1
|
Zeng Y, Antoniou A. Regulation of synaptic mitochondria by extracellular vesicles and its implications for neuronal metabolism and synaptic plasticity. J Cereb Blood Flow Metab 2025:271678X251337630. [PMID: 40367393 PMCID: PMC12078259 DOI: 10.1177/0271678x251337630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/17/2025] [Accepted: 03/28/2025] [Indexed: 05/16/2025]
Abstract
Mitochondrial metabolism in neurons is necessary for energetically costly processes like synaptic transmission and plasticity. As post-mitotic cells, neurons are therefore faced with the challenge of maintaining healthy functioning mitochondria throughout lifetime. The precise mechanisms of mitochondrial maintenance in neurons, and particularly in morphologically complex dendrites and axons, are not fully understood. Evidence from several biological systems suggests the regulation of cellular metabolism by extracellular vesicles (EVs), secretory lipid-enclosed vesicles that have emerged as important mediators of cell communication. In the nervous system, neuronal and glial EVs were shown to regulate neuronal circuit development and function, at least in part via the transfer of protein and RNA cargo. Interestingly, EVs have been implicated in diseases characterized by altered metabolism, such as cancer and neurodegenerative diseases. Furthermore, nervous system EVs were shown to contain proteins related to metabolic processes, mitochondrial proteins and even intact mitochondria. Here, we present the current knowledge of the mechanisms underlying neuronal mitochondrial maintenance, and highlight recent evidence suggesting the regulation of synaptic mitochondria by neuronal and glial cell EVs. We further discuss the potential implications of EV-mediated regulation of mitochondrial maintenance and function in neuronal circuit development and synaptic plasticity.
Collapse
Affiliation(s)
- Yuzhou Zeng
- Medical Faculty, University of Bonn, Bonn, Germany
| | - Anna Antoniou
- Medical Faculty, University of Bonn, Bonn, Germany
- Faculty of Life Sciences, University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Braaker PN, Mi X, Soong D, Bin JM, Marshall-Phelps K, Bradley S, Benito-Kwiecinski S, Meng J, Arafa D, Richmond C, Keatinge M, Yu G, Almeida RG, Lyons DA. Activity-driven myelin sheath growth is mediated by mGluR5. Nat Neurosci 2025:10.1038/s41593-025-01956-9. [PMID: 40369366 DOI: 10.1038/s41593-025-01956-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 03/25/2025] [Indexed: 05/16/2025]
Abstract
Myelination by oligodendrocytes in the central nervous system is influenced by neuronal activity, but the molecular mechanisms by which this occurs have remained unclear. Here we employed pharmacological, genetic, functional imaging and optogenetic-stimulation approaches in zebrafish to assess activity-regulated myelination in vivo. Pharmacological inhibition and activation of metabotropic glutamate receptor 5 (mGluR5) impaired and promoted myelin sheath elongation, respectively, during development, without otherwise affecting the oligodendrocyte lineage. Correspondingly, mGluR5 loss-of-function mutants exhibit impaired myelin growth, while oligodendrocyte-specific mGluR5 gain of function promoted sheath elongation. Functional imaging and optogenetic-stimulation studies revealed that mGluR5 mediates activity-driven high-amplitude Ca2+ transients in myelin. Furthermore, we found that long-term stimulation of neuronal activity drives myelin sheath elongation in an mGluR5-dependent manner. Together these data identify mGluR5 as a mediator of the influence of neuronal activity on myelination by oligodendrocytes in vivo, opening up opportunities to assess the functional relevance of activity-regulated myelination.
Collapse
Affiliation(s)
- Philipp N Braaker
- Centre for Discovery Brain Sciences, MS Society Edinburgh Centre for Multiple Sclerosis Research, University of Edinburgh, Edinburgh, UK
| | - Xuelong Mi
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA, USA
| | - Daniel Soong
- Centre for Discovery Brain Sciences, MS Society Edinburgh Centre for Multiple Sclerosis Research, University of Edinburgh, Edinburgh, UK
| | - Jenea M Bin
- Centre for Discovery Brain Sciences, MS Society Edinburgh Centre for Multiple Sclerosis Research, University of Edinburgh, Edinburgh, UK
| | - Katy Marshall-Phelps
- Centre for Discovery Brain Sciences, MS Society Edinburgh Centre for Multiple Sclerosis Research, University of Edinburgh, Edinburgh, UK
| | - Stephen Bradley
- Centre for Discovery Brain Sciences, MS Society Edinburgh Centre for Multiple Sclerosis Research, University of Edinburgh, Edinburgh, UK
| | - Silvia Benito-Kwiecinski
- Centre for Discovery Brain Sciences, MS Society Edinburgh Centre for Multiple Sclerosis Research, University of Edinburgh, Edinburgh, UK
| | - Julia Meng
- Centre for Discovery Brain Sciences, MS Society Edinburgh Centre for Multiple Sclerosis Research, University of Edinburgh, Edinburgh, UK
| | - Donia Arafa
- Centre for Discovery Brain Sciences, MS Society Edinburgh Centre for Multiple Sclerosis Research, University of Edinburgh, Edinburgh, UK
| | - Claire Richmond
- Centre for Discovery Brain Sciences, MS Society Edinburgh Centre for Multiple Sclerosis Research, University of Edinburgh, Edinburgh, UK
| | - Marcus Keatinge
- Centre for Discovery Brain Sciences, MS Society Edinburgh Centre for Multiple Sclerosis Research, University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, UK Dementia Research Institute at University of Edinburgh, University of Edinburgh, Edinburgh, UK
| | - Guoqiang Yu
- Department of Automation, Tsinghua University, Beijing, China
| | - Rafael G Almeida
- Centre for Discovery Brain Sciences, MS Society Edinburgh Centre for Multiple Sclerosis Research, University of Edinburgh, Edinburgh, UK
| | - David A Lyons
- Centre for Discovery Brain Sciences, MS Society Edinburgh Centre for Multiple Sclerosis Research, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
3
|
Oost W, Meilof JF, Baron W. Multiple sclerosis: what have we learned and can we still learn from electron microscopy. Cell Mol Life Sci 2025; 82:172. [PMID: 40266347 PMCID: PMC12018678 DOI: 10.1007/s00018-025-05690-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/27/2025] [Accepted: 03/31/2025] [Indexed: 04/24/2025]
Abstract
Multiple sclerosis (MS) is an inflammatory neurodegenerative disease marked by the formation of demyelinated lesions in the central nervous system. MS lesions can undergo remyelination, temporarily alleviating symptoms, but as the disease advances, remyelination becomes less effective. Beyond lesions, normal-appearing brain tissue exhibits subtle alterations, potentially indicating a broader, diffuse pathology and/or increased susceptibility to lesion formation. The pathology of MS varies between grey and white matter lesions and their normal-appearing regions, which most likely relates to their distinct cellular composition. Despite insights gained from MRI studies, serum and blood analyses, and post-mortem tissue examination, the molecular mechanisms driving MS lesion formation and persistent demyelination remain poorly understood. Exploring less conventional methods, such as electron microscopy (EM), may provide valuable new insights. EM offers detailed, nanometre-scale structural analysis that may enhance findings from immunohistochemistry and 'omics' approaches on MS brain tissue. Although earlier EM studies from before the 1990's provided some foundational data, advancements in EM technology now enable more comprehensive and detailed structural analysis. In this review we outline the pathogenesis of MS, summarize current knowledge of its ultrastructural features, and highlight how cutting-edge EM techniques could uncover new insights into pathological processes, including lesion formation, remyelination failure and diffuse pathology, which may aid therapeutic development.
Collapse
Affiliation(s)
- Wendy Oost
- Department of Biomedical Sciences, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
- MS Center Noord Nederland, Groningen, The Netherlands
| | - Jan F Meilof
- Department of Biomedical Sciences, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
- MS Center Noord Nederland, Groningen, The Netherlands
- Department of Neurology, Martini Hospital, Groningen, The Netherlands
| | - Wia Baron
- Department of Biomedical Sciences, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands.
- MS Center Noord Nederland, Groningen, The Netherlands.
| |
Collapse
|
4
|
Qin H, Yu S, Han R, He J. Age-dependent glial heterogeneity and traumatic injury responses in a vertebrate brain structure. Cell Rep 2025; 44:115508. [PMID: 40198221 DOI: 10.1016/j.celrep.2025.115508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/11/2024] [Accepted: 03/12/2025] [Indexed: 04/10/2025] Open
Abstract
The progression of traumatic brain injury (TBI) pathology is significantly influenced by age and involves a complex interplay of glial cells. However, the influence of age on the glial dynamics and their TBI responses remains mostly unexplored. Here, we obtain a comprehensive single-cell transcriptome atlas of three major glial types under the physiological and TBI conditions across four post-embryonic life stages in the zebrafish midbrain optic tectum. We identify a library of glial subtypes and states with specific age-dependent patterns that respond distinctly to TBI. Combining the glial interactome analysis and CRISPR-Cas9-mediated gene disruption, we reveal the essential roles of dla-notch3 and cxcl12a-cxcr4b interactions in the early-larval-stage-specific unresponsiveness of radial astrocytes to TBI and the TBI-induced age-independent recruitment of microglia to injury sites, respectively. Overall, our findings provide the molecular and cellular framework of TBI-induced age-related glial dynamics in vertebrate brains.
Collapse
Affiliation(s)
- Huiwen Qin
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuguang Yu
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruyi Han
- Department of Ophthalmology, Eye, ENT Hospital of Fudan University, Shanghai 200031, China; Shanghai Key Laboratory of Visual Impairment, Restoration, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Myopia, Fudan University, Shanghai 200031, China
| | - Jie He
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
5
|
Chen Z, Liu L, Guo X, Zhang Y, Zhong M, Xu Y, Peng T, Peng T, Zhang Y, Hou Q, Fan D, Gao T, He L, Tang H, Hu H, Xu K. Upregulating mTOR/S6 K Pathway by CASTOR1 Promotes Astrocyte Proliferation and Myelination in Gpam -/--induced mouse model of cerebral palsy. Mol Neurobiol 2025:10.1007/s12035-025-04901-w. [PMID: 40234290 DOI: 10.1007/s12035-025-04901-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 03/27/2025] [Indexed: 04/17/2025]
Abstract
GPAM, a key enzyme for lipid synthesis, is predominantly expressed in astrocytes (ASTs), where it facilitates lipid supply for myelin formation. Our previous studies identified GPAM as a novel causative gene for cerebral palsy (CP) and led to the development of a CP mouse model with GPAM deficiency (Gpam-/-). The model closely recapitulated the clinical phenotype of children with CP, due to the restricted proliferation of ASTs in the brain, reduced the amount of lipid, thinner brain white matter, and myelin dysplasia. The mammalian target of rapamycin (mTOR) pathway plays an important role in cell proliferation and lipid synthesis. Cytosolic arginine sensor (CASTOR1) interacts with GATOR2 to regulate mTOR complex 1 (mTORC1). Targeted degradation of CASTOR1 can activate the mTOR pathway. However, it remains unclear the involvement of mTOR pathway in neurological diseases such as CP. In this study, we demonstrated that the mTOR pathway was inhibited in Gpam-/- mice. Notably, CASTOR1 could regulate the activity of mTOR/S6K pathway, functioning as a negative upstream regulator. Furthermore, inhibition of CASTOR1 upregulated mTOR/S6K signaling, promoting astrocyte proliferation and myelination, which in turn enhanced motor function in the Gpam-/--induced CP mouse model. Collectively, these findings reveal the role of astrocytic mTOR in the pathogenesis of CP mice, broaden the therapeutic strategies, and provide a promising candidate target for CP treatment.
Collapse
Affiliation(s)
- Zhaofang Chen
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
| | - Liru Liu
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
| | - Xiaolin Guo
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, 200438, China
| | - Yage Zhang
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
| | - Mengru Zhong
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
| | - Yi Xu
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
- Department of Sports and Health, Guangzhou Sport University, Guangzhou, 510500, China
| | - Tingting Peng
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
| | - Tingting Peng
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
| | - Yuan Zhang
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, 200438, China
| | - Qingfen Hou
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
- Department of Sports and Health, Guangzhou Sport University, Guangzhou, 510500, China
| | - Danxia Fan
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
- School of Nursing, Guangdong Pharmaceutical University, Guangzhou, 510310, China
| | - Ting Gao
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
| | - Lu He
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
| | - Hongmei Tang
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
| | - Hao Hu
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Kaishou Xu
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China.
| |
Collapse
|
6
|
Chib S, Dutta BJ, Chalotra R, Abubakar M, Kumar P, Singh TG, Singh R. Role of Flavonoids in Mitigating the Pathological Complexities and Treatment Hurdles in Alzheimer's Disease. Phytother Res 2025; 39:747-775. [PMID: 39660432 DOI: 10.1002/ptr.8406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/07/2024] [Accepted: 11/18/2024] [Indexed: 12/12/2024]
Abstract
With the passage of time, people step toward old age and become more prone to several diseases associated with the age. One such is Alzheimer's disease (AD) which results into neuronal damage and dementia with the progression of age. The existing therapeutics has been hindered by various enkindles like less eminent between remote populations, affordability issues and toxicity profiles. Moreover, lack of suitable therapeutic option further worsens the quality of life in older population. Developing an efficient therapeutic intervention to cure AD is still a challenge for medical fraternity. Recently, alternative approaches attain the attention of researchers to focus on plant-based therapy in mitigating AD. In this context, flavonoids gained centrality as a feasible treatment in modifying various neurological deficits. This review mainly focuses on the pathological facets and economic burden of AD. Furthermore, we have explored the possible mechanism of flavonoids with the preclinical and clinical aspects for curing AD. Flavonoids being potential therapeutic, target the pathogenic factors of AD such as oxidative stress, inflammation, metal toxicity, Aβ accumulation, modulate neurotransmission and insulin signaling. In this review, we emphasized on potential neuroprotective effects of flavonoids in AD pathology, with focus on both experimental and clinical findings. While preclinical studies suggest promising therapeutic benefits, clinical data remains limited and inconclusive. Thus, further high-quality clinical trials are necessary to validate the efficacy of flavonoids in AD. The study aim is to promote the plant-based therapies and encourage people to add flavonoids to regular diet to avail the beneficial effects in preventive therapy for AD.
Collapse
Affiliation(s)
- Shivani Chib
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Bhaskar Jyoti Dutta
- Department of Pharmacology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, India
| | - Rishabh Chalotra
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Md Abubakar
- Department of Pharmacology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | | | - Randhir Singh
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| |
Collapse
|
7
|
Zeng W, Hu M, Ma L, Huang F, Jiang Z. Copper and iron as unique trace elements linked to fibromyalgia risk. Sci Rep 2025; 15:4019. [PMID: 39893184 PMCID: PMC11787290 DOI: 10.1038/s41598-025-86447-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 01/10/2025] [Indexed: 02/04/2025] Open
Abstract
Fibromyalgia (FM) is a prevalent chronic pain condition with a complex and not fully understood etiology. Abnormal metabolism of trace elements is suspected to play a role in the pathogenesis of FM, though the exact relationships have yet to be clarified. This study employed Mendelian randomization (MR) to assess potential causal relationships between 15 major trace elements and the risk of FM, focusing on the specific roles of elements that show significant associations. Genetic instrumental variables (single nucleotide polymorphisms, SNPs), related to these trace elements and FM were extracted from genome-wide association studies (GWAS). Analyses were performed using various methods including inverse-variance weighting (IVW), MR Egger, weighted median, weighted mode, and simple mode. Furthermore, multivariable analysis controlled for selenium as a potential confounder to evaluate the independent associations of copper (Cu) and iron (Fe) with FM risk. Two-sample MR analysis indicated a positive association between Cu and increased risk of FM (IVW: OR = 1.095, 95% CI: 1.015 to 1.181, P = 0.018), and a negative association between Fe and FM risk (IVW: OR = 0.440, 95% CI: 0.233 to 0.834, P = 0.011). These associations remained significant in the multivariable analysis, highlighting the independent effects of Cu and Fe. No significant correlations were observed with other trace elements such as selenium and zinc. This study provides new evidence of the roles of Cu and Fe in the pathophysiology of FM and underscores the importance of considering trace elements in the prevention and treatment strategies for FM. Future research should further validate these findings and explore the specific biological mechanisms through which Cu and Fe influence FM risk.
Collapse
Affiliation(s)
- Wenxing Zeng
- The First Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Minhua Hu
- Zhongshan Hospital of Traditional ChineseMedicine Affiliated to Guangzhou University of Traditional ChineseMedicine, Zhongshan, China
| | - Luyao Ma
- The First Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Feng Huang
- The First Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ziwei Jiang
- The First Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China.
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
8
|
Siems SB, Gargareta V, Schadt LC, Daguano Gastaldi V, Jung RB, Piepkorn L, Casaccia P, Sun T, Jahn O, Werner HB. Developmental maturation and regional heterogeneity but no sexual dimorphism of the murine CNS myelin proteome. Glia 2025; 73:38-56. [PMID: 39344832 PMCID: PMC11660532 DOI: 10.1002/glia.24614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/08/2024] [Accepted: 08/20/2024] [Indexed: 10/01/2024]
Abstract
The molecules that constitute myelin are critical for the integrity of axon/myelin-units and thus speed and precision of impulse propagation. In the CNS, the protein composition of oligodendrocyte-derived myelin has evolutionarily diverged and differs from that in the PNS. Here, we hypothesized that the CNS myelin proteome also displays variations within the same species. We thus used quantitative mass spectrometry to compare myelin purified from mouse brains at three developmental timepoints, from brains of male and female mice, and from four CNS regions. We find that most structural myelin proteins are of approximately similar abundance across all tested conditions. However, the abundance of multiple other proteins differs markedly over time, implying that the myelin proteome matures between P18 and P75 and then remains relatively constant until at least 6 months of age. Myelin maturation involves a decrease of cytoskeleton-associated proteins involved in sheath growth and wrapping, along with an increase of all subunits of the septin filament that stabilizes mature myelin, and of multiple other proteins which potentially exert protective functions. Among the latter, quinoid dihydropteridine reductase (QDPR) emerges as a highly specific marker for mature oligodendrocytes and myelin. Conversely, female and male mice display essentially similar myelin proteomes. Across the four CNS regions analyzed, we note that spinal cord myelin exhibits a comparatively high abundance of HCN2-channels, required for particularly long sheaths. These findings show that CNS myelination involves developmental maturation of myelin protein composition, and regional differences, but absence of evidence for sexual dimorphism.
Collapse
Affiliation(s)
- Sophie B. Siems
- Department of NeurogeneticsMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Vasiliki‐Ilya Gargareta
- Department of NeurogeneticsMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Leonie C. Schadt
- Department of NeurogeneticsMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | | | - Ramona B. Jung
- Department of NeurogeneticsMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Lars Piepkorn
- Neuroproteomics Group, Department of Molecular NeurobiologyMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
- Translational Neuroproteomics Group, Department of Psychiatry and PsychotherapyUniversity Medical Center GöttingenGöttingenGermany
| | - Patrizia Casaccia
- Neuroscience Initiative, Advanced Science Research CenterThe City University of New YorkNew YorkNew YorkUSA
| | - Ting Sun
- Department of NeurogeneticsMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Olaf Jahn
- Neuroproteomics Group, Department of Molecular NeurobiologyMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
- Translational Neuroproteomics Group, Department of Psychiatry and PsychotherapyUniversity Medical Center GöttingenGöttingenGermany
| | - Hauke B. Werner
- Department of NeurogeneticsMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
- Faculty for Biology and PsychologyUniversity of GöttingenGöttingenGermany
| |
Collapse
|
9
|
Sarnyai Z, Ben-Shachar D. Schizophrenia, a disease of impaired dynamic metabolic flexibility: A new mechanistic framework. Psychiatry Res 2024; 342:116220. [PMID: 39369460 DOI: 10.1016/j.psychres.2024.116220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/21/2024] [Accepted: 09/30/2024] [Indexed: 10/08/2024]
Abstract
Schizophrenia is a chronic, neurodevelopmental disorder with unknown aetiology and pathophysiology that emphasises the role of neurotransmitter imbalance and abnormalities in synaptic plasticity. The currently used pharmacological approach, the antipsychotic drugs, which have limited efficacy and an array of side-effects, have been developed based on the neurotransmitter hypothesis. Recent research has uncovered systemic and brain abnormalities in glucose and energy metabolism, focusing on altered glycolysis and mitochondrial oxidative phosphorylation. These findings call for a re-conceptualisation of schizophrenia pathophysiology as a progressing bioenergetics failure. In this review, we provide an overview of the fundamentals of brain bioenergetics and the changes identified in schizophrenia. We then propose a new explanatory framework positing that schizophrenia is a disease of impaired dynamic metabolic flexibility, which also reconciles findings of abnormal glucose and energy metabolism in the periphery and in the brain along the course of the disease. This evidence-based framework and testable hypothesis has the potential to transform the way we conceptualise this debilitating condition and to develop novel treatment approaches.
Collapse
Affiliation(s)
- Zoltán Sarnyai
- Laboratory of Psychobiology, Department of Neuroscience, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Department of Psychiatry, Rambam Health Campus, Haifa, Israel; Laboratory of Psychiatric Neuroscience, Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia.
| | - Dorit Ben-Shachar
- Laboratory of Psychobiology, Department of Neuroscience, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Department of Psychiatry, Rambam Health Campus, Haifa, Israel.
| |
Collapse
|
10
|
Stys PK, Tsutsui S, Gafson AR, ‘t Hart BA, Belachew S, Geurts JJG. New views on the complex interplay between degeneration and autoimmunity in multiple sclerosis. Front Cell Neurosci 2024; 18:1426231. [PMID: 39161786 PMCID: PMC11330826 DOI: 10.3389/fncel.2024.1426231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/14/2024] [Indexed: 08/21/2024] Open
Abstract
Multiple sclerosis (MS) is a frequently disabling neurological disorder characterized by symptoms, clinical signs and imaging abnormalities that typically fluctuate over time, affecting any level of the CNS. Prominent lymphocytic inflammation, many genetic susceptibility variants involving immune pathways, as well as potent responses of the neuroinflammatory component to immunomodulating drugs, have led to the natural conclusion that this disease is driven by a primary autoimmune process. In this Hypothesis and Theory article, we discuss emerging data that cast doubt on this assumption. After three decades of therapeutic experience, what has become clear is that potent immune modulators are highly effective at suppressing inflammatory relapses, yet exhibit very limited effects on the later progressive phase of MS. Moreover, neuropathological examination of MS tissue indicates that degeneration, CNS atrophy, and myelin loss are most prominent in the progressive stage, when lymphocytic inflammation paradoxically wanes. Finally, emerging clinical observations such as "progression independent of relapse activity" and "silent progression," now thought to take hold very early in the course, together argue that an underlying "cytodegenerative" process, likely targeting the myelinating unit, may in fact represent the most proximal step in a complex pathophysiological cascade exacerbated by an autoimmune inflammatory overlay. Parallels are drawn with more traditional neurodegenerative disorders, where a progressive proteopathy with prion-like propagation of toxic misfolded species is now known to play a key role. A potentially pivotal contribution of the Epstein-Barr virus and B cells in this process is also discussed.
Collapse
Affiliation(s)
- Peter K. Stys
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Shigeki Tsutsui
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Arie R. Gafson
- Biogen Digital Health, Biogen, Cambridge, MA, United States
| | - Bert A. ‘t Hart
- Department of Anatomy and Neurosciences, Amsterdam University Medical Centers (location VUmc), Amsterdam, Netherlands
| | - Shibeshih Belachew
- TheraPanacea, Paris, France
- Indivi (DBA of Healios AG), Basel, Switzerland
| | - Jeroen J. G. Geurts
- Department of Anatomy and Neurosciences, Amsterdam University Medical Centers (location VUmc), Amsterdam, Netherlands
| |
Collapse
|
11
|
Bormann D, Knoflach M, Poreba E, Riedl CJ, Testa G, Orset C, Levilly A, Cottereau A, Jauk P, Hametner S, Stranzl N, Golabi B, Copic D, Klas K, Direder M, Kühtreiber H, Salek M, Zur Nedden S, Baier-Bitterlich G, Kiechl S, Haider C, Endmayr V, Höftberger R, Ankersmit HJ, Mildner M. Single-nucleus RNA sequencing reveals glial cell type-specific responses to ischemic stroke in male rodents. Nat Commun 2024; 15:6232. [PMID: 39043661 PMCID: PMC11266704 DOI: 10.1038/s41467-024-50465-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 07/09/2024] [Indexed: 07/25/2024] Open
Abstract
Neuroglia critically shape the brain´s response to ischemic stroke. However, their phenotypic heterogeneity impedes a holistic understanding of the cellular composition of the early ischemic lesion. Here we present a single cell resolution transcriptomics dataset of the brain´s acute response to infarction. Oligodendrocyte lineage cells and astrocytes range among the most transcriptionally perturbed populations and exhibit infarction- and subtype-specific molecular signatures. Specifically, we find infarction restricted proliferating oligodendrocyte precursor cells (OPCs), mature oligodendrocytes and reactive astrocytes, exhibiting transcriptional commonalities in response to ischemic injury. OPCs and reactive astrocytes are involved in a shared immuno-glial cross talk with stroke-specific myeloid cells. Within the perilesional zone, osteopontin positive myeloid cells accumulate in close proximity to CD44+ proliferating OPCs and reactive astrocytes. In vitro, osteopontin increases the migratory capacity of OPCs. Collectively, our study highlights molecular cross talk events which might govern the cellular composition of acutely infarcted brain tissue.
Collapse
Affiliation(s)
- Daniel Bormann
- Applied Immunology Laboratory, Department of Thoracic Surgery, Medical University of Vienna, 1090, Vienna, Austria
- Aposcience AG, 1200, Vienna, Austria
| | - Michael Knoflach
- Department of Neurology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
- VASCage, Centre on Clinical Stroke Research, 6020, Innsbruck, Austria
| | - Emilia Poreba
- Department of Dermatology, Medical University of Vienna, 1090, Vienna, Austria
| | - Christian J Riedl
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Giulia Testa
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Cyrille Orset
- Normandie University, UNICAEN, ESR3P, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Institut Blood and Brain @ Caen-Normandie (BB@C), GIP Cyceron, Caen, France
- Department of Clinical Research, Caen-Normandie University Hospital, Caen, France
| | - Anthony Levilly
- Normandie University, UNICAEN, ESR3P, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Institut Blood and Brain @ Caen-Normandie (BB@C), GIP Cyceron, Caen, France
- Department of Clinical Research, Caen-Normandie University Hospital, Caen, France
| | - Andréa Cottereau
- Normandie University, UNICAEN, ESR3P, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Institut Blood and Brain @ Caen-Normandie (BB@C), GIP Cyceron, Caen, France
- Department of Clinical Research, Caen-Normandie University Hospital, Caen, France
| | - Philipp Jauk
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090, Vienna, Austria
| | - Simon Hametner
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Nadine Stranzl
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Bahar Golabi
- Department of Dermatology, Medical University of Vienna, 1090, Vienna, Austria
| | - Dragan Copic
- Applied Immunology Laboratory, Department of Thoracic Surgery, Medical University of Vienna, 1090, Vienna, Austria
- Aposcience AG, 1200, Vienna, Austria
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, 1090, Vienna, Austria
| | - Katharina Klas
- Applied Immunology Laboratory, Department of Thoracic Surgery, Medical University of Vienna, 1090, Vienna, Austria
- Aposcience AG, 1200, Vienna, Austria
| | - Martin Direder
- Applied Immunology Laboratory, Department of Thoracic Surgery, Medical University of Vienna, 1090, Vienna, Austria
- Aposcience AG, 1200, Vienna, Austria
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, 1090, Vienna, Austria
| | - Hannes Kühtreiber
- Applied Immunology Laboratory, Department of Thoracic Surgery, Medical University of Vienna, 1090, Vienna, Austria
- Aposcience AG, 1200, Vienna, Austria
| | - Melanie Salek
- Applied Immunology Laboratory, Department of Thoracic Surgery, Medical University of Vienna, 1090, Vienna, Austria
- Aposcience AG, 1200, Vienna, Austria
| | - Stephanie Zur Nedden
- Institute of Neurobiochemistry, CCB-Biocenter, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Gabriele Baier-Bitterlich
- Institute of Neurobiochemistry, CCB-Biocenter, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Stefan Kiechl
- Department of Neurology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
- VASCage, Centre on Clinical Stroke Research, 6020, Innsbruck, Austria
| | - Carmen Haider
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Verena Endmayr
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Romana Höftberger
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Hendrik J Ankersmit
- Applied Immunology Laboratory, Department of Thoracic Surgery, Medical University of Vienna, 1090, Vienna, Austria.
- Aposcience AG, 1200, Vienna, Austria.
| | - Michael Mildner
- Department of Dermatology, Medical University of Vienna, 1090, Vienna, Austria.
| |
Collapse
|
12
|
Zhang M, Zhi N, Feng J, Liu Y, Zhang M, Liu D, Yuan J, Dong Y, Jiang S, Ge J, Wu S, Zhao X. ITPR2 Mediated Calcium Homeostasis in Oligodendrocytes is Essential for Myelination and Involved in Depressive-Like Behavior in Adolescent Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306498. [PMID: 38476116 PMCID: PMC11132048 DOI: 10.1002/advs.202306498] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/15/2024] [Indexed: 03/14/2024]
Abstract
Ca2+ signaling is essential for oligodendrocyte (OL) development and myelin formation. Inositol 1,4,5-trisphosphate receptor type 2 (ITPR2) is an endoplasmic reticulum calcium channel and shows stage-dependent high levels in postmitotic oligodendrocyte precursor cells (OPCs). The role and potential mechanism of ITPR2 in OLs remain unclear. In this study, it is revealed that loss of Itpr2 in OLs disturbs Ca2+ homeostasis and inhibits myelination in adolescent mice. Animals with OL-specific deletion of Itpr2 exhibit anxiety/depressive-like behaviors and manifest with interrupted OPC proliferation, leading to fewer mature OLs in the brain. Detailed transcriptome profiling and signal pathway analysis suggest that MAPK/ERK-CDK6/cyclin D1 axis underlies the interfered cell cycle progression in Itpr2 ablated OPCs. Besides, blocking MAPK/ERK pathway significantly improves the delayed OPC differentiation and myelination in Itpr2 mutant. Notably, the resting [Ca2+]i is increased in Itpr2 ablated OPCs, with the elevation of several plasma calcium channels. Antagonists against these plasma calcium channels can normalize the resting [Ca2+]i level and enhance lineage progression in Itpr2-ablated OPCs. Together, the findings reveal novel insights for calcium homeostasis in manipulating developmental transition from OPCs to pre-OLs; additionally, the involvement of OLs-originated ITPR2 in depressive behaviors provides new therapeutic strategies to alleviate myelin-associated psychiatric disorders.
Collapse
Affiliation(s)
- Ming Zhang
- Department of NeuroscienceAir Force Medical UniversityXi'an710032P. R. China
| | - Na Zhi
- Department of NeuroscienceAir Force Medical UniversityXi'an710032P. R. China
- College of Life SciencesNorthwest UniversityXi'an710127P. R. China
| | - Jiaxiang Feng
- Department of NeuroscienceAir Force Medical UniversityXi'an710032P. R. China
| | - Yingqi Liu
- Department of NeuroscienceAir Force Medical UniversityXi'an710032P. R. China
| | - Meixia Zhang
- School of Life Science and TechnologyXi'an Jiaotong UniversityXi'an710049P. R. China
| | - Dingxi Liu
- First Affiliated Hospital of Medical CollegeXi'an Jiaotong UniversityXi'an710061P. R. China
| | - Jie Yuan
- Department of NeuroscienceAir Force Medical UniversityXi'an710032P. R. China
- College of Life SciencesNorthwest UniversityXi'an710127P. R. China
| | - Yuhao Dong
- Department of NeuroscienceAir Force Medical UniversityXi'an710032P. R. China
| | - Sufang Jiang
- Department of NeuroscienceAir Force Medical UniversityXi'an710032P. R. China
| | - Junye Ge
- Department of NeuroscienceAir Force Medical UniversityXi'an710032P. R. China
| | - Shengxi Wu
- Department of NeuroscienceAir Force Medical UniversityXi'an710032P. R. China
| | - Xianghui Zhao
- Department of NeuroscienceAir Force Medical UniversityXi'an710032P. R. China
| |
Collapse
|
13
|
Luchicchi A, Muñoz‐Gonzalez G, Halperin ST, Strijbis E, van Dijk LHM, Foutiadou C, Uriac F, Bouman PM, Schouten MAN, Plemel J, 't Hart BA, Geurts JJG, Schenk GJ. Micro-diffusely abnormal white matter: An early multiple sclerosis lesion phase with intensified myelin blistering. Ann Clin Transl Neurol 2024; 11:973-988. [PMID: 38425098 PMCID: PMC11021636 DOI: 10.1002/acn3.52015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/03/2024] [Accepted: 01/25/2024] [Indexed: 03/02/2024] Open
Abstract
OBJECTIVE Multiple sclerosis (MS) is a chronic central nervous system disease whose white matter lesion origin remains debated. Recently, we reported subtle changes in the MS normal appearing white matter (NAWM), presenting with an increase in myelin blisters and myelin protein citrullination, which may recapitulate some of the prodromal degenerative processes involved in MS pathogenesis. Here, to clarify the relevance of these changes for subsequent MS myelin degeneration we explored their prevalence in WM regions characterized by subtly reduced myelination (dubbed as micro-diffusely abnormal white matter, mDAWM). METHODS We used an in-depth (immuno)histochemistry approach in 27 MS donors with histological presence of mDAWM and 5 controls. An antibody panel against degenerative markers was combined and the presence of myelin/axonal aberrations was analyzed and compared with the NAWM from the same cases/slices/regions. RESULTS mDAWM-defined areas exhibit ill-defined borders, no signs of Wallerian degeneration, and they associate with visible veins. Remarkably, such areas present with augmented myelin blister frequency, enhanced prevalence of polar myelin phospholipids, citrullination, and degradation of myelin basic protein (MBP) when compared with the NAWM. Furthermore, enhanced reactivity of microglia/macrophages against citrullinated MBP was also observed in this tissue. INTERPRETATION We report a new histologically defined early phase in MS lesion formation, namely mDAWM, which lacks signs of Wallerian pathology. These results support the prelesional nature of the mDAWM. We conceptualize that evolution to pathologically evident lesions comprises the previously documented imbalance of axo-myelinic units (myelin blistering) leading to their degeneration and immune system activation by released myelin components.
Collapse
Affiliation(s)
- Antonio Luchicchi
- Department of Anatomy and NeurosciencesAmsterdam University Medical Centers, location VU Medical Center, Amsterdam NeuroscienceAmsterdamthe Netherlands
- MS Centrum Amsterdam, Amsterdam University Medical Centers, location VU Medical CenterAmsterdamthe Netherlands
| | - Gema Muñoz‐Gonzalez
- Department of Anatomy and NeurosciencesAmsterdam University Medical Centers, location VU Medical Center, Amsterdam NeuroscienceAmsterdamthe Netherlands
- MS Centrum Amsterdam, Amsterdam University Medical Centers, location VU Medical CenterAmsterdamthe Netherlands
| | - Saar T. Halperin
- Department of Anatomy and NeurosciencesAmsterdam University Medical Centers, location VU Medical Center, Amsterdam NeuroscienceAmsterdamthe Netherlands
- MS Centrum Amsterdam, Amsterdam University Medical Centers, location VU Medical CenterAmsterdamthe Netherlands
| | - Eva Strijbis
- MS Centrum Amsterdam, Amsterdam University Medical Centers, location VU Medical CenterAmsterdamthe Netherlands
- Department of NeurologyAmsterdam University Medical Centers, location VU Medical CenterAmsterdamthe Netherlands
| | - Laura H. M. van Dijk
- Department of Anatomy and NeurosciencesAmsterdam University Medical Centers, location VU Medical Center, Amsterdam NeuroscienceAmsterdamthe Netherlands
| | - Chrisa Foutiadou
- Department of Anatomy and NeurosciencesAmsterdam University Medical Centers, location VU Medical Center, Amsterdam NeuroscienceAmsterdamthe Netherlands
| | - Florence Uriac
- Department of Anatomy and NeurosciencesAmsterdam University Medical Centers, location VU Medical Center, Amsterdam NeuroscienceAmsterdamthe Netherlands
| | - Piet M. Bouman
- Department of Anatomy and NeurosciencesAmsterdam University Medical Centers, location VU Medical Center, Amsterdam NeuroscienceAmsterdamthe Netherlands
- MS Centrum Amsterdam, Amsterdam University Medical Centers, location VU Medical CenterAmsterdamthe Netherlands
| | - Maxime A. N. Schouten
- Department of Anatomy and NeurosciencesAmsterdam University Medical Centers, location VU Medical Center, Amsterdam NeuroscienceAmsterdamthe Netherlands
- MS Centrum Amsterdam, Amsterdam University Medical Centers, location VU Medical CenterAmsterdamthe Netherlands
| | - Jason Plemel
- Department of NeuroscienceUniversity of AlbertaEdmontonAlbertaCanada
| | - Bert A. 't Hart
- Department of Anatomy and NeurosciencesAmsterdam University Medical Centers, location VU Medical Center, Amsterdam NeuroscienceAmsterdamthe Netherlands
- MS Centrum Amsterdam, Amsterdam University Medical Centers, location VU Medical CenterAmsterdamthe Netherlands
| | - Jeroen J. G. Geurts
- Department of Anatomy and NeurosciencesAmsterdam University Medical Centers, location VU Medical Center, Amsterdam NeuroscienceAmsterdamthe Netherlands
- MS Centrum Amsterdam, Amsterdam University Medical Centers, location VU Medical CenterAmsterdamthe Netherlands
| | - Geert J. Schenk
- Department of Anatomy and NeurosciencesAmsterdam University Medical Centers, location VU Medical Center, Amsterdam NeuroscienceAmsterdamthe Netherlands
- MS Centrum Amsterdam, Amsterdam University Medical Centers, location VU Medical CenterAmsterdamthe Netherlands
| |
Collapse
|
14
|
Ishibashi S, Kamei N, Tsuchikawa Y, Nakamae T, Akimoto T, Miyaki S, Adachi N. Myelin-Specific microRNA-23a/b Cluster Deletion Inhibits Myelination in the Central Nervous System during Postnatal Growth and Aging. Genes (Basel) 2024; 15:402. [PMID: 38674338 PMCID: PMC11049049 DOI: 10.3390/genes15040402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/28/2024] Open
Abstract
Microribonucleic acids (miRNAs) comprising miR-23a/b clusters, specifically miR-23a and miR-27a, are recognized for their divergent roles in myelination within the central nervous system. However, cluster-specific miRNA functions remain controversial as miRNAs within the same cluster have been suggested to function complementarily. This study aims to clarify the role of miR-23a/b clusters in myelination using mice with a miR-23a/b cluster deletion (KO mice), specifically in myelin expressing proteolipid protein (PLP). Inducible conditional KO mice were generated by crossing miR-23a/b clusterflox/flox mice with PlpCre-ERT2 mice; the offspring were injected with tamoxifen at 10 days or 10 weeks of age to induce a myelin-specific miR-23a/b cluster deletion. Evaluation was performed at 10 weeks or 12 months of age and compared with control mice that were not treated with tamoxifen. KO mice exhibit impaired motor function and hypoplastic myelin sheaths in the brain and spinal cord at 10 weeks and 12 months of age. Simultaneously, significant decreases in myelin basic protein (MBP) and PLP expression occur in KO mice. The percentages of oligodendrocyte precursors and mature oligodendrocytes are consistent between the KO and control mice. However, the proportion of oligodendrocytes expressing MBP is significantly lower in KO mice. Moreover, changes in protein expression occur in KO mice, with increased leucine zipper-like transcriptional regulator 1 expression, decreased R-RAS expression, and decreased phosphorylation of extracellular signal-regulated kinases. These findings highlight the significant influence of miR-23a/b clusters on myelination during postnatal growth and aging.
Collapse
Affiliation(s)
- Shigeki Ishibashi
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (S.I.); (T.N.); (S.M.); (N.A.)
| | - Naosuke Kamei
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (S.I.); (T.N.); (S.M.); (N.A.)
| | - Yuji Tsuchikawa
- Orthopedics and Micro-Surgical Spine Center, Hiroshima City North Medical Center Asa Citizens Hospital, Hiroshima 731-0293, Japan;
| | - Toshio Nakamae
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (S.I.); (T.N.); (S.M.); (N.A.)
| | - Takayuki Akimoto
- Faculty of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan;
| | - Shigeru Miyaki
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (S.I.); (T.N.); (S.M.); (N.A.)
- Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Nobuo Adachi
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (S.I.); (T.N.); (S.M.); (N.A.)
| |
Collapse
|
15
|
Zheng C, Tu C, Wang J, Yu Y, Guo X, Sun J, Sun J, Cai W, Yang Q, Sun T. Deciphering Oligodendrocyte Lineages in the Human Fetal Central Nervous System Using Single-Cell RNA Sequencing. Mol Neurobiol 2024; 61:1737-1752. [PMID: 37775719 DOI: 10.1007/s12035-023-03661-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 09/12/2023] [Indexed: 10/01/2023]
Abstract
Oligodendrocytes form myelin sheaths and wrap axons of neurons to facilitate various crucial neurological functions. Oligodendrocyte progenitor cells (OPCs) persist in the embryonic, postnatal, and adult central nervous system (CNS). OPCs and mature oligodendrocytes are involved in a variety of biological processes such as memory, learning, and diseases. How oligodendrocytes are specified in different regions in the CNS, in particular in humans, remains obscure. We here explored oligodendrocyte development in three CNS regions, subpallium, brainstem, and spinal cord, in human fetuses from gestational week 8 (GW8) to GW12 using single-cell RNA sequencing. We detected multiple lineages of OPCs and illustrated distinct developmental trajectories of oligodendrocyte differentiation in three CNS regions. We also identified major genes, particularly transcription factors, which maintain status of OPC proliferation and promote generation of mature oligodendrocytes. Moreover, we discovered new marker genes that might be crucial for oligodendrocyte specification in humans, and detected common and distinct genes expressed in oligodendrocyte lineages in three CNS regions. Our study has demonstrated molecular heterogeneity of oligodendrocyte lineages in different CNS regions and provided references for further investigation of roles of important genes in oligodendrocyte development in humans.
Collapse
Affiliation(s)
- Chenlin Zheng
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian, China
| | - Chao Tu
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian, China
| | - Jing Wang
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian, China
| | - Yuan Yu
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian, China
| | - Xueyu Guo
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian, China
| | - Jason Sun
- Maple Glory United School, Xiamen, Fujian, China
- Xiamen Institute of Technology Attached School, Xiamen, Fujian, China
| | - Julianne Sun
- Maple Glory United School, Xiamen, Fujian, China
- Xiamen Institute of Technology Attached School, Xiamen, Fujian, China
| | - Wenjie Cai
- Department of Radiation Oncology, First Hospital of Quanzhou, Fujian Medical University, Quanzhou, Fujian, China
| | - Qingwei Yang
- Department of Neurology, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Tao Sun
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian, China.
| |
Collapse
|
16
|
Looser ZJ, Faik Z, Ravotto L, Zanker HS, Jung RB, Werner HB, Ruhwedel T, Möbius W, Bergles DE, Barros LF, Nave KA, Weber B, Saab AS. Oligodendrocyte-axon metabolic coupling is mediated by extracellular K + and maintains axonal health. Nat Neurosci 2024; 27:433-448. [PMID: 38267524 PMCID: PMC10917689 DOI: 10.1038/s41593-023-01558-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/13/2023] [Indexed: 01/26/2024]
Abstract
The integrity of myelinated axons relies on homeostatic support from oligodendrocytes (OLs). To determine how OLs detect axonal spiking and how rapid axon-OL metabolic coupling is regulated in the white matter, we studied activity-dependent calcium (Ca2+) and metabolite fluxes in the mouse optic nerve. We show that fast axonal spiking triggers Ca2+ signaling and glycolysis in OLs. OLs detect axonal activity through increases in extracellular potassium (K+) concentrations and activation of Kir4.1 channels, thereby regulating metabolite supply to axons. Both pharmacological inhibition and OL-specific inactivation of Kir4.1 reduce the activity-induced axonal lactate surge. Mice lacking oligodendroglial Kir4.1 exhibit lower resting lactate levels and altered glucose metabolism in axons. These early deficits in axonal energy metabolism are associated with late-onset axonopathy. Our findings reveal that OLs detect fast axonal spiking through K+ signaling, making acute metabolic coupling possible and adjusting the axon-OL metabolic unit to promote axonal health.
Collapse
Affiliation(s)
- Zoe J Looser
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Zainab Faik
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Luca Ravotto
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Henri S Zanker
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Ramona B Jung
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Hauke B Werner
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Torben Ruhwedel
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Wiebke Möbius
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Dwight E Bergles
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| | - L Felipe Barros
- Centro de Estudios Científicos (CECs), Valdivia, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia, Chile
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Bruno Weber
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Aiman S Saab
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.
- Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
17
|
Kim KH, Lim SH, Hwang JH, Lee J. Inhibition of Glial Activation and Subsequent Reduction in White Matter Damage through Supplementation with a Combined Extract of Wheat Bran, Citrus Peel, and Jujube in a Rat Model of Vascular Dementia. Curr Issues Mol Biol 2024; 46:1485-1502. [PMID: 38392214 PMCID: PMC10888096 DOI: 10.3390/cimb46020096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
Vascular dementia (VaD) is the second most common type of dementia after Alzheimer's disease. In our previous studies, we showed that wheat bran extract (WBE) reduced white matter damage in a rat VaD model and improved memory in a human clinical trial. However, starch gelatinization made the large-scale preparation of WBE difficult. To simplify the manufacturing process and increase efficacy, we attempted to find a decoction containing an optimum ratio of wheat bran, sliced citrus peel, and sliced jujube (WCJ). To find an optimal ratio, the cell survival of C6 (rat glioma) cultured under hypoxic conditions (1% O2) was measured, and apoptosis was assessed. To confirm the efficacies of the optimized WCJ for VaD, pupillary light reflex, white matter damage, and the activation of astrocytes and microglia were assessed in a rat model of bilateral common carotid artery occlusion (BCCAO) causing chronic hypoperfusion. Using a combination of both searching the literature and cell survival experiments, we chose 6:2:1 as the optimal ratio of wheat bran to sliced citrus peel to sliced jujube to prepare WCJ. We showed that phytic acid contained only in wheat bran can be used as an indicator component for the quality control of WCJ. We observed in vitro that the WCJ treatment improved cell survival by reducing apoptosis through an increase in the Bcl-2/Bax ratio. In the BCCAO experiments, the WCJ-supplemented diet prevented astrocytic and microglial activation, mitigated myelin damage in the corpus callosum and optic tract, and, consequently, improved pupillary light reflex at dosages over 100 mg/kg/day. The results suggest that the consumption of WCJ can prevent VaD by reducing white matter damage, and WCJ can be developed as a safe, herbal medicine to prevent VaD.
Collapse
Affiliation(s)
- Ki Hong Kim
- Department of Neurosurgery, School of Medicine, Daegu Catholic University, Daegu 42105, Republic of Korea
| | - Sun-Ha Lim
- DigmBio, Inc., Seongnam 13486, Republic of Korea
| | - Jeong Hyun Hwang
- Department of Neurosurgery, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Jongwon Lee
- Department of Biochemistry, School of Medicine, Daegu Catholic University, Daegu 42105, Republic of Korea
| |
Collapse
|
18
|
Shan F, Zhang N, Yao X, Li Y, Wang Z, Zhang C, Wang Y. Mechanosensitive channel of large conductance enhances the mechanical stretching-induced upregulation of glycolysis and oxidative metabolism in Schwann cells. Cell Commun Signal 2024; 22:93. [PMID: 38302971 PMCID: PMC10835878 DOI: 10.1186/s12964-024-01497-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 01/21/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Physical exercise directly stretching the peripheral nerve promotes nerve regeneration; however, its action mechanism remains elusive. Our present study aimed to investigate the effects of mechanosensitive channel of large conductance (MscL) activated by mechanical stretching on the cultured Schwann cells (SCs) and explore the possible mechanism. METHODS Primary SCs from neonatal mice at 3-5 days of age were derived and transfected with the lentivirus vector expressing a mutant version of MscL, MscL-G22S. We first detected the cell viability and calcium ion (Ca2+) influx in the MscL-G22S-expressing SCs with low-intensity mechanical stretching and the controls. Proteomic and energy metabolomics analyses were performed to investigate the comprehensive effects of MscL-G22S activation on SCs. Measurement of glycolysis- and oxidative phosphorylation-related molecules and ATP production were respectively performed to further validate the effects of MscL-G22S activation on SCs. Finally, the roles of phosphatidylinositol-3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling pathway in the mechanism of energy metabolism modulation of SCs by MscL-G22S activation was investigated. RESULTS Mechanical stretching-induced MscL-G22S activation significantly increased the cell viability and Ca2+ influx into the SCs. Both the proteomic and targeted energy metabolomics analysis indicated the upregulation of energy metabolism as the main action mechanism of MscL-G22S-activation on SCs. MscL-G22S-activated SCs showed significant upregulation of glycolysis and oxidative phosphorylation when SCs with stretching alone had only mild upregulation of energy metabolism than those without stimuli. MscL-G22S activation caused significant phosphorylation of the PI3K/AKT/mTOR signaling pathway and upregulation of HIF-1α/c-Myc. Inhibition of PI3K abolished the MscL-G22S activation-induced upregulation of HIF-1α/c-Myc signaling in SCs and reduced the levels of glycolysis- and oxidative phosphorylation-related substrates and mitochondrial activity. CONCLUSION Mechanical stretching activates MscL-G22S to significantly promote the energy metabolism of SCs and the production of energic substrates, which may be applied to enhance nerve regeneration via the glia-axonal metabolic coupling.
Collapse
Affiliation(s)
- Fangzhen Shan
- Medical Research Centre, Affiliated Hospital of Jining Medical University, Jining, Shandong Province, China
| | - Nannan Zhang
- Department of Respiratory and Critical Care, Affiliated Hospital of Jining Medical University, Jining, Shandong Province, China
| | - Xiaoying Yao
- Medical Research Centre, Affiliated Hospital of Jining Medical University, Jining, Shandong Province, China
| | - Yi Li
- Department of Neurology, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Jining City, Shandong Province, 272029, China
| | - Zihao Wang
- Cheeloo Medical College, Shandong University, Jinan, Shandong Province, China
| | - Chuanji Zhang
- College of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Yuzhong Wang
- Medical Research Centre, Affiliated Hospital of Jining Medical University, Jining, Shandong Province, China.
- Department of Neurology, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Jining City, Shandong Province, 272029, China.
| |
Collapse
|
19
|
Bormann D, Knoflach M, Poreba E, Riedl CJ, Testa G, Orset C, Levilly A, Cottereau A, Jauk P, Hametner S, Golabi B, Copic D, Klas K, Direder M, Kühtreiber H, Salek M, zur Nedden S, Baier-Bitterlich G, Kiechl S, Haider C, Endmayr V, Höftberger R, Ankersmit HJ, Mildner M. Single nucleus RNA sequencing reveals glial cell type-specific responses to ischemic stroke. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.26.573302. [PMID: 38234821 PMCID: PMC10793395 DOI: 10.1101/2023.12.26.573302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Reactive neuroglia critically shape the braińs response to ischemic stroke. However, their phenotypic heterogeneity impedes a holistic understanding of the cellular composition and microenvironment of the early ischemic lesion. Here we generated a single cell resolution transcriptomics dataset of the injured brain during the acute recovery from permanent middle cerebral artery occlusion. This approach unveiled infarction and subtype specific molecular signatures in oligodendrocyte lineage cells and astrocytes, which ranged among the most transcriptionally perturbed cell types in our dataset. Specifically, we characterized and compared infarction restricted proliferating oligodendrocyte precursor cells (OPCs), mature oligodendrocytes and heterogeneous reactive astrocyte populations. Our analyses unveiled unexpected commonalities in the transcriptional response of oligodendrocyte lineage cells and astrocytes to ischemic injury. Moreover, OPCs and reactive astrocytes were involved in a shared immuno-glial cross talk with stroke specific myeloid cells. In situ, osteopontin positive myeloid cells accumulated in close proximity to proliferating OPCs and reactive astrocytes, which expressed the osteopontin receptor CD44, within the perilesional zone specifically. In vitro, osteopontin increased the migratory capacity of OPCs. Collectively, our study highlights molecular cross talk events which might govern the cellular composition and microenvironment of infarcted brain tissue in the early stages of recovery.
Collapse
Affiliation(s)
- Daniel Bormann
- Applied Immunology Laboratory, Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria
- Aposcience AG, 1200 Vienna, Austria
| | - Michael Knoflach
- Department of Neurology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
- VASCage, Research Centre on Vascular Ageing and Stroke, 6020 Innsbruck, Austria
| | - Emilia Poreba
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Christian J. Riedl
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria
| | - Giulia Testa
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria
| | - Cyrille Orset
- Normandie University, UNICAEN, ESR3P, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), Caen, France
- Department of Clinical Research, Caen-Normandie University Hospital, Caen, France
| | - Anthony Levilly
- Normandie University, UNICAEN, ESR3P, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), Caen, France
- Department of Clinical Research, Caen-Normandie University Hospital, Caen, France
| | - Andreá Cottereau
- Normandie University, UNICAEN, ESR3P, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), Caen, France
- Department of Clinical Research, Caen-Normandie University Hospital, Caen, France
| | - Philipp Jauk
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria
| | - Simon Hametner
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria
| | - Bahar Golabi
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Dragan Copic
- Applied Immunology Laboratory, Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria
- Aposcience AG, 1200 Vienna, Austria
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria
| | - Katharina Klas
- Applied Immunology Laboratory, Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria
- Aposcience AG, 1200 Vienna, Austria
| | - Martin Direder
- Applied Immunology Laboratory, Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria
- Aposcience AG, 1200 Vienna, Austria
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Hannes Kühtreiber
- Applied Immunology Laboratory, Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria
- Aposcience AG, 1200 Vienna, Austria
| | - Melanie Salek
- Applied Immunology Laboratory, Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria
- Aposcience AG, 1200 Vienna, Austria
| | - Stephanie zur Nedden
- Institute of Neurobiochemistry, CCB-Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Gabriele Baier-Bitterlich
- Institute of Neurobiochemistry, CCB-Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Stefan Kiechl
- Department of Neurology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
- VASCage, Research Centre on Vascular Ageing and Stroke, 6020 Innsbruck, Austria
| | - Carmen Haider
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria
| | - Verena Endmayr
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria
| | - Romana Höftberger
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria
| | - Hendrik J. Ankersmit
- Applied Immunology Laboratory, Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria
- Aposcience AG, 1200 Vienna, Austria
| | - Michael Mildner
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
20
|
Benarroch E. What Are the Roles of Oligodendrocyte Precursor Cells in Normal and Pathologic Conditions? Neurology 2023; 101:958-965. [PMID: 37985182 PMCID: PMC10663025 DOI: 10.1212/wnl.0000000000208000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 11/22/2023] Open
|
21
|
Yuan T, Wang T, Zhang J, Liu P, Xu J, Gu Z, Xu J, Li Y. Robust and Multifunctional Nanoparticles Assembled from Natural Polyphenols and Metformin for Efficient Spinal Cord Regeneration. ACS NANO 2023; 17:18562-18575. [PMID: 37708443 DOI: 10.1021/acsnano.3c06991] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
The treatment of spinal cord injury (SCI) remains unsatisfactory owing to the complex pathophysiological microenvironments at the injury site and the limited regenerative potential of the central nervous system. Metformin has been proven in clinical and animal experiments to repair damaged structures and functions by promoting endogenous neurogenesis. However, in the early stage of acute SCI, the adverse pathophysiological microenvironment of the injury sites, such as reactive oxygen species and inflammatory factor storm, can prevent the activation of endogenous neural stem cells (NSCs) and the differentiation of NSCs into neurons, decreasing the whole repair effect. To address those issues, a series of robust and multifunctional natural polyphenol-metformin nanoparticles (polyphenol-Met NPs) were fabricated with pH-responsiveness and excellent antioxidative capacities. The resulting NPs possessed several favorable advantages: First, the NPs were composed of active ingredients with different biological properties, without the need for carriers; second, the pH-responsiveness feature could allow targeted drug delivery at the injured site; more importantly, NPs enabled drugs with different performances to exhibit strong synergistic effects. The results demonstrated that the improved microenvironment by natural polyphenols boosted the differentiation of activated NSCs into neurons and oligodendrocytes, which could efficiently repair the injured nerve structures and enhance the functional recovery of the SCI rats. This work highlighted the design and fabrication of robust and multifunctional NPs for SCI treatment via efficient microenvironmental regulation and targeted NSCs activation.
Collapse
Affiliation(s)
- Taoyang Yuan
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Tianyou Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Jianhua Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Pengyu Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Jiayi Xu
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhipeng Gu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Jianguo Xu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
22
|
Krämer-Albers EM, Werner HB. Mechanisms of axonal support by oligodendrocyte-derived extracellular vesicles. Nat Rev Neurosci 2023:10.1038/s41583-023-00711-y. [PMID: 37258632 DOI: 10.1038/s41583-023-00711-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2023] [Indexed: 06/02/2023]
Abstract
Extracellular vesicles (EVs) have recently emerged as versatile elements of cell communication in the nervous system, mediating tissue homeostasis. EVs influence the physiology of their target cells via horizontal transfer of molecular cargo between cells and by triggering signalling pathways. In this Review, we discuss recent work revealing that EVs mediate interactions between oligodendrocytes and neurons, which are relevant for maintaining the structural integrity of axons. In response to neuronal activity, myelinating oligodendrocytes release EVs, which are internalized by neurons and provide axons with key factors that improve axonal transport, stress resistance and energy homeostasis. Glia-to-neuron transfer of EVs is thus a crucial facet of axonal preservation. When glial support is impaired, axonal integrity is progressively lost, as observed in myelin-related disorders, other neurodegenerative diseases and with normal ageing. We highlight the mechanisms that oligodendroglial EVs use to sustain axonal integrity and function.
Collapse
Affiliation(s)
- Eva-Maria Krämer-Albers
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, Mainz, Germany.
| | - Hauke B Werner
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| |
Collapse
|
23
|
Stirling DP. Potential physiological and pathological roles for axonal ryanodine receptors. Neural Regen Res 2023; 18:756-759. [PMID: 36204832 PMCID: PMC9700104 DOI: 10.4103/1673-5374.354512] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/02/2022] [Accepted: 06/23/2022] [Indexed: 11/04/2022] Open
Abstract
Clinical disability following trauma or disease to the spinal cord often involves the loss of vital white matter elements including axons and glia. Although excessive Ca2+ is an established driver of axonal degeneration, therapeutically targeting externally sourced Ca2+ to date has had limited success in both basic and clinical studies. Contributing factors that may underlie this limited success include the complexity of the many potential sources of Ca2+ entry and the discovery that axons also contain substantial amounts of stored Ca2+ that if inappropriately released could contribute to axonal demise. Axonal Ca2+ storage is largely accomplished by the axoplasmic reticulum that is part of a continuous network of the endoplasmic reticulum that provides a major sink and source of intracellular Ca2+ from the tips of dendrites to axonal terminals. This "neuron-within-a-neuron" is positioned to rapidly respond to diverse external and internal stimuli by amplifying cytosolic Ca2+ levels and generating short and long distance regenerative Ca2+ waves through Ca2+ induced Ca2+ release. This review provides a glimpse into the molecular machinery that has been implicated in regulating ryanodine receptor mediated Ca2+ release in axons and how dysregulation and/or overstimulation of these internodal axonal signaling nanocomplexes may directly contribute to Ca2+-dependent axonal demise. Neuronal ryanodine receptors expressed in dendrites, soma, and axonal terminals have been implicated in synaptic transmission and synaptic plasticity, but a physiological role for internodal localized ryanodine receptors remains largely obscure. Plausible physiological roles for internodal ryanodine receptors and such an elaborate internodal binary membrane signaling network in axons will also be discussed.
Collapse
Affiliation(s)
- David P. Stirling
- Kentucky Spinal Cord Injury Research Center and Departments of Neurological Surgery, Anatomical Sciences and Neurobiology, Microbiology and Immunology, University of Louisville, School of Medicine, Louisville, KY, USA
| |
Collapse
|
24
|
He C, Duan S. Novel Insight into Glial Biology and Diseases. Neurosci Bull 2023; 39:365-367. [PMID: 36877440 PMCID: PMC10043134 DOI: 10.1007/s12264-023-01039-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 03/07/2023] Open
Affiliation(s)
- Cheng He
- Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Second Military Medical University, Shanghai, 200433, China.
| | - Shumin Duan
- Department of Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou, 310058, China
| |
Collapse
|
25
|
Recent Insights into the Functional Role of AMPA Receptors in the Oligodendrocyte Lineage Cells In Vivo. Int J Mol Sci 2023; 24:ijms24044138. [PMID: 36835546 PMCID: PMC9967469 DOI: 10.3390/ijms24044138] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
This review discusses the experimental findings of several recent studies which investigated the functional role of AMPA receptors (AMPARs) in oligodendrocyte lineage cells in vivo, in mice and in zebrafish. These studies provided valuable information showing that oligodendroglial AMPARs may be involved in the modulation of proliferation, differentiation, and migration of oligodendroglial progenitors, as well as survival of myelinating oligodendrocytes during physiological conditions in vivo. They also suggested that targeting the subunit composition of AMPARs may be an important strategy for treating diseases. However, at the same time, the experimental findings taken together still do not provide a clear picture on the topic. Hence, new ideas and new experimental designs are required for understanding the functional role of AMPARs in the oligodendrocyte lineage cells in vivo. It is also necessary to consider more closely the temporal and spatial aspects of AMPAR-mediated signalling in the oligodendrocyte lineage cells. These two important aspects are routinely discussed by neuronal physiologists studying glutamatergic synaptic transmission, but are rarely debated and thought about by researchers studying glial cells.
Collapse
|
26
|
Wang JQ, Gao MY, Gao R, Zhao KH, Zhang Y, Li X. Oligodendrocyte lineage cells: Advances in development, disease, and heterogeneity. J Neurochem 2023; 164:468-480. [PMID: 36415921 DOI: 10.1111/jnc.15728] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/03/2022] [Accepted: 11/13/2022] [Indexed: 11/24/2022]
Abstract
Oligodendrocyte progenitor cells (OPCs) originate in the ventricular zone (VZ) of the brain and spinal cord, and their primary function is to differentiate into oligodendrocytes (OLs). Studies have shown that OPCs and OLs are pathologically and physiologically heterogeneous. Previous transcriptome analyses used Bulk RNA-seq, which compares average gene expression in cells and does not allow for heterogeneity. In recent years, the development of single-cell sequencing (scRNA-seq) and single-cell nuclear sequencing (snRNA-seq) has allowed us to study an individual cell. In this review, sc/snRNA-seq was used to study the different subpopulations of OL lineage cells, their developmental trajectories, and their applications in related diseases. These techniques can distinguish different subpopulations of cells, and identify differentially expressed genes in particular cell types under certain conditions, such as treatment or disease. It is of great significance to the study of the occurrence, prevention, and treatment of various diseases.
Collapse
Affiliation(s)
- Jia-Qi Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Meng-Yuan Gao
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Rui Gao
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Ke-Han Zhao
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yuan Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xing Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
27
|
In Vitro 3D Modeling of Neurodegenerative Diseases. BIOENGINEERING (BASEL, SWITZERLAND) 2023; 10:bioengineering10010093. [PMID: 36671665 PMCID: PMC9855033 DOI: 10.3390/bioengineering10010093] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/29/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023]
Abstract
The study of neurodegenerative diseases (such as Alzheimer's disease, Parkinson's disease, Huntington's disease, or amyotrophic lateral sclerosis) is very complex due to the difficulty in investigating the cellular dynamics within nervous tissue. Despite numerous advances in the in vivo study of these diseases, the use of in vitro analyses is proving to be a valuable tool to better understand the mechanisms implicated in these diseases. Although neural cells remain difficult to obtain from patient tissues, access to induced multipotent stem cell production now makes it possible to generate virtually all neural cells involved in these diseases (from neurons to glial cells). Many original 3D culture model approaches are currently being developed (using these different cell types together) to closely mimic degenerative nervous tissue environments. The aim of these approaches is to allow an interaction between glial cells and neurons, which reproduces pathophysiological reality by co-culturing them in structures that recapitulate embryonic development or facilitate axonal migration, local molecule exchange, and myelination (to name a few). This review details the advantages and disadvantages of techniques using scaffolds, spheroids, organoids, 3D bioprinting, microfluidic systems, and organ-on-a-chip strategies to model neurodegenerative diseases.
Collapse
|
28
|
Yang Z, Gong M, Yang C, Chen C, Zhang K. Applications of Induced Pluripotent Stem Cell-Derived Glia in Brain Disease Research and Treatment. Handb Exp Pharmacol 2023; 281:103-140. [PMID: 37735301 DOI: 10.1007/164_2023_697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Glia are integral components of neural networks and are crucial in both physiological functions and pathological processes of the brain. Many brain diseases involve glial abnormalities, including inflammatory changes, mitochondrial damage, calcium signaling disturbance, hemichannel opening, and loss of glutamate transporters. Induced pluripotent stem cell (iPSC)-derived glia provide opportunities to study the contributions of glia in human brain diseases. These cells have been used for human disease modeling as well as generating new therapies. This chapter introduces glial involvement in brain diseases, then summarizes different methods of generating iPSC-derived glia disease models of these cells. Finally, strategies for treating disease using iPSC-derived glia are discussed. The goal of this chapter is to provide an overview and shed light on the applications of iPSC-derived glia in brain disease research and treatment.
Collapse
Affiliation(s)
- Zhiqi Yang
- Brain Research Center and State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University, Chongqing, China
| | - Mingyue Gong
- Brain Research Center and State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University, Chongqing, China
| | - Chuanyan Yang
- Brain Research Center and State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University, Chongqing, China
| | - Chunhai Chen
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Kuan Zhang
- Brain Research Center and State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University, Chongqing, China.
| |
Collapse
|
29
|
Sabet MF, Barman S, Beller M, Meuth SG, Melzer N, Aktas O, Goebels N, Prozorovski T. Myelinating Co-Culture as a Model to Study Anti-NMDAR Neurotoxicity. Int J Mol Sci 2022; 24:ijms24010248. [PMID: 36613687 PMCID: PMC9820503 DOI: 10.3390/ijms24010248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/06/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Anti-NMDA receptor (NMDAR) encephalitis is frequently associated with demyelinating disorders (e.g., multiple sclerosis (MS), neuromyelitis optica spectrum disorder (NMOSD), myelin oligodendrocyte glycoprotein-associated disease (MOGAD)) with regard to clinical presentation, neuropathological and cerebrospinal fluid findings. Indeed, autoantibodies (AABs) against the GluN1 (NR1) subunit of the NMDAR diminish glutamatergic transmission in both neurons and oligodendrocytes, leading to a state of NMDAR hypofunction. Considering the vital role of oligodendroglial NMDAR signaling in neuron-glia communication and, in particular, in tightly regulated trophic support to neurons, the influence of GluN1 targeting on the physiology of myelinated axon may be of importance. We applied a myelinating spinal cord cell culture model that contains all major CNS cell types, to evaluate the effects of a patient-derived GluN1-specific monoclonal antibody (SSM5) on neuronal and myelin integrity. A non-brain reactive (12D7) antibody was used as the corresponding isotype control. We show that in cultures at the late stage of myelination, prolonged treatment with SSM5, but not 12D7, leads to neuronal damage. This is characterized by neurite blebbing and fragmentation, and a reduction in the number of myelinated axons. However, this significant toxic effect of SSM5 was not observed in earlier cultures at the beginning of myelination. Anti-GluN1 AABs induce neurodegenerative changes and associated myelin loss in myelinated spinal cord cultures. These findings may point to the higher vulnerability of myelinated neurons towards interference in glutamatergic communication, and may refer to the disturbance of the NMDAR-mediated oligodendrocyte metabolic supply. Our work contributes to the understanding of the emerging association of NMDAR encephalitis with demyelinating disorders.
Collapse
Affiliation(s)
- Mercedeh Farhat Sabet
- Department of Neurology, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Sumanta Barman
- Department of Neurology, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Mathias Beller
- Institut für Mathematische Modellierung Biologischer Systeme, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Sven G. Meuth
- Department of Neurology, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Nico Melzer
- Department of Neurology, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Orhan Aktas
- Department of Neurology, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Norbert Goebels
- Department of Neurology, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
- Correspondence: (N.G.); (T.P.); Tel.: +49-211-81-04594 (N.G.); +49-211-81-05146 (T.P.)
| | - Tim Prozorovski
- Department of Neurology, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
- Correspondence: (N.G.); (T.P.); Tel.: +49-211-81-04594 (N.G.); +49-211-81-05146 (T.P.)
| |
Collapse
|
30
|
Han S, Gim Y, Jang EH, Hur EM. Functions and dysfunctions of oligodendrocytes in neurodegenerative diseases. Front Cell Neurosci 2022; 16:1083159. [PMID: 36605616 PMCID: PMC9807813 DOI: 10.3389/fncel.2022.1083159] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Neurodegenerative diseases (NDDs) are characterized by the progressive loss of selectively vulnerable populations of neurons, which is responsible for the clinical symptoms. Although degeneration of neurons is a prominent feature that undoubtedly contributes to and defines NDD pathology, it is now clear that neuronal cell death is by no means mediated solely by cell-autonomous mechanisms. Oligodendrocytes (OLs), the myelinating cells of the central nervous system (CNS), enable rapid transmission of electrical signals and provide metabolic and trophic support to neurons. Recent evidence suggests that OLs and their progenitor population play a role in the onset and progression of NDDs. In this review, we discuss emerging evidence suggesting a role of OL lineage cells in the pathogenesis of age-related NDDs. We start with multiple system atrophy, an NDD with a well-known oligodendroglial pathology, and then discuss Alzheimer's disease (AD) and Parkinson's disease (PD), NDDs which have been thought of as neuronal origins. Understanding the functions and dysfunctions of OLs might lead to the advent of disease-modifying strategies against NDDs.
Collapse
Affiliation(s)
- Seungwan Han
- Laboratory of Neuroscience, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
- BK21 Four Future Veterinary Medicine Leading Education and Research Center, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Yunho Gim
- Laboratory of Neuroscience, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
- BK21 Four Future Veterinary Medicine Leading Education and Research Center, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Eun-Hae Jang
- Laboratory of Neuroscience, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
- Comparative Medicine Disease Research Center, Seoul National University, Seoul, South Korea
| | - Eun-Mi Hur
- Laboratory of Neuroscience, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
- BK21 Four Future Veterinary Medicine Leading Education and Research Center, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
- Comparative Medicine Disease Research Center, Seoul National University, Seoul, South Korea
- Interdisciplinary Program in Neuroscience, College of Natural Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
31
|
Tsutsui S, Morgan M, Tedford H, You H, Zamponi GW, Stys PK. Copper ions, prion protein and Aβ modulate Ca levels in central nervous system myelin in an NMDA receptor-dependent manner. Mol Brain 2022; 15:67. [PMID: 35883145 PMCID: PMC9327403 DOI: 10.1186/s13041-022-00955-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 07/12/2022] [Indexed: 11/10/2022] Open
Abstract
As in neurons, CNS myelin expresses N-Methyl-D-Aspartate Receptors (NMDARs) that subserve physiological roles, but have the potential to induce injury to this vital element. Using 2-photon imaging of myelinic Ca in live ex vivo mouse optic nerves, we show that Cu ions potently modulate Ca levels in an NMDAR-dependent manner. Chelating Cu in the perfusate induced a substantial increase in Ca levels, and also caused significant axo-myelinic injury. Myelinic NMDARs are shown to be regulated by cellular prion protein; only in prion protein KO optic nerves does application of NMDA + D-serine induce a large Ca increase, consistent with strong desensitization of these receptors in the presence of prion protein limiting Ca overload. Aβ1-42 peptide induced a large Ca increase that was also Cu-dependent, and was blocked by NMDAR antagonism. Our results indicate that like in neurons, myelinic NMDARs permeate potentially injurious amounts of Ca, and are also potently regulated by micromolar Cu and activated by Aβ1-42 peptides. These findings shed mechanistic light on the important primary white matter injury frequently observed in Alzheimer's brain.
Collapse
Affiliation(s)
- Shigeki Tsutsui
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, T2N 4N1, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Megan Morgan
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, T2N 4N1, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Hugo Tedford
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, T2N 4N1, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Haitao You
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, T2N 4N1, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Gerald W Zamponi
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, T2N 4N1, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Peter K Stys
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, T2N 4N1, Canada. .,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
32
|
Li J, Xu Y, Zhu H, Wang Y, Li P, Wang D. The dark side of synaptic proteins in tumours. Br J Cancer 2022; 127:1184-1192. [PMID: 35624299 DOI: 10.1038/s41416-022-01863-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/21/2022] [Accepted: 05/11/2022] [Indexed: 11/09/2022] Open
Abstract
Research in the past decade has uncovered the essential role of the nervous system in the tumour microenvironment. The recent advances in cancer neuroscience, especially the discovery of neuron-tumour synaptic/perisynaptic structures, have revealed the dark side of synaptic proteins in the progression of brain tumours. Here, we provide an overview of the synaptic proteins expressed by tumour cells and analyse their molecular functions and organisation by comparing them with neuronal synaptic proteins. We focus on the studies of neuroligin-3, the glutamate receptors AMPAR and NMDAR and the synaptic scaffold protein DLGAP1, for their newly discovered regulatory role in the proliferation and progression of tumours. Progress in cancer neuroscience has brought novel insights into the treatment of cancers. In the last part of this review, we discuss the therapeutical strategies targeting synaptic proteins and the current challenges and possible toolkits regarding their clinical application in cancer treatment. Our understanding of cancer neuroscience is still in its infancy; deeper investigation of how tumour cells co-opt synaptic signaling will help fulfil the therapeutical potential of the synaptic proteins as promising anti-tumour targets.
Collapse
Affiliation(s)
- Jing Li
- Institute for Translational Medicine, the Affiliated Hospital of Qingdao University, Medical College, Qingdao University, 266021, Qingdao, China.
| | - Yalan Xu
- Institute for Translational Medicine, the Affiliated Hospital of Qingdao University, Medical College, Qingdao University, 266021, Qingdao, China
| | - Hai Zhu
- Department of Urology, Qingdao Municipal Hospital Affiliated to Qingdao University, 266011, Qingdao, China
| | - Yin Wang
- Institute for Translational Medicine, the Affiliated Hospital of Qingdao University, Medical College, Qingdao University, 266021, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, the Affiliated Hospital of Qingdao University, Medical College, Qingdao University, 266021, Qingdao, China
| | - Dong Wang
- Institute for Translational Medicine, the Affiliated Hospital of Qingdao University, Medical College, Qingdao University, 266021, Qingdao, China
| |
Collapse
|
33
|
Collongues N, Becker G, Jolivel V, Ayme-Dietrich E, de Seze J, Binamé F, Patte-Mensah C, Monassier L, Mensah-Nyagan AG. A Narrative Review on Axonal Neuroprotection in Multiple Sclerosis. Neurol Ther 2022; 11:981-1042. [PMID: 35610531 PMCID: PMC9338208 DOI: 10.1007/s40120-022-00363-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/03/2022] [Indexed: 01/08/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) resulting in demyelination and neurodegeneration. The therapeutic strategy is now largely based on reducing inflammation with immunosuppressive drugs. Unfortunately, when disease progression is observed, no drug offers neuroprotection apart from its anti-inflammatory effect. In this review, we explore current knowledge on the assessment of neurodegeneration in MS and look at putative targets that might prove useful in protecting the axon from degeneration. Among them, Bruton's tyrosine kinase inhibitors, anti-apoptotic and antioxidant agents, sex hormones, statins, channel blockers, growth factors, and molecules preventing glutamate excitotoxicity have already been studied. Some of them have reached phase III clinical trials and carry a great message of hope for our patients with MS.
Collapse
Affiliation(s)
- Nicolas Collongues
- Department of Neurology, University Hospital of Strasbourg, Strasbourg, France. .,Center for Clinical Investigation, INSERM U1434, Strasbourg, France. .,Biopathology of Myelin, Neuroprotection and Therapeutic Strategy, INSERM U1119, Strasbourg, France. .,University Department of Pharmacology, Addictology, Toxicology and Therapeutic, Strasbourg University, Strasbourg, France.
| | - Guillaume Becker
- University Department of Pharmacology, Addictology, Toxicology and Therapeutic, Strasbourg University, Strasbourg, France.,NeuroCardiovascular Pharmacology and Toxicology Laboratory, UR7296, University Hospital of Strasbourg, Strasbourg, France
| | - Valérie Jolivel
- Biopathology of Myelin, Neuroprotection and Therapeutic Strategy, INSERM U1119, Strasbourg, France
| | - Estelle Ayme-Dietrich
- University Department of Pharmacology, Addictology, Toxicology and Therapeutic, Strasbourg University, Strasbourg, France.,NeuroCardiovascular Pharmacology and Toxicology Laboratory, UR7296, University Hospital of Strasbourg, Strasbourg, France
| | - Jérôme de Seze
- Department of Neurology, University Hospital of Strasbourg, Strasbourg, France.,Center for Clinical Investigation, INSERM U1434, Strasbourg, France.,Biopathology of Myelin, Neuroprotection and Therapeutic Strategy, INSERM U1119, Strasbourg, France
| | - Fabien Binamé
- Biopathology of Myelin, Neuroprotection and Therapeutic Strategy, INSERM U1119, Strasbourg, France
| | - Christine Patte-Mensah
- Biopathology of Myelin, Neuroprotection and Therapeutic Strategy, INSERM U1119, Strasbourg, France
| | - Laurent Monassier
- University Department of Pharmacology, Addictology, Toxicology and Therapeutic, Strasbourg University, Strasbourg, France.,NeuroCardiovascular Pharmacology and Toxicology Laboratory, UR7296, University Hospital of Strasbourg, Strasbourg, France
| | - Ayikoé Guy Mensah-Nyagan
- Biopathology of Myelin, Neuroprotection and Therapeutic Strategy, INSERM U1119, Strasbourg, France
| |
Collapse
|
34
|
Zhao JW, Wang DX, Ma XR, Dong ZJ, Wu JB, Wang F, Wu Y. Impaired metabolism of oligodendrocyte progenitor cells and axons in demyelinated lesion and in the aged CNS. Curr Opin Pharmacol 2022; 64:102205. [PMID: 35344763 DOI: 10.1016/j.coph.2022.102205] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 12/12/2022]
Abstract
The key pathology of multiple sclerosis (MS) comprises demyelination, axonal damage, and neuronal loss, and when MS develops into the progressive phase it is essentially untreatable. Identifying new targets in both axons and oligodendrocyte progenitor cells (OPCs) and rejuvenating the aged OPCs holds promise for this unmet medical need. We summarize here the recent evidence showing that mitochondria in both axons and OPCs are impaired, and lipid metabolism of OPCs within demyelinated lesion and in the aged CNS is disturbed. Given that emerging evidence shows that rewiring cellular metabolism regulates stem cell aging, to protect axons from degeneration and promote differentiation of OPCs, we propose that restoring the impaired metabolism of both OPCs and axons in the aged CNS in a synergistic way could be a promising strategy to enhance remyelination in the aged CNS, leading to novel drug-based approaches to treat the progressive phase of MS.
Collapse
Affiliation(s)
- Jing-Wei Zhao
- Department of Pathology and Department of Human Anatomy, Histology and Embryology of Sir Run Run Shaw Hospital, System Medicine Research Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China; Cryo-Electron Microscope Center, Zhejiang University, Hangzhou 310058, China.
| | - Di-Xian Wang
- Department of Pathology and Department of Human Anatomy, Histology and Embryology of Sir Run Run Shaw Hospital, System Medicine Research Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiao-Ru Ma
- Department of Pathology and Department of Human Anatomy, Histology and Embryology of Sir Run Run Shaw Hospital, System Medicine Research Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zhao-Jun Dong
- Department of Pathology and Department of Human Anatomy, Histology and Embryology of Sir Run Run Shaw Hospital, System Medicine Research Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jian-Bin Wu
- Department of Pathology and Department of Human Anatomy, Histology and Embryology of Sir Run Run Shaw Hospital, System Medicine Research Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Fan Wang
- Department of Pathology and Department of Human Anatomy, Histology and Embryology of Sir Run Run Shaw Hospital, System Medicine Research Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yang Wu
- Department of Pathology and Department of Human Anatomy, Histology and Embryology of Sir Run Run Shaw Hospital, System Medicine Research Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
35
|
Halperin ST, ’t Hart BA, Luchicchi A, Schenk GJ. The Forgotten Brother: The Innate-like B1 Cell in Multiple Sclerosis. Biomedicines 2022; 10:606. [PMID: 35327408 PMCID: PMC8945227 DOI: 10.3390/biomedicines10030606] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/21/2022] [Accepted: 03/01/2022] [Indexed: 02/04/2023] Open
Abstract
Multiple sclerosis (MS) is a neurodegenerative disease of the central nervous system (CNS), traditionally considered a chronic autoimmune attack against the insulating myelin sheaths around axons. However, the exact etiology has not been identified and is likely multi-factorial. Recently, evidence has been accumulating that implies that autoimmune processes underlying MS may, in fact, be triggered by pathological processes initiated within the CNS. This review focuses on a relatively unexplored immune cell-the "innate-like" B1 lymphocyte. The B1 cell is a primary-natural-antibody- and anti-inflammatory-cytokine-producing cell present in the healthy brain. It has been recently shown that its frequency and function may differ between MS patients and healthy controls, but its exact involvement in the MS pathogenic process remains obscure. In this review, we propose that this enigmatic cell may play a more prominent role in MS pathology than ever imagined. We aim to shed light on the human B1 cell in health and disease, and how dysregulation in its delicate homeostatic role could impact MS. Furthermore, novel therapeutic avenues to restore B1 cells' beneficial functions will be proposed.
Collapse
Affiliation(s)
| | | | - Antonio Luchicchi
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam UMC, Vrije Universiteit, 1081 HZ Amsterdam, The Netherlands; (S.T.H.); (B.A.’t.H.)
| | - Geert J. Schenk
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam UMC, Vrije Universiteit, 1081 HZ Amsterdam, The Netherlands; (S.T.H.); (B.A.’t.H.)
| |
Collapse
|
36
|
Abstract
Neuroplasticity, i.e., the modifiability of the brain, is different in development and adulthood. The first includes changes in: (i) neurogenesis and control of neuron number; (ii) neuronal migration; (iii) differentiation of the somato-dendritic and axonal phenotypes; (iv) formation of connections; (v) cytoarchitectonic differentiation. These changes are often interrelated and can lead to: (vi) system-wide modifications of brain structure as well as to (vii) acquisition of specific functions such as ocular dominance or language. Myelination appears to be plastic both in development and adulthood, at least, in rodents. Adult neuroplasticity is limited, and is mainly expressed as changes in the strength of excitatory and inhibitory synapses while the attempts to regenerate connections have met with limited success. The outcomes of neuroplasticity are not necessarily adaptive, but can also be the cause of neurological and psychiatric pathologies.
Collapse
|
37
|
Moura DMS, Brennan EJ, Brock R, Cocas LA. Neuron to Oligodendrocyte Precursor Cell Synapses: Protagonists in Oligodendrocyte Development and Myelination, and Targets for Therapeutics. Front Neurosci 2022; 15:779125. [PMID: 35115904 PMCID: PMC8804499 DOI: 10.3389/fnins.2021.779125] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/17/2021] [Indexed: 12/17/2022] Open
Abstract
The development of neuronal circuitry required for cognition, complex motor behaviors, and sensory integration requires myelination. The role of glial cells such as astrocytes and microglia in shaping synapses and circuits have been covered in other reviews in this journal and elsewhere. This review summarizes the role of another glial cell type, oligodendrocytes, in shaping synapse formation, neuronal circuit development, and myelination in both normal development and in demyelinating disease. Oligodendrocytes ensheath and insulate neuronal axons with myelin, and this facilitates fast conduction of electrical nerve impulses via saltatory conduction. Oligodendrocytes also proliferate during postnatal development, and defects in their maturation have been linked to abnormal myelination. Myelination also regulates the timing of activity in neural circuits and is important for maintaining the health of axons and providing nutritional support. Recent studies have shown that dysfunction in oligodendrocyte development and in myelination can contribute to defects in neuronal synapse formation and circuit development. We discuss glutamatergic and GABAergic receptors and voltage gated ion channel expression and function in oligodendrocyte development and myelination. We explain the role of excitatory and inhibitory neurotransmission on oligodendrocyte proliferation, migration, differentiation, and myelination. We then focus on how our understanding of the synaptic connectivity between neurons and OPCs can inform future therapeutics in demyelinating disease, and discuss gaps in the literature that would inform new therapies for remyelination.
Collapse
Affiliation(s)
- Daniela M. S. Moura
- Department of Biology, Santa Clara University, Santa Clara, CA, United States
| | - Emma J. Brennan
- Department of Biology, Santa Clara University, Santa Clara, CA, United States
| | - Robert Brock
- Department of Biology, Santa Clara University, Santa Clara, CA, United States
| | - Laura A. Cocas
- Department of Biology, Santa Clara University, Santa Clara, CA, United States
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
38
|
Raabe FJ, Stephan M, Waldeck JB, Huber V, Demetriou D, Kannaiyan N, Galinski S, Glaser LV, Wehr MC, Ziller MJ, Schmitt A, Falkai P, Rossner MJ. Expression of Lineage Transcription Factors Identifies Differences in Transition States of Induced Human Oligodendrocyte Differentiation. Cells 2022; 11:cells11020241. [PMID: 35053357 PMCID: PMC8773672 DOI: 10.3390/cells11020241] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 02/05/2023] Open
Abstract
Oligodendrocytes (OLs) are critical for myelination and are implicated in several brain disorders. Directed differentiation of human-induced OLs (iOLs) from pluripotent stem cells can be achieved by forced expression of different combinations of the transcription factors SOX10 (S), OLIG2 (O), and NKX6.2 (N). Here, we applied quantitative image analysis and single-cell transcriptomics to compare different transcription factor (TF) combinations for their efficacy towards robust OL lineage conversion. Compared with S alone, the combination of SON increases the number of iOLs and generates iOLs with a more complex morphology and higher expression levels of myelin-marker genes. RNA velocity analysis of individual cells reveals that S generates a population of oligodendrocyte-precursor cells (OPCs) that appear to be more immature than those generated by SON and to display distinct molecular properties. Our work highlights that TFs for generating iOPCs or iOLs should be chosen depending on the intended application or research question, and that SON might be beneficial to study more mature iOLs while S might be better suited to investigate iOPC biology.
Collapse
Affiliation(s)
- Florian J. Raabe
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, 80336 Munich, Germany; (F.J.R.); (M.S.); (J.B.W.); (V.H.); (D.D.); (N.K.); (S.G.); (M.C.W.); (A.S.); (P.F.)
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), 80804 Munich, Germany
| | - Marius Stephan
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, 80336 Munich, Germany; (F.J.R.); (M.S.); (J.B.W.); (V.H.); (D.D.); (N.K.); (S.G.); (M.C.W.); (A.S.); (P.F.)
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), 80804 Munich, Germany
- Systasy Bioscience GmbH, 81669 Munich, Germany
| | - Jan Benedikt Waldeck
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, 80336 Munich, Germany; (F.J.R.); (M.S.); (J.B.W.); (V.H.); (D.D.); (N.K.); (S.G.); (M.C.W.); (A.S.); (P.F.)
| | - Verena Huber
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, 80336 Munich, Germany; (F.J.R.); (M.S.); (J.B.W.); (V.H.); (D.D.); (N.K.); (S.G.); (M.C.W.); (A.S.); (P.F.)
| | - Damianos Demetriou
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, 80336 Munich, Germany; (F.J.R.); (M.S.); (J.B.W.); (V.H.); (D.D.); (N.K.); (S.G.); (M.C.W.); (A.S.); (P.F.)
| | - Nirmal Kannaiyan
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, 80336 Munich, Germany; (F.J.R.); (M.S.); (J.B.W.); (V.H.); (D.D.); (N.K.); (S.G.); (M.C.W.); (A.S.); (P.F.)
- Systasy Bioscience GmbH, 81669 Munich, Germany
| | - Sabrina Galinski
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, 80336 Munich, Germany; (F.J.R.); (M.S.); (J.B.W.); (V.H.); (D.D.); (N.K.); (S.G.); (M.C.W.); (A.S.); (P.F.)
- Systasy Bioscience GmbH, 81669 Munich, Germany
| | - Laura V. Glaser
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany;
| | - Michael C. Wehr
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, 80336 Munich, Germany; (F.J.R.); (M.S.); (J.B.W.); (V.H.); (D.D.); (N.K.); (S.G.); (M.C.W.); (A.S.); (P.F.)
- Systasy Bioscience GmbH, 81669 Munich, Germany
| | - Michael J. Ziller
- Max Planck Institute of Psychiatry, 80804 Munich, Germany;
- Department of Psychiatry, University of Münster, 48149 Münster, Germany
| | - Andrea Schmitt
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, 80336 Munich, Germany; (F.J.R.); (M.S.); (J.B.W.); (V.H.); (D.D.); (N.K.); (S.G.); (M.C.W.); (A.S.); (P.F.)
- Laboratory of Neurosciences (LIM-27), Institute of Psychiatry, University of São Paulo (USP), São Paulo 05403-903, Brazil
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, 80336 Munich, Germany; (F.J.R.); (M.S.); (J.B.W.); (V.H.); (D.D.); (N.K.); (S.G.); (M.C.W.); (A.S.); (P.F.)
| | - Moritz J. Rossner
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, 80336 Munich, Germany; (F.J.R.); (M.S.); (J.B.W.); (V.H.); (D.D.); (N.K.); (S.G.); (M.C.W.); (A.S.); (P.F.)
- Systasy Bioscience GmbH, 81669 Munich, Germany
- Correspondence:
| |
Collapse
|
39
|
Morgan ML, Teo W, Hernandez Y, Brideau C, Cummins K, Kuipers HF, Stys PK. Cuprizone-induced Demyelination in Mouse Brain is not due to Depletion of Copper. ASN Neuro 2022; 14:17590914221126367. [PMID: 36114624 PMCID: PMC9483969 DOI: 10.1177/17590914221126367] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The cuprizone (CPZ) model allows the study of the biochemical processes underlying
nonautoimmune-mediated demyelination, remyelination, and chronic white matter disease
progression. CPZ is a copper (Cu) chelator that chiefly causes oligodendrocyte apoptosis
in the corpus callosum and cerebellum when administered in the mouse diet. While
disruption of Cu homeostasis is known to cause neurodegeneration (as is observed in
Wilson’s and Menkes disease), no consensus exists to date as to CPZ’s mechanism of action.
We sought to determine whether CPZ-induced pathology is due to Cu depletion as is
generally believed. Cu supplementation in chow, in stoichiometric excess to the added CPZ,
did not reduce CPZ-induced demyelination in C57Bl/6 mice. Moreover, equivalent doses of
other known Cu chelators neocuproine and D-penicillamine (D-Pen) failed to induce central
nervous system (CNS) demyelination. Since administration of D-Pen in the treatment of
Wilson’s disease can induce hypocupremia, we next sought to recreate penicillamine-induced
Cu deficiency to compare with purported CPZ-induced Cu deficiency. The resulting clinical
phenotype and histopathology were unlike that of CPZ. D-Pen-treated mice exhibited digit
paralysis, tail flaccidity, subcutaneous hemorrhaging, and optic and sciatic neuropathy,
all of which were prevented with Cu supplementation. No demyelination of the corpus
callosum or cerebellum was observed, even with D-Pen doses tenfold higher than CPZ.
Intriguingly, addition of D-Pen to the CPZ diet paradoxically prevented demyelination in a
dose-dependent manner.
Collapse
Affiliation(s)
- Megan L. Morgan
- Cumming School of Medicine, Department of Clinical Neurosciences, University of Calgary, Hotchkiss Brain Institute, Calgary, 3330 Hospital Drive N.W. HRIC 1B37A, Calgary, AB, T2N 4N1, Canada
| | - Wulin Teo
- Cumming School of Medicine, Department of Clinical Neurosciences, University of Calgary, Hotchkiss Brain Institute, Calgary, 3330 Hospital Drive N.W. HRIC 1B37A, Calgary, AB, T2N 4N1, Canada
| | - Yda Hernandez
- Cumming School of Medicine, Department of Clinical Neurosciences, University of Calgary, Hotchkiss Brain Institute, Calgary, 3330 Hospital Drive N.W. HRIC 1B37A, Calgary, AB, T2N 4N1, Canada
| | - Craig Brideau
- Cumming School of Medicine, Department of Clinical Neurosciences, University of Calgary, Hotchkiss Brain Institute, Calgary, 3330 Hospital Drive N.W. HRIC 1B37A, Calgary, AB, T2N 4N1, Canada
| | - Karen Cummins
- Cumming School of Medicine, Department of Clinical Neurosciences, University of Calgary, Hotchkiss Brain Institute, Calgary, 3330 Hospital Drive N.W. HRIC 1B37A, Calgary, AB, T2N 4N1, Canada
| | - Hedwich F. Kuipers
- Cumming School of Medicine, Department of Clinical Neurosciences, University of Calgary, Hotchkiss Brain Institute, Calgary, 3330 Hospital Drive N.W. HRIC 1B37A, Calgary, AB, T2N 4N1, Canada
| | - Peter K. Stys
- Cumming School of Medicine, Department of Clinical Neurosciences, University of Calgary, Hotchkiss Brain Institute, Calgary, 3330 Hospital Drive N.W. HRIC 1B37A, Calgary, AB, T2N 4N1, Canada
| |
Collapse
|
40
|
Loss of monocarboxylate transporter 1 aggravates white matter injury after experimental subarachnoid hemorrhage in rats. Front Med 2021; 15:887-902. [PMID: 34874512 DOI: 10.1007/s11684-021-0879-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/25/2021] [Indexed: 11/26/2022]
Abstract
Monocarboxylic acid transporter 1 (MCT1) maintains axonal function by transferring lactic acid from oligodendrocytes to axons. Subarachnoid hemorrhage (SAH) induces white matter injury, but the involvement of MCT1 is unclear. In this study, the SAH model of adult male Sprague-Dawley rats was used to explore the role of MCT1 in white matter injury after SAH. At 48 h after SAH, oligodendrocyte MCT1 was significantly reduced, and the exogenous overexpression of MCT1 significantly improved white matter integrity and long-term cognitive function. Motor training after SAH significantly increased the number of ITPR2+SOX10+ oligodendrocytes and upregulated the level of MCT1, which was positively correlated with the behavioral ability of rats. In addition, miR-29b and miR-124 levels were significantly increased in SAH rats compared with non-SAH rats. Further intervention experiments showed that miR-29b and miR-124 could negatively regulate the level of MCT1. This study confirmed that the loss of MCT1 may be one of the mechanisms of white matter damage after SAH and may be caused by the negative regulation of miR-29b and miR-124. MCT1 may be involved in the neurological improvement of rehabilitation training after SAH.
Collapse
|
41
|
Roy M, Fortier M, Rheault F, Edde M, Croteau E, Castellano C, Langlois F, St‐Pierre V, Cuenoud B, Bocti C, Fulop T, Descoteaux M, Cunnane SC. A ketogenic supplement improves white matter energy supply and processing speed in mild cognitive impairment. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2021; 7:e12217. [PMID: 34869825 PMCID: PMC8596139 DOI: 10.1002/trc2.12217] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 06/03/2021] [Accepted: 09/17/2021] [Indexed: 12/22/2022]
Abstract
INTRODUCTION White matter (WM) energy supply is crucial for axonal function and myelin maintenance. An exogenous source of ketones, the brain's alternative fuel to glucose, bypasses the brain's glucose-specific energy deficit and improves cognitive outcomes in mild cognitive impairment (MCI). How an additional supply of ketones affects glucose or ketone uptake in specific WM fascicles in MCI has not previously been reported. METHODS This 6-month interventional study included MCI participants randomized to a placebo (n = 16) or ketogenic medium chain triglyceride (kMCT; n = 17) drink. A neurocognitive battery and brain imaging were performed pre- and post-intervention. WM fascicle uptake of ketone and glucose and structural properties were assessed using positron emission tomography and diffusion imaging, respectively. RESULTS Ketone uptake was increased in the kMCT group by 2.5- to 3.2-fold in all nine WM fascicles of interest (P < .001), an effect seen both in deep WM and in fascicle cortical endpoints. Improvement in processing speed was positively associated with WM ketone uptake globally and in individual fascicles, most importantly the fornix (r = +0.61; P = .014). DISCUSSION A 6-month kMCT supplement improved WM energy supply in MCI by increasing ketone uptake in WM fascicles. The significant positive association with processing speed suggests that ketones may have a role in myelin integrity in MCI.
Collapse
Affiliation(s)
- Maggie Roy
- Research Center on AgingCIUSSS de l'Estrie–CHUSSherbrookeQuebecCanada
- Department of Pharmacology and PhysiologyUniversité de SherbrookeSherbrookeQuebecCanada
- Department of Computer ScienceUniversité de SherbrookeSherbrookeQuebecCanada
| | - Mélanie Fortier
- Research Center on AgingCIUSSS de l'Estrie–CHUSSherbrookeQuebecCanada
| | - François Rheault
- Department of Computer ScienceUniversité de SherbrookeSherbrookeQuebecCanada
| | - Manon Edde
- Department of Computer ScienceUniversité de SherbrookeSherbrookeQuebecCanada
| | - Etienne Croteau
- Centre de Recherche‐CHUSCIUSSS de l'Estrie–CHUSSherbrookeQuebecCanada
- Sherbrooke Molecular Imaging CenterUniversité de SherbrookeSherbrookeQuebecCanada
| | | | - Francis Langlois
- Research Center on AgingCIUSSS de l'Estrie–CHUSSherbrookeQuebecCanada
| | - Valérie St‐Pierre
- Research Center on AgingCIUSSS de l'Estrie–CHUSSherbrookeQuebecCanada
| | | | - Christian Bocti
- Research Center on AgingCIUSSS de l'Estrie–CHUSSherbrookeQuebecCanada
- Department of MedicineUniversité de SherbrookeSherbrookeQuebecCanada
| | - Tamas Fulop
- Research Center on AgingCIUSSS de l'Estrie–CHUSSherbrookeQuebecCanada
- Department of MedicineUniversité de SherbrookeSherbrookeQuebecCanada
| | - Maxime Descoteaux
- Department of Computer ScienceUniversité de SherbrookeSherbrookeQuebecCanada
| | - Stephen C. Cunnane
- Research Center on AgingCIUSSS de l'Estrie–CHUSSherbrookeQuebecCanada
- Department of Pharmacology and PhysiologyUniversité de SherbrookeSherbrookeQuebecCanada
- Department of MedicineUniversité de SherbrookeSherbrookeQuebecCanada
| |
Collapse
|
42
|
Mechanism-based criteria to improve therapeutic outcomes in progressive multiple sclerosis. Nat Rev Neurol 2021; 18:40-55. [PMID: 34732831 DOI: 10.1038/s41582-021-00581-x] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2021] [Indexed: 02/07/2023]
Abstract
In contrast to the multiple disease-modifying therapies that are available for relapsing-remitting multiple sclerosis (MS), the therapeutic options for progressive MS (PMS) are limited. Recent advances in our understanding of the neuroimmunology of PMS, including the mechanisms that drive slowly expanding lesions, have fuelled optimism for improved treatment of this condition. In this Review, we highlight the commonly observed neuropathology of PMS and discuss the associated mechanisms of CNS injury. We then apply this knowledge to formulate criteria for therapeutic efficacy in PMS, beginning with the need for early treatment owing to the substantial neuropathology that is already present at the initial clinical presentation. Other requirements include: antagonism of neuroaxonal injury mediators such as pro-inflammatory microglia and lymphocytes; remediation of oxidative stress resulting from iron deposition and mitochondrial dysfunction; and promotion of neuroprotection through remyelination. We consider whether current disease-modifying therapies for relapsing-remitting MS meet the criteria for successful therapeutics in PMS and suggest that the evidence favours the early introduction of sphingosine 1-phosphate receptor modulators. Finally, we weigh up emerging medications, including repurposed generic medications and Bruton's tyrosine kinase inhibitors, against these fundamental criteria. In this new therapeutic era in PMS, success depends collectively on understanding disease mechanisms, drug characteristics (including brain penetration) and rational use.
Collapse
|
43
|
Turan F, Yilmaz Ö, Schünemann L, Lindenberg TT, Kalanithy JC, Harder A, Ahmadi S, Duman T, MacDonald RB, Winter D, Liu C, Odermatt B. Effect of modulating glutamate signaling on myelinating oligodendrocytes and their development-A study in the zebrafish model. J Neurosci Res 2021; 99:2774-2792. [PMID: 34520578 DOI: 10.1002/jnr.24940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 07/12/2021] [Accepted: 07/21/2021] [Indexed: 01/02/2023]
Abstract
Myelination is crucial for the development and maintenance of axonal integrity, especially fast axonal action potential conduction. There is increasing evidence that glutamate signaling and release through neuronal activity modulates the myelination process. In this study, we examine the effect of manipulating glutamate signaling on myelination of oligodendrocyte (OL) lineage cells and their development in zebrafish (zf). We use the "intensity-based glutamate-sensing fluorescent reporter" (iGluSnFR) in the zf model (both sexes) to address the hypothesis that glutamate is implicated in regulation of myelinating OLs. Our results show that glial iGluSnFR expression significantly reduces OL lineage cell number and the expression of myelin markers in larvae (zfl) and adult brains. The specific glutamate receptor agonist, L-AP4, rescues this iGluSnFR effect by significantly increasing the expression of the myelin-related genes, plp1b and mbpa, and enhances myelination in L-AP4-injected zfl compared to controls. Furthermore, we demonstrate that degrading glutamate using Glutamat-Pyruvate Transaminase (GPT) or the blockade of glutamate reuptake by L-trans-pyrrolidine-2,4-dicarboxylate (PDC) significantly decreases myelin-related genes and drastically declines myelination in brain ventricle-injected zfl. Moreover, we found that myelin-specific ClaudinK (CldnK) and 36K protein expression is significantly decreased in iGluSnFR-expressing zfl and adult brains compared to controls. Taken together, this study confirms that glutamate signaling is directly required for the preservation of myelinating OLs and for the myelination process itself. These findings further suggest that glutamate signaling may provide novel targets to therapeutically boost remyelination in several demyelinating diseases of the CNS.
Collapse
Affiliation(s)
- Funda Turan
- Medical Faculty, Institute of Neuroanatomy, University of Bonn, Bonn, Germany.,Faculty of Science, Biology Department, Ankara University, Ankara, Turkey
| | - Öznur Yilmaz
- Medical Faculty, Institute of Anatomy and Cell-Biology, University of Bonn, Bonn, Germany
| | - Lena Schünemann
- Medical Faculty, Institute of Anatomy and Cell-Biology, University of Bonn, Bonn, Germany
| | - Tobias T Lindenberg
- Medical Faculty, Institute of Neuroanatomy, University of Bonn, Bonn, Germany
| | - Jeshurun C Kalanithy
- Medical Faculty, Institute of Anatomy and Cell-Biology, University of Bonn, Bonn, Germany
| | - Alexander Harder
- Institute of Physical and Theoretical Chemistry, University of Bonn, Bonn, Germany
| | - Shiva Ahmadi
- Medical Faculty, Institute for Biochemistry and Molecular Biology (IBMB), University of Bonn, Bonn, Germany
| | - Türker Duman
- Faculty of Science, Biology Department, Ankara University, Ankara, Turkey
| | - Ryan B MacDonald
- Institute of Ophthalmology, University College London, London, UK
| | - Dominic Winter
- Medical Faculty, Institute for Biochemistry and Molecular Biology (IBMB), University of Bonn, Bonn, Germany
| | - Changsheng Liu
- Medical Faculty, Institute of Anatomy and Cell-Biology, University of Bonn, Bonn, Germany
| | - Benjamin Odermatt
- Medical Faculty, Institute of Neuroanatomy, University of Bonn, Bonn, Germany.,Medical Faculty, Institute of Anatomy and Cell-Biology, University of Bonn, Bonn, Germany
| |
Collapse
|
44
|
Almeida RG, Williamson JM, Madden ME, Early JJ, Voas MG, Talbot WS, Bianco IH, Lyons DA. Myelination induces axonal hotspots of synaptic vesicle fusion that promote sheath growth. Curr Biol 2021; 31:3743-3754.e5. [PMID: 34270947 PMCID: PMC8445327 DOI: 10.1016/j.cub.2021.06.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 05/17/2021] [Accepted: 06/11/2021] [Indexed: 02/08/2023]
Abstract
Myelination of axons by oligodendrocytes enables fast saltatory conduction. Oligodendrocytes are responsive to neuronal activity, which has been shown to induce changes to myelin sheaths, potentially to optimize conduction and neural circuit function. However, the cellular bases of activity-regulated myelination in vivo are unclear, partly due to the difficulty of analyzing individual myelinated axons over time. Activity-regulated myelination occurs in specific neuronal subtypes and can be mediated by synaptic vesicle fusion, but several questions remain: it is unclear whether vesicular fusion occurs stochastically along axons or in discrete hotspots during myelination and whether vesicular fusion regulates myelin targeting, formation, and/or growth. It is also unclear why some neurons, but not others, exhibit activity-regulated myelination. Here, we imaged synaptic vesicle fusion in individual neurons in living zebrafish and documented robust vesicular fusion along axons during myelination. Surprisingly, we found that axonal vesicular fusion increased upon and required myelination. We found that axonal vesicular fusion was enriched in hotspots, namely the heminodal non-myelinated domains into which sheaths grew. Blocking vesicular fusion reduced the stable formation and growth of myelin sheaths, and chemogenetically stimulating neuronal activity promoted sheath growth. Finally, we observed high levels of axonal vesicular fusion only in neuronal subtypes that exhibit activity-regulated myelination. Our results identify a novel "feedforward" mechanism whereby the process of myelination promotes the neuronal activity-regulated signal, vesicular fusion that, in turn, consolidates sheath growth along specific axons selected for myelination.
Collapse
Affiliation(s)
- Rafael G Almeida
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.
| | - Jill M Williamson
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Megan E Madden
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Jason J Early
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Matthew G Voas
- Department of Developmental Biology, Stanford University, Stanford, CA, USA; National Cancer Institute, Frederick, MD, USA
| | - William S Talbot
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
| | - Isaac H Bianco
- Department of Neuroscience, Physiology and Pharmacology, UCL, London, UK
| | - David A Lyons
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
45
|
Ion Channels as New Attractive Targets to Improve Re-Myelination Processes in the Brain. Int J Mol Sci 2021; 22:ijms22147277. [PMID: 34298893 PMCID: PMC8305962 DOI: 10.3390/ijms22147277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 12/20/2022] Open
Abstract
Multiple sclerosis (MS) is the most demyelinating disease of the central nervous system (CNS) characterized by neuroinflammation. Oligodendrocyte progenitor cells (OPCs) are cycling cells in the developing and adult CNS that, under demyelinating conditions, migrate to the site of lesions and differentiate into mature oligodendrocytes to remyelinate damaged axons. However, this process fails during disease chronicization due to impaired OPC differentiation. Moreover, OPCs are crucial players in neuro-glial communication as they receive synaptic inputs from neurons and express ion channels and neurotransmitter/neuromodulator receptors that control their maturation. Ion channels are recognized as attractive therapeutic targets, and indeed ligand-gated and voltage-gated channels can both be found among the top five pharmaceutical target groups of FDA-approved agents. Their modulation ameliorates some of the symptoms of MS and improves the outcome of related animal models. However, the exact mechanism of action of ion-channel targeting compounds is often still unclear due to the wide expression of these channels on neurons, glia, and infiltrating immune cells. The present review summarizes recent findings in the field to get further insights into physio-pathophysiological processes and possible therapeutic mechanisms of drug actions.
Collapse
|
46
|
Aguado T, Huerga-Gómez A, Sánchez-de la Torre A, Resel E, Chara JC, Matute C, Mato S, Galve-Roperh I, Guzman M, Palazuelos J. Δ 9 -Tetrahydrocannabinol promotes functional remyelination in the mouse brain. Br J Pharmacol 2021; 178:4176-4192. [PMID: 34216154 DOI: 10.1111/bph.15608] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/07/2021] [Accepted: 06/18/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Research on demyelinating disorders aims to find novel molecules that are able to induce oligodendrocyte precursor cell differentiation to promote central nervous system remyelination and functional recovery. Δ9 -Tetrahydrocannabinol (THC), the most prominent active constituent of the hemp plant Cannabis sativa, confers neuroprotection in animal models of demyelination. However, the possible effect of THC on myelin repair has never been studied. EXPERIMENTAL APPROACH By using oligodendroglia-specific reporter mouse lines in combination with two models of toxin-induced demyelination, we analysed the effect of THC on the processes of oligodendrocyte regeneration and functional remyelination. KEY RESULTS We show that THC administration enhanced oligodendrocyte regeneration, white matter remyelination and motor function recovery. THC also promoted axonal remyelination in organotypic cerebellar cultures. THC remyelinating action relied on the induction of oligodendrocyte precursor differentiation upon cell cycle exit and via CB1 cannabinoid receptor activation. CONCLUSIONS AND IMPLICATIONS Overall, our study identifies THC administration as a promising pharmacological strategy aimed to promote functional CNS remyelination in demyelinating disorders.
Collapse
Affiliation(s)
- Tania Aguado
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Department of Biochemistry and Molecular Biology, Instituto Universitario de Investigación en Neuroquímica (IUIN), Complutense University, Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Alba Huerga-Gómez
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Department of Biochemistry and Molecular Biology, Instituto Universitario de Investigación en Neuroquímica (IUIN), Complutense University, Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Aníbal Sánchez-de la Torre
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Department of Biochemistry and Molecular Biology, Instituto Universitario de Investigación en Neuroquímica (IUIN), Complutense University, Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Eva Resel
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Department of Biochemistry and Molecular Biology, Instituto Universitario de Investigación en Neuroquímica (IUIN), Complutense University, Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Juan Carlos Chara
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Neurosciences, University of the Basque Country UPV/EHU and Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Carlos Matute
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Neurosciences, University of the Basque Country UPV/EHU and Achucarro Basque Center for Neuroscience, Leioa, Spain.,Biocruces, Barakaldo, Spain
| | - Susana Mato
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Neurosciences, University of the Basque Country UPV/EHU and Achucarro Basque Center for Neuroscience, Leioa, Spain.,Biocruces, Barakaldo, Spain
| | - Ismael Galve-Roperh
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Department of Biochemistry and Molecular Biology, Instituto Universitario de Investigación en Neuroquímica (IUIN), Complutense University, Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Manuel Guzman
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Department of Biochemistry and Molecular Biology, Instituto Universitario de Investigación en Neuroquímica (IUIN), Complutense University, Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Javier Palazuelos
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Department of Biochemistry and Molecular Biology, Instituto Universitario de Investigación en Neuroquímica (IUIN), Complutense University, Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
47
|
Roy M, Rheault F, Croteau E, Castellano CA, Fortier M, St-Pierre V, Houde JC, Turcotte ÉE, Bocti C, Fulop T, Cunnane SC, Descoteaux M. Fascicle- and Glucose-Specific Deterioration in White Matter Energy Supply in Alzheimer's Disease. J Alzheimers Dis 2021; 76:863-881. [PMID: 32568202 DOI: 10.3233/jad-200213] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND White matter energy supply to oligodendrocytes and the axonal compartment is crucial for normal axonal function. Although gray matter glucose hypometabolism is extensively reported in Alzheimer's disease (AD), glucose and ketones, the brain's two main fuels, are rarely quantified in white matter in AD. OBJECTIVE Using a dual-tracer PET method combined with a fascicle-specific diffusion MRI approach, robust to white matter hyper intensities and crossing fibers, we aimed to quantify both glucose and ketone metabolism in specific white matter fascicles associated with mild cognitive impairment (MCI; n = 51) and AD (n = 13) compared to cognitively healthy age-matched controls (Controls; n = 14). METHODS Eight white matter fascicles of the limbic lobe and corpus callosum were extracted and analyzed into fascicle profiles of five sections. Glucose (18F-fluorodeoxyglucose) and ketone (11C-acetoacetate) uptake rates, corrected for partial volume effect, were calculated along each fascicle. RESULTS The only fascicle with significantly lower glucose uptake in AD compared to Controls was the left posterior cingulate segment of the cingulum (-22%; p = 0.016). Non-significantly lower glucose uptake in this fascicle was also observed in MCI. In contrast to glucose, ketone uptake was either unchanged or higher in sections of the fornix and parahippocampal segment of the cingulum in AD. CONCLUSION To our knowledge, this is the first report of brain fuel uptake calculated along white matter fascicles in humans. Energetic deterioration in white matter in AD appears to be specific to glucose and occurs first in the posterior cingulum.
Collapse
Affiliation(s)
- Maggie Roy
- Research Center on Aging, CIUSSS de l'Estrie - CHUS, Sherbrooke, QC, Canada.,Department of Pharmacology and Physiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - François Rheault
- Department of Computer Science, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Etienne Croteau
- CR-CHUS, CIUSSS de l'Estrie - CHUS, Sherbrooke, QC, Canada.,Sherbrooke Molecular Imaging Center, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | - Mélanie Fortier
- Research Center on Aging, CIUSSS de l'Estrie - CHUS, Sherbrooke, QC, Canada
| | - Valérie St-Pierre
- Research Center on Aging, CIUSSS de l'Estrie - CHUS, Sherbrooke, QC, Canada
| | | | - Éric E Turcotte
- CR-CHUS, CIUSSS de l'Estrie - CHUS, Sherbrooke, QC, Canada.,Sherbrooke Molecular Imaging Center, Université de Sherbrooke, Sherbrooke, QC, Canada.,Department of Nuclear Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada.,Department of Radiobiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Christian Bocti
- Research Center on Aging, CIUSSS de l'Estrie - CHUS, Sherbrooke, QC, Canada.,Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Tamas Fulop
- Research Center on Aging, CIUSSS de l'Estrie - CHUS, Sherbrooke, QC, Canada.,Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Stephen C Cunnane
- Research Center on Aging, CIUSSS de l'Estrie - CHUS, Sherbrooke, QC, Canada.,Department of Pharmacology and Physiology, Université de Sherbrooke, Sherbrooke, QC, Canada.,Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Maxime Descoteaux
- Department of Computer Science, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
48
|
Chrast R, Castelo-Branco G. The dark side of the brain, myelinating glia in central and peripheral nervous systems. Semin Cell Dev Biol 2021; 116:1-2. [PMID: 34024717 DOI: 10.1016/j.semcdb.2021.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Roman Chrast
- Department of Neuroscience and Department of Clinical Neuroscience Karolinska Institutet, Stockholm, Sweden
| | - Gonçalo Castelo-Branco
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden; Ming Wai Lau Centre for Reparative Medicine, Stockholm node, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
49
|
Fletcher JL, Makowiecki K, Cullen CL, Young KM. Oligodendrogenesis and myelination regulate cortical development, plasticity and circuit function. Semin Cell Dev Biol 2021; 118:14-23. [PMID: 33863642 DOI: 10.1016/j.semcdb.2021.03.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 12/17/2022]
Abstract
During cortical development and throughout adulthood, oligodendrocytes add myelin internodes to glutamatergic projection neurons and GABAergic inhibitory neurons. In addition to directing node of Ranvier formation, to enable saltatory conduction and influence action potential transit time, oligodendrocytes support axon health by communicating with axons via the periaxonal space and providing metabolic support that is particularly critical for healthy ageing. In this review we outline the timing of oligodendrogenesis in the developing mouse and human cortex and describe the important role that oligodendrocytes play in sustaining and modulating neuronal function. We also provide insight into the known and speculative impact that myelination has on cortical axons and their associated circuits during the developmental critical periods and throughout life, particularly highlighting their life-long role in learning and remembering.
Collapse
Affiliation(s)
- Jessica L Fletcher
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Kalina Makowiecki
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Carlie L Cullen
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Kaylene M Young
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia.
| |
Collapse
|
50
|
One-step Reprogramming of Human Fibroblasts into Oligodendrocyte-like Cells by SOX10, OLIG2, and NKX6.2. Stem Cell Reports 2021; 16:771-783. [PMID: 33770499 PMCID: PMC8072064 DOI: 10.1016/j.stemcr.2021.03.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 03/01/2021] [Accepted: 03/01/2021] [Indexed: 01/31/2023] Open
Abstract
Limited access to human oligodendrocytes impairs better understanding of oligodendrocyte pathology in myelin diseases. Here, we describe a method to robustly convert human fibroblasts directly into oligodendrocyte-like cells (dc-hiOLs), which allows evaluation of remyelination-promoting compounds and disease modeling. Ectopic expression of SOX10, OLIG2, and NKX6.2 in human fibroblasts results in rapid generation of O4+ cells, which further differentiate into MBP+ mature oligodendrocyte-like cells within 16 days. dc-hiOLs undergo chromatin remodeling to express oligodendrocyte markers, ensheath axons, and nanofibers in vitro, respond to promyelination compound treatment, and recapitulate in vitro oligodendroglial pathologies associated with Pelizaeus-Merzbacher leukodystrophy related to PLP1 mutations. Furthermore, DNA methylome analysis provides evidence that the CpG methylation pattern significantly differs between dc-hiOLs derived from fibroblasts of young and old donors, indicating the maintenance of the source cells’ “age.” In summary, dc-hiOLs represent a reproducible technology that could contribute to personalized medicine in the field of myelin diseases. SOX10, OLIG2, and NKX6.2 directly convert human fibroblasts into dc-hiOLs in 16 days dc-hiOLs express key oligodendrocyte markers dc-hiOLs preserve the epigenetic age of donor cells dc-hiOLs from PMD patients show maturation deficit and vulnerability to cell death
Collapse
|