1
|
Du T, Lei S, Huang Z, Liu X, Jiang Z, Lu M, Zhou Y, Yuan J, Song W, Gu H, Li J. EHDPP impairs intestinal microbiota homeostasis and induces placental injury through choline mediated gut-placenta axis. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137573. [PMID: 40007358 DOI: 10.1016/j.jhazmat.2025.137573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/27/2025] [Accepted: 02/09/2025] [Indexed: 02/27/2025]
Abstract
2-Ethylhexyl-diphenyl phosphate (EHDPP) is an organophosphate ester (OPE) with roles of flame retardant and plasticizer. It is widely used in various applications, detected in environmental matrices and human body, threatening ecological environment and human health. Some OPEs have been reported to disturb the gut microbiota, the gut microbiota mediates placental function. Our previous study showed EHDPP causes placental toxicity and fetal weight loss, it is unknown that whether EHDPP affects fetal development through the gut-placenta axis and whether it is feasible to fight against EHDPP induced placental toxicity through the gut-placenta axis. Our study investigates and indicates that EHDPP disrupts normal gut function by disturbing the gut microbiota homeostasis and compromising the intestinal barrier integrity. The disruption of EHDPP leads to reduced choline transporter expression of the solute carrier family 44A2 (SLC44A2), impaired choline absorption and distribution in placenta. Gut microbiota depletion increases the choline level in placenta. Both gut microbiota depletion and choline supplementation alleviate the EHDPP induced fetal weight loss by increasing the expression and activation of LXRα. In addition, a mendelian randomization study indicates that choline transporter SLC44A2 expression reduction significantly increased the risk of low birth weight in human. In summary, EHDPP exposure exacerbates placental and fetal damage through attenuating the beneficial function of choline mediated gut-placental axis. Direct choline supplementation or indirect choline level upregulation by gut microbiota depletion are therapeutic strategies for EHDPP induced placental injury.
Collapse
Affiliation(s)
- Ting Du
- Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, Jiangsu 221002, China
| | - Saifei Lei
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Zhenyao Huang
- Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, Jiangsu 221002, China
| | - Xin Liu
- School of Medical Information and Engineering, Xuzhou Medical University, China
| | - Zhou Jiang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Minlan Lu
- School of Life Sciences, Xuzhou Medical University, China
| | - Yiyang Zhou
- School of Life Sciences, Xuzhou Medical University, China
| | - Jiali Yuan
- Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, Jiangsu 221002, China
| | - Weiyi Song
- Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, Jiangsu 221002, China
| | - Hao Gu
- Department of Central Laboratory, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an 223300, China.
| | - Jing Li
- Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, Jiangsu 221002, China.
| |
Collapse
|
2
|
Nagai‐Arakawa I, Muramatsu I, Uwada J, Tsuda Y, Tokunaga A, Irie A, Maeda H, Madokoro Y, Sato T, Uchida Y, Saito T, Saido TC, Sada K, Masuoka T, Matsukawa N. Evaluation of the Alterations in Central Cholinergic Neurotransmission in Aging and Amyloid Precursor Protein Knock-In Mice. J Neurochem 2025; 169:e70081. [PMID: 40356480 PMCID: PMC12070134 DOI: 10.1111/jnc.70081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 04/17/2025] [Accepted: 04/19/2025] [Indexed: 05/15/2025]
Abstract
A progressive decline in cognitive function occurs as a result of aging and Alzheimer's disease (AD) and is primarily associated with diminished cholinergic neurotransmission. However, the precise mechanisms contributing to cholinergic dysfunction are not fully elucidated. Herein, we evaluated the cholinergic system in wild type (WT) mice and AD-model (AppNL-G-F) mice exhibiting overproduction of amyloid-beta 42 (Aβ42). In superfusion experiments, [3H]acetylcholine (ACh) release from the frontal cortex and hippocampal segments preloaded with [3H]choline exhibited no significant differences between adult (6-8 months old) and aged (12-17 months old) WT mice. Uptake of [3H]choline via the high-affinity choline transporter 1 (CHT1) and the subsequent formation/storage of [3H]ACh showed a moderate tendency to decrease associated with aging. In contrast, in AppNL-G-F mice, [3H]ACh release was significantly reduced in both the adult and aged groups, with reductions closely related to impaired CHT1 activity and diminished ACh synthesis/storage at cholinergic terminals. Presynaptic cholinergic feedback mechanisms regulating ACh release, as well as the density and subtype distribution of muscarinic ACh receptors, were minimally affected by both aging and Aβ42 overproduction. These results support the Aβ hypothesis, suggesting that presynaptic cholinergic dysfunction arises early and is specifically caused by decreased CHT1 function in the AD forebrain, independent of age-dependent degeneration.
Collapse
Affiliation(s)
- Itsumi Nagai‐Arakawa
- Department of NeurologyNagoya City University Graduate School of MedicineNagoyaAichiJapan
- Department of Genomic Science and MicrobiologyFaculty of Medical Sciences, University of FukuiFukuiJapan
| | - Ikunobu Muramatsu
- Department of Genomic Science and MicrobiologyFaculty of Medical Sciences, University of FukuiFukuiJapan
- Department of PharmacologySchool of Medicine, Kanazawa Medical UniversityUchinadaIshikawaJapan
| | - Junsuke Uwada
- Department of PharmacologySchool of Medicine, Kanazawa Medical UniversityUchinadaIshikawaJapan
| | - Yo Tsuda
- Department of NeurologyNagoya City University Graduate School of MedicineNagoyaAichiJapan
| | - Akinori Tokunaga
- Division of Laboratory Animal ResourcesLife Science Support Center, University of FukuiFukuiJapan
| | - Ai Irie
- Division of Laboratory Animal ResourcesLife Science Support Center, University of FukuiFukuiJapan
| | - Hideyuki Maeda
- Division of Laboratory Animal ResourcesLife Science Support Center, University of FukuiFukuiJapan
| | - Yuta Madokoro
- Department of NeurologyNagoya City University Graduate School of MedicineNagoyaAichiJapan
| | - Toyohiro Sato
- Department of NeurologyNagoya City University Graduate School of MedicineNagoyaAichiJapan
| | - Yuto Uchida
- Department of NeurologyNagoya City University Graduate School of MedicineNagoyaAichiJapan
| | - Takashi Saito
- Department of Neurocognitive ScienceInstitute of Brain Science, Nagoya City University Graduate School of Medical SciencesNagoyaAichiJapan
| | - Takaomi C. Saido
- Laboratory for Proteolytic NeuroscienceRIKEN Center for Brain ScienceSaitamaJapan
| | - Kiyonao Sada
- Department of Genomic Science and MicrobiologyFaculty of Medical Sciences, University of FukuiFukuiJapan
| | - Takayoshi Masuoka
- Department of PharmacologySchool of Medicine, Kanazawa Medical UniversityUchinadaIshikawaJapan
| | - Noriyuki Matsukawa
- Department of NeurologyNagoya City University Graduate School of MedicineNagoyaAichiJapan
| |
Collapse
|
3
|
Liang Y, Jiang K, Tu J, Liu Z, Hu Y, Gong W, Li J, Dong X, Hardiman G, Guo X, Zhu B. Efficient separation and quantitative sleep evaluation of phospholipids and glycerides of Antarctic krill. Food Chem 2025; 486:144529. [PMID: 40339428 DOI: 10.1016/j.foodchem.2025.144529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 03/28/2025] [Accepted: 04/24/2025] [Indexed: 05/10/2025]
Abstract
Glycerides and phospholipids are the primary constituents of Antarctic krill lipids. This study aimed to efficiently separate these components using ethanol, water and n-hexane, and further evaluated the effects on sleep-improvement. Based on hydrophilic-lipophilic balance differences and solvent phase equilibria, the extraction process yielded two distinct layers. The ethanol-water (E-W) layer was rich in phospholipids (92 %), while the n-hexane (NH) layer primarily consisted of glycerides (74 %). Lipidomics analysis identified 995 lipids across five major classes, including glycerides, phospholipids, free fatty acids, ceramides and cholesterol esters. Drosophila activity monitoring revealed that NH and E-W layers improved sleep parameters in insomnia flies, with E-W exhibiting more significant effects. This difference in efficacy can be attributed to E-W's regulation of both nicotinic cholinergic and dopaminergic activity, while NH only regulated nicotinic cholinergic activity. This study elucidated the distinct composition and bioactivity during the extraction of Antarctic krill lipids, providing a scientific basis for their high-value applications in functional foods.
Collapse
Affiliation(s)
- Yuxuan Liang
- Shenzhen Key Laboratory of Food Nutrition and Health, GuangDong Engineering Technology Research Center of Aquatic Food Processing and Safety Control, College of Chemistry and Environmental Engineering and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Kaiyu Jiang
- Shenzhen Key Laboratory of Food Nutrition and Health, GuangDong Engineering Technology Research Center of Aquatic Food Processing and Safety Control, College of Chemistry and Environmental Engineering and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Juncai Tu
- Shenzhen Key Laboratory of Food Nutrition and Health, GuangDong Engineering Technology Research Center of Aquatic Food Processing and Safety Control, College of Chemistry and Environmental Engineering and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Zhengqi Liu
- Shenzhen Key Laboratory of Food Nutrition and Health, GuangDong Engineering Technology Research Center of Aquatic Food Processing and Safety Control, College of Chemistry and Environmental Engineering and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Yuanyuan Hu
- Shenzhen Key Laboratory of Food Nutrition and Health, GuangDong Engineering Technology Research Center of Aquatic Food Processing and Safety Control, College of Chemistry and Environmental Engineering and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Wei Gong
- Shenzhen Key Laboratory of Food Nutrition and Health, GuangDong Engineering Technology Research Center of Aquatic Food Processing and Safety Control, College of Chemistry and Environmental Engineering and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Jinjin Li
- Shenzhen Key Laboratory of Food Nutrition and Health, GuangDong Engineering Technology Research Center of Aquatic Food Processing and Safety Control, College of Chemistry and Environmental Engineering and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Xiuping Dong
- Shenzhen Key Laboratory of Food Nutrition and Health, GuangDong Engineering Technology Research Center of Aquatic Food Processing and Safety Control, College of Chemistry and Environmental Engineering and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, China; National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Gary Hardiman
- The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT7 1NN, UK
| | - Xiaoming Guo
- Shenzhen Key Laboratory of Food Nutrition and Health, GuangDong Engineering Technology Research Center of Aquatic Food Processing and Safety Control, College of Chemistry and Environmental Engineering and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China.
| | - Beiwei Zhu
- Shenzhen Key Laboratory of Food Nutrition and Health, GuangDong Engineering Technology Research Center of Aquatic Food Processing and Safety Control, College of Chemistry and Environmental Engineering and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, China; National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
4
|
Xie D, Xiong K, Dong N, Wang G, Zou Q, Shao B, Chen Z, Wang L, Kong Y, Wang X, Su X, Bai W, Yang J, Liu Y, Zhou B, Chen YH. An endogenous cholinergic system controls electrical conduction in the heart. Eur Heart J 2025; 46:1232-1246. [PMID: 39437249 PMCID: PMC11959186 DOI: 10.1093/eurheartj/ehae699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/14/2024] [Accepted: 09/27/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND AND AIMS The cholinergic system is distributed in the nervous system, mediating electrical conduction through acetylcholine (ACh). This study aims to identify whether the heart possesses an intact endogenous cholinergic system and to explore its electrophysiological functions and relationship with arrhythmias in both humans and animals. METHODS The components of the heart's endogenous cholinergic system were identified by a combination of multiple molecular cell biology techniques. The relationship of this system with cardiac electrical conduction and arrhythmias was analysed through electrophysiological techniques. RESULTS An intact cholinergic system including ACh, ACh transmitter vesicles, ACh transporters, ACh metabolic enzymes, and ACh receptors was identified in both human and mouse ventricular cardiomyocytes (VCs). The key components of the system significantly regulated the conductivity of electrical excitation among VCs. The influence of this system on electrical excitation conduction was further confirmed both in the mice with α4 or α7 nicotinic ACh receptors (nAChRs) knockouts and in the monolayers of human induced pluripotent stem cell-derived cardiomyocytes. Mechanistically, ACh induced an inward current through nAChRs to reduce the minimum threshold current required to generate an action potential in VCs, thereby enhancing the excitability that acts as a prerequisite for electrical conduction. Importantly, defects in this system were associated with fatal ventricular arrhythmias in both patients and mice. CONCLUSIONS This study identifies an integrated cholinergic system inherent to the heart, rather than external nerves that can effectively control cardiac electrical conduction. The discovery reveals arrhythmia mechanisms beyond classical theories and opens new directions for arrhythmia research.
Collapse
Affiliation(s)
- Duanyang Xie
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai 200092, China
| | - Ke Xiong
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Guanghua Wang
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai 200092, China
| | - Qicheng Zou
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Beihua Shao
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Zhiwen Chen
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Luxin Wang
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Yu Kong
- Electron Microscopy Facilities of Center for Excellence in Brain Science and Technology, Chinese Academy of Science, Shanghai 200031, China
| | - Xu Wang
- Electron Microscopy Facilities of Center for Excellence in Brain Science and Technology, Chinese Academy of Science, Shanghai 200031, China
| | - Xuling Su
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Wenli Bai
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
- Jinzhou Medical University, Liaoning 121000, China
| | - Jian Yang
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Yi Liu
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Bin Zhou
- Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yi-Han Chen
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai 200092, China
- Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai 200092, China
| |
Collapse
|
5
|
Huang SY, Yang ZJ, Cheng J, Li HY, Chen S, Huang ZH, Chen JD, Xiong RG, Yang MT, Wang C, Li MC, Song S, Huang WG, Wang DL, Li HB, Lan QY. Choline alleviates cognitive impairment in sleep-deprived young mice via reducing neuroinflammation and altering phospholipidomic profile. Redox Biol 2025; 81:103578. [PMID: 40056720 PMCID: PMC11930228 DOI: 10.1016/j.redox.2025.103578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/12/2025] [Accepted: 02/27/2025] [Indexed: 03/10/2025] Open
Abstract
Cognitive impairment resulting from insufficient sleep poses a significant public health concern, particularly in children. The effects and mechanisms of choline on cognitive impairment caused by sleep deprivation are unknown. Chronic sleep deprivation is induced in young mice in this study, followed by feeding diet containing 11.36 g/kg choline bitartrate. Choline supplementation significantly improves spatial learning ability. Functional MRI results reveal the hippocampus as a key region affected by sleep deprivation, where choline supplementation notably preserves hippocampal structural integrity and enhanced connectivity. Additionally, choline ameliorates hippocampal pathological injury, reduces blood-brain barrier permeability and serum brain injury biomarkers. Choline also reduces inflammation and oxidative stress biomarkers, and mitigates microglial activation in the hippocampus, which preserves synaptic plasticity. A key finding is the changes of hippocampal phospholipidomic profile along with cognitive function, and a total of 313 phospholipid molecules are identified. Choline increases the levels of total phospholipid and sub-classes (particularly PC), which are strongly correlated with reduced neuroinflammation and oxidative stress biomarkers, as well as improved cognitive outcomes. Furthermore, there are similar findings in some phospholipid molecules such as PC 36:1, PC O-33:0, PC p-38:3, PE 36:3, PE p-42:4 and PS 44:12. These findings highlight that choline alleviates cognitive impairment in sleep deprivation via reducing neuroinflammation and oxidative stress as well as altering phospholipidomic profile. This study suggests that choline could develop into functional food or medicine ingredient to prevent and treat cognitive impairment by sleep disturbances, particularly children and adolescents.
Collapse
Affiliation(s)
- Si-Yu Huang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhi-Jun Yang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jin Cheng
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hang-Yu Li
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Si Chen
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zi-Hui Huang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jie-Dong Chen
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ruo-Gu Xiong
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Meng-Tao Yang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Chen Wang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Meng-Chu Li
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shuang Song
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Wen-Ge Huang
- Center of Experimental Animals, Sun Yat-sen University, Guangzhou, 510080, China
| | - Dong-Liang Wang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hua-Bin Li
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Qiu-Ye Lan
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China; School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
6
|
Brown LTL, Pereira D, Winn LM. A Narrative Review on the Effect of Valproic Acid on the Placenta. Birth Defects Res 2025; 117:e2471. [PMID: 40211937 PMCID: PMC11986804 DOI: 10.1002/bdr2.2471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/10/2025] [Accepted: 03/24/2025] [Indexed: 04/13/2025]
Abstract
BACKGROUND Valproic acid (VPA) is an antiepileptic and mood-stabilizing drug with well-established teratogenic risks when taken during pregnancy. While its harmful effects on fetal development are well known, less attention has been given to its impact on placental development and function, despite the placenta's critical role in pregnancy. AIM This narrative review examines how VPA exposure affects placental growth, morphology, nutrient transport, and epigenetic modifications. It also considers whether placental dysfunction may contribute VPA's teratogenic effects. RESULTS Evidence suggests that VPA disrupts placental structure and growth, alters the expression of nutrient transporters, such as those for folate, glucose, and amino acids, and modifies the placental epigenome, including globally decreased DNA methylation and increased histone acetylation. DISCUSSION It is hypothesized that these epigenetic changes may influence chromatin remodelling and trophoblast gene expression, though this connection has not been fully established. Such epigenetic dysregulation may result in aberrant gene expression that underlies the structural and functional impairments observed in the placenta, potentially compromising its ability to support fetal development and contributing to VPA's teratogenic effects. Findings across studies, however, are inconsistent, varying with dose, timing of exposure, and model system. Furthermore, there is a lack of research examining sex-specific differences in placental responses to VPA, despite evidence that male and female placentas exhibit distinct growth patterns, gene expression profiles, and susceptibilities to environmental insults. CONCLUSION Addressing these knowledge gaps through targeted research will improve our understanding of how VPA affects the placenta and its role in teratogenesis.
Collapse
Affiliation(s)
- Lauren T. L. Brown
- Department of Biomedical and Molecular SciencesQueen's University at KingstonKingstonOntarioCanada
| | - Delaine Pereira
- Department of Biomedical and Molecular SciencesQueen's University at KingstonKingstonOntarioCanada
| | - Louise M. Winn
- Department of Biomedical and Molecular SciencesQueen's University at KingstonKingstonOntarioCanada
- School of Environmental SciencesQueen's University at KingstonKingstonOntarioCanada
| |
Collapse
|
7
|
Akyuz E, Arulsamy A, Aslan FS, Sarisözen B, Guney B, Hekimoglu A, Yilmaz BN, Retinasamy T, Shaikh MF. An Expanded Narrative Review of Neurotransmitters on Alzheimer's Disease: The Role of Therapeutic Interventions on Neurotransmission. Mol Neurobiol 2025; 62:1631-1674. [PMID: 39012443 PMCID: PMC11772559 DOI: 10.1007/s12035-024-04333-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 06/24/2024] [Indexed: 07/17/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease. The accumulation of amyloid-β (Aβ) plaques and tau neurofibrillary tangles are the key players responsible for the pathogenesis of the disease. The accumulation of Aβ plaques and tau affect the balance in chemical neurotransmitters in the brain. Thus, the current review examined the role of neurotransmitters in the pathogenesis of Alzheimer's disease and discusses the alterations in the neurochemical activity and cross talk with their receptors and transporters. In the presence of Aβ plaques and neurofibrillary tangles, changes may occur in the expression of neuronal receptors which in turn triggers excessive release of glutamate into the synaptic cleft contributing to cell death and neuronal damage. The GABAergic system may also be affected by AD pathology in a similar way. In addition, decreased receptors in the cholinergic system and dysfunction in the dopamine neurotransmission of AD pathology may also contribute to the damage to cognitive function. Moreover, the presence of deficiencies in noradrenergic neurons within the locus coeruleus in AD suggests that noradrenergic stimulation could be useful in addressing its pathophysiology. The regulation of melatonin, known for its effectiveness in enhancing cognitive function and preventing Aβ accumulation, along with the involvement of the serotonergic system and histaminergic system in cognition and memory, becomes remarkable for promoting neurotransmission in AD. Additionally, nitric oxide and adenosine-based therapeutic approaches play a protective role in AD by preventing neuroinflammation. Overall, neurotransmitter-based therapeutic strategies emerge as pivotal for addressing neurotransmitter homeostasis and neurotransmission in the context of AD. This review discussed the potential for neurotransmitter-based drugs to be effective in slowing and correcting the neurodegenerative processes in AD by targeting the neurochemical imbalance in the brain. Therefore, neurotransmitter-based drugs could serve as a future therapeutic strategy to tackle AD.
Collapse
Affiliation(s)
- Enes Akyuz
- Department of Biophysics, International School of Medicine, University of Health Sciences, Istanbul, Turkey
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Alina Arulsamy
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia.
| | | | - Bugra Sarisözen
- School of Medicine, Tekirdağ Namık Kemal University, Tekirdağ, Turkey
| | - Beyzanur Guney
- International School of Medicine, University of Health Sciences, Istanbul, Turkey
| | | | - Beyza Nur Yilmaz
- International School of Medicine, University of Health Sciences, Istanbul, Turkey
| | - Thaarvena Retinasamy
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia.
- School of Dentistry and Medical Sciences, Charles Sturt University, Orange, New South Wales, 2800, Australia.
| |
Collapse
|
8
|
Calvin-Dunn KN, Mcneela A, Leisgang Osse A, Bhasin G, Ridenour M, Kinney JW, Hyman JM. Electrophysiological insights into Alzheimer's disease: A review of human and animal studies. Neurosci Biobehav Rev 2025; 169:105987. [PMID: 39732222 DOI: 10.1016/j.neubiorev.2024.105987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 11/16/2024] [Accepted: 12/17/2024] [Indexed: 12/30/2024]
Abstract
This review highlights the crucial role of neuroelectrophysiology in illuminating the mechanisms underlying Alzheimer's disease (AD) pathogenesis and progression, emphasizing its potential to inform the development of effective treatments. Electrophysiological techniques provide unparalleled precision in exploring the intricate networks affected by AD, offering insights into the synaptic dysfunction, network alterations, and oscillatory abnormalities that characterize the disease. We discuss a range of electrophysiological methods, from non-invasive clinical techniques like electroencephalography and magnetoencephalography to invasive recordings in animal models. By drawing on findings from these studies, we demonstrate how electrophysiological research has deepened our understanding of AD-related network disruptions, paving the way for targeted therapeutic interventions. Moreover, we underscore the potential of electrophysiological modalities to play a pivotal role in evaluating treatment efficacy. Integrating electrophysiological data with clinical neuroimaging and longitudinal studies holds promise for a more comprehensive understanding of AD, enabling early detection and the development of personalized treatment strategies. This expanded research landscape offers new avenues for unraveling the complexities of AD and advancing therapeutic approaches.
Collapse
Affiliation(s)
- Kirsten N Calvin-Dunn
- Interdisciplinary Neuroscience Program, University of Nevada, Las Vegas, United States; Cleveland Clinic Lou Ruvo Center for Brain Health, United States.
| | - Adam Mcneela
- Interdisciplinary Neuroscience Program, University of Nevada, Las Vegas, United States
| | - A Leisgang Osse
- Interdisciplinary Neuroscience Program, University of Nevada, Las Vegas, United States; Department of Brain Health, University of Nevada, Las Vegas, United States
| | - G Bhasin
- Interdisciplinary Neuroscience Program, University of Nevada, Las Vegas, United States; Department of Psychology, University of Nevada, Las Vegas, United States
| | - M Ridenour
- Department of Psychology, University of Nevada, Las Vegas, United States
| | - J W Kinney
- Interdisciplinary Neuroscience Program, University of Nevada, Las Vegas, United States; Department of Brain Health, University of Nevada, Las Vegas, United States
| | - J M Hyman
- Interdisciplinary Neuroscience Program, University of Nevada, Las Vegas, United States; Department of Psychology, University of Nevada, Las Vegas, United States
| |
Collapse
|
9
|
Niu YY, Yan HY, Zhong JF, Diao ZQ, Li J, Li CP, Chen LH, Huang WQ, Xu M, Xu ZT, Liang XF, Li ZH, Liu D. Association of dietary choline intake with incidence of dementia, Alzheimer disease, and mild cognitive impairment: a large population-based prospective cohort study. Am J Clin Nutr 2025; 121:5-13. [PMID: 39521435 DOI: 10.1016/j.ajcnut.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 10/28/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Choline, an essential nutrient, plays a critical role in cognition, and may help prevent dementia and mild cognitive impairment. However, studies on dietary choline and its derivatives for preventing these conditions are limited and inconsistent. OBJECTIVE The objective of this study was to explore the associations between dietary choline intake and the incidence of dementia, Alzheimer disease (AD), mild cognitive impairment (MCI), and current cognitive performance in the United Kingdom Biobank cohort. METHODS Dietary choline intake was categorized into quartiles of consumption based on 24-h dietary recalls, with units expressed as milligrams per day. Diagnoses of dementia, AD, and MCI were identified using the International Classification of Diseases (ICD-9/10) codes. Current cognitive performance was assessed via the computerized touchscreen interface. After adjusting for sociodemographic factors, dietary and lifestyle behaviors, and comorbid conditions, Cox proportional hazards regression, logistic regression, and restricted cubic splines were used to analyze the association between choline intake and dementia or cognitive performance. RESULTS Among 125,594 participants (55.8% female), with a mean age of 56.1 y (range: 40-70 years) at baseline and a median follow-up of 11.8 y, 1103 cases of dementia (including 385 AD and 87 cases of MCI) were recorded. U-shaped associations were observed between choline intake and dementia and AD. Participants in the 2nd quartile of total choline intake had lower risks than those in the lowest quartile, with HR of 0.80 (95% CI: 0.67, 0.96) for dementia and 0.76 (95% CI: 0.58, 1.00) for AD. Moderate intake of choline derivative, including free choline (HR, 0.77; 95%CI, 0.65, 0.92), phosphatidylcholine (HR 0.82; 95% CI: 0.68, 0.98), sphingomyelin (HR 0.82; 95% CI: 0.69, 0.98) and glycerophosphocholine (HR 0.83; 95% CI: 0.70, 1.00), were associated with a 17%-23% lower odds of dementia. Additionally, moderate total choline intake was associated with an 8%-13% lower odds of poor cognitive performance in visual attention (OR: 0.92; 95% CI: 0.86, 0.99), fluid intelligence (OR: 0.87; 95% CI: 0.82, 0.92), and complex processing speed (OR: 0.90; 95% CI: 0.84, 0.95). CONCLUSIONS In conclusion, our findings suggest that moderate dietary choline intake, ranging from 332.89 mg/d to 353.93 mg/d, is associated with lower odds of dementia and better cognitive performance.
Collapse
Affiliation(s)
- Ying-Ying Niu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Hao-Yu Yan
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Jian-Feng Zhong
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Zhi-Quan Diao
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Jing Li
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Cheng-Ping Li
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Lian-Hong Chen
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Wen-Qi Huang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Miao Xu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Zhi-Tong Xu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Xiao-Feng Liang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China; Laboratory of Viral Pathogenesis and Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China; Disease Control and Prevention Institute of Jinan University, Jinan University, Guangzhou, China
| | - Zhi-Hao Li
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China.
| | - Dan Liu
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
10
|
Singh L. Daidzein's potential in halting neurodegeneration: unveiling mechanistic insights. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:243-259. [PMID: 39158734 DOI: 10.1007/s00210-024-03356-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/01/2024] [Indexed: 08/20/2024]
Abstract
Neurological conditions encompassing a wide range of disorders pose significant challenges globally. The complex interactions among signaling pathways and molecular elements play pivotal roles in the initiation and progression of neurodegenerative diseases. Isoflavones have emerged as a promising candidate to fight against neurodegenerative diseases. Daidzein, a 7-hydroxy-3-(4-hydroxyphenyl)-chromen-4-one, belongs to the isoflavone class and exhibits a diverse pharmacological profile. It is found primarily in soybeans and soy products, as well as in some other legumes and herbs. Investigations into daidzein have revealed that it confers neuroprotection by inhibiting oxidative stress, inflammation, and apoptosis, which are key contributors to neuronal damage and degeneration. Activating pathways like PI3K/Akt/mTOR and promoting neurotrophic factors like BDNF by daidzein underscore its potential in supporting neuronal function and combating neurodegeneration. Daidzein's effects on dopamine provide further avenues for intervention in conditions like Parkinson's disease. Additionally, the modulation of inflammatory and NRF-2-antioxidant signaling by daidzein reinforces its neuroprotective role. Moreover, daidzein's interaction with receptors and cellular processes like ER-β, GPR30, MAO, VEGF, and GnRH highlights its multifaceted effects across multiple pathways involved in neuroprotection and neuronal function. This review article delves into the mechanistic interplay of various mediators in mediating the neuroprotective effects of daidzein. The review article consolidates and analyzes research published over nearly two decades (2005-2024) from various databases, including PubMed, Scopus, ScienceDirect, and Web of Science, to provide a comprehensive understanding of daidzein's effects and mechanisms in neuroprotection.
Collapse
Affiliation(s)
- Lovedeep Singh
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India.
| |
Collapse
|
11
|
Gao Z, Zhou R, Chen Z, Qian H, Xu C, Gao M, Huang X. Genetic prediction of blood metabolites mediating the relationship between gut microbiota and postpartum depression: A mendelian randomization study. J Psychiatr Res 2025; 181:614-622. [PMID: 39740617 DOI: 10.1016/j.jpsychires.2024.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/06/2024] [Accepted: 12/21/2024] [Indexed: 01/02/2025]
Abstract
BACKGROUND Observational studies have suggested an association between gut microbiota(GM) and postpartum depression (PPD). However, the causal relationship remains unclear, and the role of blood metabolites in this association remains elusive. METHODS This study firstly elucidated the causal relationship among 196 GM taxa, 224 blood metabolites, and PPD from a genetic perspective, employing two-sample Mendelian randomization (MR). Subsequently, a two-step mediation MR approach was employed to explore the role of blood metabolites as potential mediators. To validate the relevant findings, we further selected other data (GM and blood metabolites) from the IEU Open GWAS and GWAS Catalog for analysis. Our primary analysis utilized the inverse variance weighted method. To enhance the robustness of our results, we also applied MR-Egger method, weighted median method, Cochran's Q test, MR-Egger regression, and MR-PRESSO. RESULTS MR analysis results revealed a nominal association (p < 0.05) between 13 GM taxa, 6 blood metabolites, and PPD. After multiple-testing correction (PFDR < 0.1), Bifidobacteriales (PFDR = 0.034), Bifidobacteriaceae (PFDR = 0.055) and Guanosine (PFDR = 0.081) showed significant causal relationships with PPD. In our validation results, the higher level of Alphaproteobacteria (OR: 1.057, 95% CI: 1.024-1.091; p = 0.0006) retained a causal relationship with a higher risk of PPD. Finally, mediation analysis revealed that the impact of Odoribacter on PPD was mediated indirectly through Hyodeoxycholate, with a mediation proportion of 16.8%. CONCLUSION Our findings elucidated the underlying mechanisms between the GM, blood metabolites, and PPD. These findings contribute to the prevention and diagnosis of PPD, offering novel insights into microbiome-based therapies and metabolite-targeted interventions for the treatment of PPD.
Collapse
Affiliation(s)
- Zhan Gao
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Runze Zhou
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhiqiang Chen
- Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Haotian Qian
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chendong Xu
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Mingzhou Gao
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xi Huang
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| |
Collapse
|
12
|
Qu D, Schürmann P, Rothämel T, Dörk T, Klintschar M. Genetic Association Study of Acetylcholinesterase ( ACHE) and Butyrylcholinesterase ( BCHE) Variants in Sudden Infant Death Syndrome (SIDS). Genes (Basel) 2024; 15:1656. [PMID: 39766923 PMCID: PMC11727802 DOI: 10.3390/genes15121656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/13/2024] [Accepted: 12/20/2024] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Sudden infant death syndrome (SIDS) is the leading cause of death among infants aged between one month and one year. Altered enzyme activities or expression of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) have been observed in SIDS patients that might lead to disturbed autonomic function and, together with other risk factors, might trigger SIDS. To explore the contribution of AChE and BChE from a genomic viewpoint, we sought to investigate the association between SIDS and selected single nucleotide polymorphisms (SNPs) in the ACHE and BCHE genes. METHODS In this case-control study, 13 potentially regulatory SNPs were selected from ACHE and BCHE and were genotyped in 201 SIDS cases and 338 controls. The association of SIDS with the 11 successfully genotyped candidate variants was examined using statistical analyses of overall or stratified cases and haplotype analyses. RESULTS No significant overall associations were observed between SIDS and ACHE and BCHE variants in allele, genotype, and haplotype analyses. In subgroup analyses, eight variants were found to be nominally associated with SIDS, though these associations did not remain statistically significant after correction for multiple comparisons. One haplotype (T-C-G-C-C in rs3495-rs1803274-rs1355538-rs2048493-rs1126680) of BCHE was associated with the female SIDS subgroup (57.3% in controls vs. 46.3% in female SIDS cases, p = 0.010). CONCLUSIONS The selected variants in ACHE and BCHE were not overall associated with SIDS in this study, and thus cannot generally explain the previously reported dysregulation of enzyme activities in SIDS. However, some evidence of association in subgroups and a possible contribution of variants other than those tested here would need to be explored in larger studies.
Collapse
Affiliation(s)
- Dong Qu
- Institute of Legal Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (D.Q.); (T.R.)
- Department of Forensic Medicine, School of Basic Medical Sciences, Nanjing Medical University, Longmian Avenue 101, Nanjing 211166, China
| | - Peter Schürmann
- Gynaecology Research Unit, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (P.S.); (T.D.)
| | - Thomas Rothämel
- Institute of Legal Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (D.Q.); (T.R.)
| | - Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (P.S.); (T.D.)
| | - Michael Klintschar
- Institute of Legal Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (D.Q.); (T.R.)
| |
Collapse
|
13
|
Xue J, Chen H, Wang Y, Jiang Y. Structural mechanisms of human sodium-coupled high-affinity choline transporter CHT1. Cell Discov 2024; 10:116. [PMID: 39587078 PMCID: PMC11589582 DOI: 10.1038/s41421-024-00731-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/27/2024] [Indexed: 11/27/2024] Open
Abstract
Mammalian sodium-coupled high-affinity choline transporter CHT1 uptakes choline in cholinergic neurons for acetylcholine synthesis and plays a critical role in cholinergic neurotransmission. Here, we present the high-resolution cryo-EM structures of human CHT1 in apo, substrate- and ion-bound, hemicholinium-3-inhibited, and ML352-inhibited states. These structures represent three distinct conformational states, elucidating the structural basis of the CHT1-mediated choline uptake mechanism. Three ion-binding sites, two for Na+ and one for Cl-, are unambiguously defined in the structures, demonstrating that both ions are indispensable cofactors for high-affinity choline-binding and are likely transported together with the substrate in a 2:1:1 stoichiometry. The two inhibitor-bound CHT1 structures reveal two distinct inhibitory mechanisms and provide a potential structural platform for designing therapeutic drugs to manipulate cholinergic neuron activity. Combined with the functional analysis, this study provides a comprehensive view of the structural mechanisms underlying substrate specificity, substrate/ion co-transport, and drug inhibition of a physiologically important symporter.
Collapse
Affiliation(s)
- Jing Xue
- Institute of Aging & Tissue Regeneration, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Hongwen Chen
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yong Wang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Youxing Jiang
- Howard Hughes Medical Institute and Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
14
|
Birg A, van der Horn HJ, Ryman SG, Branzoli F, Deelchand DK, Quinn DK, Mayer AR, Lin HC, Erhardt EB, Caprihan A, Zotev V, Parada AN, Wick TV, Matos YL, Barnhart KA, Nitschke SR, Shaff NA, Julio KR, Prather HE, Vakhtin AA. Diffusion magnetic resonance spectroscopy captures microglial reactivity related to gut-derived systemic lipopolysaccharide: A preliminary study. Brain Behav Immun 2024; 122:345-352. [PMID: 39163909 PMCID: PMC11418836 DOI: 10.1016/j.bbi.2024.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/11/2024] [Accepted: 08/17/2024] [Indexed: 08/22/2024] Open
Abstract
Neuroinflammation is a key component underlying multiple neurological disorders, yet non-invasive and cost-effective assessment of in vivo neuroinflammatory processes in the central nervous system remains challenging. Diffusion weighted magnetic resonance spectroscopy (dMRS) has shown promise in addressing these challenges by measuring diffusivity properties of different neurometabolites, which can reflect cell-specific morphologies. Prior work has demonstrated dMRS utility in capturing microglial reactivity in the context of lipopolysaccharide (LPS) challenges and serious neurological disorders, detected as changes of microglial metabolite diffusivity properties. However, the extent to which such dMRS metrics are capable of detecting subtler and more nuanced levels of neuroinflammation in populations without overt neuropathology is unknown. Here we examined the relationship between intrinsic, gut-derived levels of systemic LPS and dMRS-based apparent diffusion coefficients (ADC) of choline, creatine, and N-acetylaspartate (NAA) in two brain regions: the thalamus and the corona radiata. Higher plasma LPS concentrations were significantly associated with increased ADC of choline and NAA in the thalamic region, with no such relationships observed in the corona radiata for any of the metabolites examined. As such, dMRS may have the sensitivity to measure microglial reactivity across populations with highly variable levels of neuroinflammation, and holds promising potential for widespread applications in both research and clinical settings.
Collapse
Affiliation(s)
- Aleksandr Birg
- Department of Internal Medicine, Raymond G. Murphy VA Medical Center, Albuquerque, NM, USA; Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Harm J van der Horn
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute
| | - Sephira G Ryman
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute; Nene and Jamie Koch Comprehensive Movement Disorder Center, Department of Neurology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Francesca Branzoli
- Sorbonne University, Inserm U 1127, CNRS UMR 7225, The Paris Brain Institute, Paris, France
| | - Dinesh K Deelchand
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Davin K Quinn
- Department of Psychiatry, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Andrew R Mayer
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute
| | - Henry C Lin
- Department of Internal Medicine, Raymond G. Murphy VA Medical Center, Albuquerque, NM, USA; Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Erik B Erhardt
- Department of Mathematics and Statistics, University of New Mexico, Albuquerque, NM, USA
| | - Arvind Caprihan
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute
| | - Vadim Zotev
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute
| | - Alisha N Parada
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Tracey V Wick
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute
| | - Yvette L Matos
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute
| | - Kimberly A Barnhart
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute
| | - Stephanie R Nitschke
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute
| | - Nicholas A Shaff
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute
| | - Kayla R Julio
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute
| | - Haley E Prather
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute
| | - Andrei A Vakhtin
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute.
| |
Collapse
|
15
|
Liu X, Huang S, Zheng J, Wan C, Hu T, Cai Y, Wang Q, Zhang S. Melatonin attenuates scopolamine-induced cognitive dysfunction through SIRT1/IRE1α/XBP1 pathway. CNS Neurosci Ther 2024; 30:e14891. [PMID: 39056330 PMCID: PMC11273216 DOI: 10.1111/cns.14891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 07/03/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND The prevalence of dementia around the world is increasing, and these patients are more likely to have cognitive impairments, mood and anxiety disorders (depression, anxiety, and panic disorder), and attention deficit disorders over their lifetime. Previous studies have proven that melatonin could improve memory loss, but its specific mechanism is still confused. METHODS In this study, we used in vivo and in vitro models to examine the neuroprotective effect of melatonin on scopolamine (SCOP)-induced cognitive dysfunction. The behavioral tests were performed. 18F-FDG PET imaging was used to assess the metabolism of the brain. Protein expressions were determined through kit detection, Western blot, and immunofluorescence. Nissl staining was conducted to reflect neurodegeneration. MTT assay and RNAi transfection were applied to perform the in vitro experiments. RESULTS We found that melatonin could ameliorate SCOP-induced cognitive dysfunction and relieve anxious-like behaviors or HT22 cell damage. 18F-FDG PET-CT results showed that melatonin could improve cerebral glucose uptake in SCOP-treated mice. Melatonin restored the cholinergic function, increased the expressions of neurotrophic factors, and ameliorated oxidative stress in the brain of SCOP-treated mice. In addition, melatonin upregulated the expression of silent information regulator 1 (SIRT1), which further relieved endoplasmic reticulum (ER) stress by decreasing the expression of phosphorylate inositol-requiring enzyme (p-IRE1α) and its downstream, X-box binding protein 1 (XBP1). CONCLUSIONS These results indicated that melatonin could ameliorate SCOP-induced cognitive dysfunction through the SIRT1/IRE1α/XBP1 pathway. SIRT1 might be the critical target of melatonin in the treatment of dementia.
Collapse
Affiliation(s)
- Xiao‐Qi Liu
- State Key Laboratory of Traditional Chinese Medicine SyndromeThe Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
- Department of NeurologyThe Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
- Department of NeurologyGuangdong Provincial Hospital of Chinese MedicineGuangzhouChina
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM GuangzhouGuangzhouChina
| | - Shun Huang
- Department of Nuclear Medicine, The Tenth Affiliated HospitalSouthern Medical University (Dongguan People's Hospital)DongguanChina
- Nanfang PET Center, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Jia‐Yi Zheng
- State Key Laboratory of Traditional Chinese Medicine SyndromeThe Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
- Department of NeurologyThe Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
- Department of NeurologyGuangdong Provincial Hospital of Chinese MedicineGuangzhouChina
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM GuangzhouGuangzhouChina
| | - Can Wan
- State Key Laboratory of Traditional Chinese Medicine SyndromeThe Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
- Department of NeurologyThe Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
- Department of NeurologyGuangdong Provincial Hospital of Chinese MedicineGuangzhouChina
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM GuangzhouGuangzhouChina
| | - Tian Hu
- State Key Laboratory of Traditional Chinese Medicine SyndromeThe Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
- Department of NeurologyThe Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
- Department of NeurologyGuangdong Provincial Hospital of Chinese MedicineGuangzhouChina
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM GuangzhouGuangzhouChina
| | - Ye‐Feng Cai
- State Key Laboratory of Traditional Chinese Medicine SyndromeThe Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
- Department of NeurologyThe Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
- Department of NeurologyGuangdong Provincial Hospital of Chinese MedicineGuangzhouChina
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM GuangzhouGuangzhouChina
| | - Qi Wang
- Science and Technology Innovation CenterGuangzhou University of Chinese MedicineGuangzhouChina
| | - Shi‐Jie Zhang
- State Key Laboratory of Traditional Chinese Medicine SyndromeThe Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
- Department of NeurologyThe Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
- Department of NeurologyGuangdong Provincial Hospital of Chinese MedicineGuangzhouChina
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM GuangzhouGuangzhouChina
| |
Collapse
|
16
|
Tian S, Sun H, Gao FF, Zhang K, Nan J, Niu M, Jia X, Xu G, Ge W. Genetic analysis of a family affected by congenital myasthenic syndrome due to a Novel mutation in the SLC5A7 gene. BMC Neurol 2024; 24:206. [PMID: 38886633 PMCID: PMC11181541 DOI: 10.1186/s12883-024-03716-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Mutations in the SLC5A7 gene cause congenital myasthenia, a rare genetic disorder. Mutation points in the SLC5A7 gene differ among individuals and encompass various genetic variations; however, exon deletion variants have yet to be reported in related cases. This study aims to explore the clinical phenotype and genetic traits of a patient with congenital myasthenic syndrome due to SLC5A7 gene variation and those of their family members. CASE PRESENTATION We describe a case of a Chinese male with congenital myasthenic syndrome presenting fluctuating limb weakness. Genetic testing revealed a heterozygous deletion mutation spanning exons 1-9 in the SLC5A7 gene. QPCR confirmed a deletion in exon 9 of the SLC5A7 gene in the patient's mother and brother. Clinical symptoms of myasthenia improved following treatment with pyridostigmine. CONCLUSION Exons 1, 5, and 9 of the SLC5A7 gene encode the choline transporter's transmembrane region. Mutations in these exons can impact the stability and plasma membrane levels of the choline transporter. Thus, a heterozygous deletion in exons 1-9 of the SLC5A7 gene could be the pathogenic cause for this patient. In patients exhibiting fluctuating weakness, positive RNS, and seronegativity for myasthenia gravis antibodies, a detailed family history should be considered, and enhanced genetic testing is recommended to determine the cause.
Collapse
Affiliation(s)
- Sheng Tian
- Xuzhou Medical University, Xuzhou, China
| | - Huan Sun
- Xuzhou Medical University, Xuzhou, China
| | | | - Kang Zhang
- Xuzhou Medical University, Xuzhou, China
| | - Jing Nan
- Xuzhou Medical University, Xuzhou, China
| | - Mu Niu
- The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical College Affiliated Hospital, Xuzhou, China
| | - Xiao Jia
- The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical College Affiliated Hospital, Xuzhou, China
| | - Gang Xu
- The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical College Affiliated Hospital, Xuzhou, China
| | - Wei Ge
- The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical College Affiliated Hospital, Xuzhou, China.
| |
Collapse
|
17
|
Sarkar S, Martinez Reyes C, Jensen CM, Gavornik JP. M2 receptors are required for spatiotemporal sequence learning in mouse primary visual cortex. J Neurophysiol 2024; 131:1213-1225. [PMID: 38629848 PMCID: PMC11381118 DOI: 10.1152/jn.00016.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/08/2024] [Accepted: 04/16/2024] [Indexed: 06/09/2024] Open
Abstract
Acetylcholine is a neurotransmitter that plays a variety of roles in the central nervous system. It was previously shown that blocking muscarinic receptors with a nonselective antagonist prevents a form of experience-dependent plasticity termed "spatiotemporal sequence learning" in the mouse primary visual cortex (V1). Muscarinic signaling is a complex process involving the combined activities of five different G protein-coupled receptors, M1-M5, all of which are expressed in the murine brain but differ from each other functionally and in anatomical localization. Here we present electrophysiological evidence that M2, but not M1, receptors are required for spatiotemporal sequence learning in mouse V1. We show in male mice that M2 is highly expressed in the neuropil in V1, especially in thalamorecipient layer 4, and colocalizes with the soma in a subset of somatostatin-expressing neurons in deep layers. We also show that expression of M2 receptors is higher in the monocular region of V1 than it is in the binocular region but that the amount of experience-dependent sequence potentiation is similar in both regions and that blocking muscarinic signaling after visual stimulation does not prevent plasticity. This work establishes a new functional role for M2-type receptors in processing temporal information and demonstrates that monocular circuits are modified by experience in a manner similar to binocular circuits.NEW & NOTEWORTHY Muscarinic acetylcholine receptors are required for multiple forms of plasticity in the brain and support perceptual functions, but the precise role of the five subtypes (M1-M5) are unclear. Here we show that the M2 receptor is specifically required to encode experience-dependent representations of spatiotemporal relationships in both monocular and binocular regions of mouse V1. This work identifies a novel functional role for M2 receptors in coding temporal information into cortical circuits.
Collapse
Affiliation(s)
- Susrita Sarkar
- Center for Systems Neuroscience, Department of Biology, Boston University, Boston, Massachusetts, United States
| | - Catalina Martinez Reyes
- Center for Systems Neuroscience, Department of Biology, Boston University, Boston, Massachusetts, United States
| | - Cambria M Jensen
- Center for Systems Neuroscience, Department of Biology, Boston University, Boston, Massachusetts, United States
| | - Jeffrey P Gavornik
- Center for Systems Neuroscience, Department of Biology, Boston University, Boston, Massachusetts, United States
| |
Collapse
|
18
|
Kniffin A, Bangasser DA, Parikh V. Septohippocampal cholinergic system at the intersection of stress and cognition: Current trends and translational implications. Eur J Neurosci 2024; 59:2155-2180. [PMID: 37118907 PMCID: PMC10875782 DOI: 10.1111/ejn.15999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 04/30/2023]
Abstract
Deficits in hippocampus-dependent memory processes are common across psychiatric and neurodegenerative disorders such as depression, anxiety and Alzheimer's disease. Moreover, stress is a major environmental risk factor for these pathologies and it exerts detrimental effects on hippocampal functioning via the activation of hypothalamic-pituitary-adrenal (HPA) axis. The medial septum cholinergic neurons extensively innervate the hippocampus. Although, the cholinergic septohippocampal pathway (SHP) has long been implicated in learning and memory, its involvement in mediating the adaptive and maladaptive impact of stress on mnemonic processes remains less clear. Here, we discuss current research highlighting the contributions of cholinergic SHP in modulating memory encoding, consolidation and retrieval. Then, we present evidence supporting the view that neurobiological interactions between HPA axis stress response and cholinergic signalling impact hippocampal computations. Finally, we critically discuss potential challenges and opportunities to target cholinergic SHP as a therapeutic strategy to improve cognitive impairments in stress-related disorders. We argue that such efforts should consider recent conceptualisations on the dynamic nature of cholinergic signalling in modulating distinct subcomponents of memory and its interactions with cellular substrates that regulate the adaptive stress response.
Collapse
Affiliation(s)
- Alyssa Kniffin
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA 19122
| | - Debra A. Bangasser
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA
| | - Vinay Parikh
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA 19122
| |
Collapse
|
19
|
Qiu Y, Gao Y, Huang B, Bai Q, Zhao Y. Transport mechanism of presynaptic high-affinity choline uptake by CHT1. Nat Struct Mol Biol 2024; 31:701-709. [PMID: 38589607 DOI: 10.1038/s41594-024-01259-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 01/19/2024] [Indexed: 04/10/2024]
Abstract
Choline is a vital nutrient and a precursor for the biosynthesis of essential metabolites, including acetylcholine (ACh), that play a central role in fetal development, especially in the brain. In cholinergic neurons, the high-affinity choline transporter (CHT1) provides an extraordinarily efficient reuptake mechanism to reutilize choline derived from intrasynaptical ACh hydrolysis and maintain ACh synthesis in the presynapse. Here, we determined structures of human CHT1 in three discrete states: the outward-facing state bound with the competitive inhibitor hemicholinium-3 (HC-3); the inward-facing occluded state bound with the substrate choline; and the inward-facing apo open state. Our structures and functional characterizations elucidate how the inhibitor and substrate are recognized. Moreover, our findings shed light on conformational changes when transitioning from an outward-facing to an inward-facing state and establish a framework for understanding the transport cycle, which relies on the stabilization of the outward-facing state by a short intracellular helix, IH1.
Collapse
Affiliation(s)
- Yunlong Qiu
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yiwei Gao
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Bo Huang
- Beijing StoneWise Technology Co Ltd., Beijing, China
| | - Qinru Bai
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yan Zhao
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
20
|
Pereira PA, Tavares M, Laires M, Mota B, Madeira MD, Paula-Barbosa MM, Cardoso A. Effects of Aging and Nerve Growth Factor on Neuropeptide Expression and Cholinergic Innervation of the Rat Basolateral Amygdala. BIOLOGY 2024; 13:155. [PMID: 38534426 DOI: 10.3390/biology13030155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/28/2024]
Abstract
The basolateral amygdala (BLA) contains interneurons that express neuropeptide Y (NPY) and vasoactive intestinal polypeptide (VIP), both of which are involved in the regulation of functions and behaviors that undergo deterioration with aging. There is considerable evidence that, in some brain areas, the expression of NPY and VIP might be modulated by acetylcholine. Importantly, the BLA is one of the brain regions that has one of the densest cholinergic innervations, which arise mainly from the basal forebrain cholinergic neurons. These cholinergic neurons depend on nerve growth factor (NGF) for their survival, connectivity, and function. Thus, in this study, we sought to determine if aging alters the densities of NPY- and VIP-positive neurons and cholinergic varicosities in the BLA and, in the affirmative, if those changes might rely on insufficient trophic support provided by NGF. The number of NPY-positive neurons was significantly reduced in aged rats, whereas the number of VIP-immunoreactive neurons was unaltered. The decreased NPY expression was fully reversed by the infusion of NGF in the lateral ventricle. The density of cholinergic varicosities was similar in adult and old rats. On the other hand, the density of cholinergic varicosities is significantly higher in old rats treated with NGF than in adult and old rats. Our results indicate a dissimilar resistance of different populations of BLA interneurons to aging. Furthermore, the present data also show that the BLA cholinergic innervation is particularly resistant to aging effects. Finally, our results also show that the reduced NPY expression in the BLA of aged rats can be related to changes in the NGF neurotrophic support.
Collapse
Affiliation(s)
- Pedro A Pereira
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- NeuroGen Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Marta Tavares
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Miguel Laires
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Bárbara Mota
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Maria Dulce Madeira
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- NeuroGen Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Manuel M Paula-Barbosa
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Armando Cardoso
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- NeuroGen Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| |
Collapse
|
21
|
Lasaponara S, Scozia G, Lozito S, Pinto M, Conversi D, Costanzi M, Vriens T, Silvetti M, Doricchi F. Temperament and probabilistic predictive coding in visual-spatial attention. Cortex 2024; 171:60-74. [PMID: 37979232 DOI: 10.1016/j.cortex.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/21/2023] [Accepted: 10/16/2023] [Indexed: 11/20/2023]
Abstract
Cholinergic (Ach), Noradrenergic (NE), and Dopaminergic (DA) pathways play an important role in the regulation of spatial attention. The same neurotransmitters are also responsible for inter-individual differences in temperamental traits. Here we explored whether biologically defined temperamental traits determine differences in the ability to orient spatial attention as a function of the probabilistic association between cues and targets. To this aim, we administered the Structure of Temperament Questionnaire (STQ-77) to a sample of 151 participants who also performed a Posner task with central endogenous predictive (80 % valid/20 % invalid) or non-predictive cues (50 % valid/50 % invalid). We found that only participants with high scores in Plasticity and Intellectual Endurance showed a selective abatement of attentional costs with non-predictive cues. In addition, stepwise regression showed that costs in the non-predictive condition were negatively predicted by scores in Plasticity and positively predicted by scores in Probabilistic Thinking. These results show that stable temperamental characteristics play an important role in defining the inter-individual differences in attentional behaviour, especially in the presence of different probabilistic organisations of the sensory environment. These findings emphasize the importance of considering temperamental and personality traits in social and professional environments where the ability to control one's attention is a crucial functional skill.
Collapse
Affiliation(s)
- Stefano Lasaponara
- Department of Psychology, "Sapienza" University of Rome, Italy; IRCCS Fondazione Santa Lucia, Rome, Italy.
| | - Gabriele Scozia
- Department of Psychology, "Sapienza" University of Rome, Italy; IRCCS Fondazione Santa Lucia, Rome, Italy; PhD Programme in Behavioural Neuroscience, "Sapienza" University of Rome, Italy
| | - Silvana Lozito
- Department of Psychology, "Sapienza" University of Rome, Italy; IRCCS Fondazione Santa Lucia, Rome, Italy; PhD Programme in Behavioural Neuroscience, "Sapienza" University of Rome, Italy
| | - Mario Pinto
- Department of Psychology, "Sapienza" University of Rome, Italy; IRCCS Fondazione Santa Lucia, Rome, Italy
| | - David Conversi
- Department of Psychology, "Sapienza" University of Rome, Italy
| | - Marco Costanzi
- Department of Human Science, LUMSA University, Rome, Italy
| | - Tim Vriens
- Computational and Translational Neuroscience Laboratory (CTNLab), Institute of Cognitive Sciences and Technologies, National Research Council, Rome, Italy
| | - Massimo Silvetti
- Computational and Translational Neuroscience Laboratory (CTNLab), Institute of Cognitive Sciences and Technologies, National Research Council, Rome, Italy
| | - Fabrizio Doricchi
- Department of Psychology, "Sapienza" University of Rome, Italy; IRCCS Fondazione Santa Lucia, Rome, Italy.
| |
Collapse
|
22
|
Martinez-Morata I, Wu H, Galvez-Fernandez M, Ilievski V, Bottiglieri T, Niedzwiecki MM, Goldsmith J, Jones DP, Kioumourtzoglou MA, Pierce B, Walker DI, Gamble MV. Metabolomic Effects of Folic Acid Supplementation in Adults: Evidence from the FACT Trial. J Nutr 2024; 154:670-679. [PMID: 38092151 PMCID: PMC10900167 DOI: 10.1016/j.tjnut.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/31/2023] Open
Abstract
BACKGROUND Folic acid (FA) is the oxidized form of folate found in supplements and FA-fortified foods. Most FA is reduced by dihydrofolate reductase to 5-methyltetrahydrofolate (5mTHF); the latter is the form of folate naturally found in foods. Ingestion of FA increases the plasma levels of both 5mTHF and unmetabolized FA (UMFA). Limited information is available on the downstream metabolic effects of FA supplementation, including potential effects associated with UMFA. OBJECTIVE We aimed to assess the metabolic effects of FA-supplementation, and the associations of plasma 5mTHF and UMFA with the metabolome in FA-naïve Bangladeshi adults. METHODS Sixty participants were selected from the Folic Acid and Creatine Trial; half received 800 μg FA/day for 12 weeks and half placebo. Plasma metabolome profiles were measured by high-resolution mass spectrometry, including 170 identified metabolites and 26,541 metabolic features. Penalized regression methods were used to assess the associations of targeted metabolites with FA-supplementation, plasma 5mTHF, and plasma UMFA. Pathway analyses were conducted using Mummichog. RESULTS In penalized models of identified metabolites, FA-supplementation was associated with higher choline. Changes in 5mTHF concentrations were positively associated with metabolites involved in amino acid metabolism (5-hydroxyindoleacetic acid, acetylmethionine, creatinine, guanidinoacetate, hydroxyproline/n-acetylalanine) and 2 fatty acids (docosahexaenoic acid and linoleic acid). Changes in 5mTHF concentrations were negatively associated with acetylglutamate, acetyllysine, carnitine, propionyl carnitine, cinnamic acid, homogentisate, arachidonic acid, and nicotine. UMFA concentrations were associated with lower levels of arachidonic acid. Together, metabolites selected across all models were related to lipids, aromatic amino acid metabolism, and the urea cycle. Analyses of nontargeted metabolic features identified additional pathways associated with FA supplementation. CONCLUSION In addition to the recapitulation of several expected metabolic changes associated with 5mTHF, we observed additional metabolites/pathways associated with FA-supplementation and UMFA. Further studies are needed to confirm these associations and assess their potential implications for human health. TRIAL REGISTRATION NUMBER This trial was registered at https://clinicaltrials.gov as NCT01050556.
Collapse
Affiliation(s)
- Irene Martinez-Morata
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Haotian Wu
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Marta Galvez-Fernandez
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Vesna Ilievski
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Teodoro Bottiglieri
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott & White Research Institute, Dallas, TX, United States
| | - Megan M Niedzwiecki
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jeff Goldsmith
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Dean P Jones
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States; Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, United States
| | - Marianthi-Anna Kioumourtzoglou
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Brandon Pierce
- Department of Public Health Sciences, University of Chicago, Chicago, IL, United States; Department of Human Genetics, University of Chicago, Chicago, IL, United States; Comprehensive Cancer Center, University of Chicago, Chicago, IL, United States
| | - Douglas I Walker
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Mary V Gamble
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States.
| |
Collapse
|
23
|
Bist R, Bhatt DK. Cholinergic Transporters Serve as Potential Targets in Alzheimer's Disease. Curr Mol Med 2024; 24:397-398. [PMID: 37151076 DOI: 10.2174/1566524023666230505155302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/13/2023] [Accepted: 03/19/2023] [Indexed: 05/09/2023]
Abstract
Alzheimer's disease (AD) is a specific brain disease that gradually worsens due to dementia over a long period. AD accounts for almost 60% to 80% of cases of dementia. Any damage to neurons affects their ability to communicate, leading to alteration in thinking, behaviour and feelings. Besides mental, motor abilities of an individual may also be affected due to AD. Therefore, it is cardinal to understand the key mechanisms by which either AD progression can be ceased or, after the onset of the disease it could be reverted. Both of these steps need the identification of a particular receptor or a molecular marker through which a drug can enter the neurons. Cholinergic transporters are such potential targets of AD, which regulate the movement of acetylcholine and thus regulate the nerve impulse conduction in the brain. The current article entails information regarding a variety of cholinergic transporters, which will provide a research gap to the global scientific community.
Collapse
Affiliation(s)
- Renu Bist
- Department of Zoology, Centre for Advanced Studies, University of Rajasthan, Jaipur, 302004, India
| | - D K Bhatt
- Department of Zoology, Mohanlal Sukhadia University, Udaipur, 313001, India
| |
Collapse
|
24
|
Andalib S, Divani AA, Ayata C, Baig S, Arsava EM, Topcuoglu MA, Cáceres EL, Parikh V, Desai MJ, Majid A, Girolami S, Di Napoli M. Vagus Nerve Stimulation in Ischemic Stroke. Curr Neurol Neurosci Rep 2023; 23:947-962. [PMID: 38008851 PMCID: PMC10841711 DOI: 10.1007/s11910-023-01323-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2023] [Indexed: 11/28/2023]
Abstract
PURPOSE OF REVIEW Vagus nerve stimulation (VNS) has emerged as a potential therapeutic approach for neurological and psychiatric disorders. In recent years, there has been increasing interest in VNS for treating ischemic stroke. This review discusses the evidence supporting VNS as a treatment option for ischemic stroke and elucidates its underlying mechanisms. RECENT FINDINGS Preclinical studies investigating VNS in stroke models have shown reduced infarct volumes and improved neurological deficits. Additionally, VNS has been found to reduce reperfusion injury. VNS may promote neuroprotection by reducing inflammation, enhancing cerebral blood flow, and modulating the release of neurotransmitters. Additionally, VNS may stimulate neuroplasticity, thereby facilitating post-stroke recovery. The Food and Drug Administration has approved invasive VNS (iVNS) combined with rehabilitation for ischemic stroke patients with moderate to severe upper limb deficits. However, iVNS is not feasible in acute stroke due to its time-sensitive nature. Non-invasive VNS (nVNS) may be an alternative approach for treating ischemic stroke. While the evidence from preclinical studies and clinical trials of nVNS is promising, the mechanisms through which VNS exerts its beneficial effects on ischemic stroke are still being elucidated. Therefore, further research is needed to better understand the efficacy and underlying mechanisms of nVNS in ischemic stroke. Moreover, large-scale randomized clinical trials are necessary to determine the optimal nVNS protocols, assess its long-term effects on stroke recovery and outcomes, and identify the potential benefits of combining nVNS with other rehabilitation strategies.
Collapse
Affiliation(s)
- Sasan Andalib
- Research Unit of Neurology, Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
- Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Afshin A Divani
- Department of Neurology, School of Medicine, University of New Mexico, Albuquerque, NM, 87131, USA.
| | - Cenk Ayata
- Neurovascular Research Unit, Department of Radiology and Stroke Service, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Sheharyar Baig
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Ethem Murat Arsava
- Department of Neurology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | | | | | - Vinay Parikh
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA, USA
| | - Masoom J Desai
- Department of Neurology, School of Medicine, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Arshad Majid
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Sara Girolami
- Neurological Service, SS Annunziata Hospital, Sulmona, L'Aquila, Italy
| | - Mario Di Napoli
- Neurological Service, SS Annunziata Hospital, Sulmona, L'Aquila, Italy
| |
Collapse
|
25
|
Kropf E, Shekari A, Jaberi S, Puri A, Wu C, Fahnestock M. Age-induced nitrative stress decreases retrograde transport of proNGF via TrkA and increases proNGF retrograde transport and neurodegeneration via p75 NTR. Front Mol Neurosci 2023; 16:1241420. [PMID: 38025269 PMCID: PMC10679388 DOI: 10.3389/fnmol.2023.1241420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Axonal transport of pro nerve growth factor (proNGF) is impaired in aged basal forebrain cholinergic neurons (BFCNs), which is associated with their degeneration. ProNGF is neurotrophic in the presence of its receptor tropomyosin-related kinase A (TrkA) but induces apoptosis via the pan-neurotrophin receptor (p75NTR) when TrkA is absent. It is well established that TrkA is lost while p75NTR is maintained in aged BFCNs, but whether aging differentially affects transport of proNGF via each receptor is unknown. Nitrative stress increases during aging, but whether age-induced nitrative stress differentially affects proNGF transport via TrkA versus p75NTR has not yet been studied. Answering these questions is essential for developing an accurate understanding of the mechanisms contributing to age-induced loss of proNGF transport and BFCN degeneration. Methods In this study, fluorescence microscopy was used to analyze axonal transport of quantum dot labeled proNGF in rat BFCNs in vitro. Receptor specific effects were studied with proNGF mutants that selectively bind to either TrkA (proNGF-KKE) or p75NTR (proNGF-Δ9-13). Signaling factor activity was quantified via immunostaining. Results Young BFCNs transported proNGF-KKE but not proNGF-Δ9-13, and proNGF transport was not different in p75NTR knockout BFCNs compared to wildtype BFCNs. These results indicate that young BFCNs transport proNGF via TrkA. In vitro aging increased transport of proNGF-Δ9-13 but decreased transport of proNGF-KKE. Treatment with the nitric oxide synthase inhibitor L-NAME reduced retrograde transport of proNGF-Δ9-13 in aged BFCNs while increasing retrograde transport of proNGF-KKE but did not affect TrkA or p75NTR levels. ProNGF-Δ9-13 induced greater pro-apoptotic signaling and neurodegeneration and less pro-survival signaling relative to proNGF-KKE. Discussion Together, these results indicate that age-induced nitrative stress decreases proNGF transport via TrkA while increasing proNGF transport via p75NTR. These transport deficits are associated with decreased survival signaling, increased apoptotic signaling, and neurodegeneration. Our findings elucidate the receptor specificity of age-and nitrative stress-induced proNGF transport deficits. These results may help to rescue the neurotrophic signaling of proNGF in aging to reduce age-induced loss of BFCN function and cognitive decline.
Collapse
Affiliation(s)
- Erika Kropf
- Neuroscience Program, McMaster University, Hamilton, ON, Canada
| | - Arman Shekari
- Neuroscience Program, McMaster University, Hamilton, ON, Canada
| | - Sama Jaberi
- Neuroscience Program, McMaster University, Hamilton, ON, Canada
| | - Anish Puri
- Neuroscience Program, McMaster University, Hamilton, ON, Canada
| | - Chengbiao Wu
- Department of Neurosciences, University of California San Diego, La Jolla, CA, United States
| | - Margaret Fahnestock
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
26
|
Arakawa I, Muramatsu I, Uwada J, Sada K, Matsukawa N, Masuoka T. Acetylcholine release from striatal cholinergic interneurons is controlled differently depending on the firing pattern. J Neurochem 2023; 167:38-51. [PMID: 37653723 DOI: 10.1111/jnc.15950] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 07/31/2023] [Accepted: 08/11/2023] [Indexed: 09/02/2023]
Abstract
How is the quantal size in neurotransmitter release adjusted for various firing levels? We explored the possible mechanisms that regulate acetylcholine (ACh) release from cholinergic interneurons using an ultra-mini superfusion system. After preloading [3 H]ACh in rat striatal cholinergic interneurons, the release was elicited by electrical stimulation under a condition in which presynaptic cholinergic and dopaminergic feedback was inhibited. [3 H]ACh release was reproducible at intervals of more than 10 min; shorter intervals resulted in reduced levels of ACh release. Upon persistent stimulation for 10 min, ACh release transiently increased, before gradually decreasing. Vesamicol, an inhibitor of the vesicular ACh transporter (VAChT), had no effect on the release induced by the first single pulse, but it reduced the release caused by subsequent pulses. Vesamicol also reduced the [3 H]ACh release evoked by multiple pulses, and the inhibition was enhanced by repetitive stimulation. The decreasing phase of [3 H]ACh release during persistent stimulation was accelerated by vesamicol treatment. Thus, it is likely that releasable ACh was slowly compensated for via VAChT during and after stimulation, changing the vesicular ACh content. In addition, ACh release per pulse decreased under high-frequency stimulation. The present results suggest that ACh release from striatal cholinergic interneurons may be adjusted by changes in the quantal size due to slow replenishment via VAChT, and by a reduction in release probability upon high-frequency stimulation. These two distinct processes likely enable the fine tuning of neurotransmission and neuroprotection/limitation against excessive output and have important physiological roles in the brain.
Collapse
Affiliation(s)
- Itsumi Arakawa
- Department of Neurology, Nagoya City University Graduate School of Medicine, Nagoya, Japan
- Department of Pharmacology, School of Medicine, Kanazawa Medical University, Uchinada, Japan
- Division of Genomic Science and Microbiology, School of Medicine, University of Fukui, Fukui, Japan
| | - Ikunobu Muramatsu
- Department of Pharmacology, School of Medicine, Kanazawa Medical University, Uchinada, Japan
- Division of Genomic Science and Microbiology, School of Medicine, University of Fukui, Fukui, Japan
- Kimura Hospital, Fukui, Japan
| | - Junsuke Uwada
- Department of Pharmacology, School of Medicine, Kanazawa Medical University, Uchinada, Japan
| | - Kiyonao Sada
- Division of Genomic Science and Microbiology, School of Medicine, University of Fukui, Fukui, Japan
| | - Noriyuki Matsukawa
- Department of Neurology, Nagoya City University Graduate School of Medicine, Nagoya, Japan
| | - Takayoshi Masuoka
- Department of Pharmacology, School of Medicine, Kanazawa Medical University, Uchinada, Japan
| |
Collapse
|
27
|
Almalki SG, Alqurashi YE, Alturaiki W, Almawash S, Khan A, Ahmad P, Iqbal D. Antioxidant, LC-MS Analysis, and Cholinesterase Inhibitory Potentials of Phoenix dactylifera Cultivar Khudari: An In Vitro Enzyme Kinetics and In Silico Study. Biomolecules 2023; 13:1474. [PMID: 37892156 PMCID: PMC10605097 DOI: 10.3390/biom13101474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
We evaluated the therapeutic potentials of Khudari fruit pulp, a functional food and cultivar of Phoenix dactylifera, against neurological disorders. Our results demonstrate a good amount of phytochemicals (total phenolic content: 17.77 ± 8.21 µg GA/mg extract) with a high antioxidant potential of aqueous extract (DPPH assay IC50 = 235.84 ± 11.65 µg/mL) and FRAP value: 331.81 ± 4.56 µmol. Furthermore, the aqueous extract showed the marked inhibition of cell-free acetylcholinesterase (electric eel) with an IC50 value of 48.25 ± 2.04 µg/mL, and an enzyme inhibition kinetics study revealed that it exhibits mixed inhibition. Thereafter, we listed the 18 best-matched phytochemical compounds present in aqueous extract through LC/MS analysis. The computational study revealed that five out of eighteen predicted compounds can cross the BBB and exert considerable aqueous solubility. where 2-{5-[(1E)-3-methylbuta-1,3-dien-1-yl]-1H-indol-3-yl}ethanol (MDIE) indicates an acceptable LD50. value. A molecular docking study exhibited that the compounds occupied the key residues of acetylcholinesterase with ΔG range between -6.91 and -9.49 kcal/mol, where MDIE has ∆G: -8.67 kcal/mol, which was better than that of tacrine, ∆G: -8.25 kcal/mol. Molecular dynamics analyses of 100 ns supported the stability of the protein-ligand complexes analyzed through RMSD, RMSF, Rg, and SASA parameters. TRP_84 and GLY_442 are the most critical hydrophobic contacts for the complex, although GLU_199 is important for H-bonds. Prime/MM-GBSA showed that the protein-ligand complex formed a stable confirmation. These findings suggest that the aqueous extract of Khudari fruit pulp has significant antioxidant and acetylcholinesterase inhibition potentials, and its compound, MDIE, forms stably with confirmation with the target protein, though this fruit of Khudari dates can be a better functional food for the treatment of Alzheimer's disease. Further investigations are needed to fully understand the therapeutic role of this plant-based compound via in vivo study.
Collapse
Affiliation(s)
- Sami G. Almalki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia;
| | - Yaser E. Alqurashi
- Department of Biology, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia;
| | - Wael Alturaiki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia;
| | - Saud Almawash
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia;
| | - Amir Khan
- Oral Medicine and Allied Dental Sciences Department, Faculty of Dentistry, Taif University, Taif 11099, Saudi Arabia;
| | - Parvej Ahmad
- IIRC-5 Clinical Biochemistry and Natural Product Research Laboratory, Integral University, Lucknow 226026, India;
| | - Danish Iqbal
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia
| |
Collapse
|
28
|
Fronza MG, Alves D, Praticò D, Savegnago L. The neurobiology and therapeutic potential of multi-targeting β-secretase, glycogen synthase kinase 3β and acetylcholinesterase in Alzheimer's disease. Ageing Res Rev 2023; 90:102033. [PMID: 37595640 DOI: 10.1016/j.arr.2023.102033] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/04/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023]
Abstract
Alzheimer's Disease (AD) is the most common form of dementia, affecting almost 50 million of people around the world, characterized by a complex and age-related progressive pathology with projections to duplicate its incidence by the end of 2050. AD pathology has two major hallmarks, the amyloid beta (Aβ) peptides accumulation and tau hyperphosphorylation, alongside with several sub pathologies including neuroinflammation, oxidative stress, loss of neurogenesis and synaptic dysfunction. In recent years, extensive research pointed out several therapeutic targets which have shown promising effects on modifying the course of the disease in preclinical models of AD but with substantial failure when transposed to clinic trials, suggesting that modulating just an isolated feature of the pathology might not be sufficient to improve brain function and enhance cognition. In line with this, there is a growing consensus that an ideal disease modifying drug should address more than one feature of the pathology. Considering these evidence, β-secretase (BACE1), Glycogen synthase kinase 3β (GSK-3β) and acetylcholinesterase (AChE) has emerged as interesting therapeutic targets. BACE1 is the rate-limiting step in the Aβ production, GSK-3β is considered the main kinase responsible for Tau hyperphosphorylation, and AChE play an important role in modulating memory formation and learning. However, the effects underlying the modulation of these enzymes are not limited by its primarily functions, showing interesting effects in a wide range of impaired events secondary to AD pathology. In this sense, this review will summarize the involvement of BACE1, GSK-3β and AChE on synaptic function, neuroplasticity, neuroinflammation and oxidative stress. Additionally, we will present and discuss new perspectives on the modulation of these pathways on AD pathology and future directions on the development of drugs that concomitantly target these enzymes.
Collapse
Affiliation(s)
- Mariana G Fronza
- Neurobiotechnology Research Group (GPN) - Centre for Technology Development CDTec, Federal University of Pelotas (UFPel), Pelotas, RS, Brazil
| | - Diego Alves
- Laboratory of Clean Organic Synthesis (LASOL), Center for Chemical, Pharmaceutical and Food Sciences (CCQFA), UFPel, RS, Brazil
| | - Domenico Praticò
- Alzheimer's Center at Temple - ACT, Temple University, Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Lucielli Savegnago
- Neurobiotechnology Research Group (GPN) - Centre for Technology Development CDTec, Federal University of Pelotas (UFPel), Pelotas, RS, Brazil.
| |
Collapse
|
29
|
Wu T, Lan QY, Tian F, Xiong XY, Yang MT, Huang SY, Chen XY, Kuchan MJ, Li X, Zhao YR, Mao YY, Zhu HL. Longitudinal changes in choline concentration and associated factors in human breast milk. Clin Nutr 2023; 42:1647-1656. [PMID: 37515842 DOI: 10.1016/j.clnu.2023.07.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/31/2023]
Abstract
BACKGROUND Human breast milk is the primary source of choline and choline-containing compounds for infants at early stages of life. Choline data across lactation in Chinese human milk were limited. OBJECTIVE This study aimed to quantify the five choline compounds in Chinese human breast milk and explore associated factors. METHODS A total of 540 lactating mothers from the MUAI (Maternal Nutrition and Infant Investigation) study were included. The content of water-soluble choline (free choline, phosphocholine, glycerophosphocholine) and lipid-soluble choline (phosphatidylcholine, sphingomyelin) in 892 human milk samples collected from 0 to 400 days postpartum were examined, and associated factors were explored. RESULTS Choline concentrations in human milk varied from postpartum day 0-400 (92.06 ± 65.22 to 171.01 ± 47.84 mg/L). Water-soluble choline was the major component (88.6%-93.8%) in human milk and ranged from 793.03 (659.22) to 1544.43 (443.32) μmol/L. Its trajectory followed that of total choline, increasing from colostrum to transitional milk and then declining in mature milk. In contrast, lipid-soluble choline accounted for 6.2%-11.4% over lactation and had an opposite trajectory. Choline composition varied by delivery mode and parity history. CONCLUSION The concentrations of individual choline and choline-containing compounds during lactation in Chinese human breast milk were described for the first time. Our results address gaps in extant Chinese human milk choline data and support tailored dietary reference intakes for Chinese lactating women and infants. Our data describes the level and profile of choline from 0 to 400 days postpartum in Chinese human breast milk. This is the most updated data on choline and also the first report of water-soluble choline as the predominant type in Chinese human milk. Our results compensate for the deficiencies in data on choline in Chinese human milk. CLINICAL TRIAL REGISTRATION Clinical Trial Registry number: ChiCTR1800015387. Web link to study on registry: https://www.chictr.org.cn/index.aspx.
Collapse
Affiliation(s)
- Tong Wu
- School of Public Health, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Qiu-Ye Lan
- School of Public Health, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Fang Tian
- Abbott Nutrition Research & Development Center, Shanghai, Abbott Laboratories, Shanghai 200233, China
| | - Xiao-Ying Xiong
- Abbott Nutrition Research & Development Center, Shanghai, Abbott Laboratories, Shanghai 200233, China
| | - Meng-Tao Yang
- School of Public Health, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Si-Yu Huang
- School of Public Health, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Xiao-Yan Chen
- School of Public Health, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Matthew J Kuchan
- Abbott Nutrition Research & Development Center, Columbus, Abbott Laboratories, Ohio, 43219, USA
| | - Xiang Li
- Abbott Nutrition Research & Development Center, Shanghai, Abbott Laboratories, Shanghai 200233, China
| | - Yan-Rong Zhao
- Abbott Nutrition Research & Development Center, Shanghai, Abbott Laboratories, Shanghai 200233, China
| | - Ying-Yi Mao
- Abbott Nutrition Research & Development Center, Shanghai, Abbott Laboratories, Shanghai 200233, China.
| | - Hui-Lian Zhu
- School of Public Health, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
30
|
Sun Q, Xu X, Liu S, Wu X, Yin C, Wu M, Chen Y, Niu N, Chen L, Bai F. Mo Single-Atom Nanozyme Anchored to the 2D N-Doped Carbon Film: Catalytic Mechanism, Visual Monitoring of Choline, and Evaluation of Intracellular ROS Generation. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37466481 DOI: 10.1021/acsami.3c04761] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Single-atom nanozymes (SANs) have attracted great attention in constructing devices for instant biosensing due to their excellent stability and atom utilization. Here, Mo atoms were immobilized in 2D nitrogen-doped carbon films by cascade-anchored one-pot pyrolysis to obtain Mo single-atom nanozyme (Mo-SAN) with high atomic loading (4.79 wt %) and peroxidase-like activity. The coordination environment and enzyme-like activity mechanism of Mo-SAN were studied by combining synchrotron radiation and density functional theory. The strong oxophilicity of single-atom Mo makes the catalytic center more capable of transferring electrons to free radicals to selectively generate •OH in the presence of H2O2. Choline oxidase and Mo-SAN were used as signal opening unit and signal amplification unit, respectively. Combining the portability and visualization functions of smartphone and test strips, a paper-based visual sensing platform was constructed, which can accurately identify choline at a concentration of 0.5-35 μM with a limit of detection as low as 0.12 μM. The recovery of human serum samples was 96.4-102.2%, with an error of less than 5%. Furthermore, the potential of Mo-SAN to efficiently generate toxic •OH in tumor cells was intuitively confirmed. This work provides a technical and theoretical basis for designing highly active SANs and detecting neurological markers.
Collapse
Affiliation(s)
- Qijun Sun
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Harbin 150040, P. R. China
| | - Xiaoyu Xu
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Harbin 150040, P. R. China
| | - Song Liu
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Harbin 150040, P. R. China
| | - Xinzhao Wu
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Chenhui Yin
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Harbin 150040, P. R. China
| | - Meng Wu
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Harbin 150040, P. R. China
| | - Yuxue Chen
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Harbin 150040, P. R. China
| | - Na Niu
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Harbin 150040, P. R. China
| | - Ligang Chen
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Harbin 150040, P. R. China
| | - Fuquan Bai
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, P. R. China
| |
Collapse
|
31
|
Bava JM, Wang Z, Bick SK, Englot DJ, Constantinidis C. Improving Visual Working Memory with Cholinergic Deep Brain Stimulation. Brain Sci 2023; 13:917. [PMID: 37371395 PMCID: PMC10296349 DOI: 10.3390/brainsci13060917] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Acetylcholine is a critical modulatory neurotransmitter for cognitive function. Cholinergic drugs improve cognitive performance and enhance neuronal activity in the sensory and association cortices. An alternative means of improving cognitive function is through the use of deep brain stimulation. Prior animal studies have demonstrated that stimulation of the nucleus basalis of Meynert through DBS improves cognitive performance on a visual working memory task to the same degree as cholinesterase inhibitors. Additionally, unlike current pharmacological treatments for neurocognitive disorders, DBS does not lose efficacy over time and adverse effects are rare. These findings suggest that DBS may be a promising alternative for treating cognitive impairments in neurodegenerative disorders such as Alzheimer's disease. Thus, further research and human trials should be considered to assess the potential of DBS as a therapeutic treatment for these disorders.
Collapse
Affiliation(s)
- Janki M. Bava
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA; (J.M.B.); (D.J.E.)
| | - Zhengyang Wang
- Neuroscience Program, Vanderbilt University, Nashville, TN 37235, USA;
| | - Sarah K. Bick
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | - Dario J. Englot
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA; (J.M.B.); (D.J.E.)
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | - Christos Constantinidis
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA; (J.M.B.); (D.J.E.)
- Neuroscience Program, Vanderbilt University, Nashville, TN 37235, USA;
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
32
|
Irvine N, England-Mason G, Field CJ, Letourneau N, Bell RC, Giesbrecht GF, Kinniburgh DW, MacDonald AM, Martin JW, Dewey D. Associations between maternal folate status and choline intake during pregnancy and neurodevelopment at 3-4 years of age in the Alberta Pregnancy Outcomes and Nutrition (APrON) study. J Dev Orig Health Dis 2023; 14:402-414. [PMID: 36939090 PMCID: PMC10202845 DOI: 10.1017/s2040174423000041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Folate and choline are methyl donor nutrients that may play a role in fetal brain development. Animal studies have reported that prenatal folate and choline supplementation are associated with better cognitive outcomes in offspring and that these nutrients may interact and affect brain development. Human studies that have investigated associations between maternal prenatal folate or choline levels and neurodevelopmental outcomes have reported contradictory findings and no human studies have examined the potential interactive effect of folate and choline on children's neurodevelopment. During the second trimester of pregnancy, maternal red blood cell folate was measured from blood samples and choline intake was estimated using a 24-h dietary recall in 309 women in the APrON cohort. At 3-5 years of age, their children's neurodevelopment was assessed using the Wechsler Preschool and Primary Scales of Intelligence - Fourth EditionCND, NEPSY-II language and memory subtests, four behavioral executive function tasks, and the Movement Assessment Battery for Children - Second Edition. Adjusted regressions revealed no associations between maternal folate and choline levels during pregnancy and most of the child outcomes. On the Dimensional Change Card Sort, an executive function task, there was an interaction effect; at high levels of choline intake (i.e., 1 SD above the mean; 223.03 mg/day), higher maternal folate status was associated with decreased odds of receiving a passing score (β = -0.44; 95%CI -0.81, -0.06). In conclusion, maternal folate status and choline intake during the second trimester of pregnancy were not associated with children's intelligence, language, memory, or motor outcomes at 3-4 years of age; however, their interaction may have an influence children's executive functions.
Collapse
Affiliation(s)
- Nathalie Irvine
- Bachelor of Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Gillian England-Mason
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Catherine J Field
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Nicole Letourneau
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Faculty of Nursing, University of Calgary, Calgary, Alberta, Canada
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Rhonda C Bell
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Gerald F Giesbrecht
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
| | - David W Kinniburgh
- Alberta Centre for Toxicology, University of Calgary, Calgary, Alberta, Canada
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Amy M MacDonald
- Alberta Centre for Toxicology, University of Calgary, Calgary, Alberta, Canada
| | - Jonathan W Martin
- Science for Life Laboratory, Department of Environmental Sciences, Stockholm University, Stockholm, Sweden
| | - Deborah Dewey
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
33
|
Sabbir MG, Swanson M, Speth RC, Albensi BC. Hippocampal versus cortical deletion of cholinergic receptor muscarinic 1 in mice differentially affects post-translational modifications and supramolecular assembly of respiratory chain-associated proteins, mitochondrial ultrastructure, and respiration: implications in Alzheimer's disease. Front Cell Dev Biol 2023; 11:1179252. [PMID: 37293125 PMCID: PMC10246746 DOI: 10.3389/fcell.2023.1179252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/02/2023] [Indexed: 06/10/2023] Open
Abstract
Introduction: In a previous retrospective study using postmortem human brain tissues, we demonstrated that loss of Cholinergic Receptor Muscarinic 1 (CHRM1) in the temporal cortex of a subset of Alzheimer's patients was associated with poor survival, whereas similar loss in the hippocampus showed no such association. Mitochondrial dysfunction underlies Alzheimer's pathogenesis. Therefore, to investigate the mechanistic basis of our findings, we evaluated cortical mitochondrial phenotypes in Chrm1 knockout (Chrm1-/-) mice. Cortical Chrm1 loss resulted in reduced respiration, reduced supramolecular assembly of respiratory protein complexes, and caused mitochondrial ultrastructural abnormalities. These mouse-based findings mechanistically linked cortical CHRM1 loss with poor survival of Alzheimer's patients. However, evaluation of the effect of Chrm1 loss on mouse hippocampal mitochondrial characteristics is necessary to fully understand our retrospective human tissue-based observations. This is the objective of this study. Methods: Enriched hippocampal and cortical mitochondrial fractions (EHMFs/ECMFs, respectively) derived from wild-type and Chrm1-/- mice were used to measure respiration by quantifying real-time oxygen consumption, supramolecular assembly of oxidative phosphorylation (OXPHOS)-associated proteins by blue native polyacrylamide gel electrophoresis, post-translational modifications (PTMs) by isoelectric focusing (IEF), and mitochondrial ultrastructure by electron microscopy. Results: In contrast to our previous observations in Chrm1-/- ECMFs, EHMFs of Chrm1-/- mice significantly increased respiration with a concomitant increase in the supramolecular assembly of OXPHOS-associated proteins, specifically Atp5a and Uqcrc2, with no mitochondrial ultrastructural alterations. IEF of ECMFs and EHMFs from Chrm1-/- mice showed a decrease and an increase, respectively in a negatively charged (pH∼3) fraction of Atp5a relative to the wild-type mice, with a corresponding decrease or increase in the supramolecular assembly of Atp5a and respiration indicating a tissue-specific signaling effect. Discussion: Our findings indicate that loss of Chrm1 in the cortex causes structural, and physiological alterations to mitochondria that compromise neuronal function, whereas Chrm1 loss in the hippocampus may benefit neuronal function by enhancing mitochondrial function. This brain region-specific differential effect of Chrm1 deletion on mitochondrial function supports our human brain region-based findings and Chrm1-/- mouse behavioral phenotypes. Furthermore, our study indicates that Chrm1-mediated brain region-specific differential PTMs of Atp5a may alter complex-V supramolecular assembly which in turn regulates mitochondrial structure-function.
Collapse
Affiliation(s)
- Mohammad Golam Sabbir
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada
- Alzo Biosciences Inc., San Diego, CA, United States
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada
- Barry & Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Mamiko Swanson
- Alzo Biosciences Inc., San Diego, CA, United States
- Barry & Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Robert C. Speth
- Barry & Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, United States
- Department of Pharmacology and Physiology, School of Medicine, Georgetown University, Washington, DC, United States
| | - Benedict C. Albensi
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada
- Barry & Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, United States
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
34
|
Seyyedsalehi MS, Rossi M, Hadji M, Rashidian H, Marzban M, Parpinel M, Fiori F, Naghibzadeh-Tahami A, Hannun YA, Luberto C, Zendehdel K, Boffetta P. Dietary Choline and Betaine Intake and Risk of Colorectal Cancer in an Iranian Population. Cancers (Basel) 2023; 15:2557. [PMID: 37174024 PMCID: PMC10177422 DOI: 10.3390/cancers15092557] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/22/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is increasing in low- and middle-income countries, likely due to changing lifestyle habits, including diet. We aimed to investigate the relationship between dietary betaine, choline, and choline-containing compounds and CRC risk. METHODS We analyzed data from a case-control study, including 865 CRC cases and 3206 controls from Iran. Detailed information was collected by trained interviewers using validated questionnaires. The intake of free choline, phosphocholine (Pcho), glycerophosphocholine (GPC), phosphatidylcholine (PtdCho), and sphingomyelin (SM), as well as of betaine was estimated from food frequency questionnaires and categorized into quartiles. The odds ratios (OR) and 95% confidence intervals (CI) of CRC for choline and betaine quartiles were calculated using multivariate logistic regression by adjusting for potential confounders. RESULTS We observed excess risk of CRC in the highest versus lowest intake of total choline (OR = 1.23, 95% CI 1.13, 1.33), GPC (OR = 1.13, 95% CI 1.00, 1.27), and SM (OR = 1.14, 95% CI 1.01, 1.28). The intake of betaine exerted an inverse association with CRC risk (OR = 0.91, 95% CI 0.83, 0.99). There was no association between free choline, Pcho, PtdCho, and CRC. Analyses stratified by gender showed an elevated OR of CRC in men for SM intake OR = 1.20, 95% CI 1.03, 1.40) and a significantly decreased CRC risk in women for betaine intake (OR = 0.84, 95% CI 0.73, 0.97). CONCLUSION Dietary modifications leading to an increase in betaine sources and managing the use of animal products as references for SM or other choline types might contribute to decreasing the risk of CRC.
Collapse
Affiliation(s)
- Monireh Sadat Seyyedsalehi
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy;
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran 5166614711, Iran
| | - Marta Rossi
- The Department of Clinical Sciences and Community Health, Università Degli Studi di Milano, 20133 Milan, Italy
| | - Maryam Hadji
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran 5166614711, Iran
- Health Sciences Unit, Faculty of Social Sciences, Tampere University, 33521 Tampere, Finland
| | - Hamideh Rashidian
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran 5166614711, Iran
| | - Maryam Marzban
- Department of Human Genetics, McGill University, Montreal, QC 3640, Canada
| | - Maria Parpinel
- Department of Medicine, University of Udine, Via Colugna 50, 33100 Udine, Italy
| | - Federica Fiori
- Department of Medicine, University of Udine, Via Colugna 50, 33100 Udine, Italy
| | - Ahmad Naghibzadeh-Tahami
- Modeling in Health Research Center, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman 7619833477, Iran
- Health Foresight and Innovation Research Center, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman 7619833477, Iran
| | - Yusuf A. Hannun
- Stony Brook Cancer Center, Stony Brook University, New York, NY 11794, USA
- Department of Medicine, Stony Brook University, New York, NY 11794, USA
| | - Chiara Luberto
- Stony Brook Cancer Center, Stony Brook University, New York, NY 11794, USA
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Kazem Zendehdel
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran 5166614711, Iran
- Cancer Biology Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran 5166614711, Iran
| | - Paolo Boffetta
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy;
- Stony Brook Cancer Center, Stony Brook University, New York, NY 11794, USA
| |
Collapse
|
35
|
Simon C, Soga T, Parhar I. Kisspeptin-10 Mitigates α-Synuclein-Mediated Mitochondrial Apoptosis in SH-SY5Y-Derived Neurons via a Kisspeptin Receptor-Independent Manner. Int J Mol Sci 2023; 24:ijms24076056. [PMID: 37047030 PMCID: PMC10094180 DOI: 10.3390/ijms24076056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 04/14/2023] Open
Abstract
The hypothalamic neurohormone kisspeptin-10 (KP-10) was inherently implicated in cholinergic pathologies when aberrant fluctuations of expression patterns and receptor densities were discerned in neurodegenerative micromilieus. That said, despite variable degrees of functional redundancy, KP-10, which is biologically governed by its cognate G-protein-coupled receptor, GPR54, attenuated the progressive demise of α-synuclein (α-syn)-rich cholinergic-like neurons. Under explicitly modeled environments, in silico algorithms further rationalized the surface complementarities between KP-10 and α-syn when KP-10 was unambiguously accommodated in the C-terminal binding pockets of α-syn. Indeed, the neuroprotective relevance of KP-10's binding mechanisms can be insinuated in the amelioration of α-syn-mediated neurotoxicity; yet it is obscure whether these extenuative circumstances are contingent upon prior GPR54 activation. Herein, choline acetyltransferase (ChAT)-positive SH-SY5Y neurons were engineered ad hoc to transiently overexpress human wild-type or E46K mutant α-syn while the mitigation of α-syn-induced neuronal death was ascertained via flow cytometric and immunocytochemical quantification. Recapitulating the specificity observed on cell viability, exogenously administered KP-10 (0.1 µM) substantially suppressed wild-type and E46K mutant α-syn-mediated apoptosis and mitochondrial depolarization in cholinergic differentiated neurons. In particular, co-administrations with a GPR54 antagonist, kisspeptin-234 (KP-234), failed to abrogate the robust neuroprotection elicited by KP-10, thereby signifying a GPR54 dispensable mechanism of action. Consistent with these observations, KP-10 treatment further diminished α-syn and ChAT immunoreactivity in neurons overexpressing wild-type and E46K mutant α-syn. Overall, these findings lend additional credence to the previous notion that KP-10's binding zone may harness efficacious moieties of neuroprotective intent.
Collapse
Affiliation(s)
- Christopher Simon
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
| | - Tomoko Soga
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
| | - Ishwar Parhar
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
| |
Collapse
|
36
|
A novel transgenic mouse model expressing primate-specific nuclear choline acetyltransferase: insights into potential cholinergic vulnerability. Sci Rep 2023; 13:3037. [PMID: 36810877 PMCID: PMC9944276 DOI: 10.1038/s41598-023-30155-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
The acetylcholine (ACh) synthesizing enzyme choline acetyltransferase (ChAT) is an important cholinergic neuronal marker whose levels and/or activity are reduced in physiological and pathological aging. One isoform of ChAT, 82-kDa ChAT, is expressed only in primates and found primarily in nuclei of cholinergic neurons in younger individuals, but this protein becomes mostly cytoplasmic with increasing age and in Alzheimer's disease (AD). Previous studies suggest that 82-kDa ChAT may be involved in regulating gene expression during cellular stress. Since it is not expressed in rodents, we developed a transgenic mouse model that expresses human 82-kDa ChAT under the control of an Nkx2.1 driver. Behavioral and biochemical assays were used to phenotype this novel transgenic model and elucidate the impact of 82-kDa ChAT expression. The 82-kDa ChAT transcript and protein were expressed predominantly in basal forebrain neurons and subcellular distribution of the protein recapitulated the age-related pattern found previously in human necropsy brains. Older 82-kDa ChAT-expressing mice presented with better age-related memory and inflammatory profiles. In summary, we established a novel transgenic mouse expressing 82-kDa ChAT that is valuable for studying the role of this primate-specific cholinergic enzyme in pathologies associated with cholinergic neuron vulnerability and dysfunction.
Collapse
|
37
|
Tacconi E, Palma G, De Biase D, Luciano A, Barbieri M, de Nigris F, Bruzzese F. Microbiota Effect on Trimethylamine N-Oxide Production: From Cancer to Fitness-A Practical Preventing Recommendation and Therapies. Nutrients 2023; 15:563. [PMID: 36771270 PMCID: PMC9920414 DOI: 10.3390/nu15030563] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/24/2023] Open
Abstract
Trimethylamine N-oxide (TMAO) is a microbial metabolite derived from nutrients, such as choline, L-carnitine, ergothioneine and betaine. Recently, it has come under the spotlight for its close interactions with gut microbiota and implications for gastrointestinal cancers, cardiovascular disease, and systemic inflammation. The culprits in the origin of these pathologies may be food sources, in particular, high fat meat, offal, egg yolk, whole dairy products, and fatty fish, but intercalated between these food sources and the production of pro-inflammatory TMAO, the composition of gut microbiota plays an important role in modulating this process. The aim of this review is to explain how the gut microbiota interacts with the conversion of specific compounds into TMA and its oxidation to TMAO. We will first cover the correlation between TMAO and various pathologies such as dysbiosis, then focus on cardiovascular disease, with a particular emphasis on pro-atherogenic factors, and then on systemic inflammation and gastrointestinal cancers. Finally, we will discuss primary prevention and therapies that are or may become possible. Possible treatments include modulation of the gut microbiota species with diets, physical activity and supplements, and administration of drugs, such as metformin and aspirin.
Collapse
Affiliation(s)
- Edoardo Tacconi
- Department of Human Science and Quality of Life Promotion, San Raffaele Roma Open University, 00166 Rome, Italy
| | - Giuseppe Palma
- S.S.D. Sperimentazione Animale, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| | - Davide De Biase
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Antonio Luciano
- S.S.D. Sperimentazione Animale, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| | - Massimiliano Barbieri
- S.S.D. Sperimentazione Animale, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| | - Filomena de Nigris
- Department of Precision Medicine, School of Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, Via De Crecchio 7, 80138 Naples, Italy
| | - Francesca Bruzzese
- S.S.D. Sperimentazione Animale, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| |
Collapse
|
38
|
Huston JP, Chao OY. Probing the nature of episodic memory in rodents. Neurosci Biobehav Rev 2023; 144:104930. [PMID: 36544301 DOI: 10.1016/j.neubiorev.2022.104930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 12/15/2022]
Abstract
Episodic memory (EM) specifies the experience of retrieving information of an event at the place and time of occurrence. Whether non-human animals are capable of EM remains debated, whereas evidence suggests that they have a memory system akin to EM. We here trace the development of various behavioral paradigms designed to study EM in non-human animals, in particular the rat. We provide an in-depth description of the available behavioral tests which combine three spontaneous object exploration paradigms, namely novel object preference (for measuring memory for "what"), novel location preference (for measuring memory for "where") and temporal order memory (memory for "when"), into a single trial to gauge a memory akin to EM. Most important, we describe a variation of such a test in which each memory component interacts with the others, demonstrating an integration of diverse mnemonic information. We discuss why a behavioral model of EM must be able to assess the ability to integrate "what", "where" and "when" information into a single experience. We attempt an interpretation of the various tests and review the studies that have applied them in areas such as pharmacology, neuroanatomy, circuit analysis, and sleep. Finally, we anticipate future directions in the search for neural mechanisms of EM in the rat and outline model experiments and methodologies in this pursuit.
Collapse
Affiliation(s)
- Joseph P Huston
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, University of Düsseldorf, 40225 Düsseldorf, Germany.
| | - Owen Y Chao
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA
| |
Collapse
|
39
|
Huang Y, He Z, Manyande A, Feng M, Xiang H. Nerve regeneration in transplanted organs and tracer imaging studies: A review. Front Bioeng Biotechnol 2022; 10:966138. [PMID: 36051591 PMCID: PMC9424764 DOI: 10.3389/fbioe.2022.966138] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
The technique of organ transplantation is well established and after transplantation the patient might be faced with the problem of nerve regeneration of the transplanted organ. Transplanted organs are innervated by the sympathetic, parasympathetic, and visceral sensory plexuses, but there is a lack of clarity regarding the neural influences on the heart, liver and kidneys and the mechanisms of their innervation. Although there has been considerable recent work exploring the potential mechanisms of nerve regeneration in organ transplantation, there remains much that is unknown about the heterogeneity and individual variability in the reinnervation of organ transplantation. The widespread availability of radioactive nerve tracers has also made a significant contribution to organ transplantation and has helped to investigate nerve recovery after transplantation, as well as providing a direction for future organ transplantation research. In this review we focused on neural tracer imaging techniques in humans and provide some conceptual insights into theories that can effectively support our choice of radionuclide tracers. This also facilitates the development of nuclear medicine techniques and promotes the development of modern medical technologies and computer tools. We described the knowledge of neural regeneration after heart transplantation, liver transplantation and kidney transplantation and apply them to various imaging techniques to quantify the uptake of radionuclide tracers to assess the prognosis of organ transplantation. We noted that the aim of this review is both to provide clinicians and nuclear medicine researchers with theories and insights into nerve regeneration in organ transplantation and to advance imaging techniques and radiotracers as a major step forward in clinical research. Moreover, we aimed to further promote the clinical and research applications of imaging techniques and provide clinicians and research technology developers with the theory and knowledge of the nerve.
Collapse
Affiliation(s)
- Yan Huang
- Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Interventional Therapy, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Zhigang He
- Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Anne Manyande
- School of Human and Social Sciences, University of West London, London, United Kingdom
| | - Maohui Feng
- Department of Gastrointestinal Surgery, Wuhan Peritoneal Cancer Clinical Medical Research Center, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, Wuhan, Hubei, China
- *Correspondence: Maohui Feng, ; Hongbing Xiang,
| | - Hongbing Xiang
- Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- *Correspondence: Maohui Feng, ; Hongbing Xiang,
| |
Collapse
|
40
|
Fide E, Yerlikaya D, Öz D, Öztura İ, Yener G. Normalized Theta but Increased Gamma Activity after Acetylcholinesterase Inhibitor Treatment in Alzheimer's Disease: Preliminary qEEG Study. Clin EEG Neurosci 2022; 54:305-315. [PMID: 35957592 DOI: 10.1177/15500594221120723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Acetylcholinesterase inhibitors (AChE-I) are the core treatment of mild to severe Alzheimer's disease (AD). However, the efficacy of AChE-I treatment on electroencephalography (EEG) and cognition remains unclear. We aimed to investigate the EEG power and coherence changes, in addition to neuropsychological performance, following a one-year treatment. Nine de-novo AD patients and demographically-matched healthy controls (HC) were included. After baseline assessments, all AD participants started cholinergic therapy. We found that baseline and follow-up gamma power analyzes were similar between groups. Yet, within the AD group after AChE-I intake, individuals with AD displayed higher gamma power compared to their baselines (P < .039). Also, baseline gamma coherence analysis showed lower values in the AD than in HC (P < .048), while these differences disappeared with increased gamma values of AD patients at the follow-up. Within the AD group after AChE-I intake, individuals with AD displayed higher theta and alpha coherence compared to their baselines (all, P < .039). These increased results within the AD group may result from a subclinical epileptiform activity. Even though AChE-I is associated with lower mortality, our results showed a significant effect on EEG power yet can increase the subclinical epileptiform activity. It is essential to be conscious of the seizure risk that treatment may cause.
Collapse
Affiliation(s)
- Ezgi Fide
- Department of Neurosciences, Institute of Health Sciences, 37508Dokuz Eylül University, Izmir, Turkey
| | - Deniz Yerlikaya
- Department of Neurosciences, Institute of Health Sciences, 37508Dokuz Eylül University, Izmir, Turkey
| | - Didem Öz
- Department of Neurosciences, Institute of Health Sciences, 37508Dokuz Eylül University, Izmir, Turkey.,Department of Neurology, 37508Dokuz Eylül University Medical School, Izmir, Turkey.,Global Brain Health Institute, 8785University of California San Francisco, San Francisco, CA, USA.,Brain Dynamics Multidisciplinary Research Center, 37508Dokuz Eylül University, Izmir, Turkey
| | - İbrahim Öztura
- Department of Neurosciences, Institute of Health Sciences, 37508Dokuz Eylül University, Izmir, Turkey.,Department of Neurology, 37508Dokuz Eylül University Medical School, Izmir, Turkey.,Brain Dynamics Multidisciplinary Research Center, 37508Dokuz Eylül University, Izmir, Turkey
| | - Görsev Yener
- Brain Dynamics Multidisciplinary Research Center, 37508Dokuz Eylül University, Izmir, Turkey.,Faculty of Medicine, 605730Izmir University of Economics, Izmir, Turkey.,Izmir Biomedicine and Genome Center, Izmir, Turkey
| |
Collapse
|
41
|
Li Y, Liu B, Yin X, Jiang Z, Fang C, Chen N, Zhang B, Dai L, Yin Y. Targeted demethylation of the SLC5A7 promotor inhibits colorectal cancer progression. Clin Epigenetics 2022; 14:92. [PMID: 35858918 PMCID: PMC9301853 DOI: 10.1186/s13148-022-01308-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 07/04/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND SLC5A7 (solute carrier family 5 member 7), also known as choline transporter 1 (CHT1), is downregulated in colorectal cancer (CRC) and functions as a tumor suppressor. However, the mechanisms underlying the inactivation of SLC5A7 in CRC remain to be elucidated. RESULTS In the present study, two broad-spectrum demethylation agents (azacitidine and decitabine) employed to treat CRC cells significantly upregulated SLC5A7 expression. Further results based on the CRC cohort and TCGA database indicated that SLC5A7 promoter methylation inversely correlated with SLC5A7 expression, and the status of SLC5A7 promotor methylation showed a promising prognostic value for patients with CRC. Next, the dCas9-multiGCN4/scFv-TET1CD-based precision demethylation system was constructed, which could significantly and specifically promote SLC5A7 expression in CRC cells through sgRNA targeting the SLC5A7 promoter. Both in vitro and in vivo experiments demonstrated that targeted demethylation of SLC5A7 by dCas9-multiGCN4/scFv-TET1CD-sgSLC5A7 inhibited tumor growth by stabilizing p53 and regulating downstream targets. CONCLUSIONS Collectively, DNA promoter methylation caused inactivation of SLC5A7 in CRC, and targeted demethylation of SLC5A7 might be a therapeutic target for CRC and other cancers.
Collapse
Affiliation(s)
- Yang Li
- Department of Gastrointestinal Surgery, Guang'an People's Hospital, Guang'an, 638500, Sichuan, People's Republic of China
- Department of Gastrointestinal Surgery, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Baike Liu
- Department of Gastrointestinal Surgery, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xiaonan Yin
- Department of Gastrointestinal Surgery, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Zhiyuan Jiang
- Department of Gastrointestinal Surgery, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Chao Fang
- Department of Gastrointestinal Surgery, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Na Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, Sichuan, People's Republic of China
- School of Pharmacy, Chengdu Medical College, Chengdu, 610500, People's Republic of China
| | - Bo Zhang
- Department of Gastrointestinal Surgery, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| | - Lei Dai
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, Sichuan, People's Republic of China.
| | - Yuan Yin
- Department of Gastrointestinal Surgery, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
42
|
Abstract
Previous investigations have mostly studied an individual methyl donor nutrient in relation to psychological disorders and the findings were inconsistent. We investigated the association of methyl donor micronutrients (folate, B6, B12, choline, betaine and methionine) with psychological disorders in Iranian adults. In this cross-sectional study, dietary intakes of 3299 adults were collected using a validated food frequency questionnaire. Methyl donor micronutrient score (MDMS) was calculated based on energy-adjusted deciles of each nutrient. Hospital Anxiety and Depression Scale (HADS) and General Health Questionnaire (GHQ), validated for Iranians, have been applied to assess depression, anxiety and psychological distress. Participants had a mean age of 36·3 ± 7·9 years, of whom 58·5 % were women. After considering potential confounders, adults in the top quartile of MDMS, compared to the bottom one, had decreased odds of anxiety (OR: 0·53, 95 % CI: 0·37, 0·75), depression (OR: 0·75, 95 % CI: 0·58, 0·97) and psychological distress (OR: 0·61, 95 % CI: 0·46, 0·80). Among women, the top quartile of MDMS was protectively associated with anxiety (OR: 0·60, 95 % CI: 0·40, 0·90), depression (OR: 0·68, 95 % CI: 0·50, 0·93) and psychological distress (OR: 0·53, 95 % CI: 0·38, 0·74). Overweight and obese subjects in the highest quartile of MDMS had a 67 %, 35 % and 53 % lower odds of anxiety (95 % CI: 0·20, 0·56), depression (95 % CI: 0·44, 0·94) and psychological distress (95 % CI: 0·31, 0·70), respectively. We found that high consumption of methyl donor micronutrients was related to a reduced odds of psychological disorders, especially in women and overweight or obese individuals.
Collapse
|
43
|
Donovan E, Avila C, Klausner S, Parikh V, Fenollar-Ferrer C, Blakely RD, Sarter M. Disrupted Choline Clearance and Sustained Acetylcholine Release In Vivo by a Common Choline Transporter Coding Variant Associated with Poor Attentional Control in Humans. J Neurosci 2022; 42:3426-3444. [PMID: 35232764 PMCID: PMC9034784 DOI: 10.1523/jneurosci.1334-21.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 02/20/2022] [Accepted: 02/23/2022] [Indexed: 11/21/2022] Open
Abstract
Transport of choline via the neuronal high-affinity choline transporter (CHT; SLC5A7) is essential for cholinergic terminals to synthesize and release acetylcholine (ACh). In humans, we previously demonstrated an association between a common CHT coding substitution (rs1013940; Ile89Val) and reduced attentional control as well as attenuated frontal cortex activation. Here, we used a CRISPR/Cas9 approach to generate mice expressing the I89V substitution and assessed, in vivo, CHT-mediated choline transport, and ACh release. Relative to wild-type (WT) mice, CHT-mediated clearance of choline in male and female mice expressing one or two Val89 alleles was reduced by over 80% in cortex and over 50% in striatum. Choline clearance in CHT Val89 mice was further reduced by neuronal inactivation. Deficits in ACh release, 5 and 10 min after repeated depolarization at a low, behaviorally relevant frequency, support an attenuated reloading capacity of cholinergic neurons in mutant mice. The density of CHTs in total synaptosomal lysates and neuronal plasma-membrane-enriched fractions was not impacted by the Val89 variant, indicating a selective impact on CHT function. When challenged with a visual disruptor to reveal attentional control mechanisms, Val89 mice failed to adopt a more conservative response bias. Structural modeling revealed that Val89 may attenuate choline transport by altering conformational changes of CHT that support normal transport rates. Our findings support the view that diminished sustained cholinergic signaling capacity underlies perturbed attentional performance in individuals expressing CHT Val89. The CHT Val89 mouse serves as a valuable model to study heritable risk for cognitive disorders arising from cholinergic dysfunction.SIGNIFICANCE STATEMENT Acetylcholine (ACh) signaling depends on the functional capacity of the neuronal choline transporter (CHT). Previous research demonstrated that humans expressing the common CHT coding variant Val89 exhibit attentional vulnerabilities and attenuated fronto-cortical activation during attention. Here, we find that mice engineered to express the Val89 variant exhibit reduced CHT-mediated choline clearance and a diminished capacity to sustain ACh release. Additionally, Val89 mice lack cognitive flexibility in response to an attentional challenge. These findings provide a mechanistic and cognitive framework for interpreting the attentional phenotype associated with the human Val89 variant and establish a model that permits a more invasive interrogation of CNS effects as well as the development of therapeutic strategies for those, including Val89 carriers, with presynaptic cholinergic perturbations.
Collapse
Affiliation(s)
- Eryn Donovan
- Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109
| | - Cassandra Avila
- Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109
| | - Sarah Klausner
- Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109
| | - Vinay Parikh
- Department of Psychology & Neuroscience Program, Temple University, Philadelphia, Pennsylvania 19122
| | - Cristina Fenollar-Ferrer
- Laboratory of Molecular Genetics, Section of Human Genetics, National Institute on Deafness and Other Communication Disorders, Bethesda, Maryland 20892
| | - Randy D Blakely
- Stiles-Nicholson Brain Institute and Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, Florida 33458
| | - Martin Sarter
- Department of Psychology, Neuroscience Program and Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
44
|
Mohammadi H, Changizi V, Riyahi Alam N, Rahiminejad F, Soleimani M, Qardashi A. Measurement of Post-Treatment Changes in Brain Metabolites in Patients with Generalized Anxiety Disorder using Magnetic Resonance Spectroscopy. J Biomed Phys Eng 2022; 12:51-60. [PMID: 35155293 PMCID: PMC8819263 DOI: 10.31661/jbpe.v0i0.1224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 08/19/2019] [Indexed: 06/14/2023]
Abstract
BACKGROUND From previous studies, we know the correlations of some brain metabolites with a generalized anxiety disorder (GAD) and its symptoms. The response of GAD patients to various treatments is not the same and finding the best treatment option for each patient takes a long period of time. OBJECTIVE In this study, we try to examine if there is any relationship between a special treatment option and GAD patients' response and brain metabolite correlation with anxiety level change. MATERIAL AND METHODS This study is a clinical trial type of studies. We have used proton MRS (1H-MRS) with field strength of 3 Tesla to assess whether a different treatment option makes different responses based on metabolite changes. We chose 16 patients based on Hamilton's anxiety rate and a psychiatrist diagnosis. Patients were divided into two groups randomly. Each group took different treatments. Before treatment started, patients underwent MRS imaging and 8 weeks after treatment as well. Our study lacked a control group, and the results were analyzed by comparing the measured values of metabolites and clinical scores before and after treatment. RESULTS The NAA and Cho concentration increased after treatments and Cr concentration remained constant in both groups. Both groups showed improvements in their symptoms of anxiety and also in their clinical score rates. Sertraline group showed a more increase in NAA concentration than CBT and also a more decrease in HAMA and HAMD-17 scores. CONCLUSION A simultaneously increase in NAA and Cho in both groups and a decrease in clinical anxiety levels demonstrate that NAA and Cho concentration are associated negatively with anxiety levels. In addition, both CBT and sertraline are effective in the improvement of anxiety symptoms.
Collapse
Affiliation(s)
- Hossein Mohammadi
- MSc, Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Changizi
- PhD, Department of Technology of Radiology and Radiotherapy, Allied Medical Sciences School, Tehran University of Medical Sciences, Tehran, Iran
| | - Nader Riyahi Alam
- PhD, Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Rahiminejad
- MD, PhD, Department of Psychiatry, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Soleimani
- PhD, Department of Psychiatry, Tehran University of Medical Sciences, Tehran, Iran
| | - Afsaneh Qardashi
- BSc, Department of Radiology, Valiasr Hospital of Meshgin Shahr, Ardabil, Iran
| |
Collapse
|
45
|
Irvine N, England-Mason G, Field CJ, Dewey D, Aghajafari F. Prenatal Folate and Choline Levels and Brain and Cognitive Development in Children: A Critical Narrative Review. Nutrients 2022; 14:nu14020364. [PMID: 35057545 PMCID: PMC8778665 DOI: 10.3390/nu14020364] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 01/13/2023] Open
Abstract
Women’s nutritional status during pregnancy can have long-term effects on children’s brains and cognitive development. Folate and choline are methyl-donor nutrients and are important for closure of the neural tube during fetal development. They have also been associated with brain and cognitive development in children. Animal studies have observed that prenatal folate and choline supplementation is associated with better cognitive outcomes in offspring and that these nutrients may have interactive effects on brain development. Although some human studies have reported associations between maternal folate and choline levels and child cognitive outcomes, results are not consistent, and no human studies have investigated the potential interactive effects of folate and choline. This lack of consistency could be due to differences in the methods used to assess folate and choline levels, the gestational trimester at which they were measured, and lack of consideration of potential confounding variables. This narrative review discusses and critically reviews current research examining the associations between maternal levels of folate and choline during pregnancy and brain and cognitive development in children. Directions for future research that will increase our understanding of the effects of these nutrients on children’s neurodevelopment are discussed.
Collapse
Affiliation(s)
- Nathalie Irvine
- O’Brien Centre for the Bachelor of Health Sciences, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada;
| | - Gillian England-Mason
- Owerko Centre, Alberta Children’s Hospital Research Institute, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada; (G.E.-M.); (D.D.)
- Department of Pediatrics, Cumming School of Medicine, Alberta Children’s Hospital, 28 Oki Drive NW, Calgary, AB T3B 6A8, Canada
| | - Catherine J. Field
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-126C Li Ka Shing Centre for Research, 11203-87th Ave NW, Edmonton, AB T6G 2H5, Canada;
| | - Deborah Dewey
- Owerko Centre, Alberta Children’s Hospital Research Institute, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada; (G.E.-M.); (D.D.)
- Department of Pediatrics, Cumming School of Medicine, Alberta Children’s Hospital, 28 Oki Drive NW, Calgary, AB T3B 6A8, Canada
- Hotchkiss Brain Institute, Health Research Innovation Centre, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, 3D10, 3280 Hospital Drive NW, Calgary, AB T2N 4Z6, Canada
| | - Fariba Aghajafari
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, 3D10, 3280 Hospital Drive NW, Calgary, AB T2N 4Z6, Canada
- Department of Family Medicine, Cumming School of Medicine, University of Calgary, G012, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
- Correspondence:
| |
Collapse
|
46
|
Stockbridge MD. Better language through chemistry: Augmenting speech-language therapy with pharmacotherapy in the treatment of aphasia. HANDBOOK OF CLINICAL NEUROLOGY 2022; 185:261-272. [PMID: 35078604 PMCID: PMC11289691 DOI: 10.1016/b978-0-12-823384-9.00013-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Speech and language therapy is the standard treatment of aphasia. However, many individuals have barriers in seeking this measure of extensive rehabilitation treatment. Investigating ways to augment therapy is key to improving poststroke language outcomes for all patients with aphasia, and pharmacotherapies provide one such potential solution. Although no medications are currently approved for the treatment of aphasia by the United States Food and Drug Administration, numerous candidate mechanisms for pharmaceutical manipulation continue to be identified based on our evolving understanding of the neurometabolic experience of stroke recovery across molecular, cellular, and functional levels of inquiry. This chapter will review evidence for catecholaminergic, glutamatergic, cholinergic, and serotonergic drug therapies and discuss future directions for both candidate drug selection and pharmacotherapy practice in people with aphasia.
Collapse
Affiliation(s)
- Melissa D Stockbridge
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
47
|
Exploring the Binding Pattern of Geraniol with Acetylcholinesterase through In Silico Docking, Molecular Dynamics Simulation, and In Vitro Enzyme Inhibition Kinetics Studies. Cells 2021; 10:cells10123533. [PMID: 34944045 PMCID: PMC8700130 DOI: 10.3390/cells10123533] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/25/2021] [Accepted: 12/10/2021] [Indexed: 01/01/2023] Open
Abstract
Acetylcholinesterase (AChE) inhibition is a key element in enhancing cholinergic transmission and subsequently relieving major symptoms of several neurological and neuromuscular disorders. Here, the inhibitory potential of geraniol and its mechanism of inhibition against AChE were elucidated in vitro and validated via an in silico study. Our in vitro enzyme inhibition kinetics results show that at increasing concentrations of geraniol and substrate, Vmax did not change significantly, but Km increased, which indicates that geraniol is a competitive inhibitor against AChE with an IC50 value 98.06 ± 3.92 µM. All the parameters of the ADME study revealed that geraniol is an acceptable drug candidate. A docking study showed that the binding energy of geraniol (−5.6 kcal mol−1) was lower than that of acetylcholine (−4.1 kcal mol−1) with AChE, which exhibited around a 12.58-fold higher binding affinity of geraniol. Furthermore, molecular dynamics simulation revealed that the RMSD of AChE alone or in complex with geraniol fluctuated within acceptable limits throughout the simulation. The mean RMSF value of the complex ensures that the overall conformation of the protein remains conserved. The average values of Rg, MolSA, SASA, and PSA of the complex were 3.16 Å, 204.78, 9.13, and 51.58 Å2, respectively. We found that the total SSE of AChE in the complex was 38.84% (α-helix: 26.57% and β-sheets: 12.27%) and remained consistent throughout the simulation. These findings suggest that geraniol remained inside the binding cavity of AChE in a stable conformation. Further in vivo investigation is required to fully characterize the pharmacokinetic properties, optimization of dose administration, and efficacy of this plant-based natural compound.
Collapse
|
48
|
Muramatsu I, Uwada J, Chihara K, Sada K, Wang MH, Yazawa T, Taniguchi T, Ishibashi T, Masuoka T. Evaluation of radiolabeled acetylcholine synthesis and release in rat striatum. J Neurochem 2021; 160:342-355. [PMID: 34878648 DOI: 10.1111/jnc.15556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 10/18/2021] [Accepted: 11/30/2021] [Indexed: 12/26/2022]
Abstract
Cholinergic transmission underlies higher brain functions such as cognition and movement. To elucidate the process whereby acetylcholine (ACh) release is maintained and regulated in the central nervous system, uptake of [3 H]choline and subsequent synthesis and release of [3 H]ACh were investigated in rat striatal segments. Incubation with [3 H]choline elicited efficient uptake via high-affinity choline transporter-1, resulting in accumulation of [3 H]choline and [3 H]ACh. However, following inhibition of ACh esterase (AChE), incubation with [3 H]choline led predominantly to the accumulation of [3 H]ACh. Electrical stimulation and KCl depolarization selectively released [3 H]ACh but not [3 H]choline. [3 H]ACh release gradually declined upon repetitive stimulation, whereas the release was reproducible under inhibition of AChE. [3 H]ACh release was abolished after treatment with vesamicol, an inhibitor of vesicular ACh transporter. These results suggest that releasable ACh is continually replenished from the cytosol to releasable pools of cholinergic vesicles to maintain cholinergic transmission. [3 H]ACh release evoked by electrical stimulation was abolished by tetrodotoxin, but that induced by KCl was largely resistant. ACh release was Ca2+ dependent and exhibited slightly different sensitivities to N- and P-type Ca2+ channel toxins (ω-conotoxin GVIA and ω-agatoxin IVA, respectively) between both stimuli. [3 H]ACh release was negatively regulated by M2 muscarinic and D2 dopaminergic receptors. The present results suggest that inhibition of AChE within cholinergic neurons and of presynaptic negative regulation of ACh release contributes to maintenance and facilitation of cholinergic transmission, providing a potentially useful clue for the development of therapies for cholinergic dysfunction-associated disorders, in addition to inhibition of synaptic cleft AChE.
Collapse
Affiliation(s)
- Ikunobu Muramatsu
- Department of Pharmacology, School of Medicine, Kanazawa Medical University, Uchinada, Ishikawa, Japan.,Division of Genomic Science and Microbiology, School of Medicine, University of Fukui, Eiheiji, Fukui, Japan.,Kimura Hospital, Awara, Fukui, Japan
| | - Junsuke Uwada
- Department of Pharmacology, School of Medicine, Kanazawa Medical University, Uchinada, Ishikawa, Japan.,Division of Cellular Signal Transduction, Department of Biochemistry, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Kazuyasu Chihara
- Division of Genomic Science and Microbiology, School of Medicine, University of Fukui, Eiheiji, Fukui, Japan
| | - Kiyonao Sada
- Division of Genomic Science and Microbiology, School of Medicine, University of Fukui, Eiheiji, Fukui, Japan
| | - Mao-Hsien Wang
- Division of Genomic Science and Microbiology, School of Medicine, University of Fukui, Eiheiji, Fukui, Japan.,Department of Anesthesia, En Chu Kon Hospital, New Taipei City, Taiwan, ROC
| | - Takashi Yazawa
- Division of Cellular Signal Transduction, Department of Biochemistry, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Takanobu Taniguchi
- Division of Cellular Signal Transduction, Department of Biochemistry, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Takaharu Ishibashi
- Department of Pharmacology, School of Medicine, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Takayoshi Masuoka
- Department of Pharmacology, School of Medicine, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| |
Collapse
|
49
|
Maruyama T, Mano A, Ishii T, Kakinuma Y, Kaneda M. P2X 2 receptors supply extracellular choline as a substrate for acetylcholine synthesis. FEBS Open Bio 2021; 12:250-257. [PMID: 34787962 PMCID: PMC8727932 DOI: 10.1002/2211-5463.13332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/03/2021] [Accepted: 11/16/2021] [Indexed: 01/14/2023] Open
Abstract
Acetylcholine (ACh), an excitatory neurotransmitter, is biosynthesized from choline in cholinergic neurons. Import from the extracellular space to the intracellular environment through the high-affinity choline transporter is currently regarded to be the only source of choline for ACh synthesis. We recently demonstrated that the P2X2 receptor, through which large cations permeate, functions as an alternative pathway for choline transport in the mouse retina. In the present study, we investigated whether choline entering cells through P2X2 receptors is used for ACh synthesis using a recombinant system. When P2X2 receptors expressed on HEK293 cell lines were stimulated with ATP, intracellular ACh concentrations increased. These results suggest that P2X2 receptors function in a novel pathway that supplies choline for ACh synthesis.
Collapse
Affiliation(s)
- Takuma Maruyama
- Department of Physiology, Nippon Medical School, Tokyo, Japan
| | - Asuka Mano
- Department of Physiology, Nippon Medical School, Tokyo, Japan
| | - Toshiyuki Ishii
- Department of Physiology, Nippon Medical School, Tokyo, Japan
| | | | - Makoto Kaneda
- Department of Physiology, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
50
|
Shahraki S, Esmaeilpour K, Shabani M, Sepehri G, Rajizadeh MA, Maneshian M, Joushi S, Sheibani V. Choline chloride modulates learning, memory, and synaptic plasticity impairments in maternally separated adolescent male rats. Int J Dev Neurosci 2021; 82:19-38. [PMID: 34727391 DOI: 10.1002/jdn.10155] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 11/06/2022] Open
Abstract
Maternal separation (MS) is a model to induce permanent alternations in the central nervous system (CNS) and is associated with increased levels of anxiety and cognitive deficiencies. Since Methyl donor choline (Ch) has been shown to play a significant role in learning and memory and enhances synaptic plasticity, the authors hypothesized that Ch may attenuate MS-induced impairments in synaptic plasticity and cognitive performance. Rat pups underwent a MS protocol for 180 min/day from postnatal day (PND) 1 to 21. Ch was administered subcutaneously (100 mg/kg, 21 days) to the Choline chloride and MS + Choline chloride groups from PND 29 to 49. Anxiety-like behavior, recognition memory, spatial and passive avoidance learning and memory were measured in the adolescent rats. In addition, evoked field excitatory postsynaptic potentials (fEPSP) were recorded from the CA1 region of the hippocampus. MS induced higher anxiety-like behavior in the animals. It also impaired learning and memory. However, MS had no effect on locomotor activity. Subcutaneous administration of Ch attenuated MS-induced cognitive deficits and enhanced the learning and memory of MS rats. Ch also decreased anxiety-like behavior in the open field test. The present results showed that long-term potentiation (LTP) was induced in all groups except MS and MS + saline animals. However, Ch injection induced LTP and had maintenance in MS + choline chloride, but it was not statistically significant compared with the MS group. In summary, the present findings indicate that MS can interfere with normal animal's cognition and subcutaneous of Ch may be considered an appropriate therapeutic strategy for promoting cognitive dysfunctions in MS animals.
Collapse
Affiliation(s)
- Sarieh Shahraki
- Department of Physiology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.,Department of Physiology & pharmacology, school of medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Khadijeh Esmaeilpour
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.,Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, Canada
| | - Mohammad Shabani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Gholamreza Sepehri
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Amin Rajizadeh
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Marzieh Maneshian
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Sara Joushi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Vahid Sheibani
- Department of Physiology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.,Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|