1
|
Qian JJ, Guo JX, Wang MC, Chen LJ, Zhao X, Yan XP. Cationic porphyrin-based covalent organic frameworks for enhanced phototherapy and targeted chemotherapy of bacterial infections. J Colloid Interface Sci 2025; 692:137494. [PMID: 40187135 DOI: 10.1016/j.jcis.2025.137494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 04/07/2025]
Abstract
Bacterial infections significantly impede wound healing and threaten global public health. Porphyrin covalent organic frameworks (COFs) have shown promise as phototherapy antibacterial materials. However, the inherent π-π stacking interactions between the monomers also lead to aggregation and quenching of photosensitizers, thereby reducing the production of singlet oxygen (1O2) and compromising their antibacterial efficacy. Herein, we designed and prepared a novel cationic porphyrin-based COFs nanoplatform (TAPP-VIO), utilizing photosensitive TAPP and cationic VIO as structural units. This multifunctional nanoplatform is specifically tailored for targeted phototherapy and chemotherapy against bacterial infections. Upon irradiation, TAPP unit in TAPP-VIO generates heat and 1O2, which effectively disrupt bacterial structure and cause cell death. The incorporation of VIO unit introduces electrostatic repulsion between layers, mitigating π-π stacking effects and enhancing 1O2 production. Additionally, the positive charge imparted by the VIO unit enables TAPP-VIO to bind efficiently to negatively charged bacterial surfaces, immobilizing the bacteria and reducing their motility, thereby improving the overall efficacy of phototherapy. Under identical experimental conditions and concentrations, TAPP-VIO exhibits a 1O2 generation capacity that is 179 % higher than that of nonionic porphyrin COF. Moreover, the temperature increase induced by TAPP-VIO is 85 % of that observed with nonionic porphyrin COF (TAPP-MMA-Da), which is conducive to enhancing the phototherapeutic effects while minimizing heat-induced damage to healthy tissues. In summary, our study presents a straightforward approach to developing non-antibiotic antibacterial nanoagents, and the as-prepared TAPP-VIO is a promising candidate drug suitable for clinical trials in the future.
Collapse
Affiliation(s)
- Jia-Jun Qian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jing-Xuan Guo
- Analysis and Testing Center, Jiangnan University, Wuxi 214122, China
| | - Meng-Chao Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Li-Jian Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xu Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Xiu-Ping Yan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
2
|
Kowalski CH, Nguyen UT, Lawhorn S, Smith TJ, Corrigan RM, Suh WS, Kalan L, Barber MF. Skin mycobiota-mediated antagonism against Staphylococcus aureus through a modified fatty acid. Curr Biol 2025; 35:2266-2281.e8. [PMID: 40233753 DOI: 10.1016/j.cub.2025.03.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 02/17/2025] [Accepted: 03/21/2025] [Indexed: 04/17/2025]
Abstract
Microbiota promote host health by inhibiting pathogen colonization, yet how host-resident fungi or mycobiota contribute to this process remains unclear. The human skin mycobiota is uniquely stable compared with other body sites and dominated by skin-adapted yeasts of the genus Malassezia. We observe that colonization of human skin by Malassezia sympodialis significantly reduces subsequent colonization by the prominent bacterial pathogen Staphylococcus aureus. In vitro, M. sympodialis generates a hydroxyl palmitic acid isomer from environmental sources that has potent bactericidal activity against S. aureus in the context of skin-relevant stressors and is sufficient to impair S. aureus skin colonization. Leveraging experimental evolution to pinpoint mechanisms of S. aureus adaptation in response to antagonism by Malassezia, we identified multiple mutations in the stringent response regulator Rel that promote survival against M. sympodialis and provide a competitive advantage on human skin when M. sympodialis is present. Similar Rel alleles have been reported in S. aureus clinical isolates, and natural Rel variants are sufficient for tolerance to M. sympodialis antagonism. Partial stringent response activation underlies tolerance to clinical antibiotics, with both laboratory-evolved and natural Rel variants conferring multidrug tolerance in a manner that is dependent on the alternative sigma factor SigB. These findings demonstrate the ability of the mycobiota to mediate pathogen colonization resistance through generation of a hydroxy palmitic acid isomer, identify new mechanisms of bacterial adaptation in response to microbiota antagonism, and reveal the potential for microbiota-driven evolution to shape pathogen antibiotic susceptibility.
Collapse
Affiliation(s)
- Caitlin H Kowalski
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA.
| | - Uyen Thy Nguyen
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada; Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Susannah Lawhorn
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - T Jarrod Smith
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Rebecca M Corrigan
- Florey Institute, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK; The School of Medicine, University College Dublin, Belfield, Dublin 4, Dublin D04 V1W8, Ireland
| | - Won Se Suh
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada; M.G. DeGroote Institute for Infectious Disease Research, David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Lindsay Kalan
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada; Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA; M.G. DeGroote Institute for Infectious Disease Research, David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Matthew F Barber
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA; Department of Biology, University of Oregon, Eugene, OR 97403, USA.
| |
Collapse
|
3
|
Shang Y, Huang Y, Meng Q, Yu Z, Wen Z, Yu F. Fingolimod as a potent anti-Staphylococcus aureus: pH-dependent cell envelope damage and eradication of biofilms/persisters. BMC Microbiol 2025; 25:299. [PMID: 40380090 PMCID: PMC12083125 DOI: 10.1186/s12866-025-03973-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 04/16/2025] [Indexed: 05/19/2025] Open
Abstract
BACKGROUND The urgent need for new antibacterial drugs has driven interest in repurposing therapies to combat Gram-positive biofilms and persisters. Fingolimod, an Food and Drug Administration (FDA)-approved drug for multiple sclerosis, shows bactericidal activity, particularly against Methicillin-resistant Staphylococcus aureus (MRSA) and biofilm-related infections. With a well-documented safety profile and strong translational potential, it aligns with World Health Organization's goals for antimicrobial repurposing. However, the action mode and mechanism of Fingolimod against gram-positive bacteria remain elusive. METHODS This study utilized clinical Staphylococcus aureus (S. aureus), Enterococcus faecalis (E. faecalis), Streptococcus agalactiae (S. agalactiae). And their susceptibility to Fingolimod and other antibiotics was tested via Minimum Inhibitory Concentration (MIC) assays. Biofilm inhibition and hemolytic activity were evaluated using crystal violet staining, Confocal Laser Scanning Microscopy (CLSM), and hemolysis assays, respectively, while the effect of phospholipids on Fingolimod efficacy was assessed with checkerboard assays. Membrane permeability and integrity were measured using SYTOX green staining and transmission electron microscopy. Whole-genome sequencing was performed on Fingolimod-resistant S. aureus isolates to identify Single Nucleotide Polymorphisms (SNPs) linked to resistance. RESULTS Our data indicated that Fingolimod exerted bactericidal activity against a wide spectrum of gram-positive bacteria, including S. aureus, E. faecalis, S. agalactiae. Moreover, Fingolimod could significantly eliminate the persisters, inhibit biofilm formation and eradicate in-vitro mature biofilms of S. aureus. The mechanism by which Fingolimod rapidly eradicated S. aureus involved a pH-dependent disruption of bacterial cell permeability and envelope integrity. Concomitantly, exogenous supplementation of phospholipids in the culture medium resulted in a dose-dependent increase in the MIC of Fingolimod. Specifically, the addition of 64 μg/mL of cardiolipin (CL) and phosphatidylethanolamine (PE) completely nullified the bactericidal activity of Fingolimod at a concentration of 4 times the MIC. After four months of Fingolimod exposure, the MIC values of S. aureus showed a slight increase, indicating that it is not prone to developing drug resistance. CONCLUSION Fingolimod exhibits bactericidal activity against diverse gram-positive bacteria, with remarkable effects on S. aureus (including MRSA), disrupting bacterial cell structural integrity in a pH-dependent way and eradicating biofilms and persisters of S. aureus.
Collapse
Affiliation(s)
- Yongpeng Shang
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yu Huang
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qingyin Meng
- Department of Infectious Diseases and the Key Lab of Endogenous Infection6 Affiliated Hospital, Shenzhen Nanshan People's Hospital, the, Shenzhen University Health Science Center, Shenzhen, 518052, China
| | - Zhijian Yu
- Department of Infectious Diseases and the Key Lab of Endogenous Infection6 Affiliated Hospital, Shenzhen Nanshan People's Hospital, the, Shenzhen University Health Science Center, Shenzhen, 518052, China
| | - Zewen Wen
- Department of Infectious Diseases and the Key Lab of Endogenous Infection6 Affiliated Hospital, Shenzhen Nanshan People's Hospital, the, Shenzhen University Health Science Center, Shenzhen, 518052, China.
| | - Fangyou Yu
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
4
|
Zhu S, Wang Y, Chong SMS, Wohland T. A Live Bacterial Screening Assay for Membrane-Active Antimicrobial Compounds Using Imaging Fluorescence Correlation Spectroscopy. Anal Chem 2025; 97:9648-9654. [PMID: 40306620 PMCID: PMC12079629 DOI: 10.1021/acs.analchem.4c05698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 04/01/2025] [Accepted: 04/02/2025] [Indexed: 05/02/2025]
Abstract
There is a growing need in the personal hygiene industry to develop a new generation of effective antimicrobial actives, to be used as functional antibacterial ingredients and preservatives. Antimicrobials that attack bacterial membranes are an attractive target due to the relatively conserved structure compositions of the bacterial membrane, which bacteria cannot easily change without influences on the function of membrane-embedded proteins. However, current screening is slow and there is a demand for rapid screening methodologies to overcome the time-consuming nature of existing screening tools. Imaging total internal reflection-fluorescence correlation spectroscopy (ITIR-FCS) is a powerful technique that can measure membrane dynamics and identify changes with high accuracy and precision. We therefore combine ITIR-FCS with a segmentation algorithm to automatically identify bacterial cells to screen the effect of antimicrobial compounds on the dynamics of bacterial membranes as a function of antimicrobial concentration and incubation time. This allows to assess membrane activity within less than 30 min and generates dose-response curves within a span of 2 h. The technique detects antimicrobial activity at lower concentrations and an order of magnitude faster than commonly used susceptibility testing assays.
Collapse
Affiliation(s)
- Shiwen Zhu
- Centre
for BioImaging Sciences, National University
of Singapore, Singapore 117557, Singapore
- Department
of Biological Sciences, National University
of Singapore, Singapore 117558, Singapore
| | - Yu Wang
- Beauty
Revealed, Procter & Gamble International
Operations SA Singapore Branch, Singapore 138547, Singapore
| | - Shi Min Sherilyn Chong
- Beauty
Revealed, Procter & Gamble International
Operations SA Singapore Branch, Singapore 138547, Singapore
| | - Thorsten Wohland
- Centre
for BioImaging Sciences, National University
of Singapore, Singapore 117557, Singapore
- Department
of Chemistry, National University of Singapore, Singapore 117543, Singapore
- Department
of Biological Sciences, National University
of Singapore, Singapore 117558, Singapore
| |
Collapse
|
5
|
Chen S, Qu Y, Li R, Ampomah-Wireko M, Kong H, Li D, Wang M, Gao C, Qin S, Liu J, Wang Z, Zhang M, Zhang E. Exploration of membrane-active cephalosporin derivatives as potent antibacterial agents against Staphylococcus aureus biofilms and persisters. Eur J Med Chem 2025; 289:117484. [PMID: 40081101 DOI: 10.1016/j.ejmech.2025.117484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/22/2025] [Accepted: 03/05/2025] [Indexed: 03/15/2025]
Abstract
Developing innovative antimicrobial agents is essential in the fight against drug-resistant bacteria, as well as biofilms and persistent bacteria. In this study, four series of amphiphilic cephalosporin derivatives were synthesized. Most of the compounds showed good activity against Gram-positive bacteria, among which membrane-active cephalosporin 15e showed high activity against Staphylococcus aureus. Furthermore, 15e can maintain antimicrobial activity in mammalian body fluids and does not develop detectable resistance. Antibacterial mechanism studies demonstrated that the compound 15e can destroy the bacterial cell membrane, causing leakage of intracellular nucleic acids and proteins. Moreover, it can also suppress bacterial metabolic activity and induce the accumulation of reactive oxygen species (ROS) in the bacteria. Of greater significance, compound 15e effectively prevented the formation of biofilms and eradicated established biofilms and persister cells. Notably, compound 15e exhibited potent in vivo antibacterial efficacy, which was better than cephalothin. These findings suggest that 15e has a potential to become a drug candidate for treating bacterial infections.
Collapse
Affiliation(s)
- Shengcong Chen
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Ye Qu
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Ruirui Li
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Maxwell Ampomah-Wireko
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Hongtao Kong
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Daran Li
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Meng Wang
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Chen Gao
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Shangshang Qin
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Jifeng Liu
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Zhenya Wang
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Muchen Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China.
| | - En Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China; Pingyuan Laboratory (Zhengzhou University), PR China.
| |
Collapse
|
6
|
Chan SJW, Limwongyut J, Moreland AS, Zhu JY, Zhang K, Bazan GC. Unanticipated Lipid Redistribution Mechanism of Action by Conjugated Oligoelectrolyte Antibiotics. ACS Infect Dis 2025. [PMID: 40317292 DOI: 10.1021/acsinfecdis.4c00921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Antimicrobial resistance (AMR) is one of the most pressing global health threats, urgently requiring new classes of antibiotics with differentiated mechanisms of action (MOA). Conjugated oligoelectrolytes (COEs) represent a molecular platform for designing antimicrobial agents structurally distinct from commercially available drugs. However, questions remain regarding their MOA. Herein, we show that COE treatment causes distinct phenotypes from well-established membrane-active antibiotics, with differences arising from structural variations, such as pendant group hydrophobicity. This was revealed through bacterial cytological profiling approaches, single-cell quantitative morphological analysis, and dye localization following treatment against Gram-negative (Escherichia coli) and Gram-positive (Bacillus subtilis) bacteria. E. coli treatment with PNH2 and 1B resulted in micrometer-sized membrane vesicles, which are absent in 2-2H-treated cells. COE-treated B. subtilis featured overproduction of regions of increased fluidity (RIFs), relative to untreated cells. In contrast to the originally postulated membrane pinching mechanism, these findings support a MOA for COEs that relies predominantly on membrane restructuring, thereby providing new guidelines for further COE-based antibiotic design.
Collapse
Affiliation(s)
- Samuel J W Chan
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore 117544, Singapore
| | - Jakkarin Limwongyut
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Alex S Moreland
- Department of Chemistry and Biochemistry, Center for Polymers and Organic Solids, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Ji-Yu Zhu
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore 117544, Singapore
| | - Kaixi Zhang
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Guillermo C Bazan
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore 117544, Singapore
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Institute for Digital Molecular Analytics and Science, Nanyang Technological University, Singapore 636921, Singapore
| |
Collapse
|
7
|
Akpoghelie PO, Edo GI, Mafe AN, Isoje EF, Igbuku UA, Ali ABM, Yousif E, Owheruo JO, Oberhiri Oberhiri S, Essaghah AEA, Ahmed DS, Umar H, Alamiery AA. Food, Health, and Environmental Impact of Lactic Acid Bacteria: The Superbacteria for Posterity. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10546-x. [PMID: 40289239 DOI: 10.1007/s12602-025-10546-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2025] [Indexed: 04/30/2025]
Abstract
Lactic acid bacteria (LAB) are Gram-positive cocci or rods that do not produce spores or respire. Their primary function is to ferment carbohydrates and produce lactic acid. The two primary forms of LAB that are currently recognized are homofermentative and heterofermentative. This review discusses the evolutionary diversity and the biochemical and biophysical conditions required by LAB for their metabolism. Next, it concentrates on the applications of these bacteria in gut health, cancer prevention, and overall well-being and food systems. There are numerous uses for LAB, including the food and dairy sectors, as probiotics to improve human and animal gut-health, as anti-carcinogenic agents, and in food safety as biopreservatives, pathogen inhibitors, and reducers of anti-nutrients in foods. The group included many genera, including Aerococcus, Carnobacterium, Enterococcus, Lactobacillus, Lactococcus, Leuconostoc, Streptococcus, Tetragenococcus, Vagococcus, and Weissella. Numerous species of Lactobacillus and Bifidobacterium genera as well as other microbes have been suggested as probiotic strains, or live microorganisms added to meals to improve health. LAB can colonize the intestine and take part in the host's physiological processes. This review briefly highlights the role of these bacteria in food safety and security as well as aspects of regulation and consumer acceptance. Finally, the recent innovations in LAB fermentations and the limitations and challenges of the applications of LAB in the food industry are discussed. Notwithstanding recent developments, the study of LAB and their functional components is still an emerging topic of study that has not yet realized its full potential.
Collapse
Affiliation(s)
- Patrick Othuke Akpoghelie
- Department of Food Science and Technology, Faculty of Science, Delta State University of Science and Technology, Ozoro, Delta State, Nigeria
| | - Great Iruoghene Edo
- Department of Chemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Delta State, Nigeria.
- Department of Chemistry, College of Sciences, Al-Nahrain University, Baghdad, Iraq.
| | - Alice Njolke Mafe
- Department of Biological Sciences, Faculty of Science, Taraba State University Jalingo, Taraba State, Jalingo, Nigeria
| | - Endurance Fegor Isoje
- Faculty of Science, Department of Science Laboratory Technology (Biochemistry Option), Delta State University of Science and Technology, Ozoro, Nigeria
| | - Ufuoma Augustina Igbuku
- Department of Chemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Delta State, Nigeria
| | - Ali B M Ali
- Department of Air Conditioning Engineering, College of Engineering, Warith Al-Anbiyaa University, Karbala, Iraq
| | - Emad Yousif
- Department of Chemistry, College of Sciences, Al-Nahrain University, Baghdad, Iraq
| | - Joseph Oghenewogaga Owheruo
- Department of Food Science and Technology, Faculty of Science, Delta State University of Science and Technology, Ozoro, Delta State, Nigeria
| | | | - Arthur Efeoghene Athan Essaghah
- Faculty of Environmental Sciences, Department of Urban and Regional Planning, Delta State University of Science and Technology, Ozoro, Delta State, Nigeria
| | - Dina S Ahmed
- Department of Chemical Industries, Institute of Technology-Baghdad, Middle Technical University, Baghdad, Iraq
| | - Huzaifa Umar
- Operational Research Centre in Healthcare, Near East University, Nicosia, Cyprus
| | - Ahmed A Alamiery
- AUIQ, Al-Ayen Scientific Research Center, Al-Ayen Iraqi University, P.O. Box: 64004, An Nasiriyah, Thi Qar, Iraq
| |
Collapse
|
8
|
Liu X, Zhao X, Qiu H, Liang W, Liu L, Sun Y, Zhao L, Wang X, Liang H. Antibacterial Activity of GO-Based Composites Enhanced by Phosphonate-Functionalized Ionic Liquids and Silver. MATERIALS (BASEL, SWITZERLAND) 2025; 18:1889. [PMID: 40333535 PMCID: PMC12028358 DOI: 10.3390/ma18081889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 04/12/2025] [Accepted: 04/15/2025] [Indexed: 05/09/2025]
Abstract
The development of antibiotic-independent antimicrobial materials is critical for addressing bacterial resistance to conventional antibiotics. Currently, there is a lack of comprehensive understanding of ionic liquid-modified composites in antimicrobial applications. Here, we innovatively prepared GO-based composites modified with phosphonate ionic liquids via a series of surface functionalizations. The resulting antibacterial composites exhibit significant broad-spectrum activity against both Gram-negative and Gram-positive bacteria, including drug-resistant strains, with stronger efficacy against Gram-negative species. Additionally, the material features excellent long-term reusability and the ability to inhibit/destroy biofilms, which is vital for combating persistent infections. Mechanistic studies reveal its antibacterial effects through multiple pathways: disrupting bacterial membranes, inducing ROS, and inactivating intracellular substances-mechanisms less likely to promote resistance. Overall, these phosphonate ionic liquid-modified polycationic materials demonstrate substantial potential in treating bacterial infections, offering a promising strategy to tackle antibiotic resistance challenges.
Collapse
Affiliation(s)
- Xinyu Liu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China; (X.Z.); (H.Q.); (W.L.); (L.L.); (L.Z.)
| | - Xing Zhao
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China; (X.Z.); (H.Q.); (W.L.); (L.L.); (L.Z.)
| | - Hongda Qiu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China; (X.Z.); (H.Q.); (W.L.); (L.L.); (L.Z.)
| | - Weida Liang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China; (X.Z.); (H.Q.); (W.L.); (L.L.); (L.Z.)
| | - Linlin Liu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China; (X.Z.); (H.Q.); (W.L.); (L.L.); (L.Z.)
| | - Yunyu Sun
- Anhui Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou 234000, China;
| | - Lingling Zhao
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China; (X.Z.); (H.Q.); (W.L.); (L.L.); (L.Z.)
| | - Xiao Wang
- Health Science Center, Ningbo University, Ningbo 315211, China;
| | - Hongze Liang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China; (X.Z.); (H.Q.); (W.L.); (L.L.); (L.Z.)
| |
Collapse
|
9
|
Deschner F, Mostert D, Daniel JM, Voltz A, Schneider DC, Khangholi N, Bartel J, Pessanha de Carvalho L, Brauer M, Gorelik TE, Kleeberg C, Risch T, Haeckl FPJ, Herraiz Benítez L, Andreas A, Kany AM, Jézéquel G, Hofer W, Müsken M, Held J, Bischoff M, Seemann R, Brötz-Oesterhelt H, Schneider T, Sieber S, Müller R, Herrmann J. Natural products chlorotonils exert a complex antibacterial mechanism and address multiple targets. Cell Chem Biol 2025; 32:586-602.e15. [PMID: 40203831 DOI: 10.1016/j.chembiol.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/12/2024] [Accepted: 03/18/2025] [Indexed: 04/11/2025]
Abstract
Antimicrobial resistance is a threat to human health rendering current first-line antibiotics ineffective. New agents overcoming resistance mechanisms are urgently needed to guarantee successful treatment of human disease in the future. Chlorotonils, a natural product class with yet unknown mode of action, were shown to have broad-spectrum activity against multi-resistant Gram-positive bacteria and the malaria parasite Plasmodium falciparum, with promising activity and safety in murine infection models. Here, we report that chlorotonils can target the cell membrane, cell wall, and protein biosynthesis. They can be characterized by a rapid onset of action via interference with ion homeostasis leading to membrane depolarization, however, without inducing severe barrier failure or cellular lysis. Further characterization confirmed binding of chlorotonils to bacterial membrane lipids eventually leading to uncontrolled potassium transport. Additionally, we identified functional inhibition of the peptidoglycan biosynthesis protein YbjG and methionine aminopeptidase MetAP as secondary targets of chlorotonils.
Collapse
Affiliation(s)
- Felix Deschner
- Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), 66123 Saarbrücken, Germany; Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig, Germany; Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany; German Centre for Infection Research (DZIF), partner sites: Bonn-Cologne, Hannover-Braunschweig, and Tübingen, 38124 Braunschweig, Germany
| | - Dietrich Mostert
- Center for Functional Protein Assemblies, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Jan-Martin Daniel
- German Centre for Infection Research (DZIF), partner sites: Bonn-Cologne, Hannover-Braunschweig, and Tübingen, 38124 Braunschweig, Germany; Institute for Pharmaceutical Microbiology, University of Bonn, University Hospital Bonn, 53127 Bonn, Germany
| | - Alexander Voltz
- Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), 66123 Saarbrücken, Germany; Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig, Germany; Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany; German Centre for Infection Research (DZIF), partner sites: Bonn-Cologne, Hannover-Braunschweig, and Tübingen, 38124 Braunschweig, Germany
| | - Dana Carina Schneider
- German Centre for Infection Research (DZIF), partner sites: Bonn-Cologne, Hannover-Braunschweig, and Tübingen, 38124 Braunschweig, Germany; Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Department of Microbial Bioactive Compounds, University of Tübingen, 72074 Tübingen, Germany
| | - Navid Khangholi
- Experimental Physics and Center for Biophysics, Saarland University, 66123 Saarbrücken, Germany
| | - Jürgen Bartel
- Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, 17489 Greifswald, Germany
| | | | - Madita Brauer
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, 17489 Greifswald, Germany
| | - Tatiana E Gorelik
- Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), 66123 Saarbrücken, Germany; Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig, Germany; Institute of Inorganic and Analytical Chemistry, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany; Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH, Jülich 52428, Germany
| | - Christian Kleeberg
- Institute for Inorganic and Analytical Chemistry, Technical University of Braunschweig, 38106 Braunschweig, Germany
| | - Timo Risch
- Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), 66123 Saarbrücken, Germany; Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig, Germany; Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany; German Centre for Infection Research (DZIF), partner sites: Bonn-Cologne, Hannover-Braunschweig, and Tübingen, 38124 Braunschweig, Germany
| | - F P Jake Haeckl
- Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), 66123 Saarbrücken, Germany; Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig, Germany; German Centre for Infection Research (DZIF), partner sites: Bonn-Cologne, Hannover-Braunschweig, and Tübingen, 38124 Braunschweig, Germany
| | - Laura Herraiz Benítez
- Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), 66123 Saarbrücken, Germany; Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig, Germany
| | - Anastasia Andreas
- Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), 66123 Saarbrücken, Germany; Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig, Germany; German Centre for Infection Research (DZIF), partner sites: Bonn-Cologne, Hannover-Braunschweig, and Tübingen, 38124 Braunschweig, Germany
| | - Andreas Martin Kany
- Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), 66123 Saarbrücken, Germany; Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig, Germany; Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany; German Centre for Infection Research (DZIF), partner sites: Bonn-Cologne, Hannover-Braunschweig, and Tübingen, 38124 Braunschweig, Germany
| | - Gwenaëlle Jézéquel
- Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), 66123 Saarbrücken, Germany; Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig, Germany; German Centre for Infection Research (DZIF), partner sites: Bonn-Cologne, Hannover-Braunschweig, and Tübingen, 38124 Braunschweig, Germany
| | - Walter Hofer
- Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), 66123 Saarbrücken, Germany; Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig, Germany; German Centre for Infection Research (DZIF), partner sites: Bonn-Cologne, Hannover-Braunschweig, and Tübingen, 38124 Braunschweig, Germany
| | - Mathias Müsken
- Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig, Germany
| | - Jana Held
- German Centre for Infection Research (DZIF), partner sites: Bonn-Cologne, Hannover-Braunschweig, and Tübingen, 38124 Braunschweig, Germany; Institute of Tropical Medicine, Eberhard Karls University Tübingen, 72074 Tübingen, Germany
| | - Markus Bischoff
- Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig, Germany; Institute for Medical Microbiology and Hygiene, Saarland University, 66421 Homburg, Germany
| | - Ralf Seemann
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Department of Microbial Bioactive Compounds, University of Tübingen, 72074 Tübingen, Germany
| | - Heike Brötz-Oesterhelt
- German Centre for Infection Research (DZIF), partner sites: Bonn-Cologne, Hannover-Braunschweig, and Tübingen, 38124 Braunschweig, Germany; Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Department of Microbial Bioactive Compounds, University of Tübingen, 72074 Tübingen, Germany; Cluster or Excellence "Controlling Microbes to Fight Infections", Tübingen, Germany
| | - Tanja Schneider
- German Centre for Infection Research (DZIF), partner sites: Bonn-Cologne, Hannover-Braunschweig, and Tübingen, 38124 Braunschweig, Germany; Institute for Pharmaceutical Microbiology, University of Bonn, University Hospital Bonn, 53127 Bonn, Germany
| | - Stephan Sieber
- Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), 66123 Saarbrücken, Germany; Center for Functional Protein Assemblies, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Rolf Müller
- Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), 66123 Saarbrücken, Germany; Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig, Germany; Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany; German Centre for Infection Research (DZIF), partner sites: Bonn-Cologne, Hannover-Braunschweig, and Tübingen, 38124 Braunschweig, Germany
| | - Jennifer Herrmann
- Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), 66123 Saarbrücken, Germany; Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig, Germany; Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany; German Centre for Infection Research (DZIF), partner sites: Bonn-Cologne, Hannover-Braunschweig, and Tübingen, 38124 Braunschweig, Germany.
| |
Collapse
|
10
|
Qi G, Liu X, Li H, Qian Y, Liu C, Zhuang J, Shi L, Liu B. A dual-mechanism luminescent antibiotic for bacterial infection identification and eradication. SCIENCE ADVANCES 2025; 11:eadp9448. [PMID: 40215307 PMCID: PMC11988409 DOI: 10.1126/sciadv.adp9448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 03/07/2025] [Indexed: 04/14/2025]
Abstract
Because of the rapid emergence of antibiotic-resistant bacteria, there is a growing need to discover antibacterial agents. Here, we design and synthesize a compound of TPA2PyBu that kills both Gram-negative and Gram-positive bacteria with an undetectably low drug resistance. Comprehensive analyses reveal that the antimicrobial activity of TPA2PyBu proceeds via a unique dual mechanism by damaging bacterial membrane integrity and inducing DNA aggregation. TPA2PyBu could provide imaging specificity that differentiates bacterial infection from inflammation and cancer. High in vivo treatment efficacy of TPA2PyBu was achieved in methicillin-resistant Staphylococcus aureus infection mouse models. This promising antimicrobial agent suggests that combining multiple mechanisms of action into a single molecule can be an effective approach to address challenging bacterial infections.
Collapse
Affiliation(s)
- Guobin Qi
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Xianglong Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
- Joint School of the National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| | - Hao Li
- Department of Organ Transplantation, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361005, Fujian, China
| | - Yunyun Qian
- Department of Organ Transplantation, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361005, Fujian, China
| | - Can Liu
- Department of Spine Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
| | - Jiahao Zhuang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
- Joint School of the National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| | - Leilei Shi
- Precision Research Center for Refractory Diseases in Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
- Joint School of the National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Institute for Functional Intelligent Materials, National University of Singapore (Singapore), Blk S9, Level 9, 4 Science Drive 2, Singapore 117544, Singapore
| |
Collapse
|
11
|
Kaldalu N, Bērziņš N, Berglund Fick S, Sharma A, Andersson NC, Aedla J, Hinnu M, Puhar A, Hauryliuk V, Tenson T. Antibacterial compounds against non-growing and intracellular bacteria. NPJ ANTIMICROBIALS AND RESISTANCE 2025; 3:25. [PMID: 40216902 PMCID: PMC11992225 DOI: 10.1038/s44259-025-00097-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 03/26/2025] [Indexed: 04/14/2025]
Abstract
Slow- and non-growing bacterial populations, along with intracellular pathogens, often evade standard antibacterial treatments and are linked to persistent and recurrent infections. This necessitates the development of therapies specifically targeting nonproliferating bacteria. To identify compounds active against non-growing uropathogenic Escherichia coli (UPEC) we performed a drug-repurposing screen of 6454 approved drugs and drug candidates. Using dilution-regrowth assays, we identified 39 compounds that either kill non-growing UPEC or delay its regrowth post-treatment. The hits include fluoroquinolones, macrolides, rifamycins, biguanide disinfectants, a pleuromutilin, and anti-cancer agents. Twenty-nine of the hits have not previously been recognized as active against non-growing bacteria. The hits were further tested against non-growing Pseudomonas aeruginosa and Staphylococcus aureus. Ten compounds - solithromycin, rifabutin, mitomycin C, and seven fluoroquinolones-have strong bactericidal activity against non-growing P. aeruginosa, killing >4 log10 of bacteria at 2.5 µM. Solithromycin, valnemulin, evofosfamide, and satraplatin are unique in their ability to selectively target non-growing bacteria, exhibiting poor efficacy against growing bacteria. Finally, 31 hit compounds inhibit the growth of intracellular Shigella flexneri in a human enterocyte infection model, indicating their ability to permeate the cytoplasm of host cells. The identified compounds hold potential for treating persistent infections, warranting further comparative studies with current standard-of-care antibiotics.
Collapse
Affiliation(s)
- Niilo Kaldalu
- Institute of Technology, University of Tartu, Tartu, Estonia.
| | | | | | - Atin Sharma
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå, Sweden
| | | | - Jüri Aedla
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Mariliis Hinnu
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Andrea Puhar
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå, Sweden
- Wellcome-Wolfson Institute for Experimental Medicine (WWIEM), School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Vasili Hauryliuk
- Institute of Technology, University of Tartu, Tartu, Estonia.
- Department of Experimental Medical Science, Lund University, Lund, Sweden.
- Science for Life Laboratory, Lund, Sweden.
- Virus Centre, Lund University, Lund, Sweden.
- NanoLund, Lund University, Lund, Sweden.
| | - Tanel Tenson
- Institute of Technology, University of Tartu, Tartu, Estonia.
| |
Collapse
|
12
|
Xu T, Xue Z, Li X, Zhang M, Yang R, Qin S, Guo Y. Development of Membrane-Targeting Osthole Derivatives Containing Pyridinium Quaternary Ammonium Moieties with Potent Anti-Methicillin-Resistant Staphylococcus aureus Properties. J Med Chem 2025; 68:7459-7475. [PMID: 40205941 DOI: 10.1021/acs.jmedchem.4c03167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a leading cause of hospital- and community-acquired infections, necessitating the development of novel antibacterials. Here, we designed and synthesized 30 osthole derivatives with pyridinium quaternary ammonium moieties. In vitro bioassay showed that compounds 8u and 8ac exhibited potent antibacterial activity against S. aureus ATCC 29213 and ten clinical MRSA isolates (MIC = 0.5-1 μg/mL), with low hemolytic activity, rapid bactericidal effects, and minimal resistance induction. In MRSA-infected mouse models of skin abscesses and sepsis, 8u and 8ac also displayed excellent antibacterial effects and safety, which were comparable to vancomycin. Mechanistic studies revealed that 8u and 8ac selectively target bacterial membranes via binding to phosphatidylglycerol (PG), increasing intracellular reactive oxygen species (ROS), inducing content leakage, and ultimately causing bacterial death. These findings suggest 8u and 8ac as promising novel lead candidates for anti-MRSA drug development.
Collapse
Affiliation(s)
- Ting Xu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, China
| | - Zihan Xue
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Xinhui Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Miaomiao Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Ruige Yang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, China
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Shangshang Qin
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Yong Guo
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, China
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| |
Collapse
|
13
|
Zou J, Wang J, Gao L, Xue W, Zhu J, Zhang Y, Gou S, Liu H, Zhong C, Ni J. Ultra-short lipopeptides containing d-amino acid exhibiting excellent stability and antibacterial activity against gram-positive bacteria. Eur J Med Chem 2025; 287:117341. [PMID: 39908797 DOI: 10.1016/j.ejmech.2025.117341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/21/2025] [Accepted: 01/29/2025] [Indexed: 02/07/2025]
Abstract
As novel antibacterial agents, antimicrobial peptides (AMPs) possess broad-spectrum antibacterial activity and low drug resistance, holding significant development potential. Nevertheless, the stability of AMPs significantly restricts their application. In light of this, we synthesized a series of ultra-short lipopeptides using d-amino acid substitution to enhance the stability of ultra-short lipopeptide C12-RRW-NH2 that was selected from our previous research while maintaining its antibacterial activity against gram-positive bacteria. Amongst, the ultra-short lipopeptide Lip7 (C12-rrw-NH2) with full d-amino acid demonstrated outstanding stability in protease, serum, and salt ion environments. It exerted excellent antibacterial activity against gram-positive bacteria, especially against methicillin-resistant Staphylococcus aureus (MRSA). Meanwhile, Lip7 presented a low propensity to develop bacterial resistance with potential for combination therapy with conventional antibiotics. Studies on its antibacterial mechanism revealed that Lip7 could rapidly depolarize the bacterial cytoplasmic membrane, disrupt the integrity of the bacterial membrane, lead to leakage of nucleic acid and protein, promote the generation of reactive oxygen species, and ultimately result in bacterial death. Additionally, Lip7 also exhibited therapeutic potential in both local and systemic MRSA-infected mice models with better safety in vivo. These findings highlighted that Lip7 is an ideal novel antibacterial alternative to offer guiding schemes for developing high-stability antimicrobial peptides to fight multidrug-resistant gram-bacteria.
Collapse
Affiliation(s)
- Jing Zou
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China
| | - Jiahui Wang
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China
| | - Luyang Gao
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China
| | - Wenjing Xue
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China
| | - Jingyi Zhu
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China
| | - Yun Zhang
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China
| | - Sanhu Gou
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China
| | - Hui Liu
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China
| | - Chao Zhong
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China.
| | - Jingman Ni
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China.
| |
Collapse
|
14
|
Hussain A, Bhando T, Casius A, Gupta R, Pathania R. Deciphering meropenem persistence in Acinetobacter baumannii facilitates discovery of anti-persister activity of thymol. Antimicrob Agents Chemother 2025; 69:e0138124. [PMID: 39976427 PMCID: PMC11963602 DOI: 10.1128/aac.01381-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/16/2025] [Indexed: 02/21/2025] Open
Abstract
Decades of antibiotic misuse have accelerated the emergence of multi- and extensively drug-resistant bacteria. Bacterial pathogens employ several strategies such as antibiotic resistance, tolerance, and biofilm formation in response to extreme environments and antibiotic stress. Another crucial survival mechanism involves the stochastic generation of bacterial subpopulations known as persisters, which can endure high concentrations of antibiotics. Upon removal of antibiotic stress, these subpopulations revert back to their original phenotype which links them to the relapse and recalcitrance of chronic infections, a significant problem in clinical settings. Persistent infections are particularly notable in Acinetobacter baumannii, a top-priority ESKAPE pathogen, where carbapenems serve as last-resort antibiotics. Several reports indicate the rising therapeutic failure of carbapenems due to persistence, underscoring the importance of developing anti-persister therapeutics. In this study, we explored the mechanisms of transient persister formation in A. baumannii against meropenem. Our investigation revealed significant changes in membrane properties and energetics in meropenem persisters of A. baumannii, including a noteworthy increase in tolerance to other antibiotics. This understanding guided the evaluation of an in-house collection of GRAS status compounds for their potential anti-persister activity. The compound thymol demonstrated remarkable inhibitory activity against meropenem persisters of A. baumannii and other ESKAPE pathogens. Further investigation revealed its impact on persister cell physiology, including efflux pump inhibition and disruption of cellular respiration. Given our results, we propose a compelling strategy where thymol could be employed either as a monotherapy or in combination with meropenem in anti-persister therapeutics.
Collapse
Affiliation(s)
- Arsalan Hussain
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Timsy Bhando
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Ananth Casius
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Rinki Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Ranjana Pathania
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| |
Collapse
|
15
|
Tan J, Zhang H, Liu Y, Hou Z, Wang D, Zhou J, Cao Y, Qian S, Zheng B, Nie J, Cui Y, Du Y, Huang K, Yang S, Chen D, Liu X. Interfering with proton and electron transfer enables antibacterial starvation therapy. SCIENCE ADVANCES 2025; 11:eadt3159. [PMID: 40106542 PMCID: PMC11922021 DOI: 10.1126/sciadv.adt3159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 02/19/2025] [Indexed: 03/22/2025]
Abstract
Implant-associated infections are urgently addressed; however, existing materials are difficult to kill bacteria without damaging cells. Here, we propose an innovative concept of selective antibacterial starvation therapy based on interfering with proton and electron transfer on the bacterial membrane. As a proof-of-principle demonstration, a special Schottky heterojunction film composed of gold and alkaline magnesium-iron mixed metal oxides (Au/MgFe-MMO) was constructed on the titanium implant. Once bacteria contacted this implant, the Au/MgFe-MMO film continuously captured the proton and electron participated in respiratory chain of bacteria to impede their energy metabolism, leading to the deficit of adenosine 5'-triphosphate. Prolonged exposure to this starvation state inhibited numerous biosynthesis processes and triggered severe oxidative stress in bacteria, ultimately leading to their death due to DNA and membrane damage. In addition, this heterojunction film was comfortable for mammalian cells, without inhibiting mitochondrial function. This proposed starvation antibacterial therapy gives a notable perspective in designing biosafe smart antibacterial biomaterials.
Collapse
Affiliation(s)
- Ji Tan
- State Key Laboratory of Advanced Ceramics, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Haifeng Zhang
- State Key Laboratory of Advanced Ceramics, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Yisi Liu
- State Key Laboratory of Advanced Ceramics, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Zhenhao Hou
- State Key Laboratory of Advanced Ceramics, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Donghui Wang
- School of Health Science and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Junjie Zhou
- State Key Laboratory of Advanced Ceramics, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Yuanming Cao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Shi Qian
- State Key Laboratory of Advanced Ceramics, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Bowen Zheng
- State Key Laboratory of Advanced Ceramics, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - JingJun Nie
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing 100035, China
| | | | - Yun Du
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Kai Huang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Shengbing Yang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Dafu Chen
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing 100035, China
| | - Xuanyong Liu
- State Key Laboratory of Advanced Ceramics, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
16
|
Kim SW, Bang WY. Identification of Antimicrobial Peptides from Nibribacter radioresistens, a UV and Gamma Radiation Tolerant Bacterium. Genes (Basel) 2025; 16:353. [PMID: 40149504 PMCID: PMC11941926 DOI: 10.3390/genes16030353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 03/14/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Nibribacter radioresistens, a UV and gamma radiation-tolerant bacterium, was reported to have superior antibacterial activities against a variety of pathogenic bacteria through the production of antimicrobial peptides (AMPs), but nothing is known about its AMPs. METHODS/RESULTS In this study, our genomic and transcriptomic data showed that the N. radioresistens genome contains 11 AMP gene candidates, designated as NB_AMP1 to NB_AMP11, which are expressed differently in logarithmic growth and stationary phase. Moreover, the cell-free supernatant of all Escherichia coli DH5α strains containing cloned AMPs except for NB_AMP5 and NB_AMP7 exhibited antibacterial activities against both Gram-negative and Gram-positive bacteria such as E. coli and Staphylococcus aureus. Synthetic AMPs supported the antibacterial activities of cloned AMPs, and, in particular, the synthetic NB_AMP2 showed superior antibacterial activities against both E. coli and S. aureus. CONCLUSIONS Altogether, these results suggest that the AMP candidates from N. radioresistens may function as antimicrobial peptides, effectively causing cellular lysis through pore formation in the bacterial membrane.
Collapse
Affiliation(s)
- Sam Woong Kim
- Agri-Food Bio Convergence Institute, Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Woo Young Bang
- Biodiversity Research and Cooperation Division, National Institute of Biological Resources (NIBR), Environmental Research Complex, Incheon 22689, Republic of Korea
| |
Collapse
|
17
|
Peng T, Chen Y, Luan X, Hu W, Wu W, Guo B, Lu C, Wu C, Pan X. Microneedle technology for enhanced topical treatment of skin infections. Bioact Mater 2025; 45:274-300. [PMID: 39659727 PMCID: PMC11629152 DOI: 10.1016/j.bioactmat.2024.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 10/31/2024] [Accepted: 11/20/2024] [Indexed: 12/12/2024] Open
Abstract
Skin infections caused by microbes such as bacteria, fungi, and viruses often lead to aberrant skin functions and appearance, eventually evolving into a significant risk to human health. Among different drug administration paradigms for skin infections, microneedles (MNs) have demonstrated superiority mainly because of their merits in enhancing drug delivery efficiency and reducing microbial resistance. Also, integrating biosensing functionality to MNs offers point-of-care wearable medical devices for analyzing specific pathogens, disease status, and drug pharmacokinetics, thus providing personalized therapy for skin infections. Herein, we do a timely update on the development of MN technology in skin infection management, with a special focus on how to devise MNs for personalized antimicrobial therapy. Notably, the advantages of state-of-the-art MNs for treating skin infections are pointed out, which include hijacking sequential drug transport barriers to enhance drug delivery efficiency and delivering various therapeutics (e.g., antibiotics, antimicrobial peptides, photosensitizers, metals, sonosensitizers, nanoenzyme, living bacteria, poly ionic liquid, and nanomoter). In addition, the nanoenzyme-based multimodal antimicrobial therapy is highlighted in addressing intractable infectious wounds. Furthermore, the MN-based biosensors used to identify pathogen types, track disease status, and quantify antibiotic concentrations are summarized. The limitations of antimicrobial MNs toward clinical translation are offered regarding large-scale production, quality control, and policy guidance. Finally, the future development of biosensing MNs with easy-to-use and intelligent properties and MN-based wearable drug delivery for home-based therapy are prospected. We hope this review will provide valuable guidance for future development in MN-mediated topical treatment of skin infections.
Collapse
Affiliation(s)
- Tingting Peng
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/ International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Yangyan Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xuanyu Luan
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Wanshan Hu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/ International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Wentao Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Bing Guo
- School of Science, Harbin Institute of Technology, Shenzhen 518055, China
| | - Chao Lu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/ International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Chuanbin Wu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/ International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
18
|
Xie M, Chen K, Heng H, Chan EWC, Chen S. Antimicrobial effect of sulconazole in combination with glucose/trehalose against carbapenem-resistant hypervirulent Klebsiella pneumoniae persisters. Microbiol Res 2025; 292:128006. [PMID: 39671810 DOI: 10.1016/j.micres.2024.128006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 12/15/2024]
Abstract
The emergence and rapid dissemination of carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKP) pose a serious threat to public health. Antibiotic treatment failure of K. pneumoniae infections has been largely attributed to acquisition of antibiotic resistance and bacterial biofilm caused by the presence of antibiotic persisters. There is an urgent need for novel antimicrobial agents or therapy strategies to manage infections caused by these notorious pathogens. In this study, we screened a collection of compounds that can dissipate bacterial proton motive force (PMF) and intermediate metabolites that can suppress antibiotic tolerance, and identified an antifungal drug sulconazole which can act in combination with glucose or trehalose to exert strong antibacterial effect against starvation-induced CR-hvKP persisters. Investigation of underlying mechanisms showed that sulconazole alone caused dissipation of transmembrane PMF, and sulconazole used in combination with glucose or trehalose could significantly inhibit the efflux activity, reduce NADH and ATP levels, and cause intracellular accumulation of reactive oxygen species (ROS) in CR-hvKP persisters, eventually resulting in bacterial cell death. These findings suggest that the sulconazole and glucose/trehalose combination is highly effective in eradicating multidrug-resistant and hypervirulent K. pneumoniae persisters, and may be used in development of a feasible strategy for treatment of chronic and recurrent K. pneumoniae infections.
Collapse
Affiliation(s)
- Miaomiao Xie
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong SAR; Shenzhen Key Laboratory for Food Biological Safety Control, Food Safety and Technology Research Centre, The Hong Kong PolyU Shenzhen Research Institute, Shenzhen, China
| | - Kaichao Chen
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong SAR; Shenzhen Key Laboratory for Food Biological Safety Control, Food Safety and Technology Research Centre, The Hong Kong PolyU Shenzhen Research Institute, Shenzhen, China
| | - Heng Heng
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong SAR; Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR
| | - Edward Wai-Chi Chan
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong SAR
| | - Sheng Chen
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong SAR; Shenzhen Key Laboratory for Food Biological Safety Control, Food Safety and Technology Research Centre, The Hong Kong PolyU Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
19
|
Xu J, Zou D, Dong E, Jiang X, Xu S, Xiao Y, Gong W, Xu Y, Zeng Z, Deng K, Li Y, Xu X. Biomedical Engineering on Smart Polymeric Nanoparticle-Hydrogel Platforms for Efficient Antibiotic Delivery against Bacterial-Infected Wounds. ACS Biomater Sci Eng 2025. [PMID: 39977696 DOI: 10.1021/acsbiomaterials.4c02045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
The rising incidence of bacterial infections poses a significant challenge to global public health. The development of safe and effective antibacterial treatment strategies is an urgent need in the field of biomedicine. In this work, we developed a smart nanoparticle-hydrogel platform to address bacterial infections in wounds. Rifampicin-loaded chitosan-functionalized nanoparticles (R-CNP) could break bacterial barriers and enhance antibiotic internalization. R-CNP reduced the minimum inhibitory concentration of rifampicin against Staphylococcus aureus and greatly enhanced the bactericidal effect of rifampicin. Furthermore, R-CNP was incorporated into thermosensitive hydrogels (HG) to construct HG(R-CNP) for enhanced antibiotic accumulation and wound protection. In the mouse model with a bacterial-infected wound, treatment with R-CNP reduced the bacterial content by 98.5% as compared to treatment with free rifampicin. Therefore, this smart nanoparticle-hydrogel platform constructed by FDA-approved or natural polymers, offers significant therapeutic efficacy on bacterial-infected wounds, showing great promise for clinical translation.
Collapse
Affiliation(s)
- Jiahao Xu
- Department of Pharmacy, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Dongzhe Zou
- Department of Pharmacy, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Enyu Dong
- Department of Pharmacy, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Xingyu Jiang
- Department of Pharmacy, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Shuo Xu
- Department of Pharmacy, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Yusheng Xiao
- Department of Pharmacy, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Wensheng Gong
- Department of Pharmacy, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Yini Xu
- Department of Pharmacy, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Zenan Zeng
- Department of Pharmacy, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Kefurong Deng
- Department of Pharmacy, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Yachao Li
- Department of Pharmacy, College of Biology, Hunan University, Changsha, Hunan 410082, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan 410082, China
| | - Xianghui Xu
- Department of Pharmacy, College of Biology, Hunan University, Changsha, Hunan 410082, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
20
|
Tikhomirov AD, Egorova KS, Ananikov VP. Designing Effective Antimicrobial Agents: Structural Insights into the Antibiofilm Activity of Ionic Liquids. J Med Chem 2025; 68:2105-2123. [PMID: 39898997 DOI: 10.1021/acs.jmedchem.4c01780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Research concerning biofilm control is critical due to the pervasive and resilient nature of biofilms, which pose significant challenges across the industrial, environmental, and healthcare sectors. Traditional antimicrobial treatments are often ineffective against these robust structures. Here, we explore the antimicrobial properties of ionic liquids (ILs) and their efficacy in biofilm disruption. By examining the structural variations of ILs, we highlight the key role of hydrophobicity, noting that longer alkyl side chains in IL cations enhance biofilm disruption and bacterial death. However, upon reaching a certain optimal chain length─usually C12 to C14─the antimicrobial activity of ILs starts to decrease. Furthermore, the symmetry and size of anions significantly impact biofilm elimination. This Perspective addresses a critical gap in biofilm research, revealing the structure-activity relationships of ILs and providing a foundation for designing more effective biofilm-disrupting agents.
Collapse
Affiliation(s)
- Alexey D Tikhomirov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Ksenia S Egorova
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Valentine P Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| |
Collapse
|
21
|
Mahmoud M, Richter P, Arnold P, Lebert M, Burkovski A. Antimicrobial photodynamic inactivation of Pseudomonas aeruginosa persister cells and biofilms. Photodiagnosis Photodyn Ther 2025; 51:104456. [PMID: 39734028 DOI: 10.1016/j.pdpdt.2024.104456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 12/26/2024] [Indexed: 12/31/2024]
Abstract
Pseudomonas aeruginosa is a hard-to-treat human pathogen for which new antimicrobial agents are urgently needed. P. aeruginosa is known for forming biofilms, a complex aggregate of bacteria embedded in a self-generated protective matrix that enhance its resistance to antibiotics and the immune system. Within the biofilm, persister cells, sub-populations of slow-growing or growth-arrested cells, are associated with recalcitrance of infections and antibiotic treatment failure. Here, we investigate the influence of the anionic photosensitiser chlorophyllin (CHL)1 exposed to red light alone and in combination with an activator of the mechanosensitive channels butylparaben (BP) on P. aeruginosa growing cells, persister cells, and biofilms. Antimicrobial susceptibility tests were performed using the broth microdilution checkerboard method. Serine hydroxamate (SHX) was used for the induction of persister cells. Under illumination, a combination of CHL (250 µg/ml) and BP (97.12 µg/ml) reduced the number of growing cells and persister cells by 2.2±0.46 log10 and 1.7±0.15 log10, respectively after 30 min of exposure at 79 J/cm2. A higher concentration of BP (194.23 µg/ml) or longer exposure time (60 min at 158 J/cm2) effectively eliminated approximately ≥99.99 % of growing and persister cells. Visual evidence from confocal and TEM images illustrates the influence of CHL and red light, which intensifies when combined with BP. Nevertheless, the addition of BP did not enhance the efficacy of CHL against biofilms; CHL (500 µg/ml) reduced biofilm viability by 2.6 log10 at 791 J/cm2. No toxicity has been observed in darkness. This study highlights the potential antimicrobial effect of CHL against P. aeruginosa.
Collapse
Affiliation(s)
- Mona Mahmoud
- Department of Biology, Microbiology Division, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91058, Germany; Dairy Department, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Peter Richter
- Department of Biology, Cell Biology Division, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91058, Germany
| | - Philipp Arnold
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91054, Germany
| | - Michael Lebert
- Department of Biology, Cell Biology Division, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91058, Germany
| | - Andreas Burkovski
- Department of Biology, Microbiology Division, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91058, Germany.
| |
Collapse
|
22
|
Lu Y, Du J, Peng S, Wang Y, Xiao Y. Therapeutic potential of isoallolithocholic acid in methicillin-resistant Staphylococcus Aureus peritoneal infection. J Antibiot (Tokyo) 2025; 78:166-180. [PMID: 39690242 DOI: 10.1038/s41429-024-00800-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/17/2024] [Accepted: 12/04/2024] [Indexed: 12/19/2024]
Abstract
A significant increase in multidrug-resistant Methicillin-resistant Staphylococcus aureus (MRSA) infections has made it crucial to explore new antimicrobial drugs and strategies. Emerging evidence suggests that the bile acid metabolite isoallolithocholic acid (isoallo-LCA) may contribute to reducing the risk of infection among centenarians. However, its precise role remains somewhat ambiguous and necessitates further investigation. This study aims to investigate the roles of isoallo-LCA in MRSA-associated peritoneal infection. The effects of isoallo-LCA on peritoneal infection are examined in a MRSA-induced peritoneal infected model. Antibacterial activity, biofilm formation assay, and bacterial membrane permeability experiments are conducted to explore the mechanisms involved. Our findings demonstrate that isoallo-LCA effectively suppresses the replication of MRSA with minimal adverse effects on mammalian cells. Furthermore, isoallo-LCA significantly inhibits the formation of bacterial biofilms and eradicates existing bacterial biofilms of MRSA. Administration of isoallo-LCA reduces MRSA colonization in peritoneal organs and alleviates peritonitis-related inflammation and damage in a MRSA-infected peritonitis mice. Mechanistically, isoallo-LCA exhibits potent bactericidal activity against MRSA by disrupting the integrity and permeability of bacterial cells. In addition, isoallo-LCA also enhances the macrophage phagocytosis. In conclusion, our results suggest that isoallo-LCA could be an effective treatment for infections caused by MRSA.
Collapse
Affiliation(s)
- Ying Lu
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
- Shanghai Institute of Pediatric Research, Shanghai, China
| | - Jun Du
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
- Shanghai Institute of Pediatric Research, Shanghai, China
| | - Shicheng Peng
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
- Shanghai Institute of Pediatric Research, Shanghai, China
| | - Ying Wang
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Yongtao Xiao
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.
- Shanghai Institute of Pediatric Research, Shanghai, China.
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
23
|
Walenkiewicz B, VanNieuwenhze MS. Fluorescent d-amino Acid-Based Approach Enabling Fast and Reliable Measure of Antibiotic Susceptibility in Bacterial Cells. ACS Chem Biol 2025; 20:162-171. [PMID: 39668630 DOI: 10.1021/acschembio.4c00639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
The threat of multidrug-resistant bacteria has been increasing steadily in the past century, posing a major health risk (Organización Mundial de la Salud. Directrices Sobre Componentes Básicos Para Los Programas de Prevención y Control de Infecciones a Nivel Nacional y de Establecimientos de Atención de Salud Para Pacientes Agudos; Organización Mundial de la Salud: Ginebra, 2017). Even though every year, 226 million antibiotics are prescribed in the United States alone, 50% of these prescriptions are inappropriate for the patient's condition (CDC. Get Smart about Antibiotics Week; Centers for Disease Control and Prevention. 2016,https://www.cdc.gov/media/dpk/antibiotic-resistance/antibiotics-week-2016/dpk-antibiotics-week-2016.html). The increasing abuse of antibiotics in healthcare as well as agriculture has resulted in the rise of antibiotic resistance at an alarming rate. In a clinical setting, timely and accurate recognition of the pathogen allows for the most effective choice of treatment, highlighting the need for novel, fast, and reliable antibiotic susceptibility testing. Traditional susceptibility testing techniques require costly and complex experimental setups or extended cell incubation periods, delaying a timely treatment response to the infection. Herein, we report that a short-pulse fluorescent d-amino acid (FDAA)-based approach provides insight not only into bacterial antibiotic susceptibility but also into the mechanism of action of the antibiotic. Using the FDAA-labeling signal as a reflection of peptidoglycan (PG) integrity after antibiotic treatment, we observed that drugs targeting PG biosynthesis resulted in a significant decrease in fluorescence, while antimicrobials affecting other cellular targets resulted in no fluorescence changes. Our method was validated and optimized via fluorescence microscopy and spectrofluorometry, shortening the required procedure time to 15 min and providing reliably reproducible results. Significantly, we demonstrate that our protocol can be used to identify β-lactam-resistant bacterial strains, further demonstrating the utility of these valuable molecular tools.
Collapse
Affiliation(s)
- Barbara Walenkiewicz
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Michael S VanNieuwenhze
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
24
|
Tang C, Pulliam C, Abiodun A, Parris A, Campbell A, Li J. Probing Antimicrobial Activity and Mechanism of Action of a Bile Acid-Derived Antibiotic. ACS OMEGA 2025; 10:1727-1734. [PMID: 39829505 PMCID: PMC11740247 DOI: 10.1021/acsomega.4c09804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/04/2024] [Accepted: 12/13/2024] [Indexed: 01/22/2025]
Abstract
Antibiotics have revolutionized medicine, saving countless lives since the introduction of penicillin. However, antimicrobial resistance has challenged their efficacy, prompting ongoing efforts to develop new antibiotics. This study explores the antimicrobial effects of a bile acid derivative, BA-3/4-Butyl. By analyzing the interactions of BA-3/4-Butyl with model bacterial (DOPC/DOPG) and mammalian (DOPC/cholesterol) membranes and by probing its mechanism of action against bacteria using a variety of assays and transmission electron microscopy (TEM) imaging, we reveal that BA-3/4-Butyl exerts its antimicrobial activity via membrane permeabilization. Our findings provide insights into how BA-3/4-Butyl compromises bacterial membranes without causing toxicity in its mammalian counterparts. This study advances the understanding of BA-3/4-Butyl's antimicrobial activity and potential mechanisms of action, ultimately aiding the development of similar novel therapeutic agents to help combat antimicrobial resistance.
Collapse
Affiliation(s)
- Colin
C. Tang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Conor Pulliam
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Alimi Abiodun
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Adam Parris
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Andrew Campbell
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Jie Li
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
25
|
Brzobohatá H, Dugić M, Mojr V, Sahatsapan N, Kóšiová I, Křížek T, Dolejšová T, Lišková P, Cwiklik L, Rejman D, Fišer R, Mikušová G. LEGO-Lipophosphonoxin membrane activity is enhanced by presence of phosphatidylethanolamine but hindered by outer membrane. Sci Rep 2025; 15:1206. [PMID: 39775141 PMCID: PMC11707287 DOI: 10.1038/s41598-024-83205-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Finding effective antibiotics against multi-resistant strains of bacteria has been a challenging race. Linker-Evolved-Group-Optimized-Lipophosphonoxins (LEGO-LPPOs) are small modular synthetic antibacterial compounds targeting the cytoplasmic membrane. Here we focused on understanding the reasons for the variable efficacy of selected LEGO-LPPOs (LEGO-1, LEGO-2, LEGO-3, and LEGO-4) differing in hydrophobic and linker module structure and length. LEGO-1-4 permeabilized cytoplasmic membrane of Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa, and Escherichia coli, LEGO-1 with the longest linker module being the most effective. Gram-positive bacteria were more sensitive to LEGO-LPPO action compared to Gram-negatives, which was manifested as a delayed membrane permeabilization, higher minimal inhibitory concentration and lower amount of LEGO-LPPO bound to the cells. Outer membrane permeability measurements and time-kill assay showed that presence of the intact outer membrane brought about reduced susceptibility of Gram-negatives. Using liposome leakage and in silico simulations, we showed that membranes with major content of phosphatidylethanolamine were more prone to LEGO-LPPO permeabilization. The proposed mechanism stems from an electrostatic repulsion between highly positively charged LEGO-1 molecules and positively charged amino groups of phosphatidylethanolamine which destabilizes the membrane. Collectively, these data suggest that LEGO-LPPO membrane activity is enhanced by presence of phosphatidylethanolamine but hindered by presence of intact outer membrane.
Collapse
Affiliation(s)
- Hana Brzobohatá
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 00, Prague, Czech Republic
| | - Milica Dugić
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 00, Prague, Czech Republic
| | - Viktor Mojr
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences v.v.i., Flemingovo náměstí 2, 166 10, Prague 6, Czech Republic
| | - Nitjawan Sahatsapan
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences v.v.i., Flemingovo náměstí 2, 166 10, Prague 6, Czech Republic
| | - Ivana Kóšiová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences v.v.i., Flemingovo náměstí 2, 166 10, Prague 6, Czech Republic
| | - Tomáš Křížek
- Department of Analytical Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 00, Prague, Czech Republic
| | - Tereza Dolejšová
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 00, Prague, Czech Republic
| | - Petra Lišková
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 00, Prague, Czech Republic
| | - Lukasz Cwiklik
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences v.v.i., Dolejškova 3, 182 23, Prague, Czech Republic
| | - Dominik Rejman
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences v.v.i., Flemingovo náměstí 2, 166 10, Prague 6, Czech Republic.
| | - Radovan Fišer
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 00, Prague, Czech Republic.
| | - Gabriela Mikušová
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 00, Prague, Czech Republic.
| |
Collapse
|
26
|
Dey M, Bera S, Tyagi P, Pal L. Mechanisms and strategic prospects of cannabinoids use: Potential applications in antimicrobial food packaging-A review. Compr Rev Food Sci Food Saf 2025; 24:e70113. [PMID: 39840610 DOI: 10.1111/1541-4337.70113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/21/2024] [Accepted: 01/02/2025] [Indexed: 01/23/2025]
Abstract
This review focuses on antimicrobial packaging for food safety, critically examining the activity and efficacy of cannabinoids against commonly found microorganisms and exploring their antimicrobial mechanisms. Specifically, the review considers cannabinoids derived from industrial hemp plants, which are characterized by low levels of psychoactive components. It also outlines viable strategies to control the sustained release of cannabinoids from the packaging, enabling extended storage and enhanced safety of food products. Research demonstrates that cannabinoids are effective against both foodborne bacteria and fungi, with their antimicrobial action primarily attributed to microbial membrane instability. Cannabinoids can be utilized to prepare effective antimicrobial films and edible coatings; however, the number of studies in this area remains limited. The potential of cannabinoids to contribute to intelligent packaging systems is also discussed, with an emphasis on the regulatory aspects and challenges associated with incorporating cannabinoids into food packaging. Finally, the review identifies future research directions to address current limitations and advance hemp-based antimicrobial food packaging solutions.
Collapse
Affiliation(s)
- Moumita Dey
- Department of Forest Biomaterials, North Carolina State University, Raleigh, North Carolina, USA
| | - Sharmita Bera
- Department of Forest Biomaterials, North Carolina State University, Raleigh, North Carolina, USA
| | - Preeti Tyagi
- Department of Forest Biomaterials, North Carolina State University, Raleigh, North Carolina, USA
- Global R&D Transformation, Mars Snacking, Mars Wrigley, Chicago, Illinois, USA
| | - Lokendra Pal
- Department of Forest Biomaterials, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
27
|
Ghosh S, Basu S, Anbarasu A, Ramaiah S. A Comprehensive Review of Antimicrobial Agents Against Clinically Important Bacterial Pathogens: Prospects for Phytochemicals. Phytother Res 2025; 39:138-161. [PMID: 39496516 DOI: 10.1002/ptr.8365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 09/08/2024] [Accepted: 09/19/2024] [Indexed: 11/06/2024]
Abstract
Antimicrobial resistance (AMR) hinders the effective treatment of a range of bacterial infections, posing a serious threat to public health globally, as it challenges the currently available antimicrobial drugs. Among the various modes of antimicrobial action, antimicrobial agents that act on membranes have the most promising efficacy. However, there are no consolidated reports on the shortcomings of these drugs, existing challenges, or the potential applications of phytochemicals that act on membranes. Therefore, in this review, we have addressed the challenges and focused on various phytochemicals as antimicrobial agents acting on the membranes of clinically important bacterial pathogens. Antibacterial phytochemicals comprise diverse group of agents found in a wide range of plants. These compounds have been found to disrupt cell membranes, inhibit enzymes, interfere with protein synthesis, generate reactive oxygen species, modulate quorum sensing, and inhibit bacterial adhesion, making them promising candidates for the development of novel antibacterial therapies. Recently, polyphenolic compounds have been reported to have proven efficacy against nosocomial multidrug-resistant pathogens. However, more high-quality studies, improved standards, and the adoption of rules and regulations are required to firmly confirm the clinical efficacy of phytochemicals derived from plants. Identifying potential challenges, thrust areas of research, and considering viable approaches is essential for the successful clinical translation of these compounds.
Collapse
Affiliation(s)
- Soumyadip Ghosh
- Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, India
- Department of Bio Sciences, SBST, VIT, Vellore, India
| | - Soumya Basu
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Biotechnology, National Institute of Science and Technology (NIST), Berhampur, India
| | - Anand Anbarasu
- Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, India
- Department of Biotechnology, SBST, VIT, Vellore, India
| | - Sudha Ramaiah
- Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, India
- Department of Bio Sciences, SBST, VIT, Vellore, India
| |
Collapse
|
28
|
Huang Y, Liao M, Hu X, Hu H, Gong H. Advances in the clinical treatment of multidrug-resistant pathogens using polymyxins. J Antimicrob Chemother 2024; 79:3210-3229. [PMID: 39351975 DOI: 10.1093/jac/dkae344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 09/13/2024] [Indexed: 10/03/2024] Open
Abstract
OBJECTIVES Polymyxins are a vital class of antibiotics used to combat multidrug-resistant Gram-negative bacteria. However, their use is limited due to potential nephrotoxicity and the availability of alternative antibiotics. This review aims to examine the properties of polymyxins and the clinical advances in their use for treating infections caused by carbapenem-resistant Gram-negative bacteria (CR-GNB). METHODS This review analyses literature on polymyxin properties and various clinical approaches, including intravenous drip infusion, nebulized or dry powder inhalation, and ointment application. Treatment efficacy in terms of bacterial eradication, cure rate and mortality rate are reviewed and evaluated. RESULTS Polymyxins have been reintroduced to treat critical infections due to the increasing prevalence of CR-GNB. Clinical trials and studies have confirmed that polymyxins can effectively treat CR-GNB infections when the formulation and administration are appropriate, with acceptable levels of nephrotoxicity. CONCLUSIONS In the future, the development of polymyxin formulations will aim to improve their clinical effectiveness while reducing toxicity and side effects and preventing the emergence of polymyxin-resistant strains. Enhanced efficacy and minimized potential side effects can be achieved by developing new polymyxin-delivery systems that provide a smart and controlled release or customized patient administration.
Collapse
Affiliation(s)
- Yizhen Huang
- Department of Pharmacy, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, China
| | - Mingrui Liao
- Biological Physics Group, Department of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, UK
| | - Xuzhi Hu
- Biological Physics Group, Department of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, UK
| | - Honghua Hu
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Haoning Gong
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
29
|
Liu X, Li H, Qi G, Qian Y, Li B, Shi L, Liu B. Combating Fungal Infections and Resistance with a Dual-Mechanism Luminogen to Disrupt Membrane Integrity and Induce DNA Damage. J Am Chem Soc 2024; 146:31656-31664. [PMID: 39503462 DOI: 10.1021/jacs.4c09916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Antifungal drug resistance is a critical concern, demanding innovative therapeutic solutions. The dual-targeting mechanism of action (MoA), as an effective strategy to reduce drug resistance, has been validated in the design of antibacterial agents. However, the structural similarities between mammalian and fungal cells complicate the development of such a strategy for antifungal agents as the selectivity can be compromised. Herein, we introduce a dual-targeting strategy addressing fungal infections by selectively introducing DNA binding molecules into fungal nuclei. We incorporate rigid hydrophobic units into a DNA-binding domain to fabricate antifungal luminogens of TPY and TPZ, which exhibit enhanced membrane penetration and DNA-binding capabilities. These compounds exhibit dual-targeting MoA by depolarizing fungal membranes and inducing DNA damage, amplifying their potency against fungal pathogens with undetectable drug resistance. TPY and TPZ demonstrated robust antifungal activity in vitro and exhibited ideal therapeutic efficacy in a murine model of C. albicans-induced vaginitis. This multifaceted approach holds promise for overcoming drug resistance and advancing antifungal therapy.
Collapse
Affiliation(s)
- Xianglong Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
- Joint School of the National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| | - Hao Li
- Department of Organ Transplantation, School of Medicine, Xiang'an Hospital of Xiamen University, Xiamen University, Xiamen 361005, Fujian, China
| | - Guobin Qi
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China
| | - Yunyun Qian
- Department of Organ Transplantation, School of Medicine, Xiang'an Hospital of Xiamen University, Xiamen University, Xiamen 361005, Fujian, China
| | - Bowen Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Leilei Shi
- Precision Research Center for Refractory Diseases in Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
- Joint School of the National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Institute for Functional Intelligent Materials, National University of Singapore (Singapore), Blk S9, Level 9, 4 Science Drive 2, Singapore 117544, Singapore
| |
Collapse
|
30
|
Hetta HF, Sirag N, Alsharif SM, Alharbi AA, Alkindy TT, Alkhamali A, Albalawi AS, Ramadan YN, Rashed ZI, Alanazi FE. Antimicrobial Peptides: The Game-Changer in the Epic Battle Against Multidrug-Resistant Bacteria. Pharmaceuticals (Basel) 2024; 17:1555. [PMID: 39598464 PMCID: PMC11597525 DOI: 10.3390/ph17111555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
The rapid progress of antibiotic resistance among bacteria has prompted serious medical concerns regarding how to manage multidrug-resistant (MDR) bacterial infections. One emerging strategy to combat antibiotic resistance is the use of antimicrobial peptides (AMPs), which are amino acid chains that act as broad-spectrum antimicrobial molecules and are essential parts of the innate immune system in mammals, fungi, and plants. AMPs have unique antibacterial mechanisms that offer benefits over conventional antibiotics in combating drug-resistant bacterial infections. Currently, scientists have conducted multiple studies on AMPs for combating drug-resistant bacterial infections and found that AMPs are a promising alternative to conventional antibiotics. On the other hand, bacteria can develop several tactics to resist and bypass the effect of AMPs. Therefore, it is like a battle between the bacterial community and the AMPs, but who will win? This review provides thorough insights into the development of antibiotic resistance as well as detailed information about AMPs in terms of their history and classification. Furthermore, it addresses the unique antibacterial mechanisms of action of AMPs, how bacteria resist these mechanisms, and how to ensure AMPs win this battle. Finally, it provides updated information about FDA-approved AMPs and those that were still in clinical trials. This review provides vital information for researchers for the development and therapeutic application of novel AMPs for drug-resistant bacterial infections.
Collapse
Affiliation(s)
- Helal F. Hetta
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (H.F.H.); (A.A.A.); (T.T.A.)
| | - Nizar Sirag
- Division of Pharmacognosy, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Shumukh M. Alsharif
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (H.F.H.); (A.A.A.); (T.T.A.)
| | - Ahmad A. Alharbi
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (H.F.H.); (A.A.A.); (T.T.A.)
| | - Tala T. Alkindy
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (H.F.H.); (A.A.A.); (T.T.A.)
| | - Alanoud Alkhamali
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (A.A.); (A.S.A.)
| | - Abdullah S. Albalawi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (A.A.); (A.S.A.)
| | - Yasmin N. Ramadan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt; (Y.N.R.); (Z.I.R.)
| | - Zainab I. Rashed
- Department of Microbiology and Immunology, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt; (Y.N.R.); (Z.I.R.)
| | - Fawaz E. Alanazi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| |
Collapse
|
31
|
Matar IK, Dong Z, Matta CF. Exploring the Chemical Space of Mycobacterial Oxidative Phosphorylation Inhibitors Using Molecular Modeling. ChemMedChem 2024; 19:e202400303. [PMID: 39302818 PMCID: PMC11581423 DOI: 10.1002/cmdc.202400303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/28/2024] [Indexed: 09/22/2024]
Abstract
Mycobacteria are opportunistic intracellular pathogens that have plagued humans and other animals throughout history and still are today. They manipulate and hijack phagocytic cells of immune systems, enabling them to occupy this peculiar infection niche. Mycobacteria exploit a plethora of mechanisms to resist antimicrobials (e. g., waxy cell walls, efflux pumps, target modification, biofilms, etc.) thereby evolving into superbugs, such as extensively drug-resistant tuberculosis (XDR TB) bacilli and the emerging pathogenic Mycobacterium abscessus complex. This review summarizes the mechanisms of action of some of the surging antimycobacterial strategies. Exploiting the fact that mycobacteria are obligate aerobes and the differences between their oxidative phosphorylation pathways versus their human counterpart opens a promising avenue for drug discovery. The polymorphism of respiratory complexes across mycobacterial pathogens imposes challenges on the repositioning of antimycobacterial agents to battle the rise in nontuberculous mycobacterial infections. In silico strategies exploiting mycobacterial respiratory machinery data to design novel therapeutic agents are touched upon. The potential druggability of mycobacterial respiratory elements is reviewed. Future research addressing the health challenges associated with mycobacterial pathogens is discussed.
Collapse
Affiliation(s)
- Islam K. Matar
- Department of ChemistrySaint Mary's University923 Robie StreetB3H 3C3Halifax, NSCanada
- Department of Chemistry and PhysicsMount Saint Vincent University166 Bedford HighwayB3M 2J6Halifax, NSCanada
| | - Zhongmin Dong
- Department of BiologySaint Mary's University923 Robie StreetB3H 3C3Halifax, NSCanada
| | - Chérif F. Matta
- Department of ChemistrySaint Mary's University923 Robie StreetB3H 3C3Halifax, NSCanada
- Department of Chemistry and PhysicsMount Saint Vincent University166 Bedford HighwayB3M 2J6Halifax, NSCanada
| |
Collapse
|
32
|
Page EF, Blackmon MF, Calhoun TR. Second harmonic scattering investigation of bacterial efflux induced by the antibiotic tetracycline. J Chem Phys 2024; 161:174710. [PMID: 39498886 PMCID: PMC11540441 DOI: 10.1063/5.0231391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/20/2024] [Indexed: 11/07/2024] Open
Abstract
Efflux pumps are a key component in bacteria's ability to gain resistance to antibiotics. In addition to increasing efflux, new research has suggested that the antibiotic, tetracycline, may have larger impacts on bacterial membranes. Using second harmonic scattering, we monitor the transport of two small molecules across the membranes of different Gram-positive bacteria. By comparing our results to a simple kinetic model, we find evidence for changes in influx and efflux across both bacterial species. These changes, however, are probe-dependent, opening new questions about the localization of the drug's effects and the specificity of the efflux pumps involved.
Collapse
Affiliation(s)
- Eleanor F. Page
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Mikala F. Blackmon
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, USA
| | | |
Collapse
|
33
|
Rice MC, Imun M, Jung SW, Park CY, Kim JS, Lai RW, Barr CR, Son JM, Tor K, Kim E, Lu RJ, Cohen I, Benayoun BA, Lee C. The Human Mitochondrial Genome Encodes for an Interferon-Responsive Host Defense Peptide. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.02.530691. [PMID: 39553971 PMCID: PMC11565950 DOI: 10.1101/2023.03.02.530691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
The mitochondrial DNA (mtDNA) can trigger immune responses and directly entrap pathogens, but it is not known to encode for active immune factors. The immune system is traditionally thought to be exclusively nuclear-encoded. Here, we report the identification of a mitochondrial-encoded host defense peptide (HDP) that presumably derives from the primordial proto-mitochondrial bacteria. We demonstrate that MOTS-c (mitochondrial open reading frame from the twelve S rRNA type-c) is a mitochondrial-encoded amphipathic and cationic peptide with direct antibacterial and immunomodulatory functions, consistent with the peptide chemistry and functions of known HDPs. MOTS-c targeted E. coli and methicillin-resistant S. aureus (MRSA), in part, by targeting their membranes using its hydrophobic and cationic domains. In monocytes, IFNγ, LPS, and differentiation signals each induced the expression of endogenous MOTS-c. Notably, MOTS-c translocated to the nucleus to regulate gene expression during monocyte differentiation and programmed them into macrophages with unique transcriptomic signatures related to antigen presentation and IFN signaling. MOTS-c-programmed macrophages exhibited enhanced bacterial clearance and shifted metabolism. Our findings support MOTS-c as a first-in-class mitochondrial-encoded HDP and indicates that our immune system is not only encoded by the nuclear genome, but also by the co-evolved mitochondrial genome.
Collapse
|
34
|
Wang Z, Ding W, Shi D, Chen X, Ma C, Jiang Y, Wang T, Chen T, Shaw C, Wang L, Zhou M. Functional characterisation and modification of a novel Kunitzin peptide for use as an anti-trypsin antimicrobial peptide against drug-resistant Escherichia coli. Biochem Pharmacol 2024; 229:116508. [PMID: 39186954 DOI: 10.1016/j.bcp.2024.116508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 08/28/2024]
Abstract
In recent decades, antimicrobial peptides (AMPs) have emerged as highly promising candidates for the next generation of antibiotic agents, garnering significant attention. Although their potent antimicrobial activities and ability to combat drug resistance make them stand out among alternative agents, their poor stability has presented a great challenge for further development. In this work, we report a novel Kunitzin AMP, Kunitzin-OL, from the frog Odorrana lividia, exhibiting dual antimicrobial and anti-trypsin activities. Through functional screening and comparison with previously reported Kunitzin peptides, we serendipitously discovered a unique motif (-KVKF-) and unveiled its crucial role in the antibacterial functions of Kunitzin-OL by modifying it through motif removal and duplication. Among the designed derivatives, peptides 4 and 8 demonstrated remarkable antimicrobial activities and low cytotoxicity, with high therapeutic index (TI) values (TI4 = 20.8, TI8 = 20.8). Furthermore, they showed potent antibacterial efficacy against drug-resistant Escherichia coli strains and exhibited lipopolysaccharide (LPS)-neutralising activity, effectively alleviating LPS-induced inflammatory responses. Overall, our findings provide a new short motif for designing effective AMP drugs and highlight the potential of the Kunitztin trypsin inhibitory loop as a valuable motif for the design of AMPs with enhancing proteolytic stability.
Collapse
Affiliation(s)
- Zhizhong Wang
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Wenjing Ding
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Daning Shi
- Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South Street, Haidian District, Beijing 100081, PR China.
| | - Xiaoling Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Chengbang Ma
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Yangyang Jiang
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK.
| | - Tao Wang
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK.
| | - Tianbao Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Chris Shaw
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Lei Wang
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Mei Zhou
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| |
Collapse
|
35
|
Xu L, Guo H, Zhong Y, Zhao YE, Lin L. Exploring the potential of nanoparticles-based polydopamine for effective treatment of refractory keratitis: Mild photothermal loop therapy. Int J Biol Macromol 2024; 279:135479. [PMID: 39255880 DOI: 10.1016/j.ijbiomac.2024.135479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/28/2024] [Accepted: 09/06/2024] [Indexed: 09/12/2024]
Abstract
Keratitis is the leading cause of blindness worldwide. In refractory cases, it can even lead to eyeball enucleation. The critical challenges of refractory keratitis are the drug-resistant bacteria and bacterial biofilms formation. Therefore, we established an innovative therapeutic approach for keratitis based on mild photothermal loop (MPL) therapy. First, we analyzed the bactericidal effect of methicillin-resistant Staphylococcus aureus (MRSA) under various loops and temperature durations to determine the optimal condition. Then, RAN-seq was applied to explore the underlying mechanisms. Additionally, we formulated a dual-purpose polyvinyl alcohol-polydopamine (PDA/PVA) hydrogel system and explored its effects on the reactive oxygen species (ROS) scavenging capability, antibacterial properties, and anti-inflammatory properties in vitro, as well as its effect in vivo. The results indicated substantial bactericidal properties after exposure in four loops, each lasting 10 min at 45 °C. RNA-seq revealed the altered genes related to virulence and biofilm formation. In addition to good photothermal performance, the PDA/PVA system could effectively eliminate MRSA, reduce ROS, inhibit biofilm formation, and decrease inflammatory factors expression. Moreover, the in vivo results demonstrated the potential of MPL for bacterial keratitis. This study serves as the first attempt to use MPL therapy for refractory keratitis, offering a new approach for clinical practice.
Collapse
Affiliation(s)
- Liming Xu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China; National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China; State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Hanwen Guo
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China; National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China; State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yiming Zhong
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China; National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China; State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yun-E Zhao
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China; National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China; State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China.
| | - Lei Lin
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China; National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China; State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
36
|
Geng X, Li Y, Hao R, Xu C, Li Z, Yang Y, Liu X, Li J, Pu W. Isobavachalcone enhances sensitivity of colistin-resistant Klebsiella pneumoniae: In vitro and in vivo proof-of-concept studies. Int J Antimicrob Agents 2024; 64:107338. [PMID: 39293773 DOI: 10.1016/j.ijantimicag.2024.107338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/20/2024]
Abstract
OBJECTIVE Antibiotic resistance poses a considerable worldwide concern, particularly in clinical environments where drug-resistant Gram-negative bacteria like Klebsiella pneumoniae (K. pneumoniae) present a major challenge. The objective of this research was to investigate the mechanisms by which isobavachalcone (IBC) restores the sensitivity of K. pneumoniae to colistin in vitro and to validate the synergistic therapeutic effect in vivo. RESULTS The results indicate that the combined administration of colistin and IBC exhibits a potent antibacterial effect both in vitro and in vivo. The in vitro concurrent administration of colistin and IBC resulted in increased membrane permeability, compromised cell integrity, diminished membrane fluidity, and disrupted membrane homeostasis. Additionally, this combination reduced biofilm production, inhibited the synthesis of the autoinducer factor, altered membrane potential, and affected levels of reactive oxygen species and adenosine triphosphate synthesis, ultimately leading to bacterial death. In vivo experiments on Galleria mellonella and mice demonstrated that the co-administration of colistin and IBC increased the survival rate and significantly reduced pathological damage compared to colistin alone. CONCLUSION These results suggested that IBC effectively restores the sensitivity of colistin by inducing physical disruption of bacterial membranes and oxidative stress. The combination therapy of colistin and IBC presents a viable and safe strategy to combat drug-resistant K. pneumoniae-associated infections.
Collapse
Affiliation(s)
- Xiang Geng
- Key Lab of New Animal Drug of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yuxi Li
- Key Lab of New Animal Drug of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ruochen Hao
- Key Lab of New Animal Drug of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Chunyan Xu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Zhun Li
- Key Lab of New Animal Drug of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yajun Yang
- Key Lab of New Animal Drug of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiwang Liu
- Key Lab of New Animal Drug of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, China.
| | - Jianyong Li
- Key Lab of New Animal Drug of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Wanxia Pu
- Key Lab of New Animal Drug of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
37
|
Xu Y, Xiao Y, Zhao H, Wang B, Yu J, Shang Y, Zhou Y, Wu X, Guo Y, Yu F. Phenotypic and genetic characterization of daptomycin non-susceptible Staphylococcus aureus strains selected by adaptive laboratory evolution. Front Cell Infect Microbiol 2024; 14:1453233. [PMID: 39512591 PMCID: PMC11540788 DOI: 10.3389/fcimb.2024.1453233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/30/2024] [Indexed: 11/15/2024] Open
Abstract
Background Daptomycin non-susceptible Staphylococcus aureus (DNS) strains pose a serious clinical threat, yet their characteristics remain poorly understood. Methods DNS derivatives were generated by exposing S. aureus strains to subinhibitory concentrations of daptomycin. Competition experiment and growth kinetics experiment were used to observe the growth of bacteria. Galleria mellonella larvae and mouse skin abscess models were used to observe the virulence of bacteria. Transmission electron microscopy (TEM), cytochrome C experiment and biofilm formation experiment were used to observe the drug resistance phenotype. And homologous recombination was used to study the role of mutations. Results Phenotypic profiling of DNS strains revealed impaired growth, increased cell wall thickness, enhanced biofilm formation, reduced negative surface charge, and attenuated virulence compared to their wild-type strains. Whole genome sequencing identified mutations in mprF, cls2, and saeR in DNS strains. Allelic replacement experiments validated the roles of MprF L341F and Cls2 F60S substitutions in augmenting daptomycin non-susceptibility in Newman. Deletion of saeR in the NewmanMprFL341F strain and complementation of saeR in the Newman-DNS strain did not directly alter daptomycin susceptibility. However, the deletion of saeR was found to enhance competitive fitness under daptomycin pressure. Conclusion This work validates adaptive laboratory evolution (ALE) for modeling clinical DNS strains and uncovers contributions of mprF, cls2, and saeR mutations to the adaptation and resistance mechanisms of S. aureus against daptomycin. These findings enrich our understanding of how S. aureus acquired resistance to daptomycin, thus paving the way for the development of more effective treatment strategies and offering potential molecular markers for resistance surveillance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yinjuan Guo
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fangyou Yu
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
38
|
Liu Z, Liang X, Zhang Y, Deng W, Wang Y, Lu Z, Liu Q, Wei L. Drug Repurposing: Research Progress of Niclosamide and Its Derivatives on Antibacterial Activity. Infect Drug Resist 2024; 17:4539-4556. [PMID: 39464831 PMCID: PMC11505561 DOI: 10.2147/idr.s490998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/09/2024] [Indexed: 10/29/2024] Open
Abstract
The development of antibiotic resistance complicates the treatment of infectious diseases and is a global public health threat. However, drug repurposing can address this resistance issue and reduce research and development costs. Niclosamide is a salicylanilide compound approved by the Food and Drug Administration (FDA), and it has been used clinically for treating parasitic infections for many years. Recent studies have shown that niclosamide can inhibit bacterial and fungus activity by affecting the quorum sensing system, biofilm formation, cell membrane potential, and other mechanisms. Here, we discuss recent advances in the antimicrobial applications of niclosamide and its derivatives to provide new perspectives in treating infectious diseases.
Collapse
Affiliation(s)
- Zhihong Liu
- School of Public Health, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu, People’s Republic of China
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, Gansu, People’s Republic of China
| | - Xiaofang Liang
- School of Public Health, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu, People’s Republic of China
| | - Yu Zhang
- School of Public Health, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu, People’s Republic of China
| | - Wenbo Deng
- School of Public Health, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu, People’s Republic of China
| | - Yulin Wang
- Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China
| | - Zhangping Lu
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, Gansu, People’s Republic of China
| | - Qianqian Liu
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, Gansu, People’s Republic of China
| | - Lianhua Wei
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, Gansu, People’s Republic of China
| |
Collapse
|
39
|
Dai Y, Zhou Z, Yu W, Ma Y, Kim K, Rivera N, Mohammed J, Lantelme E, Hsu-Kim H, Chilkoti A, You L. Biomolecular condensates regulate cellular electrochemical equilibria. Cell 2024; 187:5951-5966.e18. [PMID: 39260373 PMCID: PMC11490381 DOI: 10.1016/j.cell.2024.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 05/22/2024] [Accepted: 08/09/2024] [Indexed: 09/13/2024]
Abstract
Control of the electrochemical environment in living cells is typically attributed to ion channels. Here, we show that the formation of biomolecular condensates can modulate the electrochemical environment in bacterial cells, which affects cellular processes globally. Condensate formation generates an electric potential gradient, which directly affects the electrochemical properties of a cell, including cytoplasmic pH and membrane potential. Condensate formation also amplifies cell-cell variability of their electrochemical properties due to passive environmental effect. The modulation of the electrochemical equilibria further controls cell-environment interactions, thus directly influencing bacterial survival under antibiotic stress. The condensate-mediated shift in intracellular electrochemical equilibria drives a change of the global gene expression profile. Our work reveals the biochemical functions of condensates, which extend beyond the functions of biomolecules driving and participating in condensate formation, and uncovers a role of condensates in regulating global cellular physiology.
Collapse
Affiliation(s)
- Yifan Dai
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, Saint Louis, MO 63130, USA
| | - Zhengqing Zhou
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Wen Yu
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, Saint Louis, MO 63130, USA
| | - Yuefeng Ma
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, Saint Louis, MO 63130, USA
| | - Kyeri Kim
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Nelson Rivera
- Department of Civil and Environmental Engineering, Duke University, Durham, NC 27708, USA
| | - Javid Mohammed
- Department of Immunology, Duke University, Durham, NC 27705, USA
| | - Erica Lantelme
- Department of Pathology and Immunology, Washington University in St. Louis, Saint Louis, MO 63110, USA
| | - Heileen Hsu-Kim
- Department of Civil and Environmental Engineering, Duke University, Durham, NC 27708, USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Department of Immunology, Duke University, Durham, NC 27705, USA.
| | - Lingchong You
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Department of Immunology, Duke University, Durham, NC 27705, USA; Center for Quantitative Biodesign, Duke University, Durham, NC 27708, USA; Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
40
|
Liao M, Gong H, Shen K, Wang Z, Li R, Campana M, Hu X, Lu JR. Unlocking roles of cationic and aromatic residues in peptide amphiphiles in treating drug-resistant gram-positive pathogens. J Colloid Interface Sci 2024; 672:209-223. [PMID: 38838629 DOI: 10.1016/j.jcis.2024.05.188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/16/2024] [Accepted: 05/24/2024] [Indexed: 06/07/2024]
Abstract
Multidrug resistance (MDR) is a rising threat to global health because the number of essential antibiotics used for treating MDR infections is increasingly compromised. In this work we report a group of new amphiphilic peptides (AMPs) derived from the well-studied G3 (G(IIKK)3I-NH2) to fight infections from Gram-positive bacteria including susceptible Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA), focusing on membrane interactions. Time-dependent killing experiments revealed that substitutions of II by WW (GWK), II by FF (GFK) and KK by RR (GIR) resulted in improved bactericidal efficiencies compared to G3 (GIK) on both S. aureus and MRSA, with the order of GWK > GIR > GFK > GIK. Electronic microscopy imaging revealed structural disruptions of AMP binding to bacterial cell walls. Fluorescence assays including AMP binding to anionic lipoteichoic acids (LTA) in cell-free and cell systems indicated concentration and time-dependent membrane destabilization associated with bacterial killing. Furthermore, AMP's binding to anionic plasma membrane via similar fluorescence assays revealed a different extent of membrane depolarization and leakage. These observations were supported by the penetration of AMPs into the LTA barrier and the subsequent structural compromise to the cytoplasmic membrane as revealed from SANS (small angle neutron scattering). Both experiments and molecular dynamics (MD) simulations revealed that GWK and GIR could make the membrane more rigid but less effective in diffusive efficiency than GIK and GFK through forming intramembrane peptide nanoaggregates associated with hydrophobic mismatch and formation of fluidic and rigid patches. The reported peptide-aggregate-induced phase-separation emerged as a crucial factor in accelerated membrane disintegration and fast bacterial killing. This work has demonstrated the importance of membrane interactions to the development of more effective AMPs and the relevance of the approaches as reported in assisting this area of research.
Collapse
Affiliation(s)
- Mingrui Liao
- Biological Physics Laboratory, Department of Physics and Astronomy, School of Natural Science, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Haoning Gong
- Biological Physics Laboratory, Department of Physics and Astronomy, School of Natural Science, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Kangcheng Shen
- Biological Physics Laboratory, Department of Physics and Astronomy, School of Natural Science, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Ziwei Wang
- National Graphene Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Renzhi Li
- Department of Materials, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Mario Campana
- ISIS Pulsed Neutron & Muon Source, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX, UK
| | - Xuzhi Hu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China.
| | - Jian R Lu
- Biological Physics Laboratory, Department of Physics and Astronomy, School of Natural Science, The University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| |
Collapse
|
41
|
Fu S, Chen H, Li H, Duan J, Tan H. Self-activated hydrogel cascade reactor integrated with glucose oxidase and silver nanoparticle for enhanced treatment of bacterial infection. Int J Biol Macromol 2024; 277:134081. [PMID: 39043286 DOI: 10.1016/j.ijbiomac.2024.134081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/12/2024] [Accepted: 07/20/2024] [Indexed: 07/25/2024]
Abstract
The recognition of silver nanoparticles (AgNPs) as a nanozyme with peroxidase-like activity has offered a promising solution to address the challenges of bacterial resistance and argyria risk. However, the catalytic efficacy of AgNPs is limited by the need for a strong acidic environment and high concentrations of hydrogen peroxide (H2O2). In this work, we developed a self-activated hydrogel cascade reactor (AUGP) for enhanced treatment of bacterial infection. The AUGP integrates the properties of glucose oxidase (GOx) and polyacrylamide (pAAm) hydrogel microsphere. The confinement effect of pAAm hydrogel microsphere enables glucose oxidation to occur in a confined space, which creates an acidic environment to activate AgNPs activity, initiating the cascade reaction between GOx and AgNPs. Meanwhile, the confinement effect facilitates the accumulation of a high local concentration of H2O2, allowing AUGP to generate hydroxyl radicals (•OH) without the need for external H2O2. Additionally, the release of Ag+ from AUGP is achieved upon the generation of •OH. The synergistic action of Ag+ and •OH confers exceptional antibacterial efficacy to AUGP. Importantly, the etching effect of H2O2 ensures the absence of any residual AgNPs, reducing the risk of argyria. In vivo studies validated the efficacy of AUGP in wound disinfection with minimal toxicity.
Collapse
Affiliation(s)
- Shanshan Fu
- Jiangxi Provincial Key Laboratory of Natural and Biomimetic Drugs Research, College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, PR China
| | - Huihong Chen
- Jiangxi Provincial Key Laboratory of Natural and Biomimetic Drugs Research, College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, PR China
| | - Hui Li
- Jiangxi Provincial Key Laboratory of Natural and Biomimetic Drugs Research, College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, PR China
| | - Jie Duan
- Jiangxi Provincial Key Laboratory of Natural and Biomimetic Drugs Research, College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, PR China
| | - Hongliang Tan
- Jiangxi Provincial Key Laboratory of Natural and Biomimetic Drugs Research, College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, PR China.
| |
Collapse
|
42
|
Shariati A, Kashi M, Chegini Z, Hosseini SM. Antibiotics-free compounds for managing carbapenem-resistant bacteria; a narrative review. Front Pharmacol 2024; 15:1467086. [PMID: 39355778 PMCID: PMC11442292 DOI: 10.3389/fphar.2024.1467086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/04/2024] [Indexed: 10/03/2024] Open
Abstract
Carbapenem-resistant (CR) Gram-negative bacteria have become a significant public health problem in the last decade. In recent years, the prevalence of CR bacteria has increased. The resistance to carbapenems could result from different mechanisms such as loss of porin, penicillin-binding protein alteration, carbapenemase, efflux pump, and biofilm community. Additionally, genetic variations like insertion, deletion, mutation, and post-transcriptional modification of corresponding coding genes could decrease the susceptibility of bacteria to carbapenems. In this regard, scientists are looking for new approaches to inhibit CR bacteria. Using bacteriophages, natural products, nanoparticles, disulfiram, N-acetylcysteine, and antimicrobial peptides showed promising inhibitory effects against CR bacteria. Additionally, the mentioned compounds could destroy the biofilm community of CR bacteria. Using them in combination with conventional antibiotics increases the efficacy of antibiotics, decreases their dosage and toxicity, and resensitizes CR bacteria to antibiotics. Therefore, in the present review article, we have discussed different aspects of non-antibiotic approaches for managing and inhibiting the CR bacteria and various methods and procedures used as an alternative for carbapenems against these bacteria.
Collapse
Affiliation(s)
- Aref Shariati
- Infectious Diseases Research Center (IDRC), Arak University of Medical Sciences, Arak, Iran
| | - Milad Kashi
- Student research committee, Arak University of Medical Sciences, Arak, Iran
| | - Zahra Chegini
- Infectious Disease Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Seyed Mostafa Hosseini
- Infectious Disease Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
43
|
Kumar D, Gayen A, Chandra M. Growth Phase Contribution in Dictating Drug Transport and Subcellular Accumulation inside Escherichia coli. ACS Infect Dis 2024; 10:3233-3244. [PMID: 39178142 DOI: 10.1021/acsinfecdis.4c00252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
Depending upon nutrient availability, bacteria transit to multiple growth phases. The transition from the active to nongrowing phase results in reduced drug efficacy and, in some cases, even multidrug resistance. However, due to multiple alterations in the cell envelope, probing the drug permeation kinetics during growth phases becomes perplexing, especially across the Gram-negative bacteria's complex dual membrane envelope. To advance the understanding of drug permeation during the life cycle of Gram-negative bacteria, we sought to address two underlying objectives: (a) how changes are occurring inside the bacterial envelope during growth and (b) how the drug permeation and accumulation vary across both the membranes and in subcellular compartments during growth. Both objectives are met with the help of nonlinear optical technique second-harmonic generation spectroscopy (SHG). Specifically, using SHG, we probed the transport kinetics and accumulation of a quaternary ammonium compound (QAC), malachite green, inside Escherichia coli in various growth phases. Further insight about another QAC molecule, propidium iodide, is accomplished using fluorescence microscopy. Results indicate that actively growing cells have faster drug transport and higher cytoplasmic accumulation than slow- or nongrowing cells. In this regard, the rpoS gene plays a crucial role in limiting drug transport across the saturation phase cultures. Moreover, within a particular growth phase, membrane permeability undergoes gradual changes much before the subsequent growth phase commences. These outcomes signify the importance of reporting the growth phase and rate in drug efficacy studies.
Collapse
Affiliation(s)
- Deepak Kumar
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Anindita Gayen
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Manabendra Chandra
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
- Center of Excellence: Tropical and Infectious Diseases, Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
44
|
Saha E, Khan A, Mallick AI, Mitra J. Purpose-built multicomponent supramolecular silver(I)-hydrogels as membrane-targeting broad-spectrum antibacterial agents against multidrug-resistant pathogens. J Mater Chem B 2024; 12:8767-8777. [PMID: 39140272 DOI: 10.1039/d4tb01355g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Membrane-targeting compounds are of immense interest to counter complicated multi-drug resistant infections. However, the broad-spectrum effect of such compounds is often unmet due to the surges of antibiotic resistance among majority of Gram-negative bacteria compared to Gram-positive species. Though amphiphiles, synthetic mimics of antimicrobial peptides etc, have been extensively explored for their potential to perturb bacterial membranes, small molecule-based supramolecular hydrogels have remained unexplored. The design of supramolecular hydrogels can be tuned on-demand, catering to desired applications, including facile bacterial membrane perturbation. Considering the strong biocidal properties of Ag-based systems and the bacterial membrane-targeting potential of appended primary amine groups, we designed self-assembled multicomponent supramolecular Ag(I)-hydrogels with urea and DATr (3,5-diamino-1,2,4-triazole) as ligands, which are predisposed for hydrogen bonding and interacting with negatively charged bacterial membranes at physiological pH. The synthesized supramolecular Ag(I)-hydrogels exhibited almost similar antibacterial activity against both Gram-negative (Campylobacter jejuni; C. jejuni) and Gram-positive (Staphylococcus aureus; S. aureus) bacteria, with minimal inhibitory concentration (MIC) of ∼60 μg mL-1. Ag(I)-hydrogels facilitated the disruption of the negatively charged bacterial membrane due to electrostatic interaction and complementary hydrogen bonding facilitated by DATr and urea. Sustained intracellular ROS generation in the presence of Ag(I)-hydrogel further expedited cell lysis. We envisage that the multicomponent supramolecular Ag(I)-hydrogels studied herein can be employed in designing effective antibacterial coatings on a range of medical devices, including surgical instruments. Moreover, the present form of the hydrogels has the potential to improve the antibacterial functionality of conventional antimicrobials, thus revitalizing the effective targeting of hard-to-treat multi-drug-resistant (MDR) bacterial infections in a clinical set up.
Collapse
Affiliation(s)
- Ekata Saha
- Inorganic Materials & Catalysis (IMC) Division, CSIR-Central Salt & Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar-364002, Gujarat, India.
- Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters, CSIR-HRDC Campus, Ghaziabad-201002, UP, India
| | - Afruja Khan
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal-741246, India.
| | - Amirul Islam Mallick
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal-741246, India.
| | - Joyee Mitra
- Inorganic Materials & Catalysis (IMC) Division, CSIR-Central Salt & Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar-364002, Gujarat, India.
- Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters, CSIR-HRDC Campus, Ghaziabad-201002, UP, India
| |
Collapse
|
45
|
Yang A, Song J, Li J, Li Y, Bai S, Zhou C, Wang M, Zhou Y, Wen K, Luo M, Chen P, Liu B, Yang H, Bai Y, Wong WL, Cai Q, Pu H, Qian Y, Hu W, Huang W, Wan M, Zhang C, Feng X. Ligand-Receptor Interaction-Induced Intracellular Phase Separation: A Global Disruption Strategy for Resistance-Free Lethality of Pathogenic Bacteria. J Am Chem Soc 2024; 146:23121-23137. [PMID: 38980064 DOI: 10.1021/jacs.4c04749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Addressing the global challenge of bacterial resistance demands innovative approaches, among which multitargeting is a widely used strategy. Current strategies of multitargeting, typically achieved through drug combinations or single agents inherently aiming at multiple targets, face challenges such as stringent pharmacokinetic and pharmacodynamic requirements and cytotoxicity concerns. In this report, we propose a bacterial-specific global disruption approach as a vastly expanded multitargeting strategy that effectively disrupts bacterial subcellular organization. This effect is achieved through a pioneering chemical design of ligand-receptor interaction-induced aggregation of small molecules, i.e., DNA-induced aggregation of a diarginine peptidomimetic within bacterial cells. These intracellular aggregates display affinity toward various proteins and thus substantially interfere with essential bacterial functions and rupture bacterial cell membranes in an "inside-out" manner, leading to robust antibacterial activities and suppression of drug resistance. Additionally, biochemical analysis of macromolecule binding affinity, cytoplasmic localization patterns, and bacterial stress responses suggests that this bacterial-specific intracellular aggregation mechanism is fundamentally different from nonselective classic DNA or membrane binding mechanisms. These mechanistic distinctions, along with the peptidomimetic's selective permeation of bacterial membranes, contribute to its favorable biocompatibility and pharmacokinetic properties, enabling its in vivo antimicrobial efficacy in several animal models, including mice-based superficial wound models, subcutaneous abscess models, and septicemia infection models. These results highlight the great promise of ligand-receptor interaction-induced intracellular aggregation in achieving a globally disruptive multitargeting effect, thereby offering potential applications in the treatment of malignant cells, including pathogens, tumor cells, and infected tissues.
Collapse
Affiliation(s)
- Anming Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Junfeng Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Jiaqi Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Youzhi Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Silei Bai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Cailing Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Min Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Yu Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Kang Wen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Miaomiao Luo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Peiren Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Bo Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No.555 Zuchongzhi Rd, Pudong, Shanghai 201203, China
| | - Huan Yang
- School of Medical Technology, Xuzhou Medical University, Xuzhou 221004, China
| | - Yugang Bai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Wing-Leung Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 999077, China
| | - Qingyun Cai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Huangsheng Pu
- College of Advanced Interdisciplinary Studies & Hunan Provincial Key Laboratory of Novel NanoOptoelectronic Information Materials and Devices, National University of Defense Technology, Changsha, Hunan 410073, China
- Nanhu Laser Laboratory, National University of Defense Technology, Changsha 410073, China
| | - Yu Qian
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wenhao Hu
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wei Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No.555 Zuchongzhi Rd, Pudong, Shanghai 201203, China
| | - Muyang Wan
- College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Chunhui Zhang
- College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Xinxin Feng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
46
|
van Groesen E, Mons E, Kotsogianni I, Arts M, Tehrani KHME, Wade N, Lysenko V, Stel FM, Zwerus JT, De Benedetti S, Bakker A, Chakraborty P, van der Stelt M, Scheffers DJ, Gooskens J, Smits WK, Holden K, Gilmour PS, Willemse J, Hitchcock CA, van Hasselt JGC, Schneider T, Martin NI. Semisynthetic guanidino lipoglycopeptides with potent in vitro and in vivo antibacterial activity. Sci Transl Med 2024; 16:eabo4736. [PMID: 39110780 DOI: 10.1126/scitranslmed.abo4736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 02/23/2024] [Accepted: 07/16/2024] [Indexed: 08/13/2024]
Abstract
Gram-positive bacterial infections present a major clinical challenge, with methicillin- and vancomycin-resistant strains continuing to be a cause for concern. In recent years, semisynthetic vancomycin derivatives have been developed to overcome this problem as exemplified by the clinically used telavancin, which exhibits increased antibacterial potency but has also raised toxicity concerns. Thus, glycopeptide antibiotics with enhanced antibacterial activities and improved safety profiles are still necessary. We describe the development of a class of highly potent semisynthetic glycopeptide antibiotics, the guanidino lipoglycopeptides, which contain a positively charged guanidino moiety bearing a variable lipid group. These glycopeptides exhibited enhanced in vitro activity against a panel of Gram-positive bacteria including clinically relevant methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant strains, showed minimal toxicity toward eukaryotic cells, and had a low propensity for resistance selection. Mechanistically, guanidino lipoglycopeptides engaged with bacterial cell wall precursor lipid II with a higher binding affinity than vancomycin. Binding to both wild-type d-Ala-d-Ala lipid II and the vancomycin-resistant d-Ala-d-Lac variant was confirmed, providing insight into the enhanced activity of guanidino lipoglycopeptides against vancomycin-resistant isolates. The in vivo efficacy of guanidino lipoglycopeptide EVG7 was evaluated in a S. aureus murine thigh infection model and a 7-day sepsis survival study, both of which demonstrated superiority to vancomycin. Moreover, the minimal to mild kidney effects at supratherapeutic doses of EVG7 indicate an improved therapeutic safety profile compared with vancomycin. These findings position guanidino lipoglycopeptides as candidates for further development as antibacterial agents for the treatment of clinically relevant multidrug-resistant Gram-positive infections.
Collapse
Affiliation(s)
- Emma van Groesen
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, 2300 RA Leiden, Netherlands
| | - Elma Mons
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, 2300 RA Leiden, Netherlands
| | - Ioli Kotsogianni
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, 2300 RA Leiden, Netherlands
| | - Melina Arts
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, 53113 Bonn, Germany
| | - Kamaleddin H M E Tehrani
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, 2300 RA Leiden, Netherlands
| | - Nicola Wade
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, 2300 RA Leiden, Netherlands
| | - Vladyslav Lysenko
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, 2300 RA Leiden, Netherlands
| | - Florence M Stel
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, 2300 RA Leiden, Netherlands
| | - Jordy T Zwerus
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, 2300 RA Leiden, Netherlands
| | - Stefania De Benedetti
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, 53113 Bonn, Germany
| | - Alexander Bakker
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, 2300 RA Leiden, Netherlands
| | - Parichita Chakraborty
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9700 AB Groningen, Netherlands
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, 2300 RA Leiden, Netherlands
| | - Dirk-Jan Scheffers
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9700 AB Groningen, Netherlands
| | - Jairo Gooskens
- Department of Medical Microbiology, Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| | - Wiep Klaas Smits
- Experimental Bacteriology, Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| | - Kirsty Holden
- Evotec (U.K.) Ltd., Alderley Park, Macclesfield, Cheshire, SK10 4TG UK
| | | | - Joost Willemse
- Institute of Biology Leiden, Leiden University, 2300 RA Leiden, Netherlands
| | | | - J G Coen van Hasselt
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, 2300 RA Leiden, Netherlands
| | - Tanja Schneider
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, 53113 Bonn, Germany
| | - Nathaniel I Martin
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, 2300 RA Leiden, Netherlands
| |
Collapse
|
47
|
Hernández-Ortiz N, Sánchez-Murcia PA, Gil-Campillo C, Domenech M, Lucena-Agell D, Hortigüela R, Velázquez S, Camarasa MJ, Bustamante N, de Castro S, Menéndez M. Design, synthesis and structure-activity relationship (SAR) studies of an unusual class of non-cationic fatty amine-tripeptide conjugates as novel synthetic antimicrobial agents. Front Pharmacol 2024; 15:1428409. [PMID: 39156106 PMCID: PMC11329928 DOI: 10.3389/fphar.2024.1428409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/01/2024] [Indexed: 08/20/2024] Open
Abstract
Cationic ultrashort lipopeptides (USLPs) are promising antimicrobial candidates to combat multidrug-resistant bacteria. Using DICAMs, a newly synthesized family of tripeptides with net charges from -2 to +1 and a fatty amine conjugated to the C-terminus, we demonstrate that anionic and neutral zwitterionic USLPs can possess potent antimicrobial and membrane-disrupting activities against prevalent human pathogens such as Streptococcus pneumoniae and Streptococcus pyogenes. The strongest antimicrobials completely halt bacterial growth at low micromolar concentrations, reduce bacterial survival by several orders of magnitude, and may kill planktonic cells and biofilms. All of them comprise either an anionic or neutral zwitterionic peptide attached to a long fatty amine (16-18 carbon atoms) and show a preference for anionic lipid membranes enriched in phosphatidylglycerol (PG), which excludes electrostatic interactions as the main driving force for DICAM action. Hence, the hydrophobic contacts provided by the long aliphatic chains of their fatty amines are needed for DICAM's membrane insertion, while negative-charge shielding by salt counterions would reduce electrostatic repulsions. Additionally, we show that other components of the bacterial envelope, including the capsular polysaccharide, can influence the microbicidal activity of DICAMs. Several promising candidates with good-to-tolerable therapeutic ratios are identified as potential agents against S. pneumoniae and S. pyogenes. Structural characteristics that determine the preference for a specific pathogen or decrease DICAM toxicity have also been investigated.
Collapse
Affiliation(s)
- Noelia Hernández-Ortiz
- Instituto de Química-Física “Blas Cabrera” (IQF), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Pedro A. Sánchez-Murcia
- Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Laboratory of Computer-Aided Molecular Design, Division of Medicinal Chemistry, Otto-Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Celia Gil-Campillo
- Instituto de Química-Física “Blas Cabrera” (IQF), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Mirian Domenech
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Departamento Genética, Fisiología y Microbiología, Facultad Ciencias Biológicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Daniel Lucena-Agell
- Centro de Investigaciones Biológicas Margarita Salas (CIB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Rafael Hortigüela
- Centro de Investigaciones Biológicas Margarita Salas (CIB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Sonsoles Velázquez
- Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - María José Camarasa
- Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Noemí Bustamante
- Instituto de Química-Física “Blas Cabrera” (IQF), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Sonia de Castro
- Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Margarita Menéndez
- Instituto de Química-Física “Blas Cabrera” (IQF), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
48
|
Higuera-Rueda CA, Piuzzi NS, Milbrandt NB, Tsai YH, Klika AK, Samia ACS, Visperas A. The Mark Coventry Award: PhotothermAA Gel Combined With Debridement, Antibiotics, and Implant Retention Significantly Decreases Implant Biofilm Burden and Soft-Tissue Infection in a Rabbit Model of Knee Periprosthetic Joint Infection. J Arthroplasty 2024; 39:S2-S8. [PMID: 38401619 DOI: 10.1016/j.arth.2024.02.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/26/2024] Open
Abstract
BACKGROUND Chronic periprosthetic joint infection (PJI) is a major complication of total joint arthroplasty. The underlying pathogenesis often involves the formation of bacterial biofilm that protects the pathogen from both host immune responses and antibiotics. The gold standard treatment requires implant removal, a procedure that carries associated morbidity and mortality risks. Strategies to preserve the implant while treating PJI are desperately needed. Our group has developed an anti-biofilm treatment, PhotothermAA gel, which has shown complete eradication of 2-week-old mature biofilm in vitro. In this study, we tested the anti-biofilm efficacy and safety of PhotothermAA in vivo when combined with debridement, antibiotics and implant retention (DAIR) in a rabbit model of knee PJI. METHODS New Zealand white rabbits (n = 21) underwent knee joint arthrotomy, titanium tibial implant insertion, and inoculation with Xen36 (bioluminescent Staphylococcus aureus) after capsule closure. At 2 weeks, rabbits underwent sham surgery (n = 6), DAIR (n = 6), or PhotothermAA with DAIR (n = 9) and were sacrificed 2 weeks later to measure implant biofilm burden, soft-tissue infection, and tissue necrosis. RESULTS The combination of anti-biofilm PhotothermAA with DAIR significantly decreased implant biofilm coverage via scanning electron microscopy compared to DAIR alone (1.8 versus 81.0%; P < .0001). Periprosthetic soft-tissue cultures were significantly decreased in the PhotothermAA with DAIR treatment group (log reduction: Sham 1.6, DAIR 2.0, combination 5.6; P < .0001). Treatment-associated necrosis was absent via gross histology of tissue adjacent to the treatment area (P = .715). CONCLUSIONS The addition of an anti-biofilm solution like PhotothermAA as a supplement to current treatments that allow implant retention may prove useful in PJI treatment.
Collapse
Affiliation(s)
| | - Nicolas S Piuzzi
- Department of Orthopaedic Surgery, Cleveland Clinic Adult Reconstruction Research (CCARR), Cleveland Clinic, Cleveland, Ohio; Department of Bioengineering, Cleveland Clinic, Cleveland, Ohio
| | | | - Yu Hsin Tsai
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio
| | - Alison K Klika
- Department of Orthopaedic Surgery, Cleveland Clinic Adult Reconstruction Research (CCARR), Cleveland Clinic, Cleveland, Ohio
| | | | - Anabelle Visperas
- Department of Orthopaedic Surgery, Cleveland Clinic Adult Reconstruction Research (CCARR), Cleveland Clinic, Cleveland, Ohio; Department of Bioengineering, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
49
|
DuBois DB, Rivera I, Liu Q, Yu B, Singewald K, Millhauser GL, Saltikov C, Chen S. Photocatalytic Generation of Singlet Oxygen by Graphitic Carbon Nitride for Antibacterial Applications. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3787. [PMID: 39124449 PMCID: PMC11313655 DOI: 10.3390/ma17153787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/05/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024]
Abstract
Carbon-based functional nanocomposites have emerged as potent antimicrobial agents and can be exploited as a viable option to overcome antibiotic resistance of bacterial strains. In the present study, graphitic carbon nitride nanosheets are prepared by controlled calcination of urea. Spectroscopic measurements show that the nanosheets consist of abundant carbonyl groups and exhibit apparent photocatalytic activity under UV photoirradiation towards the selective production of singlet oxygen. Therefore, the nanosheets can effectively damage the bacterial cell membranes and inhibit the growth of bacterial cells, such as Gram-negative Escherichia coli, as confirmed in photodynamic, fluorescence microscopy, and scanning electron microscopy measurements. The results from this research highlight the unique potential of carbon nitride derivatives as potent antimicrobial agents.
Collapse
Affiliation(s)
- Davida Briana DuBois
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, CA 95064, USA; (D.B.D.); (I.R.); (Q.L.); (B.Y.); (K.S.); (G.L.M.)
| | - Isabelle Rivera
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, CA 95064, USA; (D.B.D.); (I.R.); (Q.L.); (B.Y.); (K.S.); (G.L.M.)
| | - Qiming Liu
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, CA 95064, USA; (D.B.D.); (I.R.); (Q.L.); (B.Y.); (K.S.); (G.L.M.)
| | - Bingzhe Yu
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, CA 95064, USA; (D.B.D.); (I.R.); (Q.L.); (B.Y.); (K.S.); (G.L.M.)
| | - Kevin Singewald
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, CA 95064, USA; (D.B.D.); (I.R.); (Q.L.); (B.Y.); (K.S.); (G.L.M.)
| | - Glenn L. Millhauser
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, CA 95064, USA; (D.B.D.); (I.R.); (Q.L.); (B.Y.); (K.S.); (G.L.M.)
| | - Chad Saltikov
- Department of Microbiology and Environmental Toxicology, University of California, 1156 High Street, Santa Cruz, CA 95064, USA;
| | - Shaowei Chen
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, CA 95064, USA; (D.B.D.); (I.R.); (Q.L.); (B.Y.); (K.S.); (G.L.M.)
| |
Collapse
|
50
|
Page EF, Blake MJ, Calhoun TR. Probing bacterial membranes with polarization-resolved second harmonic scattering. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2024; 13139:1313907. [PMID: 40364900 PMCID: PMC12070223 DOI: 10.1117/12.3028197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
For antibiotics that target Gram-positive bacterial cell structures, optimizing their interaction with the cytoplasmic membrane is of paramount importance. Recent time-resolved second harmonic scattering (trSHS) experiments with living bacterial cells have shown that some amphiphilic small molecules display signals consistent with organization within the membrane environment. Such organization could arise, for example, from aggregation, solvent interactions, and/or environmental rigidity. To expand our study of this system, we turn to polarization-resolved SHS (pSHS). PSHS has previously been used with model membranes to extract information about the angular distribution of integrated small molecules. Here we apply pSHS, for the first time, to cells, specifically living Staphylococcus aureus. In doing so, we aim to address contributions ascribed to the organization of amphiphilic molecules in bacterial membranes.
Collapse
|