1
|
Aazmi O, Aswale AR, Saju L, Chugh J. Investigating the role of conformational heterogeneity in FUS-RRM fibrillation. Int J Biol Macromol 2025; 311:143954. [PMID: 40334877 DOI: 10.1016/j.ijbiomac.2025.143954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Revised: 04/28/2025] [Accepted: 05/04/2025] [Indexed: 05/09/2025]
Abstract
The Fused in Sarcoma (FUS) protein, previously implicated in neurodegenerative diseases, contains N- and C-terminal LC-rich regions, a zinc finger motif flanked by two RG-rich regions, and a single RNA-recognition motif (RRM). FUS-RRM monomers undergo amyloid-like aggregation, however, the detailed molecular insights into the fibrillation process are yet to be deciphered. Here, we investigated the conformational heterogeneity of FUS-RRM using NMR relaxation-dispersion experiments. We observed that the monomer (M) exists in a dynamic exchange with an excited state (ES), which gets perturbed by altering the pH. Although the overall fold of the FUS-RRM remains unperturbed at the lower pH, aggregation kinetics increase. The data suggests a coupling of the conformational heterogeneity to aggregation kinetics wherein a perturbation to ES probably acts as a switch that controls the fibrillation process under physiological and stress conditions. These results add to the understanding of the fibrillation process, thereby paving the way for a better understanding of the role of FUS in neurodegenerative diseases.
Collapse
Affiliation(s)
- Osama Aazmi
- Department of Biology, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Akshit Rajendra Aswale
- Department of Biology, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Leo Saju
- Department of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Maruthamala P. O, Vithura, Kerala 695551, India
| | - Jeetender Chugh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pashan, Pune 411008, India.
| |
Collapse
|
2
|
Kelliny S, Zhou X, Bobrovskaya L. Alzheimer's Disease and Frontotemporal Dementia: A Review of Pathophysiology and Therapeutic Approaches. J Neurosci Res 2025; 103:e70046. [PMID: 40387258 PMCID: PMC12087441 DOI: 10.1002/jnr.70046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 04/01/2025] [Accepted: 05/02/2025] [Indexed: 05/20/2025]
Abstract
Alzheimer's disease (AD) is a devastating form of dementia, with the number of affected individuals rising sharply. The main hallmarks of the disease include amyloid-beta plaque deposits and neurofibrillary tangles consisting of hyperphosphorylated tau protein, besides other pathological features that contribute to the disease's complexity. The causes of sporadic AD are multifactorial and mostly age-related and involve risk factors such as diabetes and cardiovascular or cerebrovascular disorders. Frontotemporal dementia (FTD) is another type of dementia characterized by a spectrum of behaviors, memory, and motor abnormalities and associated with abnormal depositions of protein aggregation, including tau protein. Currently approved medications are symptomatic, and no disease-modifying therapy is available to halt the disease progression. Therefore, the development of multi-targeted therapeutic approaches could hold promise for the treatment of AD and other neurodegenerative disorders, including tauopathies. In this article, we will discuss the pathophysiology of AD and FTD, the proposed hypotheses, and current therapeutic approaches, highlighting the development of novel drug candidates and the progress of clinical trials in this field of research.
Collapse
Affiliation(s)
- Sally Kelliny
- Health and Biomedical Innovation, Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
- Faculty of PharmacyAssiut UniversityAssiutEgypt
| | - Xin‐Fu Zhou
- Health and Biomedical Innovation, Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Larisa Bobrovskaya
- Health and Biomedical Innovation, Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| |
Collapse
|
3
|
Mukwikwi ER, Jones SL, Manera AL, Salpeter R, Fumagalli GG, Eratne D, Kang MJY, Bertoux M, Didic M, Katisko K, Solje E, Santillo AF, Laforce RJ, Schroeter ML, Van den Stock J, Vandenbulcke M, Morin A, de Boer S, Pijnenburg Y, Ducharme S. Prevalence and Features of Misdiagnosis of Primary Psychiatric Disorders Among bvFTD Patients. J Neuropsychiatry Clin Neurosci 2025:appineuropsych20240238. [PMID: 40289591 DOI: 10.1176/appi.neuropsych.20240238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
OBJECTIVE Previous studies have reported misdiagnosis rates of nondegenerative primary psychiatric disorders of up to 50% among patients with behavioral variant frontotemporal dementia (bvFTD). The authors hypothesized that misdiagnosis rates have decreased over time because of an increased awareness and a better understanding of psychiatric prodromes of FTD. METHODS Retrospective data on past psychiatric trajectories of individuals with probable or definite bvFTD (N=609) were acquired from 12 sites of the Neuropsychiatric International Consortium on FTD. Symptom profiles, primary psychiatric disorder diagnoses, and treatment information were collected from medical records. The authors used descriptive statistics to characterize past diagnostic trajectories, chi-square and t tests to compare groups, and logistic regressions to determine risk factors for diagnostic errors. RESULTS Of 609 bvFTD patients, 33% received a primary psychiatric disorder diagnosis after the onset of bvFTD symptoms but before a formal bvFTD diagnosis. In 13% (N=80) of all bvFTD cases, the diagnosis was retrospectively considered erroneous. The most common misdiagnosis was major depressive disorder, followed by anxiety disorders and psychosis. The remaining cases were classified as psychiatric prodromes (N=68) and comorbid conditions (N=42). Patients with misdiagnoses were significantly younger, by about 5.5 years, than those without such diagnoses and had higher rates of depressed mood, dietary changes, stereotypy, somatization, and anxiety symptoms. Only younger age predicted erroneous diagnoses. CONCLUSIONS The rate of patients who were misdiagnosed as having primary psychiatric disorders was much lower than in previous reports, suggesting improvements in the quality of diagnostic assessments. Misdiagnoses were more common among younger patients, with some psychiatric symptoms being overrepresented in such cases.
Collapse
Affiliation(s)
- Elvis-Raymond Mukwikwi
- Douglas Research Institute, McGill University, Montreal (Mukwikwi, Jones, Manera, Salpeter, Ducharme); Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy (Fumagalli); Neuropsychiatry Centre, Royal Melbourne Hospital, Parkville, Victoria, Australia, and Department of Psychiatry, University of Melbourne, Melbourne (Eratne, Kang); Lille Neuroscience and Cognition, Université de Lille, and Institut National de la Santé et de la Recherche Médicale, Lille, France (Bertoux); Assistance Publique-Hôpitaux de Marseille and Aix-Marseille Université, Marseille, France (Didic); Institute of Clinical Medicine-Neurology, University of Eastern Finland (Katisko, Solje), and Neuro Center-Neurology, Kuopio University Hospital (Solje), Kuopio, Finland; Clinical Memory Research Unit, Department of Clinical Sciences, Faculty of Medicine, Lund University, Malmö, Sweden (Santillo); Clinique Interdisciplinaire de Mémoire du CHU de Québec, Quebec City, Quebec (Jr Laforce); University Hospital Leipzig and Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Schroeter); Katholieke Universiteit Leuven, Leuven, Belgium (Van den Stock, Vandenbulcke); Department of Neurology, Centre Hospitalier Universitaire de Rouen, and Department of Psychiatry, Centre Hospitalier Rouvray, Sotteville-lès-Rouen, Rouen, France (Morin); Amsterdam University Medical Center, Amsterdam (de Boer, Pijnenburg)
| | - Sherri Lee Jones
- Douglas Research Institute, McGill University, Montreal (Mukwikwi, Jones, Manera, Salpeter, Ducharme); Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy (Fumagalli); Neuropsychiatry Centre, Royal Melbourne Hospital, Parkville, Victoria, Australia, and Department of Psychiatry, University of Melbourne, Melbourne (Eratne, Kang); Lille Neuroscience and Cognition, Université de Lille, and Institut National de la Santé et de la Recherche Médicale, Lille, France (Bertoux); Assistance Publique-Hôpitaux de Marseille and Aix-Marseille Université, Marseille, France (Didic); Institute of Clinical Medicine-Neurology, University of Eastern Finland (Katisko, Solje), and Neuro Center-Neurology, Kuopio University Hospital (Solje), Kuopio, Finland; Clinical Memory Research Unit, Department of Clinical Sciences, Faculty of Medicine, Lund University, Malmö, Sweden (Santillo); Clinique Interdisciplinaire de Mémoire du CHU de Québec, Quebec City, Quebec (Jr Laforce); University Hospital Leipzig and Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Schroeter); Katholieke Universiteit Leuven, Leuven, Belgium (Van den Stock, Vandenbulcke); Department of Neurology, Centre Hospitalier Universitaire de Rouen, and Department of Psychiatry, Centre Hospitalier Rouvray, Sotteville-lès-Rouen, Rouen, France (Morin); Amsterdam University Medical Center, Amsterdam (de Boer, Pijnenburg)
| | - Ana L Manera
- Douglas Research Institute, McGill University, Montreal (Mukwikwi, Jones, Manera, Salpeter, Ducharme); Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy (Fumagalli); Neuropsychiatry Centre, Royal Melbourne Hospital, Parkville, Victoria, Australia, and Department of Psychiatry, University of Melbourne, Melbourne (Eratne, Kang); Lille Neuroscience and Cognition, Université de Lille, and Institut National de la Santé et de la Recherche Médicale, Lille, France (Bertoux); Assistance Publique-Hôpitaux de Marseille and Aix-Marseille Université, Marseille, France (Didic); Institute of Clinical Medicine-Neurology, University of Eastern Finland (Katisko, Solje), and Neuro Center-Neurology, Kuopio University Hospital (Solje), Kuopio, Finland; Clinical Memory Research Unit, Department of Clinical Sciences, Faculty of Medicine, Lund University, Malmö, Sweden (Santillo); Clinique Interdisciplinaire de Mémoire du CHU de Québec, Quebec City, Quebec (Jr Laforce); University Hospital Leipzig and Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Schroeter); Katholieke Universiteit Leuven, Leuven, Belgium (Van den Stock, Vandenbulcke); Department of Neurology, Centre Hospitalier Universitaire de Rouen, and Department of Psychiatry, Centre Hospitalier Rouvray, Sotteville-lès-Rouen, Rouen, France (Morin); Amsterdam University Medical Center, Amsterdam (de Boer, Pijnenburg)
| | - Rebecca Salpeter
- Douglas Research Institute, McGill University, Montreal (Mukwikwi, Jones, Manera, Salpeter, Ducharme); Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy (Fumagalli); Neuropsychiatry Centre, Royal Melbourne Hospital, Parkville, Victoria, Australia, and Department of Psychiatry, University of Melbourne, Melbourne (Eratne, Kang); Lille Neuroscience and Cognition, Université de Lille, and Institut National de la Santé et de la Recherche Médicale, Lille, France (Bertoux); Assistance Publique-Hôpitaux de Marseille and Aix-Marseille Université, Marseille, France (Didic); Institute of Clinical Medicine-Neurology, University of Eastern Finland (Katisko, Solje), and Neuro Center-Neurology, Kuopio University Hospital (Solje), Kuopio, Finland; Clinical Memory Research Unit, Department of Clinical Sciences, Faculty of Medicine, Lund University, Malmö, Sweden (Santillo); Clinique Interdisciplinaire de Mémoire du CHU de Québec, Quebec City, Quebec (Jr Laforce); University Hospital Leipzig and Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Schroeter); Katholieke Universiteit Leuven, Leuven, Belgium (Van den Stock, Vandenbulcke); Department of Neurology, Centre Hospitalier Universitaire de Rouen, and Department of Psychiatry, Centre Hospitalier Rouvray, Sotteville-lès-Rouen, Rouen, France (Morin); Amsterdam University Medical Center, Amsterdam (de Boer, Pijnenburg)
| | - Giorgio Giulio Fumagalli
- Douglas Research Institute, McGill University, Montreal (Mukwikwi, Jones, Manera, Salpeter, Ducharme); Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy (Fumagalli); Neuropsychiatry Centre, Royal Melbourne Hospital, Parkville, Victoria, Australia, and Department of Psychiatry, University of Melbourne, Melbourne (Eratne, Kang); Lille Neuroscience and Cognition, Université de Lille, and Institut National de la Santé et de la Recherche Médicale, Lille, France (Bertoux); Assistance Publique-Hôpitaux de Marseille and Aix-Marseille Université, Marseille, France (Didic); Institute of Clinical Medicine-Neurology, University of Eastern Finland (Katisko, Solje), and Neuro Center-Neurology, Kuopio University Hospital (Solje), Kuopio, Finland; Clinical Memory Research Unit, Department of Clinical Sciences, Faculty of Medicine, Lund University, Malmö, Sweden (Santillo); Clinique Interdisciplinaire de Mémoire du CHU de Québec, Quebec City, Quebec (Jr Laforce); University Hospital Leipzig and Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Schroeter); Katholieke Universiteit Leuven, Leuven, Belgium (Van den Stock, Vandenbulcke); Department of Neurology, Centre Hospitalier Universitaire de Rouen, and Department of Psychiatry, Centre Hospitalier Rouvray, Sotteville-lès-Rouen, Rouen, France (Morin); Amsterdam University Medical Center, Amsterdam (de Boer, Pijnenburg)
| | - Dhamidhu Eratne
- Douglas Research Institute, McGill University, Montreal (Mukwikwi, Jones, Manera, Salpeter, Ducharme); Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy (Fumagalli); Neuropsychiatry Centre, Royal Melbourne Hospital, Parkville, Victoria, Australia, and Department of Psychiatry, University of Melbourne, Melbourne (Eratne, Kang); Lille Neuroscience and Cognition, Université de Lille, and Institut National de la Santé et de la Recherche Médicale, Lille, France (Bertoux); Assistance Publique-Hôpitaux de Marseille and Aix-Marseille Université, Marseille, France (Didic); Institute of Clinical Medicine-Neurology, University of Eastern Finland (Katisko, Solje), and Neuro Center-Neurology, Kuopio University Hospital (Solje), Kuopio, Finland; Clinical Memory Research Unit, Department of Clinical Sciences, Faculty of Medicine, Lund University, Malmö, Sweden (Santillo); Clinique Interdisciplinaire de Mémoire du CHU de Québec, Quebec City, Quebec (Jr Laforce); University Hospital Leipzig and Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Schroeter); Katholieke Universiteit Leuven, Leuven, Belgium (Van den Stock, Vandenbulcke); Department of Neurology, Centre Hospitalier Universitaire de Rouen, and Department of Psychiatry, Centre Hospitalier Rouvray, Sotteville-lès-Rouen, Rouen, France (Morin); Amsterdam University Medical Center, Amsterdam (de Boer, Pijnenburg)
| | - Matthew J Y Kang
- Douglas Research Institute, McGill University, Montreal (Mukwikwi, Jones, Manera, Salpeter, Ducharme); Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy (Fumagalli); Neuropsychiatry Centre, Royal Melbourne Hospital, Parkville, Victoria, Australia, and Department of Psychiatry, University of Melbourne, Melbourne (Eratne, Kang); Lille Neuroscience and Cognition, Université de Lille, and Institut National de la Santé et de la Recherche Médicale, Lille, France (Bertoux); Assistance Publique-Hôpitaux de Marseille and Aix-Marseille Université, Marseille, France (Didic); Institute of Clinical Medicine-Neurology, University of Eastern Finland (Katisko, Solje), and Neuro Center-Neurology, Kuopio University Hospital (Solje), Kuopio, Finland; Clinical Memory Research Unit, Department of Clinical Sciences, Faculty of Medicine, Lund University, Malmö, Sweden (Santillo); Clinique Interdisciplinaire de Mémoire du CHU de Québec, Quebec City, Quebec (Jr Laforce); University Hospital Leipzig and Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Schroeter); Katholieke Universiteit Leuven, Leuven, Belgium (Van den Stock, Vandenbulcke); Department of Neurology, Centre Hospitalier Universitaire de Rouen, and Department of Psychiatry, Centre Hospitalier Rouvray, Sotteville-lès-Rouen, Rouen, France (Morin); Amsterdam University Medical Center, Amsterdam (de Boer, Pijnenburg)
| | - Maxime Bertoux
- Douglas Research Institute, McGill University, Montreal (Mukwikwi, Jones, Manera, Salpeter, Ducharme); Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy (Fumagalli); Neuropsychiatry Centre, Royal Melbourne Hospital, Parkville, Victoria, Australia, and Department of Psychiatry, University of Melbourne, Melbourne (Eratne, Kang); Lille Neuroscience and Cognition, Université de Lille, and Institut National de la Santé et de la Recherche Médicale, Lille, France (Bertoux); Assistance Publique-Hôpitaux de Marseille and Aix-Marseille Université, Marseille, France (Didic); Institute of Clinical Medicine-Neurology, University of Eastern Finland (Katisko, Solje), and Neuro Center-Neurology, Kuopio University Hospital (Solje), Kuopio, Finland; Clinical Memory Research Unit, Department of Clinical Sciences, Faculty of Medicine, Lund University, Malmö, Sweden (Santillo); Clinique Interdisciplinaire de Mémoire du CHU de Québec, Quebec City, Quebec (Jr Laforce); University Hospital Leipzig and Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Schroeter); Katholieke Universiteit Leuven, Leuven, Belgium (Van den Stock, Vandenbulcke); Department of Neurology, Centre Hospitalier Universitaire de Rouen, and Department of Psychiatry, Centre Hospitalier Rouvray, Sotteville-lès-Rouen, Rouen, France (Morin); Amsterdam University Medical Center, Amsterdam (de Boer, Pijnenburg)
| | - Mira Didic
- Douglas Research Institute, McGill University, Montreal (Mukwikwi, Jones, Manera, Salpeter, Ducharme); Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy (Fumagalli); Neuropsychiatry Centre, Royal Melbourne Hospital, Parkville, Victoria, Australia, and Department of Psychiatry, University of Melbourne, Melbourne (Eratne, Kang); Lille Neuroscience and Cognition, Université de Lille, and Institut National de la Santé et de la Recherche Médicale, Lille, France (Bertoux); Assistance Publique-Hôpitaux de Marseille and Aix-Marseille Université, Marseille, France (Didic); Institute of Clinical Medicine-Neurology, University of Eastern Finland (Katisko, Solje), and Neuro Center-Neurology, Kuopio University Hospital (Solje), Kuopio, Finland; Clinical Memory Research Unit, Department of Clinical Sciences, Faculty of Medicine, Lund University, Malmö, Sweden (Santillo); Clinique Interdisciplinaire de Mémoire du CHU de Québec, Quebec City, Quebec (Jr Laforce); University Hospital Leipzig and Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Schroeter); Katholieke Universiteit Leuven, Leuven, Belgium (Van den Stock, Vandenbulcke); Department of Neurology, Centre Hospitalier Universitaire de Rouen, and Department of Psychiatry, Centre Hospitalier Rouvray, Sotteville-lès-Rouen, Rouen, France (Morin); Amsterdam University Medical Center, Amsterdam (de Boer, Pijnenburg)
| | - Kasper Katisko
- Douglas Research Institute, McGill University, Montreal (Mukwikwi, Jones, Manera, Salpeter, Ducharme); Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy (Fumagalli); Neuropsychiatry Centre, Royal Melbourne Hospital, Parkville, Victoria, Australia, and Department of Psychiatry, University of Melbourne, Melbourne (Eratne, Kang); Lille Neuroscience and Cognition, Université de Lille, and Institut National de la Santé et de la Recherche Médicale, Lille, France (Bertoux); Assistance Publique-Hôpitaux de Marseille and Aix-Marseille Université, Marseille, France (Didic); Institute of Clinical Medicine-Neurology, University of Eastern Finland (Katisko, Solje), and Neuro Center-Neurology, Kuopio University Hospital (Solje), Kuopio, Finland; Clinical Memory Research Unit, Department of Clinical Sciences, Faculty of Medicine, Lund University, Malmö, Sweden (Santillo); Clinique Interdisciplinaire de Mémoire du CHU de Québec, Quebec City, Quebec (Jr Laforce); University Hospital Leipzig and Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Schroeter); Katholieke Universiteit Leuven, Leuven, Belgium (Van den Stock, Vandenbulcke); Department of Neurology, Centre Hospitalier Universitaire de Rouen, and Department of Psychiatry, Centre Hospitalier Rouvray, Sotteville-lès-Rouen, Rouen, France (Morin); Amsterdam University Medical Center, Amsterdam (de Boer, Pijnenburg)
| | - Eino Solje
- Douglas Research Institute, McGill University, Montreal (Mukwikwi, Jones, Manera, Salpeter, Ducharme); Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy (Fumagalli); Neuropsychiatry Centre, Royal Melbourne Hospital, Parkville, Victoria, Australia, and Department of Psychiatry, University of Melbourne, Melbourne (Eratne, Kang); Lille Neuroscience and Cognition, Université de Lille, and Institut National de la Santé et de la Recherche Médicale, Lille, France (Bertoux); Assistance Publique-Hôpitaux de Marseille and Aix-Marseille Université, Marseille, France (Didic); Institute of Clinical Medicine-Neurology, University of Eastern Finland (Katisko, Solje), and Neuro Center-Neurology, Kuopio University Hospital (Solje), Kuopio, Finland; Clinical Memory Research Unit, Department of Clinical Sciences, Faculty of Medicine, Lund University, Malmö, Sweden (Santillo); Clinique Interdisciplinaire de Mémoire du CHU de Québec, Quebec City, Quebec (Jr Laforce); University Hospital Leipzig and Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Schroeter); Katholieke Universiteit Leuven, Leuven, Belgium (Van den Stock, Vandenbulcke); Department of Neurology, Centre Hospitalier Universitaire de Rouen, and Department of Psychiatry, Centre Hospitalier Rouvray, Sotteville-lès-Rouen, Rouen, France (Morin); Amsterdam University Medical Center, Amsterdam (de Boer, Pijnenburg)
| | - Alexander F Santillo
- Douglas Research Institute, McGill University, Montreal (Mukwikwi, Jones, Manera, Salpeter, Ducharme); Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy (Fumagalli); Neuropsychiatry Centre, Royal Melbourne Hospital, Parkville, Victoria, Australia, and Department of Psychiatry, University of Melbourne, Melbourne (Eratne, Kang); Lille Neuroscience and Cognition, Université de Lille, and Institut National de la Santé et de la Recherche Médicale, Lille, France (Bertoux); Assistance Publique-Hôpitaux de Marseille and Aix-Marseille Université, Marseille, France (Didic); Institute of Clinical Medicine-Neurology, University of Eastern Finland (Katisko, Solje), and Neuro Center-Neurology, Kuopio University Hospital (Solje), Kuopio, Finland; Clinical Memory Research Unit, Department of Clinical Sciences, Faculty of Medicine, Lund University, Malmö, Sweden (Santillo); Clinique Interdisciplinaire de Mémoire du CHU de Québec, Quebec City, Quebec (Jr Laforce); University Hospital Leipzig and Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Schroeter); Katholieke Universiteit Leuven, Leuven, Belgium (Van den Stock, Vandenbulcke); Department of Neurology, Centre Hospitalier Universitaire de Rouen, and Department of Psychiatry, Centre Hospitalier Rouvray, Sotteville-lès-Rouen, Rouen, France (Morin); Amsterdam University Medical Center, Amsterdam (de Boer, Pijnenburg)
| | - Robert Jr Laforce
- Douglas Research Institute, McGill University, Montreal (Mukwikwi, Jones, Manera, Salpeter, Ducharme); Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy (Fumagalli); Neuropsychiatry Centre, Royal Melbourne Hospital, Parkville, Victoria, Australia, and Department of Psychiatry, University of Melbourne, Melbourne (Eratne, Kang); Lille Neuroscience and Cognition, Université de Lille, and Institut National de la Santé et de la Recherche Médicale, Lille, France (Bertoux); Assistance Publique-Hôpitaux de Marseille and Aix-Marseille Université, Marseille, France (Didic); Institute of Clinical Medicine-Neurology, University of Eastern Finland (Katisko, Solje), and Neuro Center-Neurology, Kuopio University Hospital (Solje), Kuopio, Finland; Clinical Memory Research Unit, Department of Clinical Sciences, Faculty of Medicine, Lund University, Malmö, Sweden (Santillo); Clinique Interdisciplinaire de Mémoire du CHU de Québec, Quebec City, Quebec (Jr Laforce); University Hospital Leipzig and Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Schroeter); Katholieke Universiteit Leuven, Leuven, Belgium (Van den Stock, Vandenbulcke); Department of Neurology, Centre Hospitalier Universitaire de Rouen, and Department of Psychiatry, Centre Hospitalier Rouvray, Sotteville-lès-Rouen, Rouen, France (Morin); Amsterdam University Medical Center, Amsterdam (de Boer, Pijnenburg)
| | - Matthias L Schroeter
- Douglas Research Institute, McGill University, Montreal (Mukwikwi, Jones, Manera, Salpeter, Ducharme); Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy (Fumagalli); Neuropsychiatry Centre, Royal Melbourne Hospital, Parkville, Victoria, Australia, and Department of Psychiatry, University of Melbourne, Melbourne (Eratne, Kang); Lille Neuroscience and Cognition, Université de Lille, and Institut National de la Santé et de la Recherche Médicale, Lille, France (Bertoux); Assistance Publique-Hôpitaux de Marseille and Aix-Marseille Université, Marseille, France (Didic); Institute of Clinical Medicine-Neurology, University of Eastern Finland (Katisko, Solje), and Neuro Center-Neurology, Kuopio University Hospital (Solje), Kuopio, Finland; Clinical Memory Research Unit, Department of Clinical Sciences, Faculty of Medicine, Lund University, Malmö, Sweden (Santillo); Clinique Interdisciplinaire de Mémoire du CHU de Québec, Quebec City, Quebec (Jr Laforce); University Hospital Leipzig and Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Schroeter); Katholieke Universiteit Leuven, Leuven, Belgium (Van den Stock, Vandenbulcke); Department of Neurology, Centre Hospitalier Universitaire de Rouen, and Department of Psychiatry, Centre Hospitalier Rouvray, Sotteville-lès-Rouen, Rouen, France (Morin); Amsterdam University Medical Center, Amsterdam (de Boer, Pijnenburg)
| | - Jan Van den Stock
- Douglas Research Institute, McGill University, Montreal (Mukwikwi, Jones, Manera, Salpeter, Ducharme); Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy (Fumagalli); Neuropsychiatry Centre, Royal Melbourne Hospital, Parkville, Victoria, Australia, and Department of Psychiatry, University of Melbourne, Melbourne (Eratne, Kang); Lille Neuroscience and Cognition, Université de Lille, and Institut National de la Santé et de la Recherche Médicale, Lille, France (Bertoux); Assistance Publique-Hôpitaux de Marseille and Aix-Marseille Université, Marseille, France (Didic); Institute of Clinical Medicine-Neurology, University of Eastern Finland (Katisko, Solje), and Neuro Center-Neurology, Kuopio University Hospital (Solje), Kuopio, Finland; Clinical Memory Research Unit, Department of Clinical Sciences, Faculty of Medicine, Lund University, Malmö, Sweden (Santillo); Clinique Interdisciplinaire de Mémoire du CHU de Québec, Quebec City, Quebec (Jr Laforce); University Hospital Leipzig and Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Schroeter); Katholieke Universiteit Leuven, Leuven, Belgium (Van den Stock, Vandenbulcke); Department of Neurology, Centre Hospitalier Universitaire de Rouen, and Department of Psychiatry, Centre Hospitalier Rouvray, Sotteville-lès-Rouen, Rouen, France (Morin); Amsterdam University Medical Center, Amsterdam (de Boer, Pijnenburg)
| | - Mathieu Vandenbulcke
- Douglas Research Institute, McGill University, Montreal (Mukwikwi, Jones, Manera, Salpeter, Ducharme); Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy (Fumagalli); Neuropsychiatry Centre, Royal Melbourne Hospital, Parkville, Victoria, Australia, and Department of Psychiatry, University of Melbourne, Melbourne (Eratne, Kang); Lille Neuroscience and Cognition, Université de Lille, and Institut National de la Santé et de la Recherche Médicale, Lille, France (Bertoux); Assistance Publique-Hôpitaux de Marseille and Aix-Marseille Université, Marseille, France (Didic); Institute of Clinical Medicine-Neurology, University of Eastern Finland (Katisko, Solje), and Neuro Center-Neurology, Kuopio University Hospital (Solje), Kuopio, Finland; Clinical Memory Research Unit, Department of Clinical Sciences, Faculty of Medicine, Lund University, Malmö, Sweden (Santillo); Clinique Interdisciplinaire de Mémoire du CHU de Québec, Quebec City, Quebec (Jr Laforce); University Hospital Leipzig and Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Schroeter); Katholieke Universiteit Leuven, Leuven, Belgium (Van den Stock, Vandenbulcke); Department of Neurology, Centre Hospitalier Universitaire de Rouen, and Department of Psychiatry, Centre Hospitalier Rouvray, Sotteville-lès-Rouen, Rouen, France (Morin); Amsterdam University Medical Center, Amsterdam (de Boer, Pijnenburg)
| | - Alexandre Morin
- Douglas Research Institute, McGill University, Montreal (Mukwikwi, Jones, Manera, Salpeter, Ducharme); Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy (Fumagalli); Neuropsychiatry Centre, Royal Melbourne Hospital, Parkville, Victoria, Australia, and Department of Psychiatry, University of Melbourne, Melbourne (Eratne, Kang); Lille Neuroscience and Cognition, Université de Lille, and Institut National de la Santé et de la Recherche Médicale, Lille, France (Bertoux); Assistance Publique-Hôpitaux de Marseille and Aix-Marseille Université, Marseille, France (Didic); Institute of Clinical Medicine-Neurology, University of Eastern Finland (Katisko, Solje), and Neuro Center-Neurology, Kuopio University Hospital (Solje), Kuopio, Finland; Clinical Memory Research Unit, Department of Clinical Sciences, Faculty of Medicine, Lund University, Malmö, Sweden (Santillo); Clinique Interdisciplinaire de Mémoire du CHU de Québec, Quebec City, Quebec (Jr Laforce); University Hospital Leipzig and Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Schroeter); Katholieke Universiteit Leuven, Leuven, Belgium (Van den Stock, Vandenbulcke); Department of Neurology, Centre Hospitalier Universitaire de Rouen, and Department of Psychiatry, Centre Hospitalier Rouvray, Sotteville-lès-Rouen, Rouen, France (Morin); Amsterdam University Medical Center, Amsterdam (de Boer, Pijnenburg)
| | - Sterre de Boer
- Douglas Research Institute, McGill University, Montreal (Mukwikwi, Jones, Manera, Salpeter, Ducharme); Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy (Fumagalli); Neuropsychiatry Centre, Royal Melbourne Hospital, Parkville, Victoria, Australia, and Department of Psychiatry, University of Melbourne, Melbourne (Eratne, Kang); Lille Neuroscience and Cognition, Université de Lille, and Institut National de la Santé et de la Recherche Médicale, Lille, France (Bertoux); Assistance Publique-Hôpitaux de Marseille and Aix-Marseille Université, Marseille, France (Didic); Institute of Clinical Medicine-Neurology, University of Eastern Finland (Katisko, Solje), and Neuro Center-Neurology, Kuopio University Hospital (Solje), Kuopio, Finland; Clinical Memory Research Unit, Department of Clinical Sciences, Faculty of Medicine, Lund University, Malmö, Sweden (Santillo); Clinique Interdisciplinaire de Mémoire du CHU de Québec, Quebec City, Quebec (Jr Laforce); University Hospital Leipzig and Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Schroeter); Katholieke Universiteit Leuven, Leuven, Belgium (Van den Stock, Vandenbulcke); Department of Neurology, Centre Hospitalier Universitaire de Rouen, and Department of Psychiatry, Centre Hospitalier Rouvray, Sotteville-lès-Rouen, Rouen, France (Morin); Amsterdam University Medical Center, Amsterdam (de Boer, Pijnenburg)
| | - Yolande Pijnenburg
- Douglas Research Institute, McGill University, Montreal (Mukwikwi, Jones, Manera, Salpeter, Ducharme); Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy (Fumagalli); Neuropsychiatry Centre, Royal Melbourne Hospital, Parkville, Victoria, Australia, and Department of Psychiatry, University of Melbourne, Melbourne (Eratne, Kang); Lille Neuroscience and Cognition, Université de Lille, and Institut National de la Santé et de la Recherche Médicale, Lille, France (Bertoux); Assistance Publique-Hôpitaux de Marseille and Aix-Marseille Université, Marseille, France (Didic); Institute of Clinical Medicine-Neurology, University of Eastern Finland (Katisko, Solje), and Neuro Center-Neurology, Kuopio University Hospital (Solje), Kuopio, Finland; Clinical Memory Research Unit, Department of Clinical Sciences, Faculty of Medicine, Lund University, Malmö, Sweden (Santillo); Clinique Interdisciplinaire de Mémoire du CHU de Québec, Quebec City, Quebec (Jr Laforce); University Hospital Leipzig and Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Schroeter); Katholieke Universiteit Leuven, Leuven, Belgium (Van den Stock, Vandenbulcke); Department of Neurology, Centre Hospitalier Universitaire de Rouen, and Department of Psychiatry, Centre Hospitalier Rouvray, Sotteville-lès-Rouen, Rouen, France (Morin); Amsterdam University Medical Center, Amsterdam (de Boer, Pijnenburg)
| | - Simon Ducharme
- Douglas Research Institute, McGill University, Montreal (Mukwikwi, Jones, Manera, Salpeter, Ducharme); Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy (Fumagalli); Neuropsychiatry Centre, Royal Melbourne Hospital, Parkville, Victoria, Australia, and Department of Psychiatry, University of Melbourne, Melbourne (Eratne, Kang); Lille Neuroscience and Cognition, Université de Lille, and Institut National de la Santé et de la Recherche Médicale, Lille, France (Bertoux); Assistance Publique-Hôpitaux de Marseille and Aix-Marseille Université, Marseille, France (Didic); Institute of Clinical Medicine-Neurology, University of Eastern Finland (Katisko, Solje), and Neuro Center-Neurology, Kuopio University Hospital (Solje), Kuopio, Finland; Clinical Memory Research Unit, Department of Clinical Sciences, Faculty of Medicine, Lund University, Malmö, Sweden (Santillo); Clinique Interdisciplinaire de Mémoire du CHU de Québec, Quebec City, Quebec (Jr Laforce); University Hospital Leipzig and Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Schroeter); Katholieke Universiteit Leuven, Leuven, Belgium (Van den Stock, Vandenbulcke); Department of Neurology, Centre Hospitalier Universitaire de Rouen, and Department of Psychiatry, Centre Hospitalier Rouvray, Sotteville-lès-Rouen, Rouen, France (Morin); Amsterdam University Medical Center, Amsterdam (de Boer, Pijnenburg)
| |
Collapse
|
4
|
Yan B, Suen MC, Xu N, Lu C, Liu C, Zhu G. G-Quadruplex Structures Formed by Human Telomere and C9orf72 GGGGCC Repeats. Int J Mol Sci 2025; 26:1591. [PMID: 40004056 PMCID: PMC11855686 DOI: 10.3390/ijms26041591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/06/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
G-quadruplexes (G4s) are unique nucleic acid structures composed of guanine-rich (G-rich) sequences that can form diverse topologies based on the arrangement of their four strands. G4s have attracted attention for their potential roles in various biological processes and human diseases. In this review, we focus on the G4 structures formed by human telomeric sequences, (GGGTTA)n, and the hexanucleotide repeat expansion, (GGGGCC)n, in the first intron region of the chromosome 9 open reading frame 72 (C9orf72) gene, highlighting their structural diversity and biological significance. Human telomeric G4s play crucial roles in telomere retention and gene regulation. In particular, we provide an in-depth summary of known telomeric G4s and focus on our recently discovered chair-type conformation, which exhibits distinct folding patterns. The chair-type G4s represent a novel folding pattern with unique characteristics, expanding our knowledge of telomeric G4 structural diversity and potential biological functions. Specifically, we emphasize the G4s formed by the (GGGGCC)n sequence of the C9orf72 gene, which represents the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The thorough structural analysis in this review advances our comprehension of the disease mechanism and provides valuable insights into developing targeted therapeutic strategies in ALS/FTD.
Collapse
Affiliation(s)
- Bing Yan
- State Key Laboratory of Molecular Neuroscience, Institute for Advanced Study, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China; (B.Y.); (M.C.S.); (N.X.)
| | - Monica Ching Suen
- State Key Laboratory of Molecular Neuroscience, Institute for Advanced Study, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China; (B.Y.); (M.C.S.); (N.X.)
| | - Naining Xu
- State Key Laboratory of Molecular Neuroscience, Institute for Advanced Study, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China; (B.Y.); (M.C.S.); (N.X.)
- HKUST Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen 518057, China
| | - Chao Lu
- Department of Chemistry, Faculty of Science, The University of Hong Kong, Hong Kong SAR, China;
| | - Changdong Liu
- State Key Laboratory of Molecular Neuroscience, Institute for Advanced Study, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China; (B.Y.); (M.C.S.); (N.X.)
- HKUST Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen 518057, China
| | - Guang Zhu
- State Key Laboratory of Molecular Neuroscience, Institute for Advanced Study, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China; (B.Y.); (M.C.S.); (N.X.)
- HKUST Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen 518057, China
| |
Collapse
|
5
|
Metz A, Zeighami Y, Ducharme S, Villeneuve S, Dadar M. Frontotemporal dementia subtyping using machine learning, multivariate statistics and neuroimaging. Brain Commun 2025; 7:fcaf065. [PMID: 39990273 PMCID: PMC11844796 DOI: 10.1093/braincomms/fcaf065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 01/06/2025] [Accepted: 02/07/2025] [Indexed: 02/25/2025] Open
Abstract
Frontotemporal dementia (FTD) is a prevalent form of early-onset dementia characterized by progressive neurodegeneration and encompasses a group of heterogeneous disorders. Due to overlapping symptoms, diagnosis of FTD and its subtypes still poses a challenge. Magnetic resonance imaging (MRI) is commonly used to support the diagnosis of FTD. Using machine learning and multivariate statistics, we tested whether brain atrophy patterns are associated with severity of cognitive impairment, whether this relationship differs between the phenotypic subtypes and whether we could use these brain patterns to classify patients according to their FTD variant. A total of 136 patients (70 behavioural variant FTD, 36 semantic variant primary progressive aphasia and 30 non-fluent variant primary progressive aphasia) from the frontotemporal lobar degeneration neuroimaging initiative (FTLDNI) database underwent brain MRI and clinical and neuropsychological examination. Deformation-based morphometry, which offers increased sensitivity to subtle local differences in structural image contrasts, was used to estimate regional cortical and subcortical atrophy. Atlas-based associations between atrophy values and performance across different cognitive tests were assessed using partial least squares. We then applied linear regression models to discern the group differences regarding the relationship between atrophy and cognitive decline in the three FTD phenotypes. Lastly, we assessed whether the combination of atrophy and cognition patterns in the latent variables identified in the partial least squares analysis could be used as features in a machine learning model to predict FTD subtypes in patients. Results revealed four significant latent variables that combined accounted for 86% of the shared covariance between cognitive and brain atrophy measures. Partial least squares-based atrophy and cognitive patterns predicted the FTD phenotypes with a cross-validated accuracy of 89.12%, with high specificity (91.46-97.15%) and sensitivity (84.19-93.56%). When using only MRI measures and two behavioural tests in the partial least squares and classification algorithms, ensuring clinical feasibility, our model was equally precise in the same participant sample (87.18%, specificity 76.14-92.00%, sensitivity 86.93-98.26%). Here, including only atrophy or behaviour patterns in the analysis led to prediction accuracies of 69.76% and 76.54%, respectively, highlighting the increased value of combining MRI and clinical measures in subtype classification. We demonstrate that the combination of brain atrophy and clinical characteristics and multivariate statistical methods can serve as a biomarker for disease phenotyping in FTD, whereby the inclusion of deformation-based morphometry measures adds to the classification accuracy in the absence of extensive clinical testing.
Collapse
Affiliation(s)
- Amelie Metz
- Douglas Research Center, Montreal, Canada H4H 1R3
- Department of Psychiatry, McGill University, Montreal, Canada H3A 1A1
| | - Yashar Zeighami
- Douglas Research Center, Montreal, Canada H4H 1R3
- Department of Psychiatry, McGill University, Montreal, Canada H3A 1A1
| | - Simon Ducharme
- Douglas Research Center, Montreal, Canada H4H 1R3
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada H3A 2B4
| | - Sylvia Villeneuve
- Douglas Research Center, Montreal, Canada H4H 1R3
- Department of Psychiatry, McGill University, Montreal, Canada H3A 1A1
| | - Mahsa Dadar
- Douglas Research Center, Montreal, Canada H4H 1R3
- Department of Psychiatry, McGill University, Montreal, Canada H3A 1A1
| |
Collapse
|
6
|
Zeng J, Luo C, Jiang Y, Hu T, Lin B, Xie Y, Lan J, Miao J. Decoding TDP-43: the molecular chameleon of neurodegenerative diseases. Acta Neuropathol Commun 2024; 12:205. [PMID: 39736783 DOI: 10.1186/s40478-024-01914-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 12/13/2024] [Indexed: 01/01/2025] Open
Abstract
TAR DNA-binding protein 43 (TDP-43) has emerged as a critical player in neurodegenerative disorders, with its dysfunction implicated in a wide spectrum of diseases including amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration (FTLD), and Alzheimer's disease (AD). This comprehensive review explores the multifaceted roles of TDP-43 in both physiological and pathological contexts. We delve into TDP-43's crucial functions in RNA metabolism, including splicing regulation, mRNA stability, and miRNA biogenesis. Particular emphasis is placed on recent discoveries regarding TDP-43's involvement in DNA interactions and chromatin dynamics, highlighting its broader impact on gene expression and genome stability. The review also examines the complex pathogenesis of TDP-43-related disorders, discussing the protein's propensity for aggregation, its effects on mitochondrial function, and its non-cell autonomous impacts on glial cells. We provide an in-depth analysis of TDP-43 pathology across various neurodegenerative conditions, from well-established associations in ALS and FTLD to emerging roles in diseases such as Huntington's disease and Niemann-Pick C disease. The potential of TDP-43 as a therapeutic target is explored, with a focus on recent developments in targeting cryptic exon inclusion and other TDP-43-mediated processes. This review synthesizes current knowledge on TDP-43 biology and pathology, offering insights into the protein's central role in neurodegeneration and highlighting promising avenues for future research and therapeutic interventions.
Collapse
Affiliation(s)
- Jixiang Zeng
- Shenzhen Baoan Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guang Dong, 518000, China
| | - Chunmei Luo
- Shenzhen Baoan Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guang Dong, 518000, China
| | - Yang Jiang
- Shenzhen Baoan Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guang Dong, 518000, China
| | - Tao Hu
- Shenzhen Baoan Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guang Dong, 518000, China
| | - Bixia Lin
- Shenzhen Baoan Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guang Dong, 518000, China
| | - Yuanfang Xie
- Shenzhen Baoan Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guang Dong, 518000, China
| | - Jiao Lan
- Shenzhen Baoan Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guang Dong, 518000, China.
| | - Jifei Miao
- Shenzhen Baoan Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guang Dong, 518000, China.
| |
Collapse
|
7
|
Wu J, Wu J, Chen T, Cai J, Ren R. Protein aggregation and its affecting mechanisms in neurodegenerative diseases. Neurochem Int 2024; 180:105880. [PMID: 39396709 DOI: 10.1016/j.neuint.2024.105880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/15/2024]
Abstract
Protein aggregation serves as a critical pathological marker in a spectrum of neurodegenerative diseases (NDs), including the formation of amyloid β (Aβ) and Tau neurofibrillary tangles in Alzheimer's disease, as well as α-Synuclein (α-Syn) aggregates in Parkinson's disease, Parkinson's disease-related dementia (PDD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA). A significant proportion of patients with amyotrophic lateral sclerosis (ALS) exhibit TDP-43 aggregates. Moreover, a confluence of brain protein pathologies, such as Aβ, Tau, α-Syn, and TDP-43, has been identified in individual NDs cases, highlighting the intricate interplay among these proteins that is garnering heightened scrutiny. Importantly, protein aggregation is modulated by an array of factors, with burgeoning evidence suggesting that it frequently results from perturbations in protein homeostasis, influenced by the cellular membrane milieu, metal ion concentrations, post-translational modifications, and genetic mutations. This review delves into the pathological underpinnings of protein aggregation across various NDs and elucidates the intercommunication among disparate proteins within the same disease context. Additionally, we examine the pathogenic mechanisms by which diverse factors impinge upon protein aggregation, offering fresh perspectives for the future therapeutic intervention of NDs.
Collapse
Affiliation(s)
- Junyun Wu
- Neuroscience Care Unit, Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China
| | - Jianan Wu
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China
| | - Tao Chen
- Neuroscience Care Unit, Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China
| | - Jing Cai
- Neuroscience Care Unit, Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China.
| | - Reng Ren
- Neuroscience Care Unit, Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China.
| |
Collapse
|
8
|
Fenoglio C, Serpente M, Arcaro M, Carandini T, Sacchi L, Pintus M, Rotondo E, Borracci V, Ghezzi L, Bouzigues A, Russell LL, Foster PH, Ferry-Bolder E, van Swieten JC, Jiskoot LC, Seelaar H, Sánchez Valle R, Laforce R, Graff C, Vandenberghe R, de Mendonça A, Tiraboschi P, Santana I, Gerhard A, Levin J, Sorbi S, Otto M, Pasquier F, Ducharme S, Butler CR, Ber IL, Finger E, Carmela Tartaglia M, Masellis M, Rowe JB, Synofzik M, Moreno F, Borroni B, Rohrer JD, Arighi A, Galimberti D. Inflammatory plasma profile in genetic symptomatic and presymptomatic Frontotemporal Dementia - A GENFI study. Brain Behav Immun 2024; 122:231-240. [PMID: 39153518 DOI: 10.1016/j.bbi.2024.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/01/2024] [Accepted: 08/11/2024] [Indexed: 08/19/2024] Open
Abstract
BACKGROUND Inflammation has been proposed as a crucial player in neurodegeneration, including Frontotemporal Dementia (FTD). A few studies on sporadic FTD lead to inconclusive results, whereas large studies on genetic FTD are lacking. The aim of this study is to determine cytokine and chemokine plasma circulating levels in a large cohort of genetic FTD, collected within the GENetic Frontotemporal dementia Initiative (GENFI). METHODS Mesoscale technology was used to analyse levels of 30 inflammatory factors in 434 plasma samples, including 94 Symptomatic Mutation carriers [(SMC); 15 with mutations in Microtubule Associated Protein Tau (MAPT) 34 in Progranulin (GRN) and 45 in Chromosome 9 Open Reading Frame (C9ORF)72], 168 Presymptomatic Mutation Carriers (PMC; 34 MAPT, 70 GRN and 64 C9ORF72) and 173 Non-carrier Controls (NC)]. RESULTS The following cytokines were significantly upregulated (P<0.05) in MAPT and GRN SMC versus NC: Tumor Necrosis Factor (TNF)α, Interleukin (IL)-7, IL-15, IL-16, IL-17A. Moreover, only in GRN SMC, additional factors were upregulated, including: IL-1β, IL-6, IL-10, IL-12/IL-23p40, eotaxin, eotaxin-3, Interferon γ-induced Protein (IP-10), Monocyte Chemotactic Protein (MCP)4. On the contrary, IL-1α levels were decreased in SMC compared with NC. Significantly decreased levels of this cytokine were also found in PMC, independent of the type of mutation. In SMC, no correlations between disease duration and cytokine and chemokine levels were found. Considering NfL and GFAP levels, as expected, significant increases were observed in SMC as compared to NC. These differences in mean values remain significant even when stratifying symptomatic patients by the mutated gene (P<0.0001). Considering instead the levels of NfL, GFAP, and the altered inflammatory molecules, no significant correlations emerged. CONCLUSION We showed that inflammatory proteins are upregulated in MAPT and GRN SMC, with some specific factors altered in GRN only, whereas no changes were seen in C9ORF72 carriers. Notably, only IL-1α levels were decreased in both SMC and PMC, independent of the type of causal mutation, suggesting common modifications occurring in the preclinical phase of the disease.
Collapse
Affiliation(s)
- Chiara Fenoglio
- Dept. of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy; Fondazione Ca' Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Maria Serpente
- Fondazione Ca' Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Marina Arcaro
- Fondazione Ca' Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Tiziana Carandini
- Fondazione Ca' Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Luca Sacchi
- Dept. of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy; Fondazione Ca' Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Manuela Pintus
- Dept. of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy; Fondazione Ca' Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Emanuela Rotondo
- Fondazione Ca' Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Vittoria Borracci
- Fondazione Ca' Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Laura Ghezzi
- Dept. of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy; Fondazione Ca' Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Arabella Bouzigues
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Lucy L Russell
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Phoebe H Foster
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Eve Ferry-Bolder
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | | | - Lize C Jiskoot
- Department of Neurology, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Harro Seelaar
- Department of Neurology, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Raquel Sánchez Valle
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica, Universitat de Barcelona, Barcelona, Spain
| | - Robert Laforce
- Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques, CHU de Québec, and Faculté de Médecine, Université Laval, QC, Canada
| | - Caroline Graff
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Bioclinicum, Karolinska Institutet, Solna, Sweden; Unit for Hereditary Dementias, Theme Inflammation and Aging, Karolinska University Hospital, Solna, Sweden
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium; Neurology Service, University Hospitals Leuven, Leuven, Belgium; Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | | | | | - Isabel Santana
- University Hospital of Coimbra (HUC), Neurology Service, Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Alexander Gerhard
- Division of Psychology Communication and Human Neuroscience, Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK; Department of Nuclear Medicine, Center for Translational Neuro- and Behavioral Sciences, University Medicine Essen, Essen, Germany; Department of Geriatric Medicine, Klinikum Hochsauerland, Arnsberg, Germany
| | - Johannes Levin
- Department of Neurology, Ludwig-Maximilians Universität München, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Sandro Sorbi
- Department of Neurofarba, University of Florence, Italy; IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Markus Otto
- Department of Neurology, University of Ulm, Germany
| | - Florence Pasquier
- University of Lille, France; Inserm 1172, Lille, France; CHU, CNR-MAJ, Labex Distalz, LiCEND Lille, France
| | - Simon Ducharme
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, Québec, Canada; McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
| | - Chris R Butler
- Nuffield Department of Clinical Neurosciences, Medical Sciences Division, University of Oxford, Oxford, UK; Department of Brain Sciences, Imperial College London, UK
| | - Isabelle Le Ber
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau - ICM, Inserm U1127, CNRS UMR 7225, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France; Centre de référence des démences rares ou précoces, IM2A, Département de Neurologie, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France; Département de Neurologie, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France
| | - Elizabeth Finger
- Department of Clinical Neurological Sciences, University of Western Ontario, London, ON, Canada
| | - Maria Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Mario Masellis
- Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, University of Toronto, Toronto, Canada
| | - James B Rowe
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, UK
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany; Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Fermin Moreno
- Cognitive Disorders Unit, Department of Neurology, Donostia Universitary Hospital, San Sebastian, Spain; Biogipuzkoa Health Research Institute, Neurosciences Area, Group of Neurodegenerative Diseases, 20014 San Sebastian, Spain; Center for Biomedical Research in Neurodegenerative Disease (CIBERNED), Carlos III Health Institute, Madrid, Spain
| | - Barbara Borroni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Jonathan D Rohrer
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Andrea Arighi
- Fondazione Ca' Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Daniela Galimberti
- Dept. of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy; Fondazione Ca' Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy.
| |
Collapse
|
9
|
Levites Y, Dammer EB, Ran Y, Tsering W, Duong D, Abreha M, Gadhavi J, Lolo K, Trejo-Lopez J, Phillips J, Iturbe A, Erquizi A, Moore BD, Ryu D, Natu A, Dillon K, Torrellas J, Moran C, Ladd T, Afroz F, Islam T, Jagirdar J, Funk CC, Robinson M, Rangaraju S, Borchelt DR, Ertekin-Taner N, Kelly JW, Heppner FL, Johnson ECB, McFarland K, Levey AI, Prokop S, Seyfried NT, Golde TE. Integrative proteomics identifies a conserved Aβ amyloid responsome, novel plaque proteins, and pathology modifiers in Alzheimer's disease. Cell Rep Med 2024; 5:101669. [PMID: 39127040 PMCID: PMC11384960 DOI: 10.1016/j.xcrm.2024.101669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 04/15/2024] [Accepted: 07/10/2024] [Indexed: 08/12/2024]
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder that develops over decades. AD brain proteomics reveals vast alterations in protein levels and numerous altered biologic pathways. Here, we compare AD brain proteome and network changes with the brain proteomes of amyloid β (Aβ)-depositing mice to identify conserved and divergent protein networks with the conserved networks identifying an Aβ amyloid responsome. Proteins in the most conserved network (M42) accumulate in plaques, cerebrovascular amyloid (CAA), and/or dystrophic neuronal processes, and overexpression of two M42 proteins, midkine (Mdk) and pleiotrophin (PTN), increases the accumulation of Aβ in plaques and CAA. M42 proteins bind amyloid fibrils in vitro, and MDK and PTN co-accumulate with cardiac transthyretin amyloid. M42 proteins appear intimately linked to amyloid deposition and can regulate amyloid deposition, suggesting that they are pathology modifiers and thus putative therapeutic targets. We posit that amyloid-scaffolded accumulation of numerous M42+ proteins is a central mechanism mediating downstream pathophysiology in AD.
Collapse
Affiliation(s)
- Yona Levites
- Department of Pharmacology and Chemical Biology, School of Medicine, Emory University, Atlanta, GA, USA; Goizueta Brain Health Institute and Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA; Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Eric B Dammer
- Department of Biochemistry, School of Medicine, Emory University, Atlanta, GA, USA; Goizueta Brain Health Institute and Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA; Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Yong Ran
- Department of Pharmacology and Chemical Biology, School of Medicine, Emory University, Atlanta, GA, USA; Goizueta Brain Health Institute and Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA; Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Wangchen Tsering
- Department of Pathology, College of Medicine, University of Florida, Gainesville, FL, USA; Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Duc Duong
- Department of Biochemistry, School of Medicine, Emory University, Atlanta, GA, USA; Goizueta Brain Health Institute and Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA; Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Measho Abreha
- Department of Biochemistry, School of Medicine, Emory University, Atlanta, GA, USA; Goizueta Brain Health Institute and Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA; Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Joshna Gadhavi
- Department of Biochemistry, School of Medicine, Emory University, Atlanta, GA, USA; Goizueta Brain Health Institute and Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA; Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Kiara Lolo
- Department of Pathology, College of Medicine, University of Florida, Gainesville, FL, USA; Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Jorge Trejo-Lopez
- Department of Pathology, College of Medicine, University of Florida, Gainesville, FL, USA; Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Jennifer Phillips
- Department of Pathology, College of Medicine, University of Florida, Gainesville, FL, USA; Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Andrea Iturbe
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA; Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Aya Erquizi
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA; Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Brenda D Moore
- Department of Pharmacology and Chemical Biology, School of Medicine, Emory University, Atlanta, GA, USA; Goizueta Brain Health Institute and Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA; Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Danny Ryu
- Department of Pharmacology and Chemical Biology, School of Medicine, Emory University, Atlanta, GA, USA; Goizueta Brain Health Institute and Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA; Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Aditya Natu
- Department of Biochemistry, School of Medicine, Emory University, Atlanta, GA, USA; Goizueta Brain Health Institute and Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA; Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Kristy Dillon
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA; Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Jose Torrellas
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA; Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Corey Moran
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA; Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Thomas Ladd
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Farhana Afroz
- Department of Pharmacology and Chemical Biology, School of Medicine, Emory University, Atlanta, GA, USA; Goizueta Brain Health Institute and Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA; Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Tariful Islam
- Department of Pharmacology and Chemical Biology, School of Medicine, Emory University, Atlanta, GA, USA; Goizueta Brain Health Institute and Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA; Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Jaishree Jagirdar
- Department of Pathology and Laboratory Medicine, Emory University Hospital, Atlanta, GA, USA
| | - Cory C Funk
- Institute for Systems Biology, Seattle, WA, USA
| | | | | | - David R Borchelt
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA; Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Nilüfer Ertekin-Taner
- Mayo Clinic, Department of Neuroscience, Jacksonville, FL, USA; Mayo Clinic, Department of Neurology, Jacksonville, FL, USA
| | - Jeffrey W Kelly
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Frank L Heppner
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 110117 Berlin, Germany; German Center for Neurodegenerative Diseases (DZNE) Berlin, 110117 Berlin, Germany; Cluster of Excellence, NeuroCure, Charitéplatz, 110117 Berlin, Germany
| | - Erik C B Johnson
- Department of Neurology, School of Medicine, Emory University, Atlanta, GA, USA; Goizueta Brain Health Institute and Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA; Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Karen McFarland
- Department of Pharmacology and Chemical Biology, School of Medicine, Emory University, Atlanta, GA, USA; Goizueta Brain Health Institute and Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA; Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Allan I Levey
- Department of Neurology, School of Medicine, Emory University, Atlanta, GA, USA; Goizueta Brain Health Institute and Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA; Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Stefan Prokop
- Department of Pathology, College of Medicine, University of Florida, Gainesville, FL, USA; Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA; Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA.
| | - Nicholas T Seyfried
- Department of Biochemistry, School of Medicine, Emory University, Atlanta, GA, USA; Goizueta Brain Health Institute and Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA; Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA, USA.
| | - Todd E Golde
- Department of Pharmacology and Chemical Biology, School of Medicine, Emory University, Atlanta, GA, USA; Department of Neurology, School of Medicine, Emory University, Atlanta, GA, USA; Goizueta Brain Health Institute and Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA; Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
10
|
Light V, Jones SL, Rahme E, Rousseau K, de Boer S, Vermunt L, Soltaninejad M, Teunissen C, Pijnenburg Y, Ducharme S, Consortium FS. Clinical Accuracy of Serum Neurofilament Light to Differentiate Frontotemporal Dementia from Primary Psychiatric Disorders is Age-Dependent. Am J Geriatr Psychiatry 2024; 32:988-1001. [PMID: 38609836 DOI: 10.1016/j.jagp.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024]
Abstract
BACKGROUND Symptoms of behavioral variant frontotemporal dementia (bvFTD) overlap with primary psychiatric disorders (PPD) making diagnosis challenging. Serum neurofilament light (sNfL) is a candidate biomarker to distinguish bvFTD from PPD, but large-scale studies in PPD are lacking. OBJECTIVE Determine factors that influence sNfL from a large database of PPD patients, and test its diagnostic accuracy. DESIGN, SETTINGS, SUBJECTS, MEASUREMENTS Clinical data of people aged 40-81 were obtained from healthy subjects (n = 69), and patients with PPD (n = 848) or bvFTD (n = 82). sNfL was measured using Simoa technology on an HD-X instrument. Data were analyzed using general linear models, and Receiver Operating Characteristic (ROC) curve analyses to determine global and age-specific sNfL cutoffs to distinguish bvFTD from PPD, using the Youden Index. RESULTS sNfL increased with age, while sex, BMI and diabetes status were modestly associated with sNfL. sNfL was slightly higher in PPD than healthy subjects (14.1 versus 11.7 pg/mL), when controlling for covariates. sNfL was markedly lower in PPD than bvFTD (14.1 versus 44.1 pg/mL). sNfL could differentiate PPD from bvFTD with an AUC = 0.868, but the effect was driven by the younger subjects between age 40-60 years at a cutoff of 16.0 pg/mL. No valid cutoff was detected over age 60, however, values of sNfL above 38.5 pg/mL, or below 13.9 pg/mL, provided 90% diagnostic certainty of bvFTD or PPD, respectively. CONCLUSION PPD have mildly elevated sNfL compared to healthy subjects but much lower than bvFTD. Results support the use of sNfL as a biomarker to differentiate PPD from bvFTD at age 60 or below, but accuracy decreases in older ages.
Collapse
Affiliation(s)
- Victoria Light
- Department of Psychiatry, McGill University (VL, SD), Douglas Mental Health University Institute, Montreal, QC, Canada; Integrated Program of Neuroscience (VL), McGill University, Montreal, QC, Canada
| | | | - Elham Rahme
- Research Institute of the McGill University Health Centre (RI-MUHC) (ER), Montreal, QC, Canada
| | - Katerine Rousseau
- Institut Universitaire en Santé Mentale de Montréal, Département de Psychiatrie (KR), Université de Montréal, Montreal, QC, Canada
| | - Sterre de Boer
- Alzheimer Center Amsterdam, Department of Neurology (SB, YP), Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands; School of Psychology (SB), The University of Sydney, Sydney, NSW, Australia
| | - Lisa Vermunt
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam Neuroscience, Neurodegeneration, Amsterdam UMC (LV, CT), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Mahdie Soltaninejad
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Department of Neurology & Neurosurgery (MS, SD), McGill University, Montreal, QC, Canada
| | - Charlotte Teunissen
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam Neuroscience, Neurodegeneration, Amsterdam UMC (LV, CT), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Yolande Pijnenburg
- Alzheimer Center Amsterdam, Department of Neurology (SB, YP), Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Simon Ducharme
- Department of Psychiatry, McGill University (VL, SD), Douglas Mental Health University Institute, Montreal, QC, Canada; McConnell Brain Imaging Centre, Montreal Neurological Institute, Department of Neurology & Neurosurgery (MS, SD), McGill University, Montreal, QC, Canada.
| | - For Signature Consortium
- Centre de Recherche de l'institut universitaire en santé mentale de Montréal (SC, CCNA), Montreal, QC, Canada
| |
Collapse
|
11
|
Geng Y, Liu C, Xu N, Suen MC, Miao H, Xie Y, Zhang B, Chen X, Song Y, Wang Z, Cai Q, Zhu G. Crystal structure of a tetrameric RNA G-quadruplex formed by hexanucleotide repeat expansions of C9orf72 in ALS/FTD. Nucleic Acids Res 2024; 52:7961-7970. [PMID: 38860430 PMCID: PMC11260476 DOI: 10.1093/nar/gkae473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/16/2024] [Accepted: 05/29/2024] [Indexed: 06/12/2024] Open
Abstract
The abnormal GGGGCC hexanucleotide repeat expansions (HREs) in C9orf72 cause the fatal neurodegenerative diseases including amyotrophic lateral sclerosis and frontotemporal dementia. The transcribed RNA HREs, short for r(G4C2)n, can form toxic RNA foci which sequestrate RNA binding proteins and impair RNA processing, ultimately leading to neurodegeneration. Here, we determined the crystal structure of r(G4C2)2, which folds into a parallel tetrameric G-quadruplex composed of two four-layer dimeric G-quadruplex via 5'-to-5' stacking in coordination with a K+ ion. Notably, the two C bases locate at 3'- end stack on the outer G-tetrad with the assistance of two additional K+ ions. The high-resolution structure reported here lays a foundation in understanding the mechanism of neurological toxicity of RNA HREs. Furthermore, the atomic details provide a structural basis for the development of potential therapeutic agents against the fatal neurodegenerative diseases ALS/FTD.
Collapse
Affiliation(s)
- Yanyan Geng
- Clinical Research Institute of the First Affiliated Hospital of Xiamen University, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Institute for Advanced Study and State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Department of Neurosurgery and Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Changdong Liu
- Institute for Advanced Study and State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- HKUST Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen, Guangdong, China
| | - Naining Xu
- Institute for Advanced Study and State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- HKUST Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen, Guangdong, China
| | - Monica Ching Suen
- Institute for Advanced Study and State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- HKUST Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen, Guangdong, China
| | - Haitao Miao
- Institute for Advanced Study and State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Yuanyuan Xie
- Department of Neurosurgery and Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Bingchang Zhang
- Department of Neurosurgery and Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Xueqin Chen
- Clinical Research Institute of the First Affiliated Hospital of Xiamen University, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yuanjian Song
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Department of Genetics, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhanxiang Wang
- Department of Neurosurgery and Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Qixu Cai
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Guang Zhu
- Institute for Advanced Study and State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- HKUST Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen, Guangdong, China
| |
Collapse
|
12
|
Longobardi A, Bellini S, Nicsanu R, Pilotto A, Geviti A, Facconi A, Tolassi C, Libri I, Saraceno C, Fostinelli S, Borroni B, Padovani A, Binetti G, Ghidoni R. Unveiling New Genetic Variants Associated with Age at Onset in Alzheimer's Disease and Frontotemporal Lobar Degeneration Due to C9orf72 Repeat Expansions. Int J Mol Sci 2024; 25:7457. [PMID: 39000564 PMCID: PMC11242823 DOI: 10.3390/ijms25137457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
Alzheimer's disease (AD) and Frontotemporal lobar degeneration (FTLD) represent the most common forms of neurodegenerative dementias with a highly phenotypic variability. Herein, we investigated the role of genetic variants related to the immune system and inflammation as genetic modulators in AD and related dementias. In patients with sporadic AD/FTLD (n = 300) and GRN/C9orf72 mutation carriers (n = 80), we performed a targeted sequencing of 50 genes belonging to the immune system and inflammation, selected based on their high expression in brain regions and low tolerance to genetic variation. The linear regression analyses revealed two genetic variants: (i) the rs1049296 in the transferrin (TF) gene, shown to be significantly associated with age at onset in the sporadic AD group, anticipating the disease onset of 4 years for each SNP allele with respect to the wild-type allele, and (ii) the rs7550295 in the calsyntenin-1 (CLSTN1) gene, which was significantly associated with age at onset in the C9orf72 group, delaying the disease onset of 17 years in patients carrying the SNP allele. In conclusion, our data support the role of genetic variants in iron metabolism (TF) and in the modulation of the calcium signalling/axonal anterograde transport of vesicles (CLSTN1) as genetic modulators in AD and FTLD due to C9orf72 expansions.
Collapse
Affiliation(s)
- Antonio Longobardi
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (S.B.); (R.N.); (C.S.); (R.G.)
| | - Sonia Bellini
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (S.B.); (R.N.); (C.S.); (R.G.)
| | - Roland Nicsanu
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (S.B.); (R.N.); (C.S.); (R.G.)
| | - Andrea Pilotto
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (A.P.); (C.T.); (I.L.); (B.B.); (A.P.)
- Neurology Unit, Department of Continuity of Care and Frailty, ASST Spedali Civili Hospital, 25123 Brescia, Italy
- Neurobiorepository and Laboratory of Advanced Biological Markers, University of Brescia and ASST Spedali Civili Hospital, 25123 Brescia, Italy
| | - Andrea Geviti
- Service of Statistics, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (A.G.); (A.F.)
| | - Alessandro Facconi
- Service of Statistics, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (A.G.); (A.F.)
| | - Chiara Tolassi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (A.P.); (C.T.); (I.L.); (B.B.); (A.P.)
- Neurology Unit, Department of Continuity of Care and Frailty, ASST Spedali Civili Hospital, 25123 Brescia, Italy
- Neurobiorepository and Laboratory of Advanced Biological Markers, University of Brescia and ASST Spedali Civili Hospital, 25123 Brescia, Italy
| | - Ilenia Libri
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (A.P.); (C.T.); (I.L.); (B.B.); (A.P.)
| | - Claudia Saraceno
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (S.B.); (R.N.); (C.S.); (R.G.)
| | - Silvia Fostinelli
- MAC-Memory Clinic and Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy;
| | - Barbara Borroni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (A.P.); (C.T.); (I.L.); (B.B.); (A.P.)
- Cognitive and Behavioural Neurology, ASST Spedali Civili Hospital, 25123 Brescia, Italy
| | - Alessandro Padovani
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (A.P.); (C.T.); (I.L.); (B.B.); (A.P.)
- Neurology Unit, Department of Continuity of Care and Frailty, ASST Spedali Civili Hospital, 25123 Brescia, Italy
- Neurobiorepository and Laboratory of Advanced Biological Markers, University of Brescia and ASST Spedali Civili Hospital, 25123 Brescia, Italy
- Brain Health Center, University of Brescia, 25123 Brescia, Italy
| | - Giuliano Binetti
- MAC-Memory Clinic and Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy;
| | - Roberta Ghidoni
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (S.B.); (R.N.); (C.S.); (R.G.)
| |
Collapse
|
13
|
Clayton EL, Huggon L, Cousin MA, Mizielinska S. Synaptopathy: presynaptic convergence in frontotemporal dementia and amyotrophic lateral sclerosis. Brain 2024; 147:2289-2307. [PMID: 38451707 PMCID: PMC11224618 DOI: 10.1093/brain/awae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 02/02/2024] [Accepted: 02/12/2024] [Indexed: 03/09/2024] Open
Abstract
Frontotemporal dementia and amyotrophic lateral sclerosis are common forms of neurodegenerative disease that share overlapping genetics and pathologies. Crucially, no significantly disease-modifying treatments are available for either disease. Identifying the earliest changes that initiate neuronal dysfunction is important for designing effective intervention therapeutics. The genes mutated in genetic forms of frontotemporal dementia and amyotrophic lateral sclerosis have diverse cellular functions, and multiple disease mechanisms have been proposed for both. Identification of a convergent disease mechanism in frontotemporal dementia and amyotrophic lateral sclerosis would focus research for a targetable pathway, which could potentially effectively treat all forms of frontotemporal dementia and amyotrophic lateral sclerosis (both familial and sporadic). Synaptopathies are diseases resulting from physiological dysfunction of synapses, and define the earliest stages in multiple neuronal diseases, with synapse loss a key feature in dementia. At the presynapse, the process of synaptic vesicle recruitment, fusion and recycling is necessary for activity-dependent neurotransmitter release. The unique distal location of the presynaptic terminal means the tight spatio-temporal control of presynaptic homeostasis is dependent on efficient local protein translation and degradation. Recently, numerous publications have shown that mutations associated with frontotemporal dementia and amyotrophic lateral sclerosis present with synaptopathy characterized by presynaptic dysfunction. This review will describe the complex local signalling and membrane trafficking events that occur at the presynapse to facilitate neurotransmission and will summarize recent publications linking frontotemporal dementia/amyotrophic lateral sclerosis genetic mutations to presynaptic function. This evidence indicates that presynaptic synaptopathy is an early and convergent event in frontotemporal dementia and amyotrophic lateral sclerosis and illustrates the need for further research in this area, to identify potential therapeutic targets with the ability to impact this convergent pathomechanism.
Collapse
Affiliation(s)
- Emma L Clayton
- UK Dementia Research Institute at King’s College London, London SE5 9RT, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London SE5 9RT, UK
| | - Laura Huggon
- UK Dementia Research Institute at King’s College London, London SE5 9RT, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London SE5 9RT, UK
| | - Michael A Cousin
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
- Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh EH8 9XD, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Sarah Mizielinska
- UK Dementia Research Institute at King’s College London, London SE5 9RT, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London SE5 9RT, UK
| |
Collapse
|
14
|
Karachanak-Yankova S, Serbezov D, Antov G, Stancheva M, Mihaylova M, Hadjidekova S, Toncheva D, Pashov A, Belejanska D, Zhelev Y, Petrova M, Mehrabian S, Traykov L. Rare Pathogenic Variants in Pooled Whole-Exome Sequencing Data Suggest Hyperammonemia as a Possible Cause of Dementia Not Classified as Alzheimer's Disease or Frontotemporal Dementia. Genes (Basel) 2024; 15:753. [PMID: 38927689 PMCID: PMC11202446 DOI: 10.3390/genes15060753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
The genetic bases of Alzheimer's disease (AD) and frontotemporal dementia (FTD) have been comprehensively studied, which is not the case for atypical cases not classified into these diagnoses. In the present study, we aim to contribute to the molecular understanding of the development of non-AD and non-FTD dementia due to hyperammonemia caused by mutations in urea cycle genes. The analysis was performed by pooled whole-exome sequencing (WES) of 90 patients and by searching for rare pathogenic variants in autosomal genes for enzymes or transporters of the urea cycle pathway. The survey returned two rare pathogenic coding mutations leading to citrullinemia type I: rs148918985, p.Arg265Cys, C>T; and rs121908641, p.Gly390Arg, G>A in the argininosuccinate synthase 1 (ASS1) gene. The p.Arg265Cys variant leads to enzyme deficiency, whereas p.Gly390Arg renders the enzyme inactive. These variants found in simple or compound heterozygosity can lead to the late-onset form of citrullinemia type I, associated with high ammonia levels, which can lead to cerebral dysfunction and thus to the development of dementia. The presence of urea cycle disorder-causing mutations can be used for the early initiation of antihyperammonemia therapy in order to prevent the neurotoxic effects.
Collapse
Affiliation(s)
- Sena Karachanak-Yankova
- Department of Medical Genetics, Medical Faculty, Medical University-Sofia, 1431 Sofia, Bulgaria; (D.S.); (M.M.); (S.H.); (D.T.)
- Department of Genetics, Faculty of Biology, Sofia University ‘St. Kliment Ohridski’, 1164 Sofia, Bulgaria;
| | - Dimitar Serbezov
- Department of Medical Genetics, Medical Faculty, Medical University-Sofia, 1431 Sofia, Bulgaria; (D.S.); (M.M.); (S.H.); (D.T.)
| | - Georgi Antov
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Mikaela Stancheva
- Department of Genetics, Faculty of Biology, Sofia University ‘St. Kliment Ohridski’, 1164 Sofia, Bulgaria;
| | - Marta Mihaylova
- Department of Medical Genetics, Medical Faculty, Medical University-Sofia, 1431 Sofia, Bulgaria; (D.S.); (M.M.); (S.H.); (D.T.)
| | - Savina Hadjidekova
- Department of Medical Genetics, Medical Faculty, Medical University-Sofia, 1431 Sofia, Bulgaria; (D.S.); (M.M.); (S.H.); (D.T.)
| | - Draga Toncheva
- Department of Medical Genetics, Medical Faculty, Medical University-Sofia, 1431 Sofia, Bulgaria; (D.S.); (M.M.); (S.H.); (D.T.)
- Bulgarian Academy of Sciences, 1000 Sofia, Bulgaria
| | - Anastas Pashov
- Department of Immunology, Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Diyana Belejanska
- Department of Neurology, University Hospital ‘Alexandrovska’, 1431 Sofia, Bulgaria; (D.B.); (Y.Z.); (M.P.); (S.M.); (L.T.)
| | - Yavor Zhelev
- Department of Neurology, University Hospital ‘Alexandrovska’, 1431 Sofia, Bulgaria; (D.B.); (Y.Z.); (M.P.); (S.M.); (L.T.)
| | - Mariya Petrova
- Department of Neurology, University Hospital ‘Alexandrovska’, 1431 Sofia, Bulgaria; (D.B.); (Y.Z.); (M.P.); (S.M.); (L.T.)
| | - Shima Mehrabian
- Department of Neurology, University Hospital ‘Alexandrovska’, 1431 Sofia, Bulgaria; (D.B.); (Y.Z.); (M.P.); (S.M.); (L.T.)
| | - Latchezar Traykov
- Department of Neurology, University Hospital ‘Alexandrovska’, 1431 Sofia, Bulgaria; (D.B.); (Y.Z.); (M.P.); (S.M.); (L.T.)
| |
Collapse
|
15
|
Mukherjee S, Poudyal M, Dave K, Kadu P, Maji SK. Protein misfolding and amyloid nucleation through liquid-liquid phase separation. Chem Soc Rev 2024; 53:4976-5013. [PMID: 38597222 DOI: 10.1039/d3cs01065a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Liquid-liquid phase separation (LLPS) is an emerging phenomenon in cell physiology and diseases. The weak multivalent interaction prerequisite for LLPS is believed to be facilitated through intrinsically disordered regions, which are prevalent in neurodegenerative disease-associated proteins. These aggregation-prone proteins also exhibit an inherent property for phase separation, resulting in protein-rich liquid-like droplets. The very high local protein concentration in the water-deficient confined microenvironment not only drives the viscoelastic transition from the liquid to solid-like state but also most often nucleate amyloid fibril formation. Indeed, protein misfolding, oligomerization, and amyloid aggregation are observed to be initiated from the LLPS of various neurodegeneration-related proteins. Moreover, in these cases, neurodegeneration-promoting genetic and environmental factors play a direct role in amyloid aggregation preceded by the phase separation. These cumulative recent observations ignite the possibility of LLPS being a prominent nucleation mechanism associated with aberrant protein aggregation. The present review elaborates on the nucleation mechanism of the amyloid aggregation pathway and the possible early molecular events associated with amyloid-related protein phase separation. It also summarizes the recent advancement in understanding the aberrant phase transition of major proteins contributing to neurodegeneration focusing on the common disease-associated factors. Overall, this review proposes a generic LLPS-mediated multistep nucleation mechanism for amyloid aggregation and its implication in neurodegeneration.
Collapse
Affiliation(s)
- Semanti Mukherjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Manisha Poudyal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Kritika Dave
- Sunita Sanghi Centre of Aging and Neurodegenerative Diseases, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Pradeep Kadu
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Samir K Maji
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
- Sunita Sanghi Centre of Aging and Neurodegenerative Diseases, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
16
|
Rosenthal ZC, Fass DM, Payne NC, She A, Patnaik D, Hennig KM, Tesla R, Werthmann GC, Guhl C, Reis SA, Wang X, Chen Y, Placzek M, Williams NS, Hooker J, Herz J, Mazitschek R, Haggarty SJ. Epigenetic modulation through BET bromodomain inhibitors as a novel therapeutic strategy for progranulin-deficient frontotemporal dementia. Sci Rep 2024; 14:9064. [PMID: 38643236 PMCID: PMC11032351 DOI: 10.1038/s41598-024-59110-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/08/2024] [Indexed: 04/22/2024] Open
Abstract
Frontotemporal dementia (FTD) is a debilitating neurodegenerative disorder with currently no disease-modifying treatment options available. Mutations in GRN are one of the most common genetic causes of FTD, near ubiquitously resulting in progranulin (PGRN) haploinsufficiency. Small molecules that can restore PGRN protein to healthy levels in individuals bearing a heterozygous GRN mutation may thus have therapeutic value. Here, we show that epigenetic modulation through bromodomain and extra-terminal domain (BET) inhibitors (BETi) potently enhance PGRN protein levels, both intracellularly and secreted forms, in human central nervous system (CNS)-relevant cell types, including in microglia-like cells. In terms of potential for disease modification, we show BETi treatment effectively restores PGRN levels in neural cells with a GRN mutation known to cause PGRN haploinsufficiency and FTD. We demonstrate that BETi can rapidly and durably enhance PGRN in neural progenitor cells (NPCs) in a manner dependent upon BET protein expression, suggesting a gain-of-function mechanism. We further describe a CNS-optimized BETi chemotype that potently engages endogenous BRD4 and enhances PGRN expression in neuronal cells. Our results reveal a new epigenetic target for treating PGRN-deficient forms of FTD and provide mechanistic insight to aid in translating this discovery into therapeutics.
Collapse
Affiliation(s)
- Zachary C Rosenthal
- Chemical Neurobiology Laboratory, Precision Therapeutics Unit, Center for Genomic Medicine, Departments of Neurology and Psychiatry, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Daniel M Fass
- Chemical Neurobiology Laboratory, Precision Therapeutics Unit, Center for Genomic Medicine, Departments of Neurology and Psychiatry, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - N Connor Payne
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA, USA
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Angela She
- Chemical Neurobiology Laboratory, Precision Therapeutics Unit, Center for Genomic Medicine, Departments of Neurology and Psychiatry, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Debasis Patnaik
- Chemical Neurobiology Laboratory, Precision Therapeutics Unit, Center for Genomic Medicine, Departments of Neurology and Psychiatry, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Krista M Hennig
- Chemical Neurobiology Laboratory, Precision Therapeutics Unit, Center for Genomic Medicine, Departments of Neurology and Psychiatry, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Rachel Tesla
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Center for Translational Neurodegeneration Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Gordon C Werthmann
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Center for Translational Neurodegeneration Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Charlotte Guhl
- Faculty of Chemistry and Earth Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Jena, Germany
| | - Surya A Reis
- Chemical Neurobiology Laboratory, Precision Therapeutics Unit, Center for Genomic Medicine, Departments of Neurology and Psychiatry, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Xiaoyu Wang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yueting Chen
- Department of Radiology, Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Michael Placzek
- Department of Radiology, Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Noelle S Williams
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jacob Hooker
- Department of Radiology, Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Joachim Herz
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Center for Translational Neurodegeneration Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ralph Mazitschek
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Stephen J Haggarty
- Chemical Neurobiology Laboratory, Precision Therapeutics Unit, Center for Genomic Medicine, Departments of Neurology and Psychiatry, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
17
|
Baev AY, Vinokurov AY, Potapova EV, Dunaev AV, Angelova PR, Abramov AY. Mitochondrial Permeability Transition, Cell Death and Neurodegeneration. Cells 2024; 13:648. [PMID: 38607087 PMCID: PMC11011324 DOI: 10.3390/cells13070648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 03/27/2024] [Accepted: 04/06/2024] [Indexed: 04/13/2024] Open
Abstract
Neurodegenerative diseases are chronic conditions occurring when neurons die in specific brain regions that lead to loss of movement or cognitive functions. Despite the progress in understanding the mechanisms of this pathology, currently no cure exists to treat these types of diseases: for some of them the only help is alleviating the associated symptoms. Mitochondrial dysfunction has been shown to be involved in the pathogenesis of most the neurodegenerative disorders. The fast and transient permeability of mitochondria (the mitochondrial permeability transition, mPT) has been shown to be an initial step in the mechanism of apoptotic and necrotic cell death, which acts as a regulator of tissue regeneration for postmitotic neurons as it leads to the irreparable loss of cells and cell function. In this study, we review the role of the mitochondrial permeability transition in neuronal death in major neurodegenerative diseases, covering the inductors of mPTP opening in neurons, including the major ones-free radicals and calcium-and we discuss perspectives and difficulties in the development of a neuroprotective strategy based on the inhibition of mPTP in neurodegenerative disorders.
Collapse
Affiliation(s)
- Artyom Y. Baev
- Laboratory of Experimental Biophysics, Centre for Advanced Technologies, Tashkent 100174, Uzbekistan;
- Department of Biophysics, Faculty of Biology, National University of Uzbekistan, Tashkent 100174, Uzbekistan
| | - Andrey Y. Vinokurov
- Cell Physiology and Pathology Laboratory, Orel State University, Orel 302026, Russia; (A.Y.V.); (E.V.P.); (A.V.D.)
| | - Elena V. Potapova
- Cell Physiology and Pathology Laboratory, Orel State University, Orel 302026, Russia; (A.Y.V.); (E.V.P.); (A.V.D.)
| | - Andrey V. Dunaev
- Cell Physiology and Pathology Laboratory, Orel State University, Orel 302026, Russia; (A.Y.V.); (E.V.P.); (A.V.D.)
| | - Plamena R. Angelova
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK;
| | - Andrey Y. Abramov
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK;
| |
Collapse
|
18
|
Borrego–Écija S, Pérez‐Millan A, Antonell A, Fort‐Aznar L, Kaya‐Tilki E, León‐Halcón A, Lladó A, Molina‐Porcel L, Balasa M, Juncà‐Parella J, Vitorica J, Venero JL, Deierborg T, Boza‐Serrano A, Sánchez‐Valle R. Galectin-3 is upregulated in frontotemporal dementia patients with subtype specificity. Alzheimers Dement 2024; 20:1515-1526. [PMID: 38018380 PMCID: PMC10984429 DOI: 10.1002/alz.13536] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/04/2023] [Accepted: 10/11/2023] [Indexed: 11/30/2023]
Abstract
INTRODUCTION Neuroinflammation is a major contributor to the progression of frontotemporal dementia (FTD). Galectin-3 (Gal-3), a microglial activation regulator, holds promise as a therapeutic target and potential biomarker. Our study aimed to investigate Gal-3 levels in patients with FTD and assess its diagnostic potential. METHODS We examined Gal-3 levels in brain, serum, and cerebrospinal fluid (CSF) samples of patients with FTD and controls. Multiple linear regressions between Gal-3 levels and other FTD markers were explored. RESULTS Gal-3 levels were increased significantly in patients with FTD, mainly across brain tissue and CSF, compared to controls. Remarkably, Gal-3 levels were higher in cases with tau pathology than TAR-DNA Binding Protein 43 (TDP-43) pathology. Only MAPT mutation carriers displayed increased Gal-3 levels in CSF samples, which correlated with total tau and 14-3-3. DISCUSSION Our findings underscore the potential of Gal-3 as a diagnostic marker for FTD, particularly in MAPT cases, and highlights the relation of Gal-3 with neuronal injury markers.
Collapse
Affiliation(s)
- Sergi Borrego–Écija
- Alzheimer's disease and other cognitive disorders Unit. Service of Neurology, Fundació Recerca Clínic Barcelona‐IDIBAPSHospital Clínic de BarcelonaBarcelonaSpain
| | - Agnès Pérez‐Millan
- Alzheimer's disease and other cognitive disorders Unit. Service of Neurology, Fundació Recerca Clínic Barcelona‐IDIBAPSHospital Clínic de BarcelonaBarcelonaSpain
- Institut of Neurosciences. Faculty of Medicine and Medical SciencesUniversity of BarcelonaBarcelonaSpain
| | - Anna Antonell
- Alzheimer's disease and other cognitive disorders Unit. Service of Neurology, Fundació Recerca Clínic Barcelona‐IDIBAPSHospital Clínic de BarcelonaBarcelonaSpain
| | - Laura Fort‐Aznar
- Alzheimer's disease and other cognitive disorders Unit. Service of Neurology, Fundació Recerca Clínic Barcelona‐IDIBAPSHospital Clínic de BarcelonaBarcelonaSpain
| | - Elif Kaya‐Tilki
- Departamento de Bioquímica y Biología Molecular, Facultad de FarmaciaUniversidad de Sevilla, Sevilla, SpainSevillaSpain
| | - Alberto León‐Halcón
- Departamento de Bioquímica y Biología Molecular, Facultad de FarmaciaUniversidad de Sevilla, Sevilla, SpainSevillaSpain
- Instituto de Biomedicina de SevillaIBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de SevillaSevillaSpain
| | - Albert Lladó
- Alzheimer's disease and other cognitive disorders Unit. Service of Neurology, Fundació Recerca Clínic Barcelona‐IDIBAPSHospital Clínic de BarcelonaBarcelonaSpain
- Institut of Neurosciences. Faculty of Medicine and Medical SciencesUniversity of BarcelonaBarcelonaSpain
| | - Laura Molina‐Porcel
- Alzheimer's disease and other cognitive disorders Unit. Service of Neurology, Fundació Recerca Clínic Barcelona‐IDIBAPSHospital Clínic de BarcelonaBarcelonaSpain
| | - Mircea Balasa
- Alzheimer's disease and other cognitive disorders Unit. Service of Neurology, Fundació Recerca Clínic Barcelona‐IDIBAPSHospital Clínic de BarcelonaBarcelonaSpain
| | - Jordi Juncà‐Parella
- Alzheimer's disease and other cognitive disorders Unit. Service of Neurology, Fundació Recerca Clínic Barcelona‐IDIBAPSHospital Clínic de BarcelonaBarcelonaSpain
| | - Javier Vitorica
- Departamento de Bioquímica y Biología Molecular, Facultad de FarmaciaUniversidad de Sevilla, Sevilla, SpainSevillaSpain
- Instituto de Biomedicina de SevillaIBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de SevillaSevillaSpain
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Jose Luis Venero
- Departamento de Bioquímica y Biología Molecular, Facultad de FarmaciaUniversidad de Sevilla, Sevilla, SpainSevillaSpain
- Instituto de Biomedicina de SevillaIBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de SevillaSevillaSpain
| | - Tomas Deierborg
- Department of Experimental Medical Sciences, Experimental Neuroinflammatory LabLund UniversityLundSweden
| | - Antonio Boza‐Serrano
- Alzheimer's disease and other cognitive disorders Unit. Service of Neurology, Fundació Recerca Clínic Barcelona‐IDIBAPSHospital Clínic de BarcelonaBarcelonaSpain
- Departamento de Bioquímica y Biología Molecular, Facultad de FarmaciaUniversidad de Sevilla, Sevilla, SpainSevillaSpain
- Instituto de Biomedicina de SevillaIBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de SevillaSevillaSpain
| | - Raquel Sánchez‐Valle
- Alzheimer's disease and other cognitive disorders Unit. Service of Neurology, Fundació Recerca Clínic Barcelona‐IDIBAPSHospital Clínic de BarcelonaBarcelonaSpain
- Institut of Neurosciences. Faculty of Medicine and Medical SciencesUniversity of BarcelonaBarcelonaSpain
| |
Collapse
|
19
|
Das S, van Engelen MPE, Goossens J, Jacobs D, Bongers B, Fieldhouse JLP, Pijnenburg YAL, Teunissen CE, Vanmechelen E, Verberk IMW. The use of synaptic biomarkers in cerebrospinal fluid to differentiate behavioral variant of frontotemporal dementia from primary psychiatric disorders and Alzheimer's disease. Alzheimers Res Ther 2024; 16:34. [PMID: 38355535 PMCID: PMC10865562 DOI: 10.1186/s13195-024-01409-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/04/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND Lack of early molecular biomarkers in sporadic behavioral variants of frontotemporal dementia (bvFTD) and its clinical overlap with primary psychiatric disorders (PPD) hampers its diagnostic distinction. Synaptic dysfunction is an early feature in bvFTD and identification of specific biomarkers might improve its diagnostic accuracy. Our goal was to understand the differential diagnostic potential of cerebrospinal fluid (CSF) synaptic biomarkers in bvFTD versus PPD and their specificity towards bvFTD compared with Alzheimer's disease (AD) and controls. Additionally, we explored the association of CSF synaptic biomarkers with social cognition, cognitive performance, and disease severity in these clinical groups. METHODS Participants with probable bvFTD (n = 57), PPD (n = 71), AD (n = 60), and cognitively normal controls (n = 39) with available CSF, cognitive tests, and disease severity as frontotemporal lobar degeneration-modified clinical dementia rating scale (FTLD-CDR) were included. In a subset of bvFTD and PPD cases, Ekman 60 faces test scores for social cognition were available. CSF synaptosomal-associated protein 25 (SNAP25), neurogranin (Ng), neuronal pentraxin 2 (NPTX2), and glutamate receptor 4 (GluR4) were measured, along with neurofilament light (NfL), and compared between groups using analysis of covariance (ANCOVA) and logistic regression. Diagnostic accuracy was assessed using ROC analyses, and biomarker panels were selected using Wald's backward selection. Correlations with cognitive measures were performed using Pearson's partial correlation analysis. RESULTS NPTX2 concentrations were lower in the bvFTD group compared with PPD (p < 0.001) and controls (p = 0.003) but not compared with AD. Concentrations of SNAP25 (p < 0.001) and Ng (p < 0.001) were elevated in patients with AD versus those with bvFTD and controls. The modeled panel for differential diagnosis of bvFTD versus PPD consisted of NfL and NPTX2 (AUC = 0.96, CI: 0.93-0.99, p < 0.001). In bvFTD versus AD, the modeled panel consisted of NfL, SNAP25, Ng, and GluR4 (AUC = 0.86, CI: 0.79-0.92, p < 0.001). In bvFTD, lower NPTX2 (Pearson's r = 0.29, p = 0.036) and GluR4 (Pearson's r = 0.34, p = 0.014) concentrations were weakly associated with worse performance of total cognitive score. Lower GluR4 concentrations were also associated with worse MMSE scores (Pearson's r = 0.41, p = 0.002) as well as with worse executive functioning (Pearson's r = 0.36, p = 0.011) in bvFTD. There were no associations between synaptic markers and social cognition or disease severity in bvFTD. CONCLUSION Our findings of involvement of NTPX2 in bvFTD but not PPD contribute towards better understanding of bvFTD disease pathology.
Collapse
Affiliation(s)
- Shreyasee Das
- Department of Laboratory Medicine, Neurochemistry Laboratory, Amsterdam, UMC location VrijeUniversiteit Amsterdam, Boelelaan 1117, Amsterdam, 1081 HV, The Netherlands
- ADx NeuroSciences, Technologiepark-Zwijnaarde 6, 9052, Gent, Belgium
| | - Marie-Paule E van Engelen
- Neurology, Amsterdam UMC location VUmc, Alzheimer Center Amsterdam, VrijeUniversiteit Amsterdam, De Boelelaan 1118, Amsterdam, 1081 HZ, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands
| | - Julie Goossens
- ADx NeuroSciences, Technologiepark-Zwijnaarde 6, 9052, Gent, Belgium
| | - Dirk Jacobs
- ADx NeuroSciences, Technologiepark-Zwijnaarde 6, 9052, Gent, Belgium
| | - Bram Bongers
- Department of Laboratory Medicine, Neurochemistry Laboratory, Amsterdam, UMC location VrijeUniversiteit Amsterdam, Boelelaan 1117, Amsterdam, 1081 HV, The Netherlands
| | - Jay L P Fieldhouse
- Neurology, Amsterdam UMC location VUmc, Alzheimer Center Amsterdam, VrijeUniversiteit Amsterdam, De Boelelaan 1118, Amsterdam, 1081 HZ, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands
| | - Yolande A L Pijnenburg
- Neurology, Amsterdam UMC location VUmc, Alzheimer Center Amsterdam, VrijeUniversiteit Amsterdam, De Boelelaan 1118, Amsterdam, 1081 HZ, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands
| | - Charlotte E Teunissen
- Department of Laboratory Medicine, Neurochemistry Laboratory, Amsterdam, UMC location VrijeUniversiteit Amsterdam, Boelelaan 1117, Amsterdam, 1081 HV, The Netherlands
- Neurology, Amsterdam UMC location VUmc, Alzheimer Center Amsterdam, VrijeUniversiteit Amsterdam, De Boelelaan 1118, Amsterdam, 1081 HZ, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands
| | | | - Inge M W Verberk
- Department of Laboratory Medicine, Neurochemistry Laboratory, Amsterdam, UMC location VrijeUniversiteit Amsterdam, Boelelaan 1117, Amsterdam, 1081 HV, The Netherlands.
- Neurology, Amsterdam UMC location VUmc, Alzheimer Center Amsterdam, VrijeUniversiteit Amsterdam, De Boelelaan 1118, Amsterdam, 1081 HZ, The Netherlands.
- Amsterdam Neuroscience, Neurodegeneration, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands.
| |
Collapse
|
20
|
Lee Y, Byun S, Na SJ. Behavioral Variant Frontotemporal Dementia With the Dominantly Affected Caudate Nucleus in 18 F-FP-CIT PET/CT. Clin Nucl Med 2024; 49:154-156. [PMID: 38049965 DOI: 10.1097/rlu.0000000000004998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
ABSTRACT Frontotemporal dementia is a clinical syndrome that is characterized by a progressive deterioration in behavior, personality, and/or language, with relative preservation of memory, and its phenotype and molecular basis are heterogeneous. We present a case of a 62-year-old female patient who underwent 18 F-FDG PET/CT and 18 F-FP-CIT PET/CT for differential diagnosis of psychiatric disease and types of dementia. 18 F-FDG PET/CT image showed a compatible finding for frontotemporal dementia, and 18 F-FP-CIT PET/CT image showed dominantly decreased dopamine transporter activity in the bilateral caudate nucleus.
Collapse
Affiliation(s)
| | - Seonjeong Byun
- Psychiatry, Uijeongbu St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | | |
Collapse
|
21
|
Geng Y, Cai Q. Role of C9orf72 hexanucleotide repeat expansions in ALS/FTD pathogenesis. Front Mol Neurosci 2024; 17:1322720. [PMID: 38318532 PMCID: PMC10838790 DOI: 10.3389/fnmol.2024.1322720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/04/2024] [Indexed: 02/07/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are progressive neurological disorders that share neurodegenerative pathways and features. The most prevalent genetic causes of ALS/FTD is the GGGGCC hexanucleotide repeat expansions in the first intron region of the chromosome 9 open reading frame 72 (C9orf72) gene. In this review, we comprehensively summarize the accumulating evidences elucidating the pathogenic mechanism associated with hexanucleotide repeat expansions in ALS/FTD. These mechanisms encompass the structural polymorphism of DNA and transcribed RNA, the formation of RNA foci via phase separation, and the cytoplasmic accumulation and toxicities of dipeptide-repeat proteins. Additionally, the formation of G-quadruplex structures significantly impairs the expression and normal function of the C9orf72 protein. We also discuss the sequestration of specific RNA binding proteins by GGGGCC RNA, which further contributes to the toxicity of C9orf72 hexanucleotide repeat expansions. The deeper understanding of the pathogenic mechanism of hexanucleotide repeat expansions in ALS/FTD provides multiple potential drug targets for these devastating diseases.
Collapse
Affiliation(s)
- Yanyan Geng
- Clinical Research Institute of the First Affiliated Hospital of Xiamen University, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Qixu Cai
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
22
|
Bruno A, Milillo C, Anaclerio F, Buccolini C, Dell’Elice A, Angilletta I, Gatta M, Ballerini P, Antonucci I. Perinatal Tissue-Derived Stem Cells: An Emerging Therapeutic Strategy for Challenging Neurodegenerative Diseases. Int J Mol Sci 2024; 25:976. [PMID: 38256050 PMCID: PMC10815412 DOI: 10.3390/ijms25020976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Over the past 20 years, stem cell therapy has been considered a promising option for treating numerous disorders, in particular, neurodegenerative disorders. Stem cells exert neuroprotective and neurodegenerative benefits through different mechanisms, such as the secretion of neurotrophic factors, cell replacement, the activation of endogenous stem cells, and decreased neuroinflammation. Several sources of stem cells have been proposed for transplantation and the restoration of damaged tissue. Over recent decades, intensive research has focused on gestational stem cells considered a novel resource for cell transplantation therapy. The present review provides an update on the recent preclinical/clinical applications of gestational stem cells for the treatment of protein-misfolding diseases including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and amyotrophic lateral sclerosis (ALS). However, further studies should be encouraged to translate this promising therapeutic approach into the clinical setting.
Collapse
Affiliation(s)
- Annalisa Bruno
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.B.); (C.M.); (C.B.); (A.D.); (I.A.)
- Department of Innovative Technologies in Medicine & Dentistry, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Cristina Milillo
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.B.); (C.M.); (C.B.); (A.D.); (I.A.)
- Department of Psychological, Health and Territorial Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Federico Anaclerio
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.B.); (C.M.); (C.B.); (A.D.); (I.A.)
- Department of Psychological, Health and Territorial Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Carlotta Buccolini
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.B.); (C.M.); (C.B.); (A.D.); (I.A.)
- Department of Psychological, Health and Territorial Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Anastasia Dell’Elice
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.B.); (C.M.); (C.B.); (A.D.); (I.A.)
- Department of Psychological, Health and Territorial Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Ilaria Angilletta
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.B.); (C.M.); (C.B.); (A.D.); (I.A.)
- Department of Psychological, Health and Territorial Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Marco Gatta
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.B.); (C.M.); (C.B.); (A.D.); (I.A.)
- Department of Innovative Technologies in Medicine & Dentistry, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Patrizia Ballerini
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.B.); (C.M.); (C.B.); (A.D.); (I.A.)
- Department of Innovative Technologies in Medicine & Dentistry, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Ivana Antonucci
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.B.); (C.M.); (C.B.); (A.D.); (I.A.)
- Department of Psychological, Health and Territorial Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
23
|
Serpente M, Fenoglio C, Arcaro M, Carandini T, Sacchi L, Pintus M, Rotondo E, Borracci V, Ghezzi L, Bouzigues A, Russell LL, Foster PH, Ferry-Bolder E, van Swieten JC, Jiskoot LC, Seelaar H, Sánchez Valle R, Laforce R, Graff C, Vandenberghe R, de Mendonça A, Tiraboschi P, Santana I, Gerhard A, Levin J, Sorbi S, Otto M, Pasquier F, Ducharme S, Butler CR, Le Ber I, Finger E, Tartaglia MC, Masellis M, Rowe JB, Synofzik M, Moreno F, Borroni B, Rohrer JD, Arighi A, Galimberti D. Long Non-Coding RNA Profile in Genetic Symptomatic and Presymptomatic Frontotemporal Dementia: A GENFI Study. J Alzheimers Dis 2024; 100:S187-S196. [PMID: 39121124 PMCID: PMC11380264 DOI: 10.3233/jad-240557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2024] [Indexed: 08/11/2024]
Abstract
Background Long non-coding RNAs (lncRNAs) play crucial roles in gene regulation and are implicated in neurodegenerative diseases, including frontotemporal dementia (FTD). However, their expression patterns and potential as biomarkers in genetic FTD involving Chromosome 9 Open Reading Frame (C9ORF72), Microtubule Associated Protein Tau (MAPT), and Progranulin (GRN) genes are not well understood. Objective This study aimed to profile the expression levels of lncRNAs in peripheral blood mononuclear cells collected within the GENetic Frontotemporal dementia Initiative (GENFI). Methods Fifty-three lncRNAs were analyzed with the OpenArray Custom panel, in 131 patients with mutations in C9ORF72, MAPT, and GRN, including 68 symptomatic mutation carriers (SMC) and 63 presymptomatic mutation carriers (PMC), compared with 40 non-carrier controls (NC). Results Thirty-eight lncRNAs were detectable; the relative expression of NEAT1 and NORAD was significantly higher in C9ORF72 SMC as compared with NC. GAS5 expression was instead significantly lower in the GRN group versus NC. MAPT carriers showed no significant deregulations. No significant differences were observed in PMC. Disease duration did not correlate with lncRNA expression. Conclusions NEAT1 and NORAD are upregulated in C9ORF72 SMC and GAS5 levels are downregulated in GRN SMC, underlining lncRNAs' relevance in FTD and their potential for biomarker development. Further validation and mechanistic studies are crucial for clinical implications.
Collapse
Affiliation(s)
- Maria Serpente
- Fondazione Ca’ Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Chiara Fenoglio
- Fondazione Ca’ Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Marina Arcaro
- Fondazione Ca’ Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Tiziana Carandini
- Fondazione Ca’ Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Luca Sacchi
- Fondazione Ca’ Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Manuela Pintus
- Fondazione Ca’ Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Emanuela Rotondo
- Fondazione Ca’ Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Vittoria Borracci
- Fondazione Ca’ Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Laura Ghezzi
- Fondazione Ca’ Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Arabella Bouzigues
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Lucy L. Russell
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Phoebe H. Foster
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Eve Ferry-Bolder
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | | | - Lize C. Jiskoot
- Department of Neurology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Harro Seelaar
- Department of Neurology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Raquel Sánchez Valle
- Alzheimer’s Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica, Universitat de Barcelona, Barcelona, Spain
| | - Robert Laforce
- Département des Sciences Neurologiques, Clinique Interdisciplinaire de Mémoire, CHU de Québec, and Faculté de Médecine, Université Laval, QC, Canada
| | - Caroline Graff
- Department of Neurobiology, Care Sciences and Society; Center for Alzheimer Research, Division of Neurogeriatrics, Bioclinicum, Karolinska Institutet, Solna, Sweden
- Unit for Hereditary Dementias, Theme Inflammation and Aging, Karolinska University Hospital, Solna, Sweden
| | - Rik Vandenberghe
- Department of Neurosciences, Laboratory for Cognitive Neurology, KU Leuven, Leuven, Belgium
- Neurology Service, University Hospitals Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | | | | | - Isabel Santana
- University Hospital of Coimbra (HUC), Neurology Service, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Alexander Gerhard
- Division of Psychology Communication and Human Neuroscience, Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK
- Department of Nuclear Medicine, Center for Translational Neuro- and Behavioral Sciences, University Medicine Essen, Essen, Germany
- Department of Geriatric Medicine, Klinikum Hochsauerland, Arnsberg, Germany
| | - Johannes Levin
- Department of Neurology, Ludwig-Maximilians Universität München, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Sandro Sorbi
- Department of Neurofarba, University of Florence, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Markus Otto
- Department of Neurology, University of Ulm, Germany
| | - Florence Pasquier
- University of Lille, Lille, France
- Inserm 1172, Lille, France
- CHU, CNR-MAJ, Labex Distalz, LiCEND Lille, Lille, France
| | - Simon Ducharme
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Chris R. Butler
- Nuffield Department of Clinical Neurosciences, Medical Sciences Division, University of Oxford, Oxford, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | - Isabelle Le Ber
- Sorbonne Université, Paris Brain Institute – Institut du Cerveau – ICM, Inserm U1127, CNRS UMR 7225, AP-HP – Hôpital Pitié-Salpêtrière, Paris, France
- Département de Neurologie, Centre de Référence Des Démences Rares Ou Précoces, IM2A, AP-HP – Hôpital Pitié-Salpêtrière, Paris, France
- Département de Neurologie, AP-HP – Hôpital Pitié-Salpêtrière, Paris, France
| | - Elizabeth Finger
- Department of Clinical Neurological Sciences, University of Western Ontario, London, ON, Canada
| | - Maria Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Mario Masellis
- Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, University of Toronto, Toronto, Canada
| | - James B. Rowe
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, UK
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tubingen, Germany
| | - Fermin Moreno
- Cognitive Disorders Unit, Department of Neurology, Donostia Universitary Hospital, San Sebastian, Spain
- Biogipuzkoa Health Research Institute, Neurosciences Area, Group of Neurodegenerative Diseases, San Sebastian, Spain
- Center for Biomedical Research in Neurodegenerative Disease (CIBERNED), Carlos III Health Institute, Madrid, Spain
| | - Barbara Borroni
- Department of Clinical and Experimental Sciences, Neurology Unit, University of Brescia, Brescia, Italy
| | - Jonathan D. Rohrer
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Andrea Arighi
- Fondazione Ca’ Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Daniela Galimberti
- Fondazione Ca’ Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| |
Collapse
|
24
|
Li J, Jaiswal MK, Chien JF, Kozlenkov A, Jung J, Zhou P, Gardashli M, Pregent LJ, Engelberg-Cook E, Dickson DW, Belzil VV, Mukamel EA, Dracheva S. Divergent single cell transcriptome and epigenome alterations in ALS and FTD patients with C9orf72 mutation. Nat Commun 2023; 14:5714. [PMID: 37714849 PMCID: PMC10504300 DOI: 10.1038/s41467-023-41033-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 08/21/2023] [Indexed: 09/17/2023] Open
Abstract
A repeat expansion in the C9orf72 (C9) gene is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Here we investigate single nucleus transcriptomics (snRNA-seq) and epigenomics (snATAC-seq) in postmortem motor and frontal cortices from C9-ALS, C9-FTD, and control donors. C9-ALS donors present pervasive alterations of gene expression with concordant changes in chromatin accessibility and histone modifications. The greatest alterations occur in upper and deep layer excitatory neurons, as well as in astrocytes. In neurons, the changes imply an increase in proteostasis, metabolism, and protein expression pathways, alongside a decrease in neuronal function. In astrocytes, the alterations suggest activation and structural remodeling. Conversely, C9-FTD donors have fewer high-quality neuronal nuclei in the frontal cortex and numerous gene expression changes in glial cells. These findings highlight a context-dependent molecular disruption in C9-ALS and C9-FTD, indicating unique effects across cell types, brain regions, and diseases.
Collapse
Affiliation(s)
- Junhao Li
- Department of Cognitive Science, University of California San Diego, La Jolla, CA, 92037, US
| | - Manoj K Jaiswal
- Friedman Brain Institute and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, US
| | - Jo-Fan Chien
- Department of Physics, University of California San Diego, La Jolla, CA, 92037, US
| | - Alexey Kozlenkov
- Friedman Brain Institute and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, US
| | - Jinyoung Jung
- Friedman Brain Institute and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, US
| | - Ping Zhou
- Friedman Brain Institute and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, US
| | | | - Luc J Pregent
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, US
| | | | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, US
| | | | - Eran A Mukamel
- Department of Cognitive Science, University of California San Diego, La Jolla, CA, 92037, US.
| | - Stella Dracheva
- Friedman Brain Institute and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, US.
- Research & Development and VISN2 MIREC, James J, Peters VA Medical Center, Bronx, NY, 10468, US.
| |
Collapse
|
25
|
Vinceti G, Gallingani C, Zucchi E, Martinelli I, Gianferrari G, Simonini C, Bedin R, Chiari A, Zamboni G, Mandrioli J. Young Onset Alzheimer's Disease Associated with C9ORF72 Hexanucleotide Expansion: Further Evidence for a Still Unsolved Association. Genes (Basel) 2023; 14:genes14040930. [PMID: 37107688 PMCID: PMC10138077 DOI: 10.3390/genes14040930] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/14/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are recognized as part of a disease continuum (FTD-ALS spectrum), in which the most common genetic cause is chromosome 9 open reading frame 72 (C9ORF72) gene hexanucleotide repeat expansion. The clinical phenotype of patients carrying this expansion varies widely and includes diseases beyond the FTD-ALS spectrum. Although a few cases of patients with C9ORF72 expansion and a clinical or biomarker-supported diagnosis of Alzheimer's disease (AD) have been described, they have been considered too sparse to establish a definite association between the C9ORF72 expansion and AD pathology. Here, we describe a C9ORF72 family with pleomorphic phenotypical expressions: a 54-year-old woman showing cognitive impairment and behavioral disturbances with both neuroimaging and cerebrospinal fluid (CSF) biomarkers consistent with AD pathology, her 49-year-old brother with typical FTD-ALS, and their 63-year-old mother with the behavioral variant of FTD and CSF biomarkers suggestive of AD pathology. The young onset of disease in all three family members and their different phenotypes and biomarker profiles make the simple co-occurrence of different diseases an extremely unlikely explanation. Our report adds to previous findings and may contribute to further expanding the spectrum of diseases associated with C9ORF72 expansion.
Collapse
Affiliation(s)
- Giulia Vinceti
- Neurology Unit, Azienda Ospedaliero Universitaria di Modena, 41126 Modena, Italy
| | - Chiara Gallingani
- Neurology Unit, Azienda Ospedaliero Universitaria di Modena, 41126 Modena, Italy
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Elisabetta Zucchi
- Neurology Unit, Azienda Ospedaliero Universitaria di Modena, 41126 Modena, Italy
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Ilaria Martinelli
- Neurology Unit, Azienda Ospedaliero Universitaria di Modena, 41126 Modena, Italy
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Giulia Gianferrari
- Neurology Unit, Azienda Ospedaliero Universitaria di Modena, 41126 Modena, Italy
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Cecilia Simonini
- Neurology Unit, Azienda Ospedaliero Universitaria di Modena, 41126 Modena, Italy
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Roberta Bedin
- Neurology Unit, Azienda Ospedaliero Universitaria di Modena, 41126 Modena, Italy
| | - Annalisa Chiari
- Neurology Unit, Azienda Ospedaliero Universitaria di Modena, 41126 Modena, Italy
| | - Giovanna Zamboni
- Neurology Unit, Azienda Ospedaliero Universitaria di Modena, 41126 Modena, Italy
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Jessica Mandrioli
- Neurology Unit, Azienda Ospedaliero Universitaria di Modena, 41126 Modena, Italy
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| |
Collapse
|
26
|
Perneel J, Manoochehri M, Huey ED, Rademakers R, Goldman J. Case report: TMEM106B haplotype alters penetrance of GRN mutation in frontotemporal dementia family. Front Neurol 2023; 14:1160248. [PMID: 37077569 PMCID: PMC10106611 DOI: 10.3389/fneur.2023.1160248] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/07/2023] [Indexed: 04/05/2023] Open
Abstract
Frontotemporal dementia (FTD) is the second-most common young-onset dementia. Variants in the TMEM106B gene have been proposed as modifiers of FTD disease risk, especially in progranulin (GRN) mutation carriers. A patient in their 50s presented to our clinic with behavioral variant FTD (bvFTD). Genetic testing revealed the disease-causing variant c.349 + 1G > C in GRN. Family testing revealed that the mutation was inherited from an asymptomatic parent in their 80s and that the sibling also carries the mutation. Genetic analyses showed that the asymptomatic parent and sibling carry two copies of the protective TMEM106B haplotype (defined as c.554C > G, p.Thr185Ser), whereas the patient is heterozygous. This case report illustrates that combining TMEM106B genotyping with GRN mutation screening may provide more appropriate genetic counseling on disease risk in GRN families. Both the parent and sibling were counseled to have a significantly reduced risk for symptomatic disease. Implementing TMEM106B genotyping may also promote the collection of biosamples for research studies to improve our understanding of the risk-and disease-modifying effect of this important modifier gene.
Collapse
Affiliation(s)
- Jolien Perneel
- VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Masood Manoochehri
- Department of Neurology, Columbia University, New York, NY, United States
| | - Edward D. Huey
- Department of Neurology, Columbia University, New York, NY, United States
| | - Rosa Rademakers
- VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Department of Neuroscience, Mayo Clinic Jacksonville, Jacksonville, FL, United States
| | - Jill Goldman
- Department of Neurology, Columbia University, New York, NY, United States
| |
Collapse
|
27
|
Pérez-Millan A, Borrego-Écija S, van Swieten JC, Jiskoot L, Moreno F, Laforce R, Graff C, Masellis M, Tartaglia MC, Rowe JB, Borroni B, Finger E, Synofzik M, Galimberti D, Vandenberghe R, de Mendonça A, Butler CR, Gerhard A, Ducharme S, Le Ber I, Santana I, Pasquier F, Levin J, Otto M, Sorbi S, Tiraboschi P, Seelaar H, Langheinrich T, Rohrer JD, Sala-Llonch R, Sánchez-Valle R. Loss of brainstem white matter predicts onset and motor neuron symptoms in C9orf72 expansion carriers: a GENFI study. J Neurol 2023; 270:1573-1586. [PMID: 36443488 DOI: 10.1007/s00415-022-11435-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND OBJECTIVES The C9orf72 expansion is the most common genetic cause of frontotemporal dementia (FTD) and/or motor neuron disease (MND). Corticospinal degeneration has been described in post-mortem neuropathological studies in these patients, especially in those with MND. We used MRI to analyze white matter (WM) volumes in presymptomatic and symptomatic C9orf72 expansion carriers and investigated whether its measure may be helpful in predicting the onset of symptoms. METHODS We studied 102 presymptomatic C9orf72 mutation carriers, 52 symptomatic carriers: 42 suffering from FTD and 11 from MND, and 75 non-carriers from the Genetic Frontotemporal dementia Initiative (GENFI). All subjects underwent T1-MRI acquisition. We used FreeSurfer to estimate the volume proportion of WM in the brainstem regions (midbrain, pons, and medulla oblongata). We calculated group differences with ANOVA tests and performed linear and non-linear regressions to assess group-by-age interactions. RESULTS A reduced WM ratio was found in all brainstem subregions in symptomatic carriers compared to both noncarriers and pre-symptomatic carriers. Within symptomatic carriers, MND patients presented a lower ratio in pons and medulla oblongata compared with FTD patients. No differences were found between presymptomatic carriers and non-carriers. Clinical severity was negatively associated with the WM ratio. C9orf72 carriers presented greater age-related WM loss than non-carriers, with MND patients showing significantly more atrophy in pons and medulla oblongata. DISCUSSION We find consistent brainstem WM loss in C9orf72 symptomatic carriers with differences related to the clinical phenotype supporting the use of brainstem measures as neuroimaging biomarkers for disease tracking.
Collapse
Affiliation(s)
- Agnès Pérez-Millan
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi I Sunyer, University of Barcelona, Villarroel, 170, 08036, Barcelona, Spain
- Department of Biomedicine, Faculty of Medicine, Institute of Neurosciences, University of Barcelona, 08036, Barcelona, Spain
| | - Sergi Borrego-Écija
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi I Sunyer, University of Barcelona, Villarroel, 170, 08036, Barcelona, Spain
| | - John C van Swieten
- Department of Neurology and Alzheimer Center Erasmus MC, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Lize Jiskoot
- Department of Neurology and Alzheimer Center Erasmus MC, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, London, UK
| | - Fermin Moreno
- Cognitive Disorders Unit, Department of Neurology, Donostia University Hospital, San Sebastian, Gipuzkoa, Spain
- Neuroscience Area, Biodonostia Health Research Institute, San Sebastian, Gipuzkoa, Spain
| | - Robert Laforce
- Département des Sciences Neurologiques, Clinique Interdisciplinaire de Mémoire, CHU de Québec, and Faculté de Médecine, Université Laval, Quebec City, QC, Canada
| | - Caroline Graff
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Bioclinicum, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden
- Unit for Hereditary Dementias, Theme Aging, Karolinska University Hospital, Solna, Sweden
| | - Mario Masellis
- Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, University of Toronto, Toronto, Canada
| | - Maria Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
| | - James B Rowe
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust and Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Barbara Borroni
- Department of Clinical and Experimental Sciences, Centre for Neurodegenerative Disorders, University of Brescia, Brescia, Italy
| | - Elizabeth Finger
- Department of Clinical Neurological Sciences, University of Western Ontario, London, ON, Canada
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany
- Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Daniela Galimberti
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium
- Neurology Service, University Hospitals Leuven, Leuven, Belgium
| | | | - Chris R Butler
- Nuffield Department of Clinical Neurosciences, Medical Sciences Division, University of Oxford, Oxford, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | - Alexander Gerhard
- Division of Neuroscience and Experimental Psychology, Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK
- Department of Geriatric Medicine and Nuclear Medicine, Center for Translational Neuro- and Behavioral Sciences, University Medicine Essen, Essen, Germany
| | - Simon Ducharme
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, Canada
- Department of Neurology and Neurosurgery, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Isabelle Le Ber
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau - ICM, Inserm U1127, CNRS UMR 7225, AP-HP - Hôpital Pitié-Salpêtrière (DMU Neurosciences Paris 6), Paris, France
- Département de Neurologie, AP-HP - Hôpital Pitié-Salpêtrière (DMU Neurosciences Paris 6), Paris, France
| | - Isabel Santana
- Neurology Service, Faculty of Medicine, University Hospital of Coimbra (HUC), University of Coimbra, Coimbra, Portugal
- Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Florence Pasquier
- Univ Lille, Lille, France
- CHU, CNR-MAJ, Labex Distalz, LiCEND, Lille, France
| | - Johannes Levin
- Neurologische Klinik und Poliklinik, Ludwig-Maximilians-Universität, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Markus Otto
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Sandro Sorbi
- Department of Neurofarba, University of Florence, Florence, Italy
| | | | - Harro Seelaar
- Department of Neurology and Alzheimer Center Erasmus MC, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Tobias Langheinrich
- Division of Neuroscience and Experimental Psychology, Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK
| | - Jonathan D Rohrer
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, London, UK
| | - Roser Sala-Llonch
- Department of Biomedicine, Faculty of Medicine, Institute of Neurosciences, University of Barcelona, 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain
| | - Raquel Sánchez-Valle
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi I Sunyer, University of Barcelona, Villarroel, 170, 08036, Barcelona, Spain.
| | | |
Collapse
|
28
|
Kara B, Gordon MN, Gifani M, Dorrance AM, Counts SE. Vascular and Nonvascular Mechanisms of Cognitive Impairment and Dementia. Clin Geriatr Med 2023; 39:109-122. [PMID: 36404024 PMCID: PMC10062062 DOI: 10.1016/j.cger.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Aging, familial gene mutations, and genetic, environmental, and modifiable lifestyle risk factors predispose individuals to cognitive impairment or dementia by influencing the efficacy of multiple, often interdependent cellular and molecular homeostatic pathways mediating neuronal, glial, and vascular integrity and, ultimately, cognitive status. This review summarizes data from foundational and recent breakthrough studies to highlight common and differential vascular and nonvascular pathogenic mechanisms underlying the progression of Alzheimer disease, vascular dementia, frontotemporal dementia, and dementia with Lewy bodies.
Collapse
Affiliation(s)
- Betul Kara
- Department of Translational Neuroscience, Michigan State University, 400 Monroe Avenue Northwest, Grand Rapids, MI 49503, USA
| | - Marcia N Gordon
- Department of Translational Neuroscience, Michigan State University, 400 Monroe Avenue Northwest, Grand Rapids, MI 49503, USA
| | - Mahsa Gifani
- Department of Translational Neuroscience, Michigan State University, 400 Monroe Avenue Northwest, Grand Rapids, MI 49503, USA
| | - Anne M Dorrance
- Department of Pharmacology and Toxicology, Michigan State University, 1355 Bogue Street, East Lansing, MI 48824, USA
| | - Scott E Counts
- Department of Translational Neuroscience, Michigan State University, 400 Monroe Avenue Northwest, Grand Rapids, MI 49503, USA; Department of Family Medicine, Michigan State University, 15 Michigan Street Northeast, Grand Rapids, MI 49503, USA; Hauenstein Neurosciences Center, Mercy Health Saint Mary's Medical Center, 20 Jefferson Avenue Southeast, Grand Rapids, MI 49503, USA.
| |
Collapse
|
29
|
Abstract
Brain PET adds value in diagnosing neurodegenerative disorders, especially frontotemporal dementia (FTD) due to its syndromic presentation that overlaps with a variety of other neurodegenerative and psychiatric disorders. 18F-FDG-PET has improved sensitivity and specificity compared with structural MR imaging, with optimal diagnostic results achieved when both techniques are utilized. PET demonstrates superior sensitivity compared with SPECT for FTD diagnosis that is primarily a supplement to other imaging and clinical evaluations. Tau-PET and amyloid-PET primary use in FTD diagnosis is differentiation from Alzheimer disease, although these methods are limited mainly to research settings.
Collapse
Affiliation(s)
- Joshua Ward
- Division of Neuroradiology, Mallinckrodt Institute of Radiology, Washington University in Saint. Louis, Saint Louis, MO 63130, USA
| | - Maria Ly
- Division of Neuroradiology, Mallinckrodt Institute of Radiology, Washington University in Saint. Louis, Saint Louis, MO 63130, USA
| | - Cyrus A. Raji
- Division of Neuroradiology, Mallinckrodt Institute of Radiology, Washington University in Saint. Louis, Saint Louis, MO 63130, USA,Department of Neurology, Washington University in St. Louis, 4525 Scott Avenue, St. Louis, MO 63110, USA,Corresponding author. Division of Neuroradiology, Mallinckrodt Institute of Radiology, Washington University in Saint. Louis, Saint Louis, MO 63130.
| |
Collapse
|
30
|
Novel CSF Biomarkers Tracking Autoimmune Inflammatory and Neurodegenerative Aspects of CNS Diseases. Diagnostics (Basel) 2022; 13:diagnostics13010073. [PMID: 36611365 PMCID: PMC9818715 DOI: 10.3390/diagnostics13010073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022] Open
Abstract
The accurate diagnosis of neuroinflammatory (NIDs) and neurodegenerative (NDDs) diseases and the stratification of patients into disease subgroups with distinct disease-related characteristics that reflect the underlying pathology represents an unmet clinical need that is of particular interest in the era of emerging disease-modifying therapies (DMT). Proper patient selection for clinical trials and identifying those in the prodromal stages of the diseases or those at high risk will pave the way for precision medicine approaches and halt neuroinflammation and/or neurodegeneration in early stages where this is possible. Towards this direction, novel cerebrospinal fluid (CSF) biomarker candidates were developed to reflect the diseased organ's pathology better. Μisfolded protein accumulation, microglial activation, synaptic dysfunction, and finally, neuronal death are some of the pathophysiological aspects captured by these biomarkers to support proper diagnosis and screening. We also describe advances in the field of molecular biomarkers, including miRNAs and extracellular nucleic acids known as cell-free DNA and mitochondrial DNA molecules. Here we review the most important of these novel CSF biomarkers of NIDs and NDDs, focusing on their involvement in disease development and emphasizing their ability to define homogeneous disease phenotypes and track potential treatment outcomes that can be mirrored in the CSF compartment.
Collapse
|
31
|
Zecca C, Tortelli R, Carrera P, Dell'Abate MT, Logroscino G, Ferrari M. Genotype-phenotype correlation in the spectrum of frontotemporal dementia-parkinsonian syndromes and advanced diagnostic approaches. Crit Rev Clin Lab Sci 2022; 60:171-188. [PMID: 36510705 DOI: 10.1080/10408363.2022.2150833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The term frontotemporal dementia (FTD) refers to a group of progressive neurodegenerative disorders characterized mainly by atrophy of the frontal and anterior temporal lobes. Based on clinical presentation, three main clinical syndromes have traditionally been described: behavioral variant frontotemporal dementia (bvFTD), non-fluent/agrammatic primary progressive aphasia (nfPPA), and semantic variant PPA (svPPA). However, over the last 20 years, it has been recognized that cognitive phenotypes often overlap with motor phenotypes, either motor neuron diseases or parkinsonian signs and/or syndromes like progressive supranuclear palsy (PSP) and cortico-basal syndrome (CBS). Furthermore, FTD-related genes are characterized by genetic pleiotropy and can cause, even in the same family, pure motor phenotypes, findings that underlie the clinical continuum of the spectrum, which has pure cognitive and pure motor phenotypes as the extremes. The genotype-phenotype correlation of the spectrum, FTD-motor neuron disease, has been well defined and extensively investigated, while the continuum, FTD-parkinsonism, lacks a comprehensive review. In this narrative review, we describe the current knowledge about the genotype-phenotype correlation of the spectrum, FTD-parkinsonism, focusing on the phenotypes that are less frequent than bvFTD, namely nfPPA, svPPA, PSP, CBS, and cognitive-motor overlapping phenotypes (i.e. PPA + PSP). From a pathological point of view, they are characterized mainly by the presence of phosphorylated-tau inclusions, either 4 R or 3 R. The genetic correlate of the spectrum can be heterogeneous, although some variants seem to lead preferentially to specific clinical syndromes. Furthermore, we critically review the contribution of genome-wide association studies (GWAS) and next-generation sequencing (NGS) in disentangling the complex heritability of the FTD-parkinsonism spectrum and in defining the genotype-phenotype correlation of the entire clinical scenario, owing to the ability of these techniques to test multiple genes, and so to allow detailed investigations of the overlapping phenotypes. Finally, we conclude with the importance of a detailed genetic characterization and we offer to patients and families the chance to be included in future randomized clinical trials focused on autosomal dominant forms of FTLD.
Collapse
Affiliation(s)
- Chiara Zecca
- Department of Clinical Research in Neurology, Center for Neurodegenerative Diseases and the Aging Brain, University of Bari "Aldo Moro", Pia Fondazione Card G. Panico Hospital, Tricase, Italy
| | - Rosanna Tortelli
- Neuroscience and Rare Diseases Discovery and Translational Area, Roche Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Paola Carrera
- Unit of Genomics for Human Disease Diagnosis and Clinical Molecular Biology Laboratory, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Teresa Dell'Abate
- Department of Clinical Research in Neurology, Center for Neurodegenerative Diseases and the Aging Brain, University of Bari "Aldo Moro", Pia Fondazione Card G. Panico Hospital, Tricase, Italy
| | - Giancarlo Logroscino
- Department of Clinical Research in Neurology, Center for Neurodegenerative Diseases and the Aging Brain, University of Bari "Aldo Moro", Pia Fondazione Card G. Panico Hospital, Tricase, Italy.,Department of Basic Medicine Sciences, Neuroscience, and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | | |
Collapse
|
32
|
Muacevic A, Adler JR, Rane R, Jain A, Waseem S. Rapidly Progressive Frontotemporal Dementia With Amyotrophic Lateral Sclerosis in an Elderly Female. Cureus 2022; 14:e32182. [PMID: 36605066 PMCID: PMC9810361 DOI: 10.7759/cureus.32182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2022] [Indexed: 12/07/2022] Open
Abstract
A 69-year-old female with a family history significant for early onset dementia and a past medical history significant for coronary artery disease, primary hypertension, type two diabetes mellitus, and Crohn's disease presents to our facility with rapidly progressive cognitive decline, delusions, hallucinations, and ambulatory dysfunction over the past two months. Neurological examination was remarkable for bilateral horizontal nystagmus, tongue fasciculations, bilateral upper extremity incoordination, and bilateral lower extremity spasticity, atrophy, and weakness. Laboratory and microbiological testing were remarkable for low serum thiamine levels. Computed tomography (CT) of the head without contrast showed significant brain atrophy in the frontal and temporal regions as compared to a CT without contrast of the head 5 years prior. Magnetic resonance imaging (MRI) of the head with and without contrast showed significant atrophy in the frontal and temporal regions as well as the cerebellum. Follow-up electromyography was consistent with lower motor neuron disease. The patient was given adequate thiamine supplementation for her thiamine deficiency and discharged on donepezil with instructions to follow up with the amyotrophic lateral sclerosis clinic for further monitoring and initiation of riluzole.
Collapse
|
33
|
Rawat P, Sehar U, Bisht J, Selman A, Culberson J, Reddy PH. Phosphorylated Tau in Alzheimer's Disease and Other Tauopathies. Int J Mol Sci 2022; 23:12841. [PMID: 36361631 PMCID: PMC9654278 DOI: 10.3390/ijms232112841] [Citation(s) in RCA: 165] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 07/29/2023] Open
Abstract
Alzheimer's disease (AD) is the leading cause of dementia in elderly people. Amyloid beta (Aβ) deposits and neurofibrillary tangles are the major pathological features in an Alzheimer's brain. These proteins are highly expressed in nerve cells and found in most tissues. Tau primarily provides stabilization to microtubules in the part of axons and dendrites. However, tau in a pathological state becomes hyperphosphorylated, causing tau dysfunction and leading to synaptic impairment and degeneration of neurons. This article presents a summary of the role of tau, phosphorylated tau (p-tau) in AD, and other tauopathies. Tauopathies, including Pick's disease, frontotemporal dementia, corticobasal degeneration, Alzheimer's disease, argyrophilic grain disease, progressive supranuclear palsy, and Huntington's disease, are the result of misprocessing and accumulation of tau within the neuronal and glial cells. This article also focuses on current research on the post-translational modifications and genetics of tau, tau pathology, the role of tau in tauopathies and the development of new drugs targeting p-tau, and the therapeutics for treating and possibly preventing tauopathies.
Collapse
Affiliation(s)
- Priyanka Rawat
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Ujala Sehar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Jasbir Bisht
- Department of Pediatrics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Ashley Selman
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - John Culberson
- Department of Family Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - P. Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Nutritional Sciences Department, College Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
34
|
Magrath Guimet N, Zapata-Restrepo LM, Miller BL. Advances in Treatment of Frontotemporal Dementia. J Neuropsychiatry Clin Neurosci 2022; 34:316-327. [PMID: 35578801 DOI: 10.1176/appi.neuropsych.21060166] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this review, the authors explored the clinical features of frontotemporal dementia (FTD), focusing on treatment. The clinical features of FTD are unique, with disinhibition, apathy, loss of empathy, and compulsions common. Motor changes occur later in the illness. The two major proteins that aggregate in the brain with FTD are tau and TDP-43, whereas a minority of patients aggregate FET proteins, primarily the FUS protein. Genetic causes include mutations in MAPT, GRN, and C9orf72. There are no medications that can slow FTD progression, although new therapies for the genetic forms of FTD are moving into clinical trials. Once a diagnosis is made, therapies should begin, focusing on the family and the patient. In the setting of FTD, families experience a severe burden associated with caregiving, and the clinician should focus on alleviating this burden. Advice around legal and financial issues is usually helpful. Careful consideration of environmental changes to cope with abnormal behaviors is essential. Most compounds that have been used to treat dementia of the Alzheimer's disease type are not effective in FTD, and cholinesterase inhibitors and memantine should be avoided. Although the data are scant, there is some evidence that antidepressants and second-generation antipsychotics may help individual patients.
Collapse
Affiliation(s)
- Nahuel Magrath Guimet
- Global Brain Health Institute, University of California, San Francisco (all authors); Institute of Neuroscience, Trinity College, Dublin (all authors); Department of Cognitive Neurology, Neuropsychiatry and Neuropsychology, Instituto Neurológico Fleni, Buenos Aires (Magrath Guimet); Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco (Miller); and Department of Medical Sciences, Pontifical Xaverian University Cali, Cali, Colombia (Zapata-Restrepo), Department of Psychiatry, Fundación Valle del Lili, Cali, Colombia (Zapata-Restrepo)
| | - Lina M Zapata-Restrepo
- Global Brain Health Institute, University of California, San Francisco (all authors); Institute of Neuroscience, Trinity College, Dublin (all authors); Department of Cognitive Neurology, Neuropsychiatry and Neuropsychology, Instituto Neurológico Fleni, Buenos Aires (Magrath Guimet); Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco (Miller); and Department of Medical Sciences, Pontifical Xaverian University Cali, Cali, Colombia (Zapata-Restrepo), Department of Psychiatry, Fundación Valle del Lili, Cali, Colombia (Zapata-Restrepo)
| | - Bruce L Miller
- Global Brain Health Institute, University of California, San Francisco (all authors); Institute of Neuroscience, Trinity College, Dublin (all authors); Department of Cognitive Neurology, Neuropsychiatry and Neuropsychology, Instituto Neurológico Fleni, Buenos Aires (Magrath Guimet); Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco (Miller); and Department of Medical Sciences, Pontifical Xaverian University Cali, Cali, Colombia (Zapata-Restrepo), Department of Psychiatry, Fundación Valle del Lili, Cali, Colombia (Zapata-Restrepo)
| |
Collapse
|
35
|
Chauhan P, Wadhwa K, Singh G. Caenorhabditis elegans as a model system to evaluate neuroprotective potential of nano formulations. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.1018754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The impact of neurodegenerative illnesses on society is significant, but the mechanisms leading to neuronal malfunction and death in these conditions remain largely unknown despite identifying essential disease genes. To pinpoint the mechanisms behind the pathophysiology of neurodegenerative diseases, several researchers have turned to nematode C. elegans instead of using mammals. Since C. elegans is transparent, free-living, and amenable to culture, it has several benefits. As a result, all the neurons in C. elegans can be easily identified, and their connections are understood. Human proteins linked to Neurodegeneration can be made to express in them. It is also possible to analyze how C. elegans orthologs of the genes responsible for human neurodegenerative diseases function. In this article, we focused at some of the most important C. elegans neurodegeneration models that accurately represent many elements of human neurodegenerative illness. It has been observed that studies using the adaptable C. elegans have helped us in better understanding of human diseases. These studies have used it to replicate several aspects of human neurodegeneration. A nanotech approach involves engineering materials or equipments interacting with biological systems at the molecular level to trigger physiological responses by increasing stimulation, responding, and interacting with target sites while minimizing side effects, thus revolutionizing the treatment and diagnosis of neurodegenerative diseases. Nanotechnologies are being used to treat neurological disorders and deliver nanoscale drugs. This review explores the current and future uses of these nanotechnologies as innovative therapeutic modalities in treatment of neurodegenerative diseases using C elegans as an experimental model.
Collapse
|
36
|
Plasma Small Extracellular Vesicle Cathepsin D Dysregulation in GRN/C9orf72 and Sporadic Frontotemporal Lobar Degeneration. Int J Mol Sci 2022; 23:ijms231810693. [PMID: 36142612 PMCID: PMC9504770 DOI: 10.3390/ijms231810693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/08/2022] [Accepted: 09/11/2022] [Indexed: 11/22/2022] Open
Abstract
Emerging data suggest the roles of endo-lysosomal dysfunctions in frontotemporal lobar degeneration (FTLD) and in other dementias. Cathepsin D is one of the major lysosomal proteases, mediating the degradation of unfolded protein aggregates. In this retrospective study, we investigated cathepsin D levels in human plasma and in the plasma small extracellular vesicles (sEVs) of 161 subjects (40 sporadic FTLD, 33 intermediate/pathological C9orf72 expansion carriers, 45 heterozygous/homozygous GRN mutation carriers, and 43 controls). Cathepsin D was quantified by ELISA, and nanoparticle tracking analysis data (sEV concentration for the cathepsin D level normalization) were extracted from our previously published dataset or were newly generated. First, we revealed a positive correlation of the cathepsin D levels with the age of the patients and controls. Even if no significant differences were found in the cathepsin D plasma levels, we observed a progressive reduction in plasma cathepsin D moving from the intermediate to C9orf72 pathological expansion carriers. Observing the sEVs nano-compartment, we observed increased cathepsin D sEV cargo (ng/sEV) levels in genetic/sporadic FTLD. The diagnostic performance of this biomarker was fairly high (AUC = 0.85). Moreover, sEV and plasma cathepsin D levels were positively correlated with age at onset. In conclusion, our study further emphasizes the common occurrence of endo-lysosomal dysregulation in GRN/C9orf72 and sporadic FTLD.
Collapse
|
37
|
Pizzini FB, Conti E, Bianchetti A, Splendiani A, Fusco D, Caranci F, Bozzao A, Landi F, Gandolfo N, Farina L, Miele V, Trabucchi M, Frisoni GB, Bastianello S. Radiological assessment of dementia: the Italian inter-society consensus for a practical and clinically oriented guide to image acquisition, evaluation, and reporting. LA RADIOLOGIA MEDICA 2022; 127:998-1022. [PMID: 36070064 PMCID: PMC9508052 DOI: 10.1007/s11547-022-01534-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/25/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Radiological evaluation of dementia is expected to increase more and more in routine practice due to both the primary role of neuroimaging in the diagnostic pathway and the increasing incidence of the disease. Despite this, radiologists often do not follow a disease-oriented approach to image interpretation, for several reasons, leading to reports of limited value to clinicians. In our work, through an intersocietal consensus on the main mandatory knowledge about dementia, we proposed a disease-oriented protocol to optimize and standardize the acquisition/evaluation/interpretation and reporting of radiological images. Our main purpose is to provide a practical guideline for the radiologist to help increase the effectiveness of interdisciplinary dialogue and diagnostic accuracy in daily practice. RESULTS We defined key clinical and imaging features of the dementias (A), recommended MRI protocol (B), proposed a disease-oriented imaging evaluation and interpretation (C) and report (D) with a glimpse to future avenues (E). The proposed radiological practice is to systematically evaluate and score atrophy, white matter changes, microbleeds, small vessel disease, consider the use of quantitative measures using commercial software tools critically, and adopt a structured disease-oriented report. In the expanding field of cognitive disorders, the only effective assessment approach is the standardized disease-oriented one, which includes a multidisciplinary integration of the clinical picture, MRI, CSF and blood biomarkers and nuclear medicine.
Collapse
Affiliation(s)
- Francesca B. Pizzini
- Radiology, Department of Diagnostic and Public Health, University of Verona, Piazzale L.A. Scuro, 10, 37100 Verona, Italy
| | - Enrico Conti
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Angelo Bianchetti
- Department of Medicine and Rehabilitation, Clinical Institute S. Anna-Gruppo San Donato, Brescia, Italy
- Italian Society of Gerontology and Geriatrics (SIGG), Florence, Italy
- Italian Association of Psychogeriatrics (AIP), Brescia, Italy
| | - Alessandra Splendiani
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Domenico Fusco
- Foundation Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Ferdinando Caranci
- Department of Medicine of Precision, School of Medicine, “Luigi Vanvitelli” University of Campania, 80147 Naples, Italy
| | - Alessandro Bozzao
- NESMOS, Department of Neuroradiology, S. Andrea Hospital, University Sapienza, Rome, Italy
| | - Francesco Landi
- Foundation Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Nicoletta Gandolfo
- Diagnostic Imaging Department, Villa Scassi Hospital-ASL 3, Corso Scassi 1, Genoa, Italy
| | - Lisa Farina
- Neuroradiology Department, IRCCS Mondino Foundation, Pavia, Italy
| | - Vittorio Miele
- Dipartimento Di Radiodiagnostica Emergenza-Urgenza, Azienda Universitaria Careggi, Florence, Italy
| | - Marco Trabucchi
- Italian Society of Gerontology and Geriatrics (SIGG), Florence, Italy
- Italian Association of Psychogeriatrics (AIP), Brescia, Italy
- University of “Tor Vergata”, Rome, Italy
| | - Giovanni B. Frisoni
- Centre de La Mémoire, Geneva University and University Hospitals, 1205 Geneva, Switzerland
| | - Stefano Bastianello
- Neuroradiology Department, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
38
|
López-Cáceres A, Cruz-Sanabria F, Mayorga P, Sanchez AI, Gonzalez-Nieves S, Ayala-Ramírez P, Zarante I, Matallana D. Association between risk polymorphisms for neurodegenerative diseases and cognition in colombian patients with frontotemporal dementia. Front Neurol 2022; 13:675301. [PMID: 36071893 PMCID: PMC9443520 DOI: 10.3389/fneur.2022.675301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Frontotemporal dementia (FTD) is a heterogeneous neurodegenerative disease of presenile onset. A better characterization of neurodegenerative disorders has been sought by using tools such as genome-wide association studies (GWAS), where associations between single nucleotide polymorphisms (SNPs) and cognitive profiles could constitute predictive biomarkers for these diseases. However, in FTD, associations between genotypes and cognitive phenotypes are yet to be explored. Here, we evaluate a possible relationship between genetic variants and some cognitive functions in an FTD population.MethodologyA total of 47 SNPs in genes associated with neurodegenerative diseases were evaluated using the Sequenom MassARRAY platform along with their possible relationship with performance in neuropsychological tests in 105 Colombian patients diagnosed with FTD.Results and discussionThe SNPs rs429358 (APOE), rs1768208 (MOBP), and rs1411478 (STX6), were identified as risk factors for having a low cognitive performance in inhibitory control and phonological verbal fluency. Although the significance level was not enough to reach the corrected alpha for multiple comparison correction, our exploratory data may constitute a starting point for future studies of these SNPs and their relationship with cognitive performance in patients with a probable diagnosis of FTD. Further studies with an expansion of the sample size and a long-term design could help to explore the predictive nature of the potential associations we identified.
Collapse
Affiliation(s)
- Andrea López-Cáceres
- Faculty of Medicine, Institute of Human Genetics, Pontificia Universidad Javeriana, Bogotá, Colombia
- Hospital Universitario Fundación Santa Fe de Bogotá, Bogotá, Colombia
- *Correspondence: Andrea López-Cáceres
| | - Francy Cruz-Sanabria
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
- Neuroscience Group, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Pilar Mayorga
- Mental Health Department, Hospital Universitario Fundación Santa Fe de Bogotá, Bogotá, Colombia
| | - Ana Isabel Sanchez
- Faculty of Health Sciences, Pontificia Universidad Javeriana, Cali, Colombia
- Imbanaco Medical Center, Cali, Colombia
| | | | - Paola Ayala-Ramírez
- Faculty of Medicine, Institute of Human Genetics, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Ignacio Zarante
- Faculty of Medicine, Institute of Human Genetics, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Diana Matallana
- Mental Health Department, Hospital Universitario Fundación Santa Fe de Bogotá, Bogotá, Colombia
- Department of Psychiatry, School of Medicine, Instituto de Envejecimiento, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
39
|
Romano A, Trosi Lopez E, Liparoti M, Polverino A, Minino R, Trojsi F, Bonavita S, Mandolesi L, Granata C, Amico E, Sorrentino G, Sorrentino P. The progressive loss of brain network fingerprints in Amyotrophic Lateral Sclerosis predicts clinical impairment. Neuroimage Clin 2022; 35:103095. [PMID: 35764029 PMCID: PMC9241102 DOI: 10.1016/j.nicl.2022.103095] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/31/2022] [Accepted: 06/19/2022] [Indexed: 10/25/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterised by functional connectivity alterations in both motor and extra-motor brain regions. Within the framework of network analysis, fingerprinting represents a reliable approach to assess subject-specific connectivity features within a given population (healthy or diseased). Here, we applied the Clinical Connectome Fingerprint (CCF) analysis to source-reconstructed magnetoencephalography (MEG) signals in a cohort of seventy-eight subjects: thirty-nine ALS patients and thirty-nine healthy controls. We set out to develop an identifiability matrix to assess the extent to which each patient was recognisable based on his/her connectome, as compared to healthy controls. The analysis was performed in the five canonical frequency bands. Then, we built a multilinear regression model to test the ability of the "clinical fingerprint" to predict the clinical evolution of the disease, as assessed by the Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised (ALSFRS-r), the King's disease staging system, and the Milano-Torino Staging (MiToS) disease staging system. We found a drop in the identifiability of patients in the alpha band compared to the healthy controls. Furthermore, the "clinical fingerprint" was predictive of the ALSFRS-r (p = 0.0397; β = 32.8), the King's (p = 0.0001; β = -7.40), and the MiToS (p = 0.0025; β = -4.9) scores. Accordingly, it negatively correlated with the King's (Spearman's rho = -0.6041, p = 0.0003) and MiToS scales (Spearman's rho = -0.4953, p = 0.0040). Our results demonstrated the ability of the CCF approach to predict the individual motor impairment in patients affected by ALS. Given the subject-specificity of our approach, we hope to further exploit it to improve disease management.
Collapse
Affiliation(s)
- Antonella Romano
- Department of Motor Sciences and Wellness - University of Naples "Parthenope", via Medina 40, 80133 Naples, Italy
| | - Emahnuel Trosi Lopez
- Department of Motor Sciences and Wellness - University of Naples "Parthenope", via Medina 40, 80133 Naples, Italy
| | - Marianna Liparoti
- Department of Social and Developmental Psychology, University of Rome "Sapienza", Italy
| | - Arianna Polverino
- Institute of Diagnosis and Treatment Hermitage Capodimonte, via Cupa delle Tozzole 2, 80131 Naples, Italy
| | - Roberta Minino
- Department of Motor Sciences and Wellness - University of Naples "Parthenope", via Medina 40, 80133 Naples, Italy
| | - Francesca Trojsi
- Department of Advanced Medical and Surgical Sciences, Division of Neurology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Simona Bonavita
- Department of Advanced Medical and Surgical Sciences, Division of Neurology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Laura Mandolesi
- Department of Humanistic Studies, University of Naples Federico II, via Porta di Massa 1, 80133, Naples, Italy
| | - Carmine Granata
- Institute of Applied Sciences and Intelligent Systems, CNR, via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy
| | - Enrico Amico
- Institute of Bioengineering, Center for Neuroprosthetics, EPFL, Geneva, Switzerland; Department of Radiology and Medical Informatics, University of Geneva (UNIGE), Geneva, Switzerland
| | - Giuseppe Sorrentino
- Department of Motor Sciences and Wellness - University of Naples "Parthenope", via Medina 40, 80133 Naples, Italy; Institute of Diagnosis and Treatment Hermitage Capodimonte, via Cupa delle Tozzole 2, 80131 Naples, Italy; Institute of Applied Sciences and Intelligent Systems, CNR, via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy.
| | - Pierpaolo Sorrentino
- Institute of Applied Sciences and Intelligent Systems, CNR, via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy; Institut de Neurosciences des Systèmes, Aix-Marseille Université, Marseille, France
| |
Collapse
|
40
|
Krause LJ, Herrera MG, Winklhofer KF. The Role of Ubiquitin in Regulating Stress Granule Dynamics. Front Physiol 2022; 13:910759. [PMID: 35694405 PMCID: PMC9174786 DOI: 10.3389/fphys.2022.910759] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/09/2022] [Indexed: 11/30/2022] Open
Abstract
Stress granules (SGs) are dynamic, reversible biomolecular condensates, which assemble in the cytoplasm of eukaryotic cells under various stress conditions. Formation of SGs typically occurs upon stress-induced translational arrest and polysome disassembly. The increase in cytoplasmic mRNAs triggers the formation of a protein-RNA network that undergoes liquid-liquid phase separation when a critical interaction threshold has been reached. This adaptive stress response allows a transient shutdown of several cellular processes until the stress is removed. During the recovery from stress, SGs disassemble to re-establish cellular activities. Persistent stress and disease-related mutations in SG components favor the formation of aberrant SGs that are impaired in disassembly and prone to aggregation. Recently, posttranslational modifications of SG components have been identified as major regulators of SG dynamics. Here, we summarize new insights into the role of ubiquitination in affecting SG dynamics and clearance and discuss implications for neurodegenerative diseases linked to aberrant SG formation.
Collapse
Affiliation(s)
- Laura J. Krause
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
- RESOLV Cluster of Excellence, Ruhr University Bochum, Bochum, Germany
| | - Maria G. Herrera
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Konstanze F. Winklhofer
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
- RESOLV Cluster of Excellence, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
41
|
Liao YZ, Ma J, Dou JZ. The Role of TDP-43 in Neurodegenerative Disease. Mol Neurobiol 2022; 59:4223-4241. [DOI: 10.1007/s12035-022-02847-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/23/2022] [Indexed: 12/14/2022]
|
42
|
Cervantes González A, Irwin DJ, Alcolea D, McMillan CT, Chen-Plotkin A, Wolk D, Sirisi S, Dols-Icardo O, Querol-Vilaseca M, Illán-Gala I, Santos-Santos MA, Fortea J, Lee EB, Trojanowski JQ, Grossman M, Lleó A, Belbin O. Multimarker synaptic protein cerebrospinal fluid panels reflect TDP-43 pathology and cognitive performance in a pathological cohort of frontotemporal lobar degeneration. Mol Neurodegener 2022; 17:29. [PMID: 35395770 PMCID: PMC8991834 DOI: 10.1186/s13024-022-00534-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 03/30/2022] [Indexed: 12/13/2022] Open
Abstract
Background Synapse degeneration is an early event in pathological frontotemporal lobar degeneration (FTLD). Consequently, a surrogate marker of synapse loss could be used to monitor early pathologic changes in patients with underlying FTLD. The aim of this study was to evaluate the relationship of antemortem cerebrospinal fluid (CSF) levels of 8 synaptic proteins with postmortem global tau and TDP-43 burden and cognitive performance and to assess their diagnostic capacity in a neuropathological FTLD cohort. Methods We included patients with a neuropathological confirmation of FTLD-Tau (n = 24, mean age-at-CSF 67 years ± 11), FTLD-TDP (n = 25, 66 years ± 9) or AD (n = 25, 73 years ± 6) as well as cognitively normal controls (n = 35, 69 years ± 7) from the Penn FTD Center and ADRC. We used a semi-quantitative measure of tau and TDP-43 inclusions to quantify pathological burden across 16 brain regions. Statistical methods included Spearman rank correlations, one-way analysis of covariance, ordinal regression, step-wise multiple linear regression and receiver-operating characteristic curves. Result CSF calsyntenin-1 and neurexin-2a were correlated in all patient groups (rs = .55 to .88). In FTLD-TDP, we observed low antemortem CSF levels of calsyntenin-1 and neurexin-2a compared to AD (.72-fold, p = .001, .77-fold, p = .04, respectively) and controls (.80-fold, p = .02, .78-fold, p = .02, respectively), which were inversely associated with post-mortem global TDP-43 burden (regression r2 = .56, p = .007 and r2 = .57, p = .006, respectively). A multimarker panel including calsyntenin-1 was associated with TDP-43 burden (r2 = .69, p = .003) and MMSE score (r2 = .19, p = .03) in FTLD. A second multimarker synaptic panel, also including calsyntenin-1, was associated with MMSE score in FTLD-tau (r2 = .49, p = .04) and improved diagnostic performance to discriminate FTLD-Tau and FTLD-TDP neuropathologic subtypes (AUC = .83). Conclusion These synaptic panels have potential in the differential diagnosis of FTLD neuropathologic subtypes and as surrogate markers of cognitive performance in future clinical trials targeting TDP-43 or tau. Supplementary Information The online version contains supplementary material available at 10.1186/s13024-022-00534-y.
Collapse
Affiliation(s)
- Alba Cervantes González
- Hospital de La Santa Creu I Sant Pau, Universitat Autonoma de Barcelona, Barcelona, Spain.,Centre of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Memory Unit and Biomedical Research Institute, IIB Sant Pau, c/Sant Quintí 77, 08041, Barcelona, Spain
| | - David J Irwin
- Penn FTD Center, Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel Alcolea
- Hospital de La Santa Creu I Sant Pau, Universitat Autonoma de Barcelona, Barcelona, Spain.,Centre of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Memory Unit and Biomedical Research Institute, IIB Sant Pau, c/Sant Quintí 77, 08041, Barcelona, Spain
| | - Corey T McMillan
- Penn FTD Center, Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Alice Chen-Plotkin
- Penn Alzheimer's Disease Research Center, Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - David Wolk
- Penn Alzheimer's Disease Research Center, Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Sònia Sirisi
- Hospital de La Santa Creu I Sant Pau, Universitat Autonoma de Barcelona, Barcelona, Spain.,Centre of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Memory Unit and Biomedical Research Institute, IIB Sant Pau, c/Sant Quintí 77, 08041, Barcelona, Spain
| | - Oriol Dols-Icardo
- Hospital de La Santa Creu I Sant Pau, Universitat Autonoma de Barcelona, Barcelona, Spain.,Centre of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Memory Unit and Biomedical Research Institute, IIB Sant Pau, c/Sant Quintí 77, 08041, Barcelona, Spain
| | - Marta Querol-Vilaseca
- Hospital de La Santa Creu I Sant Pau, Universitat Autonoma de Barcelona, Barcelona, Spain.,Centre of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Memory Unit and Biomedical Research Institute, IIB Sant Pau, c/Sant Quintí 77, 08041, Barcelona, Spain
| | - Ignacio Illán-Gala
- Hospital de La Santa Creu I Sant Pau, Universitat Autonoma de Barcelona, Barcelona, Spain.,Centre of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Memory Unit and Biomedical Research Institute, IIB Sant Pau, c/Sant Quintí 77, 08041, Barcelona, Spain
| | - Miguel Angel Santos-Santos
- Hospital de La Santa Creu I Sant Pau, Universitat Autonoma de Barcelona, Barcelona, Spain.,Centre of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Memory Unit and Biomedical Research Institute, IIB Sant Pau, c/Sant Quintí 77, 08041, Barcelona, Spain
| | - Juan Fortea
- Hospital de La Santa Creu I Sant Pau, Universitat Autonoma de Barcelona, Barcelona, Spain.,Centre of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Memory Unit and Biomedical Research Institute, IIB Sant Pau, c/Sant Quintí 77, 08041, Barcelona, Spain
| | - Edward B Lee
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - John Q Trojanowski
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Murray Grossman
- Penn FTD Center, Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Alberto Lleó
- Hospital de La Santa Creu I Sant Pau, Universitat Autonoma de Barcelona, Barcelona, Spain.,Centre of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Memory Unit and Biomedical Research Institute, IIB Sant Pau, c/Sant Quintí 77, 08041, Barcelona, Spain
| | - Olivia Belbin
- Hospital de La Santa Creu I Sant Pau, Universitat Autonoma de Barcelona, Barcelona, Spain. .,Centre of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain. .,Memory Unit and Biomedical Research Institute, IIB Sant Pau, c/Sant Quintí 77, 08041, Barcelona, Spain.
| |
Collapse
|
43
|
Benatar M, Wuu J, McHutchison C, Postuma RB, Boeve BF, Petersen R, Ross CA, Rosen H, Arias JJ, Fradette S, McDermott MP, Shefner J, Stanislaw C, Abrahams S, Cosentino S, Andersen PM, Finkel RS, Granit V, Grignon AL, Rohrer JD, McMillan CT, Grossman M, Al-Chalabi A, Turner MR. Preventing amyotrophic lateral sclerosis: insights from pre-symptomatic neurodegenerative diseases. Brain 2022; 145:27-44. [PMID: 34677606 PMCID: PMC8967095 DOI: 10.1093/brain/awab404] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/16/2021] [Accepted: 10/08/2021] [Indexed: 11/12/2022] Open
Abstract
Significant progress has been made in understanding the pre-symptomatic phase of amyotrophic lateral sclerosis. While much is still unknown, advances in other neurodegenerative diseases offer valuable insights. Indeed, it is increasingly clear that the well-recognized clinical syndromes of Alzheimer's disease, Parkinson's disease, Huntington's disease, spinal muscular atrophy and frontotemporal dementia are also each preceded by a pre-symptomatic or prodromal period of varying duration, during which the underlying disease process unfolds, with associated compensatory changes and loss of inherent system redundancy. Key insights from these diseases highlight opportunities for discovery in amyotrophic lateral sclerosis. The development of biomarkers reflecting amyloid and tau has led to a shift in defining Alzheimer's disease based on inferred underlying histopathology. Parkinson's disease is unique among neurodegenerative diseases in the number and diversity of non-genetic biomarkers of pre-symptomatic disease, most notably REM sleep behaviour disorder. Huntington's disease benefits from an ability to predict the likely timing of clinically manifest disease based on age and CAG-repeat length alongside reliable neuroimaging markers of atrophy. Spinal muscular atrophy clinical trials have highlighted the transformational value of early therapeutic intervention, and studies in frontotemporal dementia illustrate the differential role of biomarkers based on genotype. Similar advances in amyotrophic lateral sclerosis would transform our understanding of key events in pathogenesis, thereby dramatically accelerating progress towards disease prevention. Deciphering the biology of pre-symptomatic amyotrophic lateral sclerosis relies on a clear conceptual framework for defining the earliest stages of disease. Clinically manifest amyotrophic lateral sclerosis may emerge abruptly, especially among those who harbour genetic mutations associated with rapidly progressive amyotrophic lateral sclerosis. However, the disease may also evolve more gradually, revealing a prodromal period of mild motor impairment preceding phenoconversion to clinically manifest disease. Similarly, cognitive and behavioural impairment, when present, may emerge gradually, evolving through a prodromal period of mild cognitive impairment or mild behavioural impairment before progression to amyotrophic lateral sclerosis. Biomarkers are critically important to studying pre-symptomatic amyotrophic lateral sclerosis and essential to efforts to intervene therapeutically before clinically manifest disease emerges. The use of non-genetic biomarkers, however, presents challenges related to counselling, informed consent, communication of results and limited protections afforded by existing legislation. Experiences from pre-symptomatic genetic testing and counselling, and the legal protections against discrimination based on genetic data, may serve as a guide. Building on what we have learned-more broadly from other pre-symptomatic neurodegenerative diseases and specifically from amyotrophic lateral sclerosis gene mutation carriers-we present a road map to early intervention, and perhaps even disease prevention, for all forms of amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Michael Benatar
- Department of Neurology, University of Miami, Miami, FL, USA
| | - Joanne Wuu
- Department of Neurology, University of Miami, Miami, FL, USA
| | - Caroline McHutchison
- Human Cognitive Neuroscience, Department of Psychology, University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK
| | - Ronald B Postuma
- Department of Neurology, Montreal Neurological Institute, McGill University, Montreal, Canada
| | | | | | - Christopher A Ross
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Howard Rosen
- Department of Neurology, University of California San Francisco, CA, USA
| | - Jalayne J Arias
- Department of Neurology, University of California San Francisco, CA, USA
| | | | - Michael P McDermott
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Department of Neurology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Jeremy Shefner
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ, USA
| | | | - Sharon Abrahams
- Human Cognitive Neuroscience, Department of Psychology, University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK
| | | | - Peter M Andersen
- Department of Clinical Science, Neurosciences, Umeå University, Sweden
| | - Richard S Finkel
- Department of Pediatric Medicine, Center for Experimental Neurotherapeutics, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Volkan Granit
- Department of Neurology, University of Miami, Miami, FL, USA
| | | | - Jonathan D Rohrer
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, London, UK
| | - Corey T McMillan
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Murray Grossman
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ammar Al-Chalabi
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King’s College London, London, UK
- Department of Neurology, King's College Hospital, London, UK
| | - Martin R Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
44
|
Chang Z, Zheng YY, Mathivanan J, Valsangkar VA, Du J, Abou-Elkhair RAI, Hassan AEA, Sheng J. Fluorescence-Based Binding Characterization of Small Molecule Ligands Targeting CUG RNA Repeats. Int J Mol Sci 2022; 23:ijms23063321. [PMID: 35328743 PMCID: PMC8955525 DOI: 10.3390/ijms23063321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 11/16/2022] Open
Abstract
Pathogenic CUG and CCUG RNA repeats have been associated with myotonic dystrophy type 1 and 2 (DM1 and DM2), respectively. Identifying small molecules that can bind these RNA repeats is of great significance to develop potential therapeutics to treat these neurodegenerative diseases. Some studies have shown that aminoglycosides and their derivatives could work as potential lead compounds targeting these RNA repeats. In this work, sisomicin, previously known to bind HIV-1 TAR, is investigated as a possible ligand for CUG RNA repeats. We designed a novel fluorescence-labeled RNA sequence of r(CUG)10 to mimic cellular RNA repeats and improve the detecting sensitivity. The interaction of sisomicin with CUG RNA repeats is characterized by the change of fluorescent signal, which is initially minimized by covalently incorporating the fluorescein into the RNA bases and later increased upon ligand binding. The results show that sisomicin can bind and stabilize the folded RNA structure. We demonstrate that this new fluorescence-based binding characterization assay is consistent with the classic UV Tm technique, indicating its feasibility for high-throughput screening of ligand-RNA binding interactions and wide applications to measure the thermodynamic parameters in addition to binding constants and kinetics when probing such interactions.
Collapse
Affiliation(s)
- Zhihua Chang
- Department of Chemistry and The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA; (Z.C.); (Y.Y.Z.); (J.M.); (V.A.V.); (J.D.)
| | - Ya Ying Zheng
- Department of Chemistry and The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA; (Z.C.); (Y.Y.Z.); (J.M.); (V.A.V.); (J.D.)
| | - Johnsi Mathivanan
- Department of Chemistry and The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA; (Z.C.); (Y.Y.Z.); (J.M.); (V.A.V.); (J.D.)
| | - Vibhav A. Valsangkar
- Department of Chemistry and The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA; (Z.C.); (Y.Y.Z.); (J.M.); (V.A.V.); (J.D.)
| | - Jinxi Du
- Department of Chemistry and The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA; (Z.C.); (Y.Y.Z.); (J.M.); (V.A.V.); (J.D.)
| | - Reham A. I. Abou-Elkhair
- Applied Nucleic Acids Research Center & Chemistry Department, Faculty of Science, Zagazig University, Zagazig 44523, Egypt;
| | - Abdalla E. A. Hassan
- Applied Nucleic Acids Research Center & Chemistry Department, Faculty of Science, Zagazig University, Zagazig 44523, Egypt;
- Correspondence: (A.E.A.H.); (J.S.)
| | - Jia Sheng
- Department of Chemistry and The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA; (Z.C.); (Y.Y.Z.); (J.M.); (V.A.V.); (J.D.)
- Correspondence: (A.E.A.H.); (J.S.)
| |
Collapse
|
45
|
Shafiei G, Bazinet V, Dadar M, Manera AL, Collins DL, Dagher A, Borroni B, Sanchez-Valle R, Moreno F, Laforce R, Graff C, Synofzik M, Galimberti D, Rowe JB, Masellis M, Tartaglia MC, Finger E, Vandenberghe R, de Mendonça A, Tagliavini F, Santana I, Butler C, Gerhard A, Danek A, Levin J, Otto M, Sorbi S, Jiskoot LC, Seelaar H, van Swieten JC, Rohrer JD, Misic B, Ducharme S, Frontotemporal Lobar Degeneration Neuroimaging Initiative (FTLDNI)
RosenHowardDickersonBradford CDomoto-ReillyKimokoKnopmanDavidBoeveBradley FBoxerAdam LKornakJohnMillerBruce LSeeleyWilliam WGorno-TempiniMaria-LuisaMcGinnisScottMandelliMaria Luisa, GENetic Frontotemporal dementia Initiative (GENFI)
EsteveAitana SogorbNelsonAnnabelBouziguesArabellaHellerCarolinGreavesCaroline VCashDavidThomasDavid LToddEmilyBenotmaneHanyaZetterbergHenrikSwiftImogen JNicholasJenniferSamraKiranRussellLucy LBocchettaMartinaShafeiRachelleConveryRhian STimberlakeCarolynCopeThomasRittmanTimothyBenussiAlbertoPremiEnricoGasparottiRobertoArchettiSilvanaGazzinaStefanoCantoniValentinaArighiAndreaFenoglioChiaraScarpiniElioFumagalliGiorgioBorracciVittoriaRossiGiacominaGiacconeGiorgioFedeGiuseppe DiCaroppoPaolaTiraboschiPietroPrioniSaraRedaelliVeronicaTang-WaiDavidRogaevaEkaterinaCastelo-BrancoMiguelFreedmanMorrisKerenRonBlackSandraMitchellSaraShoesmithChristenBarthaRobartRademakersRosavan der EndeEmmaPoosJackiePapmaJanne MGianniniLuciavan MinkelenRickPijnenburgYolandeNacmiasBenedettaFerrariCamillaPolitoCristinaLombardiGemmaBessiValentinaVeldsmanMicheleAnderssonChristinThonbergHakanÖijerstedtLinnJelicVesnaThompsonPaulLangheinrichTobiasLladóAlbertAntonellAnnaOlivesJaumeBalasaMirceaBargallóNuriaBorrego-EcijaSergiVerdelhoAnaMarutaCarolinaFerreiraCatarina BMiltenbergerGabrieldo CoutoFrederico SimõesGabilondoAlazneGorostidiAnaVillanuaJorgeCañadaMartaTaintaMikelZulaicaMirenBarandiaranMyriamAlvesPatriciaBenderBenjaminWilkeCarloGrafLisaVogelsAnnickVandenbulckeMathieuVan DammePhilipBruffaertsRoseRosa-NetoPedroGauthierSergeCamuzatAgnèsBriceAlexisBertrandAnneFunkiewiezAurélieRinaldiDaisySaracinoDarioColliotOlivierSayahSabrinaPrixCatharinaWlasichElisabethWagemannOliviaLoosliSandraSchöneckerSonjaHoegenTobiasLombardiJolinaAnderl-StraubSarahRollinAdelineKuchcinskiGregoryBertouxMaximeLebouvierThibaudDeramecourtVincentSantiagoBeatrizDuroDianaLeitãoMaria JoãoAlmeidaMaria RosarioTábuas-PereiraMiguelAfonsoSóniaEngelAnnerosePolyakovaMaryna. Network structure and transcriptomic vulnerability shape atrophy in frontotemporal dementia. Brain 2022; 146:321-336. [PMID: 35188955 PMCID: PMC9825569 DOI: 10.1093/brain/awac069] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/14/2021] [Accepted: 01/30/2022] [Indexed: 01/13/2023] Open
Abstract
Connections among brain regions allow pathological perturbations to spread from a single source region to multiple regions. Patterns of neurodegeneration in multiple diseases, including behavioural variant of frontotemporal dementia (bvFTD), resemble the large-scale functional systems, but how bvFTD-related atrophy patterns relate to structural network organization remains unknown. Here we investigate whether neurodegeneration patterns in sporadic and genetic bvFTD are conditioned by connectome architecture. Regional atrophy patterns were estimated in both genetic bvFTD (75 patients, 247 controls) and sporadic bvFTD (70 patients, 123 controls). First, we identified distributed atrophy patterns in bvFTD, mainly targeting areas associated with the limbic intrinsic network and insular cytoarchitectonic class. Regional atrophy was significantly correlated with atrophy of structurally- and functionally-connected neighbours, demonstrating that network structure shapes atrophy patterns. The anterior insula was identified as the predominant group epicentre of brain atrophy using data-driven and simulation-based methods, with some secondary regions in frontal ventromedial and antero-medial temporal areas. We found that FTD-related genes, namely C9orf72 and TARDBP, confer local transcriptomic vulnerability to the disease, modulating the propagation of pathology through the connectome. Collectively, our results demonstrate that atrophy patterns in sporadic and genetic bvFTD are jointly shaped by global connectome architecture and local transcriptomic vulnerability, providing an explanation as to how heterogenous pathological entities can lead to the same clinical syndrome.
Collapse
Affiliation(s)
| | | | - Mahsa Dadar
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada,Radiology and Nuclear Medicine, Laval University, Quebec City, QC, Canada
| | - Ana L Manera
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - D Louis Collins
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Alain Dagher
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Barbara Borroni
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Raquel Sanchez-Valle
- Alzheimer’s Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic, Institut d’Investigacións Biomèdiques August Pi I Sunyer, University of Barcelona, Barcelona, Spain
| | - Fermin Moreno
- Cognitive Disorders Unit, Department of Neurology, Donostia University Hospital, San Sebastian, Gipuzkoa, Spain,Neuroscience Area, Biodonostia Health Research Institute, San Sebastian, Gipuzkoa, Spain
| | - Robert Laforce
- Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques, CHU de Québec, and Faculté de Médecine, Université Laval, Quebec, QC, Canada
| | - Caroline Graff
- Department of Geriatric Medicine, Karolinska University Hospital-Huddinge, Stockholm, Sweden,Unit for Hereditary Dementias, Theme Aging, Karolinska University Hospital, Solna, Sweden
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany,Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Daniela Galimberti
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neurodegenerative Diseases Unit, Milan, Italy,Department of Biomedical, Surgical and Dental Sciences, University of Milan, Dino Ferrari Center, Milan, Italy
| | - James B Rowe
- University of Cambridge, Department of Clinical Neurosciences, Cambridge University Hospitals NHS Trust, and MRC Cognition and Brain Sciences Unit, Cambridge, UK
| | - Mario Masellis
- Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Maria Carmela Tartaglia
- Toronto Western Hospital, Tanz Centre for Research in Neurodegenerative Disease, Toronto, ON, Canada
| | - Elizabeth Finger
- Department of Clinical Neurological Sciences, University of Western Ontario, London, ON, Canada
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium,Neurology Service, University Hospitals Leuven, Leuven, Belgium,Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | | | - Fabrizio Tagliavini
- Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo Besta, Milan, Italy
| | - Isabel Santana
- Neurology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal,Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Chris Butler
- Department of Clinical Neurology, University of Oxford, Oxford, UK,Department of Brain Sciences, Imperial College London, London, UK
| | - Alex Gerhard
- Division of Neuroscience and Experimental Psychology, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK,Department of Geriatric Medicine and Nuclear Medicine, University of Duisburg-Essen, Duisburg and Essen, Germany
| | - Adrian Danek
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Johannes Levin
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany,Clinical Research Unit, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany,Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Markus Otto
- Department of Neurology, University Hospital Ulm, Ulm, Germany
| | - Sandro Sorbi
- Department of Neurofarba, University of Florence, Florence, Italy,IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Lize C Jiskoot
- Department of Neurology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Harro Seelaar
- Department of Neurology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - John C van Swieten
- Department of Neurology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Jonathan D Rohrer
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, London, UK
| | - Bratislav Misic
- Correspondence to: Bratislav Misic 3801 Rue University Webster 211, Montreal QC H3A 2B4, Canada E-mail:
| | | | | | | |
Collapse
|
46
|
Krzosek P, Madetko N, Migda A, Migda B, Jaguś D, Alster P. Differential Diagnosis of Rare Subtypes of Progressive Supranuclear Palsy and PSP-Like Syndromes—Infrequent Manifestations of the Most Common Form of Atypical Parkinsonism. Front Aging Neurosci 2022; 14:804385. [PMID: 35221993 PMCID: PMC8864174 DOI: 10.3389/fnagi.2022.804385] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/10/2022] [Indexed: 12/11/2022] Open
Abstract
Presently, there is increasing interest in rare PSP (progressive supranuclear palsy) variants, including PSP-PGF (PSP-progressive gait freezing), PSP-PI (PSP-postural instability), PSP-OM (PSP-ocular motor dysfunction), PSP-C (PSP-predominant cerebellar ataxia), PSP-CBS (PSP-corticobasal syndrome), PSP-SL (PSP-speech/language disorders), and PSP-PLS (PSP-primary lateral sclerosis). Diagnosis of these subtypes is usually based on clinical symptoms, thus thorough examination with anamnesis remains a major challenge for clinicians. The individual phenotypes often show great similarity to various neurodegenerative diseases and other genetic, autoimmune, or infectious disorders, manifesting as PSP-mimicking syndromes. At the current stage of knowledge, it is not possible to isolate a specific marker to make a definite ante-mortem diagnosis. The purpose of this review is to discuss recent developments in rare PSP phenotypes and PSP-like syndromes.
Collapse
Affiliation(s)
- Patrycja Krzosek
- Students’ Scientific Association of the Department of Neurology, Medical University of Warsaw, Warsaw, Poland
- *Correspondence: Patrycja Krzosek,
| | - Natalia Madetko
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Anna Migda
- Department of Internal Medicine and Endocrinology, Medical University of Warsaw, Warsaw, Poland
| | - Bartosz Migda
- Diagnostic Ultrasound Lab, Department of Pediatric Radiology, Medical Faculty, Medical University of Warsaw, Warsaw, Poland
| | - Dominika Jaguś
- Diagnostic Ultrasound Lab, Department of Pediatric Radiology, Medical Faculty, Medical University of Warsaw, Warsaw, Poland
| | - Piotr Alster
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
47
|
Assogna M, Sprugnoli G, Press D, Dickerson B, Macone J, Bonnì S, Borghi I, Connor A, Hoffman M, Grover N, Wong B, Shen C, Martorana A, O'Reilly M, Ruffini G, El Fakhri G, Koch G, Santarnecchi E. Gamma-induction in frontotemporal dementia (GIFTeD) randomized placebo-controlled trial: Rationale, noninvasive brain stimulation protocol, and study design. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2022; 7:e12219. [PMID: 35141396 PMCID: PMC8813035 DOI: 10.1002/trc2.12219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 08/02/2021] [Accepted: 09/20/2021] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Frontotemporal dementia (FTD) is a neurodegenerative disorder for which there is no effective pharmacological treatment. Recently, interneuron activity responsible for fast oscillatory brain activity has been found to be impaired in a mouse model of FTD with consequent cognitive and behavioral alterations. In this study, we aim to investigate the safety, tolerability, and efficacy of a novel promising therapeutic intervention for FTD based on 40 Hz transcranial alternating current stimulation (tACS), a form of non-invasive brain stimulation thought to engage neural activity in a frequency-specific manner and thus suited to restore altered brain oscillatory patterns. METHODS This is a multi-site, randomized, double-blind, placebo-controlled trial on 50 patients with a diagnosis of behavioral variant FTD (bvFTD). Participants will be randomized to undergo either 30 days of 1-hour daily tACS or Sham (placebo) tACS. The outcomes will be assessed at baseline, right after the intervention and at a 3- to 6-months follow-up. The primary outcome measures are represented by the safety and feasibility of tACS administration, which will be assessed considering the nature, frequency, and severity of adverse events as well as attrition rate, respectively. To assess secondary outcomes, participants will undergo extensive neuropsychological and behavioral assessments and fluorodeoxyglucose (FDG)-positron emission tomography (PET) scans to evaluate changes in brain metabolism, functional and structural magnetic resonance imaging (MRI), resting and evoked electroencephalography, as well as blood biomarkers to measure changes in neurodegenerative and neuroinflammatory markers. RESULTS The trial started in October 2020 and will end in October 2023. Study protocols have been approved by the local institutional review board (IRB) at each data-collection site. DISCUSSION This study will evaluate the safety and tolerability of 40 Hz tACS in bvFTD patients and its efficacy on gamma oscillatory activity, cognitive function, and brain glucose hypometabolism.
Collapse
Affiliation(s)
- Martina Assogna
- Berenson‐Allen Center for Noninvasive Brain StimulationBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
- Non‐Invasive Brain Stimulation UnitDepartment of Behavioural and Clinical NeurologySanta Lucia Foundation IRCCSRomeItaly
| | - Giulia Sprugnoli
- Berenson‐Allen Center for Noninvasive Brain StimulationBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
- Radiology UnitDepartment of Medicine and SurgeryUniversity of ParmaParmaItaly
| | - Daniel Press
- Berenson‐Allen Center for Noninvasive Brain StimulationBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Brad Dickerson
- Frontotemporal Disorders Unit and Alzheimer's Disease Research CenterDepartments of Psychiatry and NeurologyMassachusetts General HospitalBostonMassachusettsUSA
| | - Joanna Macone
- Berenson‐Allen Center for Noninvasive Brain StimulationBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Sonia Bonnì
- Non‐Invasive Brain Stimulation UnitDepartment of Behavioural and Clinical NeurologySanta Lucia Foundation IRCCSRomeItaly
| | - Ilaria Borghi
- Non‐Invasive Brain Stimulation UnitDepartment of Behavioural and Clinical NeurologySanta Lucia Foundation IRCCSRomeItaly
| | - Ann Connor
- Berenson‐Allen Center for Noninvasive Brain StimulationBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Megan Hoffman
- Berenson‐Allen Center for Noninvasive Brain StimulationBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Nainika Grover
- Berenson‐Allen Center for Noninvasive Brain StimulationBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Bonnie Wong
- Frontotemporal Disorders Unit and Alzheimer's Disease Research CenterDepartments of Psychiatry and NeurologyMassachusetts General HospitalBostonMassachusettsUSA
| | - Changyu Shen
- Richard and Susan Smith Center for Outcomes Research in CardiologyDivision of CardiologyBeth Israel Deaconess Medical and Harvard Medical SchoolBostonMassachusettsUSA
| | | | - Molly O'Reilly
- Berenson‐Allen Center for Noninvasive Brain StimulationBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | | | - Georges El Fakhri
- Gordon Center for Medical ImagingDepartment of RadiologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Giacomo Koch
- Non‐Invasive Brain Stimulation UnitDepartment of Behavioural and Clinical NeurologySanta Lucia Foundation IRCCSRomeItaly
| | - Emiliano Santarnecchi
- Berenson‐Allen Center for Noninvasive Brain StimulationBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
- Gordon Center for Medical ImagingDepartment of RadiologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
48
|
McCarthy J, Borroni B, Sanchez‐Valle R, Moreno F, Laforce R, Graff C, Synofzik M, Galimberti D, Rowe JB, Masellis M, Tartaglia MC, Finger E, Vandenberghe R, de Mendonça A, Tagliavini F, Santana I, Butler C, Gerhard A, Danek A, Levin J, Otto M, Frisoni G, Ghidoni R, Sorbi S, Jiskoot LC, Seelaar H, van Swieten JC, Rohrer JD, Iturria‐Medina Y, Ducharme S, GENetic Frontotemporal Dementia Initiative (GENFI) AfonsoSóniaAlmeidaMaria RosarioAnderl‐StraubSarahAnderssonChristinAntonellAnnaArchettiSilvanaArighiAndreaBalasaMirceaBarandiaranMyriamBargallóNuriaBarthaRobartBenderBenjaminBenussiAlbertoBenussiLuisaBessiValentinaBinettiGiulianoBlackSandraBocchettaMartinaBorrego‐EcijaSergiBrasJoseBruffaertsRoseCañadaMartaCantoniValentinaCaroppoPaolaCashDavidCastelo‐BrancoMiguelConveryRhianCopeThomasCossedduMaurade ArribaMaríaDi FedeGiuseppeDíazZigorDíezAlinaDuroDianaFenoglioChiaraFerrariCamillaFerreiraCarlosFerreiraCatarina B.FlanaganTobyFoxNickFreedmanMorrisFumagalliGiorgioGabilondoAlazneGasparottiRobertoGauthierSergeGazzinaStefanoGiacconeGiorgioGorostidiAnaGreavesCarolineGuerreiroRitaHellerCarolinHoegenTobiasIndakoetxeaBegoñaJelicVesnaKarnathHans‐OttoKerenRonLangheinrichTobiasLeitãoMaria JoãoLladóAlbertLombardiGemmaLoosliSandraMarutaCarolinaMeadSimonMeeterLiekeMiltenbergerGabrielvan MinkelenRickMitchellSaraMooreKatrina MNacmiasBenedettaNeasonMollieNicholasJenniferÖijerstedtLinnOlivesJaumeOurselinSebastienPadovaniAlessandroPanmanJessicaPapmaJannePeakmanGeorgiaPiaceriIrenePievaniMichelaPijnenburgYolandePolitoCristinaPremiEnricoPrioniSaraPrixCatharinaRademakersRosaRedaelliVeronicaRittmanTimRogaevaEkaterinaRosa‐NetoPedroRossiGiacominaRossorMartinSantiagoBeatrizScarpiniElioSchöneckerSonjaSemlerElisaShafeiRachelleShoesmithChristenTábuas‐PereiraMiguelTaintaMikelTaipaRicardoTang‐WaiDavidThomasDavid LThompsonPaulThonbergHakanTimberlakeCarolynTiraboschiPietroToddEmilyVandammePhilipVandenbulckeMathieuVeldsmanMicheleVerdelhoAnaVillanuaJorgeWarrenJasonWilkeCarloWoollacottIoneWlasichElisabethZetterbergHenrikZulaicaMiren. Data-driven staging of genetic frontotemporal dementia using multi-modal MRI. Hum Brain Mapp 2022; 43:1821-1835. [PMID: 35118777 PMCID: PMC8933323 DOI: 10.1002/hbm.25727] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 11/02/2021] [Accepted: 11/11/2021] [Indexed: 12/01/2022] Open
Abstract
Frontotemporal dementia in genetic forms is highly heterogeneous and begins many years to prior symptom onset, complicating disease understanding and treatment development. Unifying methods to stage the disease during both the presymptomatic and symptomatic phases are needed for the development of clinical trials outcomes. Here we used the contrastive trajectory inference (cTI), an unsupervised machine learning algorithm that analyzes temporal patterns in high‐dimensional large‐scale population datasets to obtain individual scores of disease stage. We used cross‐sectional MRI data (gray matter density, T1/T2 ratio as a proxy for myelin content, resting‐state functional amplitude, gray matter fractional anisotropy, and mean diffusivity) from 383 gene carriers (269 presymptomatic and 115 symptomatic) and a control group of 253 noncarriers in the Genetic Frontotemporal Dementia Initiative. We compared the cTI‐obtained disease scores to the estimated years to onset (age—mean age of onset in relatives), clinical, and neuropsychological test scores. The cTI based disease scores were correlated with all clinical and neuropsychological tests (measuring behavioral symptoms, attention, memory, language, and executive functions), with the highest contribution coming from mean diffusivity. Mean cTI scores were higher in the presymptomatic carriers than controls, indicating that the method may capture subtle pre‐dementia cerebral changes, although this change was not replicated in a subset of subjects with complete data. This study provides a proof of concept that cTI can identify data‐driven disease stages in a heterogeneous sample combining different mutations and disease stages of genetic FTD using only MRI metrics.
Collapse
Affiliation(s)
- Jillian McCarthy
- McConnell Brain Imaging Centre, Montreal Neurological InstituteMcGill UniversityMontrealQuebecCanada
| | - Barbara Borroni
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental SciencesUniversity of BresciaBresciaItaly
| | - Raquel Sanchez‐Valle
- Alzheimer's disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic, Institut d'Investigacións Biomèdiques August Pi I SunyerUniversity of BarcelonaBarcelonaSpain
| | - Fermin Moreno
- Cognitive Disorders Unit, Department of NeurologyDonostia University HospitalSan SebastianGipuzkoaSpain
- Neuroscience AreaBiodonostia Health Research InstituteSan SebastianGipuzkoaSpain
| | - Robert Laforce
- Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques, CHU de Québec, and Faculté de MédecineUniversité LavalQuebecQuebecCanada
| | - Caroline Graff
- Department of Geriatric MedicineKarolinska University Hospital‐HuddingeStockholmSweden
- Unit for Hereditary DementiasTheme Aging, Karolinska University HospitalSolnaSweden
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie‐Institute for Clinical Brain Research and Center of NeurologyUniversity of TübingenTübingenGermany
- Center for Neurodegenerative Diseases (DZNE)TübingenGermany
| | - Daniela Galimberti
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore PoliclinicoNeurodegenerative Diseases UnitMilanItaly
- Department of Biomedical, Surgical, and Dental SciencesUniversity of Milan, Dino Ferrari CenterMilanItaly
| | - James B. Rowe
- University of Cambridge Department of Clinical NeurosciencesCambridge University Hospitals NHS Trust, and RC Cognition and Brain Sciences UnitCambridgeUK
| | - Mario Masellis
- Sunnybrook Health Sciences Centre, Sunnybrook Research InstituteUniversity of TorontoTorontoOntarioCanada
| | - Maria Carmela Tartaglia
- Toronto Western HospitalTanz Centre for Research in Neurodegenerative DiseaseTorontoOntarioCanada
| | - Elizabeth Finger
- Department of Clinical Neurological SciencesUniversity of Western OntarioLondonOntarioCanada
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of NeurosciencesKU LeuvenLeuvenBelgium
- Neurology ServiceUniversity Hospitals LeuvenBelgium
- Leuven Brain InstituteKU LeuvenLeuvenBelgium
| | | | - Fabrizio Tagliavini
- Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo BestaMilanItaly
| | - Isabel Santana
- Neurology DepartmentCentro Hospitalar e Universitário de CoimbraCoimbraPortugal
- Center for Neuroscience and Cell Biology, Faculty of MedicineUniversity of CoimbraCoimbraPortugal
| | - Chris Butler
- Department of Clinical NeurologyUniversity of OxfordOxfordUK
- Department of Brain SciencesImperial College LondonUK
| | - Alex Gerhard
- Division of Neuroscience & Experimental Psychology, Faculty of Medicine, Biology, and HealthUniversity of ManchesterManchesterUK
- Departments of Geriatric Medicine and Nuclear MedicineEssen University HospitalEssenGermany
| | - Adrian Danek
- Ludwig‐Maximilians‐Universität MünchenMunichGermany
| | - Johannes Levin
- Ludwig‐Maximilians‐Universität MünchenMunichGermany
- German Center for Neurodegenerative Diseases (DZNE)MunichGermany
- Munich Cluster of Systems Neurology (SyNergy)MunichGermany
| | - Markus Otto
- Department of NeurologyUniversity Hospital UlmUlmGermany
| | - Giovanni Frisoni
- LANE ‐ Laboratory of Alzheimer's Neuroimaging and EpidemiologyIRCCS Istituto Centro San Giovanni di Dio FatebenefratelliBresciaItaly
- Memory Clinic and LANVIE‐Laboratory of Neuroimaging of AgingUniversity Hospitals and University of GenevaGenevaSwitzerland
| | - Roberta Ghidoni
- Molecular Markers LaboratoryIRCCS Istituto Centro San Giovanni di Dio FatebenefratelliBresciaItaly
| | - Sandro Sorbi
- Department of NeurofarbaUniversity of FlorenceItaly
- IRCCS Fondazione Don Carlo GnocchiFlorenceItaly
| | - Lize C. Jiskoot
- Department of NeurologyErasmus University Medical CentreRotterdamNetherlands
| | - Harro Seelaar
- Department of NeurologyErasmus University Medical CentreRotterdamNetherlands
| | - John C. van Swieten
- Department of NeurologyErasmus University Medical CentreRotterdamNetherlands
| | - Jonathan D. Rohrer
- Department of Neurodegenerative Disease, Dementia Research CentreUCL Institute of NeurologyLondonUK
| | - Yasser Iturria‐Medina
- McConnell Brain Imaging Centre, Montreal Neurological InstituteMcGill UniversityMontrealQuebecCanada
- Neurology and Neurosurgery Department, Montreal Neurological InstituteMcGill UniversityMontrealQuebecCanada
- Ludmer Centre for Neuroinformatics & Mental HealthMcGill UniversityMontrealCanada
| | - Simon Ducharme
- McConnell Brain Imaging Centre, Montreal Neurological InstituteMcGill UniversityMontrealQuebecCanada
- Douglas Mental Health University Institute, Department of PsychiatryMcGill UniversityMontrealCanada
| | | |
Collapse
|
49
|
Shakir MN, Dugger BN. Advances in Deep Neuropathological Phenotyping of Alzheimer Disease: Past, Present, and Future. J Neuropathol Exp Neurol 2022; 81:2-15. [PMID: 34981115 PMCID: PMC8825756 DOI: 10.1093/jnen/nlab122] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Alzheimer disease (AD) is a neurodegenerative disorder characterized pathologically by the presence of neurofibrillary tangles and amyloid beta (Aβ) plaques in the brain. The disease was first described in 1906 by Alois Alzheimer, and since then, there have been many advancements in technologies that have aided in unlocking the secrets of this devastating disease. Such advancements include improving microscopy and staining techniques, refining diagnostic criteria for the disease, and increased appreciation for disease heterogeneity both in neuroanatomic location of abnormalities as well as overlap with other brain diseases; for example, Lewy body disease and vascular dementia. Despite numerous advancements, there is still much to achieve as there is not a cure for AD and postmortem histological analyses is still the gold standard for appreciating AD neuropathologic changes. Recent technological advances such as in-vivo biomarkers and machine learning algorithms permit great strides in disease understanding, and pave the way for potential new therapies and precision medicine approaches. Here, we review the history of human AD neuropathology research to include the notable advancements in understanding common co-pathologies in the setting of AD, and microscopy and staining methods. We also discuss future approaches with a specific focus on deep phenotyping using machine learning.
Collapse
Affiliation(s)
- Mustafa N Shakir
- From the Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, California, USA (MNS, BND)
| | - Brittany N Dugger
- From the Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, California, USA (MNS, BND)
| |
Collapse
|
50
|
Anoar S, Woodling NS, Niccoli T. Mitochondria Dysfunction in Frontotemporal Dementia/Amyotrophic Lateral Sclerosis: Lessons From Drosophila Models. Front Neurosci 2021; 15:786076. [PMID: 34899176 PMCID: PMC8652125 DOI: 10.3389/fnins.2021.786076] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/03/2021] [Indexed: 12/16/2022] Open
Abstract
Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are neurodegenerative disorders characterized by declining motor and cognitive functions. Even though these diseases present with distinct sets of symptoms, FTD and ALS are two extremes of the same disease spectrum, as they show considerable overlap in genetic, clinical and neuropathological features. Among these overlapping features, mitochondrial dysfunction is associated with both FTD and ALS. Recent studies have shown that cells derived from patients' induced pluripotent stem cells (iPSC)s display mitochondrial abnormalities, and similar abnormalities have been observed in a number of animal disease models. Drosophila models have been widely used to study FTD and ALS because of their rapid generation time and extensive set of genetic tools. A wide array of fly models have been developed to elucidate the molecular mechanisms of toxicity for mutations associated with FTD/ALS. Fly models have been often instrumental in understanding the role of disease associated mutations in mitochondria biology. In this review, we discuss how mutations associated with FTD/ALS disrupt mitochondrial function, and we review how the use of Drosophila models has been pivotal to our current knowledge in this field.
Collapse
Affiliation(s)
- Sharifah Anoar
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, United Kingdom
| | - Nathaniel S Woodling
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, United Kingdom
| | - Teresa Niccoli
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, United Kingdom
| |
Collapse
|