indian J Microbiol 2024; 64:304-317. [PMID: 39010998 PMCID: PMC11246404 DOI: 10.1007/s12088-024-01203-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 01/06/2024] [Indexed: 07/17/2024] Open
Abstract
Endosymbiotic relationships between ciliates and others are critical for their ecological roles, physiological adaptations, and evolutionary implications. These can be obligate and facultative. Symbionts often provide essential nutrients, contribute to the ciliate's metabolism, aid in digestion, and offer protection against predators or environmental stressors. In turn, ciliates provide a protected environment and resources for their symbionts, facilitating their survival and proliferation. Ultrastructural and full-cycle rRNA approaches are utilized to identify these endosymbionts. Fluorescence in situ hybridization using "species- and group-specific probes" which are complementary to the genetic material (DNA or RNA) of a particular species or group of interest represent convenient tools for their detection directly in the environment. A systematic survey of these endosymbionts has been conducted using both traditional and metagenomic approaches. Ciliophora and other protists have a wide range of prokaryotic symbionts, which may contain potentially pathogenic bacteria. Ciliates can establish symbiotic relationships with a variety of hosts also, ranging from protists to metazoans. Understanding ciliate symbiosis can provide useful insights into the complex relationships that drive microbial communities and ecosystems in general.
Collapse
Affiliation(s)
- Jyoti Dagar
- Acharya Narendra Dev College, University of Delhi, New Delhi, India
| | - Swati Maurya
- Acharya Narendra Dev College, University of Delhi, New Delhi, India
| | - Sandeep Antil
- Acharya Narendra Dev College, University of Delhi, New Delhi, India
| | | | | | - Rup Lal
- Acharya Narendra Dev College, University of Delhi, New Delhi, India
| | - Seema Makhija
- Acharya Narendra Dev College, University of Delhi, New Delhi, India
| | - Ravi Toteja
- Acharya Narendra Dev College, University of Delhi, New Delhi, India
| |
Collapse
|
35
|
Zhang Y, Chen H, Lian C, Cao L, Guo Y, Wang M, Zhong Z, Li M, Zhang H, Li C. Insights into phage-bacteria interaction in cold seep Gigantidas platifrons through metagenomics and transcriptome analyses. Sci Rep 2024; 14:10540. [PMID: 38719945 PMCID: PMC11078923 DOI: 10.1038/s41598-024-61272-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 05/03/2024] [Indexed: 05/12/2024] Open
Abstract
Viruses are crucial for regulating deep-sea microbial communities and biogeochemical cycles. However, their roles are still less characterized in deep-sea holobionts. Bathymodioline mussels are endemic species inhabiting cold seeps and harboring endosymbionts in gill epithelial cells for nutrition. This study unveiled a diverse array of viruses in the gill tissues of Gigantidas platifrons mussels and analyzed the viral metagenome and transcriptome from the gill tissues of Gigantidas platifrons mussels collected from a cold seep in the South Sea. The mussel gills contained various viruses including Baculoviridae, Rountreeviridae, Myoviridae and Siphovirdae, but the active viromes were Myoviridae, Siphoviridae, and Podoviridae belonging to the order Caudovirales. The overall viral community structure showed significant variation among environments with different methane concentrations. Transcriptome analysis indicated high expression of viral structural genes, integrase, and restriction endonuclease genes in a high methane concentration environment, suggesting frequent virus infection and replication. Furthermore, two viruses (GP-phage-contig14 and GP-phage-contig72) interacted with Gigantidas platifrons methanotrophic gill symbionts (bathymodiolin mussels host intracellular methanotrophic Gammaproteobacteria in their gills), showing high expression levels, and have huge different expression in different methane concentrations. Additionally, single-stranded DNA viruses may play a potential auxiliary role in the virus-host interaction using indirect bioinformatics methods. Moreover, the Cro and DNA methylase genes had phylogenetic similarity between the virus and Gigantidas platifrons methanotrophic gill symbionts. This study also explored a variety of viruses in the gill tissues of Gigantidas platifrons and revealed that bacteria interacted with the viruses during the symbiosis with Gigantidas platifrons. This study provides fundamental insights into the interplay of microorganisms within Gigantidas platifrons mussels in deep sea.
Collapse
Affiliation(s)
- Yan Zhang
- Center of Deep Sea Research, and CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Hao Chen
- Center of Deep Sea Research, and CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Chao Lian
- Center of Deep Sea Research, and CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Lei Cao
- Center of Deep Sea Research, and CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Yang Guo
- Center of Deep Sea Research, and CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Minxiao Wang
- Center of Deep Sea Research, and CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
| | - Zhaoshan Zhong
- Center of Deep Sea Research, and CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Mengna Li
- Center of Deep Sea Research, and CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- National Deep Sea Center, Qingdao, 266071, China
| | - Huan Zhang
- Center of Deep Sea Research, and CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- National Deep Sea Center, Qingdao, 266071, China
| | - Chaolun Li
- Center of Deep Sea Research, and CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266237, China.
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
36
|
Béziat NS, Duperron S, Gros O. Environmental Transmission of Symbionts in the Mangrove Crabs Aratus pisonii and Minuca rapax: Acquisition of the Bacterial Community through Larval Development to Juvenile Stage. Microorganisms 2024; 12:652. [PMID: 38674597 PMCID: PMC11052079 DOI: 10.3390/microorganisms12040652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 04/28/2024] Open
Abstract
Aratus pisonii and Minuca rapax are two brachyuran crabs living with bacterial ectosymbionts located on gill lamellae. One previous study has shown that several rod-shaped bacterial morphotypes are present and the community is dominated by Alphaproteobacteria and Bacteroidota. This study aims to identify the mode of transmission of the symbionts to the new host generations and to identify the bacterial community colonizing the gills of juveniles. We tested for the presence of bacteria using PCR with universal primers targeting the 16S rRNA encoding gene from gonads, eggs, and different larval stages either obtained in laboratory conditions or from the field. The presence of bacteria on juvenile gills was also characterized by scanning electron microscopy, and subsequently identified by metabarcoding analysis. Gonads, eggs, and larvae were negative to PCR tests, suggesting that bacteria are not present at these stages in significant densities. On the other hand, juveniles of both species display three rod-shaped bacterial morphotypes on gill lamellae, and sequencing revealed that the community is dominated by Bacteroidota and Alphaproteobacteria on A. pisonii juveniles, and by Alphaprotobacteria, Bacteroidota, and Acidimicrobia on M. rapax juveniles. Despite the fact that juveniles of both species co-occur in the same biotope, no shared bacterial phylotype was identified. However, some of the most abundant bacteria present in adults are also present in juveniles of the same species, suggesting that juvenile-associated communities resemble those of adults. Because some of these bacteria were also found in crab burrow water, we hypothesize that the bacterial community is established gradually during the life of the crab starting from the megalopa stage and involves epibiosis-competent bacteria that occur in the environment.
Collapse
Affiliation(s)
- Naëma Schanendra Béziat
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d’Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Campus de Fouillole, 97110 Pointe-à-Pitre, France;
- Caribaea Initiative, Université des Antilles, 97110 Pointe-à-Pitre, France
| | - Sébastien Duperron
- Molécules de Communication et Adaptation des Microorganismes (MCAM), Muséum National d’Histoire Naturelle, UMR 7245, CNRS, 57 Rue Cuvier (CP54), 75005 Paris, France;
| | - Olivier Gros
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d’Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Campus de Fouillole, 97110 Pointe-à-Pitre, France;
- C3MAG, UFR des Sciences Exactes et Naturelles, Université des Antilles, 97110 Pointe-à-Pitre, France
| |
Collapse
|
37
|
Xu J, Zhao R, Liu A, Li L, Li S, Li Y, Qu M, Di Y. To live or die: "Fine-tuning" adaptation revealed by systemic analyses in symbiotic bathymodiolin mussels from diverse deep-sea extreme ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170434. [PMID: 38278266 DOI: 10.1016/j.scitotenv.2024.170434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 01/28/2024]
Abstract
Hydrothermal vents (HVs) and cold seeps (CSs) are typical deep-sea extreme ecosystems with their own geochemical characteristics to supply the unique living conditions for local communities. Once HVs or CSs stop emission, the dramatic environmental change would pose survival risks to deep-sea organisms. Up to now, limited knowledge has been available to understand the biological responses and adaptive strategy to the extreme environments and their transition from active to extinct stage, mainly due to the technical difficulties and lack of representative organisms. In this study, bathymodiolin mussels, the dominant and successful species surviving in diverse deep-sea extreme ecosystems, were collected from active and extinct HVs (Southwest Indian Ocean) or CSs (South China Sea) via two individual cruises. The transcriptomic analysis and determination of multiple biological indexes in stress defense and metabolic systems were conducted in both gills and digestive glands of mussels, together with the metagenomic analysis of symbionts in mussels. The results revealed the ecosystem- and tissue-specific transcriptional regulation in mussels, addressing the autologous adaptations in antioxidant defense, energy utilization and key compounds (i.e. sulfur) metabolism. In detail, the successful antioxidant defense contributed to conquering the oxidative stress induced during the unavoidable metabolism of xenobiotics commonly existing in the extreme ecosystems; changes in metabolic rate functioned to handle toxic matters in different surroundings; upregulated gene expression of sulfide:quinone oxidoreductase indicated an active sulfide detoxification in mussels from HVs and active stage of HVs & CSs. Coordinately, a heterologous adaptation, characterized by the functional compensation between symbionts and mussels in energy utilization, sulfur and carbon metabolism, was also evidenced by the bacterial metagenomic analysis. Taken together, a new insight was proposed that symbiotic bathymodiolin mussels would develop a "finetuning" strategy combining the autologous and heterologous regulations to fulfill the efficient and effective adaptations for successful survival.
Collapse
Affiliation(s)
- Jianzhou Xu
- Ocean College, Zhejiang University, Zhoushan 316000, China; Hainan Institute of Zhejiang University, Sanya 572024, China
| | - Ruoxuan Zhao
- Ocean College, Zhejiang University, Zhoushan 316000, China
| | - Ao Liu
- Ocean College, Zhejiang University, Zhoushan 316000, China
| | - Liya Li
- Ocean College, Zhejiang University, Zhoushan 316000, China; Hainan Institute of Zhejiang University, Sanya 572024, China
| | - Shuimei Li
- Ocean College, Zhejiang University, Zhoushan 316000, China
| | - Yichen Li
- Ocean College, Zhejiang University, Zhoushan 316000, China
| | - Mengjie Qu
- Ocean College, Zhejiang University, Zhoushan 316000, China; Hainan Institute of Zhejiang University, Sanya 572024, China
| | - Yanan Di
- Ocean College, Zhejiang University, Zhoushan 316000, China; Hainan Institute of Zhejiang University, Sanya 572024, China.
| |
Collapse
|
38
|
Hirayama H, Takaki Y, Abe M, Miyazaki M, Uematsu K, Matsui Y, Takai K. Methylomarinovum tepidoasis sp. nov., a moderately thermophilic methanotroph of the family Methylothermaceae isolated from a deep-sea hydrothermal field. Int J Syst Evol Microbiol 2024; 74:006288. [PMID: 38478579 PMCID: PMC10950024 DOI: 10.1099/ijsem.0.006288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 02/24/2024] [Indexed: 03/21/2024] Open
Abstract
A novel aerobic methanotrophic bacterium, designated as strain IN45T, was isolated from in situ colonisation systems deployed at the Iheya North deep-sea hydrothermal field in the mid-Okinawa Trough. IN45T was a moderately thermophilic obligate methanotroph that grew only on methane or methanol at temperatures between 25 and 56 °C (optimum 45-50 °C). It was an oval-shaped, Gram-reaction-negative, motile bacterium with a single polar flagellum and an intracytoplasmic membrane system. It required 1.5-4.0 % (w/v) NaCl (optimum 2-3 %) for growth. The major phospholipid fatty acids were C16 : 1ω7c, C16 : 0 and C18 : 1ω7c. The major isoprenoid quinone was Q-8. The 16S rRNA gene sequence comparison revealed 99.1 % sequence identity with Methylomarinovum caldicuralii IT-9T, the only species of the genus Methylomarinovum with a validly published name within the family Methylothermaceae. The complete genome sequence of IN45T consisted of a 2.42-Mbp chromosome (DNA G+C content, 64.1 mol%) and a 20.5-kbp plasmid. The genome encodes genes for particulate methane monooxygenase and two types of methanol dehydrogenase (mxaFI and xoxF). Genes involved in the ribulose monophosphate pathway for carbon assimilation are encoded, but the transaldolase gene was not found. The genome indicated that IN45T performs partial denitrification of nitrate to N2O, and its occurrence was indirectly confirmed by N2O production in cultures grown with nitrate. Genomic relatedness indices between the complete genome sequences of IN45T and M. caldicuralii IT-9T, such as digital DNA-DNA hybridisation (51.2 %), average nucleotide identity (92.94 %) and average amino acid identity (93.21 %), indicated that these two methanotrophs should be separated at the species level. On the basis of these results, strain IN45T represents a novel species, for which we propose the name Methylomarinovum tepidoasis sp. nov. with IN45T (=JCM 35101T =DSM 113422T) as the type strain.
Collapse
Affiliation(s)
- Hisako Hirayama
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| | - Yoshihiro Takaki
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| | - Mariko Abe
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| | - Masayuki Miyazaki
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| | | | - Yohei Matsui
- Research Institute for Global Change (RIGC), JAMSTEC, Yokosuka, Kanagawa, Japan
| | - Ken Takai
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| |
Collapse
|
39
|
Li J, Ma H, Qin Y, Zhao Z, Niu Y, Lian J, Li J, Noor Z, Guo S, Yu Z, Zhang Y. Chromosome-level genome assembly and annotation of rare and endangered tropical bivalve, Tridacna crocea. Sci Data 2024; 11:186. [PMID: 38341475 PMCID: PMC10858879 DOI: 10.1038/s41597-024-03014-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Tridacna crocea is an ecologically important marine bivalve inhabiting tropical coral reef waters. High quality and available genomic resources will help us understand the population structure and genetic diversity of giant clams. This study reports a high-quality chromosome-scale T. crocea genome sequence of 1.30 Gb, with a scaffold N50 and contig N50 of 56.38 Mb and 1.29 Mb, respectively, which was assembled by combining PacBio long reads and Hi-C sequencing data. Repetitive sequences cover 71.60% of the total length, and a total of 25,440 protein-coding genes were annotated. A total of 1,963 non-coding RNA (ncRNA) were determined in the T. crocea genome, including 62 micro RNA (miRNA), 58 small nuclear RNA (snRNA), 83 ribosomal RNA (rRNA), and 1,760 transfer RNA (tRNA). Phylogenetic analysis revealed that giant clams diverged from oyster about 505.7 Mya during the evolution of bivalves. The genome assembly presented here provides valuable genomic resources to enhance our understanding of the genetic diversity and population structure of giant clams.
Collapse
Affiliation(s)
- Jun Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, 510301, China
- Hainan Key Laboratory of Tropical Marine Biotechnology, Hainan Sanya Marine Ecosystem National Observation and Research Station, Sanya, 572024, China
- Daya Bay Marine Biology Research Station, Chinese Academy of Sciences, Shenzhen, 518124, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519015, China
| | - Haitao Ma
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, 510301, China
- Hainan Key Laboratory of Tropical Marine Biotechnology, Hainan Sanya Marine Ecosystem National Observation and Research Station, Sanya, 572024, China
- Daya Bay Marine Biology Research Station, Chinese Academy of Sciences, Shenzhen, 518124, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519015, China
| | - Yanpin Qin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, 510301, China
- Hainan Key Laboratory of Tropical Marine Biotechnology, Hainan Sanya Marine Ecosystem National Observation and Research Station, Sanya, 572024, China
- Daya Bay Marine Biology Research Station, Chinese Academy of Sciences, Shenzhen, 518124, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519015, China
| | - Zhen Zhao
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, 510301, China
- Hainan Key Laboratory of Tropical Marine Biotechnology, Hainan Sanya Marine Ecosystem National Observation and Research Station, Sanya, 572024, China
| | | | | | - Jiang Li
- Biozeron Shenzhen, Inc, Shenzhen, 518000, China
| | - Zohaib Noor
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, 510301, China
- Hainan Key Laboratory of Tropical Marine Biotechnology, Hainan Sanya Marine Ecosystem National Observation and Research Station, Sanya, 572024, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuming Guo
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, 510301, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ziniu Yu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, 510301, China.
- Hainan Key Laboratory of Tropical Marine Biotechnology, Hainan Sanya Marine Ecosystem National Observation and Research Station, Sanya, 572024, China.
- Daya Bay Marine Biology Research Station, Chinese Academy of Sciences, Shenzhen, 518124, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519015, China.
| | - Yuehuan Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, 510301, China.
- Hainan Key Laboratory of Tropical Marine Biotechnology, Hainan Sanya Marine Ecosystem National Observation and Research Station, Sanya, 572024, China.
- Daya Bay Marine Biology Research Station, Chinese Academy of Sciences, Shenzhen, 518124, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519015, China.
| |
Collapse
|
40
|
Fu L, Liu Y, Wang M, Lian C, Cao L, Wang W, Sun Y, Wang N, Li C. The diversification and potential function of microbiome in sediment-water interface of methane seeps in South China Sea. Front Microbiol 2024; 15:1287147. [PMID: 38380093 PMCID: PMC10878133 DOI: 10.3389/fmicb.2024.1287147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/11/2024] [Indexed: 02/22/2024] Open
Abstract
The sediment-water interfaces of cold seeps play important roles in nutrient transportation between seafloor and deep-water column. Microorganisms are the key actors of biogeochemical processes in this interface. However, the knowledge of the microbiome in this interface are limited. Here we studied the microbial diversity and potential metabolic functions by 16S rRNA gene amplicon sequencing at sediment-water interface of two active cold seeps in the northern slope of South China Sea, Lingshui and Site F cold seeps. The microbial diversity and potential functions in the two cold seeps are obviously different. The microbial diversity of Lingshui interface areas, is found to be relatively low. Microbes associated with methane consumption are enriched, possibly due to the large and continuous eruptions of methane fluids. Methane consumption is mainly mediated by aerobic oxidation and denitrifying anaerobic methane oxidation (DAMO). The microbial diversity in Site F is higher than Lingshui. Fluids from seepage of Site F are mitigated by methanotrophic bacteria at the cyclical oxic-hypoxic fluctuating interface where intense redox cycling of carbon, sulfur, and nitrogen compounds occurs. The primary modes of microbial methane consumption are aerobic methane oxidation, along with DAMO, sulfate-dependent anaerobic methane oxidation (SAMO). To sum up, anaerobic oxidation of methane (AOM) may be underestimated in cold seep interface microenvironments. Our findings highlight the significance of AOM and interdependence between microorganisms and their environments in the interface microenvironments, providing insights into the biogeochemical processes that govern these unique ecological systems.
Collapse
Affiliation(s)
- Lulu Fu
- Center of Deep Sea Research and Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laoshan Laboratory, Qingdao, China
| | - Yanjun Liu
- Center of Deep Sea Research and Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Minxiao Wang
- Center of Deep Sea Research and Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laoshan Laboratory, Qingdao, China
| | - Chao Lian
- Center of Deep Sea Research and Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Lei Cao
- Center of Deep Sea Research and Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Weicheng Wang
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yan Sun
- Center of Deep Sea Research and Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laoshan Laboratory, Qingdao, China
| | - Nan Wang
- Center of Deep Sea Research and Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laoshan Laboratory, Qingdao, China
| | - Chaolun Li
- Center of Deep Sea Research and Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laoshan Laboratory, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
41
|
Guerra A, Azevedo A, Amorim F, Soares J, Neuparth T, Santos MM, Martins I, Colaço A. Using a food web model to predict the effects of Hazardous and Noxious Substances (HNS) accidental spills on deep-sea hydrothermal vents from the Mid-Atlantic Ridge (MAR) region. MARINE POLLUTION BULLETIN 2024; 199:115974. [PMID: 38176164 DOI: 10.1016/j.marpolbul.2023.115974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024]
Abstract
Deep-sea hydrothermal vents host unique ecosystems but face risks of incidents with Hazardous and Noxious Substances (HNS) along busy shipping lanes such as the transatlantic route. We developed an Ecopath with Ecosim (EwE) model of the Menez Gwen (MG) vent field (MG-EwE) (Mid-Atlantic Ridge) to simulate ecosystem effects of potential accidental spills of four different HNS, using a semi-Lagrangian Dispersion Model (sLDM) coupled with the Regional Ocean Modelling System (ROMS) calibrated for the study area. Food web modelling revealed a simplified trophic structure with low energy efficiency. The MG ecosystem was vulnerable to disruptions caused by all tested HNS, yet it revealed some long-term resilience. Understanding these impacts is vital for enhancing Spill Prevention, Control, and Countermeasure plans (SPCC) in remote marine areas and developing tools to assess stressors effects on these invaluable habitats.
Collapse
Affiliation(s)
- A Guerra
- IMAR Institute of Marine Research, University of the Azores, Rua Prof Frederico Machado, 9901-862 Horta, Portugal; CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Porto, Portugal.
| | - A Azevedo
- CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Porto, Portugal
| | - F Amorim
- CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Porto, Portugal
| | - J Soares
- CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Porto, Portugal; AIR Centre, TERINOV-Parque de Ciência e Tecnologia da Ilha Terceira, Canada de Belém S/N, Terra Chã, 9700-702 Angra do Heroísmo, Portugal
| | - T Neuparth
- CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Porto, Portugal
| | - M M Santos
- CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Porto, Portugal; FCUP, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - I Martins
- CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Porto, Portugal.
| | - A Colaço
- Institute of Marine Sciences, Okeanos, University of the Azores, Rua Prof Frederico Machado, 9901-862 Horta, Portugal
| |
Collapse
|
42
|
Zhou K, Zhang T, Chen XW, Xu Y, Zhang R, Qian PY. Viruses in Marine Invertebrate Holobionts: Complex Interactions Between Phages and Bacterial Symbionts. ANNUAL REVIEW OF MARINE SCIENCE 2024; 16:467-485. [PMID: 37647612 DOI: 10.1146/annurev-marine-021623-093133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Marine invertebrates are ecologically and economically important and have formed holobionts by evolving symbiotic relationships with cellular and acellular microorganisms that reside in and on their tissues. In recent decades, significant focus on symbiotic cellular microorganisms has led to the discovery of various functions and a considerable expansion of our knowledge of holobiont functions. Despite this progress, our understanding of symbiotic acellular microorganisms remains insufficient, impeding our ability to achieve a comprehensive understanding of marine holobionts. In this review, we highlight the abundant viruses, with a particular emphasis on bacteriophages; provide an overview of their diversity, especially in extensively studied sponges and corals; and examine their potential life cycles. In addition, we discuss potential phage-holobiont interactions of various invertebrates, including participating in initial bacterial colonization, maintaining symbiotic relationships, and causing or exacerbating the diseases of marine invertebrates. Despite the importance of this subject, knowledge of how viruses contribute to marine invertebrate organisms remains limited. Advancements in technology and greater attention to viruses will enhance our understanding of marine invertebrate holobionts.
Collapse
Affiliation(s)
- Kun Zhou
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China;
- Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Ting Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University (Xiang'an), Xiamen, Fujian, China
| | - Xiao-Wei Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University (Xiang'an), Xiamen, Fujian, China
| | - Ying Xu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China;
| | - Rui Zhang
- Institute for Advanced Study, Shenzhen University, Shenzhen, China;
| | - Pei-Yuan Qian
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China;
- Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
43
|
Delpech LM, Tveit AT, Hodson AJ, Hand KP, Kalenitchenko D. Chemolithoautotrophic bacteria flourish at dark water-ice interfaces of an emerged Arctic cold seep. THE ISME JOURNAL 2024; 18:wrae170. [PMID: 39269636 PMCID: PMC11637994 DOI: 10.1093/ismejo/wrae170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/14/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024]
Abstract
Below their ice shells, icy moons may offer a source of chemical energy that could support microbial life in the absence of light. In the Arctic, past and present glacial retreat leads to isostatic uplift of sediments through which cold and methane-saturated groundwater travels. This fluid reaches the surface and freezes as hill-shaped icings during winter, producing dark ice-water interfaces above water ponds containing chemical energy sources. In one such system characterized by elevated methane concentrations - the Lagoon Pingo in Adventdalen, Svalbard, Norway (~10 mg/L CH4, <0.3 mg/L O2, -0.25°C, pH 7.9), we studied amplicons of the bacterial and archaeal (microbial) 16S rRNA gene and transcripts in the water pond and overlaying ice. We found that active chemolithoautotrophic sulfur-oxidizing microorganisms (Sulfurimonas, Thiomicrorhabdus) dominate a niche at the bottom of the ice that is in contact with the anoxic water reservoir. There, the growing ice offers surfaces that interface with water and hosts favorable physico-chemical conditions for sulfide oxidation. The detection of anaerobic methanotrophs further suggests that throughout the winter, a steady-state dark and cold methane sink occurs under the ice in two steps: first, methane is oxidized to carbon dioxide and sulfates are concomitantly reduced to sulfides by the activity of anaerobic methanotrophs (ANME) ANME-1a and sulfate-reducing bacteria (SRB) SEEP-SRB1 consortia; and second, energy from sulfides is used by sulfur-oxidizing microorganisms to fix carbon dioxide into organic carbon. Our results underscore that ice-covered and dark ecosystems are hitherto overlooked oases of microbial life and emphasize the need to study microbial communities in icy habitats.
Collapse
Affiliation(s)
- Lisa-Marie Delpech
- LIENSs Littoral Environnement et Sociétés, UMRi 7266 CNRS–La Rochelle Université, La Rochelle, 17000, France
- Department of Geosciences, UiT The Arctic University of Norway, Tromsø, 9010, Norway
- Department of Biology, École Normale Supérieure de Lyon, Lyon, 69007, France
| | - Alexander T Tveit
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, 9019, Norway
| | - Andrew J Hodson
- Department of Arctic Geology, UNIS The University Center in Svalbard, Longyearbyen, 9170, Svalbard, Norway
- Department of Civil Engineering and Environmental Science, Western Norway University of Applied Sciences, Sogndal, 6856, Norway
| | - Kevin P Hand
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109, United States
| | - Dimitri Kalenitchenko
- LIENSs Littoral Environnement et Sociétés, UMRi 7266 CNRS–La Rochelle Université, La Rochelle, 17000, France
- Department of Geosciences, UiT The Arctic University of Norway, Tromsø, 9010, Norway
| |
Collapse
|
44
|
Peoples LM, Gerringer ME, Weston JNJ, León-Zayas R, Sekarore A, Sheehan G, Church MJ, Michel APM, Soule SA, Shank TM. A deep-sea isopod that consumes Sargassum sinking from the ocean's surface. Proc Biol Sci 2024; 291:20240823. [PMID: 39255840 PMCID: PMC11387067 DOI: 10.1098/rspb.2024.0823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/02/2024] [Accepted: 07/19/2024] [Indexed: 09/12/2024] Open
Abstract
Most deep-ocean life relies on organic carbon from the surface ocean. While settling primary production rapidly attenuates in the water column, pulses of organic material can be quickly transported to depth in the form of food falls. One example of fresh material that can reach great depths across the tropical Atlantic Ocean and Caribbean Sea is the pelagic macroalgae Sargassum. However, little is known about the deep-ocean organisms able to use this food source. Here, we encountered the isopod Bathyopsurus nybelini at depths 5002-6288 m in the Puerto Rico Trench and Mid-Cayman Spreading Center using the Deep Submergence Vehicle Alvin. In most of the 32 observations, the isopods carried fronds of Sargassum. Through an integrative suite of morphological, DNA sequencing, and microbiological approaches, we show that this species is adapted to feed on Sargassum by using a specialized swimming stroke, having serrated and grinding mouthparts, and containing a gut microbiome that provides a dietary contribution through the degradation of macroalgal polysaccharides and fixing nitrogen. The isopod's physiological, morphological, and ecological adaptations demonstrate that vertical deposition of Sargassum is a direct trophic link between the surface and deep ocean and that some deep-sea organisms are poised to use this material.
Collapse
Affiliation(s)
- Logan M. Peoples
- Flathead Lake Biological Station, University of Montana, Polson, MT, USA
| | | | | | | | - Abisage Sekarore
- Department of Biology, State University of New York at Geneseo, Geneseo, NY, USA
| | - Grace Sheehan
- Biology Department, Willamette University, Salem, OR, USA
| | - Matthew J. Church
- Flathead Lake Biological Station, University of Montana, Polson, MT, USA
| | - Anna P. M. Michel
- Department of Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - S. Adam Soule
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, USA
| | - Timothy M. Shank
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| |
Collapse
|
45
|
Ratinskaia L, Malavin S, Zvi-Kedem T, Vintila S, Kleiner M, Rubin-Blum M. Metabolically-versatile Ca. Thiodiazotropha symbionts of the deep-sea lucinid clam Lucinoma kazani have the genetic potential to fix nitrogen. ISME COMMUNICATIONS 2024; 4:ycae076. [PMID: 38873029 PMCID: PMC11171427 DOI: 10.1093/ismeco/ycae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/06/2024] [Accepted: 05/31/2024] [Indexed: 06/15/2024]
Abstract
Lucinid clams are one of the most diverse and widespread symbiont-bearing animal groups in both shallow and deep-sea chemosynthetic habitats. Lucinids harbor Ca. Thiodiazotropha symbionts that can oxidize inorganic and organic substrates such as hydrogen sulfide and formate to gain energy. The interplay between these key metabolic functions, nutrient uptake and biotic interactions in Ca. Thiodiazotropha is not fully understood. We collected Lucinoma kazani individuals from next to a deep-sea brine pool in the eastern Mediterranean Sea, at a depth of 1150 m and used Oxford Nanopore and Illumina sequencing to obtain high-quality genomes of their Ca. Thiodiazotropha gloverae symbiont. The genomes served as the basis for transcriptomic and proteomic analyses to characterize the in situ gene expression, metabolism and physiology of the symbionts. We found genes needed for N2 fixation in the deep-sea symbiont's genome, which, to date, were only found in shallow-water Ca. Thiodiazotropha. However, we did not detect the expression of these genes and thus the potential role of nitrogen fixation in this symbiosis remains to be determined. We also found the high expression of carbon fixation and sulfur oxidation genes, which indicate chemolithoautotrophy as the key physiology of Ca. Thiodiazotropha. However, we also detected the expression of pathways for using methanol and formate as energy sources. Our findings highlight the key traits these microbes maintain to support the nutrition of their hosts and interact with them.
Collapse
Affiliation(s)
- Lina Ratinskaia
- Biology Department, National Institute of Oceanography, Israel Oceanographic and Limnological Research (IOLR), Haifa 3108000Israel
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 3498838Israel
| | - Stas Malavin
- Biology Department, National Institute of Oceanography, Israel Oceanographic and Limnological Research (IOLR), Haifa 3108000Israel
- Department of Environmental Hydrology and Microbiology, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sde Boker 8499000, Israel
| | - Tal Zvi-Kedem
- Biology Department, National Institute of Oceanography, Israel Oceanographic and Limnological Research (IOLR), Haifa 3108000Israel
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 3498838Israel
| | - Simina Vintila
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, United States
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, United States
| | - Maxim Rubin-Blum
- Biology Department, National Institute of Oceanography, Israel Oceanographic and Limnological Research (IOLR), Haifa 3108000Israel
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 3498838Israel
| |
Collapse
|
46
|
Hu B, Wang Q, Liu J, Xing L, Zhang X, Wang Y, Liu X. Environmental heterogeneity of cold seep by biological trait analysis of marine nematodes at Site F cold seep in South China Sea. MARINE POLLUTION BULLETIN 2024; 198:115932. [PMID: 38104383 DOI: 10.1016/j.marpolbul.2023.115932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Cold seeps provide high environmental heterogeneity for marine benthos. Site F is one of the active cold seeps in the South China Sea. In this study, free-living marine nematode communities were investigated at Site F and the adjacent deep-sea area. A total of 67 genera and 32 families were identified. The mean density at cold seep sites ranged from 13.6 to 181.8 ind./10 cm2, and that at the adjacent deep-sea sites ranged from 36.9 to 301.4 ind./10 cm2. At cold seep sites, the most dominant nematode genera were Desmoscolex, Pierrickia, Sabatieria, Halalaimus, and Dorylaimopsis while at deep-sea sites, the most dominant genera were Retrotheristus, Thalassomonhystera, Desmoscolex, Cobbia, and Halalaimus. Deposit feeders of nematodes were dominant at all sites. Results of biological trait analysis showed that there was high environmental heterogeneity for nematodes at Site F. Water depth, sediment organic matter content, and sand proportion had important influences on nematode communities.
Collapse
Affiliation(s)
- Bingzhou Hu
- College of Marine Life Sciences and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China; MOE Key Laboratory of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Qi Wang
- College of Marine Life Sciences and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China; MOE Key Laboratory of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Jiwen Liu
- College of Marine Life Sciences and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China; MOE Key Laboratory of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Lei Xing
- Key Lab of Submarine Geoscience and Prospecting, College of Marine Geosciences, Ocean University of China, China
| | - Xin Zhang
- CAS Key Laboratory of Marine Geology and Environment and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Yuqing Wang
- Trier College of Sustainable Technology, Yantai University, Yantai 264005, China
| | - Xiaoshou Liu
- College of Marine Life Sciences and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China; MOE Key Laboratory of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
47
|
Espada‐Hinojosa S, Karthäuser C, Srivastava A, Schuster L, Winter T, de Oliveira AL, Schulz F, Horn M, Sievert S, Bright M. Comparative genomics of a vertically transmitted thiotrophic bacterial ectosymbiont and its close free-living relative. Mol Ecol Resour 2024; 24:e13889. [PMID: 38010882 PMCID: PMC10952691 DOI: 10.1111/1755-0998.13889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 08/31/2023] [Accepted: 10/20/2023] [Indexed: 11/29/2023]
Abstract
Thiotrophic symbioses between sulphur-oxidizing bacteria and various unicellular and metazoan eukaryotes are widespread in reducing marine environments. The giant colonial ciliate Zoothamnium niveum, however, is the only host of thioautotrophic symbionts that has been cultivated along with its symbiont, the vertically transmitted ectosymbiont Candidatus Thiobius zoothamnicola (short Thiobius). Because theoretical predictions posit a smaller genome in vertically transmitted endosymbionts compared to free-living relatives, we investigated whether this is true also for an ectosymbiont. We used metagenomics to recover the high-quality draft genome of this bacterial symbiont. For comparison we have also sequenced a closely related free-living cultured but not formally described strain Milos ODIII6 (short ODIII6). We then performed comparative genomics to assess the functional capabilities at gene, metabolic pathway and trait level. 16S rRNA gene trees and average amino acid identity confirmed the close phylogenetic relationship of both bacteria. Indeed, Thiobius has about a third smaller genome than its free-living relative ODIII6, with reduced metabolic capabilities and fewer functional traits. The functional capabilities of Thiobius were a subset of those of the more versatile ODIII6, which possessed additional genes for oxygen, sulphur and hydrogen utilization and for the acquisition of phosphorus illustrating features that may be adaptive for the unstable environmental conditions at hydrothermal vents. In contrast, Thiobius possesses genes potentially enabling it to utilize lactate and acetate heterotrophically, compounds that may be provided as byproducts by the host. The present study illustrates the effect of strict host-dependence of a bacterial ectosymbiont on genome evolution and host adaptation.
Collapse
Affiliation(s)
| | - Clarissa Karthäuser
- Biology DepartmentWoods Hole Oceanographic InstitutionWoods HoleMassachusettsUSA
| | - Abhishek Srivastava
- Department of Functional and Evolutionary EcologyUniversity of ViennaViennaAustria
| | - Lukas Schuster
- Department of Functional and Evolutionary EcologyUniversity of ViennaViennaAustria
- Present address:
Deakin UniversityBurwoodAustralia
| | - Teresa Winter
- Department of Functional and Evolutionary EcologyUniversity of ViennaViennaAustria
| | - André Luiz de Oliveira
- Department of Functional and Evolutionary EcologyUniversity of ViennaViennaAustria
- Present address:
Max Planck Institute for Marine MicrobiologyBremenGermany
| | - Frederik Schulz
- Center for Microbiology and Environmental Systems ScienceUniversity of ViennaViennaAustria
- Present address:
DOE Joint Genome InstituteBerkeleyCaliforniaUSA
| | - Matthias Horn
- Center for Microbiology and Environmental Systems ScienceUniversity of ViennaViennaAustria
| | - Stefan Sievert
- Biology DepartmentWoods Hole Oceanographic InstitutionWoods HoleMassachusettsUSA
| | - Monika Bright
- Department of Functional and Evolutionary EcologyUniversity of ViennaViennaAustria
| |
Collapse
|
48
|
Fenibo EO, Selvarajan R, Wang H, Wang Y, Abia ALK. Untapped talents: insight into the ecological significance of methanotrophs and its prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166145. [PMID: 37579801 DOI: 10.1016/j.scitotenv.2023.166145] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/06/2023] [Accepted: 08/06/2023] [Indexed: 08/16/2023]
Abstract
The deep ocean is a rich reservoir of unique organisms with great potential for bioprospecting, ecosystem services, and the discovery of novel materials. These organisms thrive in harsh environments characterized by high hydrostatic pressure, low temperature, and limited nutrients. Hydrothermal vents and cold seeps, prominent features of the deep ocean, provide a habitat for microorganisms involved in the production and filtration of methane, a potent greenhouse gas. Methanotrophs, comprising archaea and bacteria, play a crucial role in these processes. This review examines the intricate relationship between the roles, responses, and niche specialization of methanotrophs in the deep ocean ecosystem. Our findings reveal that different types of methanotrophs dominate specific zones depending on prevailing conditions. Type I methanotrophs thrive in oxygen-rich zones, while Type II methanotrophs display adaptability to diverse conditions. Verrumicrobiota and NC10 flourish in hypoxic and extreme environments. In addition to their essential role in methane regulation, methanotrophs contribute to various ecosystem functions. They participate in the degradation of foreign compounds and play a crucial role in cycling biogeochemical elements like metals, sulfur, and nitrogen. Methanotrophs also serve as a significant energy source for the oceanic food chain and drive chemosynthesis in the deep ocean. Moreover, their presence offers promising prospects for biotechnological applications, including the production of valuable compounds such as polyhydroxyalkanoates, methanobactin, exopolysaccharides, ecotines, methanol, putrescine, and biofuels. In conclusion, this review highlights the multifaceted roles of methanotrophs in the deep ocean ecosystem, underscoring their ecological significance and their potential for advancements in biotechnology. A comprehensive understanding of their niche specialization and responses will contribute to harnessing their full potential in various domains.
Collapse
Affiliation(s)
- Emmanuel Oliver Fenibo
- World Bank Africa Centre of Excellence, Centre for Oilfield Chemical Research, University of Port Harcourt, Port Harcourt 500272, Nigeria
| | - Ramganesh Selvarajan
- Laboratory of Extraterrestrial Ocean Systems (LEOS), Institute of Deep-Sea Science and Engineering (IDSSE), Chinese Academy of Sciences (CAS), Sanya, China; Department of Environmental Science, University of South Africa, Florida Campus, 1710, South Africa
| | - Huiqi Wang
- Laboratory of Extraterrestrial Ocean Systems (LEOS), Institute of Deep-Sea Science and Engineering (IDSSE), Chinese Academy of Sciences (CAS), Sanya, China
| | - Yue Wang
- Laboratory of Extraterrestrial Ocean Systems (LEOS), Institute of Deep-Sea Science and Engineering (IDSSE), Chinese Academy of Sciences (CAS), Sanya, China
| | - Akebe Luther King Abia
- Environmental Research Foundation, Westville 3630, South Africa; Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.
| |
Collapse
|
49
|
Methou P, Cueff‐Gauchard V, Michel LN, Gayet N, Pradillon F, Cambon‐Bonavita M. Symbioses of alvinocaridid shrimps from the South West Pacific: No chemosymbiotic diets but conserved gut microbiomes. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023; 15:614-630. [PMID: 37752716 PMCID: PMC10667644 DOI: 10.1111/1758-2229.13201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 08/31/2023] [Indexed: 09/28/2023]
Abstract
Rimicaris exoculata shrimps from hydrothermal vent ecosystems are known to host dense epibiotic communities inside their enlarged heads and digestive systems. Conversely, other shrimps from the family, described as opportunistic feeders have received less attention. We examined the nutrition and bacterial communities colonising 'head' chambers and digestive systems of three other alvinocaridids-Rimicaris variabilis, Nautilocaris saintlaurentae and Manuscaris sp.-using a combination of electron microscopy, stable isotopes and sequencing approaches. Our observations inside 'head' cavities and on mouthparts showed only a really low coverage of bacterial epibionts. In addition, no clear correlation between isotopic ratios and relative abundance of epibionts on mouthparts could be established among shrimp individuals. Altogether, these results suggest that none of these alvinocaridids rely on chemosynthetic epibionts as their main source of nutrition. Our analyses also revealed a substantial presence of several Firmicutes and Deferribacterota lineages within the foreguts and midguts of these shrimps, which closest known lineages were systematically digestive symbionts associated with alvinocaridids, and more broadly for Firmicutes from digestive systems of other crustaceans from marine and terrestrial ecosystems. Overall, our study opens new perspectives not only about chemosynthetic symbioses of vent shrimps but more largely about digestive microbiomes with potential ancient and evolutionarily conserved bacterial partnerships among crustaceans.
Collapse
Affiliation(s)
- Pierre Methou
- X‐STARJapan Agency for Marine‐Earth Science and Technology (JAMSTEC)YokosukaJapan
| | - Valérie Cueff‐Gauchard
- Univ BrestIfremer, CNRS, Unité Biologie des Environnements Extrêmes marins ProfondsPlouzanéFrance
| | - Loïc N. Michel
- Univ BrestIfremer, CNRS, Unité Biologie des Environnements Extrêmes marins ProfondsPlouzanéFrance
- Laboratory of Oceanology, Freshwater, and Oceanic Sciences Unit of reSearch (FOCUS)University of LiègeLiègeBelgium
| | - Nicolas Gayet
- Univ BrestIfremer, CNRS, Unité Biologie des Environnements Extrêmes marins ProfondsPlouzanéFrance
| | - Florence Pradillon
- Univ BrestIfremer, CNRS, Unité Biologie des Environnements Extrêmes marins ProfondsPlouzanéFrance
| | | |
Collapse
|
50
|
Whittle M, Bonsall MB, Barreaux AMG, Ponton F, English S. A theoretical model for host-controlled regulation of symbiont density. J Evol Biol 2023; 36:1731-1744. [PMID: 37955420 PMCID: PMC7617405 DOI: 10.1111/jeb.14246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
There is growing empirical evidence that animal hosts actively control the density of their mutualistic symbionts according to their requirements. Such active regulation can be facilitated by compartmentalization of symbionts within host tissues, which confers a high degree of control of the symbiosis to the host. Here, we build a general theoretical framework to predict the underlying ecological drivers and evolutionary consequences of host-controlled endosymbiont density regulation for a mutually obligate association between a host and a compartmentalized, vertically transmitted symbiont. Building on the assumption that the costs and benefits of hosting a symbiont population increase with symbiont density, we use state-dependent dynamic programming to determine an optimal strategy for the host, i.e., that which maximizes host fitness, when regulating the density of symbionts. Simulations of active host-controlled regulation governed by the optimal strategy predict that the density of the symbiont should converge to a constant level during host development, and following perturbation. However, a similar trend also emerges from alternative strategies of symbiont regulation. The strategy which maximizes host fitness also promotes symbiont fitness compared to alternative strategies, suggesting that active host-controlled regulation of symbiont density could be adaptive for the symbiont as well as the host. Adaptation of the framework allowed the dynamics of symbiont density to be predicted for other host-symbiont ecologies, such as for non-essential symbionts, demonstrating the versatility of this modelling approach.
Collapse
Affiliation(s)
- Mathilda Whittle
- School of Biological Sciences, University of Bristol, Bristol, UK
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Michael B. Bonsall
- Department of Biology, University of Oxford, Oxford, UK
- St Peter’s College, Oxford, UK
| | | | - Fleur Ponton
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Sinead English
- School of Biological Sciences, University of Bristol, Bristol, UK
| |
Collapse
|