1
|
Wang YC, Wang S, Lv YH, Wang JY, Yang WX, Deng Y, Ju F, Wang C. Diversity, influential factor, and communication network construction of quorum sensing bacteria in global wastewater treatment plants. WATER RESEARCH 2025; 279:123437. [PMID: 40054278 DOI: 10.1016/j.watres.2025.123437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 03/02/2025] [Accepted: 03/03/2025] [Indexed: 05/06/2025]
Abstract
Quorum sensing (QS) is widespread in the microbial world and mediates microbial relationships in communities. However, the existing knowledge is far from a full description of the complex communication-based microbial interactions in engineered ecosystems, i.e., wastewater treatment plants (WWTPs). Herein, we conducted a systematic analysis of the diversity and influential factors of the QS-related microflora through the collection of global 1186 activated sludge microbiome samples. We found that the richness of bacteria associated with the universal bacterial secondary messenger presented the highest in QS system, whereas the bacteria related to the degradation of N-Acyl-homoserine lactones occupied the main position in the quorum quenching system. The community turnover of QS microflora was found more likely to be dominated by the deterministic process, such as the dissolved oxygen and resource availability (the ratio of organic matter to microorganisms). Meanwhile, these QS microflora in turn have a profound impact on the functions of WWTPs, especially multilingual intelligencers involving various language systems, such as Nitrospira. By connecting the signal molecule synthesis and acceptance bacteria, we constructed a QS communication network, which can be a robust tool for initial investigation of signaling molecule-mediated microbial interactions. The above results were further integrated into an online access website, named Quorum Sensing Communication Network in Activated Sludge (QSCNAS) (http://www.qscnas.cn/), which allowed users to browse and capture possible QS-based interactions of target bacterium. This work contributes to the understanding of bacterial communication in WWTPs and provides a platform to help in developing potential regulation strategies.
Collapse
Affiliation(s)
- Yong-Chao Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China
| | - Sen Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China
| | - Ya-Hui Lv
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China
| | - Jia-Yi Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China
| | - Wen-Xuan Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China
| | - Ye Deng
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Feng Ju
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310030, China
| | - Can Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China.
| |
Collapse
|
2
|
Zeng J, Tong Z, Li Z, Liu Y, Xie L, Wang T, Li S, Li L. Complete degradation of polycyclic antibiotic methacycline by a micro/nanostructured biogenic Mn oxide composite from engineered Mn(II)-oxidizing Pseudomonas sp. MB04B. Microbiol Spectr 2025:e0161124. [PMID: 40377307 DOI: 10.1128/spectrum.01611-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 04/04/2025] [Indexed: 05/18/2025] Open
Abstract
The misuse and improper disposal of methacycline (MTC), a widely used broad-spectrum antibiotic in human clinical settings and livestock production, poses significant threats to both human health and the ecological environment. In this study, a wild-type Mn(II)-oxidizing Pseudomonas strain MB04B was modified through multiple gene deletions, leading to a maximum 35% increase in Mn oxide deposit amount (MnODA) in the engineered strain MB04R-14, and accelerated formation of biogenic Mn oxide (BMO) aggregates, which exhibited the capability to degrade and detoxify MTC completely. After constructing a mini-Tn5 transposon insertion mutant library and screening for MnODA-increased mutants, a total of 10 target genes located in the corresponding mutant loci were identified using the high-efficiency thermal asymmetric interlaced PCR (hiTAIL-PCR) method. These genes were systematically knocked out singly or in multiple combinations, and the highest MnODA-promoted mutant (MB04R-14) was obtained, in which seven genes were knocked out. Following the characterization of the BMO aggregate complex formed in MB04R-14 as a micro-/nanostructured ramsdellite (MnO2) composite through means of several analysis methods, the complex was assessed for MTC degradation under laboratory trials. Complete MTC degradation was revealed after 24 h of treatment with the BMO complex, and the metal ions Mg2+, Cu2+, Ni2+, and Co2+ significantly inhibited MTC degradation efficiency. Liquid chromatography-mass spectrometry identified three intermediates in the degradation pathway, and a possible degradation-metabolic pathway of MTC by the BMO complex was proposed. Finally, the residual antibiotic activity, continuous degradation cycle performance, and treatment of MTC-containing hospital wastewater were evaluated. IMPORTANCE Due to the common usage and recalcitrance to degradation, methacycline is often found in various surface water and wastewater as a persistent antibiotic toxicant, posing significant risks to the environment and public health. By engineering a Pseudomonas strain, we developed a dynamic oxidative composite comprising engineered Pseudomonas cells and biogenic Mn oxides. This system not only enhances oxidative capacities but also accelerates the formation of biogenic Mn oxides, leading to the complete degradation of methacycline. The findings highlight the potential of engineered Pseudomonas strain as a sustainable solution for mitigating antibiotic pollution, thereby contributing to cleaner water resources and protecting ecosystems.
Collapse
Affiliation(s)
- Jie Zeng
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhenghu Tong
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhi Li
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yongxuan Liu
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Li Xie
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Tan Wang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shiwei Li
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Lin Li
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
3
|
Visnardi A, Ribeiro RA, de Souza AS, Churasacari Vinces TG, Llontop EE, de Almeida Ferrari AS, França Henrique PA, Valdivieso D, Sánchez-Limache DE, Silva GR, Soares EP, Santos TW, Farah CS, Sassonia RC, Salinas RK, Guzzo CR, de Souza RF. Insertion of a Divergent GAF-like Domain Defines a Novel Family of YcgR Homologues That Bind c-di-GMP in Leptospirales. ACS OMEGA 2025; 10:3988-4006. [PMID: 39926552 PMCID: PMC11800159 DOI: 10.1021/acsomega.4c09917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/03/2024] [Accepted: 12/12/2024] [Indexed: 02/11/2025]
Abstract
The Leptospiraceae family, which includes the genera Leptospira, Leptonema, and Turneriella, is an ecologically diverse group that includes saprophytic strains from soil and water as well as important pathogenic strains. Adaptation to these multiple environments relies strongly on signal transduction to adjust their morphology, motility, and metabolism to the changing environmental conditions. Members of the genus Leptospira distinguish themselves among spirochetes for having an elevated number of signal transduction genes. In this study, we describe a novel signal transduction protein that has gained multiple paralogues in the Leptospiraceae. These proteins are members of the YcgR/DgrA/MotI family, whose orthologs in several bacterial lineages have been shown to regulate the flagellar motor upon binding to c-di-GMP through their N-terminal PilZ domain. Unlike previously described versions of YcgR, the spirochetal proteins are characterized by the insertion of a divergent GAF domain within their N-terminal PilZ domain. We show that one member of this protein family from Leptospira interrogans is still a monomeric c-di-GMP binding protein and that these novel YcgR-like proteins have mostly replaced other members of the YcgR family in Leptospiraceae. Marked divergence among the paralogs suggests this family's expansion was accompanied by neofunctionalization, with the likely emergence of novel interactions in the signal transduction network controlling the flagellum rotor and other processes affected by changes in levels of c-di-GMP.
Collapse
Affiliation(s)
- Aline
Biazola Visnardi
- Department
of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-060, Brazil
| | - Rodolfo Alvarenga Ribeiro
- Department
of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-060, Brazil
| | - Anacleto Silva de Souza
- Department
of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-060, Brazil
| | | | - Edgar E. Llontop
- Department
of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-060, Brazil
| | | | | | - Daniela Valdivieso
- Department
of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-060, Brazil
| | | | - Gabriela Roberto Silva
- Department
of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-060, Brazil
| | - Eduardo Pereira Soares
- Department
of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-060, Brazil
| | - Thomas Wittmann
Cezar Santos
- Department
of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-060, Brazil
- Graduate
Program in Bioinformatics, University of
São Paulo, São Paulo 05508-060, Brazil
| | - Chuck Shaker Farah
- Department
of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-060, Brazil
| | | | - Roberto K. Salinas
- Department
of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-060, Brazil
| | - Cristiane Rodrigues Guzzo
- Department
of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-060, Brazil
| | - Robson Francisco de Souza
- Department
of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-060, Brazil
- Graduate
Program in Bioinformatics, University of
São Paulo, São Paulo 05508-060, Brazil
| |
Collapse
|
4
|
Yang X, Zeng J, Wang D, Zhou Q, Yu X, Wang Z, Bai T, Luan G, Xu Y. NagZ modulates the virulence of E. cloacae by acting through the gene of unknown function, ECL_03795. Virulence 2024; 15:2367652. [PMID: 38912723 PMCID: PMC11197897 DOI: 10.1080/21505594.2024.2367652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/09/2024] [Indexed: 06/25/2024] Open
Abstract
β-N-acetylglucosaminidase (NagZ), a cytosolic glucosaminidase, plays a pivotal role in peptidoglycan recycling. Previous research demonstrated that NagZ knockout significantly eradicated AmpC-dependent β-lactam resistance in Enterobacter cloacae. However, NagZ's role in the virulence of E. cloacae remains unclear. Our study, incorporating data on mouse and Galleria mellonella larval mortality rates, inflammation markers, and histopathological examinations, revealed a substantial reduction in the virulence of E. cloacae following NagZ knockout. Transcriptome sequencing uncovered differential gene expression between NagZ knockout and wild-type strains, particularly in nucleotide metabolism pathways. Further investigation demonstrated that NagZ deletion led to a significant increase in cyclic diguanosine monophosphate (c-di-GMP) levels. Additionally, transcriptome sequencing and RT-qPCR confirmed significant differences in the expression of ECL_03795, a gene with an unknown function but speculated to be involved in c-di-GMP metabolism due to its EAL domain known for phosphodiesterase activity. Interestingly, in ECL_03795 knockout strains, a notable reduction in the virulence was observed, and virulence was rescued upon complementation with ECL_03795. Consequently, our study suggests that NagZ's function on virulence is partially mediated through the ECL_03795→c-di-GMP pathway, providing insight into the development of novel therapies and strongly supporting the interest in creating highly efficient NagZ inhibitors.
Collapse
Affiliation(s)
- Xianggui Yang
- Department of Laboratory Medicine, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Jun Zeng
- Division of Pulmonary and Critical Care Medicine, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Dan Wang
- Department of Laboratory Medicine, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Qin Zhou
- Department of Laboratory Medicine, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Xuejing Yu
- Department of Internal Medicine, Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zhenguo Wang
- Department of Stomatology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Tingting Bai
- Department of Laboratory Medicine, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Guangxin Luan
- Department of Laboratory Medicine, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Ying Xu
- Department of Laboratory Medicine, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Isenberg RY, Mandel MJ. Cyclic Diguanylate in the Wild: Roles During Plant and Animal Colonization. Annu Rev Microbiol 2024; 78:533-551. [PMID: 39270684 PMCID: PMC11578789 DOI: 10.1146/annurev-micro-041522-101729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Cyclic diguanylate (c-di-GMP) is a near-ubiquitous signaling molecule that regulates the motility-to-sessility transition in many bacterial species. Among the phenotypes influenced by c-di-GMP are biofilm formation, motility, cell cycle, and virulence. The hallmark phenotypes regulated by c-di-GMP-biofilm formation and motility-are key determinants of host-bacterial interactions. A large body of research has identified the roles of c-di-GMP in regulating phenotypes in culture. While numerous studies have investigated roles for c-di-GMP during the establishment and maintenance of pathogenic host-bacterial associations, considerably less attention has been devoted to defining the roles of c-di-GMP during beneficial and commensal associations. This review describes the known roles of c-di-GMP in regulating phenotypes that contribute to host colonization, with a focus on knowledge gaps and future prospects for examining c-di-GMP during beneficial colonization.
Collapse
Affiliation(s)
- Ruth Y Isenberg
- Current affiliation: Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
- Department of Medical Microbiology and Immunology and Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA;
| | - Mark J Mandel
- Department of Medical Microbiology and Immunology and Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA;
| |
Collapse
|
6
|
Wang Y, Zhang R, Mathivanan K, Zhang Y, Yang L, Guan F, Duan J. Proteomics and EPS Compositional Analysis Reveals Desulfovibrio bisertensis SY-1 Induced Corrosion on Q235 Steel by Biofilm Formation. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5060. [PMID: 39459765 PMCID: PMC11509735 DOI: 10.3390/ma17205060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/01/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024]
Abstract
Microorganisms that exist in the seawater form microbial biofilms on materials used in marine construction, especially on metal surfaces submerged in seawater, where they form biofilms and cause severe corrosion. Biofilms are mainly composed of bacteria and their secreted polymeric substances. In order to understand how biofilms promote metal corrosion, planktonic and biofilm cells of Desulfovibrio bizertensis SY-1 (D. bizertensis) from Q235 steel were collected and analyzed as to their intracellular proteome and extracellular polymeric substances (EPS). The intracellular proteome analysis showed that the cellular proteins were strongly regulated in biofilm cells compared to planktonic cells, e.g., along with flagellar proteins, signaling-related proteins were significantly increased, whereas energy production and conversion proteins and DNA replication proteins were significantly regulated. The up-and-down regulation of proteins revealed that biofilm formation by bacteria on metal surfaces is affected by flagellar and signaling proteins. A significant decrease in DNA replication proteins indicated that DNA is no longer replicated and transcribed in mature biofilms, thus reducing energy consumption. Quantitative analysis and lectin staining of the biofilm on the metal's surface revealed that the bacteria secreted a substantial amount of EPS when they began to attach to the surface, and proteins dominated the main components of EPS. Further, the infrared analysis showed that the secondary structure of the proteins in the EPS of the biofilm was mainly dominated by β-sheet and 3-turn helix, which may help to enhance the adhesion of EPS. The functional groups of EPS analyzed using XPS showed that the C element of EPS in the biofilm mainly existed in the form of combinations with N. Furthermore, the hydroxyl structure in the EPS extracted from the biofilm had a stronger hydrogen bonding effect, which could maintain the stability of the EPS structure and biofilm. The study results revealed that D. bizertensis regulates the metabolic pathways and their secreted EPS structure to affect biofilm formation and cause metal corrosion, which has a certain reference significance for the study of the microbially influenced corrosion (MIC) mechanism.
Collapse
Affiliation(s)
- Yanan Wang
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.W.); (K.M.); (Y.Z.); (L.Y.); (F.G.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruiyong Zhang
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.W.); (K.M.); (Y.Z.); (L.Y.); (F.G.)
- Guangxi Key Laboratory of Marine Environmental Science, Institute of Marine Corrosion Protection, Guangxi Academy of Sciences, Nanning 530007, China
| | - Krishnamurthy Mathivanan
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.W.); (K.M.); (Y.Z.); (L.Y.); (F.G.)
| | - Yimeng Zhang
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.W.); (K.M.); (Y.Z.); (L.Y.); (F.G.)
| | - Luhua Yang
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.W.); (K.M.); (Y.Z.); (L.Y.); (F.G.)
| | - Fang Guan
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.W.); (K.M.); (Y.Z.); (L.Y.); (F.G.)
- Guangxi Key Laboratory of Marine Environmental Science, Institute of Marine Corrosion Protection, Guangxi Academy of Sciences, Nanning 530007, China
| | - Jizhou Duan
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.W.); (K.M.); (Y.Z.); (L.Y.); (F.G.)
- Guangxi Key Laboratory of Marine Environmental Science, Institute of Marine Corrosion Protection, Guangxi Academy of Sciences, Nanning 530007, China
| |
Collapse
|
7
|
Reynolds MF. New insights into the signal transduction mechanism of O 2-sensing FixL and other biological heme-based sensor proteins. J Inorg Biochem 2024; 259:112642. [PMID: 38908215 DOI: 10.1016/j.jinorgbio.2024.112642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/24/2024] [Accepted: 06/13/2024] [Indexed: 06/24/2024]
Abstract
Recent structural and biophysical studies of O2-sensing FixL, NO-sensing soluble guanylate cyclase, and other biological heme-based sensing proteins have begun to reveal the details of their molecular mechanisms and shed light on how nature regulates important biological processes such as nitrogen fixation, blood pressure, neurotransmission, photosynthesis and circadian rhythm. The O2-sensing FixL protein from S. meliloti, the eukaryotic NO-sensing protein sGC, and the CO-sensing CooA protein from R. rubrum transmit their biological signals through gas-binding to the heme domain of these proteins, which inhibits or activates the regulatory, enzymatic domain. These proteins appear to propagate their signal by specific structural changes in the heme sensor domain initiated by the appropriate gas binding to the heme, which is then propagated through a coiled-coil linker or other domain to the regulatory, enzymatic domain that sends out the biological signal. The current understanding of the signal transduction mechanisms of O2-sensing FixL, NO-sensing sGC, CO-sensing CooA and other biological heme-based gas sensing proteins and their mechanistic themes are discussed, with recommendations for future work to further understand this rapidly growing area of biological heme-based gas sensors.
Collapse
Affiliation(s)
- Mark F Reynolds
- Department of Chemistry and Biochemistry, Saint Joseph's University, 5600 City Avenue, Philadelphia, PA 19131, United States of America.
| |
Collapse
|
8
|
Hu XM, Peng L, Wang Y, Ma F, Tao Y, Liang X, Yang JL. Bacterial c-di-GMP triggers metamorphosis of mussel larvae through a STING receptor. NPJ Biofilms Microbiomes 2024; 10:51. [PMID: 38902226 PMCID: PMC11190208 DOI: 10.1038/s41522-024-00523-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/07/2024] [Indexed: 06/22/2024] Open
Abstract
Bacteria induced metamorphosis observed in nearly all marine invertebrates. However, the mechanism of bacteria regulating the larvae-juvenile metamorphosis remains unknown. Here, we test the hypothesis that c-di-GMP, a ubiquitous bacterial second-messenger molecule, directly triggers the mollusc Mytilus coruscus larval metamorphosis via the stimulator of interferon genes (STING) receptor. We determined that the deletion of c-di-GMP synthesis genes resulted in reduced c-di-GMP levels and biofilm-inducing activity on larval metamorphosis, accompanied by alterations in extracellular polymeric substances. Additionally, c-di-GMP extracted from tested varying marine bacteria all exhibited inducing activity on larval metamorphosis. Simultaneously, through pharmacological and molecular experiments, we demonstrated that M. coruscus STING (McSTING) participates in larval metamorphosis by binding with c-di-GMP. Our findings reveal that new role of bacterial c-di-GMP that triggers mussel larval metamorphosis transition, and extend knowledge in the interaction of bacteria and host development in marine ecosystems.
Collapse
Affiliation(s)
- Xiao-Meng Hu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-Culture of Aquaculture Animals, Shanghai, 201306, China
| | - Lihua Peng
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-Culture of Aquaculture Animals, Shanghai, 201306, China
| | - Yuyi Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-Culture of Aquaculture Animals, Shanghai, 201306, China
| | - Fan Ma
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-Culture of Aquaculture Animals, Shanghai, 201306, China
| | - Yu Tao
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-Culture of Aquaculture Animals, Shanghai, 201306, China
| | - Xiao Liang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-Culture of Aquaculture Animals, Shanghai, 201306, China.
| | - Jin-Long Yang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-Culture of Aquaculture Animals, Shanghai, 201306, China.
| |
Collapse
|
9
|
Liu Q, Zhang C, Zhang R, Yuan J. Speed-dependent bacterial surface swimming. Appl Environ Microbiol 2024; 90:e0050824. [PMID: 38717126 PMCID: PMC11218616 DOI: 10.1128/aem.00508-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/10/2024] [Indexed: 06/19/2024] Open
Abstract
Solid surfaces submerged in liquid in natural environments alter bacterial swimming behavior and serve as platforms for bacteria to form biofilms. In the initial stage of biofilm formation, bacteria detect surfaces and increase the intracellular level of the second messenger c-di-GMP, leading to a reduction in swimming speed. The impact of this speed reduction on bacterial surface swimming remains unclear. In this study, we utilized advanced microscopy techniques to examine the effect of swimming speed on bacterial surface swimming behavior. We found that a decrease in swimming speed reduces the cell-surface distance and prolongs the surface trapping time. Both these effects would enhance bacterial surface sensing and increase the likelihood of cells adhering to the surface, thereby promoting biofilm formation. We also examined the surface-escaping behavior of wild-type Escherichia coli and Pseudomonas aeruginosa, noting distinct surface-escaping mechanisms between the two bacterial species. IMPORTANCE In the early phase of biofilm formation, bacteria identify surfaces and increase the intracellular level of the second messenger c-di-GMP, resulting in a decrease in swimming speed. Here, we utilized advanced microscopy techniques to investigate the impact of swimming speed on bacterial surface swimming, focusing on Escherichia coli and Pseudomonas aeruginosa. We found that an increase in swimming speed led to an increase in the radius of curvature and a decrease in surface detention time. These effects were explained through hydrodynamic modeling as a result of an increase in the cell-surface distance with increasing swimming speed. We also observed distinct surface-escaping mechanisms between the two bacterial species. Our study suggests that a decrease in swimming speed could enhance the likelihood of cells adhering to the surface, promoting biofilm formation. This sheds light on the role of reduced swimming speed in the transition from motile to sedentary bacterial lifestyles.
Collapse
Affiliation(s)
- Qiuqian Liu
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui, China
| | - Chi Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui, China
| | - Rongjing Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui, China
| | - Junhua Yuan
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
10
|
Caspi R, Karp PD. An evaluation of ChatGPT and Bard (Gemini) in the context of biological knowledge retrieval. Access Microbiol 2024; 6:000790.v3. [PMID: 39045247 PMCID: PMC11261719 DOI: 10.1099/acmi.0.000790.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/14/2024] [Indexed: 07/25/2024] Open
Abstract
ChatGPT and Bard (now called Gemini), two conversational AI models developed by OpenAI and Google AI, respectively, have garnered considerable attention for their ability to engage in natural language conversations and perform various language-related tasks. While the versatility of these chatbots in generating text and simulating human-like conversations is undeniable, we wanted to evaluate their effectiveness in retrieving biological knowledge for curation and research purposes. To do so we asked each chatbot a series of questions and scored their answers based on their quality. Out of a maximal score of 24, ChatGPT scored 5 and Bard scored 13. The encountered issues included missing information, incorrect answers, and instances where responses combine accurate and inaccurate details. Notably, both tools tend to fabricate references to scientific papers, undermining their usability. In light of these findings, we recommend that biologists continue to rely on traditional sources while periodically assessing the reliability of ChatGPT and Bard. As ChatGPT aptly suggested, for specific and up-to-date scientific information, established scientific journals, databases, and subject-matter experts remain the preferred avenues for trustworthy data.
Collapse
Affiliation(s)
- Ron Caspi
- SRI International, Menlo Park, CA 94025, USA
| | | |
Collapse
|
11
|
Kitanishi K, Aoyama N, Shimonaka M. Gas-Selective Catalytic Regulation by a Newly Identified Globin-Coupled Sensor Phosphodiesterase Containing an HD-GYP Domain from the Human Pathogen Vibrio fluvialis. Biochemistry 2024; 63:523-532. [PMID: 38264987 PMCID: PMC10882959 DOI: 10.1021/acs.biochem.3c00484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 01/25/2024]
Abstract
Globin-coupled sensors constitute an important family of heme-based gas sensors, an emerging class of heme proteins. In this study, we have identified and characterized a globin-coupled sensor phosphodiesterase containing an HD-GYP domain (GCS-HD-GYP) from the human pathogen Vibrio fluvialis, which is an emerging foodborne pathogen of increasing public health concern. The amino acid sequence encoded by the AL536_01530 gene from V. fluvialis indicated the presence of an N-terminal globin domain and a C-terminal HD-GYP domain, with HD-GYP domains shown previously to display phosphodiesterase activity toward bis(3',5')-cyclic dimeric guanosine monophosphate (c-di-GMP), a bacterial second messenger that regulates numerous important physiological functions in bacteria, including in bacterial pathogens. Optical absorption spectral properties of GCS-HD-GYP were found to be similar to those of myoglobin and hemoglobin and of other bacterial globin-coupled sensors. The binding of O2 to the Fe(II) heme iron complex of GCS-HD-GYP promoted the catalysis of the hydrolysis of c-di-GMP to its linearized product, 5'-phosphoguanylyl-(3',5')-guanosine (pGpG), whereas CO and NO binding did not enhance the catalysis, indicating a strict discrimination of these gaseous ligands. These results shed new light on the molecular mechanism of gas-selective catalytic regulation by globin-coupled sensors, with these advances apt to lead to a better understanding of the family of globin-coupled sensors, a still growing family of heme-based gas sensors. In addition, given the importance of c-di-GMP in infection and virulence, our results suggested that GCS-HD-GYP could play an important role in the ability of V. fluvialis to sense O2 and NO in the context of host-pathogen interactions.
Collapse
Affiliation(s)
- Kenichi Kitanishi
- Department
of Chemistry, Faculty of Science, Tokyo
University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Nao Aoyama
- Department
of Chemistry, Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Motoyuki Shimonaka
- Department
of Chemistry, Faculty of Science, Tokyo
University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| |
Collapse
|
12
|
Tulin G, Figueroa NR, Checa SK, Soncini FC. The multifarious MerR family of transcriptional regulators. Mol Microbiol 2024; 121:230-242. [PMID: 38105009 DOI: 10.1111/mmi.15212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/28/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023]
Abstract
The MerR family of transcriptional regulators includes a variety of bacterial cytoplasmic proteins that respond to a wide range of signals, including toxins, metal ions, and endogenous metabolites. Its best-characterized members share similar structural and functional features with the family founder, the mercury sensor MerR, although most of them do not respond to metal ions. The group of "canonical" MerR homologs displays common molecular mechanisms for controlling the transcriptional activation of their target genes in response to inducer signals. This includes the recognition of distinctive operator sequences located at suboptimal σ70 -dependent promoters. Interestingly, an increasing number of proteins assigned to the MerR family based on their DNA-binding domain do not match in structure, sequence, or mode of action with any of the canonical MerR-like regulators. Here, we analyzed several members of the family, including this last group. Based on a phylogenetic analysis, and similarities in structural/functional features and position of their target operators relative to the promoter elements, we propose to assign these "atypical/divergent" MerR regulators to a phylogenetically separated group. These atypical/divergent homologs represent a new class of transcriptional regulators with novel regulatory mechanisms.
Collapse
Affiliation(s)
- Gonzalo Tulin
- Instituto de Biología Molecular y Celular de Rosario, Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Rosario, Argentina
| | - Nicolás R Figueroa
- Centro de Estudios Fotosintéticos y Bioquímicos, Consejo Nacional de Investigaciones Científicas y Técnicas, Rosario, Argentina
| | - Susana K Checa
- Instituto de Biología Molecular y Celular de Rosario, Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Rosario, Argentina
| | - Fernando C Soncini
- Instituto de Biología Molecular y Celular de Rosario, Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Rosario, Argentina
| |
Collapse
|
13
|
Sun XY, Deng J, Zhang C, Fung SY, Siu KL, Cheng YY, Ye L, Qin J, Wang K, Qu JX, Gao W, Wang F, Jin DY, Yang L. Superoxide dismutase A (SodA) is a c-di-GMP effector protein governing oxidative stress tolerance in Stenotrophomonas maltophilia. Microbiol Res 2024; 278:127535. [PMID: 37922698 DOI: 10.1016/j.micres.2023.127535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/15/2023] [Accepted: 10/20/2023] [Indexed: 11/07/2023]
Abstract
C-di-GMP is a bacterial second messenger implicated in the regulation of many key functions including antibiotic tolerance and biofilm formation. Our understanding of how c-di-GMP exerts its action via receptors to modulate different biological functions is still limited. Here we used a c-di-GMP affinity pull-down assay coupled to LC-MS/MS to identify c-di-GMP-binding proteins in the opportunistic pathogen Stenotrophomonas maltophilia. This analysis identified Smlt3238 (SodA), a protein of the superoxide dismutase family, as a c-di-GMP-binding protein. Microscale thermophoresis showed that purified SodA protein bound c-di-GMP with an estimated dissociation constant (Kd) value of 141.5 μM. Using various in vivo and in vitro experiments, we demonstrated that c-di-GMP modulates the enzyme activity of SodA directly. Circular dichroism experiments revealed that SodA protein gradually altered its basic structure with increasing levels of c-di-GMP. Phenotypic experiments conducted in the presence of a range of intracellular c-di-GMP levels showed that SodA function is modulated by c-di-GMP. The findings thus identify a novel c-di-GMP binding protein that governs oxidative stress tolerance in S. maltophilia.
Collapse
Affiliation(s)
- Xiao-Yu Sun
- School of Medicine, Southern University of Science and Technology / Shenzhen Key Laboratory for Gene Regulation and Systems Biology, Southern University of Science and Technology, Shenzhen 518055, Guangdong, PR China; School of Biomedical Sciences, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong; Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, PR China
| | - Jie Deng
- School of Medicine, Southern University of Science and Technology / Shenzhen Key Laboratory for Gene Regulation and Systems Biology, Southern University of Science and Technology, Shenzhen 518055, Guangdong, PR China; Shenzhen Third People's Hospital, National Clinical Research Center for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518112, PR China
| | - Chenhui Zhang
- Shenzhen Third People's Hospital, National Clinical Research Center for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518112, PR China
| | - Sin-Yee Fung
- School of Biomedical Sciences, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong
| | - Kam-Leung Siu
- School of Biomedical Sciences, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong
| | - Ying-Ying Cheng
- Shenzhen Institute of Respiratory Diseases, Second Clinical Medical College (Shenzhen People's Hospital), Jinan University / the First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, PR China; Forensics Genomics International (FGI), BGI-Shenzhen, Shenzhen, PR China
| | - Liumei Ye
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, PR China
| | - Jiaoxia Qin
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, PR China
| | - Ke Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, PR China
| | - Jiu-Xin Qu
- Shenzhen Third People's Hospital, National Clinical Research Center for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518112, PR China
| | - Wenying Gao
- Shenzhen Third People's Hospital, National Clinical Research Center for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518112, PR China
| | - Fuxiang Wang
- Shenzhen Third People's Hospital, National Clinical Research Center for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518112, PR China
| | - Dong-Yan Jin
- School of Biomedical Sciences, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong.
| | - Liang Yang
- School of Medicine, Southern University of Science and Technology / Shenzhen Key Laboratory for Gene Regulation and Systems Biology, Southern University of Science and Technology, Shenzhen 518055, Guangdong, PR China; Shenzhen Third People's Hospital, National Clinical Research Center for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518112, PR China.
| |
Collapse
|
14
|
Santoro S, Bertoni G, Ferrara S. Fluorescence-based Evaluation of Cyclic di-GMP Levels in Pseudomonas aeruginosa. Methods Mol Biol 2024; 2721:45-54. [PMID: 37819514 DOI: 10.1007/978-1-0716-3473-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
The ability of Pseudomonas aeruginosa to establish chronic infections is associated with an effective switch from a motile to a sessile lifestyle. This proficiency is controlled by intracellular levels of the second messenger bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP). Targeting the c-di-GMP network could be a strategy to interfere with P. aeruginosa pathogenicity. Therefore, the development of tools to profile c-di-GMP intracellular levels is crucial. Here, we describe a protocol for the in vivo measurement of c-di-GMP levels in P. aeruginosa.
Collapse
Affiliation(s)
- Silvia Santoro
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Giovanni Bertoni
- Department of Biosciences, Università degli Studi di Milano, Milan, Milano, Italy
| | - Silvia Ferrara
- Department of Biosciences, Università degli Studi di Milano, Milan, Milano, Italy.
| |
Collapse
|
15
|
Li X, Yin W, Lin JD, Zhang Y, Guo Q, Wang G, Chen X, Cui B, Wang M, Chen M, Li P, He YW, Qian W, Luo H, Zhang LH, Liu XW, Song S, Deng Y. Regulation of the physiology and virulence of Ralstonia solanacearum by the second messenger 2',3'-cyclic guanosine monophosphate. Nat Commun 2023; 14:7654. [PMID: 37996405 PMCID: PMC10667535 DOI: 10.1038/s41467-023-43461-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023] Open
Abstract
Previous studies have demonstrated that bis-(3',5')-cyclic diguanosine monophosphate (bis-3',5'-c-di-GMP) is a ubiquitous second messenger employed by bacteria. Here, we report that 2',3'-cyclic guanosine monophosphate (2',3'-cGMP) controls the important biological functions, quorum sensing (QS) signaling systems and virulence in Ralstonia solanacearum through the transcriptional regulator RSp0980. This signal specifically binds to RSp0980 with high affinity and thus abolishes the interaction between RSp0980 and the promoters of target genes. In-frame deletion of RSp0334, which contains an evolved GGDEF domain with a LLARLGGDQF motif required to catalyze 2',3'-cGMP to (2',5')(3',5')-cyclic diguanosine monophosphate (2',3'-c-di-GMP), altered the abovementioned important phenotypes through increasing the intracellular 2',3'-cGMP levels. Furthermore, we found that 2',3'-cGMP, its receptor and the evolved GGDEF domain with a LLARLGGDEF motif also exist in the human pathogen Salmonella typhimurium. Together, our work provides insights into the unusual function of the GGDEF domain of RSp0334 and the special regulatory mechanism of 2',3'-cGMP signal in bacteria.
Collapse
Affiliation(s)
- Xia Li
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Wenfang Yin
- Integrative Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Junjie Desmond Lin
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Yong Zhang
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Quan Guo
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Gerun Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Xiayu Chen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Binbin Cui
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Mingfang Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Min Chen
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Peng Li
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Ya-Wen He
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Qian
- State Key Laboratory of Plant Genomics, Institution of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Haibin Luo
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Lian-Hui Zhang
- Integrative Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Xue-Wei Liu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore.
| | - Shihao Song
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China.
| | - Yinyue Deng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China.
| |
Collapse
|
16
|
Wang T, Hua C, Deng X. c-di-GMP signaling in Pseudomonas syringae complex. Microbiol Res 2023; 275:127445. [PMID: 37450986 DOI: 10.1016/j.micres.2023.127445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023]
Abstract
The Pseudomonas syringae Complex is one of the model phytopathogenic bacteria for exploring plant-microbe interactions, causing devastating plant diseases and economic losses worldwide. The ubiquitous second messenger bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) plays an important role in the 'lifestyle switch' from single motile cells to biofilm formation and modulates bacterial behavior, thus influencing virulence in Pseudomonas and other bacterial species. However, less is known about the role of c-di-GMP in the P. syringae complex, in which c-di-GMP levels are controlled by diguanylate cyclases (DGCs) and phosphodiesterases (PDEs), such as Chp8, BifA and WspR. Deletion the chemotaxis receptor PscA also influences c-di-GMP levels, suggesting a cross-talk between chemotaxis and c-di-GMP pathways. Another transcription factor, FleQ, plays a dual role (positive or negative) in regulating cellulose synthesis as a c-di-GMP effector, whereas the transcription factor AmrZ regulates local c-di-GMP levels by inhibiting the DGC enzyme AdcA and the PDE enzyme MorA. Our recent research demonstrated that an increase in the c-di-GMP concentration increased biofilm development, siderophore biosynthesis and oxidative stress tolerance, while it decreased the siderophore content, bacterial motility and type III secretion system activity in P. syringae complex. These findings show that c-di-GMP intricately controls virulence in P. syringae complex, indicating that adjusting c-di-GMP levels may be a valuable tactic for defending plants against pathogens. This review highlights recent research on metabolic enzymes, regulatory mechanisms and the phenotypic consequences of c-di-GMP signaling in the P. syringae.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Biomedicine, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Canfeng Hua
- Department of Biomedicine, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Xin Deng
- Department of Biomedicine, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China; Shenzhen Research Institute, City University of Hong Kong, Shenzhen, Hong Kong SAR, China; Tung Research Centre, City University of Hong Kong, Hong Kong SAR, China; Chengdu Research Institute, City University of Hong Kong, Chengdu, China.
| |
Collapse
|
17
|
Khan F, Jeong GJ, Tabassum N, Kim YM. Functional diversity of c-di-GMP receptors in prokaryotic and eukaryotic systems. Cell Commun Signal 2023; 21:259. [PMID: 37749602 PMCID: PMC10519070 DOI: 10.1186/s12964-023-01263-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/09/2023] [Indexed: 09/27/2023] Open
Abstract
Cyclic bis-(3', 5')-dimeric guanosine monophosphate (c-di-GMP) is ubiquitous in many bacterial species, where it functions as a nucleotide-based secondary messenger and is a vital regulator of numerous biological processes. Due to its ubiquity, most bacterial species possess a wide range of downstream receptors that has a binding affinity to c-di-GMP and elicit output responses. In eukaryotes, several enzymes and riboswitches operate as receptors that interact with c-di-GMP and transduce cellular or environmental signals. This review examines the functional variety of receptors in prokaryotic and eukaryotic systems that exhibit distinct biological responses after interacting with c-di-GMP. Evolutionary relationships and similarities in distance among the c-di-GMP receptors in various bacterial species were evaluated to understand their specificities. Furthermore, residues of receptors involved in c-di-GMP binding are summarized. This review facilitates the understanding of how distinct receptors from different origins bind c-di-GMP equally well, yet fulfill diverse biological roles at the interspecies, intraspecies, and interkingdom levels. Furthermore, it also highlights c-di-GMP receptors as potential therapeutic targets, particularly those found in pathogenic microorganisms. Video Abstract.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea.
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea.
| | - Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Nazia Tabassum
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Young-Mog Kim
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea.
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea.
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|
18
|
Gong XX, Zeng YH, Chen HM, Zhang N, Han Y, Long H, Xie ZY. Bioinformatic and functional characterization of cyclic-di-GMP metabolic proteins in Vibrio alginolyticus unveils key diguanylate cyclases controlling multiple biofilm-associated phenotypes. Front Microbiol 2023; 14:1258415. [PMID: 37808288 PMCID: PMC10552763 DOI: 10.3389/fmicb.2023.1258415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
The biofilm lifestyle is critical for bacterial survival and proliferation in the fluctuating marine environment. Cyclic diguanylate (c-di-GMP) is a key second messenger during bacterial adaptation to various environmental signals, which has been identified as a master regulator of biofilm formation. However, little is known about whether and how c-di-GMP signaling regulates biofilm formation in Vibrio alginolyticus, a globally dominant marine pathogen. Here, a large set of 63 proteins were predicted to participate in c-di-GMP metabolism (biosynthesis or degradation) in a pathogenic V. alginolyticus strain HN08155. Guided by protein homology, conserved domains and gene context information, a representative subset of 22 c-di-GMP metabolic proteins were selected to determine which ones affect biofilm-associated phenotypes. By comparing phenotypic differences between the wild-type and mutants or overexpression strains, we found that 22 c-di-GMP metabolic proteins can separately regulate different phenotypic outputs in V. alginolyticus. The results indicated that overexpression of four c-di-GMP metabolic proteins, including VA0356, VA1591 (CdgM), VA4033 (DgcB) and VA0088, strongly enhanced rugose colony morphotypes and strengthened Congo Red (CR) binding capacity, both of which are indicators of biofilm matrix overproduction. Furthermore, rugose enhanced colonies were accompanied by increased transcript levels of extracellular polysaccharide (EPS) biosynthesis genes and decreased expression of flagellar synthesis genes compared to smooth colonies (WTpBAD control), as demonstrated by overexpression strains WTp4033 and ∆VA4033p4033. Overall, the high abundance of c-di-GMP metabolic proteins in V. alginolyticus suggests that c-di-GMP signaling and regulatory system could play a key role in its response and adaptation to the ever-changing marine environment. This work provides a robust foundation for the study of the molecular mechanisms of c-di-GMP in the biofilm formation of V. alginolyticus.
Collapse
Affiliation(s)
- Xiao-Xiao Gong
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, Hainan, China
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, Hainan, China
- College of Marine Sciences, Hainan University, Haikou, Hainan, China
| | - Yan-Hua Zeng
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, Hainan, China
| | - Hai-Min Chen
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, Hainan, China
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, Hainan, China
- College of Marine Sciences, Hainan University, Haikou, Hainan, China
| | - Na Zhang
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, Hainan, China
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, Hainan, China
- College of Marine Sciences, Hainan University, Haikou, Hainan, China
| | - Yue Han
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, Hainan, China
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, Hainan, China
- College of Marine Sciences, Hainan University, Haikou, Hainan, China
| | - Hao Long
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, Hainan, China
| | - Zhen-Yu Xie
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, Hainan, China
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, Hainan, China
- College of Marine Sciences, Hainan University, Haikou, Hainan, China
| |
Collapse
|
19
|
Ghosh M, Raghav S, Ghosh P, Maity S, Mohela K, Jain D. Structural analysis of novel drug targets for mitigation of Pseudomonas aeruginosa biofilms. FEMS Microbiol Rev 2023; 47:fuad054. [PMID: 37771093 DOI: 10.1093/femsre/fuad054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/20/2023] [Accepted: 09/27/2023] [Indexed: 09/30/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogen responsible for acute and chronic, hard to treat infections. Persistence of P. aeruginosa is due to its ability to develop into biofilms, which are sessile bacterial communities adhered to substratum and encapsulated in layers of self-produced exopolysaccharides. These biofilms provide enhanced protection from the host immune system and resilience towards antibiotics, which poses a challenge for treatment. Various strategies have been expended for combating biofilms, which involve inhibiting biofilm formation or promoting their dispersal. The current remediation approaches offer some hope for clinical usage, however, treatment and eradication of preformed biofilms is still a challenge. Thus, identifying novel targets and understanding the detailed mechanism of biofilm regulation becomes imperative. Structure-based drug discovery (SBDD) provides a powerful tool that exploits the knowledge of atomic resolution details of the targets to search for high affinity ligands. This review describes the available structural information on the putative target protein structures that can be utilized for high throughput in silico drug discovery against P. aeruginosa biofilms. Integrating available structural information on the target proteins in readily accessible format will accelerate the process of drug discovery.
Collapse
Affiliation(s)
- Moumita Ghosh
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, Haryana-121001, India
| | - Shikha Raghav
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, Haryana-121001, India
| | - Puja Ghosh
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, Haryana-121001, India
| | - Swagatam Maity
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, Haryana-121001, India
| | - Kavery Mohela
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, Haryana-121001, India
| | - Deepti Jain
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, Haryana-121001, India
| |
Collapse
|
20
|
Chakraborty S, Agarwal S, Bakshi A, Dey S, Biswas M, Ghosh B, Dasgupta J. The N-terminal FleQ domain of the Vibrio cholerae flagellar master regulator FlrA plays pivotal structural roles in stabilizing its active state. FEBS Lett 2023; 597:2161-2177. [PMID: 37402215 DOI: 10.1002/1873-3468.14693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/06/2023]
Abstract
In Vibrio cholerae, the master regulator FlrA controls transcription of downstream flagellar genes in a σ54 -dependent manner. However, the molecular basis of regulation by VcFlrA, which contains a phosphorylation-deficient N-terminal FleQ domain, has remained elusive. Our studies on VcFlrA, four of its constructs, and a mutant showed that the AAA+ domain of VcFlrA, with or without the linker 'L', remains in ATPase-deficient monomeric states. By contrast, the FleQ domain plays a pivotal role in promoting higher-order functional oligomers, providing the required conformation to 'L' for ATP/cyclic di-GMP (c-di-GMP) binding. The crystal structure of VcFlrA-FleQ at 2.0 Å suggests that distinct structural features of VcFlrA-FleQ presumably assist in inter-domain packing. VcFlrA at a high concentration forms ATPase-efficient oligomers when the intracellular c-di-GMP level is low. Conversely, excess c-di-GMP locks VcFlrA in a non-functional lower oligomeric state, causing repression of flagellar biosynthesis.
Collapse
Affiliation(s)
| | | | - Arindam Bakshi
- Department of Biotechnology, St Xavier's College, Kolkata, India
| | - Sanjay Dey
- Department of Biotechnology, St Xavier's College, Kolkata, India
| | - Maitree Biswas
- Department of Biotechnology, St Xavier's College, Kolkata, India
| | - Biplab Ghosh
- Beamline Development and Application Section, Bhabha Atomic Research Centre, Mumbai, India
| | - Jhimli Dasgupta
- Department of Biotechnology, St Xavier's College, Kolkata, India
| |
Collapse
|
21
|
Römling U, Cao LY, Bai FW. Evolution of cyclic di-GMP signalling on a short and long term time scale. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001354. [PMID: 37384391 PMCID: PMC10333796 DOI: 10.1099/mic.0.001354] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/13/2023] [Indexed: 07/01/2023]
Abstract
Diversifying radiation of domain families within specific lineages of life indicates the importance of their functionality for the organisms. The foundation for the diversifying radiation of the cyclic di-GMP signalling network that occurred within the bacterial kingdom is most likely based in the outmost adaptability, flexibility and plasticity of the system. Integrative sensing of multiple diverse extra- and intracellular signals is made possible by the N-terminal sensory domains of the modular cyclic di-GMP turnover proteins, mutations in the protein scaffolds and subsequent signal reception by diverse receptors, which eventually rewires opposite host-associated as well as environmental life styles including parallel regulated target outputs. Natural, laboratory and microcosm derived microbial variants often with an altered multicellular biofilm behaviour as reading output demonstrated single amino acid substitutions to substantially alter catalytic activity including substrate specificity. Truncations and domain swapping of cyclic di-GMP signalling genes and horizontal gene transfer suggest rewiring of the network. Presence of cyclic di-GMP signalling genes on horizontally transferable elements in particular observed in extreme acidophilic bacteria indicates that cyclic di-GMP signalling and biofilm components are under selective pressure in these types of environments. On a short and long term evolutionary scale, within a species and in families within bacterial orders, respectively, the cyclic di-GMP signalling network can also rapidly disappear. To investigate variability of the cyclic di-GMP signalling system on various levels will give clues about evolutionary forces and discover novel physiological and metabolic pathways affected by this intriguing second messenger signalling system.
Collapse
Affiliation(s)
- Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Lian-Ying Cao
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Feng-Wu Bai
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China
| |
Collapse
|
22
|
Junkermeier EH, Hengge R. Local signaling enhances output specificity of bacterial c-di-GMP signaling networks. MICROLIFE 2023; 4:uqad026. [PMID: 37251514 PMCID: PMC10211494 DOI: 10.1093/femsml/uqad026] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/31/2023]
Abstract
For many years the surprising multiplicity, signal input diversity, and output specificity of c-di-GMP signaling proteins has intrigued researchers studying bacterial second messengers. How can several signaling pathways act in parallel to produce specific outputs despite relying on the same diffusible second messenger maintained at a certain global cellular concentration? Such high specificity and flexibility arise from combining modes of local and global c-di-GMP signaling in complex signaling networks. Local c-di-GMP signaling can be experimentally shown by three criteria being met: (i) highly specific knockout phenotypes for particular c-di-GMP-related enzymes, (ii) actual cellular c-di-GMP levels that remain unchanged by such mutations and/or below the Kd's of the relevant c-di-GMP-binding effectors, and (iii) direct interactions between the signaling proteins involved. Here, we discuss the rationale behind these criteria and present well-studied examples of local c-di-GMP signaling in Escherichia coli and Pseudomonas. Relatively simple systems just colocalize a local source and/or a local sink for c-di-GMP, i.e. a diguanylate cyclase (DGC) and/or a specific phosphodiesterase (PDE), respectively, with a c-di-GMP-binding effector/target system. More complex systems also make use of regulatory protein interactions, e.g. when a "trigger PDE" responds to locally provided c-di-GMP, and thereby serves as a c-di-GMP-sensing effector that directly controls a target's activity, or when a c-di-GMP-binding effector recruits and directly activates its own "private" DGC. Finally, we provide an outlook into how cells can combine local and global signaling modes of c-di-GMP and possibly integrate those into other signaling nucleotides networks.
Collapse
Affiliation(s)
- Eike H Junkermeier
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Philippstr. 13 – Haus 22, 10115 Berlin, Germany
| | - Regine Hengge
- Corresponding author. Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Philippstr. 13 – Haus 22, 10115 Berlin, Germany. Tel: +49-30-2093-49686; Fax: +49-30-2093-49682; E-mail:
| |
Collapse
|
23
|
Hengge R, Pruteanu M, Stülke J, Tschowri N, Turgay K. Recent advances and perspectives in nucleotide second messenger signaling in bacteria. MICROLIFE 2023; 4:uqad015. [PMID: 37223732 PMCID: PMC10118264 DOI: 10.1093/femsml/uqad015] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/28/2023] [Accepted: 04/13/2023] [Indexed: 05/25/2023]
Abstract
Nucleotide second messengers act as intracellular 'secondary' signals that represent environmental or cellular cues, i.e. the 'primary' signals. As such, they are linking sensory input with regulatory output in all living cells. The amazing physiological versatility, the mechanistic diversity of second messenger synthesis, degradation, and action as well as the high level of integration of second messenger pathways and networks in prokaryotes has only recently become apparent. In these networks, specific second messengers play conserved general roles. Thus, (p)ppGpp coordinates growth and survival in response to nutrient availability and various stresses, while c-di-GMP is the nucleotide signaling molecule to orchestrate bacterial adhesion and multicellularity. c-di-AMP links osmotic balance and metabolism and that it does so even in Archaea may suggest a very early evolutionary origin of second messenger signaling. Many of the enzymes that make or break second messengers show complex sensory domain architectures, which allow multisignal integration. The multiplicity of c-di-GMP-related enzymes in many species has led to the discovery that bacterial cells are even able to use the same freely diffusible second messenger in local signaling pathways that can act in parallel without cross-talking. On the other hand, signaling pathways operating with different nucleotides can intersect in elaborate signaling networks. Apart from the small number of common signaling nucleotides that bacteria use for controlling their cellular "business," diverse nucleotides were recently found to play very specific roles in phage defense. Furthermore, these systems represent the phylogenetic ancestors of cyclic nucleotide-activated immune signaling in eukaryotes.
Collapse
Affiliation(s)
- Regine Hengge
- Corresponding author. Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Philippstr. 13 – Haus 22, 10115 Berlin, Germany. Tel: +49-30-2093-49686; Fax: +49-30-2093-49682; E-mail:
| | | | - Jörg Stülke
- Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, 37077 Göttingen, Germany
| | - Natalia Tschowri
- Institute of Microbiology, Leibniz-Universität Hannover, 30419 Hannover, Germany
| | - Kürşad Turgay
- Institute of Microbiology, Leibniz-Universität Hannover, 30419 Hannover, Germany
- Max Planck Unit for the Science of Pathogens, 10115 Berlin, Germany
| |
Collapse
|
24
|
Xu J, Guo L, Zhao N, Meng X, Zhang J, Wang T, Wei X, Fan M. Response mechanisms to acid stress of acid-resistant bacteria and biotechnological applications in the food industry. Crit Rev Biotechnol 2023; 43:258-274. [PMID: 35114869 DOI: 10.1080/07388551.2021.2025335] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Acid-resistant bacteria are more and more widely used in industrial production due to their unique acid-resistant properties. In order to survive in various acidic environments, acid-resistant bacteria have developed diverse protective mechanisms such as sensing acid stress and signal transduction, maintaining intracellular pH homeostasis by controlling the flow of H+, protecting and repairing biological macromolecules, metabolic modification, and cross-protection. Acid-resistant bacteria have broad biotechnological application prospects in the food field. The production of fermented foods with high acidity and acidophilic enzymes are the main applications of this kind of bacteria in the food industry. Their acid resistance modules can also be used to construct acid-resistant recombinant engineering strains for special purposes. However, they can also cause negative effects on foods, such as spoilage and toxicity. Herein, the aim of this paper is to summarize the research progress of molecular mechanisms against acid stress of acid-resistant bacteria. Moreover, their effects on the food industry were also discussed. It is useful to lay a foundation for broadening our understanding of the physiological metabolism of acid-resistant bacteria and better serving the food industry.
Collapse
Affiliation(s)
- Junnan Xu
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Li Guo
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Ning Zhao
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Xuemei Meng
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Jie Zhang
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Tieru Wang
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Xinyuan Wei
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Mingtao Fan
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| |
Collapse
|
25
|
Leenheer D, Moreno AB, Paranjape K, Murray S, Jarraud S, Ginevra C, Guy L. Rapid adaptations of Legionella pneumophila to the human host. Microb Genom 2023; 9. [PMID: 36947445 PMCID: PMC10132064 DOI: 10.1099/mgen.0.000958] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
Legionella pneumophila are host-adapted bacteria that infect and reproduce primarily in amoeboid protists. Using similar infection mechanisms, they infect human macrophages, and cause Legionnaires' disease, an atypical pneumonia, and the milder Pontiac fever. We hypothesized that, despite the similarities in infection mechanisms, the hosts are different enough that there exist high-selective value mutations that would dramatically increase the fitness of Legionella inside the human host. By comparing a large number of isolates from independent infections, we identified two genes, mutated in three unrelated patients, despite the short duration of the incubation period (2-14 days). One is a gene coding for an outer membrane protein (OMP) belonging to the OmpP1/FadL family. The other is a gene coding for an EAL-domain-containing protein involved in cyclic-di-GMP regulation, which in turn modulates flagellar activity. The clinical strain, carrying the mutated EAL-domain-containing homologue, grows faster in macrophages than the wild-type strain, and thus appears to be better adapted to the human host. As human-to-human transmission is very rare, fixation of these mutations into the population and spread into the environment is unlikely. Therefore, parallel evolution - here mutations in the same genes observed in independent human infections - could point to adaptations to the accidental human host. These results suggest that despite the ability of L. pneumophila to infect, replicate in and exit from macrophages, its human-specific adaptations are unlikely to be fixed in the population.
Collapse
Affiliation(s)
- Daniël Leenheer
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan
| | - Anaísa B Moreno
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Kiran Paranjape
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Susan Murray
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Sophie Jarraud
- French National Reference Center of Legionella, Institute of Infectious Agents, Hospices Civils de Lyon, Lyon, France
- CIRI, Centre International de Recherche en Infectiologie, Legionella Pathogenesis Team, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Christophe Ginevra
- French National Reference Center of Legionella, Institute of Infectious Agents, Hospices Civils de Lyon, Lyon, France
- CIRI, Centre International de Recherche en Infectiologie, Legionella Pathogenesis Team, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Lionel Guy
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
26
|
Badhwar P, Ahmad I, Sharma R, Taneja B. Structural investigation and gene deletion studies of mycobacterial oligoribonuclease reveal modulation of c-di-GMP-mediated phenotypes. Int J Biol Macromol 2022; 223:161-172. [PMID: 36356862 DOI: 10.1016/j.ijbiomac.2022.11.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/26/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022]
Abstract
Cyclic-di-GMP (c-di-GMP) is a ubiquitous bacterial second messenger required for normal physiology as well as survival under hypoxic and reductive stress conditions of mycobacterial cells. Complete degradation of c-di-GMP is necessary for signal termination and maintaining its homeostasis inside the cells. Homeostasis of c-di-GMP in mycobacteria is brought about by the bifunctional diguanylate cyclase (DGC) that synthesizes c-di-GMP from two molecules of GTP and also catalyses the asymmetric cleavage of c-di-GMP to linear pGpG through its phosphodiesterase activity. However, the mycobacterial enzyme for the last step of degradation from pGpG to GMP has not been characterized thus far. Here, we present the identification of oligoribonuclease (Orn) as the most likely phosphodiesterase to degrade pGpG to GMP through AlphaFold-empowered structural homology that exhibited in vitro phosphodiesterase activity on pGpG substrates. In order to understand the physiological role of Orn in mycobacteria, we created a deletion mutant of orn in M. smegmatis and analysed the phenotypes that are associated with c-di-GMP signaling. We find that orn plays important roles in vivo and is required not only for proper growth of M. smegmatis in normal and stress conditions but also for biofilm formation.
Collapse
Affiliation(s)
- Pooja Badhwar
- CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Iftekhar Ahmad
- CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rakesh Sharma
- CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Bhupesh Taneja
- CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
27
|
Cyclic di-GMP Signaling Links Biofilm Formation and Mn(II) Oxidation in Pseudomonas resinovorans. mBio 2022; 13:e0273422. [PMID: 36374078 PMCID: PMC9765421 DOI: 10.1128/mbio.02734-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Bioaugmentation of biological sand filters with Mn(II)-oxidizing bacteria (MOB) is used to increase the efficiency of Mn removal from groundwater. While the biofilm-forming ability of MOB is important to achieve optimal Mn filtration, the regulatory link between biofilm formation and Mn(II) oxidation remains unclear. Here, an environmental isolate of Pseudomonas resinovorans strain MOB-513 was used as a model to investigate the role of c-di-GMP, a second messenger crucially involved in the regulation of biofilm formation by Pseudomonas, in the oxidation of Mn(II). A novel role for c-di-GMP in the upregulation of Mn(II) oxidation through induction of the expression of manganese-oxidizing peroxidase enzymes was revealed. MOB-513 macrocolony biofilms showed a strikingly stratified pattern of biogenic Mn oxide (BMnOx) accumulation in a localized top layer. Remarkably, elevated cellular levels of c-di-GMP correlated not only with increased accumulation of BMnOx in the same top layer but also with the appearance of a second BMnOx stratum in the bottom region of macrocolony biofilms, and the expression of mop genes correlated with this pattern. Proteomic analysis under Mn(II) conditions revealed changes in the abundance of a PilZ domain protein. Subsequent analyses supported a model in which this protein sensed c-di-GMP and affected a regulatory cascade that ultimately inhibited mop gene expression, providing a molecular link between c-di-GMP signaling and Mn(II) oxidation. Finally, we observed that high c-di-GMP levels were correlated with higher lyophilization efficiencies and higher groundwater Mn(II) oxidation capacities of freeze-dried bacterial cells, named lyophiles, showing the biotechnological relevance of understanding the role of c-di-GMP in MOB-513. IMPORTANCE The presence of Mn(II) in groundwater, a common source of drinking water, is a cause of water quality impairment, interfering with its disinfection, causing operation problems, and affecting human health. Purification of groundwater containing Mn(II) plays an important role in environmental and social safety. The typical method for Mn(II) removal is based on bacterial oxidation of metals to form insoluble oxides that can be filtered out of the water. Evidence of reducing the start-up periods and enhancing Mn removal efficiencies through bioaugmentation with appropriate biofilm-forming and MOB has emerged. As preliminary data suggest a link between these two phenotypes in Pseudomonas strains, the need to investigate the underlying regulatory mechanisms is apparent. The significance of our research lies in determining the role of c-di-GMP for increased biofilm formation and Mn(II)-oxidizing capabilities in MOB, which will allow the generation of super-biofilm-elaborating and Mn-oxidizing strains, enabling their implementation in biotechnological applications.
Collapse
|
28
|
Nastulyavichus A, Khaertdinova L, Tolordava E, Yushina Y, Ionin A, Semenova A, Kudryashov S. Additive Nanosecond Laser-Induced Forward Transfer of High Antibacterial Metal Nanoparticle Dose onto Foodborne Bacterial Biofilms. MICROMACHINES 2022; 13:2170. [PMID: 36557469 PMCID: PMC9788456 DOI: 10.3390/mi13122170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/04/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Additive laser-induced forward transfer (LIFT) of metal bactericidal nanoparticles from a polymer substrate directly onto food bacterial biofilms has demonstrated its unprecedented efficiency in combating pathogenic microorganisms. Here, a comprehensive study of laser fluence, metal (gold, silver and copper) film thickness, and the transfer distance effects on the antibacterial activity regarding biofilms of Gram-negative and Gram-positive food bacteria (Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Listeria monocytogenes, Salmonella spp.) indicated the optimal operation regimes of the versatile modality. LIFT-induced nanoparticle penetration into a biofilm was studied by energy-dispersion X-ray spectroscopy, which demonstrated that nanoparticles remained predominantly on the surface of the biofilm.
Collapse
Affiliation(s)
| | | | - Eteri Tolordava
- Lebedev Physical Institute, 119991 Moscow, Russia
- N.F. Gamaleya Federal Research Center of Epidemiology and Microbiology, 123098 Moscow, Russia
| | - Yulia Yushina
- Federal State Budgetary Scientific Institution “Federal Scientific Center for Food Systems named after V.M. Gorbatov” Russian Academy of Sciences, 109316 Moscow, Russia
| | - Andrey Ionin
- Lebedev Physical Institute, 119991 Moscow, Russia
| | - Anastasia Semenova
- Federal State Budgetary Scientific Institution “Federal Scientific Center for Food Systems named after V.M. Gorbatov” Russian Academy of Sciences, 109316 Moscow, Russia
| | | |
Collapse
|
29
|
Badhwar P, Khan SH, Taneja B. Three-dimensional structure of a mycobacterial oligoribonuclease reveals a unique C-terminal tail that stabilizes the homodimer. J Biol Chem 2022; 298:102595. [PMID: 36244449 PMCID: PMC9676404 DOI: 10.1016/j.jbc.2022.102595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/01/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
Oligoribonucleases (Orns) are highly conserved DnaQ-fold 3'-5' exoribonucleases that have been found to carry out the last step of cyclic-di-GMP (c-di-GMP) degradation, that is, pGpG to GMP in several bacteria. Removal of pGpG is critical for c-di-GMP homeostasis, as excess uncleaved pGpG can have feedback inhibition on phosphodiesterases, thereby perturbing cellular signaling pathways regulated by c-di-GMP. Perturbation of c-di-GMP levels not only affects survival under hypoxic, reductive stress, or nutrient-limiting conditions but also affects pathogenicity in infection models as well as antibiotic response in mycobacteria. Here, we have determined the crystal structure of MSMEG_4724, the Orn of Mycobacterium smegmatis (Ms_orn) to 1.87 Å resolution to investigate the function of its extended C-terminal tail that is unique among bacterial Orns. Ms_orn is a homodimer with the canonical RNase-H fold of exoribonucleases and conserved catalytic residues in the active site. Further examination of the substrate-binding site with a modeled pGpG emphasized the role of a phosphate cap and "3'OH cap" in constricting a 2-mer substrate in the active site. The unique C-terminal tail of Ms_orn aids dimerization by forming a handshake-like flap over the second protomer of the dimer. Our thermal and denaturant-induced unfolding experiments suggest that it helps in higher stability of Ms_orn as compared with Escherichia coli Orn or a C-terminal deletion mutant. We also show that the C-terminal tail is required for modulating response to stress agents in vivo. These results will help in further evaluating the role of signaling and regulation by c-di-GMP in mycobacteria.
Collapse
Affiliation(s)
- Pooja Badhwar
- CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sabab Hasan Khan
- CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India
| | - Bhupesh Taneja
- CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India,For correspondence: Bhupesh Taneja
| |
Collapse
|
30
|
Kitanishi K. Bacterial hemerythrin domain-containing oxygen and redox sensors: Versatile roles for oxygen and redox signaling. Front Mol Biosci 2022; 9:967059. [PMID: 35992274 PMCID: PMC9388753 DOI: 10.3389/fmolb.2022.967059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
Hemerythrin is an oxygen-binding protein originally found in certain marine invertebrates. Oxygen reversibly binds at its non-heme diiron center, which consists of two oxo-bridged iron atoms bound to a characteristic conserved set of five His residues, one Glu residue, and one Asp residue. It was recently discovered that several bacteria utilize hemerythrin as an oxygen- and redox-sensing domain in responding to changes in cellular oxygen concentration or redox status, and immediately adapt to these environmental changes in order to maintain important physiological processes, including chemotaxis and c-di-GMP synthesis and degradation. This Mini Review focuses on the recent progress made on structural and functional aspects of these emerging bacterial hemerythrin domain-containing oxygen and redox sensors, revealing characteristic features of this family of proteins.
Collapse
|
31
|
Rick T, Kreiling V, Höing A, Fiedler S, Glatter T, Steinchen W, Hochberg G, Bähre H, Seifert R, Bange G, Knauer SK, Graumann PL, Thormann KM. GGDEF domain as spatial on-switch for a phosphodiesterase by interaction with landmark protein HubP. NPJ Biofilms Microbiomes 2022; 8:35. [PMID: 35501424 PMCID: PMC9061725 DOI: 10.1038/s41522-022-00297-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 03/31/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractIn bacteria, the monopolar localization of enzymes and protein complexes can result in a bimodal distribution of enzyme activity between the dividing cells and heterogeneity of cellular behaviors. In Shewanella putrefaciens, the multidomain hybrid diguanylate cyclase/phosphodiesterase PdeB, which degrades the secondary messenger c-di-GMP, is located at the flagellated cell pole. Here, we show that direct interaction between the inactive diguanylate cyclase (GGDEF) domain of PdeB and the FimV domain of the polar landmark protein HubP is crucial for full function of PdeB as a phosphodiesterase. Thus, the GGDEF domain serves as a spatially controlled on-switch that effectively restricts PdeBs activity to the flagellated cell pole. PdeB regulates abundance and activity of at least two crucial surface-interaction factors, the BpfA surface-adhesion protein and the MSHA type IV pilus. The heterogeneity in c-di-GMP concentrations, generated by differences in abundance and timing of polar appearance of PdeB, orchestrates the population behavior with respect to cell-surface interaction and environmental spreading.
Collapse
|
32
|
Nakasone Y, Terazima M. Time-resolved diffusion reveals photoreactions of BLUF proteins with similar functional domains. Photochem Photobiol Sci 2022; 21:493-507. [PMID: 35391638 DOI: 10.1007/s43630-022-00214-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/21/2022] [Indexed: 11/30/2022]
Abstract
BLUF (blue light sensor using flavin) proteins are the blue light receptors that consist of flavin-binding BLUF domains and functional domains. Upon blue light excitation, the hydrogen bond network around the flavin chromophore changes, and the absorption spectrum in the visible region shifts to red. Light signal received in the BLUF domain is intramolecularly or intermolecularly transmitted to the functional region. In this review, the reactions of three BLUF proteins with similar EAL functional groups within the protein (BlrP1, and YcgF), or with a separated target protein (PapB) are described using time-resolved diffusion technique. The diffusion coefficients (D) of the BLUF domains did not significantly change upon photoexcitation, whereas those of the full-length proteins BlrP1 and YcgF and the PapB-PapA system significantly decreased. The changes in D should be due to diffusion-sensitive conformational changes (DSCC) that alter the friction of diffusion. The time constants of the major D changes of BlrP1 and PapB-PapA were similar (~ 20 ms), although the magnitude of the friction change depended on the proteins. Similarities and differences among the reactions of these proteins were clarified from the viewpoint of DSCC.
Collapse
Affiliation(s)
- Yusuke Nakasone
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Masahide Terazima
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan.
| |
Collapse
|
33
|
Cimdins‐Ahne A, Chernobrovkin A, Kim S, Lee VT, Zubarev RA, Römling U. A mass spectrometry-based non-radioactive differential radial capillary action of ligand assay (DRaCALA) to assess ligand binding to proteins. JOURNAL OF MASS SPECTROMETRY : JMS 2022; 57:e4822. [PMID: 35362254 PMCID: PMC9285882 DOI: 10.1002/jms.4822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Binding of ligands to macromolecules changes their physicochemical and enzymatic characteristics. Cyclic di-GMP is a second messenger involved in motility/sessility and acute/chronic infection life style transition. Although the GGDEF domain, predominantly a diguanylate cyclase, represents one of the most abundant bacterial domain superfamilies, the number of cyclic di-GMP receptors falls short. To facilitate screening for cyclic di-nucleotide binding proteins, we describe a non-radioactive, matrix-assisted laser desorption and ionization time-of-flight (MALDI-TOF)-based modification of the widely applied differential radial capillary action of ligand assay (DRaCALA). The results of this assay suggest that the diguanylate cyclase/phosphodiesterase variant YciRFec101, but not selected catalytic mutants, bind cyclic di-GMP. HIGHLIGHTS: Cyclic di-nucleotides are ubiquitous second messengers in bacteria. However, few receptors have been identified. Previous screening of cell lysates by differential radial capillary action of ligand assay (DRaCALA) using radioactive ligand identified cyclic di-nucleotide binding proteins. A MALDI-TOF-based DRaCALA was developed to detect cyclic di-nucleotide binding as a non-radioactive alternative. Known cyclic di-GMP binding proteins were verified and potential cyclic di-GMP binding proteins were identified.
Collapse
Affiliation(s)
- Annika Cimdins‐Ahne
- Department of Microbiology, Tumor and Cell BiologyBiomedicum, Karolinska InstitutetSolnaSweden
| | - Alexey Chernobrovkin
- Department of Medical Biochemistry and BiophysicsBiomedicum, Karolinska InstitutetSolnaSweden
- Pelago Bioscience ABSolnaSweden
| | - Soo‐Kyoung Kim
- Department of Cell Biology and Molecular GeneticsUniversity of MarylandCollege ParkMarylandUSA
| | - Vincent T. Lee
- Department of Cell Biology and Molecular GeneticsUniversity of MarylandCollege ParkMarylandUSA
| | - Roman A. Zubarev
- Department of Medical Biochemistry and BiophysicsBiomedicum, Karolinska InstitutetSolnaSweden
- Department of Pharmacological and Technological ChemistryI.M. Sechenov First Moscow State Medical UniversityMoscowRussia
| | - Ute Römling
- Department of Microbiology, Tumor and Cell BiologyBiomedicum, Karolinska InstitutetSolnaSweden
| |
Collapse
|
34
|
Sensing the Messenger: Potential Roles of Cyclic-di-GMP in Rickettsial Pathogenesis. Int J Mol Sci 2022; 23:ijms23073853. [PMID: 35409212 PMCID: PMC8999164 DOI: 10.3390/ijms23073853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 02/04/2023] Open
Abstract
Pathogenic bacteria causing human rickettsioses, transmitted in nature by arthropod vectors, primarily infect vascular endothelial cells lining the blood vessels, resulting in 'endothelial activation' and onset of innate immune responses. Nucleotide second messengers are long presumed to be the stimulators of type I interferons, of which bacterial cyclic-di-GMP (c-di-GMP) has been implicated in multiple signaling pathways governing communication with other bacteria and host cells, yet its importance in the context of rickettsial interactions with the host has not been investigated. Here, we report that all rickettsial genomes encode a putative diguanylate cyclase pleD, responsible for the synthesis of c-di-GMP. In silico analysis suggests that although the domain architecture of PleD is apparently well-conserved among different rickettsiae, the protein composition and sequences likely vary. Interestingly, cloning and sequencing of the pleD gene from virulent (Sheila Smith) and avirulent (Iowa) strains of R. rickettsii reveals a nonsynonymous substitution, resulting in an amino acid change (methionine to isoleucine) at position 236. Additionally, a previously reported 5-bp insertion in the genomic sequence coding for pleD (NCBI accession: NC_009882) was not present in the sequence of our cloned pleD from R. rickettsii strain Sheila Smith. In vitro infection of HMECs with R. rickettsii (Sheila Smith), but not R. rickettsii (Iowa), resulted in dynamic changes in the levels of pleD up to 24 h post-infection. These findings thus provide the first evidence for the potentially important role(s) of c-di-GMP in the determination of host-cell responses to pathogenic rickettsiae. Further studies into molecular mechanisms through which rickettsial c-di-GMP might regulate pathogen virulence and host responses should uncover the contributions of this versatile bacterial second messenger in disease pathogenesis and immunity to human rickettsioses.
Collapse
|
35
|
Homma M, Kojima S. Roles of the second messenger c‐di‐GMP in bacteria: Focusing on the topics of flagellar regulation and
Vibrio
spp. Genes Cells 2022; 27:157-172. [PMID: 35073606 PMCID: PMC9303241 DOI: 10.1111/gtc.12921] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/28/2021] [Accepted: 01/10/2022] [Indexed: 11/30/2022]
Abstract
Typical second messengers include cyclic AMP (cAMP), cyclic GMP (cGMP), and inositol phosphate. In bacteria, cyclic diguanylate (c‐di‐GMP), which is not used in animals, is widely used as a second messenger for environmental responses. Initially found as a regulator of cellulose synthesis, this small molecule is known to be widely present in bacteria. A wide variety of synthesis and degradation enzymes for c‐di‐GMP exist, and the activities of effector proteins are regulated by changing the cellular c‐di‐GMP concentration in response to the environment. It has been shown well that c‐di‐GMP plays an essential role in pathogenic cycle and is involved in flagellar motility in Vibrio cholerae. In this review, we aim to explain the direct or indirect regulatory mechanisms of c‐di‐GMP in bacteria, focusing on the study of c‐di‐GMP in Vibrio spp. and in flagella, which are our research subjects.
Collapse
Affiliation(s)
- Michio Homma
- Division of Biological Science Graduate School of Science Nagoya University Nagoya Japan
| | - Seiji Kojima
- Division of Biological Science Graduate School of Science Nagoya University Nagoya Japan
| |
Collapse
|
36
|
Heo K, Lee JW, Jang Y, Kwon S, Lee J, Seok C, Ha NC, Seok YJ. A pGpG-specific phosphodiesterase regulates cyclic di-GMP signaling in Vibrio cholerae. J Biol Chem 2022; 298:101626. [PMID: 35074425 PMCID: PMC8861645 DOI: 10.1016/j.jbc.2022.101626] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/10/2022] Open
Abstract
The bacterial second messenger bis-(3′-5′)-cyclic diguanylate monophosphate (c-di-GMP) controls various cellular processes, including motility, toxin production, and biofilm formation. c-di-GMP is enzymatically synthesized by GGDEF domain–containing diguanylate cyclases and degraded by HD-GYP domain–containing phosphodiesterases (PDEs) to 2 GMP or by EAL domain–containing PDE-As to 5ʹ-phosphoguanylyl-(3ʹ,5ʹ)-guanosine (pGpG). Since excess pGpG feedback inhibits PDE-A activity and thereby can lead to the uncontrolled accumulation of c-di-GMP, a PDE that degrades pGpG to 2 GMP (PDE-B) has been presumed to exist. To date, the only enzyme known to hydrolyze pGpG is oligoribonuclease Orn, which degrades all kinds of oligoribonucleotides. Here, we identified a pGpG-specific PDE, which we named PggH, using biochemical approaches in the gram-negative bacteria Vibrio cholerae. Biochemical experiments revealed that PggH exhibited specific PDE activity only toward pGpG, thus differing from the previously reported Orn. Furthermore, the high-resolution structure of PggH revealed the basis for its PDE activity and narrow substrate specificity. Finally, we propose that PggH could modulate the activities of PDE-As and the intracellular concentration of c-di-GMP, resulting in phenotypic changes including in biofilm formation.
Collapse
Affiliation(s)
- Kyoo Heo
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, Republic of Korea
| | - Jae-Woo Lee
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, Republic of Korea
| | - Yongdae Jang
- Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
| | - Sohee Kwon
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Jaehun Lee
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, Republic of Korea
| | - Chaok Seok
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Nam-Chul Ha
- Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea.
| | - Yeong-Jae Seok
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
37
|
The cis-2-dodecenoic acid (BDSF) quorum sensing system in Burkholderia cenocepacia. Appl Environ Microbiol 2022; 88:e0234221. [PMID: 34985987 DOI: 10.1128/aem.02342-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It has been demonstrated that quorum sensing (QS) is widely employed by bacterial cells to coordinately regulate various group behaviors. Diffusible signal factor (DSF)-type signals have emerged as a growing family of conserved cell-cell communication signals. In addition to the DSF signal initially identified in Xanthomonas campestris pv. campestris, Burkholderia diffusible signal factor (BDSF, cis-2-dodecenoic acid) has been recognized as a conserved DSF-type signal with specific characteristics in both signal perception and transduction from DSF signals. Here, we review the history and current progress of the research of this type of signal, especially focusing on its biosynthesis, signaling pathways, and biological functions. We also discuss and explore the huge potential of targeting this kind of QS system as a new therapeutic strategy to control bacterial infections and diseases.
Collapse
|
38
|
Wang X, He Y, Deng Y, Zuo Z, Li D, Chen F, Qu C, Miao J. A diguanylate cyclase regulates biofilm formation in Rhodococcus sp. NJ-530 from Antarctica. 3 Biotech 2022; 12:27. [PMID: 35036275 PMCID: PMC8710177 DOI: 10.1007/s13205-021-03093-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/11/2021] [Indexed: 01/03/2023] Open
Abstract
Biofilms represent a protective survival mode in which bacteria adapt themselves to the natural environment for survival purposes. Biofilm formation is regulated by 3,5-cyclic diguanylic acid (c-di-GMP), which is a universal second messenger molecule in bacteria. Diguanylate cyclase (DGC) catalyses c-di-GMP intracellular synthesis, which plays important roles in bacterial adaptation to the natural environment. In this study, the DGC gene was first cloned from Antarctic Rhodococcus sp. NJ-530. DGC contained 948 nucleotides and encoded 315 amino acids with a molecular weight of 34.6 KDa and an isoelectric point of 5.58. qRT-PCR demonstrated that the DGC expression level was significantly affected by lower salinity and temperature. Consistently, more biofilm formation occurred under the same stress. It has been shown that Rhodococcus sp. NJ-530 can adapt to the extreme environment in Antarctica, which is closely related to biofilm formation. These results provide an important reference for studying the adaptive mechanism of Antarctic microorganisms to this extreme environment. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-03093-z.
Collapse
Affiliation(s)
- Xixi Wang
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resource, No. 6 of Xianxialing Road, Qingdao, 266061 China
| | - Yingying He
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resource, No. 6 of Xianxialing Road, Qingdao, 266061 China
| | - Yashan Deng
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resource, No. 6 of Xianxialing Road, Qingdao, 266061 China
| | - Zhicong Zuo
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resource, No. 6 of Xianxialing Road, Qingdao, 266061 China
| | - Dan Li
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resource, No. 6 of Xianxialing Road, Qingdao, 266061 China
| | - Fushan Chen
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
| | - Changfeng Qu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resource, No. 6 of Xianxialing Road, Qingdao, 266061 China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Jinlai Miao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resource, No. 6 of Xianxialing Road, Qingdao, 266061 China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| |
Collapse
|
39
|
Mahto KU, Kumari S, Das S. Unraveling the complex regulatory networks in biofilm formation in bacteria and relevance of biofilms in environmental remediation. Crit Rev Biochem Mol Biol 2021; 57:305-332. [PMID: 34937434 DOI: 10.1080/10409238.2021.2015747] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Biofilms are assemblages of bacteria embedded within a matrix of extracellular polymeric substances (EPS) attached to a substratum. The process of biofilm formation is a complex phenomenon regulated by the intracellular and intercellular signaling systems. Various secondary messenger molecules such as cyclic dimeric guanosine 3',5'-monophosphate (c-di-GMP), cyclic adenosine 3',5'-monophosphate (cAMP), and cyclic dimeric adenosine 3',5'-monophosphate (c-di-AMP) are involved in complex signaling networks to regulate biofilm development in several bacteria. Moreover, the cell to cell communication system known as Quorum Sensing (QS) also regulates biofilm formation via diverse mechanisms in various bacterial species. Bacteria often switch to the biofilm lifestyle in the presence of toxic pollutants to improve their survivability. Bacteria within a biofilm possess several advantages with regard to the degradation of harmful pollutants, such as increased protection within the biofilm to resist the toxic pollutants, synthesis of extracellular polymeric substances (EPS) that helps in the sequestration of pollutants, elevated catabolic gene expression within the biofilm microenvironment, higher cell density possessing a large pool of genetic resources, adhesion ability to a wide range of substrata, and metabolic heterogeneity. Therefore, a comprehensive account of the various factors regulating biofilm development would provide valuable insights to modulate biofilm formation for improved bioremediation practices. This review summarizes the complex regulatory networks that influence biofilm development in bacteria, with a major focus on the applications of bacterial biofilms for environmental restoration.
Collapse
Affiliation(s)
- Kumari Uma Mahto
- Department of Life Science, Laboratory of Environmental Microbiology and Ecology (LEnME), National Institute of Technology, Odisha, India
| | - Swetambari Kumari
- Department of Life Science, Laboratory of Environmental Microbiology and Ecology (LEnME), National Institute of Technology, Odisha, India
| | - Surajit Das
- Department of Life Science, Laboratory of Environmental Microbiology and Ecology (LEnME), National Institute of Technology, Odisha, India
| |
Collapse
|
40
|
Sequence conservation, domain architectures, and phylogenetic distribution of the HD-GYP type c-di-GMP phosphodiesterases. J Bacteriol 2021; 204:e0056121. [PMID: 34928179 DOI: 10.1128/jb.00561-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The HD-GYP domain, named after two of its conserved sequence motifs, was first described in 1999 as a specialized version of the widespread HD phosphohydrolase domain that had additional highly conserved amino acid residues. Domain associations of HD-GYP indicated its involvement in bacterial signal transduction and distribution patterns of this domain suggested that it could serve as a hydrolase of the bacterial second messenger c-di-GMP, in addition to or instead of the EAL domain. Subsequent studies confirmed the ability of various HD-GYP domains to hydrolyze c-di-GMP to linear pGpG and/or GMP. Certain HD-GYP-containing proteins hydrolyze another second messenger, cGAMP, and some HD-GYP domains participate in regulatory protein-protein interactions. The recently solved structures of HD-GYP domains from four distinct organisms clarified the mechanisms of c-di-GMP binding and metal-assisted hydrolysis. However, the HD-GYP domain is poorly represented in public domain databases, which causes certain confusion about its phylogenetic distribution, functions, and domain architectures. Here, we present a refined sequence model for the HD-GYP domain and describe the roles of its most conserved residues in metal and/or substrate binding. We also calculate the numbers of HD-GYPs encoded in various genomes and list the most common domain combinations involving HD-GYP, such as the RpfG (REC-HD-GYP), Bd1817 (DUF3391- HD-GYP), and PmGH (GAF-HD-GYP) protein families. We also provide the descriptions of six HD-GYP-associated domains, including four novel integral membrane sensor domains. This work is expected to stimulate studies of diverse HD-GYP-containing proteins, their N-terminal sensor domains and the signals to which they respond. IMPORTANCE The HD-GYP domain forms class II of c-di-GMP phosphodiesterases that control the cellular levels of the universal bacterial second messenger c-di-GMP and therefore affect flagellar and/or twitching motility, cell development, biofilm formation, and, often, virulence. Despite more than 20 years of research, HD-GYP domains are insufficiently characterized; they are often confused with 'classical' HD domains that are involved in various housekeeping activities and may participate in signaling, hydrolyzing (p)ppGpp and c-di-AMP. This work provides an updated description of the HD-GYP domain, including its sequence conservation, phylogenetic distribution, domain architectures, and the most widespread HD-GYP-containing protein families. This work shows that HD-GYP domains are widespread in many environmental bacteria and are predominant c-di-GMP hydrolases in many lineages, including clostridia and deltaproteobacteria.
Collapse
|
41
|
An Intracellular Sensing and Signal Transduction System That Regulates the Metabolism of Polycyclic Aromatic Hydrocarbons in Bacteria. mSystems 2021; 6:e0063621. [PMID: 34609168 PMCID: PMC8547461 DOI: 10.1128/msystems.00636-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many bacteria utilize polycyclic aromatic hydrocarbon (PAH) as carbon and energy sources for growth. These bacteria play an important role in the amelioration of PAH pollution in various environments. However, it is unclear how bacteria sense PAHs and how PAH degradation pathways are regulated via signal transduction. Here, we investigated these mechanisms in Cycloclasticus, a ubiquitous PAH-degrading bacterium in marine environments. We identified the key genes involved in intracellular PAH sensing, signal transduction, and the differential regulation of degradation pathways for each PAH examined. Our results showed that PAHs bind specifically to a diguanylate cyclase PdgC, leading to the generation of cyclic dimeric GMP (c-di-GMP), which subsequently binds to two CRP/FNR family regulators, DPR-1 and DPR-2. c-di-GMP activates the transcription of DPR-1 and DPR-2 to positively regulate degradation pathways specific to pyrene and phenanthrene/naphthalene, respectively. This is the first report of an intracellular signal transduction pathway associated with PAH degradation in bacteria. Our results improve our understanding of the intracellular responses to PAHs. The existence of the identified genes in other bacteria indicates that the strategy described here is widely used by other PAH-degrading bacteria. IMPORTANCE Polycyclic aromatic hydrocarbons (PAHs) are widely distributed and have been found indoors, in the atmosphere, in terrestrial soils, in marine waters and sediments, and even in outer space. Bacteria degrade PAHs via degradation pathways. PAH signal sensing and transduction, as well as the regulation of PAH degradation pathways, are crucial for bacterial PAH biodegradation. However, prior to this study, these processes were poorly known. This study employed multiple molecular approaches to better understand the regulatory networks controlling PAH metabolism in bacteria. This report illustrates, for the first time, PAH-specific intracellular sensing, signal transduction, and metabolic regulatory pathways. Our results will help to increase our understanding of the hydrocarbon-metabolism regulatory network as well as the regulatory intricacies that control microbial biodegradation of organic matter. These key data should be considered to improve the rational design and efficiency of recombinant biodegradable, bacterial biosensors, and biocatalysts in modern green chemistry.
Collapse
|
42
|
Abstract
Cyclic diguanylate (c-di-GMP) signal transduction systems provide bacteria with the ability to sense changing cell status or environmental conditions and then execute suitable physiological and social behaviors in response. In this review, we provide a comprehensive census of the stimuli and receptors that are linked to the modulation of intracellular c-di-GMP. Emerging evidence indicates that c-di-GMP networks sense light, surfaces, energy, redox potential, respiratory electron acceptors, temperature, and structurally diverse biotic and abiotic chemicals. Bioinformatic analysis of sensory domains in diguanylate cyclases and c-di-GMP-specific phosphodiesterases as well as the receptor complexes associated with them reveals that these functions are linked to a diverse repertoire of protein domain families. We describe the principles of stimulus perception learned from studying these modular sensory devices, illustrate how they are assembled in varied combinations with output domains, and summarize a system for classifying these sensor proteins based on their complexity. Biological information processing via c-di-GMP signal transduction not only is fundamental to bacterial survival in dynamic environments but also is being used to engineer gene expression circuitry and synthetic proteins with à la carte biochemical functionalities.
Collapse
|
43
|
Hu XM, Zhang J, Ding WY, Liang X, Wan R, Dobretsov S, Yang JL. Reduction of mussel metamorphosis by inactivation of the bacterial thioesterase gene via alteration of the fatty acid composition. BIOFOULING 2021; 37:911-921. [PMID: 34620016 DOI: 10.1080/08927014.2021.1981882] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
The molecular mechanism underlying modulation of metamorphosis of the bivalve Mytilus coruscus by bacteria remains unclear. Here, the functional role of the thioesterase gene tesA of the bacterium Pseudoalteromonas marina in larval metamorphosis was examined. The aim was to determine whether inactivation of the tesA gene altered the biofilm-inducing capacity, bacterial cell motility, biopolymers, or the intracellular c-di-GMP levels. Complete inactivation of tesA increased the c-di-GMP content in P. marina, accompanied by a reduced fatty acid content, weaker motility, upregulation of bacterial aggregation, and biofilm formation. The metamorphosis rate of mussel larvae on ΔtesA biofilms was reduced by ∼ 80% compared with those settling on wild-type P. marina. Exogenous addition of a mixture of extracted fatty acids from P. marina into the ΔtesA biofilms promoted the biofilm-inducing capacity. This study suggests that the bacterial thioesterase gene tesA altered the fatty acid composition of ΔtesA P. marina biofilms (BF) through regulation of its c-di-GMP, subsequently impacting mussel metamorphosis.
Collapse
Affiliation(s)
- Xiao-Meng Hu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, PR China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, PR China
| | - Junbo Zhang
- College of Marine Sciences, Shanghai Ocean University, Shanghai, PR China
- National Engineering Research Center for Oceanic Fisheries, Shanghai, PR China
| | - Wen-Yang Ding
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, PR China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, PR China
| | - Xiao Liang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, PR China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, PR China
| | - Rong Wan
- College of Marine Sciences, Shanghai Ocean University, Shanghai, PR China
- National Engineering Research Center for Oceanic Fisheries, Shanghai, PR China
- Zhoushan Branch of National Engineering Research Center for Oceanic Fisheries, Zhoushan, PR China
| | - Sergey Dobretsov
- Department of Marine Science and Fisheries, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
- Center of Excellence in Marine Biotechnology, Sultan Qaboos University, Muscat, Oman
| | - Jin-Long Yang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, PR China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, PR China
| |
Collapse
|
44
|
Böhm C, Todorović N, Balasso M, Gourinchas G, Winkler A. The PHY Domain Dimer Interface of Bacteriophytochromes Mediates Cross-talk between Photosensory Modules and Output Domains. J Mol Biol 2021; 433:167092. [PMID: 34116122 PMCID: PMC7615318 DOI: 10.1016/j.jmb.2021.167092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/21/2021] [Accepted: 06/01/2021] [Indexed: 10/21/2022]
Abstract
Protein dynamics play a major role for the catalytic function of enzymes, the interaction of protein complexes or signal integration in regulatory proteins. In the context of multi-domain proteins involved in light-regulation of enzymatic effectors, the central role of conformational dynamics is well established. Light activation of sensory modules is followed by long-range signal transduction to different effectors; rather than domino-style structural rearrangements, a complex interplay of functional elements is required to maintain functionality. One family of such sensor-effector systems are red-light-regulated phytochromes that control diguanylate cyclases involved in cyclic-dimeric-GMP formation. Based on structural and functional studies of one prototypic family member, the central role of the coiled-coil sensor-effector linker was established. Interestingly, subfamilies with different linker lengths feature strongly varying biochemical characteristics. The dynamic interplay of the domains involved, however, is presently not understood. Here we show that the PHY domain dimer interface plays an essential role in signal integration, and that a functional coupling with the coiled-coil linker element is crucial. Chimaeras of two biochemically different family members highlight the phytochrome-spanning helical spine as an essential structural element involved in light-dependent upregulation of enzymatic turnover. However, isolated structural elements can frequently not be assigned to individual characteristics, which further emphasises the importance of global conformational dynamics. Our results provide insights into the intricate processes at play during light signal integration and transduction in these photosensory systems and thus provide additional guidelines for a more directed design of novel sensor-effector combinations with potential applications as optogenetic tools.
Collapse
Affiliation(s)
- Cornelia Böhm
- Institute of Biochemistry, Graz University of Technology, 8010 Graz, Austria; BioTechMed-Graz, 8010 Graz, Austria
| | - Nikolina Todorović
- Institute of Biochemistry, Graz University of Technology, 8010 Graz, Austria
| | - Marco Balasso
- Institute of Biochemistry, Graz University of Technology, 8010 Graz, Austria
| | - Geoffrey Gourinchas
- Institute of Biochemistry, Graz University of Technology, 8010 Graz, Austria
| | - Andreas Winkler
- Institute of Biochemistry, Graz University of Technology, 8010 Graz, Austria; BioTechMed-Graz, 8010 Graz, Austria.
| |
Collapse
|
45
|
Fu Y, Yu Z, Zhu L, Li Z, Yin W, Shang X, Chou SH, Tan Q, He J. The Multiple Regulatory Relationship Between RNA-Chaperone Hfq and the Second Messenger c-di-GMP. Front Microbiol 2021; 12:689619. [PMID: 34335515 PMCID: PMC8323549 DOI: 10.3389/fmicb.2021.689619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/18/2021] [Indexed: 11/25/2022] Open
Abstract
RNA chaperone protein Hfq is an important post-transcriptional regulator in bacteria, while c-di-GMP is a second messenger signaling molecule widely distributed in bacteria. Both factors have been found to play key roles in post-transcriptional regulation and signal transduction pathways, respectively. Intriguingly, the two factors show some common aspects in the regulation of certain physiological functions such as bacterial motility, biofilm formation, pathogenicity and so on. Therefore, there may be regulatory relationship between Hfq and c-di-GMP. For example, Hfq can directly regulate the activity of c-di-GMP metabolic enzymes or alter the c-di-GMP level through other systems, while c-di-GMP can indirectly enhance or inhibit the hfq gene expression through intermediate factors. In this article, after briefly introducing the Hfq and c-di-GMP regulatory systems, we will focus on the direct and indirect regulation reported between Hfq and c-di-GMP, aiming to compare and link the two regulatory systems to further study the complicated physiological and metabolic systems of bacteria, and to lay a solid foundation for drawing a more complete global regulatory network.
Collapse
Affiliation(s)
- Yang Fu
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China.,State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhaoqing Yu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Li Zhu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhou Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wen Yin
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiaodong Shang
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Shan-Ho Chou
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qi Tan
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jin He
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
46
|
Kakkar A, Verma RK, Samal B, Chatterjee S. Interplay between the cyclic di-GMP network and the cell-cell signalling components coordinates virulence-associated functions in Xanthomonas oryzae pv. oryzae. Environ Microbiol 2021; 23:5433-5462. [PMID: 34240791 DOI: 10.1111/1462-2920.15664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 07/06/2021] [Indexed: 11/29/2022]
Abstract
Xanthomonas oryzae pv. oryzae (Xoo) causes a serious disease of rice known as bacterial leaf blight. Several virulence-associated functions have been characterized in Xoo. However, the role of important second messenger c-di-GMP signalling in the regulation of virulence-associated functions still remains elusive in this phytopathogen. In this study we have performed an investigation of 13 c-di-GMP modulating deletion mutants to understand their contribution in Xoo virulence and lifestyle transition. We show that four Xoo proteins, Xoo2331, Xoo2563, Xoo2860 and Xoo2616, are involved in fine-tuning the in vivo c-di-GMP abundance and also play a role in the regulation of virulence-associated functions. We have further established the importance of the GGDEF domain of Xoo2563, a previously characterized c-di-GMP phosphodiesterase, in the virulence-associated functions of Xoo. Interestingly the strain harbouring the GGDEF domain deletion (ΔXoo2563GGDEF ) exhibited EPS deficiency and hypersensitivity to streptonigrin, indicative of altered iron metabolism. This is in contrast to the phenotype exhibited by an EAL overexpression strain wherein, the ΔXoo2563GGDEF exhibited other phenotypes, similar to the strain overexpressing the EAL domain. Taken together, our results indicate a complex interplay of c-di-GMP signalling with the cell-cell signalling to coordinate virulence-associated function in Xoo.
Collapse
Affiliation(s)
- Akanksha Kakkar
- Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad, 500039, India.,Graduate Studies, Manipal Academy of Higher Education, Mangalore, Karnataka, 576104, India
| | - Raj Kumar Verma
- Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad, 500039, India.,Graduate Studies, Manipal Academy of Higher Education, Mangalore, Karnataka, 576104, India
| | - Biswajit Samal
- Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad, 500039, India.,Graduate Studies, Manipal Academy of Higher Education, Mangalore, Karnataka, 576104, India
| | | |
Collapse
|
47
|
Kunz S, Graumann PL. Spatial organization enhances versatility and specificity in cyclic di-GMP signaling. Biol Chem 2021; 401:1323-1334. [PMID: 32918803 DOI: 10.1515/hsz-2020-0202] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/04/2020] [Indexed: 01/28/2023]
Abstract
The second messenger cyclic di-GMP regulates a variety of processes in bacteria, many of which are centered around the decision whether to adopt a sessile or a motile life style. Regulatory circuits include pathogenicity, biofilm formation, and motility in a wide variety of bacteria, and play a key role in cell cycle progression in Caulobacter crescentus. Interestingly, multiple, seemingly independent c-di-GMP pathways have been found in several species, where deletions of individual c-di-GMP synthetases (DGCs) or hydrolases (PDEs) have resulted in distinct phenotypes that would not be expected based on a freely diffusible second messenger. Several recent studies have shown that individual signaling nodes exist, and additionally, that protein/protein interactions between DGCs, PDEs and c-di-GMP receptors play an important role in signaling specificity. Additionally, subcellular clustering has been shown to be employed by bacteria to likely generate local signaling of second messenger, and/or to increase signaling specificity. This review highlights recent findings that reveal how bacteria employ spatial cues to increase the versatility of second messenger signaling.
Collapse
Affiliation(s)
- Sandra Kunz
- SYNMIKRO, LOEWE-Zentrum für Synthetische Mikrobiologie, Hans-Meerwein-Straße, D-35043Marburg, Germany.,Fachbereich Chemie, Universität Marburg, Hans-Meerwein-Straße 4, D-35032Marburg, Germany
| | - Peter L Graumann
- SYNMIKRO, LOEWE-Zentrum für Synthetische Mikrobiologie, Hans-Meerwein-Straße, D-35043Marburg, Germany.,Fachbereich Chemie, Universität Marburg, Hans-Meerwein-Straße 4, D-35032Marburg, Germany
| |
Collapse
|
48
|
Takala H, Edlund P, Ihalainen JA, Westenhoff S. Tips and turns of bacteriophytochrome photoactivation. Photochem Photobiol Sci 2021; 19:1488-1510. [PMID: 33107538 DOI: 10.1039/d0pp00117a] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Phytochromes are ubiquitous photosensor proteins, which control the growth, reproduction and movement in plants, fungi and bacteria. Phytochromes switch between two photophysical states depending on the light conditions. In analogy to molecular machines, light absorption induces a series of structural changes that are transduced from the bilin chromophore, through the protein, and to the output domains. Recent progress towards understanding this structural mechanism of signal transduction has been manifold. We describe this progress with a focus on bacteriophytochromes. We describe the mechanism along three structural tiers, which are the chromophore-binding pocket, the photosensory module, and the output domains. We discuss possible interconnections between the tiers and conclude by presenting future directions and open questions. We hope that this review may serve as a compendium to guide future structural and spectroscopic studies designed to understand structural signaling in phytochromes.
Collapse
Affiliation(s)
- Heikki Takala
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyvaskyla, Box 35, 40014 Jyvaskyla, Finland. and Department of Anatomy, Faculty of Medicine, University of Helsinki, Box 63, 00014 Helsinki, Finland
| | - Petra Edlund
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden.
| | - Janne A Ihalainen
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyvaskyla, Box 35, 40014 Jyvaskyla, Finland.
| | - Sebastian Westenhoff
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden.
| |
Collapse
|
49
|
Dorado‐Morales P, Martínez I, Rivero‐Buceta V, Díaz E, Bähre H, Lasa I, Solano C. Elevated c-di-GMP levels promote biofilm formation and biodesulfurization capacity of Rhodococcus erythropolis. Microb Biotechnol 2021; 14:923-937. [PMID: 33128507 PMCID: PMC8085952 DOI: 10.1111/1751-7915.13689] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 11/29/2022] Open
Abstract
Bacterial biofilms provide high cell density and a superior adaptation and protection from stress conditions compared to planktonic cultures, making them a very promising approach for bioremediation. Several Rhodococcus strains can desulfurize dibenzothiophene (DBT), a major sulphur pollutant in fuels, reducing air pollution from fuel combustion. Despite multiple efforts to increase Rhodococcus biodesulfurization activity, there is still an urgent need to develop better biocatalysts. Here, we implemented a new approach that consisted in promoting Rhodococcus erythropolis biofilm formation through the heterologous expression of a diguanylate cyclase that led to the synthesis of the biofilm trigger molecule cyclic di-GMP (c-di-GMP). R. erythropolis biofilm cells displayed a significantly increased DBT desulfurization activity when compared to their planktonic counterparts. The improved biocatalyst formed a biofilm both under batch and continuous flow conditions which turns it into a promising candidate for the development of an efficient bioreactor for the removal of sulphur heterocycles present in fossil fuels.
Collapse
Affiliation(s)
- Pedro Dorado‐Morales
- Laboratory of Microbial PathogenesisNavarrabiomed‐Universidad Pública de Navarra (UPNA)‐Complejo Hospitalario de Navarra (CHN)IdiSNAIrunlarrea 3PamplonaNavarra31008Spain
| | - Igor Martínez
- Department of Systems BiologyCentro Nacional de BiotecnologíaAgencia Estatal Consejo Superior de Investigaciones CientíficasDarwin 3Madrid28049Spain
| | - Virginia Rivero‐Buceta
- Department of Microbial and Plant BiotechnologyCentro de Investigaciones Biológicas Margarita SalasAgencia Estatal Consejo Superior de Investigaciones CientíficasRamiro de Maeztu 9Madrid28040Spain
| | - Eduardo Díaz
- Department of Microbial and Plant BiotechnologyCentro de Investigaciones Biológicas Margarita SalasAgencia Estatal Consejo Superior de Investigaciones CientíficasRamiro de Maeztu 9Madrid28040Spain
| | - Heike Bähre
- Research Core Unit MetabolomicsHannover Medical SchoolCarl‐Neuberg‐Straße 1Hannover30625Germany
| | - Iñigo Lasa
- Laboratory of Microbial PathogenesisNavarrabiomed‐Universidad Pública de Navarra (UPNA)‐Complejo Hospitalario de Navarra (CHN)IdiSNAIrunlarrea 3PamplonaNavarra31008Spain
| | - Cristina Solano
- Laboratory of Microbial PathogenesisNavarrabiomed‐Universidad Pública de Navarra (UPNA)‐Complejo Hospitalario de Navarra (CHN)IdiSNAIrunlarrea 3PamplonaNavarra31008Spain
| |
Collapse
|
50
|
Bacterial cyclic diguanylate signaling networks sense temperature. Nat Commun 2021; 12:1986. [PMID: 33790266 PMCID: PMC8012707 DOI: 10.1038/s41467-021-22176-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/17/2021] [Indexed: 02/01/2023] Open
Abstract
Many bacteria use the second messenger cyclic diguanylate (c-di-GMP) to control motility, biofilm production and virulence. Here, we identify a thermosensory diguanylate cyclase (TdcA) that modulates temperature-dependent motility, biofilm development and virulence in the opportunistic pathogen Pseudomonas aeruginosa. TdcA synthesizes c-di-GMP with catalytic rates that increase more than a hundred-fold over a ten-degree Celsius change. Analyses using protein chimeras indicate that heat-sensing is mediated by a thermosensitive Per-Arnt-SIM (PAS) domain. TdcA homologs are widespread in sequence databases, and a distantly related, heterologously expressed homolog from the Betaproteobacteria order Gallionellales also displayed thermosensitive diguanylate cyclase activity. We propose, therefore, that thermotransduction is a conserved function of c-di-GMP signaling networks, and that thermosensitive catalysis of a second messenger constitutes a mechanism for thermal sensing in bacteria.
Collapse
|