1
|
Duyvesteyn E, Vizcarra VS, Waight E, Balbuena E, Hablitz LM. Biological Fluid Flows: Signaling Mediums for Circadian Timing. J Biol Rhythms 2025:7487304251323318. [PMID: 40145493 DOI: 10.1177/07487304251323318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
While there is extensive literature on both the neuronal circuitry of rhythms and the intracellular molecular clock, there is a large component of signaling that has been understudied: interstitial fluid (ISF)-fluid that surrounds the cells in the extracellular space of tissue. In this review, we highlight evidence in the circadian literature supporting ISF signaling as key to circadian synchronization and entrainment and propose new mechanisms of how fluid movement between the brain and periphery may act as zeitgebers by examining the main ISF pathways of the body, focusing on circadian regulation of the glymphatic and lymphatic systems. We identify key pieces of circadian research that point to ISF as an important timing medium, expand on the basics of cerebrospinal fluid (CSF) and ISF production, and outline the basic structure and function of the glymphatic and lymphatic systems.
Collapse
Affiliation(s)
- Evalien Duyvesteyn
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Velia S Vizcarra
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Emma Waight
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Estephanie Balbuena
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Lauren M Hablitz
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
2
|
Yeom M, Jeon K, Ryu DH, Park D, Jung E. Time-of-day dependent promotion of keratinocyte differentiation by Cinnamomum cassia bark extract through the p38 MAPK Pathway. PLoS One 2025; 20:e0318360. [PMID: 40100929 PMCID: PMC11918335 DOI: 10.1371/journal.pone.0318360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 01/14/2025] [Indexed: 03/20/2025] Open
Abstract
The skin serves as an essential barrier against pathogens and external insults, preventing moisture loss. Chronic skin conditions such as atopic dermatitis stem from impairments in skin barrier function. Circadian rhythms affect skin blood flow and barrier characteristics, which are significant for understanding atopic dermatitis. Cinnamomum cassia bark, commonly known as cinnamon, is extensively utilized in both modern and Traditional Chinese Medicine for its therapeutic properties in managing chronic diseases. This study aimed to investigate the potential use of Cinnamomum cassia bark in enhancing skin barrier function. We examined the impact of Cinnamomum cassia bark extract (CCBE) on circadian clock-mediated enhancement of the skin barrier. CCBE enhanced the expression of keratinocyte differentiation markers, including keratin 10, filaggrin, caspase 14, and calpain-1. CCBE also increased the production of hyaluronic acid protein. Additionally, CCBE improved the circadian rhythm of period circadian regulator 2 (PER2). Notably, CCBE upregulated the expression of keratinocyte differentiation markers and PER2 specifically during the morning hours. Furthermore, we discovered that siRNA-mediated PER2 knockdown diminished the increase in keratinocyte differentiation markers induced by CCBE. These findings demonstrate that CCBE can regulate the differentiation of keratinocytes in a time-of-day-dependent manner via the circadian clock. CCBE augmented phosphorylation of p38 and JNK, while the CCBE-induced enhancement in FLG expression and PER2 circadian rhythm was reduced by p38 MAPK inhibitors. These results suggest that CCBE can strengthen the skin barrier diurnally via the p38 MAPK pathway, representing a novel and more effective method for enhancing skin barrier function that accommodates daily variations in skin barrier properties.
Collapse
Affiliation(s)
- Miji Yeom
- Biospectrum, Life Science Institute, Yongin-Si, Republic of Korea
| | - Kyungeun Jeon
- Biospectrum, Life Science Institute, Yongin-Si, Republic of Korea
| | - De-Hun Ryu
- Biospectrum, Life Science Institute, Yongin-Si, Republic of Korea
| | - Deokhoon Park
- Biospectrum, Life Science Institute, Yongin-Si, Republic of Korea
| | - Eunsun Jung
- Biospectrum, Life Science Institute, Yongin-Si, Republic of Korea
| |
Collapse
|
3
|
Xie LQ, Hu B, Lu RB, Cheng YL, Chen X, Wen J, Xiao Y, An YZ, Peng N, Dai Y, Xie G, Guo Q, Peng H, Luo XH. Raptin, a sleep-induced hypothalamic hormone, suppresses appetite and obesity. Cell Res 2025; 35:165-185. [PMID: 39875551 PMCID: PMC11909135 DOI: 10.1038/s41422-025-01078-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 12/31/2024] [Indexed: 01/30/2025] Open
Abstract
Sleep deficiency is associated with obesity, but the mechanisms underlying this connection remain unclear. Here, we identify a sleep-inducible hypothalamic protein hormone in humans and mice that suppresses obesity. This hormone is cleaved from reticulocalbin-2 (RCN2), and we name it Raptin. Raptin release is timed by the circuit from vasopressin-expressing neurons in the suprachiasmatic nucleus to RCN2-positive neurons in the paraventricular nucleus. Raptin levels peak during sleep, which is blunted by sleep deficiency. Raptin binds to glutamate metabotropic receptor 3 (GRM3) in neurons of the hypothalamus and stomach to inhibit appetite and gastric emptying, respectively. Raptin-GRM3 signaling mediates anorexigenic effects via PI3K-AKT signaling. Of note, we verify the connections between deficiencies in the sleeping state, impaired Raptin release, and obesity in patients with sleep deficiency. Moreover, humans carrying an RCN2 nonsense variant present with night eating syndrome and obesity. These data define a unique hormone that suppresses food intake and prevents obesity.
Collapse
Affiliation(s)
- Ling-Qi Xie
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Biao Hu
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ren-Bin Lu
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ya-Lun Cheng
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xin Chen
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jie Wen
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yao Xiao
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yu-Ze An
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ning Peng
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yu Dai
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Genqing Xie
- Department of Endocrinology, The First People's Hospital of Xiangtan City, Xiangtan, Hunan, China
| | - Qi Guo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Hui Peng
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China.
| | - Xiang-Hang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China.
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- FuRong Laboratory, Changsha, Hunan, China.
| |
Collapse
|
4
|
Chong B, Kumar V, Nguyen D, Hopkins M, Ferry F, Spera L, Paul E, Hutson A, Tabuchi M. Neuropeptide-Dependent Spike Time Precision and Plasticity in Circadian Output Neurons. Eur J Neurosci 2025; 61:e70037. [PMID: 40080910 PMCID: PMC11906214 DOI: 10.1111/ejn.70037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 01/30/2025] [Accepted: 02/16/2025] [Indexed: 03/15/2025]
Abstract
Circadian rhythms influence various physiological and behavioral processes such as sleep-wake cycles, hormone secretion, and metabolism. In Drosophila, an important set of circadian output neurons is called pars intercerebralis (PI) neurons, which receive input from specific clock neurons called DN1. These DN1 neurons can further be subdivided into functionally and anatomically distinctive anterior (DN1a) and posterior (DN1p) clusters. The neuropeptide diuretic hormones 31 (Dh31) and 44 (Dh44) are the insect neuropeptides known to activate PI neurons to control activity rhythms. However, the neurophysiological basis of how Dh31 and Dh44 affect circadian clock neural coding mechanisms underlying sleep in Drosophila is not well understood. Here, we identify Dh31/Dh44-dependent spike time precision and plasticity in PI neurons. We first find that a mixture of Dh31 and Dh44 enhanced the firing of PI neurons, compared to the application of Dh31 alone and Dh44 alone. We next find that the application of synthesized Dh31 and Dh44 affects membrane potential dynamics of PI neurons in the precise timing of the neuronal firing through their synergistic interaction, possibly mediated by calcium-activated potassium channel conductance. Further, we characterize that Dh31/Dh44 enhances postsynaptic potentials in PI neurons. Together, these results suggest multiplexed neuropeptide-dependent spike time precision and plasticity as circadian clock neural coding mechanisms underlying sleep in Drosophila.
Collapse
Affiliation(s)
- Bryan Chong
- Department of NeurosciencesCase Western Reserve University School of MedicineClevelandOhioUSA
| | - Vipin Kumar
- Department of NeurosciencesCase Western Reserve University School of MedicineClevelandOhioUSA
| | - Dieu Linh Nguyen
- Department of NeurosciencesCase Western Reserve University School of MedicineClevelandOhioUSA
| | - Makenzie A. Hopkins
- Department of NeurosciencesCase Western Reserve University School of MedicineClevelandOhioUSA
| | - Faith S. Ferry
- Department of NeurosciencesCase Western Reserve University School of MedicineClevelandOhioUSA
| | - Lucia K. Spera
- Department of NeurosciencesCase Western Reserve University School of MedicineClevelandOhioUSA
| | - Elizabeth M. Paul
- Department of NeurosciencesCase Western Reserve University School of MedicineClevelandOhioUSA
| | - Anelise N. Hutson
- Department of NeurosciencesCase Western Reserve University School of MedicineClevelandOhioUSA
| | - Masashi Tabuchi
- Department of NeurosciencesCase Western Reserve University School of MedicineClevelandOhioUSA
| |
Collapse
|
5
|
Ispizua JI, Rodríguez-Caron M, Tassara FJ, Kim KY, Insussarry Perkins C, Barzi M, Carpio-Romero C, Vasquez MF, Hansen CN, Gargiulo J, Rosato E, de la Iglesia H, Ellisman MH, Ceriani MF. Daily ultrastructural remodeling of clock neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.11.06.622332. [PMID: 39990321 PMCID: PMC11844358 DOI: 10.1101/2024.11.06.622332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
In Drosophila, about 250 clock neurons in the brain form a network that orchestrates circadian rhythmicity. Among them, eight small Lateral ventral Neurons (s-LNvs) play a critical role, synchronizing the circadian ensemble via the neuropeptide Pigment-Dispersing Factor (PDF). Moreover, their neurites show daily variations in morphology, PDF levels, synaptic markers and connectivity. This process, called circadian structural plasticity, is ill-defined at the subcellular level. Here, we present 3D volumes of the s-LNv terminals generated by Serial Block-face Scanning Electron Microscopy (SBEM) at three key time points, two hours before lights-ON, two hours after lights-ON, and two hours after lights-OFF. We report a reduction in the number of neuronal varicosities at night, which reflects (and probably regulates) the cycling of the components we found therein. Indeed, in the morning we observed more presynaptic sites and increased accumulation and release of dense core vesicles. These rhythms were paralleled by periodic changes in mitochondrial structure that suggest daily modulation of their activity. We propose that circadian plasticity of the functionally relevant structures within presynaptic varicosities cyclically modulates the influence of the s-LNvs on the clock network.
Collapse
|
6
|
Nakamaru E, Seki K, Shirahata Y, Adachi M, Sakabe N, Matsuo T, Tsukamoto D, Takamatsu N. Periodic expression of Per1 gene is restored in chipmunk liver during interbout arousal in mammalian hibernation. Sci Rep 2025; 15:4403. [PMID: 39948130 PMCID: PMC11825846 DOI: 10.1038/s41598-025-87299-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 01/17/2025] [Indexed: 02/16/2025] Open
Abstract
Circadian rhythms play an important role in many physiological processes. We have previously reported that no periodic fluctuation in the Bmal1 mRNA is observed in the liver of the chipmunk, a mammalian hibernator, in the hibernation season, suggesting that peripheral circadian clocks are not functional during hibernation. In contrast, the Per2 mRNA levels are transiently increased by elevated body temperature during interbout arousal and showed periodic fluctuations in the hibernation season, suggesting that periodic expression of the Per2 mRNA may be restored during interbout arousal. In the present study, we analyzed Per1 gene expression in the chipmunk liver. The Per1 mRNA showed circadian fluctuations with a peak during the late sleep period in the non-hibernation season and periodic fluctuations with a peak during the early interbout arousal in the hibernation season. In both the non-hibernation and hibernation seasons, Per1 gene expression was phase-advanced relative to Per2 gene expression, and the phase relationship between the two genes was maintained, suggesting that for some genes, periodic gene expression, similar to circadian expression in the non-hibernation season, may be restored during interbout arousal. Interestingly, Per1 gene transcription was differentially activated by BMAL1 in the non-hibernation season and possibly by CREB1 in the hibernation season.
Collapse
Affiliation(s)
- Erina Nakamaru
- Laboratory of Molecular Biology, Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara-shi, Kanagawa, 252-0373, Japan
| | - Kota Seki
- Laboratory of Molecular Biology, Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara-shi, Kanagawa, 252-0373, Japan
| | - Yuiho Shirahata
- Laboratory of Molecular Biology, Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara-shi, Kanagawa, 252-0373, Japan
| | - Megumi Adachi
- Laboratory of Molecular Biology, Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara-shi, Kanagawa, 252-0373, Japan
| | - Nene Sakabe
- Laboratory of Molecular Biology, Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara-shi, Kanagawa, 252-0373, Japan
| | - Takuya Matsuo
- Laboratory of Molecular Biology, Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara-shi, Kanagawa, 252-0373, Japan
| | - Daisuke Tsukamoto
- Laboratory of Molecular Biology, Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara-shi, Kanagawa, 252-0373, Japan.
| | - Nobuhiko Takamatsu
- Laboratory of Molecular Biology, Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara-shi, Kanagawa, 252-0373, Japan
| |
Collapse
|
7
|
Aten S, Belle MDC, Diniz Behn CG. Editorial: Signaling pathways and brain circuitry underlying circadian rhythms and sleep. Front Neurosci 2025; 19:1558246. [PMID: 39991753 PMCID: PMC11842367 DOI: 10.3389/fnins.2025.1558246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 01/24/2025] [Indexed: 02/25/2025] Open
Affiliation(s)
- Sydney Aten
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Mino D. C. Belle
- Center for Biological Timing, Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Cecilia G. Diniz Behn
- Department of Applied Mathematics and Statistics, Colorado School of Mines, Golden, CO, United States
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
8
|
Smyllie NJ, Hastings MH, Patton AP. Neuron-Astrocyte Interactions and Circadian Timekeeping in Mammals. Neuroscientist 2025; 31:65-79. [PMID: 38602223 PMCID: PMC7616557 DOI: 10.1177/10738584241245307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Almost every facet of our behavior and physiology varies predictably over the course of day and night, anticipating and adapting us to their associated opportunities and challenges. These rhythms are driven by endogenous biological clocks that, when deprived of environmental cues, can continue to oscillate within a period of approximately 1 day, hence circa-dian. Normally, retinal signals synchronize them to the cycle of light and darkness, but disruption of circadian organization, a common feature of modern lifestyles, carries considerable costs to health. Circadian timekeeping pivots around a cell-autonomous molecular clock, widely expressed across tissues. These cellular timers are in turn synchronized by the principal circadian clock of the brain: the hypothalamic suprachiasmatic nucleus (SCN). Intercellular signals make the SCN network a very powerful pacemaker. Previously, neurons were considered the sole SCN timekeepers, with glial cells playing supportive roles. New discoveries have revealed, however, that astrocytes are active partners in SCN network timekeeping, with their cell-autonomous clock regulating extracellular glutamate and GABA concentrations to control circadian cycles of SCN neuronal activity. Here, we introduce circadian timekeeping at the cellular and SCN network levels before focusing on the contributions of astrocytes and their mutual interaction with neurons in circadian control in the brain.
Collapse
Affiliation(s)
- Nicola J. Smyllie
- Medical Research Council Laboratory of Molecular Biology, Cambridge, U.K
| | | | - Andrew P. Patton
- Medical Research Council Laboratory of Molecular Biology, Cambridge, U.K
| |
Collapse
|
9
|
Tang Y, Zhang L, Huang P, She Z, Luo S, Peng H, Chen Y, Luo J, Duan W, Xiao Y, Liu L, Liu L. Understanding the intricacies of cellular mechanisms in remyelination: The role of circadian rhythm. Neurochem Int 2025; 183:105929. [PMID: 39756585 DOI: 10.1016/j.neuint.2025.105929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/27/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
The term "circadian rhythm" refers to the 24-h oscillations found in various physiological processes in organisms, responsible for maintaining bodily homeostasis. Many neurological diseases mainly involve the process of demyelination, and remyelination is crucial for the treatment of neurological diseases. Current research mainly focuses on the key role of circadian clocks in the pathophysiological mechanisms of multiple sclerosis. Various studies have shown that the circadian rhythm regulates various cellular molecular mechanisms and signaling pathways involved in remyelination. The process of remyelination is primarily mediated by oligodendrocyte precursor cells (OPCs), oligodendrocytes, microglia, and astrocytes. OPCs are activated, proliferate, migrate, and ultimately differentiate into oligodendrocytes after demyelination, involving many key signaling pathway and regulatory factors. Activated microglia secretes important cytokines and chemokines, promoting OPC proliferation and differentiation, and phagocytoses myelin debris that inhibits remyelination. Astrocytes play a crucial role in supporting remyelination by secreting signals that promote remyelination or facilitate the phagocytosis of myelin debris by microglia. Additionally, cell-to-cell communication via gap junctions allows for intimate contact between astrocytes and oligodendrocytes, providing metabolic support for oligodendrocytes. Therefore, gaining a deeper understanding of the mechanisms and molecular pathways of the circadian rhythm at various stages of remyelination can help elucidate the fundamental characteristics of remyelination and provide insights into treating demyelinating disorders.
Collapse
Affiliation(s)
- Yufen Tang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Lu Zhang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Peng Huang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Zhou She
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Senlin Luo
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Hong Peng
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Yuqiong Chen
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Jinwen Luo
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Wangxin Duan
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Yangyang Xiao
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Lingjuan Liu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China.
| | - Liqun Liu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China.
| |
Collapse
|
10
|
Gonzalez-Aponte MF, Damato AR, Simon T, Aripova N, Darby F, Jeon MS, Luo J, Rubin JB, Herzog ED. Daily glucocorticoids promote glioblastoma growth and circadian synchrony to the host. Cancer Cell 2025; 43:144-160.e7. [PMID: 39672168 PMCID: PMC11732716 DOI: 10.1016/j.ccell.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/11/2024] [Accepted: 11/19/2024] [Indexed: 12/15/2024]
Abstract
Glioblastoma (GBM) is the most common primary malignant brain tumor in adults with a poor prognosis despite aggressive therapy. Here, we hypothesized that daily host signaling regulates tumor growth and synchronizes circadian rhythms in GBM. We find daily glucocorticoids promote or suppress GBM growth through glucocorticoid receptor (GR) signaling depending on time of day and the clock genes, Bmal1 and Cry. Blocking circadian signals, like vasoactive intestinal peptide or glucocorticoids, dramatically slows GBM growth and disease progression. Analysis of human GBM samples from The Cancer Genome Atlas (TCGA) shows that high GR expression significantly increases hazard of mortality. Finally, mouse and human GBM models have intrinsic circadian rhythms in clock gene expression in vitro and in vivo that entrain to the host through glucocorticoid signaling, regardless of tumor type or host immune status. We conclude that GBM entrains to the circadian circuit of the brain, modulating its growth through clock-controlled cues, like glucocorticoids.
Collapse
Affiliation(s)
- Maria F Gonzalez-Aponte
- Department of Biology, Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Anna R Damato
- Department of Biology, Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Tatiana Simon
- Department of Biology, Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Nigina Aripova
- Department of Biology, Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Fabrizio Darby
- Department of Biology, Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Myung Sik Jeon
- Department of Surgery, Division of Public Health Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA; Siteman Cancer Center Biostatistics Shared Resource, Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jingqin Luo
- Department of Surgery, Division of Public Health Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA; Siteman Cancer Center Biostatistics Shared Resource, Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joshua B Rubin
- Department of Pediatrics, St. Louis Children's Hospital, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Erik D Herzog
- Department of Biology, Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
11
|
Licheri V, Brigman JL. Impact of Developmental Alcohol Exposure on Sleep Physiology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1473:111-127. [PMID: 40128477 DOI: 10.1007/978-3-031-81908-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
The present chapter summarizes the clinical and preclinical findings collected to date, showing the impact of developmental alcohol exposure on sleep physiology. Sleep is a complex physiological process that plays a pivotal role in maintaining overall health and well-being via its involvement in regulating physiological, cognitive, and emotional functions. Clinical studies consistently report a high prevalence of sleep disturbances in children and adolescents diagnosed with fetal alcohol spectrum disorders (FASDs), including short sleep duration, sleep anxiety, bedtime resistance, increased sleep fragmentation, and parasomnias. It is established that alcohol consumption during gestation impairs brain development, leading to structural and functional alterations that may affect sleep architecture. In addition, clinical investigations have found a significant correlation between sleep-wake cycle disruptions and cognitive impairments after developmental alcohol exposure, and sleep disturbances are increasingly recognized as a substantial problem among FASD patients. However, the molecular mechanisms underlying these disturbances are poorly understood. Surprisingly, few studies with animal models of FASDs have characterized the effect of developmental ethanol exposure on sleep physiology, and these have focused on high doses. This chapter provides an overview of the current knowledge, reports the sleep disturbances in FASD patients, and then summarizes the gap in understanding the molecular and physiological mechanisms.
Collapse
Affiliation(s)
- Valentina Licheri
- Department of Neurosciences and New Mexico Alcohol Research Center, School of Medicine, University of New Mexico Health Science Center, Albuquerque, NM, USA.
| | - Jonathan L Brigman
- Department of Neurosciences and New Mexico Alcohol Research Center, School of Medicine, University of New Mexico Health Science Center, Albuquerque, NM, USA
| |
Collapse
|
12
|
Zhang Y, Wang W, Li J, Zhao D, Shu Y, Jia X, Wang Y, Cheng X, Wang L, Cheng J. Dexmedetomidine accelerates photoentrainment and affects sleep structure through the activation of SCN VIP neurons. Commun Biol 2024; 7:1707. [PMID: 39730868 DOI: 10.1038/s42003-024-07430-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 12/19/2024] [Indexed: 12/29/2024] Open
Abstract
Dexmedetomidine (DexM), a highly selective α2-adrenoceptor agonist, significantly reduces postoperative adverse effects, including sleep and circadian rhythm disruptions. Vasoactive intestinal peptide neurons in the suprachiasmatic nucleus (SCNVIP) regulate the synchronization of circadian rhythms with the external environment in mammals. We investigate the effects of DexM on sleep and circadian rhythms, as well as the underlying mechanisms. Using electrophysiological and chemogenetic methods, along with locomotor activity and electroencephalogram/electromyogram recordings, we found that DexM accelerates the rate of re-entrainment following an 8-hour phase advance in the 12-hour light:12-hour dark cycle, increases the amount of non-rapid eye movement sleep, and decreases the mean duration of rapid eye movement sleep. Chemogenetic inhibition of SCNVIP neurons hinders the acceleration of re-entrainment and the changes in the sleep-wakefulness cycle induced by DexM. Electrophysiological results show that DexM increases the firing rate and the frequency of spontaneous glutamatergic postsynaptic currents while decreasing the frequency of spontaneous GABAergic PSCs in SCNVIP neurons through the α2-adrenergic receptor. Additionally, DexM reduces the frequency of miniature GABAergic PSCs in SCNVIP neurons. In conclusion, these findings suggest that DexM promotes sleep and maintains the coordination of circadian rhythms with the external environment by activating SCNVIP neurons through the α2-adrenoceptor.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Wei Wang
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Jiaxin Li
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Dongmei Zhao
- Department of Infectious Disease, First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Yue Shu
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Xinlu Jia
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Yibo Wang
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Xinqi Cheng
- Department of Anesthesiology, First Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui, China.
| | - Liecheng Wang
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China.
- College of Stomatology, Anhui Medical University, Hefei, 230032, Anhui, China.
| | - Juan Cheng
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China.
| |
Collapse
|
13
|
Chong B, Kumar V, Nguyen DL, Hopkins MA, Ferry FS, Spera LK, Paul EM, Hutson AN, Tabuchi M. Neuropeptide-dependent spike time precision and plasticity in circadian output neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.06.616871. [PMID: 39411164 PMCID: PMC11476009 DOI: 10.1101/2024.10.06.616871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Circadian rhythms influence various physiological and behavioral processes such as sleep-wake cycles, hormone secretion, and metabolism. In Drosophila, an important set of circadian output neurons are called pars intercerebralis (PI) neurons, which receive input from specific clock neurons called DN1. These DN1 neurons can further be subdivided into functionally and anatomically distinctive anterior (DN1a) and posterior (DN1p) clusters. The neuropeptide diuretic hormones 31 (Dh31) and 44 (Dh44) are the insect neuropeptides known to activate PI neurons to control activity rhythms. However, the neurophysiological basis of how Dh31 and Dh44 affect circadian clock neural coding mechanisms underlying sleep in Drosophila is not well understood. Here, we identify Dh31/Dh44-dependent spike time precision and plasticity in PI neurons. We first find that a mixture of Dh31 and Dh44 enhanced the firing of PI neurons, compared to the application of Dh31 alone and Dh44 alone. We next find that the application of synthesized Dh31 and Dh44 affects membrane potential dynamics of PI neurons in the precise timing of the neuronal firing through their synergistic interaction, possibly mediated by calcium-activated potassium channel conductance. Further, we characterize that Dh31/Dh44 enhances postsynaptic potentials in PI neurons. Together, these results suggest multiplexed neuropeptide-dependent spike time precision and plasticity as circadian clock neural coding mechanisms underlying sleep in Drosophila.
Collapse
Affiliation(s)
- Bryan Chong
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Vipin Kumar
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Dieu Linh Nguyen
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Makenzie A. Hopkins
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Faith S. Ferry
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Lucia K. Spera
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Elizabeth M. Paul
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Anelise N. Hutson
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Masashi Tabuchi
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| |
Collapse
|
14
|
Wegner S, Belle MDC, Chang P, Hughes ATL, Conibear AE, Muir C, Samuels RE, Piggins HD. Loss of neuropeptide signalling alters temporal expression of mouse suprachiasmatic neuronal state and excitability. Eur J Neurosci 2024; 60:6617-6633. [PMID: 39551976 PMCID: PMC11612845 DOI: 10.1111/ejn.16590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 11/19/2024]
Abstract
Individual neurons of the hypothalamic suprachiasmatic nuclei (SCN) contain an intracellular molecular clock that drives these neurons to exhibit day-night variation in excitability. The neuropeptide vasoactive intestinal polypeptide (VIP) and its cognate receptor, VPAC2, are synthesized by SCN neurons and this intercellular VIP-VPAC2 receptor signal facilitates coordination of SCN neuronal activity and timekeeping. How the loss of VPAC2 receptor signalling affects the electrophysiological properties and states of SCN neurons as well as their responses to excitatory inputs is unclear. Here we used patch-clamp electrophysiology and made recordings of SCN neurons in brain slices prepared from transgenic animals that do not express VPAC2 receptors (Vipr2-/- mice) as well as animals that do (Vipr2+/+ mice). We report that while Vipr2+/+ neurons exhibit coordinated day-night variation in their electrical state, Vipr2-/- neurons lack this and instead manifest a range of states during both day and night. Further, at the population level, Vipr2+/+ neurons vary the membrane threshold potential at which they start to fire action potentials from day to night, while Vipr2-/- neurons do not. We provide evidence that Vipr2-/- neurons lack a component of voltage-gated sodium currents that contribute to SCN neuronal excitability. Moreover, we determine that this aberrant temporal control of neuronal state and excitability alters neuronal responses to a neurochemical mimic of the light-input pathway to the SCN. These results highlight the critical role VIP-VPAC2 receptor signalling plays in the temporal expression of individual neuronal states as well as appropriate ensemble activity and input gating of the SCN neural network.
Collapse
Affiliation(s)
- Sven Wegner
- Faculty of Biology, Medicine, and HealthUniversity of ManchesterManchesterUK
| | - Mino D. C. Belle
- Faculty of Biology, Medicine, and HealthUniversity of ManchesterManchesterUK
| | - Pi‐Shan Chang
- School of Physiology, Pharmacology, and NeuroscienceUniversity of BristolBristolUK
| | - Alun T. L. Hughes
- Faculty of Biology, Medicine, and HealthUniversity of ManchesterManchesterUK
- School of Biological and Environmental ScienceLiverpool John Moores UniversityLiverpoolUK
| | | | - Charlotte Muir
- School of Physiology, Pharmacology, and NeuroscienceUniversity of BristolBristolUK
| | - Rayna E. Samuels
- Faculty of Biology, Medicine, and HealthUniversity of ManchesterManchesterUK
| | - Hugh D. Piggins
- Faculty of Biology, Medicine, and HealthUniversity of ManchesterManchesterUK
- School of Physiology, Pharmacology, and NeuroscienceUniversity of BristolBristolUK
| |
Collapse
|
15
|
Liu Q, Xiong J, Kim DW, Lee SS, Bell BJ, Alexandre C, Blackshaw S, Latremoliere A, Wu MN. An amygdalar oscillator coordinates cellular and behavioral rhythms. Neuron 2024; 112:3750-3767.e7. [PMID: 39303704 PMCID: PMC11581920 DOI: 10.1016/j.neuron.2024.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 07/12/2024] [Accepted: 08/23/2024] [Indexed: 09/22/2024]
Abstract
Circadian rhythms are generated by the master pacemaker suprachiasmatic nucleus (SCN) in concert with local clocks throughout the body. Although many brain regions exhibit cycling clock gene expression, the identity of a discrete extra-SCN brain oscillator that produces rhythmic behavior has remained elusive. Here, we show that an extra-SCN oscillator in the lateral amygdala (LA) is defined by expression of the clock-output molecule mWAKE/ANKFN1. mWAKE is enriched in the anterior/dorsal LA (adLA), and, strikingly, selective disruption of clock function or excitatory signaling in adLAmWAKE neurons abolishes Period2 (PER2) rhythms throughout the LA. mWAKE levels rise at night and promote rhythmic excitability of adLAmWAKE neurons by upregulating Ca2+-activated K+ channel activity specifically at night. adLAmWAKE neurons coordinate rhythmic sensory perception and anxiety in a clock-dependent and WAKE-dependent manner. Together, these data reveal the cellular identity of an extra-SCN brain oscillator and suggest a multi-level hierarchical system organizing molecular and behavioral rhythms.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jiali Xiong
- Biochemistry, Cellular and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Dong Won Kim
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sang Soo Lee
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Benjamin J Bell
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Chloe Alexandre
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Seth Blackshaw
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Alban Latremoliere
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mark N Wu
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
16
|
Best J, Kim R, Reed M, Nijhout HF. A mathematical model of melatonin synthesis and interactions with the circadian clock. Math Biosci 2024; 377:109280. [PMID: 39243938 DOI: 10.1016/j.mbs.2024.109280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/13/2024] [Indexed: 09/09/2024]
Abstract
A new mathematical model of melatonin synthesis in pineal cells is created and connected to a slightly modified previously created model of the circadian clock in the suprachiasmatic nucleus (SCN). The SCN influences the production of melatonin by upregulating two key enzymes in the pineal. The melatonin produced enters the blood and the cerebrospinal fluid and thus the SCN, influencing the circadian clock. We show that the model of melatonin synthesis corresponds well with extant experimental data and responds similarly to clinical experiments on bright light in the middle of the night. Melatonin is widely used to treat jet lag and sleep disorders. We show how the feedback from the pineal to the SCN causes phase resetting of the circadian clock. Melatonin doses early in the evening advance the clock and doses late at night delay the clock with a dead zone in between where the phase of the clock does not change.
Collapse
Affiliation(s)
- Janet Best
- Department of Mathematics, The Ohio State University, 231 W. 18th Ave., Columbus, 43210, OH, USA.
| | - Ruby Kim
- Department of Mathematics, University of Michigan, 2074 East Hall, 530 Church St., Ann Arbor, 48109, MI, USA
| | - Michael Reed
- Department of Mathematics, Duke University, 120 Science Drive, Campus box 90338, Durham, 27708, NC, USA
| | - H Frederik Nijhout
- Department of Biology, Duke University, Biological Sciences Building, Campus box 90320, Durham, 27708, NC, USA
| |
Collapse
|
17
|
Comai S, Gobbi G. Melatonin, Melatonin Receptors and Sleep: Moving Beyond Traditional Views. J Pineal Res 2024; 76:e13011. [PMID: 39400423 DOI: 10.1111/jpi.13011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/15/2024]
Abstract
Sleep, constituting approximately one-third of the human lifespan, is a crucial physiological process essential for physical and mental well-being. Normal sleep consists of an orderly progression through wakefulness, non-rapid eye movement (NREM) sleep, and rapid eye movement (REM) sleep, all of which are tightly regulated. Melatonin, often referred to as the "hormone of sleep," plays a pivotal role as a regulator of the sleep/wake cycle and exerts its effects through high-affinity G-protein coupled receptors known as MT1 and MT2. Selective modulation of these receptors presents a promising therapeutic avenue for sleep disorders. This review examines research on the multifaceted role of melatonin in sleep regulation, focusing on selective ligands targeting MT1 and MT2 receptors, as well as studies involving MT1 and MT2 knockout mice. Contrary to common beliefs, growing evidence suggests that melatonin, through MT1 and MT2 receptors, might not only influence circadian aspects of sleep but likely, also modulate the homeostatic process of sleep and sleep architecture, or could be the molecule linking the homeostatic and circadian regulation of sleep. Furthermore, the distinct brain localization of MT1 and MT2 receptors, with MT1 receptors primarily regulating REM sleep and MT2 receptors regulating NREM sleep, is discussed. Collectively, sleep regulation extends beyond the circulating levels and circadian peak of melatonin; it also critically involves the expression, molecular activation, and regulatory functions of MT1 and MT2 receptors across various brain regions and nuclei involved in the regulation of sleep. This research underscores the importance of ongoing investigation into the selective roles of MT1 and MT2 receptors in sleep. Such research efforts are expected to pave the way for the development of targeted MT1 or MT2 receptors ligands, thereby optimizing therapeutic interventions for sleep disorders.
Collapse
Affiliation(s)
- Stefano Comai
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Department of Psychiatry, McGill University and McGill University Health Center, Montreal, Québec, Canada
- IRCSS San Raffaele Scientific Institute, Milan, Italy
| | - Gabriella Gobbi
- Department of Psychiatry, McGill University and McGill University Health Center, Montreal, Québec, Canada
| |
Collapse
|
18
|
Tahara Y, Ding J, Ito A, Shibata S. Sweetened caffeine drinking revealed behavioral rhythm independent of the central circadian clock in male mice. NPJ Sci Food 2024; 8:51. [PMID: 39160163 PMCID: PMC11333706 DOI: 10.1038/s41538-024-00295-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/25/2024] [Indexed: 08/21/2024] Open
Abstract
Caffeine consumption is associated with the evening chronotype, and caffeine administration in mice results in prolonged period of the circadian rhythm in locomotor activity. However, as caffeine is bitter, sweetened caffeine is preferred by humans and mice; yet, its impact on the circadian clock has not been explored. In this study, mice were provided with freely available sweetened caffeine to investigate its effects on behavioral rhythms and peripheral clocks. Mice that freely consumed sweetened caffeine shifted from nocturnal to diurnal activity rhythms. In addition to the light-dark entrained behavioral rhythm component, some animals exhibited free-running period longer than 24-h. Intraperitoneal administration of caffeine at the beginning of the light phase also acutely induced diurnal behavior. The behavioral rhythms with long period (26-30 h) due to sweetened caffeine were observed even in mice housed under constant light or with a lesioned central circadian clock located in the suprachiasmatic nucleus of the hypothalamus; however, the rhythmicity was unstable. PER2::LUCIFERASE rhythms in peripheral tissues, such as the kidney, as measured via in vivo whole-body imaging during caffeine consumption, showed reduced amplitude and desynchronized phases among individuals. These results indicate that consumption of sweetened caffeine induces diurnal and long-period behavioral rhythms irrespective of the central clock, causing desynchronization of the clock in the body.
Collapse
Affiliation(s)
- Yu Tahara
- Department of Public Health and Health Policy, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-0037, Japan.
- School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, 162-0056, Japan.
| | - Jingwei Ding
- Department of Public Health and Health Policy, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-0037, Japan
| | - Akito Ito
- School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, 162-0056, Japan
| | - Shigenobu Shibata
- Department of Public Health and Health Policy, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-0037, Japan
- School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, 162-0056, Japan
| |
Collapse
|
19
|
Dell’Angelica D, Singh K, Colwell CS, Ghiani CA. Circadian Interventions in Preclinical Models of Huntington's Disease: A Narrative Review. Biomedicines 2024; 12:1777. [PMID: 39200241 PMCID: PMC11351982 DOI: 10.3390/biomedicines12081777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 09/02/2024] Open
Abstract
Huntington's Disease (HD) is a neurodegenerative disorder caused by an autosomal-dominant mutation in the huntingtin gene, which manifests with a triad of motor, cognitive and psychiatric declines. Individuals with HD often present with disturbed sleep/wake cycles, but it is still debated whether altered circadian rhythms are intrinsic to its aetiopathology or a consequence. Conversely, it is well established that sleep/wake disturbances, perhaps acting in concert with other pathophysiological mechanisms, worsen the impact of the disease on cognitive and motor functions and are a burden to the patients and their caretakers. Currently, there is no cure to stop the progression of HD, however, preclinical research is providing cementing evidence that restoring the fluctuation of the circadian rhythms can assist in delaying the onset and slowing progression of HD. Here we highlight the application of circadian-based interventions in preclinical models and provide insights into their potential translation in clinical practice. Interventions aimed at improving sleep/wake cycles' synchronization have shown to improve motor and cognitive deficits in HD models. Therefore, a strong support for their suitability to ameliorate HD symptoms in humans emerges from the literature, albeit with gaps in our knowledge on the underlying mechanisms and possible risks associated with their implementation.
Collapse
Affiliation(s)
- Derek Dell’Angelica
- Department of Psychiatry and Biobehavioural Sciences, Semel Institute for Neuroscience and Human Behaviour, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90024, USA; (D.D.); (K.S.); (C.S.C.)
| | - Karan Singh
- Department of Psychiatry and Biobehavioural Sciences, Semel Institute for Neuroscience and Human Behaviour, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90024, USA; (D.D.); (K.S.); (C.S.C.)
| | - Christopher S. Colwell
- Department of Psychiatry and Biobehavioural Sciences, Semel Institute for Neuroscience and Human Behaviour, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90024, USA; (D.D.); (K.S.); (C.S.C.)
| | - Cristina A. Ghiani
- Department of Psychiatry and Biobehavioural Sciences, Semel Institute for Neuroscience and Human Behaviour, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90024, USA; (D.D.); (K.S.); (C.S.C.)
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90024, USA
| |
Collapse
|
20
|
Canever JB, Queiroz LY, Soares ES, de Avelar NCP, Cimarosti HI. Circadian rhythm alterations affecting the pathology of neurodegenerative diseases. J Neurochem 2024; 168:1475-1489. [PMID: 37358003 DOI: 10.1111/jnc.15883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/27/2023] [Accepted: 06/01/2023] [Indexed: 06/27/2023]
Abstract
The circadian rhythm is a nearly 24-h oscillation found in various physiological processes in the human brain and body that is regulated by environmental and genetic factors. It is responsible for maintaining body homeostasis and it is critical for essential functions, such as metabolic regulation and memory consolidation. Dysregulation in the circadian rhythm can negatively impact human health, resulting in cardiovascular and metabolic diseases, psychiatric disorders, and premature death. Emerging evidence points to a relationship between the dysregulation circadian rhythm and neurodegenerative diseases, suggesting that the alterations in circadian function might play crucial roles in the pathogenesis and progression of neurodegenerative diseases. Better understanding this association is of paramount importance to expand the knowledge on the pathophysiology of neurodegenerative diseases, as well as, to provide potential targets for the development of new interventions based on the dysregulation of circadian rhythm. Here we review the latest findings on dysregulation of circadian rhythm alterations in Parkinson's disease, Alzheimer's disease, Huntington's disease, amyotrophic lateral sclerosis, multiple sclerosis, spinocerebellar ataxia and multiple-system atrophy, focusing on research published in the last 3 years.
Collapse
Affiliation(s)
- Jaquelini Betta Canever
- Postgraduate Program of Neuroscience, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Letícia Yoshitome Queiroz
- Postgraduate Program of Pharmacology, Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Ericks Sousa Soares
- Postgraduate Program of Pharmacology, Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Núbia Carelli Pereira de Avelar
- Laboratory of Aging, Resources and Rheumatology, Department of Health Sciences, Federal University of Santa Catarina, Araranguá, Santa Catarina, Brazil
| | - Helena Iturvides Cimarosti
- Postgraduate Program of Neuroscience, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
- Postgraduate Program of Pharmacology, Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
21
|
Osuna-Lopez F, Herrera-Zamora JM, Reyes-Méndez ME, Aguilar-Roblero RA, Sánchez-Pastor EA, Navarro-Polanco RA, Moreno-Galindo EG, Alamilla J. Age-, region-, and day/night-related variation of the chloride reversal potential in the rat suprachiasmatic nucleus. J Neurosci Res 2024; 102:e25373. [PMID: 39101281 DOI: 10.1002/jnr.25373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 06/06/2024] [Accepted: 07/21/2024] [Indexed: 08/06/2024]
Abstract
The master control of mammalian circadian rhythms is the suprachiasmatic nucleus (SCN), which is formed by the ventral and dorsal regions. In SCN neurons, GABA has an important function and even excitatory actions in adulthood. However, the physiological role of this neurotransmitter in the developing SCN is unknown. Here, we recorded GABAergic postsynaptic currents (in the perforated-patch configuration using gramicidin) to determine the chloride reversal potential (ECl) and also assessed the immunological expression of the Na-K-Cl cotransporter 1 (NKCC1) at early ages of the rat (postnatal days (P) 3 to 25), during the day and night, in the two SCN regions. We detected that ECl greatly varied with age and depending on the SCN region and time of day. Broadly speaking, ECl was more hyperpolarized with age, except for the oldest age studied (P20-25) in both day and night in the ventral SCN, where it was less negative. Likewise, ECl was more hyperpolarized in the dorsal SCN both during the day and at night; while ECl was more negative at night both in the ventral and the dorsal SCN. Moreover, the total NKCC1 fluorescent expression was higher during the day than at night. These results imply that NKCC1 regulates the circadian and developmental fluctuations in the [Cl-]i to fine-tune ECl, which is crucial for either excitatory or inhibitory GABAergic actions to occur in the SCN.
Collapse
Affiliation(s)
- Fernando Osuna-Lopez
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Mexico
| | | | - Miriam E Reyes-Méndez
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Mexico
| | - Raúl A Aguilar-Roblero
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | | | | | - Eloy G Moreno-Galindo
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Mexico
| | - Javier Alamilla
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Mexico
- Consejo Nacional de Humanidades, Ciencia y Tecnología (CONAHCYT)-Universidad de Colima, Colima, Mexico
| |
Collapse
|
22
|
Chen L, Chen C, Jin Q, Liang Y, Wu J, Zhang P, Cheng J, Wang L. Efferent pathways from the suprachiasmatic nucleus to the horizontal limbs of diagonal band promote NREM sleep during the dark phase in mice. BMC Neurosci 2024; 25:34. [PMID: 39039434 PMCID: PMC11265431 DOI: 10.1186/s12868-024-00881-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 07/16/2024] [Indexed: 07/24/2024] Open
Abstract
The regulation of circadian rhythms and the sleep-wake states involves in multiple neural circuits. The suprachiasmatic nucleus (SCN) is a circadian pacemaker that controls the rhythmic oscillation of mammalian behaviors. The basal forebrain (BF) is a critical brain region of sleep-wake regulation, which is the downstream of the SCN. Retrograde tracing of cholera toxin subunit B showed a direct projection from the SCN to the horizontal limbs of diagonal band (HDB), a subregion of the BF. However, the underlying function of the SCN-HDB pathway remains poorly understood. Herein, activation of this pathway significantly increased non-rapid eye movement (NREM) sleep during the dark phase by using optogenetic recordings. Moreover, activation of this pathway significantly induced NREM sleep during the dark phase for first 4 h by using chemogenetic methods. Taken together, these findings reveal that the SCN-HDB pathway participates in NREM sleep regulation and provides direct evidence of a novel SCN-related pathway involved in sleep-wake states regulation.
Collapse
Affiliation(s)
- Lei Chen
- Departments of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, China
| | - Changfeng Chen
- Department of Physiology and Functional Experiment center, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Qiaoling Jin
- Department of Physiology and Functional Experiment center, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Yue Liang
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jian Wu
- Departments of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, China
| | - Pingping Zhang
- Department of Physiology and Functional Experiment center, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Juan Cheng
- Department of Physiology and Functional Experiment center, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| | - Liecheng Wang
- Department of Physiology and Functional Experiment center, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
23
|
白 亚, 孙 晓, 文 巧, 吴 江, 邹 剑, 王 海. [Effects of Extreme Environments on Human Sleep]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:1034-1043. [PMID: 39170010 PMCID: PMC11334294 DOI: 10.12182/20240760402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Indexed: 08/23/2024]
Abstract
Recently, with the rapid growth of the global population and the exhaustion of resources, exploration activities in extreme environments such as the polar regions, the outer space, the deep sea, the deep underground and highlands are becoming increasingly more frequent. This in-depth exploration of the external environment and the consequent dramatic changes in lifestyles impact on sleep, a basic life activity of humans, in ways that cannot be overlooked. the basic life activity of human beings. Sleep, a basic life activity and the result of the evolution of organisms to adapt to their environment, is closely associated with sleep homeostasis and endogenous rhythms. However, external environmental changes and lifestyle shifts in extreme environments have had a significant impact on the patterns and the quality of sleep in humans. Furthermore, this impact can lead to many physiological and psychological problems, posing a great threat to human health. In this review, we delved into the specific effects of different extreme natural environments and enclosed environments on sleep, elaborating on how these environments alter the patterns and the quality of sleep in humans. In addition, we summarized the changes in human sleep under extreme environments to help gain a better understanding of the mechanisms by which these specific environments impact human sleep. It is expected that this review will provide a solid theoretical foundation for optimizing long-term survival strategies in extreme environments and help humans adapt to and overcome the challenges posed by extreme environments more effectively.
Collapse
Affiliation(s)
- 亚宁 白
- 四川大学华西医院 耳鼻咽喉头颈外科 (成都 610041)Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 晓茹 孙
- 四川大学华西医院 耳鼻咽喉头颈外科 (成都 610041)Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- 四川大学深地医学中心 (成都 610041)Deep Under Ground Medical Center, Sichuan University, Chengdu 610041, China
| | - 巧 文
- 四川大学华西医院 耳鼻咽喉头颈外科 (成都 610041)Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- 四川大学深地医学中心 (成都 610041)Deep Under Ground Medical Center, Sichuan University, Chengdu 610041, China
| | - 江 吴
- 四川大学华西医院 耳鼻咽喉头颈外科 (成都 610041)Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- 四川大学深地医学中心 (成都 610041)Deep Under Ground Medical Center, Sichuan University, Chengdu 610041, China
| | - 剑 邹
- 四川大学华西医院 耳鼻咽喉头颈外科 (成都 610041)Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- 四川大学深地医学中心 (成都 610041)Deep Under Ground Medical Center, Sichuan University, Chengdu 610041, China
| | - 海洋 王
- 四川大学华西医院 耳鼻咽喉头颈外科 (成都 610041)Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- 四川大学深地医学中心 (成都 610041)Deep Under Ground Medical Center, Sichuan University, Chengdu 610041, China
| |
Collapse
|
24
|
Curtis L, Piggins HD. Diverse genetic alteration dysregulates neuropeptide and intracellular signalling in the suprachiasmatic nuclei. Eur J Neurosci 2024; 60:3921-3945. [PMID: 38924215 DOI: 10.1111/ejn.16443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/12/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024]
Abstract
In mammals, intrinsic 24 h or circadian rhythms are primarily generated by the suprachiasmatic nuclei (SCN). Rhythmic daily changes in the transcriptome and proteome of SCN cells are controlled by interlocking transcription-translation feedback loops (TTFLs) of core clock genes and their proteins. SCN cells function as autonomous circadian oscillators, which synchronize through intercellular neuropeptide signalling. Physiological and behavioural rhythms can be severely disrupted by genetic modification of a diverse range of genes and proteins in the SCN. With the advent of next generation sequencing, there is unprecedented information on the molecular profile of the SCN and how it is affected by genetically targeted alteration. However, whether the expression of some genes is more readily affected by genetic alteration of the SCN is unclear. Here, using publicly available datasets from recent RNA-seq assessments of the SCN from genetically altered and control mice, we evaluated whether there are commonalities in transcriptome dysregulation. This was completed for four different phases across the 24 h cycle and was augmented by Gene Ontology Molecular Function (GO:MF) and promoter analysis. Common differentially expressed genes (DEGs) and/or enriched GO:MF terms included signalling molecules, their receptors, and core clock components. Finally, examination of the JASPAR database indicated that E-box and CRE elements in the promoter regions of several commonly dysregulated genes. From this analysis, we identify differential expression of genes coding for molecules involved in SCN intra- and intercellular signalling as a potential cause of abnormal circadian rhythms.
Collapse
Affiliation(s)
- Lucy Curtis
- School of Biological Sciences, University of Bristol, Bristol, UK
- School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol, UK
| | - Hugh D Piggins
- School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol, UK
| |
Collapse
|
25
|
Wang Z, Yu J, Zhai M, Wang Z, Sheng K, Zhu Y, Wang T, Liu M, Wang L, Yan M, Zhang J, Xu Y, Wang X, Ma L, Hu W, Cheng H. System-level time computation and representation in the suprachiasmatic nucleus revealed by large-scale calcium imaging and machine learning. Cell Res 2024; 34:493-503. [PMID: 38605178 PMCID: PMC11217450 DOI: 10.1038/s41422-024-00956-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/28/2024] [Indexed: 04/13/2024] Open
Abstract
The suprachiasmatic nucleus (SCN) is the mammalian central circadian pacemaker with heterogeneous neurons acting in concert while each neuron harbors a self-sustained molecular clockwork. Nevertheless, how system-level SCN signals encode time of the day remains enigmatic. Here we show that population-level Ca2+ signals predict hourly time, via a group decision-making mechanism coupled with a spatially modular time feature representation in the SCN. Specifically, we developed a high-speed dual-view two-photon microscope for volumetric Ca2+ imaging of up to 9000 GABAergic neurons in adult SCN slices, and leveraged machine learning methods to capture emergent properties from multiscale Ca2+ signals as a whole. We achieved hourly time prediction by polling random cohorts of SCN neurons, reaching 99.0% accuracy at a cohort size of 900. Further, we revealed that functional neuron subtypes identified by contrastive learning tend to aggregate separately in the SCN space, giving rise to bilaterally symmetrical ripple-like modular patterns. Individual modules represent distinctive time features, such that a module-specifically learned time predictor can also accurately decode hourly time from random polling of the same module. These findings open a new paradigm in deciphering the design principle of the biological clock at the system level.
Collapse
Affiliation(s)
- Zichen Wang
- National Biomedical Imaging Center, State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, College of Future Technology, Peking University, Beijing, China
- Research Unit of Mitochondria in Brain Diseases, Chinese Academy of Medical Sciences, PKU-Nanjing Institute of Translational Medicine, Nanjing, Jiangsu, China
| | - Jing Yu
- National Biomedical Imaging Center, State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, College of Future Technology, Peking University, Beijing, China
- Research Unit of Mitochondria in Brain Diseases, Chinese Academy of Medical Sciences, PKU-Nanjing Institute of Translational Medicine, Nanjing, Jiangsu, China
| | - Muyue Zhai
- National Biomedical Imaging Center, State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, College of Future Technology, Peking University, Beijing, China
| | - Zehua Wang
- Wangxuan Institute of Computer Technology, Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Kaiwen Sheng
- Beijing Academy of Artificial Intelligence, Beijing, China
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Yu Zhu
- Beijing Academy of Artificial Intelligence, Beijing, China
| | - Tianyu Wang
- National Biomedical Imaging Center, State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, College of Future Technology, Peking University, Beijing, China
| | - Mianzhi Liu
- National Biomedical Imaging Center, State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, College of Future Technology, Peking University, Beijing, China
| | - Lu Wang
- National Biomedical Imaging Center, State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, College of Future Technology, Peking University, Beijing, China
| | - Miao Yan
- National Biomedical Imaging Center, State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, College of Future Technology, Peking University, Beijing, China
| | - Jue Zhang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- College of Engineering, Peking University, Beijing, China
| | - Ying Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Su Genomic Resource Center, Medical School of Soochow University, Suzhou, Jiangsu, China
| | - Xianhua Wang
- National Biomedical Imaging Center, State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, College of Future Technology, Peking University, Beijing, China
- Research Unit of Mitochondria in Brain Diseases, Chinese Academy of Medical Sciences, PKU-Nanjing Institute of Translational Medicine, Nanjing, Jiangsu, China
| | - Lei Ma
- National Biomedical Imaging Center, State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, College of Future Technology, Peking University, Beijing, China.
- Beijing Academy of Artificial Intelligence, Beijing, China.
| | - Wei Hu
- Wangxuan Institute of Computer Technology, Peking University, Beijing, China.
| | - Heping Cheng
- National Biomedical Imaging Center, State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, College of Future Technology, Peking University, Beijing, China.
- Research Unit of Mitochondria in Brain Diseases, Chinese Academy of Medical Sciences, PKU-Nanjing Institute of Translational Medicine, Nanjing, Jiangsu, China.
| |
Collapse
|
26
|
Mazahir F, Alam MI, Yadav AK. Development of nanomedicines for the treatment of Alzheimer's disease: Raison d'être, strategies, challenges and regulatory aspects. Ageing Res Rev 2024; 98:102318. [PMID: 38705362 DOI: 10.1016/j.arr.2024.102318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/04/2024] [Accepted: 04/27/2024] [Indexed: 05/07/2024]
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disorder characterized by progressive loss of memory. Presently, AD is challenging to treat with current drug therapy as their delivery to the brain is restricted by the presence of the blood-brain barrier. Nanomedicines, due to their size, high surface volume ratio, and ease of tailoring drug release characteristics, showed their potential to treat AD. The nanotechnology-based formulations for brain targeting are expected to enter the market in the near future. So, regulatory frameworks are required to ensure the quality, safety, and effectiveness of the nanomedicines to treat AD. In this review, we discuss different strategies, in-vitro blood-brain permeation models, in-vivo permeation assessment, and regulatory aspects for the development of nanomedicine to treat AD.
Collapse
Affiliation(s)
- Farhan Mazahir
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Raebareli, India
| | - Md Imtiyaz Alam
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Raebareli, India
| | - Awesh Kumar Yadav
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Raebareli, India.
| |
Collapse
|
27
|
Chen R, Nie P, Wang J, Wang GZ. Deciphering brain cellular and behavioral mechanisms: Insights from single-cell and spatial RNA sequencing. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1865. [PMID: 38972934 DOI: 10.1002/wrna.1865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/05/2024] [Accepted: 05/14/2024] [Indexed: 07/09/2024]
Abstract
The brain is a complex computing system composed of a multitude of interacting neurons. The computational outputs of this system determine the behavior and perception of every individual. Each brain cell expresses thousands of genes that dictate the cell's function and physiological properties. Therefore, deciphering the molecular expression of each cell is of great significance for understanding its characteristics and role in brain function. Additionally, the positional information of each cell can provide crucial insights into their involvement in local brain circuits. In this review, we briefly overview the principles of single-cell RNA sequencing and spatial transcriptomics, the potential issues and challenges in their data processing, and their applications in brain research. We further outline several promising directions in neuroscience that could be integrated with single-cell RNA sequencing, including neurodevelopment, the identification of novel brain microstructures, cognition and behavior, neuronal cell positioning, molecules and cells related to advanced brain functions, sleep-wake cycles/circadian rhythms, and computational modeling of brain function. We believe that the deep integration of these directions with single-cell and spatial RNA sequencing can contribute significantly to understanding the roles of individual cells or cell types in these specific functions, thereby making important contributions to addressing critical questions in those fields. This article is categorized under: RNA Evolution and Genomics > Computational Analyses of RNA RNA in Disease and Development > RNA in Development RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Renrui Chen
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Pengxing Nie
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jing Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Guang-Zhong Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
28
|
Yang Z, Black K, Ohman-Strickland P, Graber JM, Kipen H, Fang M, Zarbl H. Disruption of central and peripheral circadian clocks and circadian controlled estrogen receptor rhythms in night shift nurses in working environments. FASEB J 2024; 38:e23719. [PMID: 38837828 PMCID: PMC11884403 DOI: 10.1096/fj.202302261rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 05/13/2024] [Accepted: 05/21/2024] [Indexed: 06/07/2024]
Abstract
Chronic disruption of circadian rhythms by night shift work is associated with an increased breast cancer risk. However, little is known about the impact of night shift on peripheral circadian genes (CGs) and circadian-controlled genes (CCGs) associated with breast cancer. Hence, we assessed central clock markers (melatonin and cortisol) in plasma, and peripheral CGs (PER1, PER2, PER3, and BMAL1) and CCGs (ESR1 and ESR2) in peripheral blood mononuclear cells (PBMCs). In day shift nurses (n = 12), 24-h rhythms of cortisol and melatonin were aligned with day shift-oriented light/dark schedules. The mRNA expression of PER2, PER3, BMAL1, and ESR2 showed 24-h rhythms with peak values in the morning. In contrast, night shift nurses (n = 10) lost 24-h rhythmicity of cortisol with a suppressed morning surge but retained normal rhythmic patterns of melatonin, leading to misalignment between cortisol and melatonin. Moreover, night shift nurses showed disruption of rhythmic expressions of PER2, PER3, BMAL1, and ESR2 genes, resulting in an impaired inverse correlation between PER2 and BMAL1 compared to day shift nurses. The observed trends of disrupted circadian markers were recapitulated in additional day (n = 20) and night (n = 19) shift nurses by measurement at early night and midnight time points. Taken together, this study demonstrated the misalignment of cortisol and melatonin, associated disruption of PER2 and ESR2 circadian expressions, and internal misalignment in peripheral circadian network in night shift nurses. Morning plasma cortisol and PER2, BMAL1, and ESR2 expressions in PBMCs may therefore be useful biomarkers of circadian disruption in shift workers.
Collapse
Affiliation(s)
- Zhenning Yang
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
- Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| | - Kathleen Black
- Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| | - Pamela Ohman-Strickland
- Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
- Department of Biostatistics and Epidemiology, School of Public Health, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| | - Judith M Graber
- Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
- Department of Biostatistics and Epidemiology, School of Public Health, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| | - Howard Kipen
- Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
- Department of Environmental and Occupational Health and Justice, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| | - Mingzhu Fang
- Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
- Department of Environmental and Occupational Health and Justice, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
- Current affiliation: Research and Early Development, Nonclinical Safety, Bristol Myers Squibb, New Brunswick, New Jersey, 08901, USA
| | - Helmut Zarbl
- Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
- Department of Environmental and Occupational Health and Justice, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| |
Collapse
|
29
|
Steponenaite A, Lalic T, Atkinson L, Tanday N, Brown L, Mathie A, Cader ZM, Lall GS. TASK-3, two-pore potassium channels, contribute to circadian rhythms in the electrical properties of the suprachiasmatic nucleus and play a role in driving stable behavioural photic entrainment. Chronobiol Int 2024; 41:802-816. [PMID: 38757583 DOI: 10.1080/07420528.2024.2351515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 03/20/2024] [Accepted: 04/19/2024] [Indexed: 05/18/2024]
Abstract
Stable and entrainable physiological circadian rhythms are crucial for overall health and well-being. The suprachiasmatic nucleus (SCN), the primary circadian pacemaker in mammals, consists of diverse neuron types that collectively generate a circadian profile of electrical activity. However, the mechanisms underlying the regulation of endogenous neuronal excitability in the SCN remain unclear. Two-pore domain potassium channels (K2P), including TASK-3, are known to play a significant role in maintaining SCN diurnal homeostasis by inhibiting neuronal activity at night. In this study, we investigated the role of TASK-3 in SCN circadian neuronal regulation and behavioural photoentrainment using a TASK-3 global knockout mouse model. Our findings demonstrate the importance of TASK-3 in maintaining SCN hyperpolarization during the night and establishing SCN sensitivity to glutamate. Specifically, we observed that TASK-3 knockout mice lacked diurnal variation in resting membrane potential and exhibited altered glutamate sensitivity both in vivo and in vitro. Interestingly, despite these changes, the mice lacking TASK-3 were still able to maintain relatively normal circadian behaviour.
Collapse
Affiliation(s)
| | - Tatjana Lalic
- Translational Molecular Neuroscience Group, University of Oxford, Oxford, UK
| | | | - Neil Tanday
- Medway School of Pharmacy, University of Kent, Kent, UK
| | - Lorna Brown
- Medway School of Pharmacy, University of Kent, Kent, UK
| | | | - Zameel M Cader
- Translational Molecular Neuroscience Group, University of Oxford, Oxford, UK
| | | |
Collapse
|
30
|
Pierre-Ferrer S, Collins B, Lukacsovich D, Wen S, Cai Y, Winterer J, Yan J, Pedersen L, Földy C, Brown SA. A phosphate transporter in VIPergic neurons of the suprachiasmatic nucleus gates locomotor activity during the light/dark transition in mice. Cell Rep 2024; 43:114220. [PMID: 38735047 DOI: 10.1016/j.celrep.2024.114220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 02/23/2024] [Accepted: 04/25/2024] [Indexed: 05/14/2024] Open
Abstract
The suprachiasmatic nucleus (SCN) encodes time of day through changes in daily firing; however, the molecular mechanisms by which the SCN times behavior are not fully understood. To identify factors that could encode day/night differences in activity, we combine patch-clamp recordings and single-cell sequencing of individual SCN neurons in mice. We identify PiT2, a phosphate transporter, as being upregulated in a population of Vip+Nms+ SCN neurons at night. Although nocturnal and typically showing a peak of activity at lights off, mice lacking PiT2 (PiT2-/-) do not reach the activity level seen in wild-type mice during the light/dark transition. PiT2 loss leads to increased SCN neuronal firing and broad changes in SCN protein phosphorylation. PiT2-/- mice display a deficit in seasonal entrainment when moving from a simulated short summer to longer winter nights. This suggests that PiT2 is responsible for timing activity and is a driver of SCN plasticity allowing seasonal entrainment.
Collapse
Affiliation(s)
- Sara Pierre-Ferrer
- Chronobiology and Sleep Research Group, Institute of Pharmacology and Toxicology, Faculties of Medicine and Science, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland.
| | - Ben Collins
- Chronobiology and Sleep Research Group, Institute of Pharmacology and Toxicology, Faculties of Medicine and Science, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland; Department of Biology, Sacred Heart University, 5151 Park Ave., Fairfield, CT 06825, USA
| | - David Lukacsovich
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Shao'Ang Wen
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuchen Cai
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jochen Winterer
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Jun Yan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lene Pedersen
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, 8000 Aarhus, Denmark
| | - Csaba Földy
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland.
| | - Steven A Brown
- Chronobiology and Sleep Research Group, Institute of Pharmacology and Toxicology, Faculties of Medicine and Science, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| |
Collapse
|
31
|
Gonzalez-Aponte MF, Damato AR, Simon T, Aripova N, Darby F, Rubin JB, Herzog ED. Daily glucocorticoids promote glioblastoma growth and circadian synchrony to the host. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.03.592418. [PMID: 38766060 PMCID: PMC11100585 DOI: 10.1101/2024.05.03.592418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Glioblastoma (GBM) is the most common primary brain tumor in adults with a poor prognosis despite aggressive therapy. A recent, retrospective clinical study found that administering Temozolomide in the morning increased patient overall survival by 6 months compared to evening. Here, we tested the hypothesis that daily host signaling regulates tumor growth and synchronizes circadian rhythms in GBM. We found daily Dexamethasone promoted or suppressed GBM growth depending on time of day of administration and on the clock gene, Bmal1. Blocking circadian signals, like VIP or glucocorticoids, dramatically slowed GBM growth and disease progression. Finally, mouse and human GBM models have intrinsic circadian rhythms in clock gene expression in vitro and in vivo that entrain to the host through glucocorticoid signaling, regardless of tumor type or host immune status. We conclude that GBM entrains to the circadian circuit of the brain, which modulates its growth through clockcontrolled cues, like glucocorticoids.
Collapse
Affiliation(s)
- Maria F. Gonzalez-Aponte
- Department of Biology, Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Anna R. Damato
- Department of Biology, Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Tatiana Simon
- Department of Biology, Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Nigina Aripova
- Department of Biology, Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Fabrizio Darby
- Department of Biology, Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Joshua B. Rubin
- Department of Pediatrics, St. Louis Children’s Hospital, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Erik D. Herzog
- Department of Biology, Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, 63130, USA
| |
Collapse
|
32
|
Faraci FM, Scheer FA. Hypertension: Causes and Consequences of Circadian Rhythms in Blood Pressure. Circ Res 2024; 134:810-832. [PMID: 38484034 PMCID: PMC10947115 DOI: 10.1161/circresaha.124.323515] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/19/2024]
Abstract
Hypertension is extremely common, affecting approximately 1 in every 2 adults globally. Chronic hypertension is the leading modifiable risk factor for cardiovascular disease and premature mortality worldwide. Despite considerable efforts to define mechanisms that underlie hypertension, a potentially major component of the disease, the role of circadian biology has been relatively overlooked in both preclinical models and humans. Although the presence of daily and circadian patterns has been observed from the level of the genome to the whole organism, the functional and structural impact of biological rhythms, including mechanisms such as circadian misalignment, remains relatively poorly defined. Here, we review the impact of daily rhythms and circadian systems in regulating blood pressure and the onset, progression, and consequences of hypertension. There is an emphasis on the impact of circadian biology in relation to vascular disease and end-organ effects that, individually or in combination, contribute to complex phenotypes such as cognitive decline and the loss of cardiac and brain health. Despite effective treatment options for some individuals, control of blood pressure remains inadequate in a substantial portion of the hypertensive population. Greater insight into circadian biology may form a foundation for novel and more widely effective molecular therapies or interventions to help in the prevention, treatment, and management of hypertension and its related pathophysiology.
Collapse
Affiliation(s)
- Frank M. Faraci
- Department of Internal Medicine, Francois M. Abboud Cardiovascular Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1081
- Department of Neuroscience and Pharmacology, Francois M. Abboud Cardiovascular Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1081
| | - Frank A.J.L. Scheer
- Division of Sleep Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts, 02115
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, Massachusetts, 02115
| |
Collapse
|
33
|
Oster H, Colwell CS. Editorial: Recent advances in sleep and circadian rhythms: the hypothalamus and its relationship with appetite. Front Neurosci 2024; 18:1385619. [PMID: 38486970 PMCID: PMC10937535 DOI: 10.3389/fnins.2024.1385619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 02/19/2024] [Indexed: 03/17/2024] Open
Affiliation(s)
- Henrik Oster
- Center of Brain, Behavior and Metabolism, Institute of Neurobiology, University of Lübeck, Lübeck, Germany
| | - Christopher S. Colwell
- UCLA Laboratory of Sleep and Circadian Medicine, Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
34
|
Zhang X, Huang S, Kim JY. Cell-type specific circadian transcription factor BMAL1 roles in excitotoxic hippocampal lesions to enhance neurogenesis. iScience 2024; 27:108829. [PMID: 38303690 PMCID: PMC10831945 DOI: 10.1016/j.isci.2024.108829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/11/2023] [Accepted: 01/03/2024] [Indexed: 02/03/2024] Open
Abstract
Circadian clocks, generating daily rhythms in biological processes, maintain homeostasis in physiology, so clock alterations are considered detrimental. Studies in brain pathology support this by reporting abnormal circadian phenotypes in patients, but restoring the abnormalities by light therapy shows no dramatic effects. Recent studies on glial clocks report the complex effects of altered clocks by showing their beneficial effects on brain repairs. However, how neuronal clocks respond to brain pathology is elusive. This study shows that neuronal BMAL1, a core of circadian clocks, reduces its expression levels in neurodegenerative excitotoxicity. In the dentate gyrus of excitotoxic hippocampal lesions, reduced BMAL1 in granule cells precedes apoptosis. This subsequently reduces BMAL1 levels in neighbor neural stem cells and progenitors in the subgranular zone, enhancing proliferation. This shows the various BMAL1 roles depending on cell types, and its alterations can benefit brain repair. Thus, cell-type-specific BMAL1 targeting is necessary to treat brain pathology.
Collapse
Affiliation(s)
- Xuebing Zhang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Suihong Huang
- Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Jin Young Kim
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
35
|
Stengl M, Schneider AC. Contribution of membrane-associated oscillators to biological timing at different timescales. Front Physiol 2024; 14:1243455. [PMID: 38264332 PMCID: PMC10803594 DOI: 10.3389/fphys.2023.1243455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 12/12/2023] [Indexed: 01/25/2024] Open
Abstract
Environmental rhythms such as the daily light-dark cycle selected for endogenous clocks. These clocks predict regular environmental changes and provide the basis for well-timed adaptive homeostasis in physiology and behavior of organisms. Endogenous clocks are oscillators that are based on positive feedforward and negative feedback loops. They generate stable rhythms even under constant conditions. Since even weak interactions between oscillators allow for autonomous synchronization, coupling/synchronization of oscillators provides the basis of self-organized physiological timing. Amongst the most thoroughly researched clocks are the endogenous circadian clock neurons in mammals and insects. They comprise nuclear clockworks of transcriptional/translational feedback loops (TTFL) that generate ∼24 h rhythms in clock gene expression entrained to the environmental day-night cycle. It is generally assumed that this TTFL clockwork drives all circadian oscillations within and between clock cells, being the basis of any circadian rhythm in physiology and behavior of organisms. Instead of the current gene-based hierarchical clock model we provide here a systems view of timing. We suggest that a coupled system of autonomous TTFL and posttranslational feedback loop (PTFL) oscillators/clocks that run at multiple timescales governs adaptive, dynamic homeostasis of physiology and behavior. We focus on mammalian and insect neurons as endogenous oscillators at multiple timescales. We suggest that neuronal plasma membrane-associated signalosomes constitute specific autonomous PTFL clocks that generate localized but interlinked oscillations of membrane potential and intracellular messengers with specific endogenous frequencies. In each clock neuron multiscale interactions of TTFL and PTFL oscillators/clocks form a temporally structured oscillatory network with a common complex frequency-band comprising superimposed multiscale oscillations. Coupling between oscillator/clock neurons provides the next level of complexity of an oscillatory network. This systemic dynamic network of molecular and cellular oscillators/clocks is suggested to form the basis of any physiological homeostasis that cycles through dynamic homeostatic setpoints with a characteristic frequency-band as hallmark. We propose that mechanisms of homeostatic plasticity maintain the stability of these dynamic setpoints, whereas Hebbian plasticity enables switching between setpoints via coupling factors, like biogenic amines and/or neuropeptides. They reprogram the network to a new common frequency, a new dynamic setpoint. Our novel hypothesis is up for experimental challenge.
Collapse
Affiliation(s)
- Monika Stengl
- Department of Biology, Animal Physiology/Neuroethology, University of Kassel, Kassel, Germany
| | | |
Collapse
|
36
|
Engin A. Misalignment of Circadian Rhythms in Diet-Induced Obesity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:27-71. [PMID: 39287848 DOI: 10.1007/978-3-031-63657-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The biological clocks of the circadian timing system coordinate cellular and physiological processes and synchronize them with daily cycles. While the central clock in the suprachiasmatic nucleus (SCN) is mainly synchronized by the light/dark cycles, the peripheral clocks react to other stimuli, including the feeding/fasting state, nutrients, sleep-wake cycles, and physical activity. During the disruption of circadian rhythms due to genetic mutations or social and occupational obligations, incorrect arrangement between the internal clock system and environmental rhythms leads to the development of obesity. Desynchronization between the central and peripheral clocks by altered timing of food intake and diet composition leads to uncoupling of the peripheral clocks from the central pacemaker and to the development of metabolic disorders. The strong coupling of the SCN to the light-dark cycle creates a situation of misalignment when food is ingested during the "wrong" time of day. Food-anticipatory activity is mediated by a self-sustained circadian timing, and its principal component is a food-entrainable oscillator. Modifying the time of feeding alone greatly affects body weight, whereas ketogenic diet (KD) influences circadian biology, through the modulation of clock gene expression. Night-eating behavior is one of the causes of circadian disruption, and night eaters have compulsive and uncontrolled eating with severe obesity. By contrast, time-restricted eating (TRE) restores circadian rhythms through maintaining an appropriate daily rhythm of the eating-fasting cycle. The hypothalamus has a crucial role in the regulation of energy balance rather than food intake. While circadian locomotor output cycles kaput (CLOCK) expression levels increase with high-fat diet-induced obesity, peroxisome proliferator-activated receptor-alpha (PPARα) increases the transcriptional level of brain and muscle aryl hydrocarbon receptor nuclear translocator (ARNT)-like 1 (BMAL1) in obese subjects. In this context, effective timing of chronotherapies aiming to correct SCN-driven rhythms depends on an accurate assessment of the SCN phase. In fact, in a multi-oscillator system, local rhythmicity and its disruption reflects the disruption of either local clocks or central clocks, thus imposing rhythmicity on those local tissues, whereas misalignment of peripheral oscillators is due to exosome-based intercellular communication.Consequently, disruption of clock genes results in dyslipidemia, insulin resistance, and obesity, while light exposure during the daytime, food intake during the daytime, and sleeping during the biological night promote circadian alignment between the central and peripheral clocks. Thus, shift work is associated with an increased risk of obesity, diabetes, and cardiovascular diseases because of unusual eating times as well as unusual light exposure and disruption of the circadian rhythm.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
37
|
Bussi IL, Neitz AF, Sanchez REA, Casiraghi LP, Moldavan M, Kunda D, Allen CN, Evans JA, de la Iglesia HO. Expression of the vesicular GABA transporter within neuromedin S + neurons sustains behavioral circadian rhythms. Proc Natl Acad Sci U S A 2023; 120:e2314857120. [PMID: 38019855 PMCID: PMC10710084 DOI: 10.1073/pnas.2314857120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
The suprachiasmatic nucleus (SCN) of the hypothalamus is the site of a central circadian clock that orchestrates overt rhythms of physiology and behavior. Circadian timekeeping requires intercellular communication among SCN neurons, and multiple signaling pathways contribute to SCN network coupling. Gamma-aminobutyric acid (GABA) is produced by virtually all SCN neurons, and previous work demonstrates that this transmitter regulates coupling in the adult SCN but is not essential for the nucleus to sustain overt circadian rhythms. Here, we show that the deletion of the gene that codes for the GABA vesicular transporter Vgat from neuromedin-S (NMS)+ neurons-a subset of neurons critical for SCN function-causes arrhythmia of locomotor activity and sleep. Further, NMS-Vgat deletion impairs intrinsic clock gene rhythms in SCN explants cultured ex vivo. Although vasoactive intestinal polypeptide (VIP) is critical for SCN function, Vgat deletion from VIP-expressing neurons did not lead to circadian arrhythmia in locomotor activity rhythms. Likewise, adult SCN-specific deletion of Vgat led to mild impairment of behavioral rhythms. Our results suggest that while the removal of GABA release from the adult SCN does not affect the pacemaker's ability to sustain overt circadian rhythms, its removal from a critical subset of neurons within the SCN throughout development removes the nucleus ability to sustain circadian rhythms. Our findings support a model in which SCN GABA release is critical for the developmental establishment of intercellular network properties that define the SCN as a central pacemaker.
Collapse
Affiliation(s)
- Ivana L. Bussi
- Department of Biology, University of Washington, Seattle, WA98195-1800
| | - Alexandra F. Neitz
- Department of Biology, University of Washington, Seattle, WA98195-1800
- Molecular and Cellular Biology in Seattle, University of Washington and Fred Hutch, Seattle, WA98195-7275
| | - Raymond E. A. Sanchez
- Department of Biology, University of Washington, Seattle, WA98195-1800
- Graduate Program in Neuroscience, University of Washington, Seattle, WA98195
| | | | - Michael Moldavan
- Oregon Institute for Occupational Health Sciences, Oregon Health & Science University, Portland, OR97239
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR97239
| | - Divya Kunda
- Department of Biology, University of Washington, Seattle, WA98195-1800
| | - Charles N. Allen
- Oregon Institute for Occupational Health Sciences, Oregon Health & Science University, Portland, OR97239
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR97239
| | - Jennifer A. Evans
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI53233
| | - Horacio O. de la Iglesia
- Department of Biology, University of Washington, Seattle, WA98195-1800
- Molecular and Cellular Biology in Seattle, University of Washington and Fred Hutch, Seattle, WA98195-7275
- Graduate Program in Neuroscience, University of Washington, Seattle, WA98195
| |
Collapse
|
38
|
Bellfy L, Smies CW, Bernhardt AR, Bodinayake KK, Sebastian A, Stuart EM, Wright DS, Lo CY, Murakami S, Boyd HM, von Abo MJ, Albert I, Kwapis JL. The clock gene Per1 may exert diurnal control over hippocampal memory consolidation. Neuropsychopharmacology 2023; 48:1789-1797. [PMID: 37264172 PMCID: PMC10579262 DOI: 10.1038/s41386-023-01616-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 06/03/2023]
Abstract
The circadian system influences many different biological processes, including memory performance. While the suprachiasmatic nucleus (SCN) functions as the brain's central pacemaker, downstream "satellite clocks" may also regulate local functions based on the time of day. Within the dorsal hippocampus (DH), for example, local molecular oscillations may contribute to time-of-day effects on memory. Here, we used the hippocampus-dependent Object Location Memory task to determine how memory is regulated across the day/night cycle in mice. First, we systematically determined which phase of memory (acquisition, consolidation, or retrieval) is modulated across the 24 h day. We found that mice show better long-term memory performance during the day than at night, an effect that was specifically attributed to diurnal changes in memory consolidation, as neither memory acquisition nor memory retrieval fluctuated across the day/night cycle. Using RNA-sequencing we identified the circadian clock gene Period1 (Per1) as a key mechanism capable of supporting this diurnal fluctuation in memory consolidation, as learning-induced Per1 oscillates in tandem with memory performance in the hippocampus. We then show that local knockdown of Per1 within the DH impairs spatial memory without affecting either the circadian rhythm or sleep behavior. Thus, Per1 may independently function within the DH to regulate memory in addition to its known role in regulating the circadian system within the SCN. Per1 may therefore exert local diurnal control over memory consolidation within the DH.
Collapse
Affiliation(s)
- Lauren Bellfy
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Chad W Smies
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Alicia R Bernhardt
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Kasuni K Bodinayake
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Aswathy Sebastian
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Emily M Stuart
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Destiny S Wright
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Chen-Yu Lo
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Shoko Murakami
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Hannah M Boyd
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Megan J von Abo
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Istvan Albert
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Janine L Kwapis
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA.
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
39
|
Vincenzi M, Kremić A, Jouve A, Lattanzi R, Miele R, Benharouga M, Alfaidy N, Migrenne-Li S, Kanthasamy AG, Porcionatto M, Ferrara N, Tetko IV, Désaubry L, Nebigil CG. Therapeutic Potential of Targeting Prokineticin Receptors in Diseases. Pharmacol Rev 2023; 75:1167-1199. [PMID: 37684054 PMCID: PMC10595023 DOI: 10.1124/pharmrev.122.000801] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 06/11/2023] [Accepted: 06/13/2023] [Indexed: 09/10/2023] Open
Abstract
The prokineticins (PKs) were discovered approximately 20 years ago as small peptides inducing gut contractility. Today, they are established as angiogenic, anorectic, and proinflammatory cytokines, chemokines, hormones, and neuropeptides involved in variety of physiologic and pathophysiological pathways. Their altered expression or mutations implicated in several diseases make them a potential biomarker. Their G-protein coupled receptors, PKR1 and PKR2, have divergent roles that can be therapeutic target for treatment of cardiovascular, metabolic, and neural diseases as well as pain and cancer. This article reviews and summarizes our current knowledge of PK family functions from development of heart and brain to regulation of homeostasis in health and diseases. Finally, the review summarizes the established roles of the endogenous peptides, synthetic peptides and the selective ligands of PKR1 and PKR2, and nonpeptide orthostatic and allosteric modulator of the receptors in preclinical disease models. The present review emphasizes the ambiguous aspects and gaps in our knowledge of functions of PKR ligands and elucidates future perspectives for PK research. SIGNIFICANCE STATEMENT: This review provides an in-depth view of the prokineticin family and PK receptors that can be active without their endogenous ligand and exhibits "constitutive" activity in diseases. Their non- peptide ligands display promising effects in several preclinical disease models. PKs can be the diagnostic biomarker of several diseases. A thorough understanding of the role of prokineticin family and their receptor types in health and diseases is critical to develop novel therapeutic strategies with safety concerns.
Collapse
Affiliation(s)
- Martina Vincenzi
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Amin Kremić
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Appoline Jouve
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Roberta Lattanzi
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Rossella Miele
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Mohamed Benharouga
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Nadia Alfaidy
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Stephanie Migrenne-Li
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Anumantha G Kanthasamy
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Marimelia Porcionatto
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Napoleone Ferrara
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Igor V Tetko
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Laurent Désaubry
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Canan G Nebigil
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| |
Collapse
|
40
|
Mesgar S, Eskandari K, Karimian-Sani-Varjovi H, Salemi-Mokri-Boukani P, Haghparast A. The Dopaminergic System Modulates the Electrophysiological Activity of the Suprachiasmatic Nucleus Dependent on the Circadian Cycle. Neurochem Res 2023; 48:3420-3429. [PMID: 37452257 DOI: 10.1007/s11064-023-03988-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/25/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
The suprachiasmatic nucleus of the hypothalamus (SCN) controls mammalian circadian rhythms. Circadian rhythms influence the dopaminergic system, and dopaminergic tone impresses the physiology and behavior of the circadian clock. However, little is known about the effect of dopamine and dopamine receptors, especially D1-like dopamine receptors (D1Rs), in regulating the circadian rhythm and the SCN neuron's activity. Therefore, the present study aimed to investigate the role of the D1Rs in SCN neural oscillations during the 24-h light-dark cycle using local field potential (LFP) recording. To this end, two groups of rats were given the SKF-38393 (1 mg/kg; i.p.) as a D1-like receptor agonist in the morning or night. LFP recording was performed for ten minutes before and two hours after the SKF-38393 injection. The obtained results showed that diurnal changes affect LFP oscillations so that delta relative power declined substantially, whereas upper-frequency bands and Lempel-Ziv complexity (LZC) index increased at night, which is consistent with rodents' activity cycles. The D1Rs agonist administration in the morning dramatically altered these intrinsic oscillations, decreasing delta and theta relative power, and most of the higher frequency bands and LZC index were promoted. Some of these effects were reversed at the night after the SKF-38393 injection. In conclusion, findings showed that the SCN's neuronal activities are regulated based on the light-dark cycle in terms of population neural oscillatory activity which could be affected by dopaminergic stimulation in a time-dependent way.
Collapse
Affiliation(s)
- Somaye Mesgar
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O.Box: 19615-1178, Tehran, Iran
- Biology and Anatomical Sciences Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kiarash Eskandari
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O.Box: 19615-1178, Tehran, Iran
| | - Habib Karimian-Sani-Varjovi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O.Box: 19615-1178, Tehran, Iran
| | - Paria Salemi-Mokri-Boukani
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O.Box: 19615-1178, Tehran, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O.Box: 19615-1178, Tehran, Iran.
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran.
- Department of Basic Sciences, Iranian Academy of Medical Sciences, Tehran, Iran.
| |
Collapse
|
41
|
Xu W, Li X. Special Issue: Circadian Rhythms and Age Related Disorder: How Does Aging Impact Mammalian Circadian Organization? Adv Biol (Weinh) 2023; 7:e2200219. [PMID: 36449746 DOI: 10.1002/adbi.202200219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/15/2022] [Indexed: 12/03/2022]
Abstract
Aging significantly impacts circadian timing in mammals. The amplitude and precision of behavioral, endocrine, and metabolic rhythms decline with age. This is accompanied with an age-related decline in the amplitude of central pacemaker output, although the molecular clock in the suprachiasmatic nucleus exhibit robust oscillation. Peripheral clocks also exhibit robust oscillation during aging, when extensive reprogramming of other genes' expression rhythms occurs in peripheral tissues. The age-related dissociation between the molecular clock and downstream rhythms in both central and peripheral tissues indicates that mechanisms other than the molecular clock are involved in mediating the impact the aging on circadian organization. In this article, findings are reviewed on the impact of aging on circadian timing functions, and the potential role of increased inflammatory response in age-related changes in circadian organization is highlighted.
Collapse
Affiliation(s)
- Wei Xu
- College of Life Sciences, Wuhan University, Hubei Province, 430072, P. R. China
| | - Xiaodong Li
- College of Life Sciences, Wuhan University, Hubei Province, 430072, P. R. China
| |
Collapse
|
42
|
Pérez-Villa A, Echeverría-Garcés G, Ramos-Medina MJ, Prathap L, Martínez-López M, Ramírez-Sánchez D, García-Cárdenas JM, Armendáriz-Castillo I, Guerrero S, Paz C, López-Cortés A. Integrated multi-omics analysis reveals the molecular interplay between circadian clocks and cancer pathogenesis. Sci Rep 2023; 13:14198. [PMID: 37648722 PMCID: PMC10469199 DOI: 10.1038/s41598-023-39401-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 07/25/2023] [Indexed: 09/01/2023] Open
Abstract
Circadian rhythms (CRs) are fundamental biological processes that significantly impact human well-being. Disruption of these rhythms can trigger insufficient neurocognitive development, insomnia, mental disorders, cardiovascular diseases, metabolic dysfunctions, and cancer. The field of chronobiology has increased our understanding of how rhythm disturbances contribute to cancer pathogenesis, and how circadian timing influences the efficacy of cancer treatments. As the circadian clock steadily gains recognition as an emerging factor in tumorigenesis, a thorough and comprehensive multi-omics analysis of CR genes/proteins has never been performed. To shed light on this, we performed, for the first time, an integrated data analysis encompassing genomic/transcriptomic alterations across 32 cancer types (n = 10,918 tumors) taken from the PanCancer Atlas, unfavorable prognostic protein analysis, protein-protein interactomics, and shortest distance score pathways to cancer hallmark phenotypes. This data mining strategy allowed us to unravel 31 essential CR-related proteins involved in the signaling crossroad between circadian rhythms and cancer. In the context of drugging the clock, we identified pharmacogenomic clinical annotations and drugs currently in late phase clinical trials that could be considered as potential cancer therapeutic strategies. These findings highlight the diverse roles of CR-related genes/proteins in the realm of cancer research and therapy.
Collapse
Affiliation(s)
- Andy Pérez-Villa
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
- Programa de Investigación en Salud Global, Facultad de Ciencias de la Salud, Universidad Internacional SEK, Quito, Ecuador
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Santiago, Chile
| | - Gabriela Echeverría-Garcés
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Santiago, Chile
- Centro de Referencia Nacional de Genómica, Secuenciación y Bioinformática, Instituto Nacional de Investigación en Salud Pública "Leopoldo Izquieta Pérez", Quito, Ecuador
| | - María José Ramos-Medina
- German Cancer Research Center (DKFZ), Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Lavanya Prathap
- Department of Anatomy, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Mayra Martínez-López
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| | - David Ramírez-Sánchez
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| | - Jennyfer M García-Cárdenas
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Santiago, Chile
- Laboratorio de Ciencia de Datos Biomédicos, Escuela de Medicina, Facultad de Ciencias Médicas de la Salud y de la Vida, Universidad Internacional del Ecuador, Quito, Ecuador
- Facultade de Ciencias, Universidade da Coruña, A Coruña, Spain
| | - Isaac Armendáriz-Castillo
- Programa de Investigación en Salud Global, Facultad de Ciencias de la Salud, Universidad Internacional SEK, Quito, Ecuador
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Santiago, Chile
- Laboratorio de Ciencia de Datos Biomédicos, Escuela de Medicina, Facultad de Ciencias Médicas de la Salud y de la Vida, Universidad Internacional del Ecuador, Quito, Ecuador
- Centro de Investigación para la Salud en América Latina (CISeAL), Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Santiago Guerrero
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Santiago, Chile
- Laboratorio de Ciencia de Datos Biomédicos, Escuela de Medicina, Facultad de Ciencias Médicas de la Salud y de la Vida, Universidad Internacional del Ecuador, Quito, Ecuador
| | - Clara Paz
- Grupo de Investigación Bienestar, Salud y Sociedad, Universidad de Las Américas, Quito, Ecuador
| | - Andrés López-Cortés
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador.
| |
Collapse
|
43
|
Li Y, Zhao Z, Tan YY, Wang X. Dynamical analysis of the effects of circadian clock on the neurotransmitter dopamine. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:16663-16677. [PMID: 37920028 DOI: 10.3934/mbe.2023742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
The circadian clock is an autonomous timing system that regulates the physiological and behavioral activities of organisms. Dopamine (DA) is an important neurotransmitter that is associated with many biological activities such as mood and movement. Experimental studies have shown that the circadian clock influences the DA system and disorders in the circadian clock lead to DA-related diseases. However, the regulatory mechanism of the circadian clock on DA is far from clear. In this paper, we apply an existing circadian-dopamine mathematical model to explore the effects of the circadian clock on DA. Based on numerical simulations, we find the disturbance of the circadian clock, including clock gene mutations, jet lag and light pulses, leads to abnormal DA levels. The effects of mutations in some clock genes on the mood and behavior of mice are closely related to DA disruptions. By sensitivity analysis of DA levels to parameter perturbation, we identify key reactions that affect DA levels, which provides insights into modulating DA disorders. Sudden changes in external light influence the circadian clock, bringing about effects on the DA system. Jet lag causes transient DA rhythm desynchronization with the environment and the influence of jet lag in different directions on DA level and phase varies. Light pulses affect the amplitude and phase shift of DA, which provides a promising method for treating DA disorders through light exposure. This study helps to better understand the impact of the circadian clock on the DA system and provides theoretical support for the treatment of DA disorders.
Collapse
Affiliation(s)
- Ying Li
- College of Information Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Zhao Zhao
- College of Information Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yuan-Yuan Tan
- College of Information Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xue Wang
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 203306, China
| |
Collapse
|
44
|
Mehramiz M, Porter T, O’Brien EK, Rainey-Smith SR, Laws SM. A Potential Role for Sirtuin-1 in Alzheimer's Disease: Reviewing the Biological and Environmental Evidence. J Alzheimers Dis Rep 2023; 7:823-843. [PMID: 37662612 PMCID: PMC10473168 DOI: 10.3233/adr-220088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 07/08/2023] [Indexed: 09/05/2023] Open
Abstract
Sirtuin-1 (Sirt1), encoded by the SIRT1 gene, is a conserved Nicotinamide adenine dinucleotide (NAD+) dependent deacetylase enzyme, considered as the master regulator of metabolism in humans. Sirt1 contributes to a wide range of biological pathways via several mechanisms influenced by lifestyle, such as diet and exercise. The importance of a healthy lifestyle is of relevance to highly prevalent modern chronic diseases, such as Alzheimer's disease (AD). There is growing evidence at multiple levels for a role of Sirt1/SIRT1 in AD pathological mechanisms. As such, this review will explore the relevance of Sirt1 to AD pathological mechanisms, by describing the involvement of Sirt1/SIRT1 in the development of AD pathological hallmarks, through its impact on the metabolism of amyloid-β and degradation of phosphorylated tau. We then explore the involvement of Sirt1/SIRT1 across different AD-relevant biological processes, including cholesterol metabolism, inflammation, circadian rhythm, and gut microbiome, before discussing the interplay between Sirt1 and AD-related lifestyle factors, such as diet, physical activity, and smoking, as well as depression, a common comorbidity. Genome-wide association studies have explored potential associations between SIRT1 and AD, as well as AD risk factors and co-morbidities. We summarize this evidence at the genetic level to highlight links between SIRT1 and AD, particularly associations with AD-related risk factors, such as heart disease. Finally, we review the current literature of potential interactions between SIRT1 genetic variants and lifestyle factors and how this evidence supports the need for further research to determine the relevance of these interactions with respect to AD and dementia.
Collapse
Affiliation(s)
- Mehrane Mehramiz
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia
- Collaborative Genomics and Translation Group, Edith Cowan University, Joondalup, Western Australia, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Tenielle Porter
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia
- Collaborative Genomics and Translation Group, Edith Cowan University, Joondalup, Western Australia, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- Curtin Medical School, Curtin University, Bentley, Western Australia, Australia
| | - Eleanor K. O’Brien
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia
- Collaborative Genomics and Translation Group, Edith Cowan University, Joondalup, Western Australia, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Stephanie R. Rainey-Smith
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
- School of Psychological Science, University of Western Australia, Crawley, Western Australia, Australia
| | - Simon M. Laws
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia
- Collaborative Genomics and Translation Group, Edith Cowan University, Joondalup, Western Australia, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- Curtin Medical School, Curtin University, Bentley, Western Australia, Australia
| |
Collapse
|
45
|
Yang ND, Mellor RL, Hermanstyne TO, Nerbonne JM. Effects of NALCN-Encoded Na + Leak Currents on the Repetitive Firing Properties of SCN Neurons Depend on K +-Driven Rhythmic Changes in Input Resistance. J Neurosci 2023; 43:5132-5141. [PMID: 37339878 PMCID: PMC10342223 DOI: 10.1523/jneurosci.0182-23.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/02/2023] [Accepted: 06/12/2023] [Indexed: 06/22/2023] Open
Abstract
Neurons in the suprachiasmatic nucleus (SCN) generate circadian changes in the rates of spontaneous action potential firing that regulate and synchronize daily rhythms in physiology and behavior. Considerable evidence suggests that daily rhythms in the repetitive firing rates (higher during the day than at night) of SCN neurons are mediated by changes in subthreshold potassium (K+) conductance(s). An alternative "bicycle" model for circadian regulation of membrane excitability in clock neurons, however, suggests that an increase in NALCN-encoded sodium (Na+) leak conductance underlies daytime increases in firing rates. The experiments reported here explored the role of Na+ leak currents in regulating daytime and nighttime repetitive firing rates in identified adult male and female mouse SCN neurons: vasoactive intestinal peptide-expressing (VIP+), neuromedin S-expressing (NMS+) and gastrin-releasing peptide-expressing (GRP+) cells. Whole-cell recordings from VIP+, NMS+, and GRP+ neurons in acute SCN slices revealed that Na+ leak current amplitudes/densities are similar during the day and at night, but have a larger impact on membrane potentials in daytime neurons. Additional experiments, using an in vivo conditional knockout approach, demonstrated that NALCN-encoded Na+ currents selectively regulate daytime repetitive firing rates of adult SCN neurons. Dynamic clamp-mediated manipulation revealed that the effects of NALCN-encoded Na+ currents on the repetitive firing rates of SCN neurons depend on K+ current-driven changes in input resistances. Together, these findings demonstrate that NALCN-encoded Na+ leak channels contribute to regulating daily rhythms in the excitability of SCN neurons by a mechanism that depends on K+ current-mediated rhythmic changes in intrinsic membrane properties.SIGNIFICANCE STATEMENT Elucidating the ionic mechanisms responsible for generating daily rhythms in the rates of spontaneous action potential firing of neurons in the suprachiasmatic nucleus (SCN), the master circadian pacemaker in mammals, is an important step toward understanding how the molecular clock controls circadian rhythms in physiology and behavior. While numerous studies have focused on identifying subthreshold K+ channel(s) that mediate day-night changes in the firing rates of SCN neurons, a role for Na+ leak currents has also been suggested. The results of the experiments presented here demonstrate that NALCN-encoded Na+ leak currents differentially modulate daily rhythms in the daytime/nighttime repetitive firing rates of SCN neurons as a consequence of rhythmic changes in subthreshold K+ currents.
Collapse
Affiliation(s)
- Nien-Du Yang
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri 63110
| | | | - Tracey O Hermanstyne
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Jeanne M Nerbonne
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri 63110
- Department of Medicine, Cardiovascular Division
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
46
|
Makrygianni EA, Chrousos GP. Neural Progenitor Cells and the Hypothalamus. Cells 2023; 12:1822. [PMID: 37508487 PMCID: PMC10378393 DOI: 10.3390/cells12141822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/22/2023] [Accepted: 06/02/2023] [Indexed: 07/30/2023] Open
Abstract
Neural progenitor cells (NPCs) are multipotent neural stem cells (NSCs) capable of self-renewing and differentiating into neurons, astrocytes and oligodendrocytes. In the postnatal/adult brain, NPCs are primarily located in the subventricular zone (SVZ) of the lateral ventricles (LVs) and subgranular zone (SGZ) of the hippocampal dentate gyrus (DG). There is evidence that NPCs are also present in the postnatal/adult hypothalamus, a highly conserved brain region involved in the regulation of core homeostatic processes, such as feeding, metabolism, reproduction, neuroendocrine integration and autonomic output. In the rodent postnatal/adult hypothalamus, NPCs mainly comprise different subtypes of tanycytes lining the wall of the 3rd ventricle. In the postnatal/adult human hypothalamus, the neurogenic niche is constituted by tanycytes at the floor of the 3rd ventricle, ependymal cells and ribbon cells (showing a gap-and-ribbon organization similar to that in the SVZ), as well as suprachiasmatic cells. We speculate that in the postnatal/adult human hypothalamus, neurogenesis occurs in a highly complex, exquisitely sophisticated neurogenic niche consisting of at least four subniches; this structure has a key role in the regulation of extrahypothalamic neurogenesis, and hypothalamic and extrahypothalamic neural circuits, partly through the release of neurotransmitters, neuropeptides, extracellular vesicles (EVs) and non-coding RNAs (ncRNAs).
Collapse
Affiliation(s)
- Evanthia A Makrygianni
- University Research Institute of Maternal and Child Health & Precision Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - George P Chrousos
- University Research Institute of Maternal and Child Health & Precision Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
47
|
Li M, Li X, Wu Z, Zhang G, Wang N, Dou M, Liu S, Yang C, Meng G, Sun H, Hvilsom C, Xie G, Li Y, Li ZH, Wang W, Jiang Y, Heller R, Wang Y. Convergent molecular evolution of thermogenesis and circadian rhythm in Arctic ruminants. Proc Biol Sci 2023; 290:20230538. [PMID: 37253422 PMCID: PMC10229229 DOI: 10.1098/rspb.2023.0538] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 05/02/2023] [Indexed: 06/01/2023] Open
Abstract
The muskox and reindeer are the only ruminants that have evolved to survive in harsh Arctic environments. However, the genetic basis of this Arctic adaptation remains largely unclear. Here, we compared a de novo assembled muskox genome with reindeer and other ruminant genomes to identify convergent amino acid substitutions, rapidly evolving genes and positively selected genes among the two Arctic ruminants. We found these candidate genes were mainly involved in brown adipose tissue (BAT) thermogenesis and circadian rhythm. Furthermore, by integrating transcriptomic data from goat adipose tissues (white and brown), we demonstrated that muskox and reindeer may have evolved modulating mitochondrion, lipid metabolism and angiogenesis pathways to enhance BAT thermogenesis. In addition, results from co-immunoprecipitation experiments prove that convergent amino acid substitution of the angiogenesis-related gene hypoxia-inducible factor 2alpha (HIF2A), resulting in weakening of its interaction with prolyl hydroxylase domain-containing protein 2 (PHD2), may increase angiogenesis of BAT. Altogether, our work provides new insights into the molecular mechanisms involved in Arctic adaptation.
Collapse
Affiliation(s)
- Manman Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, People's Republic of China
| | - Xinmei Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, People's Republic of China
| | - Zhipei Wu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, People's Republic of China
| | - Guanghui Zhang
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling 712100, People's Republic of China
| | - Nini Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, People's Republic of China
| | - Mingle Dou
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, People's Republic of China
| | - Shanlin Liu
- Department of Entomology, China Agricultural University, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Chentao Yang
- BGI Shenzhen, Shenzhen 518083, People's Republic of China
| | - Guanliang Meng
- Centre of Taxonomy and Evolutionary Research, Zoological Research Museum Alexander Koenig, 53113 Bonn, Germany
| | - Hailu Sun
- BGI Shenzhen, Shenzhen 518083, People's Republic of China
| | | | - Guoxiang Xie
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, People's Republic of China
| | - Yang Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, People's Republic of China
| | - Zhuo hui Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, People's Republic of China
| | - Wei Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, People's Republic of China
| | - Yu Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, People's Republic of China
| | - Rasmus Heller
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Yu Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, People's Republic of China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling 712100, People's Republic of China
| |
Collapse
|
48
|
Patton AP, Morris EL, McManus D, Wang H, Li Y, Chin JW, Hastings MH. Astrocytic control of extracellular GABA drives circadian timekeeping in the suprachiasmatic nucleus. Proc Natl Acad Sci U S A 2023; 120:e2301330120. [PMID: 37186824 PMCID: PMC10214171 DOI: 10.1073/pnas.2301330120] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
The hypothalamic suprachiasmatic nucleus (SCN) is the master mammalian circadian clock. Its cell-autonomous timing mechanism, a transcriptional/translational feedback loop (TTFL), drives daily peaks of neuronal electrical activity, which in turn control circadian behavior. Intercellular signals, mediated by neuropeptides, synchronize and amplify TTFL and electrical rhythms across the circuit. SCN neurons are GABAergic, but the role of GABA in circuit-level timekeeping is unclear. How can a GABAergic circuit sustain circadian cycles of electrical activity, when such increased neuronal firing should become inhibitory to the network? To explore this paradox, we show that SCN slices expressing the GABA sensor iGABASnFR demonstrate a circadian oscillation of extracellular GABA ([GABA]e) that, counterintuitively, runs in antiphase to neuronal activity, with a prolonged peak in circadian night and a pronounced trough in circadian day. Resolving this unexpected relationship, we found that [GABA]e is regulated by GABA transporters (GATs), with uptake peaking during circadian day, hence the daytime trough and nighttime peak. This uptake is mediated by the astrocytically expressed transporter GAT3 (Slc6a11), expression of which is circadian-regulated, being elevated in daytime. Clearance of [GABA]e in circadian day facilitates neuronal firing and is necessary for circadian release of the neuropeptide vasoactive intestinal peptide, a critical regulator of TTFL and circuit-level rhythmicity. Finally, we show that genetic complementation of the astrocytic TTFL alone, in otherwise clockless SCN, is sufficient to drive [GABA]e rhythms and control network timekeeping. Thus, astrocytic clocks maintain the SCN circadian clockwork by temporally controlling GABAergic inhibition of SCN neurons.
Collapse
Affiliation(s)
- Andrew P. Patton
- Neurobiology Division, Medical Research Council Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| | - Emma L. Morris
- Neurobiology Division, Medical Research Council Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| | - David McManus
- Neurobiology Division, Medical Research Council Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| | - Huan Wang
- State Key Laboratory of Membrane Biology, Peking University, School of Life Sciences, 100871Beijing, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University, School of Life Sciences, 100871Beijing, China
| | - Jason W. Chin
- PNAC Division, Medical Research Council Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| | - Michael H. Hastings
- Neurobiology Division, Medical Research Council Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| |
Collapse
|
49
|
Cao M, Xu T, Yin D. Understanding light pollution: Recent advances on its health threats and regulations. J Environ Sci (China) 2023; 127:589-602. [PMID: 36522088 DOI: 10.1016/j.jes.2022.06.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/13/2022] [Accepted: 06/13/2022] [Indexed: 06/17/2023]
Abstract
The prevalence of artificial lights not only improves the lighting conditions for modern society, but also poses kinds of health threats to human health. Although there are regulations and standards concerning light pollution, few of them are based on the potential contribution of improper lighting to diseases. Therefore, a better understanding of the health threats induced by light pollution may promote risk assessment and better regulation of artificial lights, thereby a healthy lighting environment. This review is based on a careful collection of the latest papers from 2018 to 2022 about the health threats of light pollution, both epidemiologically and experimentally. In addition to summing up the novel associations of light pollution with obesity, mental disorders, cancer, etc., we highlight the toxicological mechanism of light pollution via circadian disruption, since light pollution directly interferes with the natural light-dark cycles, and damages the circadian photoentrainment of organisms. And by reviewing the alternations of clock genes and disturbance of melatonin homeostasis induced by artificial lights, we aim to excavate the profound impacts of light pollution based on accumulating studies, thus providing perspectives for future research and guiding relevant regulations and standards.
Collapse
Affiliation(s)
- Miao Cao
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ting Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
50
|
Piet R. Circadian and kisspeptin regulation of the preovulatory surge. Peptides 2023; 163:170981. [PMID: 36842628 DOI: 10.1016/j.peptides.2023.170981] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/19/2023] [Accepted: 02/23/2023] [Indexed: 02/28/2023]
Abstract
Fertility in mammals is ultimately controlled by a small population of neurons - the gonadotropin-releasing hormone (GnRH) neurons - located in the ventral forebrain. GnRH neurons control gonadal function through the release of GnRH, which in turn stimulates the secretion of the anterior pituitary gonadotropins luteinizing hormone (LH) and follicle-stimulating hormone (FSH). In spontaneous ovulators, ovarian follicle maturation eventually stimulates, via sex steroid feedback, the mid-cycle surge in GnRH and LH secretion that causes ovulation. The GnRH/LH surge is initiated in many species just before the onset of activity through processes controlled by the central circadian clock, ensuring that the neuroendocrine control of ovulation and sex behavior are coordinated. This review aims to give an overview of anatomical and functional studies that collectively reveal some of the mechanisms through which the central circadian clock regulates GnRH neurons and their afferent circuits to drive the preovulatory surge.
Collapse
Affiliation(s)
- Richard Piet
- Brain Health Research Institute and Department of Biological Sciences, Kent State University, Kent, OH, United States.
| |
Collapse
|