1
|
De Domenico P, Gagliardi F, Roncelli F, Snider S, Mortini P. Tumor-infiltrating and circulating B cells mediate local and systemic immunomodulatory mechanisms in Glioblastoma. J Neurooncol 2025; 172:527-548. [PMID: 40080248 DOI: 10.1007/s11060-025-04989-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 02/24/2025] [Indexed: 03/15/2025]
Abstract
BACKGROUND Glioblastoma (GBM) demonstrates extensive immunomodulatory mechanisms that challenge effective therapeutic interventions. These phenomena extend well beyond the tumor microenvironment (TME) and are reflected in the circulating immunophenotype. B lymphocytes (B cells) have received limited attention in GBM studies despite their emerging importance in mediating both local and systemic immune responses. Recent findings highlight the complex regulatory interactions between B cells and other immune cell populations, including tumor-infiltrating macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), and other infiltrating lymphocytes (TILs). B cells are believed to hinder the efficacy of modern immunotherapy strategies focusing on T cells. METHODS This is a focused review of available evidence regarding B cells in GBM through January 2025. RESULTS Peripheral blood reflects a systemically dampened immune response, with sustained lymphopenia, increased plasma cells, and dysfunctional memory B cells. The tumor immune landscape is enriched in cells of B-lineage. Subsets of poorly characterized B regulatory cells (Bregs) populate the TME, developing their phenotype due to their proximity to MDSCs, TAMs, and tumoral cells. The Bregs inhibit CD8+ T activity and may have potential prognostic significance. CONCLUSION Understanding the role of B cells, how they are recruited, and their differentiation shifted towards an immunomodulatory role could inform better therapeutic strategies and unleash their full antitumoral potential in GBM.
Collapse
Affiliation(s)
- Pierfrancesco De Domenico
- Department of Neurosurgery and Gamma Knife Radiosurgery, IRCCS San Raffaele Scientific Institute and Vita-Salute San Raffaele University, Via Olgettina 60, 20132, Milan, Italy.
| | - Filippo Gagliardi
- Department of Neurosurgery and Gamma Knife Radiosurgery, IRCCS San Raffaele Scientific Institute and Vita-Salute San Raffaele University, Via Olgettina 60, 20132, Milan, Italy
| | - Francesca Roncelli
- Department of Neurosurgery and Gamma Knife Radiosurgery, IRCCS San Raffaele Scientific Institute and Vita-Salute San Raffaele University, Via Olgettina 60, 20132, Milan, Italy
| | - Silvia Snider
- Department of Neurosurgery and Gamma Knife Radiosurgery, IRCCS San Raffaele Scientific Institute and Vita-Salute San Raffaele University, Via Olgettina 60, 20132, Milan, Italy
| | - Pietro Mortini
- Department of Neurosurgery and Gamma Knife Radiosurgery, IRCCS San Raffaele Scientific Institute and Vita-Salute San Raffaele University, Via Olgettina 60, 20132, Milan, Italy
| |
Collapse
|
2
|
Seetharam D, Chandar J, Ramsoomair CK, Desgraves JF, Alvarado Medina A, Hudson AJ, Amidei A, Castro JR, Govindarajan V, Wang S, Zhang Y, Sonabend AM, Mendez Valdez MJ, Maric D, Govindarajan V, Rivas SR, Lu VM, Tiwari R, Sharifi N, Thomas E, Alexander M, DeMarino C, Johnson K, De La Fuente MI, Alshiekh Nasany R, Noviello TMR, Ivan ME, Komotar RJ, Iavarone A, Nath A, Heiss J, Ceccarelli M, Chiappinelli KB, Figueroa ME, Bayik D, Shah AH. Activating antiviral immune responses potentiates immune checkpoint inhibition in glioblastoma models. J Clin Invest 2025; 135:e183745. [PMID: 40091830 PMCID: PMC11910234 DOI: 10.1172/jci183745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 01/16/2025] [Indexed: 03/19/2025] Open
Abstract
Viral mimicry refers to the activation of innate antiviral immune responses due to the induction of endogenous retroelements (REs). Viral mimicry augments antitumor immune responses and sensitizes solid tumors to immunotherapy. Here, we found that targeting what we believe to be a novel, master epigenetic regulator, Zinc Finger Protein 638 (ZNF638), induces viral mimicry in glioblastoma (GBM) preclinical models and potentiates immune checkpoint inhibition (ICI). ZNF638 recruits the HUSH complex, which precipitates repressive H3K9me3 marks on endogenous REs. In GBM, ZNF638 is associated with marked locoregional immunosuppressive transcriptional signatures, reduced endogenous RE expression, and poor immune cell infiltration. Targeting ZNF638 decreased H3K9 trimethylation, increased REs, and activated intracellular dsRNA signaling cascades. Furthermore, ZNF638 knockdown upregulated antiviral immune programs and significantly increased PD-L1 immune checkpoint expression in diverse GBM models. Importantly, targeting ZNF638 sensitized mice to ICI in syngeneic murine orthotopic models through innate IFN signaling. This response was recapitulated in recurrent GBM (rGBM) samples with radiographic responses to checkpoint inhibition with widely increased expression of dsRNA, PD-L1, and perivascular CD8 cell infiltration, suggesting that dsRNA signaling may mediate response to immunotherapy. Finally, low ZNF638 expression was a biomarker of clinical response to ICI and improved survival in patients with rGBM and patients with melanoma. Our findings suggest that ZNF638 could serve as a target to potentiate immunotherapy in gliomas.
Collapse
Affiliation(s)
- Deepa Seetharam
- Department of Neurosurgery and
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Jay Chandar
- Department of Neurosurgery and
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Christian K. Ramsoomair
- Department of Neurosurgery and
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Jelisah F. Desgraves
- Department of Neurosurgery and
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Alexandra Alvarado Medina
- Department of Neurosurgery and
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Anna Jane Hudson
- Department of Neurosurgery and
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Ava Amidei
- Department of Neurosurgery and
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Jesus R. Castro
- Department of Neurosurgery and
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Vaidya Govindarajan
- Department of Neurosurgery and
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Sarah Wang
- Department of Neurosurgery and
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Yong Zhang
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Adam M. Sonabend
- Department of Neurological Surgery and
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Mynor J. Mendez Valdez
- Department of Neurosurgery and
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Dragan Maric
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Vasundara Govindarajan
- Department of Neurosurgery and
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Sarah R. Rivas
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Victor M. Lu
- Department of Neurosurgery and
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Ritika Tiwari
- Desai Sethi Urology Institute University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Nima Sharifi
- Desai Sethi Urology Institute University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Emmanuel Thomas
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Marcus Alexander
- Department of Neurosurgery and
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Catherine DeMarino
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Kory Johnson
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Macarena I. De La Fuente
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
- Department of Neurology, University of Miami, Miami, Florida, USA
| | - Ruham Alshiekh Nasany
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
- Department of Neurology, University of Miami, Miami, Florida, USA
| | - Teresa Maria Rosaria Noviello
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
- Biostatistics and Bioinformatics Shared Resource of the Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Michael E. Ivan
- Department of Neurosurgery and
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Ricardo J. Komotar
- Department of Neurosurgery and
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Antonio Iavarone
- Department of Neurosurgery and
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Avindra Nath
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - John Heiss
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Michele Ceccarelli
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
- Biostatistics and Bioinformatics Shared Resource of the Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Katherine B. Chiappinelli
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington DC, USA
| | - Maria E. Figueroa
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington DC, USA
| | - Defne Bayik
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
- Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Ashish H. Shah
- Department of Neurosurgery and
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
3
|
Young JS, Cho NW, Lucas CHG, Najem H, Mirchia K, Chen WC, Seo K, Zakimi N, Daggubati V, Casey-Clyde T, Nguyen MP, Chen A, Phillips JJ, Ozawa T, Aghi MK, Taylor JW, DeRisi JL, Bhaduri A, Berger MS, Heimberger AB, Butowski N, Spitzer MH, Raleigh DR. IL-6 underlies microenvironment immunosuppression and resistance to therapy in glioblastoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.12.642800. [PMID: 40161763 PMCID: PMC11952432 DOI: 10.1101/2025.03.12.642800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The glioblastoma tumor immune microenvironment (TIME) is an immunosuppressive barrier to therapy that encumbers glioblastoma responses to immune checkpoint inhibition (ICI). Immunosuppressive cytokines, pro-tumor myeloid cells, and exhausted T-cells are hallmarks of the glioblastoma TIME. Here we integrate spatial and single-cell analyses of patient-matched human glioblastoma samples before and after ICI with genetic, immunologic, single-cell, and pharmacologic studies in preclinical models to reveal that interleukin-6 (IL-6) inhibition reprograms the glioblastoma TIME to sensitize mouse glioblastoma to ICI and radiotherapy. Rare human glioblastoma patients who achieve clinical responses to ICI have lower pre-treatment IL-6 levels compared to glioblastomas who do not respond to ICI. Immune stimulatory gene therapy suppresses IL-6 tumor levels in preclinical murine models of glioblastoma. Furthermore, survival was longer in Il-6 knockout mice with orthotopic SB28 glioblastoma relative to wild-type mice. IL-6 blockade with a neutralizing antibody transiently sensitizes mouse glioblastoma to anti-PD-1 by increasing MHCII+ monocytes, CD103+ migratory dendritic cells (DCs), CD11b+ conventional DCs, and effector CD8+ T cells, and decreasing immunosuppressive Tregs. To translate these findings to a combination treatment strategy for recurrent glioblastoma patients, we show that IL-6 blockade plus ICI durably sensitizes mouse glioblastoma to high-dose radiotherapy.
Collapse
Affiliation(s)
- Jacob S. Young
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Nam Woo Cho
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Department of Otolaryngology, University of California San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Calixto-Hope G. Lucas
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
- Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University, Baltimore, MD, USA
| | - Hinda Najem
- Department of Neurological Surgery, Northwestern University, Chicago, IL, USA
| | - Kanish Mirchia
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - William C. Chen
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Kyounghee Seo
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Naomi Zakimi
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Vikas Daggubati
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Tim Casey-Clyde
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Minh P. Nguyen
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Arya Chen
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Joanna J. Phillips
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Tomoko Ozawa
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Manish K. Aghi
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Jennie W. Taylor
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Joseph L. DeRisi
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Aparna Bhaduri
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Mitchel S. Berger
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Amy B. Heimberger
- Department of Neurological Surgery, Northwestern University, Chicago, IL, USA
| | - Nicholas Butowski
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Matthew H. Spitzer
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Department of Otolaryngology, University of California San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - David R. Raleigh
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
4
|
Carr AS, Vonberg FW, Koay S, Young K, Shaw H, Olsson-Brown A, Willis M. Neurological complications of immune checkpoint inhibitors: a practical guide. Pract Neurol 2025; 25:116-126. [PMID: 39592208 DOI: 10.1136/pn-2024-004327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2024] [Indexed: 11/28/2024]
Abstract
Immune checkpoint inhibition unleashes the power of the immune system against tumour cells. Immune checkpoint inhibitors (ICIs) block the inhibitory effects of cytotoxic T-lymphocyte associated protein 4 (CTLA-4), programmed death protein 1 (PD-1), programmed death ligand 1 (PD-L1) and lymphocyte activation gene 3 (LAG-3) molecules on T-cells, and so enhance physiological cytotoxic effects. ICIs can significantly improve survival from cancers, including those previously associated with poor treatment response, such as metastatic melanoma. However, on-target off-tumour effects of ICIs result in immune-related adverse events. These toxicities are common and require new multidisciplinary expertise to manage. ICI neurotoxicity is relatively rare but ominous due to its severity, heterogenous manifestations and potential for long-term disability. Neurotoxic syndromes are novel and often present precipitously. Here, we describe ICI mechanisms of action, their impact on cancer outcomes and their frequency of immune-related adverse events. We focus particularly on neurotoxicity. We discuss the current appreciation of neurotoxic syndromes, management strategies and outcomes based on clinical expertise and consensus, multi-specialty guidance. The use of immunotherapy is expanding exponentially across multiple cancer types and so too will our approach to these cases.
Collapse
Affiliation(s)
- Aisling S Carr
- Centre for Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, London, UK
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Frederick William Vonberg
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
- Neurology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Shiwen Koay
- Centre for Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, London, UK
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Kate Young
- Renal and Melanoma Unit, Royal Marsden Hospital Chelsea, London, London, UK
| | - Heather Shaw
- Department of Oncology, University College London Hospitals NHS Foundation Trust, London, London, UK
| | - Anna Olsson-Brown
- Sussex Cancer Centre, University Hospitals Sussex NHS Foundation Trust, Brighton, UK
- Department of Clinical and Molecular Pharmacology, University of Liverpool, Liverpool, UK
| | - Mark Willis
- Department of Neurology, University Hospital of Wales, Cardiff, UK
| |
Collapse
|
5
|
Fukuta T, Kumbhojkar N, Prakash S, Shaha S, Silva‐Candal AD, Park KS, Mitragotri S. Immunotherapy against glioblastoma using backpack-activated neutrophils. Bioeng Transl Med 2025; 10:e10712. [PMID: 39801750 PMCID: PMC11711226 DOI: 10.1002/btm2.10712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/25/2024] [Accepted: 07/23/2024] [Indexed: 01/16/2025] Open
Abstract
Immune checkpoint inhibitors (ICIs) represent new therapeutic candidates against glioblastoma multiforme (GBM); however, their efficacy is clinically limited due to both local and systemic immunosuppressive environments. Hence, therapeutic approaches that stimulate local and systemic immune environments can improve the efficacy of ICIs. Here, we report an adoptive cell therapy employing neutrophils (NE) that are activated via surface attachment of drug-free disk-shaped backpacks, termed Cyto-Adhesive Micro-Patches (CAMPs) for treating GBM. CAMP-adhered neutrophils (NE/CAMPs) significantly improved the efficacy of an anti-PD1 antibody (aPD-1) in a subcutaneous murine GBM model (GL261). A combination of NE/CAMPs and aPD-1 completely regressed subcutaneous GL261 tumors in mice. The efficacy of NE/CAMPs against GBM was also tested in an orthotopic GL261 model. Neutrophil's ability to migrate into the brain was not affected by CAMP attachment, and intracerebral NE/CAMP accumulation was observed in mice-bearing orthotopic GBM. The combination treatment of NE/CAMPs and aPD-1 activated systemic immune responses mediated by T cells and showed improved therapeutic responses compared with aPD-1 alone in the orthotopic GBM model. These results suggest that immunomodulation with NE/CAMPs offers a potential approach for the treatment of GBM by combination with ICIs.
Collapse
Affiliation(s)
- Tatsuya Fukuta
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard UniversityBostonMassachusettsUSA
- Wyss Institute for Biologically Inspired EngineeringBostonMassachusettsUSA
- Present address: Department of Physical Pharmaceutics, School of Pharmaceutical Sciences, Wakayama Medical University, JapanWakayamaJapan
| | - Ninad Kumbhojkar
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard UniversityBostonMassachusettsUSA
- Wyss Institute for Biologically Inspired EngineeringBostonMassachusettsUSA
| | - Supriya Prakash
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard UniversityBostonMassachusettsUSA
- Wyss Institute for Biologically Inspired EngineeringBostonMassachusettsUSA
| | - Suyog Shaha
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard UniversityBostonMassachusettsUSA
- Wyss Institute for Biologically Inspired EngineeringBostonMassachusettsUSA
| | - A. Da Silva‐Candal
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard UniversityBostonMassachusettsUSA
- Wyss Institute for Biologically Inspired EngineeringBostonMassachusettsUSA
- Present address: Neurovascular Diseases Laboratory, Neurology Service, University Hospital Complex of A Coruña, Biomedical Research InstituteA CoruñaSpain
| | - Kyung Soo Park
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard UniversityBostonMassachusettsUSA
- Wyss Institute for Biologically Inspired EngineeringBostonMassachusettsUSA
| | - Samir Mitragotri
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard UniversityBostonMassachusettsUSA
- Wyss Institute for Biologically Inspired EngineeringBostonMassachusettsUSA
| |
Collapse
|
6
|
Seetharam D, Chandar J, Ramsoomair CK, Desgraves JF, Medina AA, Hudson AJ, Amidei A, Castro JR, Govindarajan V, Wang S, Zhang Y, Sonabend AM, Valdez MJM, Maric D, Govindarajan V, Rivas SR, Lu VM, Tiwari R, Sharifi N, Thomas E, Alexander M, DeMarino C, Johnson K, De La Fuente MI, Nasany RA, Noviello TMR, Ivan ME, Komotar RJ, Iavarone A, Nath A, Heiss J, Ceccarelli M, Chiappinelli KB, Figueroa ME, Bayik D, Shah AH. Targeting ZNF638 activates antiviral immune responses and potentiates immune checkpoint inhibition in glioblastoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.13.618076. [PMID: 39464150 PMCID: PMC11507686 DOI: 10.1101/2024.10.13.618076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Viral mimicry refers to the activation of innate anti-viral immune responses due to the induction of endogenous retroelement (RE) expression. Viral mimicry has been previously described to augment anti-tumor immune responses and sensitize solid tumors to immunotherapy including colorectal cancer, melanoma, and clear renal cell carcinoma. Here, we found that targeting a novel, master epigenetic regulator, Zinc Finger Protein 638 (ZNF638), induces viral mimicry in glioblastoma (GBM) preclinical models and potentiates immune checkpoint inhibition (ICI). ZNF638 recruits the HUSH complex, which precipitates repressive H3K9me3 marks on endogenous REs. In GBM, ZNF638 is associated with marked locoregional immunosuppressive transcriptional signatures, reduced endogenous RE expression and poor immune cell infiltration (CD8 + T-cells, dendritic cells). ZNF638 knockdown decreased H3K9-trimethylation, increased cytosolic dsRNA and activated intracellular dsRNA-signaling cascades (RIG-I, MDA5 and IRF3). Furthermore, ZNF638 knockdown upregulated antiviral immune programs and significantly increased PD-L1 immune checkpoint expression in patient-derived GBM neurospheres and diverse murine models. Importantly, targeting ZNF638 sensitized mice to ICI in syngeneic murine orthotopic models through innate interferon signaling. This response was recapitulated in recurrent GBM (rGBM) samples with radiographic responses to checkpoint inhibition with widely increased expression of dsRNA, PD-L1 and perivascular CD8 cell infiltration, suggesting dsRNA-signaling may mediate response to immunotherapy. Finally, we showed that low ZNF638 expression was a biomarker of clinical response to ICI and improved survival in rGBM patients and melanoma patients. Our findings suggest that ZNF638 could serve as a target to potentiate immunotherapy in gliomas.
Collapse
|
7
|
Huda F, Bashari MH, Satria D, Hermawan A, Hasibuan PAZ, Dwiwina RG, Hermawan R. Cancer Chemotherapeutic Effect of Vernonia Amygdalina Delile on Glioblastoma Brain Cancer Cell. Asian Pac J Cancer Prev 2024; 25:3589-3595. [PMID: 39471026 PMCID: PMC11711350 DOI: 10.31557/apjcp.2024.25.10.3589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 10/16/2024] [Indexed: 11/01/2024] Open
Abstract
OBJECTIVE This study is targeted at assessing the chemotherapy factor of the ethanol extract of Vernonia amygdalina Delile (VAD). METHODS U87 glioblastoma cells were treated with extract and a fraction of Vernonia amygdalina Delile (VAD) was harvested from the herbarium. Cytotoxicity was evaluated to determine the IC50 through microscopic observation followed by an MTT assay. Subsequently, flow cytometry with a FACS type was employed to conduct cell cycle and apoptosis analyses. Annexin V/PI and PI markers were used to assess apoptosis and cell cycle progression. RESULT The ethanol extract and ethyl acetate fraction of VAD showed promising effects as cancer chemotherapy in glioblastoma cells. The IC50 values for the extract and fraction were notably low, at 37.65 µg/ml and 10.12 µg/ml, respectively, for U87 cells. Analysis of apoptosis using FACS revealed a more pronounced apoptotic effect of the 15 µg/ml fraction of VAD on both early and late apoptosis compared to the 75 µg/ml extract of VAD. Although some differences in cell cycle properties were observed, there were no significant differences in cell cycle analysis between the extract and fraction. CONCLUSION These findings underscore the efficacy of VAD's ethanol extract and ethyl acetate fraction as chemotherapeutic agents against U87 cancer cells. The low IC50 values and significant induction of early apoptosis highlight the cytotoxic effects of these treatments on U87 cells.
Collapse
Affiliation(s)
- Fathul Huda
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia.
| | - Muhammad Hasan Bashari
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia.
| | - Denny Satria
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Sumatera Utara, Sumatera Utara, Indonesia.
| | - Adam Hermawan
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Sumatera Utara, Indonesia.
| | - Poppy Anjelisa Zaitun Hasibuan
- Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia.
| | - Resti Gradia Dwiwina
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia.
| | - Rohim Hermawan
- Medical Doctor Program, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia.
| |
Collapse
|
8
|
Feng F, Shen J, Qi Q, Zhang Y, Ni S. Empowering brain tumor management: chimeric antigen receptor macrophage therapy. Theranostics 2024; 14:5725-5742. [PMID: 39310093 PMCID: PMC11413779 DOI: 10.7150/thno.98290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/17/2024] [Indexed: 09/25/2024] Open
Abstract
Brain tumors pose formidable challenges in oncology due to the intricate biology and the scarcity of effective treatment modalities. The emergence of immunotherapy has opened new avenues for innovative therapeutic strategies. Chimeric antigen receptor, originally investigated in T cell-based therapy, has now expanded to encompass macrophages, presenting a compelling avenue for augmenting anti-tumor immune surveillance. This emerging frontier holds promise for advancing the repertoire of therapeutic options against brain tumors, offering potential breakthroughs in combating the formidable malignancies of the central nervous system. Tumor-associated macrophages constitute a substantial portion, ranging from 30% to 50%, of the tumor tissue and exhibit tumor-promoting phenotypes within the immune-compromised microenvironment. Constructing CAR-macrophages can effectively repolarize M2-type macrophages towards an M1-type phenotype, thereby eliciting potent anti-tumor effects. CAR-macrophages can recruit T cells to the brain tumor site, thereby orchestrating a remodeling of the immune niche to effectively inhibit tumor growth. In this review, we explore the potential limitations as well as strategies for optimizing CAR-M therapy, offering insights into the future direction of this innovative therapeutic approach.
Collapse
Affiliation(s)
| | | | - Qichao Qi
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Yulin Zhang
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Shilei Ni
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| |
Collapse
|
9
|
Mongeon B, Hébert-Doutreloux J, Surendran A, Karimi E, Fiset B, Quail DF, Walsh LA, Jenner AL, Craig M. Spatial computational modelling illuminates the role of the tumour microenvironment for treating glioblastoma with immunotherapies. NPJ Syst Biol Appl 2024; 10:91. [PMID: 39155294 PMCID: PMC11330976 DOI: 10.1038/s41540-024-00419-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 08/07/2024] [Indexed: 08/20/2024] Open
Abstract
Glioblastoma is the most common and deadliest brain tumour in adults, with a median survival of 15 months under the current standard of care. Immunotherapies like immune checkpoint inhibitors and oncolytic viruses have been extensively studied to improve this endpoint. However, most thus far have failed. To improve the efficacy of immunotherapies to treat glioblastoma, new single-cell imaging modalities like imaging mass cytometry can be leveraged and integrated with computational models. This enables a better understanding of the tumour microenvironment and its role in treatment success or failure in this hard-to-treat tumour. Here, we implemented an agent-based model that allows for spatial predictions of combination chemotherapy, oncolytic virus, and immune checkpoint inhibitors against glioblastoma. We initialised our model with patient imaging mass cytometry data to predict patient-specific responses and found that oncolytic viruses drive combination treatment responses determined by intratumoral cell density. We found that tumours with higher tumour cell density responded better to treatment. When fixing the number of cancer cells, treatment efficacy was shown to be a function of CD4 + T cell and, to a lesser extent, of macrophage counts. Critically, our simulations show that care must be put into the integration of spatial data and agent-based models to effectively capture intratumoral dynamics. Together, this study emphasizes the use of predictive spatial modelling to better understand cancer immunotherapy treatment dynamics, while highlighting key factors to consider during model design and implementation.
Collapse
Affiliation(s)
- Blanche Mongeon
- Sainte-Justine University Hospital Azrieli Research Centre, Montréal, QC, Canada
- Department of Mathematics and Statistics, Université de Montréal, Montréal, QC, Canada
| | | | - Anudeep Surendran
- Center for Advanced Systems Understanding, Görlitz, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Elham Karimi
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QC, Canada
| | - Benoit Fiset
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QC, Canada
| | - Daniela F Quail
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QC, Canada
- Department of Physiology, Faculty of Medicine, McGill University, Montréal, QC, Canada
- Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, QC, Canada
| | - Logan A Walsh
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QC, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Adrianne L Jenner
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Morgan Craig
- Sainte-Justine University Hospital Azrieli Research Centre, Montréal, QC, Canada.
- Department of Mathematics and Statistics, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
10
|
Malone K, Dugas M, Earl N, Alain T, LaCasse EC, Beug ST. Astrocytes and the tumor microenvironment inflammatory state dictate the killing of glioblastoma cells by Smac mimetic compounds. Cell Death Dis 2024; 15:592. [PMID: 39147758 PMCID: PMC11327263 DOI: 10.1038/s41419-024-06971-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/28/2024] [Accepted: 08/02/2024] [Indexed: 08/17/2024]
Abstract
Smac mimetic compounds (SMCs) are small molecule drugs that sensitize cancer cells to TNF-α-induced cell death and have multiple immunostimulatory effects through alterations in NF-κB signaling. The combination of SMCs with immunotherapies has been reported to result in durable cures of up to 40% in syngeneic, orthotopic murine glioblastoma (GBM) models. Herein, we find that SMC resistance is not due to a cell-intrinsic mechanism of resistance. We thus evaluated the contribution of GBM and brain stromal components to identify parameters leading to SMC efficacy and resistance. The common physiological features of GBM tumors, such as hypoxia, hyaluronic acid, and glucose deprivation were found not to play a significant role in SMC efficacy. SMCs induced the death of microglia and macrophages, which are the major immune infiltrates in the tumor microenvironment. This death of microglia and macrophages then enhances the ability of SMCs to induce GBM cell death. Conversely, astrocytes promoted GBM cell growth and abrogated the ability of SMCs to induce death of GBM cells. The astrocyte-mediated resistance can be overcome in the presence of exogenous TNF-α. Overall, our results highlight that SMCs can induce death of microglia and macrophages, which then provides a source of death ligands for GBM cells, and that the targeting of astrocytes is a potential mechanism for overcoming SMC resistance for the treatment of GBM.
Collapse
Affiliation(s)
- Kyle Malone
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada
| | - Melanie Dugas
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada
| | - Nathalie Earl
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada
| | - Tommy Alain
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada
| | - Eric C LaCasse
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada
| | - Shawn T Beug
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada.
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
11
|
Zhang Z, Yan H, Tong H, Guo K, Song Z, Jin Q, Zhao Z, Zhao Z, Shi Y. Comprehensive pan-cancer analysis of ACSS3 as a biomarker for prognosis and immunotherapy response. Heliyon 2024; 10:e35231. [PMID: 39165934 PMCID: PMC11334676 DOI: 10.1016/j.heliyon.2024.e35231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 08/22/2024] Open
Abstract
Background ACSS3 (acyl-CoA synthetase short-chain family member 3) is found in numerous tissues and is linked to tumor cell type development and metastasis. Methods We conducted a comprehensive pan-cancer analysis of ACSS3. The TCGA (Cancer Genome Atlas), CPTAC (Clinical Proteomic Tumor Analysis Consortium), and HPA databases were used to ascertain the connection between ACSS3 and various types of tumors. Genes in the TCGA database would be identified using cBioPortal queries, and their transcriptome expression would then be verified using GEO data. ACSS3 expression and cellular localization in various tumor tissues of most cancer types were analyzed using single-cell sequencing data from the TISCH database. According to HPA and CPTAC databases, we analyzed and evaluated protein expression levels. Predictive analysis based on precise survival data of ACSS3 expression levels for 26 cancer types predicted using the TCGA database. Furthermore, we investigated the relationship between ACSS3 and immune microenvironments in different tumor tissues using the TIMER and TISCH databases. CellMiner, GDSC, and CTRP data would clarify the relationship between ACSS3 and drug resistance and explore the chemicals that affect ACSS3 expression. The final part of our study explored and validated the role ACSS3 played in glioma proliferation, migration, and invasion. Results ACSS3 is differentially expressed in various tumors and exhibits early diagnostic value. ACSS3 expression is associated with clinical features, and high ACSS expression anticipates a worse prognosis in multiple tumors and may impact drug sensitivity. The changes in the immunosuppressive microenvironment of gliomas are closely related to the upregulation of ACSS3. Conclusions ACSS3 is a novel biomarker for forecasting different human cancer prognoses, as it can influence the biological process by modulating the immune microenvironment. ACSS3 is a critical prognostic factor for glioma and is related to its proliferation, migration, and invasion.
Collapse
Affiliation(s)
- Zhanzhan Zhang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Hongshan Yan
- Department of Neurosurgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Hao Tong
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Kai Guo
- Department of Neurosurgery, Affiliated Xing Tai People Hospital of Hebei Medical University, Xingtai, Hebei, 054000, China
| | - Zihan Song
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Qianxu Jin
- Department of Neurosurgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Zijun Zhao
- Spine Center, Sanbo Brain Hospital, Capital Medical University, Beijing, 100000, China
| | - Zongmao Zhao
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Yunpeng Shi
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| |
Collapse
|
12
|
Sarkar S, Greer J, Marlowe NJ, Medvid A, Ivan ME, Kolishetti N, Dhar S. Stemness, invasion, and immunosuppression modulation in recurrent glioblastoma using nanotherapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1976. [PMID: 39091260 DOI: 10.1002/wnan.1976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 08/04/2024]
Abstract
The recurrent nature of glioblastoma negatively impacts conventional treatment strategies leading to a growing need for nanomedicine. Nanotherapeutics, an approach designed to deliver drugs to specific sites, is experiencing rapid growth and gaining immense popularity. Having potential in reaching the hard-to-reach disease sites, this field has the potential to show high efficacy in combatting glioblastoma progression. The presence of glioblastoma stem cells (GSCs) is a major factor behind the poor prognosis of glioblastoma multiforme (GBM). Stemness potential, heterogeneity, and self-renewal capacity, are some of the properties that make GSCs invade across the distant regions of the brain. Despite advances in medical technology and MRI-guided maximal surgical resection, not all GSCs residing in the brain can be removed, leading to recurrent disease. The aggressiveness of GBM is often correlated with immune suppression, where the T-cells are unable to infiltrate the cancer initiating GSCs. Standard of care therapies, including surgery and chemotherapy in combination with radiation therapy, have failed to tackle all the challenges of the GSCs, making it increasingly important for researchers to develop strategies to tackle their growth and proliferation and reduce the recurrence of GBM. Here, we will focus on the advancements in the field of nanomedicine that has the potential to show positive impact in managing glioblastoma tumor microenvironment. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Shrita Sarkar
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Jessica Greer
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Nathaniel J Marlowe
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Angeline Medvid
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Michael E Ivan
- Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Nagesh Kolishetti
- Department of Immunology and Nano-Medicine, Herbert Wertheim, College of Medicine, Florida International University, Miami, Florida, USA
- Herbert Wertheim College of Medicine, Institute of Neuroimmune Pharmacology, Miami, Florida International University, Florida, USA
| | - Shanta Dhar
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, Florida, USA
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida, USA
- Department of Chemistry, University of Miami, Coral Gables, Florida, USA
| |
Collapse
|
13
|
Wang Y, Wang Y, Wang S, Wang C, Tang Y, Zhang C, Yu D, Hou S, Lin N. Comprehensive analysis of CYBB as a prognostic marker and therapeutic target in glioma: A bioinformatics approach. Heliyon 2024; 10:e29549. [PMID: 38655339 PMCID: PMC11036048 DOI: 10.1016/j.heliyon.2024.e29549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024] Open
Abstract
Background In the central nervous system, glioma is the most common malignant tumor, and patients have a poor prognosis. Identification of novel marker genes and establishment of prognostic models are important for early diagnosis and prognosis determination. Methods Download glioma data from the CGGA and TCG databases. Application of bioinformatics to analyze the impact of CYBB on the clinicopathological characteristics, immunological features and prognosis of gliomas. Using single-cell sequencing data from 7 glioblastoma patients in the CGGA database, the role of CYBB in the tumor microenvironment was analyzed. In addition, a prognostic model was constructed based on CYBB high and low differentially expressed genes and mitochondrial genes. Results The expression of CYBB is closely related to various clinical features, immune cell infiltration level, immune checkpoint and survival time of patients. A 10-gene prediction model was constructed based on the differentially expressed genes of low and high CYBB and mitochondria-related genes. Glioma patients with higher risk scores had significantly lower survival probabilities. Receiver operating characteristic curves and nomograms were plotted over time to show the predictive accuracy and predictive value of the 10-gene prognostic model. Conclusions Our study shows that CYBB is strongly correlated with clinical characteristics features and prognosis of glioma patients, and can be used as a potential therapeutic target. Prognostic models based on CYBB and mitochondrial genes have good performance in predicting prognosis of glioma patients.
Collapse
Affiliation(s)
- Yu Wang
- Department of Neurosurgery, The Affliated Chuzhou Hospital of Anhui Medical University, The First People's Hospital of Chuzhou, Chuzhou, 239000, China
| | - Yuhao Wang
- Department of Neurosurgery, The Affliated Chuzhou Hospital of Anhui Medical University, The First People's Hospital of Chuzhou, Chuzhou, 239000, China
| | - Shuai Wang
- Department of Neurosurgery, The Affliated Chuzhou Hospital of Anhui Medical University, The First People's Hospital of Chuzhou, Chuzhou, 239000, China
| | - Chengcheng Wang
- Department of Neurosurgery, The Affliated Chuzhou Hospital of Anhui Medical University, The First People's Hospital of Chuzhou, Chuzhou, 239000, China
| | - Yuhang Tang
- Department of Neurosurgery, The Affliated Chuzhou Hospital of Anhui Medical University, The First People's Hospital of Chuzhou, Chuzhou, 239000, China
| | - Chao Zhang
- Department of Neurosurgery, The Affliated Chuzhou Hospital of Anhui Medical University, The First People's Hospital of Chuzhou, Chuzhou, 239000, China
| | - Dong Yu
- Department of Neurosurgery, The Affliated Chuzhou Hospital of Anhui Medical University, The First People's Hospital of Chuzhou, Chuzhou, 239000, China
| | - Shiqiang Hou
- Department of Neurosurgery, The Affliated Chuzhou Hospital of Anhui Medical University, The First People's Hospital of Chuzhou, Chuzhou, 239000, China
| | - Ning Lin
- Department of Neurosurgery, The Affliated Chuzhou Hospital of Anhui Medical University, The First People's Hospital of Chuzhou, Chuzhou, 239000, China
| |
Collapse
|
14
|
Zhu N, Chen S, Jin Y, Wang M, Fang L, Xue L, Hua D, Zhang Z, Jia M, Hao M, Zhang C. Enhancing Glioblastoma Immunotherapy with Integrated Chimeric Antigen Receptor T Cells through the Re-Education of Tumor-Associated Microglia and Macrophages. ACS NANO 2024; 18:11165-11182. [PMID: 38626338 DOI: 10.1021/acsnano.4c00050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
Glioblastoma (GBM) is an aggressive brain cancer that is highly resistant to treatment including chimeric antigen receptor (CAR)-T cells. Tumor-associated microglia and macrophages (TAMs) are major contributors to the immunosuppressive GBM microenvironment, which promotes tumor progression and treatment resistance. Hence, the modulation of TAMs is a promising strategy for improving the immunotherapeutic efficacy of CAR-T cells against GBM. Molecularly targeting drug pexidartinib (PLX) has been reported to re-educate TAMs toward the antitumorigenic M1-like phenotype. Here, we developed a cell-drug integrated technology to reversibly conjugate PLX-containing liposomes (PLX-Lip) to CAR-T cells and establish tumor-responsive integrated CAR-T cells (PLX-Lip/AZO-T cells) as a combination therapy for GBM. We used a mouse model of GBM to show that PLX-Lip was stably maintained on the surface of PLX-Lip/AZO-T cells in circulation and these cells could transmigrate across the blood-brain barrier and deposit PLX-Lip at the tumor site. The uptake of PLX-Lip by TAMs effectively re-educated them into the M1-like phenotype, which in turn boosted the antitumor function of CAR-T cells. GBM tumor growth was completely eradicated in 60% of the mice after receiving PLX-Lip/AZO-T cells and extended their overall survival time beyond 50 days; in comparison, the median survival time of mice in other treatment groups did not exceed 35 days. Overall, we demonstrated the successful fusion of CAR-T cells and small-molecule drugs with the cell-drug integrated technology. These integrated CAR-T cells provided a superior combination strategy for GBM treatment and presented a reference for the construction of integrated cell-based drugs.
Collapse
Affiliation(s)
- Nianci Zhu
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 211198, China
- Chongqing Innovation Institute of China Pharmaceutical University, Chongqing 401135, China
| | - Sijia Chen
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 211198, China
- Chongqing Innovation Institute of China Pharmaceutical University, Chongqing 401135, China
| | - Yu Jin
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 211198, China
- Chongqing Innovation Institute of China Pharmaceutical University, Chongqing 401135, China
| | - Meng Wang
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 211198, China
- Chongqing Innovation Institute of China Pharmaceutical University, Chongqing 401135, China
| | - Luyao Fang
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 211198, China
- Chongqing Innovation Institute of China Pharmaceutical University, Chongqing 401135, China
| | - Lingjing Xue
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 211198, China
- Chongqing Innovation Institute of China Pharmaceutical University, Chongqing 401135, China
| | - Dexiang Hua
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 211198, China
- Chongqing Innovation Institute of China Pharmaceutical University, Chongqing 401135, China
| | - Ziyao Zhang
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 211198, China
- Chongqing Innovation Institute of China Pharmaceutical University, Chongqing 401135, China
| | - Meng Jia
- School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Meixi Hao
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 211198, China
- Chongqing Innovation Institute of China Pharmaceutical University, Chongqing 401135, China
| | - Can Zhang
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 211198, China
- Chongqing Innovation Institute of China Pharmaceutical University, Chongqing 401135, China
| |
Collapse
|
15
|
Scuderi SA, Ardizzone A, Salako AE, Pantò G, De Luca F, Esposito E, Capra AP. Pentraxin 3: A Main Driver of Inflammation and Immune System Dysfunction in the Tumor Microenvironment of Glioblastoma. Cancers (Basel) 2024; 16:1637. [PMID: 38730589 PMCID: PMC11083335 DOI: 10.3390/cancers16091637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/12/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Brain tumors are a heterogeneous group of brain neoplasms that are highly prevalent in individuals of all ages worldwide. Within this pathological framework, the most prevalent and aggressive type of primary brain tumor is glioblastoma (GB), a subtype of glioma that falls within the IV-grade astrocytoma group. The death rate for patients with GB remains high, occurring within a few months after diagnosis, even with the gold-standard therapies now available, such as surgery, radiation, or a pharmaceutical approach with Temozolomide. For this reason, it is crucial to continue looking for cutting-edge therapeutic options to raise patients' survival chances. Pentraxin 3 (PTX3) is a multifunctional protein that has a variety of regulatory roles in inflammatory processes related to extracellular matrix (ECM). An increase in PTX3 blood levels is considered a trustworthy factor associated with the beginning of inflammation. Moreover, scientific evidence suggested that PTX3 is a sensitive and earlier inflammation-related marker compared to the short pentraxin C-reactive protein (CRP). In several tumoral subtypes, via regulating complement-dependent and macrophage-associated tumor-promoting inflammation, it has been demonstrated that PTX3 may function as a promoter of cancer metastasis, invasion, and stemness. Our review aims to deeply evaluate the function of PTX3 in the pathological context of GB, considering its pivotal biological activities and its possible role as a molecular target for future therapies.
Collapse
Affiliation(s)
- Sarah Adriana Scuderi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (S.A.S.); (A.A.); (A.E.S.); (F.D.L.); (A.P.C.)
| | - Alessio Ardizzone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (S.A.S.); (A.A.); (A.E.S.); (F.D.L.); (A.P.C.)
| | - Ayomide Eniola Salako
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (S.A.S.); (A.A.); (A.E.S.); (F.D.L.); (A.P.C.)
- University of Florence, 50121 Florence, Italy
| | - Giuseppe Pantò
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy;
| | - Fabiola De Luca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (S.A.S.); (A.A.); (A.E.S.); (F.D.L.); (A.P.C.)
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (S.A.S.); (A.A.); (A.E.S.); (F.D.L.); (A.P.C.)
| | - Anna Paola Capra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (S.A.S.); (A.A.); (A.E.S.); (F.D.L.); (A.P.C.)
| |
Collapse
|
16
|
Huang R, Han B, Zhang Y, Yang J, Wang K, Liu X, Wang Z. Pathway-based stratification of gliomas uncovers four subtypes with different TME characteristics and prognosis. J Cell Mol Med 2024; 28:e18208. [PMID: 38613347 PMCID: PMC11015396 DOI: 10.1111/jcmm.18208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/29/2024] [Accepted: 02/16/2024] [Indexed: 04/14/2024] Open
Abstract
Increasing evidences have found that the interactions between hypoxia, immune response and metabolism status in tumour microenvironment (TME) have clinical importance of predicting clinical outcomes and therapeutic efficacy. This study aimed to develop a reliable molecular stratification based on these key components of TME. The TCGA data set (training cohort) and two independent cohorts from CGGA database (validation cohort) were enrolled in this study. First, the enrichment score of 277 TME-related signalling pathways was calculated by gene set variation analysis (GSVA). Then, consensus clustering identified four stable and reproducible subtypes (AFM, CSS, HIS and GLU) based on TME-related signalling pathways, which were characterized by differences in hypoxia and immune responses, metabolism status, somatic alterations and clinical outcomes. Among the four subtypes, HIS subtype had features of immunosuppression, oxygen deprivation and active energy metabolism, resulting in a worst prognosis. Thus, for better clinical application of this acquired stratification, we constructed a risk signature by using the LASSO regression model to identify patients in HIS subtype accurately. We found that the risk signature could accurately screen out the patients in HIS subtype and had important reference value for individualized treatment of glioma patients. In brief, the definition of the TME-related subtypes was a valuable tool for risk stratification in gliomas. It might serve as a reliable prognostic classifier and provide rational design of individualized treatment, and follow-up scheduling for patients with gliomas.
Collapse
Affiliation(s)
- Ruoyu Huang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Department of Molecular NeuropathologyBeijing Neurosurgical Institute, Capital Medical UniversityBeijingChina
| | - Bo Han
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Department of Molecular NeuropathologyBeijing Neurosurgical Institute, Capital Medical UniversityBeijingChina
| | - Ying Zhang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Department of Molecular NeuropathologyBeijing Neurosurgical Institute, Capital Medical UniversityBeijingChina
| | - Jingchen Yang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Department of Molecular NeuropathologyBeijing Neurosurgical Institute, Capital Medical UniversityBeijingChina
| | - Kuanyu Wang
- Department of Gamma Knife CenterBeijing Neurosurgical Institute, Capital Medical UniversityBeijingChina
| | - Xing Liu
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Department of Molecular NeuropathologyBeijing Neurosurgical Institute, Capital Medical UniversityBeijingChina
| | - Zhiliang Wang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Department of Molecular NeuropathologyBeijing Neurosurgical Institute, Capital Medical UniversityBeijingChina
| |
Collapse
|
17
|
Zhang B, Zhang H, Wang Z, Cao H, Zhang N, Dai Z, Liang X, Peng Y, Wen J, Zhang X, Zhang L, Luo P, Zhang J, Liu Z, Cheng Q, Peng R. The regulatory role and clinical application prospects of circRNA in the occurrence and development of CNS tumors. CNS Neurosci Ther 2024; 30:e14500. [PMID: 37953502 PMCID: PMC11017455 DOI: 10.1111/cns.14500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/20/2023] [Accepted: 10/03/2023] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND Central nervous system (CNS) tumors originate from the spinal cord or brain. The study showed that even with aggressive treatment, malignant CNS tumors have high mortality rates. However, CNS tumor risk factors and molecular mechanisms have not been verified. Due to the reasons mentioned above, diagnosis and treatment of CNS tumors in clinical practice are currently fraught with difficulties. Circular RNAs (circRNAs), single-stranded ncRNAs with covalently closed continuous structures, are essential to CNS tumor development. Growing evidence has proved the numeral critical biological functions of circRNAs for disease progression: sponging to miRNAs, regulating gene transcription and splicing, interacting with proteins, encoding proteins/peptides, and expressing in exosomes. AIMS This review aims to summarize current progress regarding the molecular mechanism of circRNA in CNS tumors and to explore the possibilities of clinical application based on circRNA in CNS tumors. METHODS We have summarized studies of circRNA in CNS tumors in Pubmed. RESULTS This review summarized their connection with CNS tumors and their functions, biogenesis, and biological properties. Furthermore, we introduced current advances in clinical RNA-related technologies. Then we discussed the diagnostic and therapeutic potential (especially for immunotherapy, chemotherapy, and radiotherapy) of circRNA in CNS tumors in the context of the recent advanced research and application of RNA in clinics. CONCLUSIONS CircRNA are increasingly proven to participate in decveloping CNS tumors. An in-depth study of the causal mechanisms of circRNAs in CNS tomor progression will ultimately advance their implementation in the clinic and developing new strategies for preventing and treating CNS tumors.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| | - Hao Zhang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- Department of Neurosurgery, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- MRC Centre for Regenerative Medicine, Institute for Regeneration and RepairUniversity of EdinburghEdinburghUK
| | - Hui Cao
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaChina
| | - Nan Zhang
- College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Ziyu Dai
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| | - Xisong Liang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| | - Yun Peng
- Teaching and Research Section of Clinical NursingXiangya Hospital of Central South UniversityChangshaChina
- Department of Geriatrics, Xiangya HospitalCentral South UniversityChangshaChina
| | - Jie Wen
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| | - Xun Zhang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| | - Liyang Zhang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| | - Peng Luo
- Department of Oncology, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Jian Zhang
- Department of Oncology, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Zaoqu Liu
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Quan Cheng
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| | - Renjun Peng
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| |
Collapse
|
18
|
Hazrati A, Malekpour K, Khorramdelazad H, Rajaei S, Hashemi SM. Therapeutic and immunomodulatory potentials of mesenchymal stromal/stem cells and immune checkpoints related molecules. Biomark Res 2024; 12:35. [PMID: 38515166 PMCID: PMC10958918 DOI: 10.1186/s40364-024-00580-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/07/2024] [Indexed: 03/23/2024] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) are used in many studies due to their therapeutic potential, including their differentiative ability and immunomodulatory properties. These cells perform their therapeutic functions by using various mechanisms, such as the production of anti-inflammatory cytokines, growth factors, direct cell-to-cell contact, extracellular vesicles (EVs) production, and mitochondrial transfer. However, mechanisms related to immune checkpoints (ICPs) and their effect on the immunomodulatory ability of MSCs are less discussed. The main function of ICPs is to prevent the initiation of unwanted responses and to regulate the immune system responses to maintain the homeostasis of these responses. ICPs are produced by various types of immune system regulatory cells, and defects in their expression and function may be associated with excessive responses that can ultimately lead to autoimmunity. Also, by expressing different types of ICPs and their ligands (ICPLs), tumor cells prevent the formation and durability of immune responses, which leads to tumors' immune escape. ICPs and ICPLs can be produced by MSCs and affect immune cell responses both through their secretion into the microenvironment or direct cell-to-cell interaction. Pre-treatment of MSCs in inflammatory conditions leads to an increase in their therapeutic potential. In addition to the effect that inflammatory environments have on the production of anti-inflammatory cytokines by MSCs, they can increase the expression of various types of ICPLs. In this review, we discuss different types of ICPLs and ICPs expressed by MSCs and their effect on their immunomodulatory and therapeutic potential.
Collapse
Affiliation(s)
- Ali Hazrati
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kosar Malekpour
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Samira Rajaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
19
|
Mahajan S, Singh J, Dandapath I, Jha P, Chaturvedi S, Ahuja A, Bhardwaj M, Saran R, Garg A, Sharma MC, Manjunath N, Suri A, Sarkar C, Suri V. Analysis of Histomorphologic/Molecular Association and Immune Checkpoint Regulators in Epithelioid Glioblastoma and Pleomorphic Xanthoastrocytoma: Are These Tumors Potential Candidates for Immune Checkpoint Blockade? Appl Immunohistochem Mol Morphol 2024; 32:84-95. [PMID: 38158760 DOI: 10.1097/pai.0000000000001179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 11/12/2023] [Indexed: 01/03/2024]
Abstract
Accurate diagnosis of Epithelioid glioblastoma (eGB) and pleomorphic xanthoastrocytoma (PXA) is sometimes challenging owing to overlapping histologic and genetic features. There are limited reports on the immune profile of these tumors. In this study, we assessed 21 PXA [15 PXA Grade 2 (PXAG2); 6 PXA Grade 3 (PXAG3)] and 14 eGB for their histopathological and molecular association. Further, their immune profile was compared with GB, IDH1 wild-type (wt) (n-18). Morphologically, PXAG2 mostly differed from eGB; however, it was occasionally difficult to differentiate PXAG3 from eGB due to their epithelioid pattern and less obvious degenerative features. PXAG2 showed predominantly diffuse, whereas variable positivity for epithelial and glial markers was seen in PXAG3 and eGB. All cases showed retained nuclear ATRX and INI-1 . H3K27M or IDH1 mutation was seen in none. P53 mutation was more common in eGB, followed by PXAG3, and least common in PXAG2. BRAF V600E mutation was observed in 66.67% PXAG2, 33.33% PXAG3, and 50% eGB, with 100% concordance between immunohistochemistry (IHC) and sequencing. Thirty-six percent eGB, 33% PXAG3, and 61% PXAG2 harbored CDKN2A homozygous deletion. EGFR amplification was observed in 14% eGB and 66% of GB, IDH wt. PDL1 and CTLA-4 expression was higher in eGB (71.4% and 57.1%), PXAG3 (66.6% and100%), and PXAG2 (60% & 66.7%) as compared with GB, IDH wt (38.8% and 16.7%). Tumor-infiltrating lymphocytes were also observed in a majority of eGB and PXA (90% to 100%) in contrast to GB, IDH wt (66%). This analysis highlights the homogenous molecular and immune profile of eGB and PXA, suggesting the possibility that histologically and molecularly, these two entities represent 2 ends of a continuous spectrum with PXAG3 lying in between. Higher upregulation of PDL1, CTLA-4, and increased tumor infiltrating lymphocytes in these tumors as compared with GB, IDH wt suggests potential candidature for immunotherapy.
Collapse
Affiliation(s)
- Swati Mahajan
- Neuropathology Laboratory, Neurosciences Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Jyotsna Singh
- Neuropathology Laboratory, Neurosciences Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Iman Dandapath
- Neuropathology Laboratory, Neurosciences Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Prerana Jha
- Neuropathology Laboratory, Neurosciences Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Sujata Chaturvedi
- Department of Pathology, Institute of Human Behaviour and Allied Sciences, New Delhi, India
| | - Arvind Ahuja
- Department of Pathology, PGIMER & Dr. RML Hospital, New Delhi, India
| | - Minakshi Bhardwaj
- Department of Pathology, PGIMER & Dr. RML Hospital, New Delhi, India
| | - Ravindra Saran
- Department of Pathology, G B Pant Institute of Postgraduate Medical Education and Research, New Delhi, India
| | - Ajay Garg
- Department of Neuroradiology, All India Institute of Medical Science, New Delhi
| | - Mehar C Sharma
- Neuropathology Laboratory, Neurosciences Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Niveditha Manjunath
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi
| | - Ashish Suri
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi
| | - Chitra Sarkar
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Vaishali Suri
- Neuropathology Laboratory, Neurosciences Centre, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
20
|
Yang Z, Sun L, Chen H, Sun C, Xia L. New progress in the treatment of diffuse midline glioma with H3K27M alteration. Heliyon 2024; 10:e24877. [PMID: 38312649 PMCID: PMC10835306 DOI: 10.1016/j.heliyon.2024.e24877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 02/06/2024] Open
Abstract
Diffuse midline glioma with H3K27 M alteration is a primary malignant tumor located along the linear structure of the brain, predominantly manifesting in children and adolescents. The mortality rate is exceptionally high, with a mere 1 % 5-year survival rate for newly diagnosed patients. Beyond conventional surgery, radiotherapy, and chemotherapy, novel approaches are imperative to enhance patient prognosis. This article comprehensively reviews current innovative treatment modalities and provides updates on the latest research advancements in preclinical studies and clinical trials focusing on H3K27M-altered diffuse midline glioma. The goal is to contribute positively to clinical treatment strategies.
Collapse
Affiliation(s)
- Zhi Yang
- Department of Neurosurgery, Cancer Hospital of University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
- Postgraduate Training Base Alliance of Wenzhou Medical University, WenZhou, 325035, Zhejiang province, China
| | - Liang Sun
- Department of Neurosurgery, Cancer Hospital of University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
- Postgraduate Training Base Alliance of Wenzhou Medical University, WenZhou, 325035, Zhejiang province, China
| | - Haibin Chen
- Department of Neurosurgery, Cancer Hospital of University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
- Postgraduate Training Base Alliance of Wenzhou Medical University, WenZhou, 325035, Zhejiang province, China
| | - Caixing Sun
- Department of Neurosurgery, Cancer Hospital of University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
- Postgraduate Training Base Alliance of Wenzhou Medical University, WenZhou, 325035, Zhejiang province, China
| | - Liang Xia
- Department of Neurosurgery, Cancer Hospital of University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
- Postgraduate Training Base Alliance of Wenzhou Medical University, WenZhou, 325035, Zhejiang province, China
| |
Collapse
|
21
|
Sharma P, Otto M. Multifunctional nanocomposites modulating the tumor microenvironment for enhanced cancer immunotherapy. Bioact Mater 2024; 31:440-462. [PMID: 37701452 PMCID: PMC10494322 DOI: 10.1016/j.bioactmat.2023.08.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/09/2023] [Accepted: 08/28/2023] [Indexed: 09/14/2023] Open
Abstract
Cancer immunotherapy has gained momentum for treating malignant tumors over the past decade. Checkpoint blockade and chimeric antigen receptor cell therapy (CAR-T) have shown considerable potency against liquid and solid cancers. However, the tumor microenvironment (TME) is highly immunosuppressive and hampers the effect of currently available cancer immunotherapies on overall treatment outcomes. Advancements in the design and engineering of nanomaterials have opened new avenues to modulate the TME. Progress in the current nanocomposite technology can overcome immunosuppression and trigger robust immunotherapeutic responses by integrating synergistic functions of different molecules. We will review recent advancements in nanomedical applications and discuss specifically designed nanocomposites modulating the TME for cancer immunotherapy. In addition, we provide information on the current landscape of clinical-stage nanocomposites for cancer immunotherapy.
Collapse
Affiliation(s)
- Prashant Sharma
- Department of Child Health, University of Arizona College of Medicine-Phoenix, ABC1 Building, 425 N 5th Street, Phoenix, AZ, 85004, USA
| | - Mario Otto
- Department of Child Health, University of Arizona College of Medicine-Phoenix, ABC1 Building, 425 N 5th Street, Phoenix, AZ, 85004, USA
- Center for Cancer and Blood Disorders (CCBD), Phoenix Children's, 1919 E Thomas Rd, Phoenix, AZ, 85016, USA
| |
Collapse
|
22
|
Nafe R, Hattingen E. Cellular Components of the Tumor Environment in Gliomas-What Do We Know Today? Biomedicines 2023; 12:14. [PMID: 38275375 PMCID: PMC10813739 DOI: 10.3390/biomedicines12010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
A generation ago, the molecular properties of tumor cells were the focus of scientific interest in oncology research. Since then, it has become increasingly apparent that the tumor environment (TEM), whose major components are non-neoplastic cell types, is also of utmost importance for our understanding of tumor growth, maintenance and resistance. In this review, we present the current knowledge concerning all cellular components within the TEM in gliomas, focusing on their molecular properties, expression patterns and influence on the biological behavior of gliomas. Insight into the TEM of gliomas has expanded considerably in recent years, including many aspects that previously received only marginal attention, such as the phenomenon of phagocytosis of glioma cells by macrophages and the role of the thyroid-stimulating hormone on glioma growth. We also discuss other topics such as the migration of lymphocytes into the tumor, phenotypic similarities between chemoresistant glioma cells and stem cells, and new clinical approaches with immunotherapies involving the cells of TEM.
Collapse
Affiliation(s)
- Reinhold Nafe
- Department of Neuroradiology, Clinics of Johann Wolfgang Goethe-University, Schleusenweg 2-16, D-60528 Frankfurt am Main, Germany;
| | | |
Collapse
|
23
|
Anderson HG, Takacs GP, Harris DC, Kuang Y, Harrison JK, Stepien TL. Global stability and parameter analysis reinforce therapeutic targets of PD-L1-PD-1 and MDSCs for glioblastoma. J Math Biol 2023; 88:10. [PMID: 38099947 PMCID: PMC10724342 DOI: 10.1007/s00285-023-02027-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 08/30/2023] [Accepted: 11/05/2023] [Indexed: 12/18/2023]
Abstract
Glioblastoma (GBM) is an aggressive primary brain cancer that currently has minimally effective treatments. Like other cancers, immunosuppression by the PD-L1-PD-1 immune checkpoint complex is a prominent axis by which glioma cells evade the immune system. Myeloid-derived suppressor cells (MDSCs), which are recruited to the glioma microenviroment, also contribute to the immunosuppressed GBM microenvironment by suppressing T cell functions. In this paper, we propose a GBM-specific tumor-immune ordinary differential equations model of glioma cells, T cells, and MDSCs to provide theoretical insights into the interactions between these cells. Equilibrium and stability analysis indicates that there are unique tumorous and tumor-free equilibria which are locally stable under certain conditions. Further, the tumor-free equilibrium is globally stable when T cell activation and the tumor kill rate by T cells overcome tumor growth, T cell inhibition by PD-L1-PD-1 and MDSCs, and the T cell death rate. Bifurcation analysis suggests that a treatment plan that includes surgical resection and therapeutics targeting immune suppression caused by the PD-L1-PD1 complex and MDSCs results in the system tending to the tumor-free equilibrium. Using a set of preclinical experimental data, we implement the approximate Bayesian computation (ABC) rejection method to construct probability density distributions that estimate model parameters. These distributions inform an appropriate search curve for global sensitivity analysis using the extended fourier amplitude sensitivity test. Sensitivity results combined with the ABC method suggest that parameter interaction is occurring between the drivers of tumor burden, which are the tumor growth rate and carrying capacity as well as the tumor kill rate by T cells, and the two modeled forms of immunosuppression, PD-L1-PD-1 immune checkpoint and MDSC suppression of T cells. Thus, treatment with an immune checkpoint inhibitor in combination with a therapeutic targeting the inhibitory mechanisms of MDSCs should be explored.
Collapse
Affiliation(s)
- Hannah G Anderson
- Department of Mathematics, University of Florida, Gainesville, FL, USA
| | - Gregory P Takacs
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Duane C Harris
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ, USA
| | - Yang Kuang
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ, USA
| | - Jeffrey K Harrison
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Tracy L Stepien
- Department of Mathematics, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
24
|
Hotchkiss KM, Batich KA, Mohan A, Rahman R, Piantadosi S, Khasraw M. Dendritic cell vaccine trials in gliomas: Untangling the lines. Neuro Oncol 2023; 25:1752-1762. [PMID: 37289203 PMCID: PMC10547519 DOI: 10.1093/neuonc/noad088] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023] Open
Abstract
Glioblastoma is a deadly brain tumor without any significantly successful treatments to date. Tumor antigen-targeted immunotherapy platforms including peptide and dendritic cell (DC) vaccines, have extended survival in hematologic malignancies. The relatively "cold" tumor immune microenvironment and heterogenous nature of glioblastoma have proven to be major limitations to translational application and efficacy of DC vaccines. Furthermore, many DC vaccine trials in glioblastoma are difficult to interpret due to a lack of contemporaneous controls, absence of any control comparison, or inconsistent patient populations. Here we review glioblastoma immunobiology aspects that are relevant to DC vaccines, review the clinical experience with DC vaccines targeting glioblastoma, discuss challenges in clinical trial design, and summarize conclusions and directions for future research for the development of effective DC vaccines for patients.
Collapse
Affiliation(s)
- Kelly M Hotchkiss
- Department of Neurosurgery, The Preston Robert Tisch Brain Tumor Center at Duke, Duke University Medical Center, Durham, North Carolina, USA
| | - Kristen A Batich
- Department of Neurosurgery, The Preston Robert Tisch Brain Tumor Center at Duke, Duke University Medical Center, Durham, North Carolina, USA
| | - Aditya Mohan
- Department of Neurosurgery, The Preston Robert Tisch Brain Tumor Center at Duke, Duke University Medical Center, Durham, North Carolina, USA
| | - Rifaquat Rahman
- Department of Radiation Oncology, Dana-Farber/Brigham and Women’s Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Steven Piantadosi
- Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA(S.P.)
| | - Mustafa Khasraw
- Department of Neurosurgery, The Preston Robert Tisch Brain Tumor Center at Duke, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
25
|
Nahar Metu CL, Sutihar SK, Sohel M, Zohora F, Hasan A, Miah MT, Rani Kar T, Hossain MA, Rahman MH. Unraveling the signaling mechanism behind astrocytoma and possible therapeutics strategies: A comprehensive review. Cancer Rep (Hoboken) 2023; 6:e1889. [PMID: 37675821 PMCID: PMC10598261 DOI: 10.1002/cnr2.1889] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/09/2023] [Accepted: 07/28/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND A form of cancer called astrocytoma can develop in the brain or spinal cord and sometimes causes death. A detailed overview of the precise signaling cascade underlying astrocytoma formation has not yet been revealed, although various factors have been investigated. Therefore, our objective was to unravel and summarize our current understanding of molecular genetics and associated signaling pathways with some possible therapeutic strategies for astrocytoma. RECENT FINDINGS In general, four different forms of astrocytoma have been identified in individuals, including circumscribed, diffuse, anaplastic, and multiforme glioblastoma, according to a recent literature review. All types of astrocytoma have a direct connection with some oncogenic signaling cascade. Common signaling is MAPK cascade, including Ras-Raf-ERK, up-regulated with activating EGFR/AKT/PTEN/mTOR and PDGFR. Recent breakthrough studies found that BRAF mutations, including KIAA1549: BRAF and BRAF V600E are responsible for astrocytoma progression. Additionally, cancer progression is influenced by mutations in some tumor suppressor genes, such as the Tp53/ATRX and MGMT mutant. As synthetic medications must cross the blood-brain barrier (BBB), modulating signal systems such as miRNA is the primary option for treating patients with astrocytoma. However, available surgery, radiation therapy, and experimental therapies such as adjuvant therapy, anti-angiogenic therapy, and EGFR-targeting antibody drug are the usual treatment for most types of astrocytoma. Similar to conventional anticancer medications, some phytochemicals slow tumor growth by simultaneously controlling several cellular proteins, including those involved in cell cycle regulation, apoptosis, metastatic spread, tyrosine kinase, growth factor receptor, and antioxidant-related proteins. CONCLUSION In conclusion, cellular and molecular signaling is directly associated with the development of astrocytoma, and a combination of conventional and alternative therapies can improve the malignancy of cancer patients.
Collapse
Affiliation(s)
- Chowdhury Lutfun Nahar Metu
- Biochemistry and Molecular BiologyBangabandhu Sheikh Mujibur Rahman Science and Technology UniversityGopalganjBangladesh
| | - Sunita Kumari Sutihar
- Biochemistry and Molecular BiologyBangabandhu Sheikh Mujibur Rahman Science and Technology UniversityGopalganjBangladesh
| | - Md Sohel
- Biochemistry and Molecular BiologyMawlana Bhashani Science and Technology UniversityTangailBangladesh
- Department of Biochemistry and Molecular BiologyPrimeasia UniversityDhakaBangladesh
| | - Fatematuz Zohora
- Department of Pharmacy, Faculty of PharmacyUniversity of DhakaDhakaBangladesh
| | - Akayed Hasan
- Department of PharmacyMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - Md. Thandu Miah
- Department of PharmacyMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - Tanu Rani Kar
- Department of Biochemistry and Molecular BiologyPrimeasia UniversityDhakaBangladesh
| | - Md. Arju Hossain
- Department of Biotechnology and Genetic EngineeringMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - Md Habibur Rahman
- Department of Computer Science and EngineeringIslamic UniversityKushtiaBangladesh
| |
Collapse
|
26
|
Goswami S, Raychaudhuri D, Singh P, Natarajan SM, Chen Y, Poon C, Hennessey M, Tannir AJ, Zhang J, Anandhan S, Kerrigan BP, Macaluso MD, He Z, Jindal S, Lang FF, Basu S, Sharma P. Myeloid-specific KDM6B inhibition sensitizes glioblastoma to PD1 blockade. NATURE CANCER 2023; 4:1455-1473. [PMID: 37653141 DOI: 10.1038/s43018-023-00620-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 07/21/2023] [Indexed: 09/02/2023]
Abstract
Glioblastoma (GBM) tumors are enriched in immune-suppressive myeloid cells and are refractory to immune checkpoint therapy (ICT). Targeting epigenetic pathways to reprogram the functional phenotype of immune-suppressive myeloid cells to overcome resistance to ICT remains unexplored. Single-cell and spatial transcriptomic analyses of human GBM tumors demonstrated high expression of an epigenetic enzyme-histone 3 lysine 27 demethylase (KDM6B)-in intratumoral immune-suppressive myeloid cell subsets. Importantly, myeloid cell-specific Kdm6b deletion enhanced proinflammatory pathways and improved survival in GBM tumor-bearing mice. Mechanistic studies showed that the absence of Kdm6b enhances antigen presentation, interferon response and phagocytosis in myeloid cells by inhibition of mediators of immune suppression including Mafb, Socs3 and Sirpa. Further, pharmacological inhibition of KDM6B mirrored the functional phenotype of Kdm6b-deleted myeloid cells and enhanced anti-PD1 efficacy. This study thus identified KDM6B as an epigenetic regulator of the functional phenotype of myeloid cell subsets and a potential therapeutic target for enhanced response to ICT.
Collapse
Affiliation(s)
- Sangeeta Goswami
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- James P. Allison Institute, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Deblina Raychaudhuri
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pratishtha Singh
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Seanu Meena Natarajan
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yulong Chen
- Immunotherapy Platform, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Candice Poon
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mercedes Hennessey
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Aminah J Tannir
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jan Zhang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Swetha Anandhan
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Marc D Macaluso
- Immunotherapy Platform, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhong He
- Immunotherapy Platform, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sonali Jindal
- Immunotherapy Platform, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Frederick F Lang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sreyashi Basu
- Immunotherapy Platform, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Padmanee Sharma
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- James P. Allison Institute, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Immunotherapy Platform, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
27
|
Fan PL, Wang SS, Chu SF, Chen NH. Time-dependent dual effect of microglia in ischemic stroke. Neurochem Int 2023; 169:105584. [PMID: 37454817 DOI: 10.1016/j.neuint.2023.105584] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Stroke, the third leading cause of death and disability worldwide, is classified into ischemic or hemorrhagic, in which approximately 85% of strokes are ischemic. Ischemic stroke occurs as a result of arterial occlusion due to embolus or thrombus, with ischemia in the perfusion territory supplied by the occluded artery. The traditional concept that ischemic stroke is solely a vascular occlusion disorder has been expanded to include the dynamic interaction between microglia, astrocytes, neurons, vascular cells, and matrix components forming the "neurovascular unit." Acute ischemic stroke triggers a wide spectrum of neurovascular disturbances, glial activation, and secondary neuroinflammation that promotes further injury, ultimately resulting in neuronal death. Microglia, as the resident macrophages in the central nervous system, is one of the first responders to ischemic injury and plays a significant role in post-ischemic neuroinflammation. In this review, we reviewed the mechanisms of microglia in multiple stages of post-ischemic neuroinflammation development, including acute, sub-acute and chronic phases of stroke. A comprehensive understanding of the dynamic variation and the time-dependent role of microglia in post-stroke neuroinflammation could aid in the search for more effective therapeutics and diagnostic strategies for ischemic stroke.
Collapse
Affiliation(s)
- Ping-Long Fan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Sha-Sha Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Shi-Feng Chu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Nai-Hong Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
28
|
Zhang Q, Zhang J, Tian Y, Wang J, Jin G, Liu F. Ki67-targeted oncolytic adenovirus expressing IL-15 improves intratumoral T cell infiltration and PD-L1 expression in glioblastoma. Virology 2023; 587:109885. [PMID: 37738842 DOI: 10.1016/j.virol.2023.109885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/24/2023]
Abstract
Glioblastoma (GBM) is a devastating malignant brain tumor. Current therapeutic strategies targeting tumor cells have limited efficacy owing to the immunosuppressive microenvironment. Previous work demonstrated that the targeted Ad5-Ki67/IL-15 could specifically kill tumor cells and decrease the angiogenic capacity in vitro. However, the efficacy of this virus in vivo and its effect on the tumor microenvironment (TME) has not been elucidated. In this study, we found that the Ad5-Ki67/IL-15 treatment down-regulated PD-L1 expression of glioma cells. More importantly, Ad5-Ki67/IL-15 also remodeled the tumor microenvironment via increasing intratumoral T cell infiltration and PD-L1 improvement in a GBM model, as well as the increase of antitumor cytokines, thereby improving the efficacy of GBM treatment. Furthermore, a combination of Ad5-Ki67/IL-15 with PD-L1 blockade significantly inhibits tumor growth in the GBM model. These results provide new insight into the therapeutic effects of targeted oncolytic Ad5-Ki67/IL-15 in patients with GBM, indicating potential clinical applications.
Collapse
Affiliation(s)
- Qing Zhang
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China; Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, 100070, China; Beijing Laboratory of Biomedical Materials, Beijing, 100070, China
| | - Junwen Zhang
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China; Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, 100070, China; Beijing Laboratory of Biomedical Materials, Beijing, 100070, China
| | - Yifu Tian
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China; Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, 100070, China; Beijing Laboratory of Biomedical Materials, Beijing, 100070, China
| | - Jialin Wang
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China; Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, 100070, China; Beijing Laboratory of Biomedical Materials, Beijing, 100070, China
| | - Guishan Jin
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China; Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, 100070, China; Beijing Laboratory of Biomedical Materials, Beijing, 100070, China
| | - Fusheng Liu
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China; Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, 100070, China; Beijing Laboratory of Biomedical Materials, Beijing, 100070, China.
| |
Collapse
|
29
|
KDM6B-mediated reprogramming of myeloid cells regulates the response to immunotherapy. NATURE CANCER 2023; 4:1408-1409. [PMID: 37700093 DOI: 10.1038/s43018-023-00621-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
|
30
|
Bartusik-Aebisher D, Serafin I, Dynarowicz K, Aebisher D. Photodynamic therapy and associated targeting methods for treatment of brain cancer. Front Pharmacol 2023; 14:1250699. [PMID: 37841921 PMCID: PMC10568033 DOI: 10.3389/fphar.2023.1250699] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/11/2023] [Indexed: 10/17/2023] Open
Abstract
Brain tumors, including glioblastoma multiforme, are currently a cause of suffering and death of tens of thousands of people worldwide. Despite advances in clinical treatment, the average patient survival time from the moment of diagnosis of glioblastoma multiforme and application of standard treatment methods such as surgical resection, radio- and chemotherapy, is less than 4 years. The continuing development of new therapeutic methods for targeting and treating brain tumors may extend life and provide greater comfort to patients. One such developing therapeutic method is photodynamic therapy. Photodynamic therapy is a progressive method of therapy used in dermatology, dentistry, ophthalmology, and has found use as an antimicrobial agent. It has also found wide application in photodiagnosis. Photodynamic therapy requires the presence of three necessary components: a clinically approved photosensitizer, oxygen and light. This paper is a review of selected literature from Pubmed and Scopus scientific databases in the field of photodynamic therapy in brain tumors with an emphasis on glioblastoma treatment.
Collapse
Affiliation(s)
- Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of the University of Rzeszów, Rzeszów, Poland
| | - Iga Serafin
- Students English Division Science Club, Medical College of the University of Rzeszów, Rzeszów, Poland
| | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College of the University of Rzeszów, Rzeszów, Poland
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of the University of Rzeszów, Rzeszów, Poland
| |
Collapse
|
31
|
Anderson HG, Takacs GP, Harris DC, Kuang Y, Harrison JK, Stepien TL. Global stability and parameter analysis reinforce therapeutic targets of PD-L1-PD-1 and MDSCs for glioblastoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.15.540846. [PMID: 37292799 PMCID: PMC10245580 DOI: 10.1101/2023.05.15.540846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Glioblastoma (GBM) is an aggressive primary brain cancer that currently has minimally effective treatments. Like other cancers, immunosuppression by the PD-L1-PD-1 immune checkpoint complex is a prominent axis by which glioma cells evade the immune system. Myeloid-derived suppressor cells (MDSCs), which are recruited to the glioma microenviroment, also contribute to the immunosuppressed GBM microenvironment by suppressing T cell functions. In this paper, we propose a GBM-specific tumor-immune ordinary differential equations model of glioma cells, T cells, and MDSCs to provide theoretical insights into the interactions between these cells. Equilibrium and stability analysis indicates that there are unique tumorous and tumor-free equilibria which are locally stable under certain conditions. Further, the tumor-free equilibrium is globally stable when T cell activation and the tumor kill rate by T cells overcome tumor growth, T cell inhibition by PD-L1-PD-1 and MDSCs, and the T cell death rate. Bifurcation analysis suggests that a treatment plan that includes surgical resection and therapeutics targeting immune suppression caused by the PD-L1-PD1 complex and MDSCs results in the system tending to the tumor-free equilibrium. Using a set of preclinical experimental data, we implement the Approximate Bayesian Computation (ABC) rejection method to construct probability density distributions that estimate model parameters. These distributions inform an appropriate search curve for global sensitivity analysis using the extended Fourier Amplitude Sensitivity Test (eFAST). Sensitivity results combined with the ABC method suggest that parameter interaction is occurring between the drivers of tumor burden, which are the tumor growth rate and carrying capacity as well as the tumor kill rate by T cells, and the two modeled forms of immunosuppression, PD-L1-PD-1 immune checkpoint and MDSC suppression of T cells. Thus, treatment with an immune checkpoint inhibitor in combination with a therapeutic targeting the inhibitory mechanisms of MDSCs should be explored.
Collapse
|
32
|
Yao L, Luo T, Yang G, Yin J, Li H, Liu Z. An Experimental Study: Treatment of Subcutaneous C6 Glioma in Rats Using Acoustic Droplet Vaporization. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2023; 42:1951-1963. [PMID: 36916667 DOI: 10.1002/jum.16212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/01/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
OBJECTIVE The objective of this study was to investigate the treatment effects of acoustic droplet vaporization (ADV) on tumors. METHODS Experiments were conducted on subcutaneous C6 glioma implanted in 37 rats. Twenty-five rats were divided into five groups treated by ultrasound (US) + dodecafluoropentane (DDFP), US + microbubble (MB), US, DDFP, or saline, respectively. ADV was performed using DDFP droplets (2-5 μm) triggered by non-focused pulsed ultrasound. Macroscopic and histological changes of the tumor were compared with investigation of the tumor ablation effect of ADV. Tumor temperature was measured before and immediately after treatment to explore temperature changes. Furthermore, another 12 rats with bilateral tumors were divided into two groups. Six animals received ADV treatment on unilateral tumor, while another six received saline injection on unilateral tumor. The tumor blood perfusion, tumor volume and related immune response were measured. RESULTS The tumors treated by ADV were partially damaged without significant temperature rise. For the animals with bilateral tumors, the tumor blood perfusion around the damaged area on the side receiving ADV still existed. Additionally, the bilateral tumors of animals treated with ADV were smaller than those of animals treated with saline, along with stronger immune response and more tumor cell apoptosis in tumors on both sides. CONCLUSION The study demonstrated that ADV treatment could damage subcutaneous glioma in rats by mechanical effect and enhance systemic immune response to furtherly inhibit the tumor growth.
Collapse
Affiliation(s)
- Lei Yao
- Department of Ultrasound, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Tingting Luo
- Department of Ultrasound, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Guoliang Yang
- Department of Ultrasound, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Jiabei Yin
- Department of Ultrasound, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Hui Li
- Department of Ultrasound, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Zheng Liu
- Department of Ultrasound, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| |
Collapse
|
33
|
Lin S, Li K, Qi L. Cancer stem cells in brain tumors: From origin to clinical implications. MedComm (Beijing) 2023; 4:e341. [PMID: 37576862 PMCID: PMC10412776 DOI: 10.1002/mco2.341] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/24/2023] [Accepted: 07/04/2023] [Indexed: 08/15/2023] Open
Abstract
Malignant brain tumors are highly heterogeneous tumors with a poor prognosis and a high morbidity and mortality rate in both children and adults. The cancer stem cell (CSC, also named tumor-initiating cell) model states that tumor growth is driven by a subset of CSCs. This model explains some of the clinical observations of brain tumors, including the almost unavoidable tumor recurrence after initial successful chemotherapy and/or radiotherapy and treatment resistance. Over the past two decades, strategies for the identification and characterization of brain CSCs have improved significantly, supporting the design of new diagnostic and therapeutic strategies for brain tumors. Relevant studies have unveiled novel characteristics of CSCs in the brain, including their heterogeneity and distinctive immunobiology, which have provided opportunities for new research directions and potential therapeutic approaches. In this review, we summarize the current knowledge of CSCs markers and stemness regulators in brain tumors. We also comprehensively describe the influence of the CSCs niche and tumor microenvironment on brain tumor stemness, including interactions between CSCs and the immune system, and discuss the potential application of CSCs in brain-based therapies for the treatment of brain tumors.
Collapse
Affiliation(s)
- Shuyun Lin
- Institute of Digestive DiseaseThe Sixth Affiliated Hospital of Guangzhou Medical UniversityQingyuan People's HospitalQingyuanGuangdongChina
| | - Kaishu Li
- Institute of Digestive DiseaseThe Sixth Affiliated Hospital of Guangzhou Medical UniversityQingyuan People's HospitalQingyuanGuangdongChina
| | - Ling Qi
- Institute of Digestive DiseaseThe Sixth Affiliated Hospital of Guangzhou Medical UniversityQingyuan People's HospitalQingyuanGuangdongChina
| |
Collapse
|
34
|
Wu Y, Wang X, Zhang M, Wu D. Molecular Biomarkers and Recent Liquid Biopsy Testing Progress: A Review of the Application of Biosensors for the Diagnosis of Gliomas. Molecules 2023; 28:5660. [PMID: 37570630 PMCID: PMC10419986 DOI: 10.3390/molecules28155660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Gliomas are the most common primary central nervous system tumors, with a high mortality rate. Early and accurate diagnosis of gliomas is critical for successful treatment. Biosensors are significant in the detection of molecular biomarkers because they are simple to use, portable, and capable of real-time analysis. This review discusses several important molecular biomarkers as well as various biosensors designed for glioma diagnosis, such as electrochemical biosensors and optical biosensors. We present our perspectives on the existing challenges and hope that this review can promote the improvement of biosensors.
Collapse
Affiliation(s)
- Yuanbin Wu
- Department of Emergency Medicine, The Seventh Medical Center, Chinese PLA General Hospital, Beijing 100700, China;
| | - Xuning Wang
- Department of General Surgery, The Air Force Hospital of Northern Theater PLA, Shenyang 110042, China
| | - Meng Zhang
- Department of Neurosurgery, The Second Hospital of Southern Theater of Chinese Navy, Sanya 572000, China
| | - Dongdong Wu
- Department of Neurosurgery, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
35
|
Tao R, Huang R, Yang J, Wang J, Wang K. Comprehensive analysis of the clinical and biological significances of cholesterol metabolism in lower-grade gliomas. BMC Cancer 2023; 23:692. [PMID: 37488496 PMCID: PMC10364387 DOI: 10.1186/s12885-023-10897-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 04/27/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND As a component of membrane lipids and the precursor of oxysterols and steroid hormones, reprogrammed cholesterol metabolism contributes to the initiation and progression of multiple cancers. Thus, we aim to further investigate the significances of cholesterol metabolism in lower-grade gliomas (LGGs). METHODS The present study included 413 LGG samples from TCGA RNA-seq dataset (training cohort) and 172 LGG samples from CGGA RNA-seq dataset (validation cohort). The cholesterol metabolism-related signature was identified by the LASSO regression model. Bioinformatics analyses were performed to explore the functional roles of this signature in LGGs. Kaplan-Meier and Cox regression analyses were enrolled to estimate prognostic value of the risk signature. RESULTS Our findings suggested that cholesterol metabolism was tightly associated clinicopathologic features and genomic alterations of LGGs. Bioinformatics analyses revealed that cholesterol metabolism played a key role in immunosuppression of LGGs, mainly by promoting macrophages polarization and T cell exhaustion. Kaplan-Meier curve and Cox regression analysis showed that cholesterol metabolism was an independent prognostic indicator for LGG patients. To improve the clinical application value of the risk signature, we also constructed a nomogram model to predict the 1-, 3- and 5-year survival of LGG patients. CONCLUSION The cholesterol metabolism was powerful prognostic indicator and could serve as a promising target to enhance personalized treatment of LGGs.
Collapse
Affiliation(s)
- Rui Tao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China
| | - Ruoyu Huang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China
| | - Jingchen Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China
| | - Jiangfei Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China.
| | - Kuanyu Wang
- Department of stereotactic radiosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China.
| |
Collapse
|
36
|
Xie Z, Chen M, Lian J, Wang H, Ma J. Glioblastoma-on-a-chip construction and therapeutic applications. Front Oncol 2023; 13:1183059. [PMID: 37503321 PMCID: PMC10368971 DOI: 10.3389/fonc.2023.1183059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/16/2023] [Indexed: 07/29/2023] Open
Abstract
Glioblastoma (GBM) is the most malignant type of primary intracranial tumor with a median overall survival of only 14 months, a very poor prognosis and a recurrence rate of 90%. It is difficult to reflect the complex structure and function of the GBM microenvironment in vivo using traditional in vitro models. GBM-on-a-chip platforms can integrate biological or chemical functional units of a tumor into a chip, mimicking in vivo functions of GBM cells. This technology has shown great potential for applications in personalized precision medicine and GBM immunotherapy. In recent years, there have been efforts to construct GBM-on-a-chip models based on microfluidics and bioprinting. A number of research teams have begun to use GBM-on-a-chip models for the investigation of GBM progression mechanisms, drug candidates, and therapeutic approaches. This review first briefly discusses the use of microfluidics and bioprinting technologies for GBM-on-a-chip construction. Second, we classify non-surgical treatments for GBM in pre-clinical research into three categories (chemotherapy, immunotherapy and other therapies) and focus on the use of GBM-on-a-chip in research for each category. Last, we demonstrate that organ-on-a-chip technology in therapeutic field is still in its initial stage and provide future perspectives for research directions in the field.
Collapse
Affiliation(s)
| | | | | | | | - Jingyun Ma
- *Correspondence: Hongcai Wang, ; Jingyun Ma,
| |
Collapse
|
37
|
Dai Z, Zhang N, Zhou R, Zhang H, Zhang L, Wang Z, Zeng W, Luo P, Zhang J, Liu Z, Cheng Q. Identification of a single cell-based signature for predicting prognosis risk and immunotherapy response in patients with glioblastoma. Clin Immunol 2023; 251:109345. [PMID: 37100336 DOI: 10.1016/j.clim.2023.109345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/20/2022] [Accepted: 04/14/2023] [Indexed: 04/28/2023]
Abstract
This study constructed a novel gene pair signature based on bulk and single-cell sequencing samples in relative expression order within the samples. The subsequent analysis included glioma samples from Xiangya Hospital. Gene pair signatures possessed a solid ability to predict the prognosis of glioblastoma and pan-cancer. Samples having different malignant biological hallmarks were distinguished by the algorithm, with the high gene pair score group featuring classic copy number variations, oncogenic mutations, and extensive hypomethylation, mediating poor prognosis. The increased gene pair score group with a poorer prognosis demonstrated significant enrichment in tumor and immune-related signaling pathways while presenting immunological diversity. The remarkable infiltration of M2 macrophages in the high gene pair score group was validated by multiplex immunofluorescence, suggesting that combination therapies targeting adaptive and innate immunity may serve as a therapeutic option. Overall, a gene pair signature applicable to predict prognosis hopefully provides a reference to guide clinical practice.
Collapse
Affiliation(s)
- Ziyu Dai
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410078, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, China
| | - Nan Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410078, China; One-Third Lab, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150088, China
| | - Ran Zhou
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410078, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, China; Division of Neuroscience, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410078, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, China
| | - Liyang Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410078, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, China; Clinical Diagnosis and Therapeutic Center of Glioma, Xiangya Hospital, Central South University, Changsha 410078, China
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410078, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, China
| | - Wenjing Zeng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410078, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410078, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, China.
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410078, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, China; Clinical Diagnosis and Therapeutic Center of Glioma, Xiangya Hospital, Central South University, Changsha 410078, China.
| |
Collapse
|
38
|
Bianconi A, Palmieri G, Aruta G, Monticelli M, Zeppa P, Tartara F, Melcarne A, Garbossa D, Cofano F. Updates in Glioblastoma Immunotherapy: An Overview of the Current Clinical and Translational Scenario. Biomedicines 2023; 11:1520. [PMID: 37371615 DOI: 10.3390/biomedicines11061520] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/21/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive central nervous system tumor, requiring multimodal management. Due to its malignant behavior and infiltrative growth pattern, GBM is one of the most difficult tumors to treat and gross total resection is still considered to be the first crucial step. The deep understanding of GBM microenvironment and the possibility of manipulating the patient's innate and adaptive immune system to fight the neoplasm represent the base of immunotherapeutic strategies that currently express the future for the fight against GBM. Despite the immunotherapeutic approach having been successfully adopted in several solid and haematologic neoplasms, immune resistance and the immunosuppressive environment make the use of these strategies challenging in GBM treatment. We describe the most recent updates regarding new therapeutic strategies that target the immune system, immune checkpoint inhibitors, chimeric antigen receptor T cell therapy, peptide and oncolytic vaccines, and the relevant mechanism of immune resistance. However, no significant results have yet been obtained in studies targeting single molecules/pathways. The future direction of GBM therapy will include a combined approach that, in contrast to the inescapable current treatment modality of maximal resection followed by chemo- and radiotherapy, may combine a multifaceted immunotherapy treatment with the dual goals of directly killing tumor cells and activating the innate and adaptive immune response.
Collapse
Affiliation(s)
- Andrea Bianconi
- Neurosurgery, Department of Neurosciences, University of Turin, 10126 Turin, Italy
| | | | - Gelsomina Aruta
- Neurosurgery, Department of Neurosciences, University of Turin, 10126 Turin, Italy
| | - Matteo Monticelli
- UOC Neurochirurgia, Dipartimento di Medicina Traslazionale e per la Romagna, Università degli Studi di Ferrara, 44121 Ferrara, Italy
| | - Pietro Zeppa
- Neurosurgery, Department of Neurosciences, University of Turin, 10126 Turin, Italy
| | - Fulvio Tartara
- Headache Science and Neurorehabilitation Center, IRCCS Mondino Foundation, Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
| | - Antonio Melcarne
- Neurosurgery, Department of Neurosciences, University of Turin, 10126 Turin, Italy
| | - Diego Garbossa
- Neurosurgery, Department of Neurosciences, University of Turin, 10126 Turin, Italy
| | - Fabio Cofano
- Neurosurgery, Department of Neurosciences, University of Turin, 10126 Turin, Italy
- Humanitas Gradenigo, 10100 Turin, Italy
| |
Collapse
|
39
|
Pombero A, Garcia-Lopez R, Martínez S. Pericyte-Glioblastoma Cell Interaction: A Key Target to Prevent Glioblastoma Progression. Cells 2023; 12:1324. [PMID: 37174724 PMCID: PMC10177553 DOI: 10.3390/cells12091324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/25/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Multiple biological processes rely on direct intercellular interactions to regulate cell proliferation and migration in embryonic development and cancer processes. Tumor development and growth depends on close interactions between cancer cells and cells in the tumor microenvironment. During embryonic development, morphogenetic signals and direct cell contacts control cell proliferation, polarity, and morphogenesis. Cancer cells communicate with cells in the tumor niche through molecular signals and intercellular contacts, thereby modifying the vascular architecture and antitumor surveillance processes and consequently enabling tumor growth and survival. While looking for cell-to-cell signaling mechanisms that are common to both brain development and cancer progression, we have studied the infiltration process in glioblastoma multiforme (GBM), which is the most malignant primary brain tumor and with the worst prognosis. Cell-to-cell contacts, by means of filopodia-like structures, between GBM cells and brain pericytes (PCs) are necessary for adequate cell signaling during cancer infiltration; similarly, contacts between embryonic regions, via cytonemes, are required for embryo regionalization and development. This GBM-PC interaction provokes two important changes in the physiological function of these perivascular cells, namely, (i) vascular co-option with changes in cell contractility and vascular malformation, and (ii) changes in the PC transcriptome, modifying the microvesicles and protein secretome, which leads to the development of an immunosuppressive phenotype that promotes tumor immune tolerance. Moreover, the GTPase Cdc42 regulates cell polarity across organisms, from yeast to humans, playing a central role in GBM cell-PC interaction and maintaining vascular co-option. As such, a review of the molecular and cellular mechanisms underlying the development and maintenance of the physical interactions between cancer cells and PCs is of particular interest.
Collapse
Affiliation(s)
- Ana Pombero
- Instituto de Neurociencias, Universidad Miguel Hernández–CSIC, Campus de San Juan, Avda. Ramón y Cajal sn, 03550 Alicante, Spain; (A.P.); (R.G.-L.)
| | - Raquel Garcia-Lopez
- Instituto de Neurociencias, Universidad Miguel Hernández–CSIC, Campus de San Juan, Avda. Ramón y Cajal sn, 03550 Alicante, Spain; (A.P.); (R.G.-L.)
| | - Salvador Martínez
- Instituto de Neurociencias, Universidad Miguel Hernández–CSIC, Campus de San Juan, Avda. Ramón y Cajal sn, 03550 Alicante, Spain; (A.P.); (R.G.-L.)
- Centro de Investigación Biomédica en Red en Salud Mental, CIBERSAM-ISCIII, 46010 Valencia, Spain
| |
Collapse
|
40
|
Zhao B, Wu J, Li H, Wang Y, Wang Y, Xing H, Wang Y, Ma W. Recent advances and future challenges of tumor vaccination therapy for recurrent glioblastoma. Cell Commun Signal 2023; 21:74. [PMID: 37046332 PMCID: PMC10091563 DOI: 10.1186/s12964-023-01098-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/07/2023] [Indexed: 04/14/2023] Open
Abstract
Glioblastoma (GBM) is the most malignant CNS tumor with a highest incidence rate, and most patients would undergo a recurrence. Recurrent GBM (rGBM) shows an increasing resistance to chemotherapy and radiotherapy, leading to a significantly poorer prognosis and the urgent need for novel treatments. Immunotherapy, a rapidly developing anti-tumor therapy in recent years, has shown its potential value in rGBM. Recent studies on PD-1 immunotherapy and CAR-T therapy have shown some efficacy, but the outcome was not as expected. Tumor vaccination is the oldest approach of immunotherapies, which has returned to the research focus because of the failure of other strategies and subversive understanding of CNS. The isolation effect of blood brain barrier and the immunosuppressive cell infiltration could lead to resistance existing in all phases of the anti-tumor immune response, where novel tumor vaccines have been designed to overcome these problems through new tumor antigenic targets and regulatory of the systematic immune response. In this review, the immunological characteristics of CNS and GBM would be discussed and summarized, as well as the mechanism of each novel tumor vaccine for rGBM. And through the review of completed early-phase studies and ongoing large-scale phase III clinical trials, evaluation could be conducted for potential immune response, biosecurity and initial clinical outcome, which further draw a panorama of this vital research field and provide some deep thoughts for the prospective tendency of vaccination strategy. Video Abstract.
Collapse
Affiliation(s)
- Binghao Zhao
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China
| | - Jiaming Wu
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China
| | - Huanzhang Li
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China
| | - Yuekun Wang
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China
| | - Yaning Wang
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China
| | - Hao Xing
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China
| | - Yu Wang
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China.
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China.
| | - Wenbin Ma
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China.
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China.
| |
Collapse
|
41
|
Yang J, Zhang Q, Yang Z, Shu J, Zhang L, Yao Y, Wang X, Liu X. KIF18A interacts with PPP1CA to promote the malignant development of glioblastoma. Exp Ther Med 2023; 25:154. [PMID: 36911368 PMCID: PMC9996083 DOI: 10.3892/etm.2023.11853] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/14/2022] [Indexed: 02/19/2023] Open
Abstract
Glioblastoma (GBM), which has poor prognosis and low 5-year survival rate, is the most common primary central nervous system malignant tumour in adults. Kinesin family member 18A (KIF18A) plays an important role in multiple tumours and is potential therapeutic target for GBM. Therefore, the present study investigated the role of KIF18A in GBM. The expression level and survival prognosis of KIF18A and protein phosphatase 1 catalytic subunit α (PPP1CA) in GBM patients were analysed using the Chinese Glioma Genome Atlas (CGGA) database. Reverse transcription-quantitative PCR and western blot analysis were applied to measure the expression of KIF18A and PPP1CA in normal and GBM cell lines. KIF18A expression was inhibited through cell transfection with a KIF18A-targeting short hairpin RNA. Cell proliferation was detected with the Cell Counting Kit-8 assay. Flow cytometry was used to detect cell cycle changes. Transwell and wound healing assays were used to measure cell invasion and migration. Western blotting was utilized for the detection of invasion- and migration-related proteins MMP9 and MMP2. Biological General Repository for Interaction Datasets and GeneMANIA databases were used to analyse the interaction between KIF18A and PPP1CA. The correlation between PPP1CA and KIF18A was examined using data from the CGGA database. Immunoprecipitation was used to demonstrate the binding relationship between KIF18A and PPP1CA. PPP1CA was overexpressed using cell transfection technology and its mechanism was further examined. The results demonstrated that KIF18A was upregulated in GBM cells compared with normal microglia HMC3. Compared with that in sh-NC group, silencing of KIF18A reduced cell proliferation, induced G2/M cycle arrest and inhibited the migration and the invasion of A172 GBM cells by interacting with PPP1CA. In conclusion, KIF18A interacted with PPP1CA to promote the proliferation, cycle arrest, migration and invasion of GBM cells.
Collapse
Affiliation(s)
- Ji Yang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qiaorong Zhang
- Department of Neurosurgery, Jiangxi Cancer Hospital, Nanchang, Jiangxi 330029, P.R. China
| | - Ziyuan Yang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China.,Medical Graduate School of Nanchang University, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jiaming Shu
- Medical Graduate School of Nanchang University, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China.,Department of Oncology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Lingling Zhang
- Medical Graduate School of Nanchang University, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China.,Department of Oncology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yangyang Yao
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xiaolang Wang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xianxian Liu
- Department of Neurosurgery, Jiangxi Cancer Hospital, Nanchang, Jiangxi 330029, P.R. China
| |
Collapse
|
42
|
Wang Y, Li S, Peng Y, Ma W, Wang Y, Li W. Progress in phase III clinical trials of molecular targeted therapy and immunotherapy for glioblastoma. CANCER INNOVATION 2023; 2:114-130. [PMID: 38090060 PMCID: PMC10686181 DOI: 10.1002/cai2.59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 10/15/2024]
Abstract
Glioblastoma (GBM) is the most common primary central nervous system tumor, whose prognosis remains poor under the sequential standard of care, such as neurosurgery followed by concurrent temozolomide radiochemotherapy and adjuvant temozolomide chemotherapy in the presence or absence of tumor treating fields. Accordingly, the advent of molecular targeted therapy and immunotherapy has opened a new era of tumor management. A diverse range of targeted drugs have been tested in patients with GBM in phase III clinical trials. However, these drugs are ineffective for all patients, as evidenced by the fact that only a minority of patients in these trials showed prolonged survival. Furthermore, there are several published phase III clinical trials that involve immune checkpoint inhibitors, peptide vaccines, dendritic cell vaccines, and virotherapy. Accordingly, this review comprehensively overviews existing studies of targeted drugs and immunotherapy for glioma and discusses the challenge and perspective of targeted drugs and immunotherapy for glioma to clarify future directions.
Collapse
Affiliation(s)
- Yuekun Wang
- Department of Neurosurgery, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Shenglan Li
- Department of Neuro‐oncology, Cancer Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Yichen Peng
- Department of Neuro‐oncology, Cancer Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Wenbin Ma
- Department of Neurosurgery, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yu Wang
- Department of Neurosurgery, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Wenbin Li
- Department of Neuro‐oncology, Cancer Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
43
|
White K, Connor K, Meylan M, Bougoüin A, Salvucci M, Bielle F, O'Farrell AC, Sweeney K, Weng L, Bergers G, Dicker P, Ashley DM, Lipp ES, Low JT, Zhao J, Wen P, Prins R, Verreault M, Idbaih A, Biswas A, Prehn JHM, Lambrechts D, Arijs I, Lodi F, Dilcan G, Lamfers M, Leenstra S, Fabro F, Ntafoulis I, Kros JM, Cryan J, Brett F, Quissac E, Beausang A, MacNally S, O'Halloran P, Clerkin J, Bacon O, Kremer A, Chi Yen RT, Varn FS, Verhaak RGW, Sautès-Fridman C, Fridman WH, Byrne AT. Identification, validation and biological characterisation of novel glioblastoma tumour microenvironment subtypes: implications for precision immunotherapy. Ann Oncol 2023; 34:300-314. [PMID: 36494005 DOI: 10.1016/j.annonc.2022.11.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND New precision medicine therapies are urgently required for glioblastoma (GBM). However, to date, efforts to subtype patients based on molecular profiles have failed to direct treatment strategies. We hypothesised that interrogation of the GBM tumour microenvironment (TME) and identification of novel TME-specific subtypes could inform new precision immunotherapy treatment strategies. MATERIALS AND METHODS A refined and validated microenvironment cell population (MCP) counter method was applied to >800 GBM patient tumours (GBM-MCP-counter). Specifically, partition around medoids (PAM) clustering of GBM-MCP-counter scores in the GLIOTRAIN discovery cohort identified three novel patient clusters, uniquely characterised by TME composition, functional orientation markers and immune checkpoint proteins. Validation was carried out in three independent GBM-RNA-seq datasets. Neoantigen, mutational and gene ontology analysis identified mutations and uniquely altered pathways across subtypes. The longitudinal Glioma Longitudinal AnalySiS (GLASS) cohort and three immunotherapy clinical trial cohorts [treatment with neoadjuvant/adjuvant anti-programmed cell death protein 1 (PD-1) or PSVRIPO] were further interrogated to assess subtype alterations between primary and recurrent tumours and to assess the utility of TME classifiers as immunotherapy biomarkers. RESULTS TMEHigh tumours (30%) displayed elevated lymphocyte, myeloid cell immune checkpoint, programmed cell death protein 1 (PD-1) and cytotoxic T-lymphocyte-associated protein 4 transcripts. TMEHigh/mesenchymal+ patients featured tertiary lymphoid structures. TMEMed (46%) tumours were enriched for endothelial cell gene expression profiles and displayed heterogeneous immune populations. TMELow (24%) tumours were manifest as an 'immune-desert' group. TME subtype transitions upon recurrence were identified in the longitudinal GLASS cohort. Assessment of GBM immunotherapy trial datasets revealed that TMEHigh patients receiving neoadjuvant anti-PD-1 had significantly increased overall survival (P = 0.04). Moreover, TMEHigh patients treated with adjuvant anti-PD-1 or oncolytic virus (PVSRIPO) showed a trend towards improved survival. CONCLUSIONS We have established a novel TME-based classification system for application in intracranial malignancies. TME subtypes represent canonical 'termini a quo' (starting points) to support an improved precision immunotherapy treatment approach.
Collapse
Affiliation(s)
- K White
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - K Connor
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - M Meylan
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université de Paris, Paris, France
| | - A Bougoüin
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université de Paris, Paris, France
| | - M Salvucci
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - F Bielle
- Paris Brain Institute (ICM), CNRS UMR 7225, Inserm U 1127, UPMC-P6 UMR S 1127, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - A C O'Farrell
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - K Sweeney
- National Centre of Neurosurgery, Beaumont Hospital, Dublin, Ireland
| | - L Weng
- VIB-KU Leuven Center for Cancer Biology, Department of Oncology, Leuven, Belgium
| | - G Bergers
- VIB-KU Leuven Center for Cancer Biology, Department of Oncology, Leuven, Belgium
| | - P Dicker
- Epidemiology & Public Health, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - D M Ashley
- Duke Cancer Institute, Duke University, Durham, USA
| | - E S Lipp
- Duke Cancer Institute, Duke University, Durham, USA
| | - J T Low
- Duke Cancer Institute, Duke University, Durham, USA
| | - J Zhao
- Department of Systems Biology at Columbia University, New York, USA
| | - P Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, USA
| | - R Prins
- Department of Medical and Molecular Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, USA
| | - M Verreault
- Paris Brain Institute (ICM), CNRS UMR 7225, Inserm U 1127, UPMC-P6 UMR S 1127, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - A Idbaih
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Paris Brain Institute (ICM), AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, Paris, France
| | - A Biswas
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - J H M Prehn
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - D Lambrechts
- Laboratory for Translational Genetics, Department of Human Genetics, Leuven, Belgium; VIB Center for Cancer Biology, Leuven, Belgium
| | - I Arijs
- Laboratory for Translational Genetics, Department of Human Genetics, Leuven, Belgium; VIB Center for Cancer Biology, Leuven, Belgium
| | - F Lodi
- Laboratory for Translational Genetics, Department of Human Genetics, Leuven, Belgium; VIB Center for Cancer Biology, Leuven, Belgium
| | - G Dilcan
- Laboratory for Translational Genetics, Department of Human Genetics, Leuven, Belgium; VIB Center for Cancer Biology, Leuven, Belgium
| | - M Lamfers
- Department of Neurosurgery, Brain Tumor Center, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - S Leenstra
- Department of Neurosurgery, Brain Tumor Center, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - F Fabro
- Department of Neurosurgery, Brain Tumor Center, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - I Ntafoulis
- Department of Neurosurgery, Brain Tumor Center, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - J M Kros
- Department of Pathology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - J Cryan
- Department of Neuropathology, Beaumont Hospital, Dublin, Ireland
| | - F Brett
- Department of Neuropathology, Beaumont Hospital, Dublin, Ireland
| | - E Quissac
- Paris Brain Institute (ICM), CNRS UMR 7225, Inserm U 1127, UPMC-P6 UMR S 1127, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - A Beausang
- Department of Neuropathology, Beaumont Hospital, Dublin, Ireland
| | - S MacNally
- National Centre of Neurosurgery, Beaumont Hospital, Dublin, Ireland
| | - P O'Halloran
- National Centre of Neurosurgery, Beaumont Hospital, Dublin, Ireland
| | - J Clerkin
- National Centre of Neurosurgery, Beaumont Hospital, Dublin, Ireland
| | - O Bacon
- Department of Neuropathology, Beaumont Hospital, Dublin, Ireland
| | - A Kremer
- Information Technology for Translational Medicine (ITTM), Luxembourg, Luxembourg
| | - R T Chi Yen
- Information Technology for Translational Medicine (ITTM), Luxembourg, Luxembourg
| | - F S Varn
- The Jackson Laboratory for Genomic Medicine, Farmington, USA
| | - R G W Verhaak
- The Jackson Laboratory for Genomic Medicine, Farmington, USA; Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University Medical Center, Amsterdam, the Netherlands
| | - C Sautès-Fridman
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université de Paris, Paris, France
| | - W H Fridman
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université de Paris, Paris, France
| | - A T Byrne
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland.
| |
Collapse
|
44
|
Gatto L, Franceschi E, Tosoni A, Di Nunno V, Bartolini S, Brandes AA. Glioblastoma treatment slowly moves toward change: novel druggable targets and translational horizons in 2022. Expert Opin Drug Discov 2023; 18:269-286. [PMID: 36718723 DOI: 10.1080/17460441.2023.2174097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
INTRODUCTION Glioblastoma (GBM) is the most common primary brain tumor in adults. GBM treatment options have been the same for the past 30 years and have only modestly extended survival, despite aggressive multimodal treatments. The progressively better knowledge of GBM biology and a comprehensive analysis of its genomic profile have elucidated GBM heterogeneity, contributing to a more effective molecular classification and to the development of innovative targeted therapeutic approaches. AREAS COVERED This article reports all the noteworthy innovations for immunotherapy and targeted therapy, providing insights into the current advances in trial designs, including combination therapies with immuno-oncology agents and target combinations. EXPERT OPINION GBM molecular heterogeneity and brain anatomical characteristics critically restrain drug effectiveness. Nevertheless, stimulating insights for future research and drug development come from innovative treatment strategies for GBM, such as multi-specific 'off-the-shelf' CAR-T therapy, oncolytic viral therapy and autologous dendritic cell vaccination. Disappointing results from targeted therapies-clinical trials are mainly due to complex interferences between signaling pathways and biological processes leading to drug resistance: hence, it is imperative in the future to develop combinatorial approaches and multimodal therapies.
Collapse
Affiliation(s)
- Lidia Gatto
- Department of Oncology, AUSL Bologna, Bologna, Italy
| | - Enrico Franceschi
- Nervous System Medical Oncology Department, IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Bologna, Italy
| | - Alicia Tosoni
- Nervous System Medical Oncology Department, IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Bologna, Italy
| | | | - Stefania Bartolini
- Nervous System Medical Oncology Department, IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Bologna, Italy
| | - Alba Ariela Brandes
- Nervous System Medical Oncology Department, IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Bologna, Italy
| |
Collapse
|
45
|
Bian Y, Wang Y, Chen X, Zhang Y, Xiong S, Su D. Image‐guided diagnosis and treatment of glioblastoma. VIEW 2023. [DOI: 10.1002/viw.20220069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Yongning Bian
- Center of Excellence for Environmental Safety and Biological Effects Beijing Key Laboratory for Green Catalysis and Separation Department of Chemistry Beijing University of Technology Beijing P. R. China
| | - Yaling Wang
- Center of Excellence for Environmental Safety and Biological Effects Beijing Key Laboratory for Green Catalysis and Separation Department of Chemistry Beijing University of Technology Beijing P. R. China
| | - Xueqian Chen
- Center of Excellence for Environmental Safety and Biological Effects Beijing Key Laboratory for Green Catalysis and Separation Department of Chemistry Beijing University of Technology Beijing P. R. China
| | - Yong Zhang
- Center of Excellence for Environmental Safety and Biological Effects Beijing Key Laboratory for Green Catalysis and Separation Department of Chemistry Beijing University of Technology Beijing P. R. China
| | - Shaoqing Xiong
- Center of Excellence for Environmental Safety and Biological Effects Beijing Key Laboratory for Green Catalysis and Separation Department of Chemistry Beijing University of Technology Beijing P. R. China
| | - Dongdong Su
- Center of Excellence for Environmental Safety and Biological Effects Beijing Key Laboratory for Green Catalysis and Separation Department of Chemistry Beijing University of Technology Beijing P. R. China
| |
Collapse
|
46
|
Reprogramming systemic and local immune function to empower immunotherapy against glioblastoma. Nat Commun 2023; 14:435. [PMID: 36702831 PMCID: PMC9880004 DOI: 10.1038/s41467-023-35957-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 01/10/2023] [Indexed: 01/27/2023] Open
Abstract
The limited benefits of immunotherapy against glioblastoma (GBM) is closely related to the paucity of T cells in brain tumor bed. Both systemic and local immunosuppression contribute to the deficiency of tumor-infiltrating T cells. However, the current studies focus heavily on the local immunosuppressive tumor microenvironment but not on the co-existence of systemic immunosuppression. Here, we develop a nanostructure named Nano-reshaper to co-encapsulate lymphopenia alleviating agent cannabidiol and lymphocyte recruiting cytokine LIGHT. The results show that Nano-reshaper increases the number of systemic T cells and improves local T-cell recruitment condition, thus greatly increasing T-cell infiltration. When combined with immune checkpoint inhibitor, this therapeutic modality achieves 83.3% long-term survivors without recurrence in GBM models in male mice. Collectively, this work unveils that simultaneous reprogramming of systemic and local immune function is critical for T-cell based immunotherapy and provides a clinically translatable option for combating brain tumors.
Collapse
|
47
|
Lu ZG, Shen J, Yang J, Wang JW, Zhao RC, Zhang TL, Guo J, Zhang X. Nucleic acid drug vectors for diagnosis and treatment of brain diseases. Signal Transduct Target Ther 2023; 8:39. [PMID: 36650130 PMCID: PMC9844208 DOI: 10.1038/s41392-022-01298-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/08/2022] [Accepted: 12/21/2022] [Indexed: 01/18/2023] Open
Abstract
Nucleic acid drugs have the advantages of rich target selection, simple in design, good and enduring effect. They have been demonstrated to have irreplaceable superiority in brain disease treatment, while vectors are a decisive factor in therapeutic efficacy. Strict physiological barriers, such as degradation and clearance in circulation, blood-brain barrier, cellular uptake, endosome/lysosome barriers, release, obstruct the delivery of nucleic acid drugs to the brain by the vectors. Nucleic acid drugs against a single target are inefficient in treating brain diseases of complex pathogenesis. Differences between individual patients lead to severe uncertainties in brain disease treatment with nucleic acid drugs. In this Review, we briefly summarize the classification of nucleic acid drugs. Next, we discuss physiological barriers during drug delivery and universal coping strategies and introduce the application methods of these universal strategies to nucleic acid drug vectors. Subsequently, we explore nucleic acid drug-based multidrug regimens for the combination treatment of brain diseases and the construction of the corresponding vectors. In the following, we address the feasibility of patient stratification and personalized therapy through diagnostic information from medical imaging and the manner of introducing contrast agents into vectors. Finally, we take a perspective on the future feasibility and remaining challenges of vector-based integrated diagnosis and gene therapy for brain diseases.
Collapse
Affiliation(s)
- Zhi-Guo Lu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.
| | - Jie Shen
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Jun Yang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Jing-Wen Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Rui-Chen Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Tian-Lu Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Jing Guo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Xin Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.
| |
Collapse
|
48
|
Omuro A, Brandes AA, Carpentier AF, Idbaih A, Reardon DA, Cloughesy T, Sumrall A, Baehring J, van den Bent M, Bähr O, Lombardi G, Mulholland P, Tabatabai G, Lassen U, Sepulveda JM, Khasraw M, Vauleon E, Muragaki Y, Di Giacomo AM, Butowski N, Roth P, Qian X, Fu AZ, Liu Y, Potter V, Chalamandaris AG, Tatsuoka K, Lim M, Weller M. Radiotherapy combined with nivolumab or temozolomide for newly diagnosed glioblastoma with unmethylated MGMT promoter: An international randomized phase III trial. Neuro Oncol 2023; 25:123-134. [PMID: 35419607 PMCID: PMC9825306 DOI: 10.1093/neuonc/noac099] [Citation(s) in RCA: 260] [Impact Index Per Article: 130.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Addition of temozolomide (TMZ) to radiotherapy (RT) improves overall survival (OS) in patients with glioblastoma (GBM), but previous studies suggest that patients with tumors harboring an unmethylated MGMT promoter derive minimal benefit. The aim of this open-label, phase III CheckMate 498 study was to evaluate the efficacy of nivolumab (NIVO) + RT compared with TMZ + RT in newly diagnosed GBM with unmethylated MGMT promoter. METHODS Patients were randomized 1:1 to standard RT (60 Gy) + NIVO (240 mg every 2 weeks for eight cycles, then 480 mg every 4 weeks) or RT + TMZ (75 mg/m2 daily during RT and 150-200 mg/m2/day 5/28 days during maintenance). The primary endpoint was OS. RESULTS A total of 560 patients were randomized, 280 to each arm. Median OS (mOS) was 13.4 months (95% CI, 12.6 to 14.3) with NIVO + RT and 14.9 months (95% CI, 13.3 to 16.1) with TMZ + RT (hazard ratio [HR], 1.31; 95% CI, 1.09 to 1.58; P = .0037). Median progression-free survival was 6.0 months (95% CI, 5.7 to 6.2) with NIVO + RT and 6.2 months (95% CI, 5.9 to 6.7) with TMZ + RT (HR, 1.38; 95% CI, 1.15 to 1.65). Response rates were 7.8% (9/116) with NIVO + RT and 7.2% (8/111) with TMZ + RT; grade 3/4 treatment-related adverse event (TRAE) rates were 21.9% and 25.1%, and any-grade serious TRAE rates were 17.3% and 7.6%, respectively. CONCLUSIONS The study did not meet the primary endpoint of improved OS; TMZ + RT demonstrated a longer mOS than NIVO + RT. No new safety signals were detected with NIVO in this study. The difference between the study treatment arms is consistent with the use of TMZ + RT as the standard of care for GBM.ClinicalTrials.gov NCT02617589.
Collapse
Affiliation(s)
- Antonio Omuro
- Corresponding Author: Antonio Omuro, MD, Yale Cancer Center, 15 York Street, New Haven, CT 06520, USA ()
| | - Alba A Brandes
- Present affiliation: IRCCS Istituto Scienze Neurologiche, Bologna, Italy; Nervous System Medical Oncology Department, Bologna, Italy
| | - Antoine F Carpentier
- Université de Paris, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint-Louis, Service de Neurologie, Paris, France
| | - Ahmed Idbaih
- Sorbonne Université, Institut du Cerveau – Paris Brain Institute – ICM, Inserm, CNRS, AP-HP, Hôpital Universitaire La Pitié Salpêtrière, DMU Neurosciences, Paris, France
| | - David A Reardon
- Dana-Farber Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Timothy Cloughesy
- Department of Neurology, University of California, Los Angeles, California, USA
| | | | - Joachim Baehring
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Martin van den Bent
- Brain Tumor Center at Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Oliver Bähr
- Dr. Senckenberg Institute of Neurooncology, Goethe University Hospital, Frankfurt, Germany
| | - Giuseppe Lombardi
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | | | - Ghazaleh Tabatabai
- Department of Neurology and Interdisciplinary Neuro-Oncology, Hertie Institute for Clinical Brain Research, Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tuebingen, Eberhard Karls University, Tuebingen, Germany
| | - Ulrik Lassen
- Department of Oncology, Rigshospitalet, Copenhagen, Denmark
| | | | - Mustafa Khasraw
- The University of Sydney, Sydney, New South Wales, Australia
| | | | | | | | - Nicholas Butowski
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Patrick Roth
- Department of Neurology and Brain Tumor Center, University Hospital and University of Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Di Giacomo AM, Mair MJ, Ceccarelli M, Anichini A, Ibrahim R, Weller M, Lahn M, Eggermont AMM, Fox B, Maio M. Immunotherapy for brain metastases and primary brain tumors. Eur J Cancer 2023; 179:113-120. [PMID: 36521332 DOI: 10.1016/j.ejca.2022.11.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/26/2022]
Abstract
During the V Siena Immuno-Oncology (IO) Think Tank meeting in 2021, conditions were discussed which favor immunotherapy responses in either primary or secondary brain malignancies. Core elements of these discussions have been reinforced by important publications in 2021 and 2022. In primary brain tumors (such as glioblastoma) current immunotherapies have failed to deliver meaningful clinical benefit. By contrast, brain metastases frequently respond to current immunotherapies. The main differences between both conditions seem to be related to intrinsic factors (e.g., type of driver mutations) and more importantly extrinsic factors, such as the blood brain barrier and immune suppressive microenvironment (e.g., T cell counts, functional differences in T cells, myeloid cells). Future therapeutic interventions may therefore focus on rebalancing the immune cell population in a way which enables the host to respond to current or future immunotherapies.
Collapse
Affiliation(s)
- Anna M Di Giacomo
- University of Siena and Center for Immuno-Oncology, University Hospital of Siena, V. le Bracci, 16, Siena, Italy.
| | - Maximilian J Mair
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria.
| | | | - Andrea Anichini
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| | - Ramy Ibrahim
- Parker Institute for Cancer Immunotherapy, 1 Letterman Drive, D3500, San Francisco, CA, USA.
| | - Michael Weller
- Department of Neurology and Brain Tumor Center, University Hospital and University of Zurich, Frauenklinikstrasse 26, CH-8091 Zurich, Switzerland.
| | - Michael Lahn
- IOnctura SA, Avenue Secheron 15, Geneva, Switzerland.
| | - Alexander M M Eggermont
- Comprehensive Cancer Center München of the Technical University München and the Maximilian University, München, Germany; Princess Máxima Center and the University Medical Center Utrecht, Heidelberglaan 25, 3584 Utrecht, the Netherlands.
| | - Bernard Fox
- Earle A. Chiles Research Institute at the Robert W. Franz Cancer Center, 4805 NE Glisan St. Suite 2N35 Portland, OR 97213, USA.
| | - Michele Maio
- University of Siena and Center for Immuno-Oncology, University Hospital of Siena, V. le Bracci, 16, Siena, Italy.
| |
Collapse
|
50
|
Zhou X, Jin G, Zhang J, Liu F. Recruitment mechanisms and therapeutic implications of tumor-associated macrophages in the glioma microenvironment. Front Immunol 2023; 14:1067641. [PMID: 37153567 PMCID: PMC10157099 DOI: 10.3389/fimmu.2023.1067641] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
As one of the main components of the glioma immune microenvironment, glioma-associated macrophages (GAMs) have increasingly drawn research interest. Primarily comprised of resident microglias and peripherally derived mononuclear macrophages, GAMs are influential in a variety of activities such as tumor cell resistance to chemotherapy and radiotherapy as well as facilitation of glioma pathogenesis. In addition to in-depth research of GAM polarization, study of mechanisms relevant in tumor microenvironment recruitment has gradually increased. Suppression of GAMs at their source is likely to produce superior therapeutic outcomes. Here, we summarize the origin and recruitment mechanism of GAMs, as well as the therapeutic implications of GAM inhibition, to facilitate future glioma-related research and formulation of more effective treatment strategies.
Collapse
Affiliation(s)
| | | | | | - Fusheng Liu
- *Correspondence: Junwen Zhang, ; Fusheng Liu,
| |
Collapse
|