1
|
Bolla M, Colombo G, Falappa M, Pace M, Baravalle R, Martinez N, Montani F, Tucci V, Cancedda L. NKCC1 inhibition improves sleep quality and EEG information content in a Down syndrome mouse model. iScience 2025; 28:112220. [PMID: 40224007 PMCID: PMC11986984 DOI: 10.1016/j.isci.2025.112220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/10/2024] [Accepted: 03/11/2025] [Indexed: 04/15/2025] Open
Abstract
In several brain disorders, the hyperpolarizing/inhibitory effects of GABA signaling through Cl-permeable GABAA receptors are compromised, leading to an imbalance between neuronal excitation and inhibition. For example, the Ts65Dn mouse model of Down syndrome (DS) exhibits increased expression of the Cl- importer NKCC1, leading to depolarizing gamma aminobutyric acid (GABA) signaling in the mature hippocampus and cortex. Inhibiting NKCC1 with the Food and Drug Administration (FDA)-approved diuretic bumetanide rescues inhibitory GABAergic transmission, synaptic plasticity, and cognitive functions in adult Ts65Dn mice. Given that DS individuals and Ts65Dn mice show sleep disturbances, and considering the key role of GABAergic transmission in sleep, we investigated whether NKCC1 upregulation contributes to sleep abnormalities in adult Ts65Dn mice. Chronic oral administration of bumetanide ameliorated the spectral profile of sleep, sleep architecture, and electroencephalogram (EEG) entropy/complexity, accompanied by a lower hyperactivity in trisomic mice. These results offer a potential avenue for addressing common sleep disturbances in DS.
Collapse
Affiliation(s)
- Maria Bolla
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, Via Morego, 30, 16163 Genoa, Italy
- Università Degli Studi di Genova, Via Balbi, 5, 16126 Genoa, Italy
| | - Giulia Colombo
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, Via Morego, 30, 16163 Genoa, Italy
| | - Matteo Falappa
- Università Degli Studi di Genova, Via Balbi, 5, 16126 Genoa, Italy
- Genetics and Epigenetics of Behavior Laboratory, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Marta Pace
- Genetics and Epigenetics of Behavior Laboratory, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Roman Baravalle
- Instituto de Física de La Plata (IFLP), CONICET-UNLP, La Plata, Buenos Aires, Argentina
- State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Nataniel Martinez
- IFIMAR (CONICET), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar Del Plata, B7602AYL, Mar Del Plata, Argentina
| | - Fernando Montani
- Instituto de Física de La Plata (IFLP), CONICET-UNLP, La Plata, Buenos Aires, Argentina
| | - Valter Tucci
- Genetics and Epigenetics of Behavior Laboratory, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Laura Cancedda
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, Via Morego, 30, 16163 Genoa, Italy
- Dulbecco Telethon Institute, Rome, Italy
| |
Collapse
|
2
|
Xiong L, He R, Du R, Niu R, Xue L, Chen L, Huangfu L, Xiao Q, Li J, Li Y, Zhang S, Yu C, Tian X, Wang T. A Single-Nucleus Transcriptomic Atlas Reveals Cellular and Genetic Characteristics of Alzheimer's-Like Pathology in Aging Tree Shrews. MedComm (Beijing) 2025; 6:e70114. [PMID: 40093585 PMCID: PMC11910145 DOI: 10.1002/mco2.70114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 01/10/2025] [Accepted: 01/25/2025] [Indexed: 03/19/2025] Open
Abstract
The lack of natural aging-inducing Alzheimer's disease (AD) model presents a significant gap in the current preclinical research. Here, we identified a unique cohort of 10 naturally aging tree shrews (TSs) displaying distinct Alzheimer's-like pathology (ALP) from a population of 324, thereby establishing a novel model that closely mirrors human AD progression. Using single-nucleus RNA sequencing, we generated a comprehensive transcriptome atlas, revealing the cellular diversity and gene expression changes underlying AD pathology in aged TSs. Particularly, distinct differentiation trajectories of neural progenitor cells were highly associated with AD pathology. Intriguingly, cross-species comparisons among humans, TSs, monkeys, and mice highlighted a greater cellular homogeneity of TSs to primates and humans than to mice. Our extended cross-species analysis by including a direct comparison between human and TS hippocampal tissue under AD conditions uncovered conserved cell types, enriched synaptic biological processes, and elevated excitatory/inhibitory imbalance across species. Cell-cell communication analysis unveiled parallel patterns between AD human and ALP TSs, with both showing reduced interaction strength and quantity across most cell types. Overall, our study provides rich, high-resolution resources on the cellular and molecular landscape of the ALP TS hippocampus, reinforcing the utility of TSs as a robust model for AD research.
Collapse
Affiliation(s)
- Liu‐Lin Xiong
- Department of AnesthesiologyThe First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University)ZunyiGuizhouChina
| | - Rong He
- Institute of NeuroscienceKunming Medical UniversityKunmingYunnanChina
| | - Ruo‐Lan Du
- Department of AnesthesiologyThe First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University)ZunyiGuizhouChina
| | - Rui‐Ze Niu
- Mental Health Center of Kunming Medical UniversityKunmingYunnanChina
| | - Lu‐Lu Xue
- Institute of Neurological Disease, National‐Local Joint Engineering Research Center of Translational Medicine, State Key Lab of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Li Chen
- Institute of Neurological Disease, National‐Local Joint Engineering Research Center of Translational Medicine, State Key Lab of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Li‐Ren Huangfu
- Institute of NeuroscienceKunming Medical UniversityKunmingYunnanChina
| | - Qiu‐Xia Xiao
- Department of AnesthesiologyThe First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University)ZunyiGuizhouChina
| | - Jing Li
- Institute of NeuroscienceKunming Medical UniversityKunmingYunnanChina
| | - Yong‐Ping Li
- Institute of NeuroscienceKunming Medical UniversityKunmingYunnanChina
| | - Si‐Min Zhang
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational MedicineKunming University of Science and TechnologyKunmingChina
| | - Chang‐Yin Yu
- Department of NeurologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Xiao‐He Tian
- Department of AnesthesiologyThe First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University)ZunyiGuizhouChina
| | - Ting‐Hua Wang
- Department of AnesthesiologyThe First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University)ZunyiGuizhouChina
| |
Collapse
|
3
|
Qian G, Perzanowska E, Wilczyńska D, Kozakiewicz M, Yu H, Marcelina H, Ossowski Z. Exploring the impact of home-based Vojta therapy on gait performance in individuals with Down syndrome: a preliminary feasibility study. Front Neurol 2025; 16:1537635. [PMID: 40134697 PMCID: PMC11932913 DOI: 10.3389/fneur.2025.1537635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 02/21/2025] [Indexed: 03/27/2025] Open
Abstract
Background Vojta therapy (VT) enhances postural control and improves gait abilities. However, there is limited evidence regarding the impact of home-based VT on individuals with Down syndrome (DS). Objective This study aimed to assess the feasibility and preliminary effects of a two-week home-based VT program on spatiotemporal gait parameters in individuals with DS. Methods Sixteen individuals with DS (mean age = 17.88 ± 4.57 years, 8 females) participated in a two-week home-based VT program. Feasibility was measured through adherence rates and the occurrence of adverse events. Spatiotemporal gait parameters were evaluated before and after the intervention using the Vicon motion capture system. Results All participants (100%) successfully completed the home-based VT program with no reported adverse events. Significant improvements were observed in walking speed, cadence, step time (left and right), stride time (left and right), step length (left and right), stride length (left and right), and single support (left and right) (p < 0.05). Conclusion This preliminary study suggests that home-based VT is a feasible approach and can lead to meaningful improvements in spatiotemporal gait parameters for individuals with DS. Further research with larger sample sizes, more robust designs, and extended follow-up periods is recommended.
Collapse
Affiliation(s)
- Guoping Qian
- Department of Physical Culture, Gdansk University of Physical Education and Sport, Gdansk, Poland
| | - Ewelina Perzanowska
- Department of Physical Culture, Gdansk University of Physical Education and Sport, Gdansk, Poland
| | - Dominika Wilczyńska
- Faculty of Social and Humanities, WSB Merito University Gdansk, Gdańsk, Poland
| | - Mirela Kozakiewicz
- Department of Physical Culture, Gdansk University of Physical Education and Sport, Gdansk, Poland
| | - Hongli Yu
- Department of Physical Culture, Gdansk University of Physical Education and Sport, Gdansk, Poland
- College of Physical Education, Sichuan University of Science & Engineering, Zigong, Sichuan, China
| | - Hejła Marcelina
- Department of Physical Culture, Gdansk University of Physical Education and Sport, Gdansk, Poland
| | - Zbigniew Ossowski
- Department of Physical Culture, Gdansk University of Physical Education and Sport, Gdansk, Poland
| |
Collapse
|
4
|
Lepagnol-Bestel AM, Haziza S, Viard J, Salin PA, Duchon A, Herault Y, Simonneau M. DYRK1A Up-Regulation Specifically Impairs a Presynaptic Form of Long-Term Potentiation. Life (Basel) 2025; 15:149. [PMID: 40003558 PMCID: PMC11856406 DOI: 10.3390/life15020149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/12/2025] [Accepted: 01/17/2025] [Indexed: 02/27/2025] Open
Abstract
Chromosome 21 DYRK1A kinase is associated with a variety of neuronal diseases including Down syndrome. However, the functional impact of this kinase at the synapse level remains unclear. We studied a mouse model that incorporated YAC 152F7 (570 kb), encoding six chromosome 21 genes including DYRK1A. The 152F7 mice displayed learning difficulties but their N-methyl-D-aspartate (NMDA)-dependent synaptic long-term potentiation is indistinguishable from non-transgenic animals. We have demonstrated that a presynaptic form of NMDA-independent long-term potentiation (LTP) at the hippocampal mossy fiber was impaired in the 152F7 animals. To obtain insights into the molecular mechanisms involved in such synaptic changes, we analyzed the Dyrk1a interactions with chromatin remodelers. We found that the number of DYRK1A-EP300 and DYRK1A-CREBPP increased in 152F7 mice. Moreover, we observed a transcriptional decrease in genes encoding presynaptic proteins involved in glutamate vesicle exocytosis, namely Rims1, Munc13-1, Syn2 and Rab3A.To refine our findings, we used a mouse BAC 189N3 (152 kb) line that only triplicates the gene Dyrk1a. Again, we found that this NMDA-independent form of LTP is impaired in this mouse line. Altogether, our results demonstrate that Dyrk1a up-regulation is sufficient to specifically inhibit the NMDA-independent form of LTP and suggest that this inhibition is linked to chromatin changes that deregulate genes encoding proteins involved in glutamate synaptic release.
Collapse
Affiliation(s)
| | - Simon Haziza
- Centre Psychiatrie & Neurosciences, INSERM U894, 75014 Paris, France; (A.-M.L.-B.); (S.H.); (J.V.)
- Centre National de la Recherche Scientifique, Université Paris-Saclay, CentraleSupélec, École Normale Supérieure Paris-Saclay, LuMIn, 91190 Gif-sur-Yvette, France
| | - Julia Viard
- Centre Psychiatrie & Neurosciences, INSERM U894, 75014 Paris, France; (A.-M.L.-B.); (S.H.); (J.V.)
| | - Paul A. Salin
- Centre de Recherche en Neuroscience de Lyon CRNL (INSERM U1028), Université Claude-Bernard Lyon 1, 69100 Lyon, France;
| | - Arnaud Duchon
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, CNRS UMR7104, INSERM, U964, 67404 Illkirch, France; (A.D.); (Y.H.)
- Phenomin, Institut Clinique de la Souris (ICS), GIE CERBM, CNRS, INSERM, Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Yann Herault
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, CNRS UMR7104, INSERM, U964, 67404 Illkirch, France; (A.D.); (Y.H.)
- Phenomin, Institut Clinique de la Souris (ICS), GIE CERBM, CNRS, INSERM, Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Michel Simonneau
- Centre Psychiatrie & Neurosciences, INSERM U894, 75014 Paris, France; (A.-M.L.-B.); (S.H.); (J.V.)
- Centre National de la Recherche Scientifique, Université Paris-Saclay, CentraleSupélec, École Normale Supérieure Paris-Saclay, LuMIn, 91190 Gif-sur-Yvette, France
- Département d’Enseignement et de Recherche en Biologie, École Normale Supérieure Paris-Saclay, 91190 Gif-sur-Yvette, France
| |
Collapse
|
5
|
Zhang XN, Zhang S, Liu CY, Ni ZH, Lv HT. Caregivers' experience of having a child with Down syndrome: a meta-synthesis. BMC Nurs 2025; 24:66. [PMID: 39833779 PMCID: PMC11744819 DOI: 10.1186/s12912-024-02652-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 12/20/2024] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND This study aimed to integrate the experiences of caregivers of children with Down syndrome during the care process and understand their feelings and needs. METHODS We used Page et al.'s (2021) Preferred Reporting Items for Systematic Reviews and Meta-synthesis Statement. Ten databases (Web of Science, PubMed, EMBASE, Cochrane Library, CINAHL, PsycInfo, China Biology Medicine, China National Knowledge Infrastructure, Wanfang Data, and China Science and Technology Journal Database) were searched for relevant studies published from the inception of the database to October 2023. Eight qualitative studies were analysed. The following seven themes were included: 'feeding pressure', 'hope for education', 'societal rejection and stigma', 'psychological pressure', 'caring burden', 'family burden', and 'family adaptation and self-growth'. RESULTS We found that feeding pressures, educational concerns, language difficulties, and discrimination and stigmatisation led to psychological, economic, and family stress in caregivers of children with Down syndrome. We document the need for strong coping mechanisms and support systems for these families from medical and psychological institutions and a need for public education and awareness. CONCLUSIONS We summarised the daily care experiences of caregivers of children with Down syndrome. Our findings provide a scientific basis for further research focused on reducing physical and mental pressure on caregivers and improving the quality of family life.
Collapse
Affiliation(s)
- Xiao Nan Zhang
- Department of Nursing, Children's Hospital of Soochow University, No. 92 Zhong Nan Street, Soochow, Jiangsu Province, China
- School of Nursing, Medical College of Soochow University, No. 1 Shi Zhi Road, Soochow, Jiangsu Province, China
| | - Shuo Zhang
- Department of Nursing, Children's Hospital of Soochow University, No. 92 Zhong Nan Street, Soochow, Jiangsu Province, China
- School of Nursing, Medical College of Soochow University, No. 1 Shi Zhi Road, Soochow, Jiangsu Province, China
| | - Chun Yan Liu
- Department of Nursing, Children's Hospital of Soochow University, No. 92 Zhong Nan Street, Soochow, Jiangsu Province, China
- School of Nursing, Medical College of Soochow University, No. 1 Shi Zhi Road, Soochow, Jiangsu Province, China
| | - Zhi Hong Ni
- Department of Nursing, Children's Hospital of Soochow University, No. 92 Zhong Nan Street, Soochow, Jiangsu Province, China.
- Children's Hospital of Soochow University, No. 92 Zhong Nan St, Suzhou, 215025, China.
| | - Hai Tao Lv
- Department of Nursing, Children's Hospital of Soochow University, No. 92 Zhong Nan Street, Soochow, Jiangsu Province, China.
- Children's Hospital of Soochow University, No. 92 Zhong Nan St, Suzhou, 215025, China.
| |
Collapse
|
6
|
González-Parra JA, Barrera-Conde M, Kossatz E, Veza E, de la Torre R, Busquets-Garcia A, Robledo P, Pizarro N. Microbiota and social behavior alterations in a mouse model of down syndrome: Modulation by a synbiotic treatment. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111200. [PMID: 39571716 DOI: 10.1016/j.pnpbp.2024.111200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 11/26/2024]
Abstract
Sex differences in the composition and functionality of gut microbiota are an emerging field of interest in neurodevelopmental disorders, as they may help in understanding the phenotypic disparities between males and females. This study aimed to characterize sex-related specific alterations in gut microbiota composition in a mouse model of Down syndrome (Ts65Dn mice, TS mice) through the sequencing of the PCR-amplified 16S ribosomal DNA fraction. Moreover, it intended to examine whether the modulation of gut microbiota by the administration of a synbiotic (SYN) treatment would be beneficial for the behavioral alterations observed in male and female TS mice. Our results show that male, but not female, TS mice exhibit alterations in beta diversity compared to their wild-type (WT) littermates. Sex-dependent differences are also observed in the relative abundance of the classes Bacilli and Clostridia. Administering the SYN effectively counteracts hypersociability in females, and normalizes the overall abundance of Bacilli, specifically by increasing Lactobacillaceae. On the contrary, it rescues emotional recognition deficits in male TS mice and increases the relative abundance of the families Lactobacillaceae, Streptococcaceae and Atopobiaceae. In addition, a metagenome KEGG analysis of differentially enriched pathways shows relevant changes in the cofactor biosynthesis and the amino acid synthesis categories. Finally, following SYN treatment, both male and female TS mice exhibit a robust increase in propionic acid levels compared to WT littermates. These findings suggest sex-specific mechanisms that could link gut microbiota composition with behavior in TS mice, and underscore the potential of targeted gut microbiota interventions to modulate social abnormalities in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Jose Antonio González-Parra
- Cell-Type Mechanisms in Normal and Pathological Behavior Research Group, Neuroscience Programme, Hospital del Mar Research Institute, Barcelona, Spain
| | - Marta Barrera-Conde
- Integrative Pharmacology and Systems Neuroscience, Neuroscience Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Elk Kossatz
- Integrative Pharmacology and Systems Neuroscience, Neuroscience Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Emma Veza
- Integrative Pharmacology and Systems Neuroscience, Neuroscience Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Rafael de la Torre
- Integrative Pharmacology and Systems Neuroscience, Neuroscience Research Program, Hospital del Mar Research Institute, Barcelona, Spain; Department of Medicine and Life Sciences, University Pompeu Fabra, Barcelona, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERON), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Arnau Busquets-Garcia
- Cell-Type Mechanisms in Normal and Pathological Behavior Research Group, Neuroscience Programme, Hospital del Mar Research Institute, Barcelona, Spain.
| | - Patricia Robledo
- Integrative Pharmacology and Systems Neuroscience, Neuroscience Research Program, Hospital del Mar Research Institute, Barcelona, Spain; Department of Medicine and Life Sciences, University Pompeu Fabra, Barcelona, Spain.
| | - Nieves Pizarro
- Integrative Pharmacology and Systems Neuroscience, Neuroscience Research Program, Hospital del Mar Research Institute, Barcelona, Spain.
| |
Collapse
|
7
|
Emili M, Stagni F, Russo C, Angelozzi L, Guidi S, Bartesaghi R. Reversal of neurodevelopmental impairment and cognitive enhancement by pharmacological intervention with the polyphenol polydatin in a Down syndrome model. Neuropharmacology 2024; 261:110170. [PMID: 39341334 DOI: 10.1016/j.neuropharm.2024.110170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/16/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Intellectual disability (ID) is the unavoidable hallmark of Down syndrome (DS), a genetic condition due to triplication of chromosome 21. ID in DS is largely attributable to neurogenesis and dendritogenesis alterations taking place in the prenatal/neonatal period, the most critical time window for brain development. There are currently no treatments for ID in DS. Considering the timeline of brain development, treatment aimed at improving the neurological phenotypes of DS should be initiated as early as possible and use safe agents. The goal of this study was to establish whether it is possible to improve DS-linked neurodevelopmental defects through early treatment with polydatin, a natural polyphenol. We used the Ts65Dn mouse model of DS and focused on the hippocampus, a brain region fundamental for long-term memory. We found that in Ts65Dn mice of both sexes treated with polydatin from postnatal (P) day 3 to P15 there was full restoration of neurogenesis, neuron number, and dendritic development. These effects were accompanied by normalization of Cyclin D1 and DSCAM levels, which may account for the rescue of neurogenesis and dendritogenesis, respectively. Importantly, in Ts65Dn mice treated with polydatin from P3 to adolescence (∼P50) there was full restoration of hippocampus-dependent memory, indicating a pro-cognitive outcome of treatment. No adverse effects were observed on the body and brain weight. The efficacy and safety of polydatin in a model of DS prospect the possibility of its use during early life stages for amelioration of DS-linked neurodevelopmental alterations.
Collapse
Affiliation(s)
- Marco Emili
- Department for Life Quality Studies, University of Bologna, Rimini, Italy
| | - Fiorenza Stagni
- Department for Life Quality Studies, University of Bologna, Rimini, Italy
| | - Carla Russo
- Department for Life Quality Studies, University of Bologna, Rimini, Italy
| | - Laura Angelozzi
- Department for Life Quality Studies, University of Bologna, Rimini, Italy
| | - Sandra Guidi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Renata Bartesaghi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.
| |
Collapse
|
8
|
Uguagliati B, Grilli M. Astrocytic Alterations and Dysfunction in Down Syndrome: Focus on Neurogenesis, Synaptogenesis, and Neural Circuits Formation. Cells 2024; 13:2037. [PMID: 39768129 PMCID: PMC11674571 DOI: 10.3390/cells13242037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/07/2024] [Accepted: 12/08/2024] [Indexed: 01/11/2025] Open
Abstract
Down syndrome (DS) is characterized by severe neurodevelopmental alterations that ultimately lead to the typical hallmark of DS: intellectual disability. In the DS brain, since the prenatal life stages, the number of astrocytes is disproportional compared to the healthy brain. This increase is due to a shift from neuron to astrocyte differentiation during brain development. Astrocytes are involved in numerous functions during brain development, including balancing pro-neurogenic and pro-gliogenic stimuli, sustaining synapse formation, regulating excitatory/inhibitory signal equilibrium, and supporting the maintenance and integration of functional neural circuits. The enhanced number of astrocytes in the brain of DS individuals leads to detrimental consequences for brain development. This review summarizes the mechanisms underlying astrocytic dysfunction in DS, and particularly the dysregulation of key signaling pathways, which promote astrogliogenesis at the expense of neurogenesis. It further examines the implications of astrocytic alterations on dendritic branching, spinogenesis and synaptogenesis, and the impact of the abnormal astrocytic number in neural excitability and in the maintenance of the inhibitory/excitatory balance. Identifying deregulated pathways and the consequences of astrocytic alterations in early DS brain development may help in identifying new therapeutic targets, with the ultimate aim of ameliorating the cognitive disability that affects individuals with DS.
Collapse
Affiliation(s)
- Beatrice Uguagliati
- Laboratory of Neuroplasticity, Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Mariagrazia Grilli
- Laboratory of Neuroplasticity, Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| |
Collapse
|
9
|
Fucà E, Costanzo F, Galassi P, Celestini L, Valentini D, Vicari S. Celiac disease in children and adolescents with Down syndrome: behavioural, adaptive and sleep profiles. JOURNAL OF INTELLECTUAL DISABILITY RESEARCH : JIDR 2024; 68:932-940. [PMID: 38509762 DOI: 10.1111/jir.13135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Individuals with Down syndrome (DS) exhibit higher risk for celiac disease (CD) than general population. Although literature suggests CD could be associated with behavioural problems in both paediatric and adult age, such association has been poorly explored in children and adolescents DS. Therefore, the current study aimed to investigate differences in emotional/behavioural difficulties, adaptive skills and sleep problems between children with DS with and without CD. METHODS Data were retrospectively collected from a database including data from 381 individuals with DS (3-18 years). The final sample included 65 participants, 27 with co-occurring CD and 38 age, IQ, sex and body mass index-matched controls without CD. Emotional/behavioural difficulties, adaptive skills and sleep problems were assessed through parent report questionnaires. RESULTS No group differences emerged in emotional/behavioural difficulties, whereas participants in the CD group showed better adaptive skills in the practical domain than control group. Weak differences emerged in sleep problems. CONCLUSIONS Youth with DS and co-occurring CD do not exhibit more emotional and behavioural problems than youth with DS without co-occurring CD but exhibit better adaptive skills in the practical domain.
Collapse
Affiliation(s)
- E Fucà
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - F Costanzo
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - P Galassi
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - L Celestini
- Pediatric Unit, Pediatric Emergency Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - D Valentini
- Pediatric Unit, Pediatric Emergency Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - S Vicari
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Department of Life Science and Public Health, Catholic University of the Sacred Heart, Rome, Italy
| |
Collapse
|
10
|
Coelho DRA, Renet C, López-Rodríguez S, Cassano P, Vieira WF. Transcranial photobiomodulation for neurodevelopmental disorders: a narrative review. Photochem Photobiol Sci 2024; 23:1609-1623. [PMID: 39009808 DOI: 10.1007/s43630-024-00613-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/07/2024] [Indexed: 07/17/2024]
Abstract
BACKGROUND Neurodevelopmental disorders (NDDs) such as autism spectrum disorder (ASD), attention-deficit/hyperactivity disorder (ADHD), and Down syndrome (DS) significantly impact social, communicative, and behavioral functioning. Transcranial photobiomodulation (t-PBM) with near-infrared light is a promising non-invasive neurostimulation technique for neuropsychiatric disorders, including NDDs. This narrative review aimed to examine the preclinical and clinical evidence of photobiomodulation (PBM) in treating NDDs. METHODS A comprehensive search across six databases was conducted, using a combination of MeSH terms and title/abstract keywords: "photobiomodulation", "PBM", "neurodevelopmental disorders", "NDD", and others. Studies applying PBM to diagnosed NDD cases or animal models replicating NDDs were included. Protocols, reviews, studies published in languages other than English, and studies not evaluating clinical or cognitive outcomes were excluded. RESULTS Nine studies were identified, including one preclinical and eight clinical studies (five on ASD, two on ADHD, and one on DS). The reviewed studies encompassed various t-PBM parameters (wavelengths: 635-905 nm) and targeted primarily frontal cortex areas. t-PBM showed efficacy in improving disruptive behavior, social communication, cognitive rigidity, sleep quality, and attention in ASD; in enhancing attention in ADHD; and in improving motor skills and verbal fluency in DS. Minimal adverse effects were reported. Proposed mechanisms involve enhanced mitochondrial function, modulated oxidative stress, and reduced neuroinflammation. CONCLUSIONS t-PBM emerges as a promising intervention for NDDs, with potential therapeutic effects across ASD, ADHD, and DS. These findings underscore the need for further research, including larger-scale, randomized sham-controlled clinical trials with comprehensive biomarker analyses, to optimize treatment parameters and understand the underlying mechanisms associated with the effects of t-PBM.
Collapse
Affiliation(s)
- David Richer Araujo Coelho
- Division of Neuropsychiatry and Neuromodulation, Massachusetts General Hospital, Boston, USA
- Department of Psychiatry, Harvard Medical School, Boston, USA
- Harvard T. H. Chan School of Public Health, Boston, USA
| | - Christian Renet
- Division of Neuropsychiatry and Neuromodulation, Massachusetts General Hospital, Boston, USA
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Sergi López-Rodríguez
- Division of Neuropsychiatry and Neuromodulation, Massachusetts General Hospital, Boston, USA
- Department of Psychiatry, Bellvitge University Hospital, Bellvitge Biomedical Research Institute, Carlos III Health Institute, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Paolo Cassano
- Division of Neuropsychiatry and Neuromodulation, Massachusetts General Hospital, Boston, USA
- Department of Psychiatry, Harvard Medical School, Boston, USA
| | - Willians Fernando Vieira
- Division of Neuropsychiatry and Neuromodulation, Massachusetts General Hospital, Boston, USA.
- Department of Psychiatry, Harvard Medical School, Boston, USA.
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
11
|
Borgognone A, Casadellà M, Martínez de Lagrán M, Paredes R, Clotet B, Dierssen M, Elizalde-Torrent A. Lamivudine modulates the expression of neurological impairment-related genes and LINE-1 retrotransposons in brain tissues of a Down syndrome mouse model. Front Aging Neurosci 2024; 16:1386944. [PMID: 39100749 PMCID: PMC11294114 DOI: 10.3389/fnagi.2024.1386944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/05/2024] [Indexed: 08/06/2024] Open
Abstract
Elevated activity of retrotransposons is increasingly recognized to be implicated in a wide range of neurodegenerative and neurodevelopmental diseases, including Down syndrome (DS), which is the most common chromosomal condition causing intellectual disability globally. Previous research by our group has revealed that treatment with lamivudine, a reverse transcriptase inhibitor, improved neurobehavioral phenotypes and completely rescued hippocampal-dependent recognition memory in a DS mouse model, Ts65Dn. We hypothesized that retrotransposition rates would increase in the Ts65Dn mouse model, and lamivudine could block retrotransposons. We analyzed the differentially expressed long interspersed element-1 (LINE-1 or L1) mapping on MMU16 and 17, and showed for the first time that retrotransposition could be associated with Ts65Dn's pathology, as misregulation of L1 was found in brain tissues associated with trisomy. In the cerebral cortex, 6 out of 26 upregulated L1s in trisomic treated mice were located in the telomeric region of MMU16 near Ttc3, Kcnj6, and Dscam genes. In the hippocampus, one upregulated L1 element in trisomic treated mice was located near the Fgd4 gene on MMU16. Moreover, two downregulated L1s rescued after treatment with lamivudine were located in the intronic region of Nrxn1 (MMU17) and Snhg14 (MMU7), implicated in a variety of neurodegenerative disorders. To gain further insight into the mechanism of this improvement, we here analyzed the gene expression profile in the hippocampus and cerebral cortex of trisomic mice treated and no-treated with lamivudine compared to their wild-type littermates. We found that treatment with lamivudine rescued the expression of 24% of trisomic genes in the cortex (located on mouse chromosome (MMU) 16 and 17) and 15% in the hippocampus (located in the human chromosome 21 orthologous regions), with important DS candidate genes such as App and Ets2, rescued in both regions.
Collapse
Affiliation(s)
| | | | - María Martínez de Lagrán
- Center for Genomic Regulation, The Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Roger Paredes
- IrsiCaixa, Badalona, Spain
- Department of Infeccious Diseases and Immunity, University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
- CIBERINFEC, ISCIII, Madrid, Spain
- Department of Pathology, Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, United States
- Department of Infectious Diseases Service, Germans Trias i Pujol University Hospital, Badalona, Spain
- Fundació Lluita contra les Infeccions, Hospital Germans Trias i Pujol, Badalona, Spain
| | - Bonaventura Clotet
- IrsiCaixa, Badalona, Spain
- Department of Infeccious Diseases and Immunity, University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
- CIBERINFEC, ISCIII, Madrid, Spain
- Department of Infectious Diseases Service, Germans Trias i Pujol University Hospital, Badalona, Spain
- Fundació Lluita contra les Infeccions, Hospital Germans Trias i Pujol, Badalona, Spain
| | - Mara Dierssen
- Center for Genomic Regulation, The Barcelona Institute for Science and Technology, Barcelona, Spain
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | | |
Collapse
|
12
|
Shaker MR, Slonchak A, Al-Mhanawi B, Morrison SD, Sng JDJ, Cooper-White J, Khromykh AA, Wolvetang EJ. Choroid plexus defects in Down syndrome brain organoids enhance neurotropism of SARS-CoV-2. SCIENCE ADVANCES 2024; 10:eadj4735. [PMID: 38838150 DOI: 10.1126/sciadv.adj4735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 05/01/2024] [Indexed: 06/07/2024]
Abstract
Why individuals with Down syndrome (DS) are more susceptible to SARS-CoV-2-induced neuropathology remains elusive. Choroid plexus (ChP) plays critical roles in barrier function and immune response modulation and expresses the ACE2 receptor and the chromosome 21-encoded TMPRSS2 protease, suggesting its substantial role in establishing SARS-CoV-2 infection in the brain. To explore this, we established brain organoids from DS and isogenic euploid iPSC that consist of a core of functional cortical neurons surrounded by a functional ChP-like epithelium (ChPCOs). DS-ChPCOs recapitulated abnormal DS cortical development and revealed defects in ciliogenesis and epithelial cell polarity in ChP-like epithelium. We then demonstrated that the ChP-like epithelium facilitates infection and replication of SARS-CoV-2 in cortical neurons and that this is increased in DS. Inhibiting TMPRSS2 and furin activity reduced viral replication in DS-ChPCOs to euploid levels. This model enables dissection of the role of ChP in neurotropic virus infection and euploid forebrain development and permits screening of therapeutics for SARS-CoV-2-induced neuropathogenesis.
Collapse
Affiliation(s)
- Mohammed R Shaker
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
- UQ Centre in Stem Cell Engineering and Regenerative Engineering (UQ StemCARE), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Andrii Slonchak
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | - Bahaa Al-Mhanawi
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Sean D Morrison
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Julian D J Sng
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | - Justin Cooper-White
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
- UQ Centre in Stem Cell Engineering and Regenerative Engineering (UQ StemCARE), The University of Queensland, Brisbane, Queensland 4072, Australia
- School of Chemical Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Alexander A Khromykh
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
- GVN Centre of Excellence, Australian Infectious Diseases Research Centre, Brisbane, Queensland, Australia
| | - Ernst J Wolvetang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
- UQ Centre in Stem Cell Engineering and Regenerative Engineering (UQ StemCARE), The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
13
|
Fernandez A, Hoq MR, Hallinan GI, Li D, Bharath SR, Vago FS, Zhang X, Ozcan KA, Newell KL, Garringer HJ, Jiang W, Ghetti B, Vidal R. Cryo-EM structures of amyloid-β and tau filaments in Down syndrome. Nat Struct Mol Biol 2024; 31:903-909. [PMID: 38553642 PMCID: PMC11189299 DOI: 10.1038/s41594-024-01252-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 02/09/2024] [Indexed: 04/10/2024]
Abstract
Adult individuals with Down syndrome (DS) develop Alzheimer disease (AD). Whether there is a difference between AD in DS and AD regarding the structure of amyloid-β (Aβ) and tau filaments is unknown. Here we report the structure of Aβ and tau filaments from two DS brains. We found two Aβ40 filaments (types IIIa and IIIb) that differ from those previously reported in sporadic AD and two types of Aβ42 filaments (I and II) identical to those found in sporadic and familial AD. Tau filaments (paired helical filaments and straight filaments) were identical to those in AD, supporting the notion of a common mechanism through which amyloids trigger aggregation of tau. This knowledge is important for understanding AD in DS and assessing whether adults with DS could be included in AD clinical trials.
Collapse
Affiliation(s)
- Anllely Fernandez
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Md Rejaul Hoq
- Department of Biological Sciences, Markey Center for Structural Biology, Purdue University, West Lafayette, IN, USA
| | - Grace I Hallinan
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Daoyi Li
- Department of Biological Sciences, Markey Center for Structural Biology, Purdue University, West Lafayette, IN, USA
| | - Sakshibeedu R Bharath
- Department of Biological Sciences, Markey Center for Structural Biology, Purdue University, West Lafayette, IN, USA
| | - Frank S Vago
- Department of Biological Sciences, Markey Center for Structural Biology, Purdue University, West Lafayette, IN, USA
| | - Xiaoqi Zhang
- Department of Biological Sciences, Markey Center for Structural Biology, Purdue University, West Lafayette, IN, USA
| | - Kadir A Ozcan
- Department of Biological Sciences, Markey Center for Structural Biology, Purdue University, West Lafayette, IN, USA
| | - Kathy L Newell
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Holly J Garringer
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Wen Jiang
- Department of Biological Sciences, Markey Center for Structural Biology, Purdue University, West Lafayette, IN, USA.
| | - Bernardino Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Ruben Vidal
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
14
|
Abyadeh M, Gupta V, Paulo JA, Mahmoudabad AG, Shadfar S, Mirshahvaladi S, Gupta V, Nguyen CT, Finkelstein DI, You Y, Haynes PA, Salekdeh GH, Graham SL, Mirzaei M. Amyloid-beta and tau protein beyond Alzheimer's disease. Neural Regen Res 2024; 19:1262-1276. [PMID: 37905874 PMCID: PMC11467936 DOI: 10.4103/1673-5374.386406] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/08/2023] [Accepted: 09/07/2023] [Indexed: 11/02/2023] Open
Abstract
ABSTRACT The aggregation of amyloid-beta peptide and tau protein dysregulation are implicated to play key roles in Alzheimer's disease pathogenesis and are considered the main pathological hallmarks of this devastating disease. Physiologically, these two proteins are produced and expressed within the normal human body. However, under pathological conditions, abnormal expression, post-translational modifications, conformational changes, and truncation can make these proteins prone to aggregation, triggering specific disease-related cascades. Recent studies have indicated associations between aberrant behavior of amyloid-beta and tau proteins and various neurological diseases, such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis, as well as retinal neurodegenerative diseases like Glaucoma and age-related macular degeneration. Additionally, these proteins have been linked to cardiovascular disease, cancer, traumatic brain injury, and diabetes, which are all leading causes of morbidity and mortality. In this comprehensive review, we provide an overview of the connections between amyloid-beta and tau proteins and a spectrum of disorders.
Collapse
Affiliation(s)
| | - Vivek Gupta
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Macquarie Park, North Ryde, Sydney, NSW, Australia
| | - Joao A. Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | | - Sina Shadfar
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Macquarie Park, North Ryde, Sydney, NSW, Australia
| | - Shahab Mirshahvaladi
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Macquarie Park, North Ryde, Sydney, NSW, Australia
| | - Veer Gupta
- School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Christine T.O. Nguyen
- Department of Optometry and Vision Sciences, School of Health Sciences, Faculty of Medicine Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - David I. Finkelstein
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Yuyi You
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Macquarie Park, North Ryde, Sydney, NSW, Australia
| | - Paul A. Haynes
- School of Natural Sciences, Macquarie University, Macquarie Park, NSW, Australia
| | - Ghasem H. Salekdeh
- School of Natural Sciences, Macquarie University, Macquarie Park, NSW, Australia
| | - Stuart L. Graham
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Macquarie Park, North Ryde, Sydney, NSW, Australia
| | - Mehdi Mirzaei
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Macquarie Park, North Ryde, Sydney, NSW, Australia
| |
Collapse
|
15
|
Ruqa WA, Pennacchia F, Rusi E, Zoccali F, Bruno G, Talarico G, Barbato C, Minni A. Smelling TNT: Trends of the Terminal Nerve. Int J Mol Sci 2024; 25:3920. [PMID: 38612730 PMCID: PMC11011448 DOI: 10.3390/ijms25073920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 03/29/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024] Open
Abstract
There is very little knowledge regarding the terminal nerve, from its implications in the involvement and pathogenesis of certain conditions, to its embryological origin. With this review, we try to summarize the most important evidence on the terminal nerve, aiming to clarify its anatomy and the various functions attributed to it, to better interpret its potential involvement in pathological processes. Recent studies have also suggested its potential role in the control of human reproductive functions and behaviors. It has been hypothesized that it plays a role in the unconscious perception of specific odors that influence autonomic and reproductive hormonal systems through the hypothalamic-pituitary-gonadal axis. We used the PubMed database and found different articles which were then selected independently by three authors. We found 166 articles, of which, after careful selection, only 21 were analyzed. The terminal nerve was always thought to be unimportant in our body. It was well studied in different types of animals, but few studies have been completed in humans. For this reason, its function remains unknown. Studies suggest a possible implication in olfaction due to the anatomical proximity with the olfactive nerve. Others suggest a more important role in reproduction and sexual behaviors. New emerging information suggests a possible role in Kallmann syndrome and COVID-19.
Collapse
Affiliation(s)
- Wael Abu Ruqa
- Department of Sense Organs, Sapienza University of Rome, Policlinico Umberto I, 00161 Roma, Italy; (W.A.R.); (F.P.); (F.Z.)
| | - Fiorenza Pennacchia
- Department of Sense Organs, Sapienza University of Rome, Policlinico Umberto I, 00161 Roma, Italy; (W.A.R.); (F.P.); (F.Z.)
| | - Eqrem Rusi
- Department of Human Neuroscience, Sapienza University of Rome, 00185 Rome, Italy; (E.R.); (G.B.); (G.T.)
| | - Federica Zoccali
- Department of Sense Organs, Sapienza University of Rome, Policlinico Umberto I, 00161 Roma, Italy; (W.A.R.); (F.P.); (F.Z.)
| | - Giuseppe Bruno
- Department of Human Neuroscience, Sapienza University of Rome, 00185 Rome, Italy; (E.R.); (G.B.); (G.T.)
| | - Giuseppina Talarico
- Department of Human Neuroscience, Sapienza University of Rome, 00185 Rome, Italy; (E.R.); (G.B.); (G.T.)
| | - Christian Barbato
- Institute of Biochemistry and Cell Biology (IBBC-CNR), Sapienza University Rome, Policlinico Umberto I, 00161 Roma, Italy
| | - Antonio Minni
- Department of Sense Organs, Sapienza University of Rome, Policlinico Umberto I, 00161 Roma, Italy; (W.A.R.); (F.P.); (F.Z.)
- Division of Otolaryngology-Head and Neck Surgery, ASL Rieti-Sapienza University, Ospedale San Camillo de Lellis, 02100 Rieti, Italy
| |
Collapse
|
16
|
Zhao H, Lou G, Shao Y, Wang T, Wang H, Guo Q, Yang W, Liu H, Liao S. Competing Endogenous RNAs Crosstalk in Hippocampus: A Potential Mechanism for Neuronal Developing Defects in Down Syndrome. J Mol Neurosci 2024; 74:32. [PMID: 38536538 DOI: 10.1007/s12031-024-02205-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/02/2024] [Indexed: 07/20/2024]
Abstract
Down syndrome (DS) is the most example of aneuploidy, resulting from an additional copy of all or part of chromosome 21. Competing endogenous RNAs (ceRNAs) play important roles in neuronal development and neurological defects. This study aimed to identify hub genes and synergistic crosstalk among ceRNAs in the DS fetal hippocampus as potential targets for the treatment of DS-related neurodegenerative diseases. We profiled differentially expressed long non-coding RNAs (DElncRNAs), differentially expressed circular RNAs (DEcircRNAs), differentially expressed microRNAs (DEmiRNAs), and differentially expressed messenger RNAs (DEmRNAs) in hippocampal samples from patients with or without DS. Functional enrichment analysis and gene set enrichment analysis were performed, and chromosome 21-related ceRNA and protein-protein interaction networks were constructed. Additionally, the correlations between lncRNA-mRNA and miRNA-mRNA expression in the samples and HEK293T cells were validated. Our finding of changes in the expression of some key genes and ncRNAs on chromosome 21 in DS might not fully conform to the gene dosage hypothesis. Moreover, we found that four lncRNAs (MIR99AHG, PLCB4, SNHG14, GIGYF2) and one circRNA (hsa_circ_0061697) may competitively bind with three miRNAs (hsa-miR-548b-5p, miR-730-5p, and hsa-miR-548i) and subsequently regulate five mRNAs (beta-1,3-galactosyltransferase 5 [B3GALT5], helicase lymphoid-specific [HELLS], thrombospondin-2 [THBS2], glycinamide ribonucleotide transformylase [GART], clathrin heavy chain like 1 [CLTCL1]). These RNAs, whether located on chromosome 21 or not, interact with each other and might activate the PI3K/Akt/mTOR and Wnt signaling pathways, which are involved in autophagosome formation and tau hyperphosphorylation, possibly leading to adverse consequences of trisomy 21. These findings provide researchers with a better understanding of the fundamental molecular mechanisms underlying DS-related progressive defects in neuronal development.
Collapse
Affiliation(s)
- Huiru Zhao
- National Health Commission Key Laboratory of Birth Defects Prevention, Henan Provincial People's Hospital, Medical Genetics Institute of Henan Province, Henan Provincial Key Laboratory of Genetic Diseases and Functional Genomics, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Guiyu Lou
- National Health Commission Key Laboratory of Birth Defects Prevention, Henan Provincial People's Hospital, Medical Genetics Institute of Henan Province, Henan Provincial Key Laboratory of Genetic Diseases and Functional Genomics, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Yupu Shao
- Experimental Center, Department of Basic Medicine, Henan Medical College, Zhengzhou, China
| | - Tao Wang
- National Health Commission Key Laboratory of Birth Defects Prevention, Henan Provincial People's Hospital, Medical Genetics Institute of Henan Province, Henan Provincial Key Laboratory of Genetic Diseases and Functional Genomics, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongdan Wang
- National Health Commission Key Laboratory of Birth Defects Prevention, Henan Provincial People's Hospital, Medical Genetics Institute of Henan Province, Henan Provincial Key Laboratory of Genetic Diseases and Functional Genomics, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Qiannan Guo
- National Health Commission Key Laboratory of Birth Defects Prevention, Henan Provincial People's Hospital, Medical Genetics Institute of Henan Province, Henan Provincial Key Laboratory of Genetic Diseases and Functional Genomics, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenke Yang
- National Health Commission Key Laboratory of Birth Defects Prevention, Henan Provincial People's Hospital, Medical Genetics Institute of Henan Province, Henan Provincial Key Laboratory of Genetic Diseases and Functional Genomics, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongyan Liu
- National Health Commission Key Laboratory of Birth Defects Prevention, Henan Provincial People's Hospital, Medical Genetics Institute of Henan Province, Henan Provincial Key Laboratory of Genetic Diseases and Functional Genomics, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Shixiu Liao
- National Health Commission Key Laboratory of Birth Defects Prevention, Henan Provincial People's Hospital, Medical Genetics Institute of Henan Province, Henan Provincial Key Laboratory of Genetic Diseases and Functional Genomics, People's Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
17
|
Pechous RD, Malaviarachchi PA, Xing Z, Douglas A, Crane SD, Theriot HM, Zhang Z, Ghaffarieh A, Huang L, Yu YE, Zhang X. SARS-CoV-2 Infection Causes Heightened Disease Severity and Mortality in a Mouse Model of Down Syndrome. Biomedicines 2024; 12:543. [PMID: 38540156 PMCID: PMC10967796 DOI: 10.3390/biomedicines12030543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 11/03/2024] Open
Abstract
Recent epidemiological studies suggest that individuals with Down syndrome are more susceptible to SARS-CoV-2 infection and have higher rates of hospitalization and mortality than the general population. However, the main drivers behind these disparate health outcomes remain unknown. Herein, we performed experimental infections with SARS-CoV-2 in a well-established mouse model of Down syndrome. We observed similar SARS-CoV-2 replication kinetics and dissemination in the primary and secondary organs between mice with and without Down syndrome, suggesting that both groups have similar susceptibilities to SARS-CoV-2 infection. However, Down syndrome mice exhibited more severe disease as defined by clinical features including symptoms, weight loss, pulmonary function, and survival of mice. We found that increased disease severity in Down syndrome mice could not be attributed solely to increased infectivity or a more dramatic pro-inflammatory response to infection. Rather, results from RNA sequencing suggested that differences in the expression of genes from other physiological pathways, such as deficient oxidative phosphorylation, cardiopulmonary dysfunction, and deficient mucociliary clearance in the lungs may also contribute to heightened disease severity and mortality in Down syndrome mice following SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Roger D. Pechous
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Priyangi A. Malaviarachchi
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Zhuo Xing
- The Children’s Guild Foundation Down Syndrome Research Program, Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Avrium Douglas
- The Children’s Guild Foundation Down Syndrome Research Program, Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Samantha D. Crane
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Hayley M. Theriot
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Zijing Zhang
- Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Alireza Ghaffarieh
- Departments of Ophthalmology and Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Lu Huang
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Y. Eugene Yu
- The Children’s Guild Foundation Down Syndrome Research Program, Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Xuming Zhang
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
18
|
Davidson TL, Stevenson RJ. Vulnerability of the Hippocampus to Insults: Links to Blood-Brain Barrier Dysfunction. Int J Mol Sci 2024; 25:1991. [PMID: 38396670 PMCID: PMC10888241 DOI: 10.3390/ijms25041991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
The hippocampus is a critical brain substrate for learning and memory; events that harm the hippocampus can seriously impair mental and behavioral functioning. Hippocampal pathophysiologies have been identified as potential causes and effects of a remarkably diverse array of medical diseases, psychological disorders, and environmental sources of damage. It may be that the hippocampus is more vulnerable than other brain areas to insults that are related to these conditions. One purpose of this review is to assess the vulnerability of the hippocampus to the most prevalent types of insults in multiple biomedical domains (i.e., neuroactive pathogens, neurotoxins, neurological conditions, trauma, aging, neurodegenerative disease, acquired brain injury, mental health conditions, endocrine disorders, developmental disabilities, nutrition) and to evaluate whether these insults affect the hippocampus first and more prominently compared to other brain loci. A second purpose is to consider the role of hippocampal blood-brain barrier (BBB) breakdown in either causing or worsening the harmful effects of each insult. Recent research suggests that the hippocampal BBB is more fragile compared to other brain areas and may also be more prone to the disruption of the transport mechanisms that act to maintain the internal milieu. Moreover, a compromised BBB could be a factor that is common to many different types of insults. Our analysis indicates that the hippocampus is more vulnerable to insults compared to other parts of the brain, and that developing interventions that protect the hippocampal BBB may help to prevent or ameliorate the harmful effects of many insults on memory and cognition.
Collapse
Affiliation(s)
- Terry L. Davidson
- Department of Neuroscience, Center for Neuroscience and Behavior, American University, 4400 Massachusetts Avenue, NW, Washington, DC 20016, USA
| | | |
Collapse
|
19
|
Antonaros F, Obermayer-Pietsch B, Ramacieri G, Vione B, Locatelli C, Goessler W, Caracausi M, Lajin B. First clinical evidence that trimethylsulfonium can serve as a biomarker for the production of the signaling molecule hydrogen sulfide. Clin Chim Acta 2024; 554:117780. [PMID: 38266970 DOI: 10.1016/j.cca.2024.117780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/03/2024] [Accepted: 01/10/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND Hydrogen sulfide (H2S) is established as the third gaseous signaling molecule and is known to be overproduced in down syndrome (DS) due to the extra copy of the CBS gene on chromosome 21, which has been suggested to contribute to the clinical manifestation of this condition. We recently discovered trimethylsulfonium (TMS) in human urine and highlighted its potential as a selective methylation metabolite of endogenously produced H2S, but the clinical utility of this novel metabolite has not been previously investigated. We hypothesize that the elevation of H2S production in DS would be reflected by an elevation in the methylation product TMS. METHODS To test this hypothesis, a case-control study was performed and the urinary levels of TMS were found to be higher in the DS group (geo. mean 4.5 nM, 95 % CI 2.4-3.9) than in the control (N) group (3.1 nM, 3.5-6.0), p-value 0.01, whereas the commonly used biomarker of hydrogen sulfide, thiosulfate, failed to reflect this alteration in H2S production (15 µM (N) vs. 13 µM (DS), p-value 0.24. RESULTS The observed association is in line with the proposed hypothesis and provides first clinical evidence of the utility of TMS as a novel and more sensitive biomarker for the endogenous production of the third gaseous signaling molecule than the conventionally used biomarker thiosulfate, which is heavily dependent on bacterial hydrogen sulfide production. CONCLUSION This work shows that TMS must be explored in clinical conditions where altered metabolism of hydrogen sulfide is implicated.
Collapse
Affiliation(s)
- Francesca Antonaros
- Department of Biomedical and Neuromotor Sciences, Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126 Bologna (BO), Italy
| | - Barbara Obermayer-Pietsch
- Division of Endocrinology and Diabetology, Endocrinology Lab Platform, Department of Internal Medicine and Gynecology and Obstetrics, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria; BioTechMed-GRAZ, 8010 Graz, Austria
| | - Giuseppe Ramacieri
- Department of Medical and Surgical Science, University of Bologna, Via Massarenti 11, 40138 Bologna (BO), Italy
| | - Beatrice Vione
- Department of Biomedical and Neuromotor Sciences, Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126 Bologna (BO), Italy; Department of Medical and Surgical Science, University of Bologna, Via Massarenti 11, 40138 Bologna (BO), Italy
| | - Chiara Locatelli
- Neonatology Unit, St. Orsola-Malpighi Polyclinic, Via Massarenti 9, 40138 Bologna, BO, Italy
| | - Walter Goessler
- Neonatology Unit, St. Orsola-Malpighi Polyclinic, Via Massarenti 9, 40138 Bologna, BO, Italy; BioTechMed-GRAZ, 8010 Graz, Austria
| | - Maria Caracausi
- Department of Biomedical and Neuromotor Sciences, Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126 Bologna (BO), Italy
| | - Bassam Lajin
- Institute of Chemistry, Analytical Chemistry for the Health and Environment, University of Graz, Universitaetsplatz 1, 8010 Graz, Austria; Institute of Chemistry, ChromICP, University of Graz, Universitaetsplatz 1, 8010 Graz, Austria; BioTechMed-GRAZ, 8010 Graz, Austria.
| |
Collapse
|
20
|
Manubens-Gil L, Pons-Espinal M, Gener T, Ballesteros-Yañez I, de Lagrán MM, Dierssen M. Deficits in neuronal architecture but not over-inhibition are main determinants of reduced neuronal network activity in a mouse model of overexpression of Dyrk1A. Cereb Cortex 2024; 34:bhad431. [PMID: 37997361 PMCID: PMC10793573 DOI: 10.1093/cercor/bhad431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 11/25/2023] Open
Abstract
In this study, we investigated the impact of Dual specificity tyrosine-phosphorylation-regulated kinase 1A (Dyrk1A) overexpression, a gene associated with Down syndrome, on hippocampal neuronal deficits in mice. Our findings revealed that mice overexpressing Dyrk1A (TgDyrk1A; TG) exhibited impaired hippocampal recognition memory, disrupted excitation-inhibition balance, and deficits in long-term potentiation (LTP). Specifically, we observed layer-specific deficits in dendritic arborization of TG CA1 pyramidal neurons in the stratum radiatum. Through computational modeling, we determined that these alterations resulted in reduced storage capacity and compromised integration of inputs, with decreased high γ oscillations. Contrary to prevailing assumptions, our model suggests that deficits in neuronal architecture, rather than over-inhibition, primarily contribute to the reduced network. We explored the potential of environmental enrichment (EE) as a therapeutic intervention and found that it normalized the excitation-inhibition balance, restored LTP, and improved short-term recognition memory. Interestingly, we observed transient significant dendritic remodeling, leading to recovered high γ. However, these effects were not sustained after EE discontinuation. Based on our findings, we conclude that Dyrk1A overexpression-induced layer-specific neuromorphological disturbances impair the encoding of place and temporal context. These findings contribute to our understanding of the underlying mechanisms of Dyrk1A-related hippocampal deficits and highlight the challenges associated with long-term therapeutic interventions for cognitive impairments.
Collapse
Affiliation(s)
- Linus Manubens-Gil
- Institute for Brain Science and Intelligent Technology, Southeast University (SEU), Biomedical engineering, Sipailou street No. 2, Xuanwu district, 210096, Nanjing, China
- School of Biological Science and Medical Engineering, Southeast University (SEU), Sipailou street No. 2, Xuanwu district, 210096, Nanjing, China
| | - Meritxell Pons-Espinal
- Department of Pathology and Experimental Therapeutics, Bellvitge University Hospital-IDIBELL, Avinguda de la Granvia de l'Hospitalet, 199, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
- Institute of Biomedicine (IBUB) of the University of Barcelona (UB), Avda. Diagonal, 643 Edifici Prevosti, planta -108028, Barcelona, Spain
| | - Thomas Gener
- Advanced Electronic Materials and Devices Group (AEMD), Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, UAB Campus, Bellaterra Barcelona 08193, Spain
| | - Inmaculada Ballesteros-Yañez
- Inorganic and Organic Chemistry and Biochemistry, Faculty of Medicine, University of Castilla- La Mancha, Camino de Moledores, 13071, Ciudad Real, Spain
| | - María Martínez de Lagrán
- Cellular and Systems Neurobiology, Systems and Synthetic Biology Program, Center for Genomic Regulation, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Mara Dierssen
- Cellular and Systems Neurobiology, Systems and Synthetic Biology Program, Center for Genomic Regulation, Dr. Aiguader 88, 08003 Barcelona, Spain
- Center for Biomedical Research in the Network of Rare Diseases (CIBERER), v. Monforte de Lemos, 3-5. Pabellón 11. Planta 0 28029, Madrid, Spain
- Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003 Barcelona, Spain
| |
Collapse
|
21
|
Brandebura AN, Asbell QN, Micael MKB, Allen NJ. Dysregulation of astrocyte-secreted pleiotrophin contributes to neuronal structural and functional deficits in Down Syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.26.559633. [PMID: 37808668 PMCID: PMC10557700 DOI: 10.1101/2023.09.26.559633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Neuronal dendrite patterning and synapse formation are tightly regulated during development to promote proper connectivity. Astrocyte-secreted proteins act as guidance and pro-synaptogenic factors during development, but little is known about how astrocytes may contribute to neurodevelopmental disorders. Here we identify down-regulation of the astrocyte-secreted molecule pleiotrophin as a major contributor to neuronal morphological alterations in the Ts65Dn mouse model of Down Syndrome. We find overlapping deficits in neuronal dendrites, spines and intracortical synapses in Ts65Dn mutant and pleiotrophin knockout mice. By targeting pleiotrophin overexpression to astrocytes in adult Ts65Dn mutant mice in vivo , we show that pleiotrophin can rescue dendrite morphology and spine density and increase excitatory synapse number. We further demonstrate functional improvements in behavior. Our findings identify pleiotrophin as a molecule that can be used in Down Syndrome to promote proper circuit connectivity, importantly at later stages of development after typical periods of circuit refinement have completed.
Collapse
|
22
|
Serrano ME, Kim E, Siow B, Ma D, Rojo L, Simmons C, Hayward D, Gibbins D, Singh N, Strydom A, Fisher EM, Tybulewicz VL, Cash D. Investigating brain alterations in the Dp1Tyb mouse model of Down syndrome. Neurobiol Dis 2023; 188:106336. [PMID: 38317803 PMCID: PMC7615598 DOI: 10.1016/j.nbd.2023.106336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024] Open
Abstract
Down syndrome (DS) is one of the most common birth defects and the most prevalent genetic form of intellectual disability. DS arises from trisomy of chromosome 21, but its molecular and pathological consequences are not fully understood. In this study, we compared Dp1Tyb mice, a DS model, against their wild-type (WT) littermates of both sexes to investigate the impact of DS-related genetic abnormalities on the brain phenotype. We performed in vivo whole brain magnetic resonance imaging (MRI) and hippocampal 1H magnetic resonance spectroscopy (MRS) on the animals at 3 months of age. Subsequently, ex vivo MRI scans and histological analyses were conducted post-mortem. Our findings unveiled the following neuroanatomical and biochemical alterations in the Dp1Tyb brains: a smaller surface area and a rounder shape compared to WT brains, with DS males also presenting smaller global brain volume compared with the counterpart WT. Regional volumetric analysis revealed significant changes in 26 out of 72 examined brain regions, including the medial prefrontal cortex and dorsal hippocampus. These alterations were consistently observed in both in vivo and ex vivo imaging data. Additionally, high-resolution ex vivo imaging enabled us to investigate cerebellar layers and hippocampal sub-regions, revealing selective areas of decrease and remodelling in these structures. An analysis of hippocampal metabolites revealed an elevation in glutamine and the glutamine/glutamate ratio in the Dp1Tyb mice compared to controls, suggesting a possible imbalance in the excitation/inhibition ratio. This was accompanied by the decreased levels of taurine. Histological analysis revealed fewer neurons in the hippocampal CA3 and DG layers, along with an increase in astrocytes and microglia. These findings recapitulate multiple neuroanatomical and biochemical features associated with DS, enriching our understanding of the potential connection between chromosome 21 trisomy and the resultant phenotype.
Collapse
Affiliation(s)
- Maria Elisa Serrano
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Eugene Kim
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Bernard Siow
- The Francis Crick Institute, London, United Kingdom
| | - Da Ma
- Department of Internal Medicine Section of Gerontology and Geriatric Science, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Loreto Rojo
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Camilla Simmons
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | | | | | - Nisha Singh
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
| | - Andre Strydom
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Elizabeth M.C. Fisher
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | | | - Diana Cash
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| |
Collapse
|
23
|
Ananthapadmanabhan V, Shows KH, Dickinson AJ, Litovchick L. Insights from the protein interaction Universe of the multifunctional "Goldilocks" kinase DYRK1A. Front Cell Dev Biol 2023; 11:1277537. [PMID: 37900285 PMCID: PMC10600473 DOI: 10.3389/fcell.2023.1277537] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/02/2023] [Indexed: 10/31/2023] Open
Abstract
Human Dual specificity tyrosine (Y)-Regulated Kinase 1A (DYRK1A) is encoded by a dosage-dependent gene located in the Down syndrome critical region of human chromosome 21. The known substrates of DYRK1A include proteins involved in transcription, cell cycle control, DNA repair and other processes. However, the function and regulation of this kinase is not fully understood, and the current knowledge does not fully explain the dosage-dependent function of this kinase. Several recent proteomic studies identified DYRK1A interacting proteins in several human cell lines. Interestingly, several of known protein substrates of DYRK1A were undetectable in these studies, likely due to a transient nature of the kinase-substrate interaction. It is possible that the stronger-binding DYRK1A interacting proteins, many of which are poorly characterized, are involved in regulatory functions by recruiting DYRK1A to the specific subcellular compartments or distinct signaling pathways. Better understanding of these DYRK1A-interacting proteins could help to decode the cellular processes regulated by this important protein kinase during embryonic development and in the adult organism. Here, we review the current knowledge of the biochemical and functional characterization of the DYRK1A protein-protein interaction network and discuss its involvement in human disease.
Collapse
Affiliation(s)
- Varsha Ananthapadmanabhan
- Department of Internal Medicine, Division of Hematology, Oncology and Palliative Care, Virginia Commonwealth University, Richmond, VA, United States
| | - Kathryn H. Shows
- Department of Biology, Virginia State University, Petersburg, VA, United States
| | - Amanda J. Dickinson
- Department of Biology, Virginia Commonwealth University, Richmond, VA, United States
| | - Larisa Litovchick
- Department of Internal Medicine, Division of Hematology, Oncology and Palliative Care, Virginia Commonwealth University, Richmond, VA, United States
- Massey Cancer Center, Richmond, VA, United States
| |
Collapse
|
24
|
Sauve F, Nampoothiri S, Clarke SA, Fernandois D, Ferreira Coêlho CF, Dewisme J, Mills EG, Ternier G, Cotellessa L, Iglesias-Garcia C, Mueller-Fielitz H, Lebouvier T, Perbet R, Florent V, Baroncini M, Sharif A, Ereño-Orbea J, Mercado-Gómez M, Palazon A, Mattot V, Pasquier F, Catteau-Jonard S, Martinez-Chantar M, Hrabovszky E, Jourdain M, Deplanque D, Morelli A, Guarnieri G, Storme L, Robil C, Trottein F, Nogueiras R, Schwaninger M, Pigny P, Poissy J, Chachlaki K, Maurage CA, Giacobini P, Dhillo W, Rasika S, Prevot V. Long-COVID cognitive impairments and reproductive hormone deficits in men may stem from GnRH neuronal death. EBioMedicine 2023; 96:104784. [PMID: 37713808 PMCID: PMC10507138 DOI: 10.1016/j.ebiom.2023.104784] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/02/2023] [Accepted: 08/21/2023] [Indexed: 09/17/2023] Open
Abstract
BACKGROUND We have recently demonstrated a causal link between loss of gonadotropin-releasing hormone (GnRH), the master molecule regulating reproduction, and cognitive deficits during pathological aging, including Down syndrome and Alzheimer's disease. Olfactory and cognitive alterations, which persist in some COVID-19 patients, and long-term hypotestosteronaemia in SARS-CoV-2-infected men are also reminiscent of the consequences of deficient GnRH, suggesting that GnRH system neuroinvasion could underlie certain post-COVID symptoms and thus lead to accelerated or exacerbated cognitive decline. METHODS We explored the hormonal profile of COVID-19 patients and targets of SARS-CoV-2 infection in post-mortem patient brains and human fetal tissue. FINDINGS We found that persistent hypotestosteronaemia in some men could indeed be of hypothalamic origin, favouring post-COVID cognitive or neurological symptoms, and that changes in testosterone levels and body weight over time were inversely correlated. Infection of olfactory sensory neurons and multifunctional hypothalamic glia called tanycytes highlighted at least two viable neuroinvasion routes. Furthermore, GnRH neurons themselves were dying in all patient brains studied, dramatically reducing GnRH expression. Human fetal olfactory and vomeronasal epithelia, from which GnRH neurons arise, and fetal GnRH neurons also appeared susceptible to infection. INTERPRETATION Putative GnRH neuron and tanycyte dysfunction following SARS-CoV-2 neuroinvasion could be responsible for serious reproductive, metabolic, and mental health consequences in long-COVID and lead to an increased risk of neurodevelopmental and neurodegenerative pathologies over time in all age groups. FUNDING European Research Council (ERC) grant agreements No 810331, No 725149, No 804236, the European Union Horizon 2020 research and innovation program No 847941, the Fondation pour la Recherche Médicale (FRM) and the Agence Nationale de la Recherche en Santé (ANRS) No ECTZ200878 Long Covid 2021 ANRS0167 SIGNAL, Agence Nationale de la recherche (ANR) grant agreements No ANR-19-CE16-0021-02, No ANR-11-LABEX-0009, No. ANR-10-LABEX-0046, No. ANR-16-IDEX-0004, Inserm Cross-Cutting Scientific Program HuDeCA, the CHU Lille Bonus H, the UK Medical Research Council (MRC) and National Institute of Health and care Research (NIHR).
Collapse
Affiliation(s)
- Florent Sauve
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, DistAlz, Lille, France
| | - Sreekala Nampoothiri
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, DistAlz, Lille, France
| | - Sophie A Clarke
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| | - Daniela Fernandois
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, DistAlz, Lille, France
| | | | - Julie Dewisme
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, DistAlz, Lille, France; CHU Lille, Department of Pathology, Centre Biologie Pathologie, France
| | - Edouard G Mills
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| | - Gaetan Ternier
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, DistAlz, Lille, France
| | - Ludovica Cotellessa
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, DistAlz, Lille, France
| | | | - Helge Mueller-Fielitz
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Thibaud Lebouvier
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, DistAlz, Lille, France; CHU Lille, Department of Neurology, Memory Centre, Reference Centre for Early-Onset Alzheimer Disease and Related Disorders, Lille, France
| | - Romain Perbet
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, DistAlz, Lille, France; CHU Lille, Department of Pathology, Centre Biologie Pathologie, France
| | - Vincent Florent
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, DistAlz, Lille, France
| | - Marc Baroncini
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, DistAlz, Lille, France
| | - Ariane Sharif
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, DistAlz, Lille, France
| | - June Ereño-Orbea
- CIC bioGUNE, Basque Research and Technology Alliance (BRTACentro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain; Bizkaia Technology Park, Building 801A, 48160, Derio, Bizkaia, Spain
| | - Maria Mercado-Gómez
- CIC bioGUNE, Basque Research and Technology Alliance (BRTACentro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain; Bizkaia Technology Park, Building 801A, 48160, Derio, Bizkaia, Spain
| | - Asis Palazon
- CIC bioGUNE, Basque Research and Technology Alliance (BRTACentro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain; Bizkaia Technology Park, Building 801A, 48160, Derio, Bizkaia, Spain
| | - Virginie Mattot
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, DistAlz, Lille, France
| | - Florence Pasquier
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, DistAlz, Lille, France; CHU Lille, Department of Neurology, Memory Centre, Reference Centre for Early-Onset Alzheimer Disease and Related Disorders, Lille, France
| | - Sophie Catteau-Jonard
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, DistAlz, Lille, France; CHU Lille, Department of Gynecology and Obstetrics, Jeanne de Flandres Hospital, F-59000, Lille, France
| | - Maria Martinez-Chantar
- CIC bioGUNE, Basque Research and Technology Alliance (BRTACentro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain; Bizkaia Technology Park, Building 801A, 48160, Derio, Bizkaia, Spain
| | - Erik Hrabovszky
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Mercé Jourdain
- Univ. Lille, Inserm, CHU Lille, Service de Médecine Intensive Réanimation, U1190, EGID, F-59000 Lille, France
| | - Dominique Deplanque
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, DistAlz, Lille, France; University Lille, Inserm, CHU Lille, Centre d'investigation Clinique (CIC) 1403, F-59000, Lille, France; LICORNE Study Group, CHU Lille, Lille, France
| | - Annamaria Morelli
- Department of Experimental and Clinical Medicine, University of Florence, Italy
| | - Giulia Guarnieri
- Department of Experimental and Clinical Medicine, University of Florence, Italy
| | - Laurent Storme
- CHU Lille, Department of Neonatology, Hôpital Jeanne de Flandre, FHU 1000 Days for Health, F-59000, France
| | - Cyril Robil
- University Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - François Trottein
- University Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Ruben Nogueiras
- CIMUS, Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Pascal Pigny
- CHU Lille, Service de Biochimie et Hormonologie, Centre de Biologie Pathologie, Lille, France
| | - Julien Poissy
- LICORNE Study Group, CHU Lille, Lille, France; Univ. Lille, Inserm U1285, CHU Lille, Pôle de Réanimation, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Konstantina Chachlaki
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, DistAlz, Lille, France
| | - Claude-Alain Maurage
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, DistAlz, Lille, France; CHU Lille, Department of Pathology, Centre Biologie Pathologie, France; LICORNE Study Group, CHU Lille, Lille, France
| | - Paolo Giacobini
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, DistAlz, Lille, France
| | - Waljit Dhillo
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom; Department of Endocrinology, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - S Rasika
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, DistAlz, Lille, France.
| | - Vincent Prevot
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, DistAlz, Lille, France.
| |
Collapse
|
25
|
Zhou Z, Zhi C, Chen D, Cai Z, Jiang X. Single-nucleus RNA sequencing reveals cell type-specific transcriptome alterations of Down syndrome hippocampus using the Dp16 mouse model. Genes Genomics 2023; 45:1305-1315. [PMID: 37548883 DOI: 10.1007/s13258-023-01433-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 07/19/2023] [Indexed: 08/08/2023]
Abstract
BACKGROUND Down syndrome (DS), the most frequently occurring human chromosomal disorder, is caused by trisomy 21. The exact molecular effects of trisomy on certain cell populations in the brain remain poorly understood. OBJECTIVE The purpose of this study was to investigate the effects of trisomy on the transcriptomes of various types of neurons and nonneuronal cells in the hippocampus. METHODS A total of 8993 nuclei from the WT and 6445 nuclei from the Dp16 hippocampus were analyzed by single-nucleus RNA sequencing (snRNA-seq). Cell clustering was achieved by the Seurat program. RESULTS Hippocampal cells were grouped into multiple neuronal and nonneuronal populations. Only a limited number of trisomic genes were upregulated (q < 0.001) over 1.25-fold in a specific type of hippocampal cell. Specifically, deregulation of genes associated with synaptic signaling and organization was observed in multiple cell populations, including excitatory neurons, oligodendrocytes, and microglia. This observation suggests the potential importance of synapse deficits in DS. Interestingly, GO annotation of the upregulated genes suggested potential activation of the immune system by hippocampal excitatory neurons. Fewer trisomic genes were altered in nonneuronal cells than in neurons. Notably, microglial transcriptome analysis revealed significantly (q < 0.001) increased expression of C1qb and C1qc, which suggested potential involvement of complement-mediated synapse loss mediated by microglia in DS. CONCLUSION The trisomy-related hippocampal deficits should be driven by a small amount, not all, of the trisomic genes in a specific type of cell. Our work may help to narrow down both the molecular and cellular targets for future gene therapies in DS.
Collapse
Affiliation(s)
- Zuolin Zhou
- The Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, 310051, Zhejiang, China
| | - Chunchun Zhi
- The Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, 310051, Zhejiang, China
| | - Die Chen
- The Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, 310051, Zhejiang, China
| | - Zhaowei Cai
- Laboratory Animal Research Center, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Xiaoling Jiang
- The Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, 310051, Zhejiang, China.
| |
Collapse
|
26
|
Martin-Perez Y, Gonzalez-Montero G, Gutierrez-Hernandez AL, Blázquez-Sánchez V, Sánchez-Ramos C. Vision Impairments in Young Adults with Down Syndrome. Vision (Basel) 2023; 7:60. [PMID: 37756134 PMCID: PMC10536554 DOI: 10.3390/vision7030060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/24/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
People with Down syndrome have more visual problems than the general population. They experience premature ageing, and they are expected to also have an acceleration in worsening visual function. A prospective observational study which includes visual acuity, refractive error, accommodation, binocular and colour vision was performed on young adults with (n = 69) and without (n = 65) Down syndrome and on a senior group (n = 55) without Down syndrome. Results showed significant differences in visual acuity between groups (p < 0.001), and it can be improved with a new prescription in 40% of the participants with Down syndrome. Regarding the accommodative state, no significant differences were found between groups of young people. Concerning binocular vision, 64.7% of strabismus was observed in the group with Down syndrome (p < 0.001). Visual abnormalities are significant in young adults with Down syndrome and are different from those of older people without Down syndrome, some of which can be improved by providing the optimal prescription as well as regular eye examinations.
Collapse
Affiliation(s)
- Yolanda Martin-Perez
- Faculty of Optic and Optometry, Department of Optometry and Vision Science, Complutense University of Madrid, 28040 Madrid, Spain; (G.G.-M.); (A.L.G.-H.); (V.B.-S.); (C.S.-R.)
| | | | | | | | | |
Collapse
|
27
|
Wu Y, Lan Y, Mao J, Shen J, Kang T, Xie Z. The interaction between the nervous system and the stomatognathic system: from development to diseases. Int J Oral Sci 2023; 15:34. [PMID: 37580325 PMCID: PMC10425412 DOI: 10.1038/s41368-023-00241-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/16/2023] Open
Abstract
The crosstalk between the nerve and stomatognathic systems plays a more important role in organismal health than previously appreciated with the presence of emerging concept of the "brain-oral axis". A deeper understanding of the intricate interaction between the nervous system and the stomatognathic system is warranted, considering their significant developmental homology and anatomical proximity, and the more complex innervation of the jawbone compared to other skeletons. In this review, we provide an in-depth look at studies concerning neurodevelopment, craniofacial development, and congenital anomalies that occur when the two systems develop abnormally. It summarizes the cross-regulation between nerves and jawbones and the effects of various states of the jawbone on intrabony nerve distribution. Diseases closely related to both the nervous system and the stomatognathic system are divided into craniofacial diseases caused by neurological illnesses, and neurological diseases caused by an aberrant stomatognathic system. The two-way relationships between common diseases, such as periodontitis and neurodegenerative disorders, and depression and oral diseases were also discussed. This review provides valuable insights into novel strategies for neuro-skeletal tissue engineering and early prevention and treatment of orofacial and neurological diseases.
Collapse
Affiliation(s)
- Yuzhu Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Yanhua Lan
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Jiajie Mao
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Jiahui Shen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Ting Kang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China.
| | - Zhijian Xie
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
28
|
Huang YN, Huang JY, Wang CH, Su PH. Long-Term Non-Congenital Cardiac and Renal Complications in Down Syndrome: A Study of 32,936 Patients. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1351. [PMID: 37628350 PMCID: PMC10453106 DOI: 10.3390/children10081351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/27/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023]
Abstract
BACKGROUND Individuals with Down syndrome are at a higher risk of cardiac, renal, and other health issues due to a complex disease physiology. However, few data exist on long-term disease risks to guide prevention and care. We aimed to determine the 10-year incidence of cardiac, renal, and urinary tract complications in Down syndrome versus matched controls. METHODS This retrospective cohort study utilized a large collaborative database. We identified 32,444 patients with Down syndrome and matched controls, excluding those with pre-follow-up target events. Covariates included demographics, lifestyle factors, and comorbidities. Outcomes were ischemic heart disease, hypertension, hypothyroidism, epilepsy, urinary tract infections and chronic kidney disease. We calculated unadjusted and adjusted hazard ratios (HRs) and 95% confidence intervals (CIs) using Cox regression and plotted Kaplan-Meier survival curves. FINDINGS Over 10 years, Down syndrome patients showed a 3.7-fold higher ischemic heart disease risk (95% CI: 3.0-4.6) and a 1.6-fold higher hypertension risk (95% CI: 1.4-1.8) versus controls. Hypothyroidism (HR = 2.0; 95% CI: 1.7-2.4), epilepsy (HR = 4.5; 95% CI: 3.5-5.8), and urinary tract infection (HR = 3.9; 95% CI: 3.4-4.6) risks were also higher. Chronic kidney disease risk was 2.7-fold greater (95% CI: 2.1-3.5). Survival analysis confirmed a significantly higher incidence of all outcomes in Down syndrome (p < 0.0001). INTERPRETATION This large study found major health challenges in Down syndrome, with risks 3- to 5-fold higher for chronic conditions versus matched controls over 10 years. Though survival remains high with proper care, focusing resources on the prevention and management of complications in this high-risk group can optimize well-being across the lifespan. Future research accounting for limitations here would provide definitive estimates of disease risk in Down syndrome to guide targeted health strategies.
Collapse
Affiliation(s)
- Yu-Nan Huang
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung 402306, Taiwan (C.-H.W.)
- School of Medicine, Chung Shan Medical University, Taichung 402306, Taiwan
| | - Jing-Yang Huang
- Center for Health Data Science, Chung Shan Medical University Hospital, Taichung 402306, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung 402306, Taiwan
| | - Chung-Hsing Wang
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung 402306, Taiwan (C.-H.W.)
- School of Medicine, Chung Shan Medical University, Taichung 402306, Taiwan
- Division of Genetics and Metabolism, Children’s Hospital of China Medical University, Taichung 404327, Taiwan
- School of Medicine, China Medical University, Taichung 404327, Taiwan
| | - Pen-Hua Su
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung 402306, Taiwan (C.-H.W.)
- School of Medicine, Chung Shan Medical University, Taichung 402306, Taiwan
| |
Collapse
|
29
|
Koyabu D. Evolution, conservatism and overlooked homologies of the mammalian skull. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220081. [PMID: 37183902 PMCID: PMC10184252 DOI: 10.1098/rstb.2022.0081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/22/2023] [Indexed: 05/16/2023] Open
Abstract
In the last decade, studies integrating palaeontology, embryology and experimental developmental biology have markedly altered our homological understanding of the mammalian skull. Indeed, new evidence suggests that we should revisit and restructure the conventional anatomical terminology applied to the components of the mammalian skull. Notably, these are classical problems that have remained unresolved since the ninteenth century. In this review, I offer perspectives on the overlooked problems associated with the homology, development, and conservatism of the mammalian skull, aiming to encourage future studies in these areas. I emphasise that ossification patterns, bone fusion, cranial sutures and taxon-specific neomorphic bones in the skull are virtually unexplored, and further studies would improve our homological understanding of the mammalian skull. Lastly, I highlight that overlooked bones may exist in the skull that are not yet known to science and suggest that further search is needed. This article is part of the theme issue 'The mammalian skull: development, structure and function'.
Collapse
Affiliation(s)
- Daisuke Koyabu
- Research and Development Center for Precision Medicine, University of Tsukuba, Tsukuba, Japan
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, People's Republic of China
| |
Collapse
|
30
|
Huang T, Fakurazi S, Cheah PS, Ling KH. REST Targets JAK-STAT and HIF-1 Signaling Pathways in Human Down Syndrome Brain and Neural Cells. Int J Mol Sci 2023; 24:9980. [PMID: 37373133 DOI: 10.3390/ijms24129980] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Down syndrome (DS) is the most frequently diagnosed chromosomal disorder of chromosome 21 (HSA21) aneuploidy, characterized by intellectual disability and reduced lifespan. The transcription repressor, Repressor Element-1 Silencing Transcription factor (REST), which acts as an epigenetic regulator, is a crucial regulator of neuronal and glial gene expression. In this study, we identified and investigated the role of REST-target genes in human brain tissues, cerebral organoids, and neural cells in Down syndrome. Gene expression datasets generated from healthy controls and DS samples of human brain tissues, cerebral organoids, NPC, neurons, and astrocytes were retrieved from the Gene Ontology (GEO) and Sequence Read Archive (SRA) databases. Differential expression analysis was performed on all datasets to produce differential expression genes (DEGs) between DS and control groups. REST-targeted DEGs were subjected to functional ontologies, pathways, and network analyses. We found that REST-targeted DEGs in DS were enriched for the JAK-STAT and HIF-1 signaling pathways across multiple distinct brain regions, ages, and neural cell types. We also identified REST-targeted DEGs involved in nervous system development, cell differentiation, fatty acid metabolism and inflammation in the DS brain. Based on the findings, we propose REST as the critical regulator and a promising therapeutic target to modulate homeostatic gene expression in the DS brain.
Collapse
Affiliation(s)
- Tan Huang
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Sharida Fakurazi
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Pike-See Cheah
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - King-Hwa Ling
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Malaysian Research Institute on Ageing (MyAgeingTM), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
31
|
Ternák G, Márovics G, Sümegi K, Bánfai Z, Büki G, Magyari L, Szabó A, Melegh B. Down-Syndrome-Related Maternal Dysbiosis Might Be Triggered by Certain Classes of Antibiotics: A New Insight into the Possible Pathomechanisms. Antibiotics (Basel) 2023; 12:1029. [PMID: 37370348 DOI: 10.3390/antibiotics12061029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/24/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Down syndrome (DS) is a leading human genomic abnormality resulting from the trisomy of chromosome 21. The genomic base of the aneuploidy behind this disease is complex, and this complexity poses formidable challenges to understanding the underlying molecular basis. In the spectrum of the classic DS risk factor associations, the role of nutrients, vitamins, and, in general, the foodborne-associated background, as part of the events ultimately leading to chromosome nondisjunction, has long been recognized as a well-established clinical association. The integrity of the microbiome is a basic condition in these events, and the dysbiosis may be associated with secondary health outcomes. The possible association of DS development with maternal gut microbiota should therefore require more attention. We have hypothesized that different classes of antibiotics might promote or inhibit the proliferation of different microbial taxa; and hence, we might find associations between the use of the different classes of antibiotics and the prevalence of DS through the modification of the microbiome. As antibiotics are considered major disruptors of the microbiome, it could be hypothesized that the consumption/exposure of certain classes of antibiotics might be associated with the prevalence of DS in European countries (N = 30). By utilizing three different statistical methods, comparisons have been made between the average yearly antibiotic consumption (1997-2020) and the estimated prevalence of people living with DS for the year 2019 as a percentage of the population in European countries. We have found strong statistical correlations between the consumption of tetracycline (J01A) and the narrow-spectrum, beta-lactamase-resistant penicillin (J01CF) and the prevalence of DS.
Collapse
Affiliation(s)
- Gábor Ternák
- Institute of Migration Health, Medical School, University of Pécs, Szigeti út 12., H-7624 Pécs, Hungary
| | - Gergely Márovics
- Department of Public Health Medicine, Medical School, University of Pécs, Szigeti út 12., H-7624 Pécs, Hungary
| | - Katalin Sümegi
- Department of Medical Genetics, Medical School, University of Pécs, Szigeti út 12., H-7624 Pécs, Hungary
- Department of Biochemistry and Chemistry, Medical School, University of Pécs, Szigeti út 12., H-7624 Pécs, Hungary
| | - Zsolt Bánfai
- Department of Medical Genetics, Medical School, University of Pécs, Szigeti út 12., H-7624 Pécs, Hungary
| | - Gergely Büki
- Department of Medical Genetics, Medical School, University of Pécs, Szigeti út 12., H-7624 Pécs, Hungary
| | - Lili Magyari
- Department of Medical Genetics, Medical School, University of Pécs, Szigeti út 12., H-7624 Pécs, Hungary
| | - András Szabó
- Department of Medical Genetics, Medical School, University of Pécs, Szigeti út 12., H-7624 Pécs, Hungary
| | - Béla Melegh
- Department of Medical Genetics, Medical School, University of Pécs, Szigeti út 12., H-7624 Pécs, Hungary
| |
Collapse
|
32
|
Baksh RA, Pape SE, Chan LF, Aslam AA, Gulliford MC, Strydom A. Multiple morbidity across the lifespan in people with Down syndrome or intellectual disabilities: a population-based cohort study using electronic health records. Lancet Public Health 2023; 8:e453-e462. [PMID: 37119823 DOI: 10.1016/s2468-2667(23)00057-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/22/2023] [Accepted: 02/28/2023] [Indexed: 05/01/2023]
Abstract
BACKGROUND The Down syndrome phenotype is well established, but our understanding of its morbidity patterns is limited. We comprehensively estimated the risk of multiple morbidity across the lifespan in people with Down syndrome compared with the general population and controls with other forms of intellectual disability. METHODS In this matched population-based cohort-study design, we used electronic health-record data from the UK Clinical Practice Research Datalink (CRPD) from Jan 1, 1990, to June 29, 2020. We aimed to explore the pattern of morbidities throughout the lifespan of people with Down syndrome compared with people with other intellectual disabilities and the general population, to identify syndrome-specific health conditions and their age-related incidence. We estimated incidence rates per 1000 person-years and incidence rate ratios (IRRs) for 32 common morbidities. Hierarchical clustering was used to identify groups of associated conditions using prevalence data. FINDINGS Between Jan 1, 1990, and June 29, 2020, a total of 10 204 people with Down syndrome, 39 814 controls, and 69 150 people with intellectual disabilities were included. Compared with controls, people with Down syndrome had increased risk of dementia (IRR 94·7, 95% CI 69·9-128·4), hypothyroidism (IRR 10·6, 9·6-11·8), epilepsy (IRR 9·7, 8·5-10·9), and haematological malignancy (IRR 4·7, 3·4-6·3), whereas asthma (IRR 0·88, 0·79-0·98), cancer (solid tumour IRR 0·75, 0·62-0·89), ischaemic heart disease (IRR 0·65, 0·51-0·85), and particularly hypertension (IRR 0·26, 0·22-0·32) were less frequent in people with Down syndrome than in controls. Compared to people with intellectual disabilities, risk of dementia (IRR 16·60, 14·23-19·37), hypothyroidism (IRR 7·22, 6·62-7·88), obstructive sleep apnoea (IRR 4·45, 3·72-5·31), and haematological malignancy (IRR 3·44, 2·58-4·59) were higher in people with Down syndrome, with reduced rates for a third of conditions, including new onset of dental inflammation (IRR 0·88, 0·78-0·99), asthma (IRR 0·82, 0·73-0·91), cancer (solid tumour IRR 0·78, 0·65-0·93), sleep disorder (IRR 0·74, 0·68-0·80), hypercholesterolaemia (IRR 0·69, 0·60-0·80), diabetes (IRR 0·59, 0·52-0·66), mood disorder (IRR 0·55, 0·50-0·60), glaucoma (IRR 0·47, 0·29-0·78), and anxiety disorder (IRR 0·43, 0·38-0·48). Morbidities in Down syndrome could be categorised on age-related incidence trajectories, and their prevalence clustered into typical syndromic conditions, cardiovascular diseases, autoimmune disorders, and mental health conditions. INTERPRETATION Multiple morbidity in Down syndrome shows distinct patterns of age-related incidence trajectories and clustering that differ from those found in the general population and in people with other intellectual disabilities, with implications for provision and timing of health-care screening, prevention, and treatment for people with Down syndrome. FUNDING The European Union's Horizon 2020 Research and Innovation Programme, the Jérôme Lejeune Foundation, the Alzheimer's Society, the Medical Research Council, the Academy of Medical Sciences, the Wellcome Trust, and William Harvey Research Limited.
Collapse
Affiliation(s)
- R Asaad Baksh
- Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK; South London and Maudsley NHS Foundation Trust, London, UK; The LonDowns Consortium, London, UK
| | - Sarah E Pape
- Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK; South London and Maudsley NHS Foundation Trust, London, UK; The LonDowns Consortium, London, UK
| | - Li F Chan
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, UK
| | - Aisha A Aslam
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, UK
| | - Martin C Gulliford
- School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Andre Strydom
- Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK; South London and Maudsley NHS Foundation Trust, London, UK; The LonDowns Consortium, London, UK.
| |
Collapse
|
33
|
Manubens-Gil L, Pons-Espinal M, Gener T, Ballesteros-Yañez I, de Lagrán MM, Dierssen M. Deficits in neuronal architecture but not over-inhibition are main determinants of reduced neuronal network activity in a mouse model of overexpression of Dyrk1A. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.09.531874. [PMID: 36945607 PMCID: PMC10028951 DOI: 10.1101/2023.03.09.531874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Abnormal dendritic arbors, dendritic spine "dysgenesis" and excitation inhibition imbalance are main traits assumed to underlie impaired cognition and behavioral adaptation in intellectual disability. However, how these modifications actually contribute to functional properties of neuronal networks, such as signal integration or storage capacity is unknown. Here, we used a mouse model overexpressing Dyrk1A (Dual-specificity tyrosine [Y]-regulated kinase), one of the most relevant Down syndrome (DS) candidate genes, to gather quantitative data regarding hippocampal neuronal deficits produced by the overexpression of Dyrk1A in mice (TgDyrk1A; TG). TG mice showed impaired hippocampal recognition memory, altered excitation-inhibition balance and deficits in hippocampal CA1 LTP. We also detected for the first time that deficits in dendritic arborization in TG CA1 pyramidal neurons are layer-specific, with a reduction in the width of the stratum radiatum, the postsynaptic target site of CA3 excitatory neurons, but not in the stratum lacunosum-moleculare, which receives temporo-ammonic projections. To interrogate about the functional impact of layer-specific TG dendritic deficits we developed tailored computational multicompartmental models. Computational modelling revealed that neuronal microarchitecture alterations in TG mice lead to deficits in storage capacity, altered the integration of inputs from entorhinal cortex and hippocampal CA3 region onto CA1 pyramidal cells, important for coding place and temporal context and on connectivity and activity dynamics, with impaired the ability to reach high γ oscillations. Contrary to what is assumed in the field, the reduced network activity in TG is mainly contributed by the deficits in neuronal architecture and to a lesser extent by over-inhibition. Finally, given that therapies aimed at improving cognition have also been tested for their capability to recover dendritic spine deficits and excitation-inhibition imbalance, we also tested the short- and long-term changes produced by exposure to environmental enrichment (EE). Exposure to EE normalized the excitation inhibition imbalance and LTP, and had beneficial effects on short-term recognition memory. Importantly, it produced massive but transient dendritic remodeling of hippocampal CA1, that led to recovery of high γ oscillations, the main readout of synchronization of CA1 neurons, in our simulations. However, those effects where not stable and were lost after EE discontinuation. We conclude that layer-specific neuromorphological disturbances produced by Dyrk1A overexpression impair coding place and temporal context. Our results also suggest that treatments targeting structural plasticity, such as EE, even though hold promise towards improved treatment of intellectual disabilities, only produce temporary recovery, due to transient dendritic remodeling.
Collapse
Affiliation(s)
- Linus Manubens-Gil
- SEU-Allen Joint Center, Institute for Brain and Intelligence, Southeast University (SEU), China
| | - Meritxell Pons-Espinal
- Department of Pathology and Experimental Therapeutics, Bellvitge University Hospital-IDIBELL, Barcelona, Spain
- Institute of Biomedicine (IBUB) of the University of Barcelona (UB), Barcelona, Spain
| | - Thomas Gener
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), Campus UAB, Bellaterra, Barcelona, Spain
| | - Inmaculada Ballesteros-Yañez
- Department of Inorganic and Organic Chemistry and Biochemistry, Faculty of Medicine, University of Castilla-La Mancha, Ciudad Real, Spain (UCLM), CRIB, Spain
| | - María Martínez de Lagrán
- Centre for Genomic Regulation (CRG), BIST, Spain
- Center for Biomedical Research in the Network of Rare Diseases (CIBERER), Spain
| | - Mara Dierssen
- Centre for Genomic Regulation (CRG), BIST, Spain
- Center for Biomedical Research in the Network of Rare Diseases (CIBERER), Spain
| |
Collapse
|
34
|
Højberg LM, Lundbye-Jensen J, Wienecke J. Visuomotor skill learning in young adults with Down syndrome. RESEARCH IN DEVELOPMENTAL DISABILITIES 2023; 138:104535. [PMID: 37210919 DOI: 10.1016/j.ridd.2023.104535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 04/14/2023] [Accepted: 05/11/2023] [Indexed: 05/23/2023]
Abstract
BACKGROUND Individuals with Down syndrome (DS) have impaired general motor skills compared to typically developed (TD) individuals. AIMS To gain knowledge on how young adults with DS learn and retain new motor skills. METHODS AND PROCEDURES A DS-group (mean age = 23.9 ± 3 years, N = 11), and an age-matched TD-group (mean age 22.8 ± 1.8, N = 14) were recruited. The participants practiced a visuomotor accuracy tracking task (VATT) in seven blocks (10.6 min). Online and offline effects of practice were assessed based on tests of motor performance at baseline immediate and 7-day retention. OUTCOMES AND RESULTS The TD-group performed better than the DS-group on all blocks (all P < 0.001). Both groups improved VATT-performance online from baseline to immediate retention, (all P < 0.001) with no difference in online effect between groups. A significant between-group difference was observed in the offline effect (∆TD - ∆DS, P = 0.04), as the DS-group's performance at 7-day retention was equal to their performance at immediate retention (∆DS, P > 0.05), whereas an offline decrease in performance was found in the TD-group (∆TD, P < 0.001). CONCLUSIONS AND IMPLICATIONS Visuomotor pinch force accuracy is lower for adults with DS compared to TD. However, adults with DS display significant online improvements in performance with motor practice similar to changes observed for TD. Additionally, adults with DS demonstrate offline consolidation following motor learning leading to significant retention effects.
Collapse
Affiliation(s)
- Laurits Munk Højberg
- Movement & Neuroscience, Department of Nutrition Exercise and Sports, University of Copenhagen, Copenhagen, Denmark.
| | - Jesper Lundbye-Jensen
- Movement & Neuroscience, Department of Nutrition Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Jacob Wienecke
- Movement & Neuroscience, Department of Nutrition Exercise and Sports, University of Copenhagen, Copenhagen, Denmark; Norwegian School of Sport Sciences, Oslo, Norway
| |
Collapse
|
35
|
Prévot V, Pitteloud N. [Down syndrome, GnRH and cognition]. Med Sci (Paris) 2023; 39:316-318. [PMID: 37094260 DOI: 10.1051/medsci/2023037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Affiliation(s)
- Vincent Prévot
- Univ. Lille, Inserm, CHU Lille, laboratoire de développement et plasticité du cerveau neuroendocrine, Lille neuroscience & cognition, UMRS 1172, Lille, France
| | - Nelly Pitteloud
- Centre hospitalier universitaire vaudois, département d'endocrinologie, diabétologie, et métabolisme, Lausanne, Suisse
| |
Collapse
|
36
|
Patthy Á, Hanics J, Zachar G, Kovács GG, Harkany T, Alpár A. Regional redistribution of CB1 cannabinoid receptors in human foetal brains with Down's syndrome and their functional modifications in Ts65Dn +/+ mice. Neuropathol Appl Neurobiol 2023; 49:e12887. [PMID: 36716771 DOI: 10.1111/nan.12887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/01/2023]
Abstract
AIMS The endocannabinoid system with its type 1 cannabinoid receptor (CB1 R) expressed in postmitotic neuroblasts is a critical chemotropic guidance module with its actions cascading across neurogenic commitment, neuronal polarisation and synaptogenesis in vertebrates. Here, we present the systematic analysis of regional CB1 R expression in the developing human brain from gestational week 14 until birth. In parallel, we diagrammed differences in CB1 R development in Down syndrome foetuses and identified altered CB1 R signalling. METHODS Foetal brains with normal development or with Down's syndrome were analysed using standard immunohistochemistry, digitalised light microscopy and image analysis (NanoZoomer). CB1 R function was investigated by in vitro neuropharmacology from neonatal Ts65Dn transgenic mice brains carrying an additional copy of ~90 conserved protein-coding gene orthologues of the human chromosome 21. RESULTS We detected a meshwork of fine-calibre, often varicose processes between the subventricular and intermediate zones of the cortical plate in the late first trimester, when telencephalic fibre tracts develop. The density of CB1 Rs gradually decreased during the second and third trimesters in the neocortex. In contrast, CB1 R density was maintained, or even increased, in the hippocampus. We found the onset of CB1 R expression being delayed by ≥1 month in age-matched foetal brains with Down's syndrome. In vitro, CB1 R excitation induced excess microtubule stabilisation and, consequently, reduced neurite outgrowth. CONCLUSIONS We suggest that neuroarchitectural impairments in Down's syndrome brains involve the delayed development and errant functions of the endocannabinoid system, with a particular impact on endocannabinoids modulating axonal wiring.
Collapse
Affiliation(s)
- Ágoston Patthy
- Department of Anatomy, Semmelweis University, Budapest, Hungary
| | - János Hanics
- Department of Anatomy, Semmelweis University, Budapest, Hungary.,SE NAP Research Group of Experimental Neuroanatomy and Developmental Biology, Semmelweis University, Budapest, Hungary
| | - Gergely Zachar
- Department of Anatomy, Semmelweis University, Budapest, Hungary
| | - Gábor G Kovács
- Institute of Neurology, Medical University of Vienna, Vienna, Austria.,Department of Laboratory Medicine and Pathobiology and Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, Canada
| | - Tibor Harkany
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria.,Department of Neuroscience, Biomedicum, Karolinska Institutet, Solna, Sweden
| | - Alán Alpár
- Department of Anatomy, Semmelweis University, Budapest, Hungary.,SE NAP Research Group of Experimental Neuroanatomy and Developmental Biology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
37
|
Lorenzon N, Musoles-Lleó J, Turrisi F, Gomis-González M, De La Torre R, Dierssen M. State-of-the-art therapy for Down syndrome. Dev Med Child Neurol 2023. [PMID: 36692980 DOI: 10.1111/dmcn.15517] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/04/2022] [Accepted: 12/19/2022] [Indexed: 01/25/2023]
Abstract
In the last decade, an important effort was made in the field of Down syndrome to find new interventions that improve cognition. These therapies have added to the traditional symptomatic treatments and to the drugs for treating Alzheimer disease in the general population repurposed for Down syndrome. Defining next-generation therapeutics will involve biomarker-based therapeutic decision-making, and preventive and multimodal interventions. However, translation of specific findings into effective therapeutic strategies has been disappointingly slow and has failed in many cases at the clinical level, leading to reduced credibility of mouse studies. This is aggravated by a tendency to favour large-magnitude effects and highly significant findings, leading to high expectations but also to a biased view of the complex pathophysiology of Down syndrome. Here, we review some of the most recent and promising strategies for ameliorating the cognitive state of individuals with Down syndrome. We studied the landscape of preclinical and clinical studies and conducted a thorough literature search on PubMed and ClinicalTrials.gov for articles published between June 2012 and August 2022 on therapies for ameliorating cognitive function in individuals with Down syndrome. We critically assess current therapeutic approaches, why therapies fail in clinical trials in Down syndrome, and what could be the path forward. We discuss some intrinsic difficulties for translational research, and the need for a framework that improves the detection of drug efficacy to avoid discarding compounds too early from the companies' pipelines.
Collapse
Affiliation(s)
- Nicola Lorenzon
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Juanluis Musoles-Lleó
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Federica Turrisi
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain.,Integrative Pharmacology and Systems Neurosciences Research Group, Neurosciences Research Program, Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Maria Gomis-González
- Integrative Pharmacology and Systems Neurosciences Research Group, Neurosciences Research Program, Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Rafael De La Torre
- Universitat Pompeu Fabra, Barcelona, Spain.,Integrative Pharmacology and Systems Neurosciences Research Group, Neurosciences Research Program, Hospital del Mar Medical Research Institute, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Mara Dierssen
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras, Barcelona, Spain
| |
Collapse
|
38
|
Fernández-Blanco Á, Zamora-Moratalla A, Sabariego-Navarro M, Dierssen M. Defective engram allocation contributes to impaired fear memory performance in Down syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.11.523460. [PMID: 36711850 PMCID: PMC9882045 DOI: 10.1101/2023.01.11.523460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Down syndrome (DS) is the most common genetic form of intellectual disability (ID). The cellular and molecular mechanisms contributing to ID in DS are not completely understood. Recent evidence indicates that a given memory is encoded by sparsely distributed neurons, highly activated during learning, the engram cells. Intriguingly, mechanisms that are of paramount importance for engram formation are impaired in DS. Here we explored engram formation in a DS mouse model, the Ts65Dn and we found a reduced number of engram cells in the dentate gyrus (DG), suggesting reduced neuronal allocation to engrams. We also show that trisomic engram cells present reduced number of mature spines than WT engram cells and their excitability is not enhanced during memory recall. In fact, activation of engram cells using a chemogenetic approach does not recover memory deficits in Ts65Dn. Altogether, our findings suggest that perturbations in engram neurons may play a significant role in memory alterations in DS.
Collapse
|
39
|
Seol S, Kwon J, Kang HJ. Cell type characterization of spatiotemporal gene co-expression modules in Down syndrome brain. iScience 2022; 26:105884. [PMID: 36647384 PMCID: PMC9840153 DOI: 10.1016/j.isci.2022.105884] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/02/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Down syndrome (DS) is the most common genetic cause of intellectual disability and increases the risk of other brain-related dysfunctions, like seizures, early-onset Alzheimer's disease, and autism. To reveal the molecular profiles of DS-associated brain phenotypes, we performed a meta-data analysis of the developmental DS brain transcriptome at cell type and co-expression module levels. In the DS brain, astrocyte-, microglia-, and endothelial cell-associated genes show upregulated patterns, whereas neuron- and oligodendrocyte-associated genes show downregulated patterns. Weighted gene co-expression network analysis identified cell type-enriched co-expressed gene modules. We present eight representative cell-type modules for neurons, astrocytes, oligodendrocytes, and microglia. We classified the neuron modules into glutamatergic and GABAergic neurons and associated them with detailed subtypes. Cell type modules were interpreted by analyzing spatiotemporal expression patterns, functional annotations, and co-expression networks of the modules. This study provides insight into the mechanisms underlying brain abnormalities in DS and related disorders.
Collapse
Affiliation(s)
- Sihwan Seol
- Department of Life Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Joonhong Kwon
- Department of Life Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Hyo Jung Kang
- Department of Life Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea,Corresponding author
| |
Collapse
|
40
|
Ortega M, De Toma I, Fernández-Blanco Á, Calderón A, Barahona L, Trullàs R, Sabidó E, Dierssen M. Proteomic profiling reveals mitochondrial dysfunction in the cerebellum of transgenic mice overexpressing DYRK1A, a Down syndrome candidate gene. Front Mol Neurosci 2022; 15:1015220. [PMID: 36590914 PMCID: PMC9800213 DOI: 10.3389/fnmol.2022.1015220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction DYRK1A is a dual-specificity kinase that is overexpressed in Down syndrome (DS) and plays a key role in neurogenesis, neuronal differentiation and function, cognitive phenotypes, and aging. Dyrk1A has also been implicated in cerebellar abnormalities observed in association with DS, and normalization of Dyrk1A dosage rescues granular and Purkinje cell densities in a trisomic DS mouse model. However, the underlying molecular mechanisms governing these processes are unknown. Methods To shed light on the effects of Dyrk1A overexpression in the cerebellum, here we investigated the cerebellar proteome in transgenic Dyrk1A overexpressing mice in basal conditions and after treatment with green tea extract containing epigallocatechin-3-gallate (EGCG), a DYRK1A inhibitor. Results and Discussion Our results showed that Dyrk1A overexpression alters oxidative phosphorylation and mitochondrial function in the cerebellum of transgenic mice. These alterations are significantly rescued upon EGCG-containing green tea extract treatment, suggesting that its effects in DS could depend in part on targeting mitochondria, as shown by the partially restoration by the treatment of the increased mtDNA copy number in TG non-treated mice.
Collapse
Affiliation(s)
- Mireia Ortega
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ilario De Toma
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Álvaro Fernández-Blanco
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Anna Calderón
- Instituto de Investigaciones Biomédicas de Barcelona, IIBB/CSIC y Centro de Investigación Biomédica en Red, Barcelona, Spain
| | - Lucía Barahona
- Instituto de Investigaciones Biomédicas de Barcelona, IIBB/CSIC y Centro de Investigación Biomédica en Red, Barcelona, Spain
| | - Ramón Trullàs
- Instituto de Investigaciones Biomédicas de Barcelona, IIBB/CSIC y Centro de Investigación Biomédica en Red, Barcelona, Spain
| | - Eduard Sabidó
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain,Department of Experimental Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Mara Dierssen
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain,Department of Experimental Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain,*Correspondence: Mara Dierssen,
| |
Collapse
|
41
|
Afzal O, Dalhat MH, Altamimi ASA, Rasool R, Alzarea SI, Almalki WH, Murtaza BN, Iftikhar S, Nadeem S, Nadeem MS, Kazmi I. Green Tea Catechins Attenuate Neurodegenerative Diseases and Cognitive Deficits. Molecules 2022; 27:7604. [PMID: 36364431 PMCID: PMC9655201 DOI: 10.3390/molecules27217604] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/29/2022] [Accepted: 11/03/2022] [Indexed: 08/12/2023] Open
Abstract
Neurodegenerative diseases exert an overwhelming socioeconomic burden all around the globe. They are mainly characterized by modified protein accumulation that might trigger various biological responses, including oxidative stress, inflammation, regulation of signaling pathways, and excitotoxicity. These disorders have been widely studied during the last decade in the hopes of developing symptom-oriented therapeutics. However, no definitive cure has yet been discovered. Tea is one of the world's most popular beverages. The same plant, Camellia Sinensis (L.).O. Kuntze, is used to make green, black, and oolong teas. Green tea has been most thoroughly studied because of its anti-cancer, anti-obesity, antidiabetic, anti-inflammatory, and neuroprotective properties. The beneficial effect of consumption of tea on neurodegenerative disorders has been reported in several human interventional and observational studies. The polyphenolic compounds found in green tea, known as catechins, have been demonstrated to have many therapeutic effects. They can help in preventing and, somehow, treating neurodegenerative diseases. Catechins show anti-inflammatory as well as antioxidant effects via blocking cytokines' excessive production and inflammatory pathways, as well as chelating metal ions and free radical scavenging. They may inhibit tau protein phosphorylation, amyloid beta aggregation, and release of apoptotic proteins. They can also lower alpha-synuclein levels and boost dopamine levels. All these factors have the potential to affect neurodegenerative disorders. This review will examine catechins' neuroprotective effects by highlighting their biological, pharmacological, antioxidant, and metal chelation abilities, with a focus on their ability to activate diverse cellular pathways in the brain. This review also points out the mechanisms of catechins in various neurodegenerative and cognitive diseases, including Alzheimer's, Parkinson's, multiple sclerosis, and cognitive deficit.
Collapse
Affiliation(s)
- Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mahmood Hassan Dalhat
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdulmalik S. A. Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Rabia Rasool
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan
| | - Sami I. Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Aljouf, Sakaka 72341, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Bibi Nazia Murtaza
- Department of Zoology, Abbottabad University of Science and Technology (AUST), Abbottabad 22310, Pakistan
| | - Saima Iftikhar
- School of Biological Sciences, University of the Punjab, Lahore 54000, Pakistan
| | - Shamaila Nadeem
- Department of Zoology, Kinnaird College for Women, 93-Jail Road Lahore, Lahore 54000, Pakistan
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
42
|
Angulo-Chavira AQ, Castellón-Flores AM, Barrón-Martínez JB, Arias-Trejo N. Word prediction using closely and moderately related verbs in Down syndrome. Front Psychol 2022; 13:934826. [PMID: 36262448 PMCID: PMC9574260 DOI: 10.3389/fpsyg.2022.934826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 09/13/2022] [Indexed: 12/02/2022] Open
Abstract
People with Down syndrome (DS) have several difficulties in language learning, and one of the areas most affected is language production. Theoretical frameworks argue that prediction depends on the production system. Yet, people with DS can predict upcoming nouns using semantically related verbs. Possibly, prediction skills in people with DS are driven by their associative mechanism rather than by the prediction mechanism based on the production system. This study explores prediction mechanisms in people with DS and their relationship with production skills. Three groups were evaluated in a preferential-looking task: young adults, children with DS, and a typically developing control group paired by sex and mental age. Participants saw two images, a target and a distractor. They also heard a sentence in one of the three conditions: with a verb that was closely related to the object (e.g., "The woman read the book"), with a verb that was moderately related to the object (e.g., "My uncle waited for the bus"), or with a verb that was unrelated to the object (e.g., "My sister threw a broom"). Their productive vocabulary was then measured. In the young adult and typically developing groups, the results showed prediction in sentences with highly and moderately related verbs. Participants with DS, however, showed prediction skills only in the highly related context. There was no influence of chronological age, mental age, or production on prediction skills. These results indicate that people with DS base prediction mainly on associative mechanisms and they have difficulty in generating top-down predictions.
Collapse
Affiliation(s)
- Armando Q. Angulo-Chavira
- Laboratorio de Psicolingüística, Facultad de Psicología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alejandra M. Castellón-Flores
- Laboratorio de Psicolingüística, Facultad de Psicología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Julia B. Barrón-Martínez
- Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Natalia Arias-Trejo
- Laboratorio de Psicolingüística, Facultad de Psicología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
43
|
Amin MA, Khan II, Nahin S, Bonna A, Afrin S, Hawlader MDH. COVID-19 hospitalization with later long COVID in a person with Down syndrome. Clin Case Rep 2022; 10:e6425. [PMID: 36245462 PMCID: PMC9540596 DOI: 10.1002/ccr3.6425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/27/2022] [Accepted: 09/20/2022] [Indexed: 11/12/2022] Open
Abstract
Viruses that induce pulmonary difficulties and auto-inflammation are more common in people with Down syndrome. They also have a higher number of comorbidities associated with a worse prognosis than the overall population. Adult patients with acute COVID-19 are increasingly being diagnosed with Long COVID. However, patients with Down syndrome with later long COVID-19 are the first example documented in Bangladesh.
Collapse
Affiliation(s)
- Mohammad Ashraful Amin
- Department of Public HealthNorth South UniversityDhakaBangladesh
- Public Health Professional Development Society (PPDS)DhakaBangladesh
| | | | - Sabrina Nahin
- Department of PhysiologyGreen Life Medical College HospitalDhakaBangladesh
| | - Atia Sharmin Bonna
- Public Health Professional Development Society (PPDS)DhakaBangladesh
- Public Health EpidemiologistHN & HIV Sector, Save the ChildrenDhakaBangladesh
| | - Sadia Afrin
- Department of Public HealthNorth South UniversityDhakaBangladesh
- Public Health Professional Development Society (PPDS)DhakaBangladesh
| | | |
Collapse
|
44
|
Biazzo M, Allegra M, Deidda G. Clostridioides difficile and neurological disorders: New perspectives. Front Neurosci 2022; 16:946601. [PMID: 36203814 PMCID: PMC9530032 DOI: 10.3389/fnins.2022.946601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/24/2022] [Indexed: 12/02/2022] Open
Abstract
Despite brain physiological functions or pathological dysfunctions relying on the activity of neuronal/non-neuronal populations, over the last decades a plethora of evidence unraveled the essential contribution of the microbial populations living and residing within the gut, called gut microbiota. The gut microbiota plays a role in brain (dys)functions, and it will become a promising valuable therapeutic target for several brain pathologies. In the present mini-review, after a brief overview of the role of gut microbiota in normal brain physiology and pathology, we focus on the role of the bacterium Clostridioides difficile, a pathogen responsible for recurrent and refractory infections, in people with neurological diseases, summarizing recent correlative and causative evidence in the scientific literature and highlighting the potential of microbiota-based strategies targeting this pathogen to ameliorate not only gastrointestinal but also the neurological symptoms.
Collapse
Affiliation(s)
- Manuele Biazzo
- The BioArte Limited, Life Sciences Park, San Gwann, Malta
- SienabioACTIVE, University of Siena, Siena, Italy
| | - Manuela Allegra
- Neuroscience Institute, National Research Council (IN-CNR), Padua, Italy
| | - Gabriele Deidda
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- *Correspondence: Gabriele Deidda
| |
Collapse
|
45
|
García O, Flores-Aguilar L. Astroglial and microglial pathology in Down syndrome: Focus on Alzheimer's disease. Front Cell Neurosci 2022; 16:987212. [PMID: 36212691 PMCID: PMC9533652 DOI: 10.3389/fncel.2022.987212] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Down syndrome (DS) arises from the triplication of human chromosome 21 and is considered the most common genetic cause of intellectual disability. Glial cells, specifically astroglia and microglia, display pathological alterations that might contribute to DS neuropathological alterations. Further, in middle adulthood, people with DS develop clinical symptoms associated with premature aging and Alzheimer's disease (AD). Overexpression of the amyloid precursor protein (APP) gene, encoded on chromosome 21, leads to increased amyloid-β (Aβ) levels and subsequent formation of Aβ plaques in the brains of individuals with DS. Amyloid-β deposition might contribute to astroglial and microglial reactivity, leading to neurotoxic effects and elevated secretion of inflammatory mediators. This review discusses evidence of astroglial and microglial alterations that might be associated with the AD continuum in DS.
Collapse
Affiliation(s)
- Octavio García
- Facultad de Psicología, Unidad de Investigación en Psicobiología y Neurociencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- *Correspondence: Octavio García
| | - Lisi Flores-Aguilar
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
46
|
Manfredi-Lozano M, Leysen V, Adamo M, Paiva I, Rovera R, Pignat JM, Timzoura FE, Candlish M, Eddarkaoui S, Malone SA, Silva MSB, Trova S, Imbernon M, Decoster L, Cotellessa L, Tena-Sempere M, Claret M, Paoloni-Giacobino A, Plassard D, Paccou E, Vionnet N, Acierno J, Maceski AM, Lutti A, Pfrieger F, Rasika S, Santoni F, Boehm U, Ciofi P, Buée L, Haddjeri N, Boutillier AL, Kuhle J, Messina A, Draganski B, Giacobini P, Pitteloud N, Prevot V. GnRH replacement rescues cognition in Down syndrome. Science 2022; 377:eabq4515. [PMID: 36048943 PMCID: PMC7613827 DOI: 10.1126/science.abq4515] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
At the present time, no viable treatment exists for cognitive and olfactory deficits in Down syndrome (DS). We show in a DS model (Ts65Dn mice) that these progressive nonreproductive neurological symptoms closely parallel a postpubertal decrease in hypothalamic as well as extrahypothalamic expression of a master molecule that controls reproduction-gonadotropin-releasing hormone (GnRH)-and appear related to an imbalance in a microRNA-gene network known to regulate GnRH neuron maturation together with altered hippocampal synaptic transmission. Epigenetic, cellular, chemogenetic, and pharmacological interventions that restore physiological GnRH levels abolish olfactory and cognitive defects in Ts65Dn mice, whereas pulsatile GnRH therapy improves cognition and brain connectivity in adult DS patients. GnRH thus plays a crucial role in olfaction and cognition, and pulsatile GnRH therapy holds promise to improve cognitive deficits in DS.
Collapse
Affiliation(s)
- Maria Manfredi-Lozano
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, LabexDistAlz, Lille, France
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 days for health, EGID, Lille, France
| | - Valerie Leysen
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, LabexDistAlz, Lille, France
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 days for health, EGID, Lille, France
| | - Michela Adamo
- Department of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, 1011 Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne 1005, Switzerland
| | - Isabel Paiva
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364, Université de Strasbourg-CNRS, Strasbourg, France
| | - Renaud Rovera
- Univ. Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron 69500, France
| | - Jean-Michel Pignat
- Department of Clinical Neurosciences, Neurorehabilitation Unit, University Hospital CHUV, Lausanne, Switzerland
| | - Fatima Ezzahra Timzoura
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, LabexDistAlz, Lille, France
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 days for health, EGID, Lille, France
| | - Michael Candlish
- Experimental Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, 66421, Homburg, Germany
| | - Sabiha Eddarkaoui
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, LabexDistAlz, Lille, France
| | - Samuel A. Malone
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, LabexDistAlz, Lille, France
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 days for health, EGID, Lille, France
| | - Mauro S. B. Silva
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, LabexDistAlz, Lille, France
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 days for health, EGID, Lille, France
| | - Sara Trova
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, LabexDistAlz, Lille, France
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 days for health, EGID, Lille, France
| | - Monica Imbernon
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, LabexDistAlz, Lille, France
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 days for health, EGID, Lille, France
| | - Laurine Decoster
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, LabexDistAlz, Lille, France
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 days for health, EGID, Lille, France
| | - Ludovica Cotellessa
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, LabexDistAlz, Lille, France
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 days for health, EGID, Lille, France
| | - Manuel Tena-Sempere
- Univ. Cordoba, IMIBC/HURS, CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Cordoba, Spain
| | - Marc Claret
- Neuronal Control of Metabolism Laboratory, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08036 Barcelona, Spain
| | - Ariane Paoloni-Giacobino
- Department of Genetic Medicine, University Hospitals of Geneva, 4 rue Gabrielle-Perret-Gentil, 1211, Genève 14, Switzerland
| | - Damien Plassard
- CNRS UMR 7104, INSERM U1258, GenomEast Platform, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, Illkirch, France
| | - Emmanuelle Paccou
- Department of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Nathalie Vionnet
- Department of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - James Acierno
- Department of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Aleksandra Maleska Maceski
- Neurologic Clinic and Polyclinic, MS Centre and Research Centre for Clinical Neuroimmunology and Neuroscience Basel; University Hospital Basel, University of Basel, Basel Switzerland
| | - Antoine Lutti
- Laboratory for Research in Neuroimaging LREN, Centre for Research in Neurosciences, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Frank Pfrieger
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, 67000 Strasbourg, France
| | - S. Rasika
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, LabexDistAlz, Lille, France
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 days for health, EGID, Lille, France
| | - Federico Santoni
- Faculty of Biology and Medicine, University of Lausanne, Lausanne 1005, Switzerland
| | - Ulrich Boehm
- Experimental Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, 66421, Homburg, Germany
| | - Philippe Ciofi
- Univ. Bordeaux, Inserm, U1215, Neurocentre Magendie, Bordeaux, France
| | - Luc Buée
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, LabexDistAlz, Lille, France
| | - Nasser Haddjeri
- Univ. Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron 69500, France
| | - Anne-Laurence Boutillier
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364, Université de Strasbourg-CNRS, Strasbourg, France
| | - Jens Kuhle
- Neurologic Clinic and Polyclinic, MS Centre and Research Centre for Clinical Neuroimmunology and Neuroscience Basel; University Hospital Basel, University of Basel, Basel Switzerland
| | - Andrea Messina
- Department of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, 1011 Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne 1005, Switzerland
| | - Bogdan Draganski
- Laboratory for Research in Neuroimaging LREN, Centre for Research in Neurosciences, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Switzerland
- Neurology Department, Max-Planck-Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Paolo Giacobini
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, LabexDistAlz, Lille, France
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 days for health, EGID, Lille, France
| | - Nelly Pitteloud
- Department of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, 1011 Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne 1005, Switzerland
| | - Vincent Prevot
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, LabexDistAlz, Lille, France
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 days for health, EGID, Lille, France
| |
Collapse
|
47
|
Janelidze S, Christian BT, Price J, Laymon C, Schupf N, Klunk WE, Lott I, Silverman W, Rosas HD, Zaman S, Mapstone M, Lai F, Ances BM, Handen BL, Hansson O. Detection of Brain Tau Pathology in Down Syndrome Using Plasma Biomarkers. JAMA Neurol 2022; 79:797-807. [PMID: 35789365 PMCID: PMC9257682 DOI: 10.1001/jamaneurol.2022.1740] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/06/2022] [Indexed: 01/25/2023]
Abstract
Importance Novel plasma biomarkers, especially phosphorylated tau (p-tau), can detect brain tau aggregates in Alzheimer disease. Objective To determine which plasma biomarker combinations can accurately detect tau pathological brain changes in Down syndrome (DS). Design, Setting, and Participants The cross-sectional, multicenter Alzheimer's Biomarker Consortium-Down Syndrome study included adults with DS and a control group of siblings without DS. All participants with plasma, positron emission tomography (PET), and cognitive measures available by the time of data freeze 1.0 were included. Participants were enrolled between 2016 and 2019, and data were analyzed from August 2021 to April 2022. Exposures Plasma p-tau217, glial fibrillary acidic protein (GFAP), amyloid β42/40 (Aβ42/Aβ40), neurofilament light (NfL), and total tau (t-tau); tau positron emission tomography (tau-PET) and Aβ-PET. Main Outcomes and Measures The primary outcome was tau-PET status. Secondary outcomes included Aβ-PET status and cognitive performance. Results Among 300 participants with DS and a control group of 37 non-DS siblings, mean (SD) age was 45.0 (10.1) years, and 167 (49.6%) were men. Among participants with DS who all underwent plasma p-tau217 and GFAP analyses, 258 had other plasma biomarker data available and 119, 213, and 288 participants had tau-PET, Aβ-PET, and cognitive assessments, respectively. Plasma p-tau217 and t-tau were significantly increased in Aβ-PET-positive tau-PET-positive (A+T+) DS and A+T- DS compared with A-T- DS while GFAP was only increased in A+T+ DS. Plasma p-tau217 levels were also significantly higher in A+T+ DS than A+T- DS. In participants with DS, plasma p-tau217 and GFAP (but not other plasma biomarkers) were consistently associated with abnormal tau-PET and Aβ-PET status in models covaried for age (odds ratio range, 1.59 [95% CI, 1.05-2.40] to 2.32 [95% CI, 1.36-3.96]; P < .03). A combination of p-tau217 and age performed best when detecting tau-PET abnormality in temporal and neocortical regions (area under the curve [AUC] range, 0.96-0.99). The most parsimonious model for Aβ-PET status included p-tau217, t-tau, and age (AUC range, 0.93-0.95). In multivariable models, higher p-tau217 levels but not other biomarkers were associated with worse performance on DS Mental Status Examination (β, -0.24, 95% CI, -0.36 to -0.12; P < .001) and Cued Recall Test (β, -0.40; 95% CI, -0.53 to -0.26; P < .001). Conclusions and Relevance Plasma p-tau217 is a very accurate blood-based biomarker of both tau and Aβ pathological brain changes in DS that could help guide screening and enrichment strategies for inclusion of individuals with DS in future AD clinical trials, especially when it is combined with age as a covariate.
Collapse
Affiliation(s)
- Shorena Janelidze
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | | | - Julie Price
- Harvard Medical School, Department of Radiology, Massachusetts General Hospital, Charlestown
| | - Charles Laymon
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Nicole Schupf
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York
| | - William E. Klunk
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ira Lott
- School of Medicine, Department of Pediatrics, University of California, Irvine
| | - Wayne Silverman
- School of Medicine, Department of Pediatrics, University of California, Irvine
| | - H. Diana Rosas
- Harvard Medical School, Department of Radiology, Massachusetts General Hospital, Charlestown
- Harvard Medical School, Department of Neurology, Massachusetts General Hospital, Charlestown
| | - Shahid Zaman
- School of Clinical Medicine, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Mark Mapstone
- Department of Neurology, University of California, Irvine
| | - Florence Lai
- Harvard Medical School, Department of Neurology, Massachusetts General Hospital, Charlestown
| | - Beau M. Ances
- Washington University School of Medicine in St Louis, St Louis, Missouri
| | - Benjamin L. Handen
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
48
|
Viard J, Loe-Mie Y, Daudin R, Khelfaoui M, Plancon C, Boland A, Tejedor F, Huganir RL, Kim E, Kinoshita M, Liu G, Haucke V, Moncion T, Yu E, Hindie V, Bléhaut H, Mircher C, Herault Y, Deleuze JF, Rain JC, Simonneau M, Lepagnol-Bestel AM. Chr21 protein-protein interactions: enrichment in proteins involved in intellectual disability, autism, and late-onset Alzheimer's disease. Life Sci Alliance 2022; 5:e202101205. [PMID: 35914814 PMCID: PMC9348576 DOI: 10.26508/lsa.202101205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 11/24/2022] Open
Abstract
Down syndrome (DS) is caused by human chromosome 21 (HSA21) trisomy. It is characterized by a poorly understood intellectual disability (ID). We studied two mouse models of DS, one with an extra copy of the <i>Dyrk1A</i> gene (189N3) and the other with an extra copy of the mouse Chr16 syntenic region (Dp(16)1Yey). RNA-seq analysis of the transcripts deregulated in the embryonic hippocampus revealed an enrichment in genes associated with chromatin for the 189N3 model, and synapses for the Dp(16)1Yey model. A large-scale yeast two-hybrid screen (82 different screens, including 72 HSA21 baits and 10 rebounds) of a human brain library containing at least 10<sup>7</sup> independent fragments identified 1,949 novel protein-protein interactions. The direct interactors of HSA21 baits and rebounds were significantly enriched in ID-related genes (<i>P</i>-value < 2.29 × 10<sup>-8</sup>). Proximity ligation assays showed that some of the proteins encoded by HSA21 were located at the dendritic spine postsynaptic density, in a protein network at the dendritic spine postsynapse. We located HSA21 DYRK1A and DSCAM, mutations of which increase the risk of autism spectrum disorder (ASD) 20-fold, in this postsynaptic network. We found that an intracellular domain of DSCAM bound either DLGs, which are multimeric scaffolds comprising receptors, ion channels and associated signaling proteins, or DYRK1A. The DYRK1A-DSCAM interaction domain is conserved in <i>Drosophila</i> and humans. The postsynaptic network was found to be enriched in proteins associated with ARC-related synaptic plasticity, ASD, and late-onset Alzheimer's disease. These results highlight links between DS and brain diseases with a complex genetic basis.
Collapse
Affiliation(s)
- Julia Viard
- Centre Psychiatrie and Neurosciences, INSERM U894, Paris, France
- Laboratoire de Génomique Fonctionnelle, CNG, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Evry, France
| | - Yann Loe-Mie
- Centre Psychiatrie and Neurosciences, INSERM U894, Paris, France
| | - Rachel Daudin
- Centre Psychiatrie and Neurosciences, INSERM U894, Paris, France
| | - Malik Khelfaoui
- Centre Psychiatrie and Neurosciences, INSERM U894, Paris, France
| | - Christine Plancon
- Laboratoire de Génomique Fonctionnelle, CNG, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Evry, France
| | - Anne Boland
- Laboratoire de Génomique Fonctionnelle, CNG, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Evry, France
| | - Francisco Tejedor
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández (CSIC-UMH), Universidad Miguel Hernandez-Campus de San Juan, San Juan, Spain
| | - Richard L Huganir
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Eunjoon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Makoto Kinoshita
- Department of Molecular Biology, Division of Biological Science, Nagoya University Graduate School of Science, Nagoya, Japan
| | - Guofa Liu
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | - Volker Haucke
- Department of Molecular Pharmacology and Cell Biology, Leibniz Institut für Molekulare Pharmakologie (FMP) and Freie Universität Berlin, Berlin, Germany
| | | | - Eugene Yu
- Department of Cellular and Molecular Biology, Roswell Park Division of Graduate School, State University of New York at Buffalo, Buffalo, NY, USA
| | | | | | | | - Yann Herault
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- INSERM, U964, Illkirch, France
- Université de Strasbourg, Illkirch, France
- PHENOMIN, Institut Clinique de la Souris, ICS, GIE CERBM, CNRS, INSERM, Université de Strasbourg, Illkirch-Graffenstaden, France
| | - Jean-François Deleuze
- Laboratoire de Génomique Fonctionnelle, CNG, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Evry, France
| | | | - Michel Simonneau
- Centre Psychiatrie and Neurosciences, INSERM U894, Paris, France
- Université Paris-Saclay, CNRS, ENS Paris-Saclay, CentraleSupélec, LuMIn, Gif sur Yvette, France
- Department of Biology, Ecole Normale Supérieure Paris-Saclay Université Paris-Saclay, Gif sur Yvette, France
| | | |
Collapse
|
49
|
Chen L, Wang L, Wang Y, Hu H, Zhan Y, Zeng Z, Liu L. Global, Regional, and National Burden and Trends of Down Syndrome From 1990 to 2019. Front Genet 2022; 13:908482. [PMID: 35910218 PMCID: PMC9337874 DOI: 10.3389/fgene.2022.908482] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction: Down syndrome (DS) is the leading cause of genetically defined intellectual disability and congenital birth defects worldwide. A large population of people diagnosed with DS globally is posing an enormous socioeconomic burden. However, the global burden and trends of DS have not been reported. Methods: Based on the data from the Global Burden of Disease database in 2019, we analyzed the incidence, prevalence, disability-adjusted life years (DALYs), and death of DS from 1990 to 2019 according to sex, age, regions, and social-demographic index (SDI). Then, age-standardized rates (ASRs) and estimated annual percentage change (EAPC) of these aforementioned indexes were calculated to evaluate the temporal trend of DS. Finally, the association of SDI with DS epidemiological parameters was assessed. Results: In the past 30 years, the incident cases, age-standardized incident rate (ASIR), and age-standardized prevalent rate (ASPR) of DS first decreased slightly and subsequently increased globally. The number of prevalent cases increased steadily, while the number and age-standardized rate (ASRs) of DALYs and deaths decreased gradually from 1990 to 2019. In the meantime, disease burdens were different across various SDI regions. The prevalent cases and ASPR for both sexes were increasing in all SDI regions except for the high-middle SDI region. At the national level, Brunei Darussalam, Ireland, and Haiti were the top three countries with the highest ASIR in 2019. Georgia was in the top three with the highest increase in ASRs of four parameters, while Serbia was consistently ranked in the top three with fastest declining. Furthermore, we found that ASIR and ASPR were positively correlated with SDI, yet the age-standardized DALYs and age-standardized death rate (ASDR) were negatively correlated with SDI. Conclusion: In the past 30 years, the burden and trends of DS were heterogeneous across different regions and countries with different sociodemographic characteristics. Great improvements had been achieved in reducing DALYs and deaths globally. However, the increased number and ASRs of incident and prevalent cases in some regions, especially in low SDI regions, were contributing to numerous challenges to public health. The findings may provide valuable information to the development or implementation of more effective measures.
Collapse
Affiliation(s)
- Liyuan Chen
- Department of Obstetrics and Gynecology, Wuhan No 1 Hospital, Wuhan, China
| | - Lifei Wang
- Department of Obstetrics and Gynecology, Wuhan No 1 Hospital, Wuhan, China
| | - Yi Wang
- Second Clinical College, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haishan Hu
- Department of Reproductive Medicine, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Wuhan, China
| | - Yuan Zhan
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhilin Zeng
- Department and Institute of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lidan Liu
- Department of Obstetrics and Gynecology, Wuhan No 1 Hospital, Wuhan, China
- *Correspondence: Lidan Liu,
| |
Collapse
|
50
|
Martinez de Lagran M, Elizalde-Torrent A, Paredes R, Clotet B, Dierssen M. Lamivudine, a reverse transcriptase inhibitor, rescues cognitive deficits in a mouse model of down syndrome. J Cell Mol Med 2022; 26:4210-4215. [PMID: 35762509 PMCID: PMC9344819 DOI: 10.1111/jcmm.17411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/05/2022] [Accepted: 05/11/2022] [Indexed: 11/18/2022] Open
Abstract
An elevated activity of retrotransposons is increasingly recognized to be implicated in a wide range of neurodegenerative and neurodevelopmental diseases. Down syndrome (DS) is the most common genetic disorder associated with intellectual disability and a genetic form of Alzheimer's disease. For this reason, we hypothesized that treatment with reverse transcriptase inhibitors could ameliorate DS phenotypes. In this proof of concept study, we treated trisomic (Ts65Dn) mice, a model of DS, with lamivudine, a reverse transcriptase inhibitor. We detected a significant improvement of neurobehavioural phenotypes, and a complete rescue of the hippocampal‐dependent recognition memory upon treatment with lamivudine. Despite clinical studies in patients with DS are warranted, this study lays the groundwork for a novel and actionable therapeutic approach.
Collapse
Affiliation(s)
- Maria Martinez de Lagran
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | | | - Roger Paredes
- IrsiCaixa AIDS Research Institute, Badalona, Spain.,University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
| | - Bonaventura Clotet
- IrsiCaixa AIDS Research Institute, Badalona, Spain.,University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
| | - Mara Dierssen
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| |
Collapse
|