1
|
Hirao H, Honda M, Tomita M, Li L, Adawy A, Xue W, Hibi T. Intravital Imaging of Immune Responses in the Cancer Microenvironment. Cancer Med 2025; 14:e70899. [PMID: 40257446 PMCID: PMC12010765 DOI: 10.1002/cam4.70899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/18/2025] [Accepted: 04/09/2025] [Indexed: 04/22/2025] Open
Abstract
BACKGROUND To date, many types of immune cells have been identified, but their precise role in cancer immunity remains unclear. Understanding the immune responses involved in cancer and the cancer microenvironment is becoming increasingly important for elucidating disease mechanisms. In recent years, the application of intravital imaging in cancer research has provided new insights into the mechanisms of cancer-specific immune events, including innate and adaptive immunity. RESULTS In this review, we focus on the emerging role of intravital imaging in cancer research and describe how cancer and immune cells can be observed using intravital imaging in vivo. We also discuss new insights gained by this state-of-the-art technique. CONCLUSIONS Intravital imaging is a relatively new field of research that offers significant advantages, including the ability to directly capture cell-cell interactions, pathophysiology, and immune cell dynamics in the cancer microenvironment in vivo.
Collapse
Affiliation(s)
- Hiroki Hirao
- Department of Pediatric Surgery and TransplantationKumamoto University Graduate School of Medical SciencesKumamotoJapan
| | - Masaki Honda
- Department of Pediatric Surgery and TransplantationKumamoto University Graduate School of Medical SciencesKumamotoJapan
| | - Masahiro Tomita
- Department of Pediatric Surgery and TransplantationKumamoto University Graduate School of Medical SciencesKumamotoJapan
| | - Lianbo Li
- Department of Pediatric Surgery and TransplantationKumamoto University Graduate School of Medical SciencesKumamotoJapan
| | - Ahmad Adawy
- Department of Pediatric Surgery and TransplantationKumamoto University Graduate School of Medical SciencesKumamotoJapan
| | - Weijie Xue
- Department of Pediatric Surgery and TransplantationKumamoto University Graduate School of Medical SciencesKumamotoJapan
| | - Taizo Hibi
- Department of Pediatric Surgery and TransplantationKumamoto University Graduate School of Medical SciencesKumamotoJapan
| |
Collapse
|
2
|
Porreca S, Mennella A, Frasca L. The Role of CXCL4 in Systemic Sclerosis: DAMP, Auto-Antigen and Biomarker. Int J Mol Sci 2025; 26:2421. [PMID: 40141068 PMCID: PMC11942444 DOI: 10.3390/ijms26062421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/04/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
Systemic sclerosis (SSc) is an autoimmune disease characterized by specific autoantibodies, vasculopathy and fibrosis of the skin and internal organs. In SSc, chronic activation of the immune system is largely sustained by endogenous inflammatory mediators that act as damage-associated molecular patterns (DAMPs), which activate Toll-like receptors (TLRs). Major autoantigens are nucleic acids or molecules that are able to bind nucleic acids. It is important to identify solid and predictive biomarkers of both disease activity and disease subtype. CXCL4 has been regarded as a new biomarker for early SSc in recent years, and here, we discuss its modulation over the course of a disease and after pharmacological interventions. Moreover, we provide evidence that CXCL4, in addition to being a biomarker of SSc subtypes and a prognostic marker of disease severity, has a dual pathogenic role in SSc: on the one hand, in complex with self-nucleic acids, CXCL4 acts as a DAMP for IFN-I and pro-inflammatory cytokines' release by innate immune cells (such as dendritic cells); on the other hand, CXCL4 is a target of both antibodies and T cells, functioning as an autoantigen. CXCL4 is certainly an interesting molecule in inflammation and autoimmunity, not only in SSc, and it may also be considered as a therapy target.
Collapse
Affiliation(s)
| | | | - Loredana Frasca
- National Center for Global Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (S.P.); (A.M.)
| |
Collapse
|
3
|
Nurden AT, Nurden P. Glanzmann Thrombasthenia 10 Years Later: Progress Made and Future Directions. Semin Thromb Hemost 2025; 51:196-208. [PMID: 38499192 DOI: 10.1055/s-0044-1782519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Glanzmann thrombasthenia (GT) is the most common inherited platelet disorder (IPD) with mucocutaneous bleeding and a failure of platelets to aggregate when stimulated. The molecular cause is insufficient or defective αIIbβ3, an integrin encoded by the ITGA2B and ITGB3 genes. On activation αIIbβ3 undergoes conformational changes and binds fibrinogen (Fg) and other proteins to join platelets in the aggregate. The application of next-generation sequencing (NGS) to patients with IPDs has accelerated genotyping for GT; progress accompanied by improved mutation curation. The evaluation by NGS of variants in other hemostasis and vascular genes is a major step toward understanding why bleeding varies so much between patients. The recently discovered role for glycoprotein VI in thrombus formation, through its binding to fibrin and surface-bound Fg, may offer a mechanosensitive back-up for αIIbβ3, especially at sites of inflammation. The setting up of national networks for IPDs and GT is improving patient care. Hematopoietic stem cell therapy provides a long-term cure for severe cases; however, prophylaxis by monoclonal antibodies designed to accelerate fibrin formation at injured sites in the vasculature is a promising development. Gene therapy using lentil-virus vectors remains a future option with CRISPR/Cas9 technologies offering a promising alternative route.
Collapse
Affiliation(s)
- Alan T Nurden
- Institut Hospitalo-Universitaire LIRYC, Hôpital Xavier Arnozan, Pessac, France
| | - Paquita Nurden
- Institut Hospitalo-Universitaire LIRYC, Hôpital Xavier Arnozan, Pessac, France
| |
Collapse
|
4
|
Yao C, Dong Y, Zhou H, Zou X, Alhaskawi A, Ezzi SHA, Wang Z, Lai J, Kota VG, Abdulla MHAH, Liu Z, Abdalbary SA, Alenikova O, Lu H. COVID-19 and acute limb ischemia: latest hypotheses of pathophysiology and molecular mechanisms. J Zhejiang Univ Sci B 2025; 26:333-352. [PMID: 40274383 DOI: 10.1631/jzus.b2300512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 01/01/2024] [Indexed: 04/26/2025]
Abstract
Coronavirus disease 2019 (COVID-19) is a multi-system disease that can lead to various severe complications. Acute limb ischemia (ALI) has been increasingly recognized as a COVID-19-associated complication that often predicts a poor prognosis. However, the pathophysiology and molecular mechanisms underlying COVID-19-associated ALI remain poorly understood. Hypercoagulability and thrombosis are considered important mechanisms, but we also emphasize the roles of vasospasm, hypoxia, and acidosis in the pathogenesis of the disease. The angiotensin-converting enzyme 2 (ACE2) pathway, inflammation, and platelet activation may be important molecular mechanisms underlying these pathological changes induced by COVID-19. Furthermore, we discuss the hypotheses of risk factors for COVID-19-associated ALI from genetic, age, and gender perspectives based on our analysis of molecular mechanisms. Additionally, we summarize therapeutic approaches such as use of the interleukin-6 (IL-6) blocker tocilizumab, calcium channel blockers, and angiotensin-converting enzyme inhibitors, providing insights for the future treatment of coronavirus-associated limb ischemic diseases.
Collapse
Affiliation(s)
- Chengjun Yao
- Department of Orthopaedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yanzhao Dong
- Department of Orthopaedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Haiying Zhou
- Department of Orthopaedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xiaodi Zou
- Department of Orthopaedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310005, China
| | - Ahmad Alhaskawi
- Department of Orthopaedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Sohaib Hasan Abdullah Ezzi
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Department of Orthopaedics, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Zewei Wang
- Department of Orthopaedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jingtian Lai
- Department of Orthopaedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Vishnu Goutham Kota
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | | | - Zhenfeng Liu
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Sahar Ahmed Abdalbary
- Department of Orthopaedic Physical Therapy, Faculty of Physical Therapy, Nahda University, Beni Suef 2711860, Egypt
| | - Olga Alenikova
- Republic Scientific Practical Center of Neurology and Neurosurgery, Ministry of Health of the Republic of Belarus, Minsk 220004, Belarus
| | - Hui Lu
- Department of Orthopaedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
5
|
Sokou R, Palioura AE, Konstantinidi A, Lianou A, Lampridou M, Theodoraki M, Piovani D, Bonovas S, Tsante KA, Ioannou P, Iacovidou N, Tsantes AG. The Role of Rotational Thromboelastometry in Early Detection of the Hemostatic Derangements in Neonates with Systemic Candida Infection. J Fungi (Basel) 2024; 11:17. [PMID: 39852436 PMCID: PMC11766567 DOI: 10.3390/jof11010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/21/2024] [Accepted: 12/28/2024] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND Systemic Candida infection (SCI) is the third most common cause of late-onset sepsis in Neonatal Intensive Care Units (NICU). While platelet involvement in fungal infections has been extensively studied, evaluation of the hemostatic mechanism in Candida infections, especially in neonates, has not been widely investigated. The aim of the current study was to evaluate the hemostatic profile of neonates with SCI through rotational thromboelastometry (ROTEM), a laboratory method that assesses the viscoelastic properties of blood. METHODS This is a single-centered prospective cohort study including a group of neonates with SCI (n = 21); the control group consisted of healthy neonates (n = 24). Demographics, clinical parameters, and laboratory data were recorded at the disease onset. Neonatal scores for the assessment of disease severity (Modified NEOMOD, nSOFA, and NeoBAT) were also calculated. ROTEM parameters of neonates with SCI were compared to those of healthy neonates. RESULTS ROTEM parameters differed between neonates with SCI and healthy neonates, indicating a hypocoagulable profile of infected neonates. Specifically, neonates with SCI had significantly prolonged clotting time (CT) and clot formation time (CFT), as well as lower clot amplitude at 10 min (A10) and maximum clot firmness (MCF) when compared to healthy neonates (p values < 0.05), findings that remained consistent after adjusting for confounding factors such as gestational age, birth weight, and sex. In addition, a strong correlation was noted between ROTEM parameters and disease severity based on the modified NEOMOD, nSOFA, and NeoBAT scores. CONCLUSIONS ROTEM parameters revealed a hypocoagulable profile in neonates during the early stages of SCI, which is also associated with disease severity. The results of this study highlight the need for monitoring of hemostatic status of this vulnerable group of patients and indicate that ROTEM analysis may have a role in the early detection of the hemostatic derangements associated with SCI in neonates, in order to ensure timely diagnosis and targeted therapeutic intervention.
Collapse
Affiliation(s)
- Rozeta Sokou
- Neonatal Intensive Care Unit, “Agios Panteleimon” General Hospital of Nikea, 18454 Piraeus, Greece; (A.E.P.); (A.K.); (A.L.); (M.L.); (M.T.)
- Neonatal Department, National and Kapodistrian University of Athens, Aretaieio Hospital, 11528 Athens, Greece;
| | - Alexia Eleftheria Palioura
- Neonatal Intensive Care Unit, “Agios Panteleimon” General Hospital of Nikea, 18454 Piraeus, Greece; (A.E.P.); (A.K.); (A.L.); (M.L.); (M.T.)
| | - Aikaterini Konstantinidi
- Neonatal Intensive Care Unit, “Agios Panteleimon” General Hospital of Nikea, 18454 Piraeus, Greece; (A.E.P.); (A.K.); (A.L.); (M.L.); (M.T.)
| | - Alexandra Lianou
- Neonatal Intensive Care Unit, “Agios Panteleimon” General Hospital of Nikea, 18454 Piraeus, Greece; (A.E.P.); (A.K.); (A.L.); (M.L.); (M.T.)
| | - Maria Lampridou
- Neonatal Intensive Care Unit, “Agios Panteleimon” General Hospital of Nikea, 18454 Piraeus, Greece; (A.E.P.); (A.K.); (A.L.); (M.L.); (M.T.)
| | - Martha Theodoraki
- Neonatal Intensive Care Unit, “Agios Panteleimon” General Hospital of Nikea, 18454 Piraeus, Greece; (A.E.P.); (A.K.); (A.L.); (M.L.); (M.T.)
| | - Daniele Piovani
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090 Milan, Italy; (D.P.); (S.B.)
- IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Stefanos Bonovas
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090 Milan, Italy; (D.P.); (S.B.)
- IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Konstantina A. Tsante
- Laboratory of Haematology and Blood Bank Unit, “Attikon” Hospital, National and Kapodistrian University of Athens Medical School, 12462 Athens, Greece;
| | - Petros Ioannou
- Department of Internal Medicine & Infectious Diseases, University General Hospital of Heraklion, 71110 Heraklion, Greece
| | - Nicoletta Iacovidou
- Neonatal Department, National and Kapodistrian University of Athens, Aretaieio Hospital, 11528 Athens, Greece;
| | - Andreas G. Tsantes
- Laboratory of Haematology and Blood Bank Unit, “Attikon” Hospital, National and Kapodistrian University of Athens Medical School, 12462 Athens, Greece;
- Microbiology Department, “Saint Savvas” Oncology Hospital, 11522 Athens, Greece
| |
Collapse
|
6
|
Li Y, Chen K, Wang QF. Immunological face of megakaryocytes. Front Med 2024; 18:988-1001. [PMID: 39542989 DOI: 10.1007/s11684-024-1087-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/17/2024] [Indexed: 11/17/2024]
Abstract
Megakaryocytes (MKs), which are traditionally known for their role in platelet production, are now emerging as unique immune cells with diverse capabilities. They express immune receptors, participate in pathogen recognition and response, phagocytose pathogens, contribute to antigen presentation, and interact with various immune cell types. When encountering inflammatory challenges, MKs exhibit intricate immune functions that can either promote or inhibit inflammation. These responses are mediated through mechanisms, such as the secretion of either anti-inflammatory or pro-inflammatory cytokines and release of immunomodulatory platelets according to specific conditions. This intricate array of responses necessitates a detailed exploration to determine whether the immune functions of MKs are carried out by the entire MK population or by a specific subpopulation. Breakthroughs in single-cell RNA sequencing have uncovered a unique "immune MK" subpopulation, revealing its distinct characteristics and immunoregulatory functions. This review provides latest insights into MKs' immune attributes and their roles in physiological and pathological contexts and emphasizes the discovery and functions of "immune MKs".
Collapse
Affiliation(s)
- Yueying Li
- China National Center for Bioinformation, Beijing, 100101, China.
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100101, China.
| | - Kunying Chen
- China National Center for Bioinformation, Beijing, 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Qian-Fei Wang
- China National Center for Bioinformation, Beijing, 100101, China.
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
7
|
Gao H, Wang B, Yao H, Zhang W, Teng H. Application of blood purification technology in severe fever with thrombocytopenia syndrome. Biotechnol Genet Eng Rev 2024; 40:4943-4952. [PMID: 37249204 DOI: 10.1080/02648725.2023.2219940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/24/2023] [Indexed: 05/31/2023]
Abstract
OBJECTIVE The purpose of this paper is to summarize the blood purification technology applied in patients with severe fever with thrombocytopenia syndrome (SFTS) in the clinical treatment effect. METHODS The medical records of 96 patients with severe SFTS admitted to Weihai Municipal Hospital affiliated to Shandong University from May 2014 to November 2019 were retrospectively analyzed, and they were divided into survival group and death group. The differences in basic data test indexes and treatment method selection during intensive care unit (ICU) admission between the two groups were significantly analyzed, and the indexes with statistically significant differences were included in the multivariate logistic regression analysis related to prognosis. RESULTS There were no statistically significant differences in age, sex composition, white blood cell count, platelet count, creatine kinase (CK), activated partial thromboplastin time (APTT), serum creatinine and hemofiltration renal replacement therapy between the survival group and the death group. There were statistically significant differences between the two groups in viral load bilirubin and the treatment methods of plasma exchange (PE) or hemoperfusion (HP). Plasma exchange group (78 cases), hemofiltration group (12 cases), hemoperfusion group (6 cases), plasma exchange and hemoperfusion and other blood purification treatment of the prognosis were statistically different. CONCLUSIONS Compared with the three blood purification methods, plasmapheresis has a significant effect on virus removal, improvement of coagulation function and survival rate in patients with severe SFTS. Hemofiltration plays a role in removing inflammatory mediators, replacing renal function, maintaining electrolytes and acid-base balance, but not in removing viruses.
Collapse
Affiliation(s)
- Hongxia Gao
- Department of Critical Care Medicine, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai city, Shandong Province, China
| | - Baoyin Wang
- Emergency Department, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai city, Shandong Province, China
| | - Hui Yao
- Department of Critical Care Medicine, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai city, Shandong Province, China
| | - Wenjie Zhang
- Department of Critical Care Medicine, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai city, Shandong Province, China
| | - HaiFeng Teng
- Department of Critical Care Medicine, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai city, Shandong Province, China
| |
Collapse
|
8
|
Wang Z, Zeng Y, Ahmed Z, Qin H, Bhatti IA, Cao H. Calcium‐dependent antimicrobials: Nature‐inspired materials and designs. EXPLORATION (BEIJING, CHINA) 2024; 4:20230099. [PMID: 39439493 PMCID: PMC11491315 DOI: 10.1002/exp.20230099] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/02/2024] [Indexed: 10/25/2024]
Abstract
Bacterial infection remains a major complication answering for the failures of various implantable medical devices. Tremendous extraordinary advances have been published in the design and synthesis of antimicrobial materials addressing this issue; however, the clinical translation has largely been blocked due to the challenge of balancing the efficacy and safety of these materials. Here, calcium's biochemical features, natural roles in pathogens and the immune systems, and advanced uses in infection medications are illuminated, showing calcium is a promising target for developing implantable devices with less infection tendency. The paper gives a historical overview of biomedical uses of calcium and summarizes calcium's merits in coordination, hydration, ionization, and stereochemistry for acting as a structural former or trigger in biological systems. It focuses on the involvement of calcium in pathogens' integrity, motility, and metabolism maintenance, outlining the potential antimicrobial targets for calcium. It addresses calcium's uses in the immune systems that the authors can learn from for antimicrobial synthesis. Additionally, the advances in calcium's uses in infection medications are highlighted to sketch the future directions for developing implantable antimicrobial materials. In conclusion, calcium is at the nexus of antimicrobial defense, and future works on taking advantage of calcium in antimicrobial developments are promising in clinical translation.
Collapse
Affiliation(s)
- Zhong Wang
- Interfacial Electrochemistry and BiomaterialsSchool of Materials Science and EngineeringEast China University of Science and TechnologyShanghaiChina
| | - Yongjie Zeng
- Interfacial Electrochemistry and BiomaterialsSchool of Materials Science and EngineeringEast China University of Science and TechnologyShanghaiChina
| | - Zubair Ahmed
- Interfacial Electrochemistry and BiomaterialsSchool of Materials Science and EngineeringEast China University of Science and TechnologyShanghaiChina
| | - Hui Qin
- Department of OrthopaedicsShanghai Jiaotong University Affiliated Sixth People's HospitalShanghaiChina
| | | | - Huiliang Cao
- Interfacial Electrochemistry and BiomaterialsSchool of Materials Science and EngineeringEast China University of Science and TechnologyShanghaiChina
- Engineering Research Center for Biomedical Materials of Ministry of EducationEast China University of Science and TechnologyShanghaiChina
- Key Laboratory for Ultrafine Materials of Ministry of EducationEast China University of Science & TechnologyShanghaiChina
| |
Collapse
|
9
|
Zhou Y, Wang K, Li R, Lin F, Chen Y, Yang J, Han H, Li T, Jia Y, Yuan K, Zhang H, Li R, Li Z, Li C, Zhao Y, Hao Q, Chen X, Zhao Y. Dynamic changes of platelets before and after surgery predict the prognosis of patients with aneurysmal subarachnoid hemorrhage. Heliyon 2024; 10:e37706. [PMID: 39381250 PMCID: PMC11458939 DOI: 10.1016/j.heliyon.2024.e37706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 09/02/2024] [Accepted: 09/09/2024] [Indexed: 10/10/2024] Open
Abstract
Objective This investigation explored the association between postoperative/preoperative platelet ratio (PPR) and the incidence of unfavorable outcomes within 90 days in individuals with aneurysmal subarachnoid hemorrhage (aSAH). Methods This investigation, utilizing data from 2015 to 2022, concentrated on patients diagnosed with aSAH, categorizing them into four groups based on PPR quartiles. The association between PPR levels and clinical outcomes-comprising in-hospital complications, mortality, and modified Rankin Scale (mRS) scores at discharge and 90 days after that-was evaluated through logistic regression analyses. To explore potential non-linear associations between PPR levels and outcomes, restricted cubic spline (RCS) regression was applied. Further, mediation analysis was performed to elucidate the role of in-hospital complications in modulating the impact of PPR levels on 90-day outcomes. Results This study analyzed data from 948 patients. Upon adjustment for confounding variables, it was observed that patients in the higher quartiles showed reduced incidences of anemia, hypoproteinemia, and pneumonia, alongside a decreased frequency of unfavorable outcomes within a 90-day follow-up period. The RCS analysis indicated a linear association of PPR with pneumonia, hypoproteinemia, and adverse 90-day outcomes (p for nonlinear = 0.61, 0.52, and 0.96, respectively). Moreover, the association of PPR with anemia was found to be nonlinear (p for nonlinear = 0.01). Mediation analysis further indicated that anemia and pneumonia significantly influenced the association between PPR and unfavorable outcomes at 90 days, accounting for 15.49 % and 27.61 % of the effect, respectively. Conclusions This study establishes a significant correlation between decreased PPR levels and 90-day adverse outcomes following aSAH, potentially relating to pneumonia and anemia.
Collapse
Affiliation(s)
- Yunfan Zhou
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ke Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Runting Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Fa Lin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yu Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jun Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Heze Han
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tu Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yitong Jia
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Kexin Yuan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Haibin Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ruinan Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhipeng Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Cunyang Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yahui Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qiang Hao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Stroke Center, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Xiaolin Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Stroke Center, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Yuanli Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Stroke Center, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Department of Neurosurgery, Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
10
|
Pan K, Zhu Y, Chen P, Yang K, Chen Y, Wang Y, Dai Z, Huang Z, Zhong P, Zhao X, Fan S, Ning L, Zhang J, Chen P. Biological functions and biomedical applications of extracellular vesicles derived from blood cells. Free Radic Biol Med 2024; 222:43-61. [PMID: 38848784 DOI: 10.1016/j.freeradbiomed.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/26/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
There is a growing interest in using extracellular vesicles (EVs) for therapeutic applications. EVs are composed of cytoplasmic proteins and nucleic acids and an external lipid bilayer containing transmembrane proteins on their surfaces. EVs can alter the state of the target cells by interacting with the receptor ligand of the target cell or by being internalised by the target cell. Blood cells are the primary source of EVs, and 1 μL of plasma contains approximately 1.5 × 107 EVs. Owing to their easy acquisition and the avoidance of cell amplification in vitro, using blood cells as a source of therapeutic EVs has promising clinical application prospects. This review summarises the characteristics and biological functions of EVs derived from different blood cell types (platelets, erythrocytes, and leukocytes) and analyses the prospects and challenges of using them for clinical therapeutic applications. In summary, blood cell-derived EVs can regulate different cell types such as immune cells (macrophages, T cells, and dendritic cells), stem cells, and somatic cells, and play a role in intercellular communication, immune regulation, and cell proliferation. Overall, blood cell-derived EVs have the potential for use in vascular diseases, inflammatory diseases, degenerative diseases, and injuries. To promote the clinical translation of blood cell-derived EVs, researchers need to perform further studies on EVs in terms of scalable and reproducible isolation technology, quality control, safety, stability and storage, regulatory issues, cost-effectiveness, and long-term efficacy.
Collapse
Affiliation(s)
- Kaifeng Pan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310016, China
| | - Yiwei Zhu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310016, China
| | - Pengyu Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310016, China
| | - Ke Yang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310016, China
| | - Yiyu Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310016, China
| | - Yongcheng Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310016, China
| | - Zhanqiu Dai
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310016, China; Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325088, China
| | - Zhenxiang Huang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310016, China
| | - Peiyu Zhong
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310016, China
| | - Xing Zhao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310016, China.
| | - Shunwu Fan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310016, China.
| | - Lei Ning
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310016, China.
| | - Jianfeng Zhang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310016, China.
| | - Pengfei Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310016, China.
| |
Collapse
|
11
|
Yang Y, Suo D, Xu T, Zhao S, Xu X, Bei HP, Wong KKY, Li Q, Zheng Z, Li B, Zhao X. Sprayable biomimetic double mask with rapid autophasing and hierarchical programming for scarless wound healing. SCIENCE ADVANCES 2024; 10:eado9479. [PMID: 39141725 PMCID: PMC11323895 DOI: 10.1126/sciadv.ado9479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/08/2024] [Indexed: 08/16/2024]
Abstract
Current sprayable hydrogel masks lack the stepwise protection, cleansing, and nourishment of extensive wounds, leading to delayed healing with scarring. Here, we develop a sprayable biomimetic double wound mask (BDM) with rapid autophasing and hierarchical programming for scarless wound healing. The BDMs comprise hydrophobic poly (lactide-co-propylene glycol-co-lactide) dimethacrylate (PLD) as top layer and hydrophilic gelatin methacrylate (GelMA) hydrogel as bottom layer, enabling swift autophasing into bilayered structure. After photocrosslinking, BDMs rapidly solidify with strong interfacial bonding, robust tissue adhesion, and excellent joint adaptiveness. Upon implementation, the bottom GelMA layer could immediately release calcium ion for rapid hemostasis, while the top PLD layer could maintain a moist, breathable, and sterile environment. These traits synergistically suppress the inflammatory tumor necrosis factor-α pathway while coordinating the cyclic guanosine monophosphate/protein kinase G-Wnt/calcium ion signaling pathways to nourish angiogenesis. Collectively, our BDMs with self-regulated construction of bilayered structure could hierarchically program the healing progression with transformative potential for scarless wound healing.
Collapse
Affiliation(s)
- Yuhe Yang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Di Suo
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Tianpeng Xu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Shuai Zhao
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Xiaoxiao Xu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, Guangdong 518057, China
| | - Ho-Pan Bei
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, Guangdong 518057, China
| | - Kenneth Kak-yuen Wong
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Qibin Li
- Research Center for Intelligent Aesthetic Medicine, PolyU-Hangzhou Technology and Innovation Research Institute, Hangzhou, Zhejiang 310016, China
- Hangzhou Industrial Investment Group Co., Ltd., Hangzhou, Zhejiang, 310025, China
| | - Zijian Zheng
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Bin Li
- Medical 3D Printing Center, Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Orthopedic Institute, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Xin Zhao
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, Guangdong 518057, China
- Research Center for Intelligent Aesthetic Medicine, PolyU-Hangzhou Technology and Innovation Research Institute, Hangzhou, Zhejiang 310016, China
- Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| |
Collapse
|
12
|
Shah SS, Stone EF, Francis RO, Karafin MS. The global role of G6PD in infection and immunity. Front Immunol 2024; 15:1393213. [PMID: 38938571 PMCID: PMC11208698 DOI: 10.3389/fimmu.2024.1393213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/24/2024] [Indexed: 06/29/2024] Open
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common enzymopathy in humans. G6PD is an essential enzyme in the pentose phosphate pathway (PPP), generating NADPH needed for cellular biosynthesis and reactive oxygen species (ROS) homeostasis, the latter especially key in red blood cells (RBCs). Beyond the RBC, there is emerging evidence that G6PD exerts an immunologic role by virtue of its functions in leukocyte oxidative metabolism and anabolic synthesis necessary for immune effector function. We review these here, and consider the global immunometabolic role of G6PD activity and G6PD deficiency in modulating inflammation and immunopathology.
Collapse
Affiliation(s)
- Shivang S. Shah
- Department of Pediatrics, Columbia University, New York, NY, United States
| | - Elizabeth F. Stone
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
| | - Richard O. Francis
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
| | - Matthew S. Karafin
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
13
|
Lê-Bury P, Echenique-Rivera H, Pizarro-Cerdá J, Dussurget O. Determinants of bacterial survival and proliferation in blood. FEMS Microbiol Rev 2024; 48:fuae013. [PMID: 38734892 PMCID: PMC11163986 DOI: 10.1093/femsre/fuae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/29/2024] [Accepted: 05/10/2024] [Indexed: 05/13/2024] Open
Abstract
Bloodstream infection is a major public health concern associated with high mortality and high healthcare costs worldwide. Bacteremia can trigger fatal sepsis whose prevention, diagnosis, and management have been recognized as a global health priority by the World Health Organization. Additionally, infection control is increasingly threatened by antimicrobial resistance, which is the focus of global action plans in the framework of a One Health response. In-depth knowledge of the infection process is needed to develop efficient preventive and therapeutic measures. The pathogenesis of bloodstream infection is a dynamic process resulting from the invasion of the vascular system by bacteria, which finely regulate their metabolic pathways and virulence factors to overcome the blood immune defenses and proliferate. In this review, we highlight our current understanding of determinants of bacterial survival and proliferation in the bloodstream and discuss their interactions with the molecular and cellular components of blood.
Collapse
Affiliation(s)
- Pierre Lê-Bury
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Yersinia Research Unit, 28 rue du Dr Roux, 75015 Paris, France
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Autoimmune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), 18 route du Panorama, 92260 Fontenay-aux-Roses, France
| | - Hebert Echenique-Rivera
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Yersinia Research Unit, 28 rue du Dr Roux, 75015 Paris, France
| | - Javier Pizarro-Cerdá
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Yersinia Research Unit, 28 rue du Dr Roux, 75015 Paris, France
- Institut Pasteur, Université Paris Cité, Yersinia National Reference Laboratory, WHO Collaborating Research & Reference Centre for Plague FRA-146, 28 rue du Dr Roux, 75015 Paris, France
| | - Olivier Dussurget
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Yersinia Research Unit, 28 rue du Dr Roux, 75015 Paris, France
| |
Collapse
|
14
|
Mohamed Hassan AS, Abo Gaziah SSA, Ezzelregal Awad HG, Hegab Abdelhady SM, Talaat Elkhafif NA, Hassan Mostafa NB. "Ultrastructural changes of platelets in COVID-19 and chronic viral hepatitis patients ". Ultrastruct Pathol 2024; 48:234-245. [PMID: 38619195 DOI: 10.1080/01913123.2024.2342437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
Platelet-viral interactions are evolving as a new concern. Coagulation disorder is a major consequence of the COVID-19 infection. In chronic hepatitis virus infections, defect in coagulation factors, thrombocytopenia and platelet function abnormalities are common. A SARS-CoV-2 infection on top of chronic viral hepatitis infection can be common in areas where viral hepatitis is endemic. Here, we investigate the platelet ultrastructural changes and estimate the serum platelet factor-4 (PF-4), ferritin, CRP, and D-dimer in COVID-19 patients (n = 60), COVID-19 patients with associated chronic viral hepatitis (n = 20), and healthy subjects (n = 20). Ultrastructural changes were demonstrated in all test groups, denoting platelet activation. In chronic viral hepatitis patients, Platelet ultrastrustural apoptotic changes were also seen. Significantly high levels of PF-4 were confirmed in moderate and severe COVID-19 patients (P.value <0.001), with a cut off value of 17 ng/ml for predicting disease severity. A positive correlation of PF-4 with the level of serum ferritin, CRP, and D-dimer (p value < 0.001) was noted, while negatively correlated with platelet count and platelet granule count (p value < 0.001). In our study, chronic viral hepatitis patients presented mild COVID-19 signs, and their PF-4 level was comparable with the subgroup of mild COVID-19 infection. The platelet's critical role in COVID-19 coagulopathy and chronic viral hepatitis is evidenced by the ultrastructural changes and the high levels of PF4. Moreover, a dual viral infection poses a substantial burden on the platelets, necessitating close monitoring of the patient's coagulation profile.
Collapse
|
15
|
Wu M, Shi Y, Zhao J, Kong M. Engineering unactivated platelets for targeted drug delivery. Biomater Sci 2024; 12:2244-2258. [PMID: 38482903 DOI: 10.1039/d4bm00029c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
As a vital component of blood, platelets play crucial roles in hemostasis and maintaining vascular integrity, and actively participate in inflammation and immune regulation. The unique biological properties of natural platelets have enabled their utilization as drug delivery vehicles. The advancement and integration of various techniques, including biological, chemical, and physicochemical methods, have enabled the preparation of engineered platelets. Platelets can serve as drug delivery platforms combined with immunotherapy and chemokine therapy to enhance their therapeutic impact. This review focuses on the recent advancements in the application of unactivated platelets for drug delivery. The construction strategies of engineered platelets are comprehensively summarized, encompassing internal loading, surface modification, and genetic engineering techniques. Engineered platelets hold vast potential for treating cardiovascular diseases, cancers, and infectious diseases. Furthermore, the challenges and potential considerations in creating engineered platelets with natural activity are discussed.
Collapse
Affiliation(s)
- Meng Wu
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong Province, 266003, China.
| | - Yan Shi
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong Province, 266003, China.
| | - Jiaxuan Zhao
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong Province, 266003, China.
| | - Ming Kong
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong Province, 266003, China.
| |
Collapse
|
16
|
Karakas D, Ni H. Unveiling Platelets as Immune Regulatory Cells. Circ Res 2024; 134:987-989. [PMID: 38603477 DOI: 10.1161/circresaha.124.324167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Affiliation(s)
- Danielle Karakas
- Toronto Platelet Immunobiology Group (D.K., H.N.)
- Department of Laboratory Medicine and Pathobiology (D.K., H.N.)
- University of Toronto, ON, Canada (D.K., H.N.)
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Canada (D.K., H.N.)
| | - Heyu Ni
- Toronto Platelet Immunobiology Group (D.K., H.N.)
- Department of Laboratory Medicine and Pathobiology (D.K., H.N.)
- Department of Medicine (H.N.)
- Department of Physiology (H.N.)
- University of Toronto, ON, Canada (D.K., H.N.)
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Canada (D.K., H.N.)
- Canadian Blood Services Centre for Innovation, Toronto, ON, Canada (H.N.)
| |
Collapse
|
17
|
Tenfen L, Simon Machado R, Mathias K, Piacentini N, Joaquim L, Bonfante S, Danielski LG, Engel NA, da Silva MR, Rezin GT, de Quadros RW, Gava FF, Petronilho F. Short-term hyperoxia induced mitochondrial respiratory chain complexes dysfunction and oxidative stress in lung of rats. Inhal Toxicol 2024; 36:174-188. [PMID: 38449063 DOI: 10.1080/08958378.2024.2322497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 02/18/2024] [Indexed: 03/08/2024]
Abstract
BACKGROUND Oxygen therapy is an alternative for many patients with hypoxemia. However, this practice can be dangerous as oxygen is closely associated with the development of oxidative stress. METHODS Male Wistar rats were exposed to hyperoxia with a 40% fraction of inspired oxygen (FIO2) and hyperoxia (FIO2 = 60%) for 120 min. Blood and lung tissue samples were collected for gas, oxidative stress, and inflammatory analyses. RESULTS Hyperoxia (FIO2 = 60%) increased PaCO2 and PaO2, decreased blood pH and caused thrombocytopenia and lymphocytosis. In lung tissue, neutrophil infiltration, nitric oxide concentration, carbonyl protein formation and the activity of complexes I and II of the mitochondrial respiratory chain increased. FIO2 = 60% decreased SOD activity and caused several histologic changes. CONCLUSION In conclusion, we have experimentally demonstrated that short-term exposure to high FIO2 can cause oxidative stress in the lung.
Collapse
Affiliation(s)
- Leonardo Tenfen
- Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, Brazil
| | - Richard Simon Machado
- Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, Brazil
| | - Khiany Mathias
- Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, Brazil
| | - Natalia Piacentini
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Larissa Joaquim
- Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, Brazil
| | - Sandra Bonfante
- Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, Brazil
| | - Lucineia Gainski Danielski
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Nicole Alessandra Engel
- Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, Brazil
| | - Mariella Reinol da Silva
- Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, Brazil
| | - Gislaine Tezza Rezin
- Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, Brazil
| | | | - Fernanda Frederico Gava
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Fabricia Petronilho
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| |
Collapse
|
18
|
Amoafo EB, Entsie P, Kang Y, Canobbio I, Liverani E. Platelet P2Y 12 signalling pathway in the dysregulated immune response during sepsis. Br J Pharmacol 2024; 181:532-546. [PMID: 37525937 PMCID: PMC10830899 DOI: 10.1111/bph.16207] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 07/04/2023] [Accepted: 07/19/2023] [Indexed: 08/02/2023] Open
Abstract
Sepsis is a complicated pathological condition in response to severe infection. It is characterized by a strong systemic inflammatory response, where multiple components of the immune system are involved. Currently, there is no treatment for sepsis. Blood platelets are known for their role in haemostasis, but they also participate in inflammation through cell-cell interaction and the secretion of inflammatory mediators. Interestingly, an increase in platelet activation, secretion, and aggregation with other immune cells (such as monocytes, T-lymphocytes and neutrophils) has been detected in septic patients. Therefore, antiplatelet therapy in terms of P2Y12 antagonists has been evaluated as a possible treatment for sepis. It was found that blocking P2Y12 receptors decreased platelet marker expression and limited attachment to immune cells in some studies, but not in others. This review addresses the role of platelets in sepsis and discusses whether antagonizing P2Y12 signalling pathways can alter the disease outcome. Challenges in studying P2Y12 antagonists in sepsis also are discussed. LINKED ARTICLES: This article is part of a themed issue on Platelet purinergic receptor and non-thrombotic disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.4/issuetoc.
Collapse
Affiliation(s)
- Emmanuel Boadi Amoafo
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND, USA
| | - Philomena Entsie
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND, USA
| | - Ying Kang
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND, USA
| | - Ilaria Canobbio
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Elisabetta Liverani
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND, USA
| |
Collapse
|
19
|
Pan D, Ladds G, Rahman KM, Pitchford SC. Exploring bias in platelet P2Y 1 signalling: Host defence versus haemostasis. Br J Pharmacol 2024; 181:580-592. [PMID: 37442808 PMCID: PMC10952580 DOI: 10.1111/bph.16191] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/21/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Platelets are necessary for maintaining haemostasis. Separately, platelets are important for the propagation of inflammation during the host immune response against infection. The activation of platelets also causes inappropriate inflammation in various disease pathologies, often in the absence of changes to haemostasis. The separate functions of platelets during inflammation compared with haemostasis are therefore varied and this will be reflected in distinct pathways of activation. The activation of platelets by the nucleotide adenosine diphosphate (ADP) acting on P2Y1 and P2Y12 receptors is important for the development of platelet thrombi during haemostasis. However, P2Y1 stimulation of platelets is also important during the inflammatory response and paradoxically in scenarios where no changes to haemostasis and platelet aggregation occur. In these events, Rho-GTPase signalling, rather than the canonical phospholipase Cβ (PLCβ) signalling pathway, is necessary. We describe our current understanding of these differences, reflecting on recent advances in knowledge of P2Y1 structure, and the possibility of biased agonism occurring from activation via other endogenous nucleotides compared with ADP. Knowledge arising from these different pathways of P2Y1 stimulation of platelets during inflammation compared with haemostasis may help therapeutic control of platelet function during inflammation or infection, while preserving essential haemostasis. LINKED ARTICLES: This article is part of a themed issue on Platelet purinergic receptor and non-thrombotic disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.4/issuetoc.
Collapse
Affiliation(s)
- Dingxin Pan
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical ScienceKing's College LondonLondonUK
| | - Graham Ladds
- Department of PharmacologyUniversity of CambridgeCambridgeUK
| | - Khondaker Miraz Rahman
- Chemical Biology Group, Institute of Pharmaceutical ScienceKing's College LondonLondonUK
| | - Simon C. Pitchford
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical ScienceKing's College LondonLondonUK
| |
Collapse
|
20
|
Camoin-Jau L, Habib G. Should We Give Antithrombotic Therapy to Patients With Infective Endocarditis?: A Serious Question, But Unresolved. JACC. ADVANCES 2024; 3:100766. [PMID: 38939378 PMCID: PMC11198370 DOI: 10.1016/j.jacadv.2023.100766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Affiliation(s)
- Laurence Camoin-Jau
- Microbes Evolution Phylogeny and Infection (MEPHI) Laboratory, Institut de Recherche Pour le Développement (IRD), Assistance Publique Hôpitaux de Marseille (APHM), Institut Hospitalo-Universitaire (IHU)-Méditerranée Infection, Aix-Marseille University, Marseille, France
- IHU Méditerranée Infection, Marseille, France
- Haematology Laboratory, Hôpital de la Timone, APHM, Marseille, France
| | - Gilbert Habib
- Microbes Evolution Phylogeny and Infection (MEPHI) Laboratory, Institut de Recherche Pour le Développement (IRD), Assistance Publique Hôpitaux de Marseille (APHM), Institut Hospitalo-Universitaire (IHU)-Méditerranée Infection, Aix-Marseille University, Marseille, France
- Cardiology Department, La Timone Hospital, Marseille, France
| |
Collapse
|
21
|
Pitchford SC, Pan D. Platelet purinergic receptors and non-thrombotic diseases. Br J Pharmacol 2024; 181:513-514. [PMID: 38093587 DOI: 10.1111/bph.16290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024] Open
Abstract
LINKED ARTICLES This article is part of a themed issue on Platelet purinergic receptor and non-thrombotic disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.4/issuetoc.
Collapse
Affiliation(s)
- Simon C Pitchford
- Pulmonary Pharmacology Unit, Institute of Pharmaceutical Science, King's College London, London, UK
| | - Dingxin Pan
- Pulmonary Pharmacology Unit, Institute of Pharmaceutical Science, King's College London, London, UK
| |
Collapse
|
22
|
Portier I, Andrianova I, Campbell RA. Finding a fountain of youth in the blood. J Thromb Haemost 2024; 22:311-314. [PMID: 37940049 PMCID: PMC10872896 DOI: 10.1016/j.jtha.2023.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/10/2023]
Affiliation(s)
- Irina Portier
- University of Utah Molecular Medicine Program, Salt Lake City, Utah, USA
| | | | - Robert A Campbell
- University of Utah Molecular Medicine Program, Salt Lake City, Utah, USA; Division of Microbiology and Pathology, Department of Pathology, University of Utah, Salt Lake City, Utah, USA; Division of Hematology and Hematologic Malignancies, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA.
| |
Collapse
|
23
|
Schrottmaier WC, Schmuckenschlager A, Thunberg T, Wigren-Byström J, Fors-Connolly AM, Assinger A, Ahlm C, Forsell MNE. Direct and indirect effects of Puumala hantavirus on platelet function. Thromb Res 2024; 233:41-54. [PMID: 38006765 DOI: 10.1016/j.thromres.2023.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/27/2023] [Accepted: 11/15/2023] [Indexed: 11/27/2023]
Abstract
Thrombocytopenia is a cardinal symptom of hantavirus-induced diseases including Puumala virus (PUUV)-induced hemorrhagic fever with renal syndrome (HFRS), which is associated with impaired platelet function, bleeding manifestations and augmented thrombotic risk. However, the underlying mechanisms causing thrombocytopenia and platelet hypo-responsiveness are unknown. Thus, we investigated the direct and indirect impact of PUUV on platelet production, function and degradation. Analysis of PUUV-HFRS patient blood revealed that platelet hypo-responsiveness in PUUV infection was cell-intrinsic and accompanied by reduced platelet-leukocyte aggregates (PLAs) and upregulation of monocyte tissue factor (TF), whereas platelet vasodilator-stimulated phosphoprotein (VASP) phosphorylation was comparable to healthy controls. Plasma CXCL4 levels followed platelet count dynamics throughout disease course. PUUV activated both neutrophils and monocytes in vitro, but platelet desialylation, degranulation and GPIIb/IIIa activation as well as PLA formation and endothelial adhesion under flow remained unaltered in the presence of PUUV. Further, MEG-01 megakaryocytes infected with PUUV displayed unaltered polyploidization, expression of surface receptors and platelet production. However, infection of endothelial cells with PUUV significantly increased platelet sequestration. Our data thus demonstrate that although platelet production, activation or degradation are not directly modulated, PUUV indirectly fosters thrombocytopenia by sequestration of platelets to infected endothelium. Upregulation of immunothrombotic processes in PUUV-HFRS may further contribute to platelet dysfunction and consumption. Given the pathophysiologic similarities of hantavirus infections, our findings thus provide important insights into the mechanisms underlying thrombocytopenia and highlight immune-mediated coagulopathy as potential therapeutic target.
Collapse
Affiliation(s)
- Waltraud C Schrottmaier
- Institute of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria; Department of Clinical Microbiology, Umeå University, Umeå, Sweden.
| | - Anna Schmuckenschlager
- Institute of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Therese Thunberg
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | | | | | - Alice Assinger
- Institute of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Clas Ahlm
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | | |
Collapse
|
24
|
Warin R, Vongchan P, Suriyasathaporn W, Hall DC, Boripun R, Suriyasathaporn W. In Vitro Antimicrobial Properties and Their Mechanisms in Relation to Reactive Oxygen Species of Canine Platelet-Rich Fibrin. Animals (Basel) 2023; 13:3786. [PMID: 38136823 PMCID: PMC10740687 DOI: 10.3390/ani13243786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/24/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Platelet-rich fibrin (PRF), which has been shown to promote wound and bone regeneration, has demonstrated antimicrobial properties against periodontal pathogens. However, in veterinary medicine, no study has determined the antimicrobial effects of canine platelet-rich fibrin (cPRF). Therefore, this study aimed to determine the antimicrobial effect of cPRF against E. coli and S. pseudintermedius found in dogs' wounds and against the standard strain S. aureus. Additionally, the mechanism of the existing antibacterial activity of cPRF, which involves the formation of reactive oxygen species (ROS), was tested. Blood samples from six dogs were processed for cPRF. The antimicrobial properties of three groups (growth control, cPRF, and drug control) were evaluated at 0.5, 4, 8, and 24 h using a time-kill assay. The killing mechanisms involving ROS were evaluated using horseradish peroxidase (HRP) to suppress ROS production in PRF (PRF-SR). Subsequently, tests for antimicrobial properties and ROS generation were compared to those of the growth control and cPRF groups. The results showed that cPRF had significant antimicrobial properties against E. coli but no antimicrobial properties against S. pseudintermedius. After the ROS suppression, PRF-SR did not show an antimicrobial property against E. coli. Moreover, cPRF-treated bacteria exhibited significantly greater intracellular ROS than PRF-SR. In conclusion, canine PRF showed an antimicrobial effect against E. coli, and its antibacterial mechanism was related to releasing ROS.
Collapse
Affiliation(s)
- Ravisa Warin
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; (R.W.); (W.S.)
| | - Preeyanat Vongchan
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Witaya Suriyasathaporn
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; (R.W.); (W.S.)
- Research Center of Producing and Development of Products and Innovations for Animal Health and Production, Chiang Mai University, Chiang Mai 50100, Thailand
- Asian Satellite Campuses Institute, Cambodian Campus, Nagoya University, Nagoya 464-8601, Japan
| | - David C. Hall
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4Z1, Canada;
| | - Ratchadaporn Boripun
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand;
| | - Wanna Suriyasathaporn
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; (R.W.); (W.S.)
- Research Center of Producing and Development of Products and Innovations for Animal Health and Production, Chiang Mai University, Chiang Mai 50100, Thailand
| |
Collapse
|
25
|
Cl K, Jeyaraman M, Jeyaraman N, Ramasubramanian S, Khanna M, Yadav S. Antimicrobial Effects of Platelet-Rich Plasma and Platelet-Rich Fibrin: A Scoping Review. Cureus 2023; 15:e51360. [PMID: 38292974 PMCID: PMC10825076 DOI: 10.7759/cureus.51360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2023] [Indexed: 02/01/2024] Open
Abstract
Platelet-rich plasma (PRP), derived from the centrifugation and subsequent separation of whole blood, results in an unusually high concentration of platelets. A newer form of platelet concentrate, platelet-rich fibrin (PRF), has also been developed. There has been significant research into the therapeutic effects of PRP, particularly in enhancing wound healing and preventing infections in surgical wounds. This scoping review aims to thoroughly evaluate preclinical and clinical evidence regarding the antimicrobial effects of PRP and PRF. In conducting this review, 612 records were examined, and 36 articles were selected for inclusion. The studies reviewed include preclinical research, such as in-vitro and in-vivo studies, and clinical trials involving human participants. The current clinical evidence suggests a notable trend towards the antimicrobial capabilities of PRP and PRF, underscoring their potential benefits in treating wounds. The application of PRP and PRF in wound management shows encouraging outcomes, but further investigation is needed to optimize their use as antimicrobial agents. Additional research, particularly randomized controlled trials, is essential to substantiate their antimicrobial effectiveness in specific diseases and types of wounds, considering their potential impact on clinical results.
Collapse
Affiliation(s)
- Karan Cl
- Orthopaedics, Sanjay Gandhi Institute of Trauma & Orthopaedics, Bengaluru, IND
| | - Madhan Jeyaraman
- Orthopaedics, ACS Medical College and Hospital, Dr. MGR Educational and Research Institute, Chennai, IND
| | - Naveen Jeyaraman
- Orthopaedics, ACS Medical College and Hospital, Dr. MGR Educational and Research Institute, Chennai, IND
| | | | - Manish Khanna
- Orthopaedics, Autonomous State Medical College, Ayodhya, IND
| | - Sankalp Yadav
- Internal Medicine, Shri Madan Lal Khurana Chest Clinic, New Delhi, IND
| |
Collapse
|
26
|
Alfano DN, Miller MJ, Bubeck Wardenburg J. Endothelial ADAM10 utilization defines a molecular pathway of vascular injury in mice with bacterial sepsis. J Clin Invest 2023; 133:e168450. [PMID: 37788087 PMCID: PMC10688991 DOI: 10.1172/jci168450] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 09/28/2023] [Indexed: 10/05/2023] Open
Abstract
The endothelium plays a critical role in the host response to infection and has been a focus of investigation in sepsis. While it is appreciated that intravascular thrombus formation, severe inflammation, and loss of endothelial integrity impair tissue oxygenation during sepsis, the precise molecular mechanisms that lead to endothelial injury remain poorly understood. We demonstrate here that endothelial ADAM10 was essential for the pathogenesis of Staphylococcus aureus sepsis, contributing to α-toxin-mediated (Hla-mediated) microvascular thrombus formation and lethality. As ADAM10 is essential for endothelial development and homeostasis, we examined whether other major human sepsis pathogens also rely on ADAM10-dependent pathways in pathogenesis. Mice harboring an endothelium-specific knockout of ADAM10 were protected against lethal Pseudomonas aeruginosa and Streptococcus pneumoniae sepsis, yet remained fully susceptible to group B streptococci and Candida albicans sepsis. These studies illustrate a previously unknown role for ADAM10 in sepsis-associated endothelial injury and suggest that understanding pathogen-specific divergent host pathways in sepsis may enable more precise targeting of disease.
Collapse
Affiliation(s)
| | - Mark J. Miller
- Division of Infectious Diseases, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | | |
Collapse
|
27
|
Grabowska J, Léopold V, Olesek K, Nijen Twilhaar MK, Affandi AJ, Brouwer MC, Jongerius I, Verschoor A, van Kooten C, van Kooyk Y, Storm G, van ‘t Veer C, den Haan JMM. Platelets interact with CD169 + macrophages and cDC1 and enhance liposome-induced CD8 + T cell responses. Front Immunol 2023; 14:1290272. [PMID: 38054006 PMCID: PMC10694434 DOI: 10.3389/fimmu.2023.1290272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/03/2023] [Indexed: 12/07/2023] Open
Abstract
Historically platelets are mostly known for their crucial contribution to hemostasis, but there is growing understanding of their role in inflammation and immunity. The immunomodulatory role of platelets entails interaction with pathogens, but also with immune cells including macrophages and dendritic cells (DCs), to activate adaptive immune responses. In our previous work, we have demonstrated that splenic CD169+ macrophages scavenge liposomes and collaborate with conventional type 1 DCs (cDC1) to induce expansion of CD8+ T cells. Here, we show that platelets associate with liposomes and bind to DNGR-1/Clec9a and CD169/Siglec-1 receptors in vitro. In addition, platelets interacted with splenic CD169+ macrophages and cDC1 and further increased liposome internalization by cDC1. Most importantly, platelet depletion prior to liposomal immunization resulted in significantly diminished antigen-specific CD8+ T cell responses, but not germinal center B cell responses. Previously, complement C3 was shown to be essential for platelet-mediated CD8+ T cell activation during bacterial infection. However, after liposomal vaccination CD8+ T cell priming was not dependent on complement C3. While DCs from platelet-deficient mice exhibited unaltered maturation status, they did express lower levels of CCR7. In addition, in the absence of platelets, CCL5 plasma levels were significantly reduced. Overall, our findings demonstrate that platelets engage in a cross-talk with CD169+ macrophages and cDC1 and emphasize the importance of platelets in induction of CD8+ T cell responses in the context of liposomal vaccination.
Collapse
Affiliation(s)
- Joanna Grabowska
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Biology and Immunology Program, Cancer Center Amsterdam, Amsterdam, Netherlands
- Cancer Immunology Program, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Valentine Léopold
- Center of Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Department of Anesthesiology and Critical Care, Paris University, Lariboisière Hospital, Paris, France
- Inserm UMR-S 942, Cardiovascular Markers in Stress Conditions (MASCOT), University of Paris, Paris, France
| | - Katarzyna Olesek
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Biology and Immunology Program, Cancer Center Amsterdam, Amsterdam, Netherlands
- Cancer Immunology Program, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Maarten K. Nijen Twilhaar
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Biology and Immunology Program, Cancer Center Amsterdam, Amsterdam, Netherlands
- Cancer Immunology Program, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Alsya J. Affandi
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Biology and Immunology Program, Cancer Center Amsterdam, Amsterdam, Netherlands
- Cancer Immunology Program, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Mieke C. Brouwer
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Centre, Amsterdam Infection and Immunity Institute, Amsterdam, Netherlands
| | - Ilse Jongerius
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Centre, Amsterdam Infection and Immunity Institute, Amsterdam, Netherlands
| | - Admar Verschoor
- Department of Dermatology, University of Lübeck, Lübeck, Germany
- Department of Otorhinolaryngology, Technische Universität München and Klinikum Rechts der Isar, Munich, Germany
| | - Cees van Kooten
- Department of Medicine, Division of Nephrology and Transplant Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Yvette van Kooyk
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Biology and Immunology Program, Cancer Center Amsterdam, Amsterdam, Netherlands
- Cancer Immunology Program, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Gert Storm
- Department of Pharmaceutics, Faculty of Science, Utrecht University, Utrecht, Netherlands
- Department of Biomaterials, Science and Technology, Faculty of Science and Technology, University of Twente, Enschede, Netherlands
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Cornelis van ‘t Veer
- Center of Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Joke M. M. den Haan
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Biology and Immunology Program, Cancer Center Amsterdam, Amsterdam, Netherlands
- Cancer Immunology Program, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| |
Collapse
|
28
|
Zhang Y, Li H, Wang W, Shan L, Hao D. Assistive diagnostic indicators for infections related to lumbar posterior interbody fusion internal fixation: platelet count and mean platelet volume. J Orthop Surg Res 2023; 18:883. [PMID: 37986002 PMCID: PMC10658883 DOI: 10.1186/s13018-023-04358-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/08/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND The most severe complication after posterior single-segment lumbar interbody fusion and internal fixation (PIFIF) surgery for degenerative lumbar diseases is deep surgical site infection (DSSI). Preoperatively diagnosing such complications proves to be challenging. Platelets, as acute-phase reactants, undergo changes in response to infections and inflammation. This study aims to assess whether platelet indices can further aid in the diagnosis of DSSI. METHODS A single-center retrospective study was conducted from January 2016 to February 2021 at Xi'an Jiaotong University-Affiliated Honghui Hospital, involving 83 patients who underwent revision surgery after PIFIF due to lumbar degenerative diseases. Among them, 24 patients were diagnosed with DSSI based on combined bacterial culture and imaging data. Preoperative complete serological indicators including erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), and platelet count and mean platelet volume ratio (P/M ratio) were analyzed using receiver operating characteristic (ROC) curve analysis to determine cutoff values, sensitivity, and specificity. This was done to further assess the ability of these serological indicators to identify the occurrence of DSSI after PIFIF. RESULTS There were no significant differences in baseline demographic characteristics between the two patient groups (P > 0.05). The P/M ratio was 13.54 ± 5.05 in the aseptic revision group, while it was 19.21 ± 6.30 in the DSSI revision patients, showing a significant difference (P < 0.001). ROC curve analysis revealed that the optimal cutoff value for the P/M ratio was 17.50, with a sensitivity of 58.3% and a specificity of 78.6%. The areas under the curve (AUC) for ESR, CRP, and P/M ratio were 0.797, 0.845, and 0.756, respectively. The negative predictive value (NPV) was 87.04%, 89.47%, and 82.45%, respectively; the positive predictive value (PPV) was 58.62%, 69.23%, and 53.84%, respectively, for ESR, CRP, and P/M ratio, respectively. When P/M ratio is used in combination with ESR and CRP, the AUC is 0.887, with a sensitivity of 95.4%, specificity of 67.8%, NPV of 97.56%, PPV of 54.76%. The diagnostic performance of the model for evaluating DSSI is significantly improved compared to using ESR and CRP alone (P < 0.05). CONCLUSION Platelets and their related serum biomarkers are closely associated with DSSI. The P/M ratio can serve as a reliable test for screening DSSI and is worth considering for inclusion in the assessment of patients at risk of developing DSSI after potential PIFIF surgery.
Collapse
Affiliation(s)
- Yadong Zhang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
- Graduate School, Xi'an Medical University, Xi'an, 710068, Shaanxi, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, 710054, Shaanxi, China
| | - Houkun Li
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, 710054, Shaanxi, China
| | - Wentao Wang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Lequn Shan
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Dingjun Hao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China.
| |
Collapse
|
29
|
Nurden AT. Molecular basis of clot retraction and its role in wound healing. Thromb Res 2023; 231:159-169. [PMID: 36008192 DOI: 10.1016/j.thromres.2022.08.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/30/2022]
Abstract
Clot retraction is important for the prevention of bleeding, in the manifestations of thrombosis and for tissue repair. The molecular mechanisms behind clot formation are complex. Platelet involvement begins with adhesion at sites of vessel injury followed by platelet aggregation, thrombin generation and fibrin production. Other blood cells incorporate into a fibrin mesh that is consolidated by FXIIIa-mediated crosslinking and platelet contractile activity. The latter results in the asymmetric redistribution of erythrocytes into a tighter central mass providing the clot with stability and resistance to fibrinolysis. Integrin αIIbβ3 on platelets is the key player in these events, bridging fibrin and the platelet cytoskeleton. Glycoprotein VI participates in thrombus formation but not in the retraction. Rheological and environmental factors influence clot construction with retraction driven by the platelet cytoskeleton with actomyosin acting as the motor. Activated platelets provide procoagulant activity stimulating thrombin generation together with the release of a plethora of biologically active proteins and substances from storage pools; many form chemotactic gradients within the fibrin or the underlying matrix. Also released are newly synthesized metabolites and lipid-rich vesicles that circulate within the vasculature and mimic platelet functions. Platelets and their released elements play key roles in wound healing. This includes promoting stem cell and mesenchymal stromal cell recruitment, fibroblast and endothelial cell migration, angiogenesis and matrix formation. These properties have led to the use of autologous clots in therapies designed to accelerate tissue repair while offering the potential for genetic manipulation in both inherited and acquired diseases.
Collapse
Affiliation(s)
- Alan T Nurden
- Institut Hospitalo-Universitaire LIRYC, Pessac, France.
| |
Collapse
|
30
|
Carestia A, Godin LC, Jenne CN. Step up to the platelet: Role of platelets in inflammation and infection. Thromb Res 2023; 231:182-194. [PMID: 36307228 DOI: 10.1016/j.thromres.2022.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 11/18/2022]
Abstract
Platelets are anucleated cells derived from megakaryocytes that are primarily responsible for hemostasis. However, in recent years, these cytoplasts have become increasingly recognized as immune cells, able to detect, interact with, and kill pathogens. As platelets are involved in both immunity and coagulation, they have a central role in immunothrombosis, a physiological process in which immune cells induce the formation of microthrombi to both prevent the spread of pathogens, and to help facilitate clearance. In this review, we will highlight the role of platelets as key players in the inflammatory and innate immune response against bacterial and viral infection, including direct and indirect interactions with pathogens and other immune cells.
Collapse
Affiliation(s)
- Agostina Carestia
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Canada.
| | - Laura C Godin
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Canada.
| | - Craig N Jenne
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Canada.
| |
Collapse
|
31
|
Garcia C, Compagnon B, Ribes A, Voisin S, Vardon-Bounes F, Payrastre B. SARS-CoV-2 Omicron variant infection affects blood platelets, a comparative analysis with Delta variant. Front Immunol 2023; 14:1231576. [PMID: 37828997 PMCID: PMC10565689 DOI: 10.3389/fimmu.2023.1231576] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/08/2023] [Indexed: 10/14/2023] Open
Abstract
Introduction In November 2021, the SARS-CoV-2 Omicron variant of concern has emerged and is currently dominating the COVID-19 pandemic over the world. Omicron displays a number of mutations, particularly in the spike protein, leading to specific characteristics including a higher potential for transmission. Although Omicron has caused a significant number of deaths worldwide, it generally induces less severe clinical signs compared to earlier variants. As its impact on blood platelets remains unknown, we investigated platelet behavior in severe patients infected with Omicron in comparison to Delta. Methods Clinical and biological characteristics of severe COVID-19 patients infected with the Omicron (n=9) or Delta (n=11) variants were analyzed. Using complementary methods such as flow cytometry, confocal imaging and electron microscopy, we examined platelet activation, responsiveness and phenotype, presence of virus in platelets and induction of selective autophagy. We also explored the direct effect of spike proteins from the Omicron or Delta variants on healthy platelet signaling. Results Severe Omicron variant infection resulted in platelet activation and partial desensitization, presence of the virus in platelets and selective autophagy response. The intraplatelet processing of Omicron viral cargo was different from Delta as evidenced by the distribution of spike protein-positive structures near the plasma membrane and the colocalization of spike and Rab7. Moreover, spike proteins from the Omicron or Delta variants alone activated signaling pathways in healthy platelets including phosphorylation of AKT, p38MAPK, LIMK and SPL76 with different kinetics. Discussion Although SARS-CoV-2 Omicron has different biological characteristics compared to prior variants, it leads to platelet activation and desensitization as previously observed with the Delta variant. Omicron is also found in platelets from severe patients where it induces selective autophagy, but the mechanisms of intraplatelet processing of Omicron cargo, as part of the innate response, differs from Delta, suggesting that mutations on spike protein modify virus to platelet interactions.
Collapse
Affiliation(s)
- Cédric Garcia
- Inserm UMR1297 and Université Toulouse 3, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, France
- Centre Hospitalier Universitaire de Toulouse, Laboratoire d’Hématologie, Toulouse, France
| | - Baptiste Compagnon
- Inserm UMR1297 and Université Toulouse 3, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, France
- Centre Hospitalier Universitaire de Toulouse, Pôle Anesthésie-Réanimation, Toulouse, France
| | - Agnès Ribes
- Inserm UMR1297 and Université Toulouse 3, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, France
- Centre Hospitalier Universitaire de Toulouse, Laboratoire d’Hématologie, Toulouse, France
| | - Sophie Voisin
- Inserm UMR1297 and Université Toulouse 3, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, France
- Centre Hospitalier Universitaire de Toulouse, Laboratoire d’Hématologie, Toulouse, France
| | - Fanny Vardon-Bounes
- Inserm UMR1297 and Université Toulouse 3, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, France
- Centre Hospitalier Universitaire de Toulouse, Pôle Anesthésie-Réanimation, Toulouse, France
| | - Bernard Payrastre
- Inserm UMR1297 and Université Toulouse 3, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, France
- Centre Hospitalier Universitaire de Toulouse, Laboratoire d’Hématologie, Toulouse, France
| |
Collapse
|
32
|
Zhao J, Xu X, Gao Y, Yu Y, Li C. Crosstalk between Platelets and SARS-CoV-2: Implications in Thrombo-Inflammatory Complications in COVID-19. Int J Mol Sci 2023; 24:14133. [PMID: 37762435 PMCID: PMC10531760 DOI: 10.3390/ijms241814133] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/14/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
The SARS-CoV-2 virus, causing the devastating COVID-19 pandemic, has been reported to affect platelets and cause increased thrombotic events, hinting at the possible bidirectional interactions between platelets and the virus. In this review, we discuss the potential mechanisms underlying the increased thrombotic events as well as altered platelet count and activity in COVID-19. Inspired by existing knowledge on platelet-pathogen interactions, we propose several potential antiviral strategies that platelets might undertake to combat SARS-CoV-2, including their abilities to internalize the virus, release bioactive molecules to interfere with viral infection, and modulate the functions of immune cells. Moreover, we discuss current and potential platelet-targeted therapeutic strategies in controlling COVID-19, including antiplatelet drugs, anticoagulants, and inflammation-targeting treatments. These strategies have shown promise in clinical settings to alleviate the severity of thrombo-inflammatory complications and reduce the mortality rate among COVID-19 patients. In conclusion, an in-depth understanding of platelet-SARS-CoV-2 interactions may uncover novel mechanisms underlying severe COVID-19 complications and could provide new therapeutic avenues for managing this disease.
Collapse
Affiliation(s)
| | | | | | - Yijing Yu
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (J.Z.); (X.X.); (Y.G.)
| | - Conglei Li
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (J.Z.); (X.X.); (Y.G.)
| |
Collapse
|
33
|
Zhang Z, Zhou XH, Cheng ZP, Hu Y. [Research on immunological function of platelet receptor FcγRⅡA]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2023; 44:609-614. [PMID: 37749049 PMCID: PMC10509618 DOI: 10.3760/cma.j.issn.0253-2727.2023.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Indexed: 09/27/2023]
Affiliation(s)
- Z Zhang
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - X H Zhou
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Z P Cheng
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Y Hu
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
34
|
Janus-Bell E, Mangin PH. The relative importance of platelet integrins in hemostasis, thrombosis and beyond. Haematologica 2023; 108:1734-1747. [PMID: 36700400 PMCID: PMC10316258 DOI: 10.3324/haematol.2022.282136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
Integrins are heterodimeric transmembrane receptors composed of α and β chains, with an N-terminal extracellular domain forming a globular head corresponding to the ligand binding site. Integrins regulate various cellular functions including adhesion, migration, proliferation, spreading and apoptosis. On platelets, integrins play a central role in adhesion and aggregation on subendothelial matrix proteins of the vascular wall, thereby ensuring hemostasis. Platelet integrins belong either to the β1 family (α2β1, α5β1 and α6β1) or to the β3 family (αIIbβ3 and αvβ3). On resting platelets, integrins can engage their ligands when the latter are immobilized but not in their soluble form. The effects of various agonists promote an inside-out signal in platelets, increasing the affinity of integrins for their ligands and conveying a modest signal reinforcing platelet activation, called outside-in signaling. This outside-in signal ensures platelet adhesion, shape change, granule secretion and aggregation. In this review, we examine the role of each platelet integrin in hemostatic plug formation, hemostasis and arterial thrombosis and also beyond these classical functions, notably in tumor metastasis and sepsis.
Collapse
Affiliation(s)
- Emily Janus-Bell
- Université de Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, FMTS, F-67065 Strasbourg.
| | - Pierre H Mangin
- Université de Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, FMTS, F-67065 Strasbourg
| |
Collapse
|
35
|
Abstract
Sepsis is accompanied by thrombocytopenia and the severity of the thrombocytopenia is associated with mortality. This thrombocytopenia is characteristic of disseminated intravascular coagulation (DIC), the sepsis-associated coagulopathy. Many of the pathogens, both bacterial and viral, that cause sepsis also directly activate platelets, which suggests that pathogen-induced platelet activation leads to systemic thrombosis and drives the multi-organ failure of DIC. In this paper we review the mechanisms of platelet activation by pathogens and the evidence for a role for anti-platelet agents in the management of sepsis.
Collapse
Affiliation(s)
- Dermot Cox
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
36
|
Lee C, Mayer E, Bernthal N, Wenke J, O'Toole RV. Orthopaedic infections: what have we learned? OTA Int 2023; 6:e250. [PMID: 37168032 PMCID: PMC10166335 DOI: 10.1097/oi9.0000000000000250] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/22/2022] [Indexed: 05/13/2023]
Abstract
Orthopaedic infections remain challenging complications to treat, with profound economic impact in addition to patient morbidity. The overall estimates of infection after orthopaedic surgery with internal devices has been estimated at 5%, with hospital costs eight times that of those without fracture-related infections and with significantly poorer functional and pain interference PROMIS scores. Orthopaedic infection interventions have been focused on prevention and treatment options. The creation of new modalities for orthopaedic infection treatment can benefit from the understanding of the temporal relationship between bacterial colonization and host-cell integration, a concept referred to as "the race for the surface." Regarding prevention, host modulation and antibiotic powder use have been explored as viable options to lower infection rates. Orthopaedic infection treatment has additionally continued to evolve, with PO antibiotics demonstrating equivalent efficacy to IV antibiotics for the treatment of orthopaedic infections in recent studies. In conclusion, orthopaedic infections remain difficult clinical dilemmas, although evolving prevention and treatment modalities continue to emerge.
Collapse
Affiliation(s)
- Christopher Lee
- Department of Orthopaedic Surgery, University of California Los Angeles, Los Angeles, CA
| | - Erik Mayer
- Department of Orthopaedic Surgery, University of California Los Angeles, Los Angeles, CA
| | - Nicholas Bernthal
- Department of Orthopaedic Surgery, University of California Los Angeles, Los Angeles, CA
| | - Joseph Wenke
- Department of Orthopaedic Surgery and Rehabilitation, University of Texas Medical Branch at Galveston, Galveston, TX; and
| | - Robert V. O'Toole
- Department of Orthopaedic Surgery, University of Maryland, Baltimore, MD
| |
Collapse
|
37
|
Cleary SJ, Conrad C. Investigating and imaging platelets in inflammation. Int J Biochem Cell Biol 2023; 157:106373. [PMID: 36716816 DOI: 10.1016/j.biocel.2023.106373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/12/2023] [Accepted: 01/23/2023] [Indexed: 01/29/2023]
Abstract
Blood platelets are best known for their roles in hemostasis and thrombosis, but platelets also make important contributions to inflammation, immunity, and inflammatory resolution. Experiments involving depletion, genetic modification, and live imaging of platelets in animal models have increased our mechanistic understanding of platelet contributions to inflammation. In this minireview, we provide a critical overview of experimental techniques for manipulating and imaging platelets in inflammation models. We then highlight studies using innovative approaches to elucidate molecular mechanisms through which platelet subsets, platelet Fc gamma receptors, and pro-resolution platelet functions influence inflammatory responses. We also propose future technologies and research directions which might move us closer to harnessing of platelet functions for improved therapeutic modulation of inflammatory diseases.
Collapse
Affiliation(s)
- Simon J Cleary
- Department of Medicine, UCSF, Health Sciences East 1355A, 513 Parnassus Ave., San Francisco, CA 94143, USA.
| | - Catharina Conrad
- Department of Medicine, UCSF, Health Sciences East 1355A, 513 Parnassus Ave., San Francisco, CA 94143, USA
| |
Collapse
|
38
|
Platelet-rich plasma in the treatment of anal fistula: a systematic review and meta-analysis. Int J Colorectal Dis 2023; 38:70. [PMID: 36905475 DOI: 10.1007/s00384-023-04367-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/05/2023] [Indexed: 03/12/2023]
Abstract
OBJECTIVE To analyse the safety and effectiveness of platelet-rich plasma (PRP) in anal fistula patients. METHODS Online databases including PubMed, Embase, Cochrane Library, and Web of Science were searched from inception to December 5, 2022, for eligible studies about evaluating the efficacy of platelet-rich plasma (PRP) in treating anal fistula. Literature search, screening, data extraction, and quality assessment were carried out by two independent investigators. The overall cure rate, the complete cure rate, the recurrence rate, and the adverse event rate with their 95% confidence intervals (95% CI) were the primary calculation indexes. Subgroup analyses were conducted primarily according to whether PRP was combined with other treatments. Softwares of MedCalc 18.2 and Review Manager 5.3 were used for meta-analysis. RESULTS A total of 14 studies with 514 patients were included in the meta-analysis. The overall cure rate of 14 studies was 72.11% (95% CI 0.64-0.79). The cure rate of PRP alone was 62.39% (95% CI 0.55-0.69). The combined cure rate of PRP with other treatments was 83.12% (95% CI 0.77-0.88). The cure rate of interventions involving PRP were superior to the cure rate of surgery methods without using PRP significantly in the 4 randomized controlled studies (RR = 1.30, 95% CI 1.10-1.54, p = 0.002). The complete cure rate of the 8 studies was 66.37% (95% CI 0.52-0.79). The recurrence rate of the 12 studies was 14.84% (95% CI 0.08-0.24). The adverse event rate of the 12 studies was 6.31% (95% CI 0.02-0.12). CONCLUSION PRP showed favorable safety and effectiveness in the treatment of anal fistula, especially combined with other treatment procedures.
Collapse
|
39
|
Fang L, Yu S, Tian X, Fu W, Su L, Chen Z, Yan C, He J, Hong J, Lian W, Liu G, Zhang Y, Zhou J, Hu L. Severe fever with thrombocytopenia syndrome virus replicates in platelets and enhances platelet activation. J Thromb Haemost 2023; 21:1336-1351. [PMID: 36792011 DOI: 10.1016/j.jtha.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023]
Abstract
BACKGROUND Severe fever with thrombocytopenia syndrome (SFTS) virus (SFTSV) infection causes an emerging hemorrhagic fever in East Asia with a high mortality rate. Thrombocytopenia is a consistent feature of SFTS illness, but the mechanism remains elusive. OBJECTIVES We aimed to better understand the role of platelets in the pathophysiology of SFTSV infection, including the development of thrombocytopenia. METHODS Using platelets from healthy volunteers and patients with SFTS, we evaluated the functional changes in platelets against SFTSV infection. We investigated the direct effect of glycoprotein VI on platelet-SFTSV interaction by quantitative real-time PCR, molecular docking, surface plasmon resonance spectrometry, flow cytometry, western blot, and platelet functional studies in vitro. Interactions of SFTSV and platelet-SFTSV complexes with macrophages were also determined by scanning electron microscope, quantitative real-time PCR, and flow cytometry. RESULTS This study is the first to demonstrate that platelets are capable of harboring and producing SFTSV particles. Structural and functional studies found that SFTSVs bind platelet glycoprotein VI to potentiate platelet activation, including platelet aggregation, adenosine triphosphate release, spreading, clot retraction, coagulation, phosphatidylserine exposure, thrombus formation, and adherence. In vitro mechanistic studies highlighted that the interaction of platelets with human THP-1 cells promoted SFTSV clearance and suppressed cytokine production in macrophages. However, unwanted SFTSV replication in macrophages reciprocally aggravated SFTSV persistence in the circulation, which may contribute to thrombocytopenia and other complications during SFTSV infection. CONCLUSION These findings together highlighted the pathophysiological role of platelets in initial intrinsic defense against SFTSV infections, as well as intertwined processes with host immunity, which can also lead to thrombocytopenia and poor prognosis.
Collapse
Affiliation(s)
- Lei Fang
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Provincial Centers for Disease Control and Prevention, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Sicong Yu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaoxu Tian
- Department of Cardiology, Cardiovascular Center, Henan Key Laboratory of Hereditary, Cardiovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wanrong Fu
- Department of Cardiology, Cardiovascular Center, Henan Key Laboratory of Hereditary, Cardiovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lingxuan Su
- Zhejiang Provincial Centers for Disease Control and Prevention, Hangzhou, China
| | - Zhi Chen
- National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Hangzhou, China
| | - Chunlan Yan
- Department of Biophysics, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ji He
- Blood Center of Zhejiang Province, Hangzhou, China
| | - Jin Hong
- Department of Cardiology, Cardiovascular Center, Henan Key Laboratory of Hereditary, Cardiovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wenwen Lian
- National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Hangzhou, China
| | - Gangqiong Liu
- Department of Cardiology, Cardiovascular Center, Henan Key Laboratory of Hereditary, Cardiovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yanjun Zhang
- Zhejiang Provincial Centers for Disease Control and Prevention, Hangzhou, China.
| | - Jiancang Zhou
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China.
| | - Liang Hu
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China; Department of Cardiology, Cardiovascular Center, Henan Key Laboratory of Hereditary, Cardiovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
40
|
Gentry CA, Whitman CM, Kliewer BS, Williams RJ, Thind SK. Propensity-matched analysis of the protective effect of ticagrelor versus clopidogrel on the risk of developing Staphylococcus aureus bacteremia. Int J Antimicrob Agents 2023; 61:106752. [PMID: 36773940 DOI: 10.1016/j.ijantimicag.2023.106752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/24/2023] [Accepted: 02/04/2023] [Indexed: 02/12/2023]
Abstract
OBJECTIVE Recent data indicate that ticagrelor, used in acute coronary syndromes (ACS), has antibacterial effects against Staphylococcus sp. and other effects that may help management of infection. The primary objective of this study was to evaluate the protective effect of ticagrelor in patients who have had an ACS event and the risk of developing Staphylococcus aureus bacteremia (SAB) compared to a propensity-matched cohort receiving clopidogrel. METHODS This study was a retrospective, nationwide analysis of all patients presenting to any percutaneous coronary intervention-performing Veterans Affairs Medical Center with an ACS episode and resultant prescription for clopidogrel or ticagrelor. The primary outcome was the comparative rate of SAB in patients receiving ticagrelor vs. clopidogrel. RESULTS Analysis involved 24 456 patients on ticagrelor and 277 277 patients on clopidogrel. There was a statistically significant difference in the number of patients developing SAB between the propensity-matched groups (32 [0.13%] of 24 456 for ticagrelor vs. 71 [0.29%] of 24 456 for clopidogrel; odds ratio (OR), 0.43; 95% confidence interval (CI), 0.28-0.65; P<0.0001). Multivariate logistic regression showed that receipt of clopidogrel, comorbid dermatologic condition, comorbid hematologic condition, and baseline anemia were independently associated with the development of SAB. CONCLUSIONS The study findings align with recent reports that ticagrelor may have a beneficial role in the prevention of SAB.
Collapse
Affiliation(s)
- Chris A Gentry
- Pharmacy Service, Oklahoma City Veterans Affairs Health Care System, Oklahoma City, Oklahoma, USA.
| | - Charles M Whitman
- Pharmacy Service, Oklahoma City Veterans Affairs Health Care System, Oklahoma City, Oklahoma, USA
| | - Brian S Kliewer
- Section of Internal Medicine, Medical Service, Oklahoma City Veterans Affairs Health Care System, and Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Riley J Williams
- Pharmacy Service, Oklahoma City Veterans Affairs Health Care System, Oklahoma City, Oklahoma, USA
| | - Sharanjeet K Thind
- Section of Infectious Diseases, Medical Service, Oklahoma City Veterans Affairs Health Care System, and Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
41
|
Gentry CA, Williams RJ, Whitman CM, Thind SK, Kliewer BS. Staphylococcus aureus bacteraemia treatment outcomes in patients receiving ticagrelor vs a propensity-matched cohort receiving clopidogrel. Int J Antimicrob Agents 2023; 61:106743. [PMID: 36736927 DOI: 10.1016/j.ijantimicag.2023.106743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023]
Abstract
OBJECTIVES Ticagrelor may improve the outcomes in Staphylococcus aureus bacteraemia (SAB). However, treatment outcome data for these patients remain limited. The primary objective of this study was to characterize the outcomes of patients with SAB who received ticagrelor compared with a cohort who received clopidogrel. METHODS This was a retrospective, nationwide propensity-matched analysis of patients with SAB who were prescribed ticagrelor or clopidogrel concomitantly with antistaphylococcal therapy. The primary outcome was the comparative all-cause 30-day mortality rate between propensity-matched groups. RESULTS In total, 1509 patients were prescribed concomitantly with ticagrelor or clopidogrel during treatment of S. aureus bacteraemia; of these, 194 patients were excluded from this study due to an inadequate number of antiplatelet doses within the first week of therapy (n=171) or non-admission to hospital (n=23). Of the remaining 1315 patients, 74 patients received ticagrelor and 1241 patients received clopidogrel. There was no significant difference in all-cause 30-day mortality between the groups [6/74 (8.1%) in the ticagrelor group vs 10/74 (13.5%) in the clopidogrel group; P=0.29]. Multi-variate logistic regression demonstrated that elevated aspartate aminotransferase, systolic blood pressure <90 mmHg, elevated serum creatinine and neurological comorbidity were independently associated with all-cause 30-day mortality. CONCLUSIONS This study found no difference in all-cause 30-day mortality between the two groups, although overall mortality appeared to be lower compared with other reports. Randomized controlled trials of P2Y12 inhibitors as adjunctive agents to antibiotic therapy for the treatment of serious S. aureus infections are warranted.
Collapse
Affiliation(s)
- Chris A Gentry
- Pharmacy Service, Oklahoma City Veterans Affairs Health Care System, Oklahoma City, Oklahoma, USA.
| | - Riley J Williams
- Pharmacy Service, Oklahoma City Veterans Affairs Health Care System, Oklahoma City, Oklahoma, USA
| | - Charles M Whitman
- Pharmacy Service, Oklahoma City Veterans Affairs Health Care System, Oklahoma City, Oklahoma, USA
| | - Sharanjeet K Thind
- Section of Infectious Diseases, Medical Service, Oklahoma City Veterans Affairs Health Care System, Oklahoma City, Oklahoma, USA; Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Brian S Kliewer
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA; Section of Internal Medicine, Medical Service, Oklahoma City Veterans Affairs Health Care System, Oklahoma City, Oklahoma, USA
| |
Collapse
|
42
|
Vertebral Bone Marrow Clot towards the Routine Clinical Scenario in Spine Surgeries: What about the Antimicrobial Properties? Int J Mol Sci 2023; 24:ijms24021744. [PMID: 36675259 PMCID: PMC9865225 DOI: 10.3390/ijms24021744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/30/2022] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Exploring innovative techniques and treatments to improve spinal fusion procedures is a global challenge. Here, we provide a scientific opinion on the ability of a vertebral bone marrow (vBM) clot to provide a local combined delivery system not only of stem cells, signaling biomolecules and anti-inflammatory factors but also of molecules and proteins endowed with antimicrobial properties. This opinion is based on the evaluation of the intrinsic basic properties of the vBM, that contains mesenchymal stem cells (MSCs), and on the coagulation process that led to the conversion of fibrinogen into fibrin fibers that enmesh cells, plasma but above all platelets, to form the clot. We emphasize that vBM clot, being a powerful source of MSCs and platelets, would allow the release of antimicrobial proteins and molecules, mainly cathelicidin LL- 37, hepcidin, kinocidins and cationic host defense peptides, that are per se gifted with direct and/or indirect antimicrobial effects. We additionally highlight that further studies are needed to deepen this knowledge and to propose vBM clot as multifunctional bioscaffold able to target all the main key challenges for spinal fusion surgery.
Collapse
|
43
|
Li M, Liu D, Jing F, Liu R, Yi Q. The role of Annexin A3 in coronary arterial lesions in children with Kawasaki disease. Front Pediatr 2023; 11:1111788. [PMID: 36865686 PMCID: PMC9971978 DOI: 10.3389/fped.2023.1111788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/18/2023] [Indexed: 02/16/2023] Open
Abstract
Kawasaki disease (KD) is an acute, self-limited vasculitis, and the etiology is still unclear. Coronary arterial lesions (CALs) are a major complication of KD. Excessive inflammation and immunologic abnormities are involved in the pathogenesis of KD and CALs. Annexin A3 (ANXA3) plays crucial roles in cell migration and differentiation, inflammation, cardiovascular and membrane metabolic diseases. The purpose of this study was to investigate the effect of ANXA3 on the pathogenesis of KD and CALs. There were 109 children with KD in the KD group [which was divided into two groups: 67 patients with CALs in the KD-CAL group, and 42 patients with noncoronary arterial lesions (NCALs) in the KD-NCAL group] and 58 healthy children in the control (HC) group. Clinical and laboratory data were retrospectively collected from all patients with KD. The serum concentration of ANXA3 was measured by enzyme-linked immunosorbent assays (ELISAs). Serum ANXA3 levels were higher in the KD group than in the HC group (P < 0.05). There was a higher concentration of serum ANXA3 in the KD-CAL group than in the KD-NCAL group (P < 0.05). Neutrophil cell counts and serum ANXA3 levels were higher in the KD group than in the HC group (P < 0.05) and quickly decreased when the patients were treated with IVIG after 7 days of illness. Platelet (PLT) counts and ANXA3 levels concurrently exhibited significant increases 7 days after onset. Furthermore, ANXA3 levels were positively correlated with lymphocyte and PLT counts in the KD and KD-CAL groups. ANXA3 may be involved in the pathogenesis of KD and CALs.
Collapse
Affiliation(s)
- Mengling Li
- Department of Cardiovascular Medicine, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Department of Pediatrics, Sichuan Mianyang 404 Hospital, Mianyang, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Dong Liu
- Department of Cardiovascular Medicine, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Fengchuan Jing
- Department of Cardiovascular Medicine, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Ruixi Liu
- Department of Cardiovascular Medicine, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Qijian Yi
- Department of Cardiovascular Medicine, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| |
Collapse
|
44
|
Wang G, Yang F, Zhou W, Xiao N, Luo M, Tang Z. The initiation of oxidative stress and therapeutic strategies in wound healing. Biomed Pharmacother 2023; 157:114004. [PMID: 36375308 DOI: 10.1016/j.biopha.2022.114004] [Citation(s) in RCA: 124] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022] Open
Abstract
When the production of reactive oxygen species (ROS) is overloaded surpassing the capacity of the reductive rheostat, mammalian cells undergo a series of oxidative damage termed oxidative stress (OS). This phenomenon is ubiquitously detected in many human pathological conditions. Wound healing program implicates continuous neovascularization, cell proliferation, and wound remodeling. Increasing evidence indicates that reactive oxygen species (ROS) have profound impacts on the wound healing process through regulating a series of the physiological and pathological program including inflammatory response, cell proliferation, angiogenesis, granulation as well as extracellular matrix formation. In most pathological wound healing processes, excessive ROS exerts a negative role on the wound healing process. Interestingly, the moderate increase of ROS levels is beneficial in killing bacteria at the wound site, which creates a sterile niche for revascularization. In this review, we discussed the physiological rhythms of wound healing and the role of ROS in this progress, aim to explore the potential manipulation of OS as a promising therapeutic avenue.
Collapse
Affiliation(s)
- Gang Wang
- Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, The School of Pharmacy, Southwest Medical University, Luzhou, China; Drug Discovery Research Center, Southwest Medical University, Luzhou, China; Department of Pharmacology, college of Pharmacy, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Drug Metabolism, Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, China, Chongqing, China
| | - Feifei Yang
- Department of Pharmacology, college of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Weiying Zhou
- Department of Pharmacology, college of Pharmacy, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Drug Metabolism, Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, China, Chongqing, China
| | - Nanyang Xiao
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Mao Luo
- Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, The School of Pharmacy, Southwest Medical University, Luzhou, China; Drug Discovery Research Center, Southwest Medical University, Luzhou, China.
| | - Zonghao Tang
- Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, The School of Pharmacy, Southwest Medical University, Luzhou, China; Drug Discovery Research Center, Southwest Medical University, Luzhou, China; Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
45
|
Mariotti A, Ezzraimi AE, Camoin-Jau L. Effect of antiplatelet agents on Escherichia coli sepsis mechanisms: A review. Front Microbiol 2022; 13:1043334. [PMID: 36569083 PMCID: PMC9780297 DOI: 10.3389/fmicb.2022.1043334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/07/2022] [Indexed: 12/13/2022] Open
Abstract
Despite ever-increasing improvements in the prognosis of sepsis, this condition remains a frequent cause of hospitalization and mortality in Western countries. Sepsis exposes the patient to multiple complications, including thrombotic complications, due to the ability of circulating bacteria to activate platelets. One of the bacteria most frequently implicated in sepsis, Escherichia coli, a Gram-negative bacillus, has been described as being capable of inducing platelet activation during sepsis. However, to date, the mechanisms involved in this activation have not been clearly established, due to their multiple characteristics. Many signaling pathways are thought to be involved. At the same time, reports on the use of antiplatelet agents in sepsis to reduce platelet activation have been published, with variable results. To date, their use in sepsis remains controversial. The aim of this review is to summarize the currently available knowledge on the mechanisms of platelet activation secondary to Escherichia coli sepsis, as well as to provide an update on the effects of antiplatelet agents in these pathological circumstances.
Collapse
Affiliation(s)
- Antoine Mariotti
- Aix Marseille Univ., IRD, APHM, MEPHI, IHU Méditerranée Infection, Marseille, France,IHU Méditerranée Infection, Marseille, France,Haematology Laboratory, Hôpital de la Timone, APHM, Marseille, France
| | - Amina Ezzeroug Ezzraimi
- Aix Marseille Univ., IRD, APHM, MEPHI, IHU Méditerranée Infection, Marseille, France,IHU Méditerranée Infection, Marseille, France
| | - Laurence Camoin-Jau
- Aix Marseille Univ., IRD, APHM, MEPHI, IHU Méditerranée Infection, Marseille, France,IHU Méditerranée Infection, Marseille, France,Haematology Laboratory, Hôpital de la Timone, APHM, Marseille, France,*Correspondence: Laurence Camoin-Jau,
| |
Collapse
|
46
|
Low-Dose Aspirin for Venous Thromboembolism Prophylaxis is Associated With Lower Rates of Periprosthetic Joint Infection After Total Joint Arthroplasty. J Arthroplasty 2022; 37:2444-2448.e1. [PMID: 35843380 DOI: 10.1016/j.arth.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Aspirin as a venous thromboembolism (VTE) prophylactic agent has been shown to have antistaphylococcal and antibiofilm roles. Optimal acetylsalicylic acid (ASA) dosage would facilitate antimicrobial effects while avoiding over-aggressive inhibition of platelet antimicrobial function. Our purpose was to determine the periprosthetic joint infection (PJI) rate after total joint arthroplasty in patients receiving low-dose ASA (81 mg twice a day), in comparison to high-dose ASA (325 mg twice a day). METHODS We conducted a retrospective cohort study between 2008 and 2020. Eligible patients were older than 18 years, underwent primary total joint arthroplasty, both total knee arthroplasty and total hip arthroplasty, had a minimum 30-day follow-up, and received a full course ASA as VTE prophylaxis. Patients' records were reviewed for PJI, according to Musculoskeletal Infection Society criteria. Patients were excluded if they underwent revision arthroplasty, had a history of coagulopathy, or had an ASA regimen that was not completed. In total 15,825 patients were identified, 8,761 patients received low-dose ASA and 7,064 received high-dose ASA. RESULTS The high-dose cohort had a higher PJI rate (0.35 versus 0.10%, P = .001). This relationship was maintained when comparing subgroups comprising total knee arthroplasty (0.32 versus 0.06%, P = .019) or total hip arthroplasty (0.38 versus 0.14%, P = .035) and accounting for potentially confounding demographic and surgical variables (odds ratio = 2.59, 95% CI = 1.15-6.40, P = .028). CONCLUSION Comparing low-dose to high-dose ASA as a VTE prophylactic agent, low-dose ASA had a lower PJI rate. This may be attributable to a balance of anti-infective properties of ASA and antiplatelet effects.
Collapse
|
47
|
Das D, Adhikary S, Das RK, Banerjee A, Radhakrishnan AK, Paul S, Pathak S, Duttaroy AK. Bioactive food components and their inhibitory actions in multiple platelet pathways. J Food Biochem 2022; 46:e14476. [PMID: 36219755 DOI: 10.1111/jfbc.14476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/29/2022] [Accepted: 09/27/2022] [Indexed: 01/14/2023]
Abstract
In addition to hemostasis and thrombosis, blood platelets are involved in various processes such as inflammation, infection, immunobiology, cancer metastasis, wound repair and angiogenesis. Platelets' hemostatic and non-hemostatic functions are mediated by the expression of various membrane receptors and the release of proteins, ions and other mediators. Therefore, specific activities of platelets responsible for the non-hemostatic disease are to be inhibited while leaving the platelet's hemostatic function unaffected. Platelets' anti-aggregatory property has been used as a primary criterion for antiplatelet drugs/bioactives; however, their non-hemostatic activities are not well known. This review describes the hemostatic and non-hemostatic function of human blood platelets and the modulatory effects of bioactive food components. PRACTICAL APPLICATIONS: In this review, we have discussed the antiplatelet effects of several food components. These bioactive compounds inhibit both hemostatic and non-hemostatic pathways involving blood platelet. Platelets have emerged as critical biological factors of normal and pathologic vascular healing and other diseases such as cancers and inflammatory and immune disorders. The challenge for therapeutic intervention in these disorders will be to find drugs and bioactive compounds that preferentially block specific sites implicated in emerging roles of platelets' complicated contribution to inflammation, tumour growth, or other disorders while leaving at least some of their hemostatic function intact.
Collapse
Affiliation(s)
- Diptimayee Das
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, India
| | - Shubhamay Adhikary
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, India
| | - Ranjit Kumar Das
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA
| | - Antara Banerjee
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, India
| | - Arun Kumar Radhakrishnan
- Department of Pharmacology, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, India
| | - Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Queretaro, Mexico
| | - Surajit Pathak
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
48
|
Liu E, Chen Y, Xu J, Gu S, An N, Xin J, Wang W, Liu Z, An Q, Yi J, Yin W. Platelets Inhibit Methicillin-Resistant Staphylococcus aureus by Inducing Hydroxyl Radical-Mediated Apoptosis-Like Cell Death. Microbiol Spectr 2022; 10:e0244121. [PMID: 35852345 PMCID: PMC9431477 DOI: 10.1128/spectrum.02441-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 05/19/2022] [Indexed: 11/20/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is one of the most common drug-resistant bacteria and poses a significant threat to human health. Due to the emergence of multidrug resistance, limited drugs are available for the treatment of MRSA infections. In recent years, platelets have been reported to play important roles in inflammation and immune responses, in addition to their functions in blood hemostasis and clotting. We and other researchers have previously reported that platelets can inhibit Staphylococcus aureus growth. However, it remained unclear whether platelets have the same antibacterial effect on drug-resistant strains. In this study, we hypothesized that platelets may also inhibit the growth of MRSA; the results confirmed that platelets significantly inhibited the growth of MRSA in vitro. In a murine model of MRSA infection, we found that a platelet transfusion alleviated the symptoms of MRSA infection; in contrast, depletion of platelets aggravated infective symptoms. Moreover, we observed an overproduction of hydroxyl radicals in MRSA following platelet treatment, which induced apoptosis-like death of MRSA. Our findings demonstrate that platelets can inhibit MRSA growth by promoting the overproduction of hydroxyl radicals and inducing apoptosis-like death. IMPORTANCE The widespread use of antibiotics has led to the emergence of drug-resistant bacteria, particularly multidrug-resistant bacteria. MRSA is the most common drug-resistant bacterium that causes suppurative infections in humans. As only a limited number of drugs are available to treat the infections caused by drug-resistant pathogens, it is imperative to develop novel and effective biological agents for treating MRSA infections. This is the first study to show that platelets can inhibit MRSA growth in vitro and in vivo. Our results revealed that platelets enhanced the production of hydroxyl radicals in MRSA, which induced a series of apoptosis hallmarks in MRSA, including DNA fragmentation, chromosome condensation, phosphatidylserine exposure, membrane potential depolarization, and increased intracellular caspase activity. These findings may further our understanding of platelet function.
Collapse
Affiliation(s)
- Erxiong Liu
- Department of Transfusion Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, Shanxi, China
| | - Yutong Chen
- Department of Transfusion Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, Shanxi, China
| | - Jinmei Xu
- Department of Transfusion Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, Shanxi, China
| | - Shunli Gu
- Department of Transfusion Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, Shanxi, China
| | - Ning An
- Department of Transfusion Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, Shanxi, China
| | - Jiajia Xin
- Department of Transfusion Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, Shanxi, China
| | - Wenting Wang
- Department of Transfusion Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, Shanxi, China
| | - Zhixin Liu
- Department of Transfusion Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, Shanxi, China
| | - Qunxing An
- Department of Transfusion Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, Shanxi, China
| | - Jing Yi
- Department of Transfusion Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, Shanxi, China
| | - Wen Yin
- Department of Transfusion Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, Shanxi, China
| |
Collapse
|
49
|
Wu M, Zhao X, Zhu X, Shi J, Liu L, Wang X, Xie M, Ma C, Hu Y, Sun J. Functional analysis and expression profile of human platelets infected by EBV in vitro. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 102:105312. [PMID: 35667565 DOI: 10.1016/j.meegid.2022.105312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/02/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Platelet activation is commonly detected after infection by multiple viruses such as human immunodeficiency virus (HIV), H1N1 influenza, Hepatitis C virus (HCV), Ebola virus (EBV), and Dengue virus (DENV). Non-coding RNAs (ncRNAs) constitute the majority of the human transcribed genome, but the biology of platelet ncRNAs is largely unexplored. In this study, we performed microarray profiling to characterize the expression profile of human platelets infected with EBV in vitro after 2 h. A total of 187 long non-coding RNAs (lncRNAs) displayed differences, of which 114 were upregulated and 73 were downregulated; 78 microRNAs (miRNAs) showed differences, including 73 upregulated and 5 downregulated; 808 mRNAs displayed differences, among which 367 were upregulated and 441 were downregulated. Gene ontology (GO) analysis mostly related to G protein-coupled receptor signaling pathway, detection of chemical stimulus involved in sensory perception of smell and regulation of transcription by RNA polymerase II. Pathway analysis showed that the differentially expressed genes were mainly enriched in cell metabolism and immune-related response. A ceRNA network was established based on predicting regulatory pairs in differentially expressed genes, in which hsa-miR-6877-3p had the highest regulatory capability (degree = 31), FAM230A was the lncRNA with the highest regulatory capability (degree = 28). According to the EBV related miRNA regulation network, it revealed that ebv-miR-BART19-3p had the most target genes and BRWD1, FAM126B, TFRC and JMY were the genes most regulated by EBV-related miRNAs. After overlapping the three networks, we found that the EIFAK2 gene was strongly correlated with autologous ncRNAs, including hsa-miR-1972, hsa-miR-504-3p and hsa-miR-6825-5p, as well as with EBV ncRNAs, including EBER1, EBER2, miR-BART7-3p and miR-BART16. The present study contributes to a better understanding of the expression profiling of ncRNAs and their functions in platelets activated by EBV in vitro, and paves the way to further study on platelet function.
Collapse
Affiliation(s)
- Meini Wu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Xiutao Zhao
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China; Kunming Medical University, Kunming, Yunnan, China
| | - Xiaoli Zhu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China; Kunming Medical University, Kunming, Yunnan, China
| | - Jiandong Shi
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Lijun Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China; Kunming Medical University, Kunming, Yunnan, China
| | - Xinyi Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Mengxin Xie
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Chunli Ma
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Yunzhang Hu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Jing Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China.
| |
Collapse
|
50
|
Scopelliti F, Cattani C, Dimartino V, Mirisola C, Cavani A. Platelet Derivatives and the Immunomodulation of Wound Healing. Int J Mol Sci 2022; 23:ijms23158370. [PMID: 35955503 PMCID: PMC9368989 DOI: 10.3390/ijms23158370] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 02/01/2023] Open
Abstract
Besides their primary role in hemostasis, platelets contain a plethora of immunomodulatory molecules that profoundly affect the entire process of wound repair. Therefore, platelet derivatives, such as platelet-rich plasma or platelet lysate, have been widely employed with promising results in the treatment of chronic wounds. Platelet derivatives provide growth factors, cytokines, and chemokines targeting resident and immigrated cells belonging to the innate and adaptive immune system. The recruitment and activation of neutrophils and macrophages is critical for pathogen clearance in the early phase of wound repair. The inflammatory response begins with the release of cytokines, such as TGF-β, aimed at damping excessive inflammation and promoting the regenerative phase of wound healing. Dysregulation of the immune system during the wound healing process leads to persistent inflammation and delayed healing, which ultimately result in chronic wound. In this review, we summarize the role of the different immune cells involved in wound healing, particularly emphasizing the function of platelet and platelet derivatives in orchestrating the immunological response.
Collapse
|