1
|
Ji J, Gong C, Lu G, Zhang J, Liu B, Liu X, Lin J, Wang P, Thomas BB, Humayun MS, Zhou Q. Potential of ultrasound stimulation and sonogenetics in vision restoration: a narrative review. Neural Regen Res 2025; 20:3501-3516. [PMID: 39688549 PMCID: PMC11974640 DOI: 10.4103/nrr.nrr-d-24-00841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 11/04/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Vision restoration presents a considerable challenge in the realm of regenerative medicine, while recent progress in ultrasound stimulation has displayed potential as a non-invasive therapeutic approach. This narrative review offers a comprehensive overview of current research on ultrasound-stimulated neuromodulation, emphasizing its potential as a treatment modality for various nerve injuries. By examining of the efficacy of different types of ultrasound stimulation in modulating peripheral and optic nerves, we can delve into their underlying molecular mechanisms. Furthermore, the review underscores the potential of sonogenetics in vision restoration, which involves leveraging pharmacological and genetic manipulations to inhibit or enhance the expression of related mechanosensitive channels, thereby modulating the strength of the ultrasound response. We also address how methods such as viral transcription can be utilized to render specific neurons or organs highly responsive to ultrasound, leading to significantly improved therapeutic outcomes.
Collapse
Affiliation(s)
- Jie Ji
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Chen Gong
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
- USC Roski Eye Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Gengxi Lu
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
- USC Roski Eye Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Junhang Zhang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
- USC Roski Eye Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Baoqiang Liu
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Xunan Liu
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Junhao Lin
- Thomas Lord Department of Computer Science, University of Southern California, Los Angeles, CA, USA
| | | | - Biju B. Thomas
- USC Roski Eye Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Mark S. Humayun
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
- USC Roski Eye Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Qifa Zhou
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
- USC Roski Eye Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
2
|
Knight Z, Ruiz A, Elies J. Piezoelectric Nanomaterials for Cancer Therapy: Current Research and Future Perspectives on Glioblastoma. J Funct Biomater 2025; 16:114. [PMID: 40278222 PMCID: PMC12027790 DOI: 10.3390/jfb16040114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/11/2025] [Accepted: 03/21/2025] [Indexed: 04/26/2025] Open
Abstract
Cancer significantly impacts human quality of life and life expectancy, with an estimated 20 million new cases and 10 million cancer-related deaths worldwide every year. Standard treatments including chemotherapy, radiotherapy, and surgical removal, for aggressive cancers, such as glioblastoma, are often ineffective in late stages. Glioblastoma, for example, is known for its poor prognosis post-diagnosis, with a median survival time of approximately 15 months. Novel therapies using local electric fields have shown anti-tumour effects in glioblastoma by disrupting mitotic spindle assembly and inhibiting cell growth. However, constant application poses risks like patient burns. Wireless stimulation via piezoelectric nanomaterials offers a safer alternative, requiring ultrasound activation to induce therapeutic effects, such as altering voltage-gated ion channel conductance by depolarising membrane potentials. This review highlights the piezoelectric mechanism, drug delivery, ion channel activation, and current technologies in cancer therapy, emphasising the need for further research to address limitations like biocompatibility in whole systems. The goal is to underscore these areas to inspire new avenues of research and overcome barriers to developing piezoelectric nanoparticle-based cancer therapies.
Collapse
Affiliation(s)
- Zayne Knight
- Centre for Pharmaceutical Engineering Science, School of Pharmacy, University of Bradford, Bradford BD7 1DP, UK
| | - Amalia Ruiz
- Institute of Cancer Therapeutics (ICT), Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK
| | - Jacobo Elies
- Institute of Cancer Therapeutics (ICT), Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK
| |
Collapse
|
3
|
Hou X, Liu L, Sun L. Precise modulation of cell activity using sono-responsive nano-transducers. Biomaterials 2025; 314:122857. [PMID: 39357155 DOI: 10.1016/j.biomaterials.2024.122857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/09/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
Ultrasound, as a form of mechanical energy, possesses a distinctive ability to deeply penetrate tissues, allowing for non-invasive manipulation of cellular activities. Utilizing nanomaterials in conjunction with ultrasound has enabled simple, efficient, spatiotemporally controllable, and minimally invasive regulation of cellular activities with ultrasound-generated electric, optical, acoustic, or chemical stimuli at the localized nanomaterials interface. This technology allows for precise and localized regulation of cellular activities, which is essential for studying and understanding complex biological processes, and also provides new opportunities for research, diagnostics, and therapeutics in the fields of biology and medicine. In this article, we review the state-of-the-art and ongoing developments in nanomaterials-enabled ultrasound cellular modulation, highlighting potential applications and advancements achieved through the integration of sono-responsive nanomaterials with ultrasound.
Collapse
Affiliation(s)
- Xuandi Hou
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, 999077, PR China
| | - Langzhou Liu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, 999077, PR China
| | - Lei Sun
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, 999077, PR China.
| |
Collapse
|
4
|
Ediriweera GR, Sivaram AJ, Cowin G, Brown ML, McAlary L, Lum JS, Fletcher NL, Robinson L, Simpson JD, Chen L, Wasielewska JM, Byrne E, Finnie JW, Manavis J, White AR, Yerbury JJ, Thurecht KJ, Vine KL. Lipid nanoparticles and transcranial focused ultrasound enhance the delivery of SOD1 antisense oligonucleotides to the murine brain for ALS therapy. J Control Release 2025; 378:221-235. [PMID: 39645085 DOI: 10.1016/j.jconrel.2024.11.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease with extremely limited therapeutic options. One key pathological feature of ALS is the abnormal accumulation of misfolded proteins within motor neurons. Hence, reducing the burden of misfolded protein has emerged as a promising therapeutic approach. Antisense oligonucleotides (ASOs) have the potential to effectively silence proteins with gain-of-function mutations, such as superoxide dismutase 1 (SOD1). However, ASO delivery to the central nervous system (CNS) is hindered by poor blood-brain barrier (BBB) penetration and the invasiveness of intrathecal administration. In the current study, we demonstrate effective systemic delivery of a next-generation SOD1 ASO (Tofersen) into the brain of wildtype and G93A-SOD1 transgenic C57BL/6 mice using calcium phosphate lipid nanoparticles (CaP lipid NPs). We show that transcranial focused ultrasound (FUS) with intravenously administered microbubbles can significantly enhance ASO-loaded nanoparticle delivery into the mouse brain. Magnetic resonance imaging (MRI) and immunohistological analysis showed reduced SOD1 expression in the FUS-exposed brain regions and increased motor neuron count in the spinal cord of treated mice suggesting decreased motor neuron degeneration. Importantly, the BBB opening was transient without evidence of structural changes, neuroinflammation or damage to the brain tissue, indicating that the treatment is well tolerated. Overall, our results highlight FUS-assisted nanoparticle delivery of ASOs as a promising non-invasive therapeutic strategy for the treatment of ALS and CNS diseases more broadly.
Collapse
Affiliation(s)
- Gayathri R Ediriweera
- Centre for Advanced Imaging and Australian Institute for Bioengineering & Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Amal J Sivaram
- Centre for Advanced Imaging and Australian Institute for Bioengineering & Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Gary Cowin
- Centre for Advanced Imaging and Australian Institute for Bioengineering & Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia; National Imaging Facility, Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Mikayla L Brown
- School of Chemistry and Molecular Bioscience, Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Luke McAlary
- School of Chemistry and Molecular Bioscience, Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Jeremy S Lum
- School of Chemistry and Molecular Bioscience, Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia; School of Medical, Indigenous and Health Sciences, Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Nicholas L Fletcher
- Centre for Advanced Imaging and Australian Institute for Bioengineering & Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Liam Robinson
- School of Chemistry and Molecular Bioscience, Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Joshua D Simpson
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Liyu Chen
- Queensland Brain Institute (QBI), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Joanna M Wasielewska
- Brain and Mental Health Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ella Byrne
- School of Chemistry and Molecular Bioscience, Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - John W Finnie
- Faculty of Health and Medical Sciences, School of Biomedicine, University of Adelaide, Adelaide, SA 5000, Australia
| | - Jim Manavis
- Faculty of Health and Medical Sciences, School of Biomedicine, University of Adelaide, Adelaide, SA 5000, Australia
| | - Anthony R White
- Brain and Mental Health Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Justin J Yerbury
- School of Chemistry and Molecular Bioscience, Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Kristofer J Thurecht
- Centre for Advanced Imaging and Australian Institute for Bioengineering & Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Kara L Vine
- School of Chemistry and Molecular Bioscience, Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia.
| |
Collapse
|
5
|
Bansal A, Bulwer B, von Krüchten R, Singh J, Rehan R, Doost A. Role of Ultrasound-Based Therapies in Cardiovascular Diseases. STRUCTURAL HEART : THE JOURNAL OF THE HEART TEAM 2025; 9:100349. [PMID: 40124079 PMCID: PMC11925036 DOI: 10.1016/j.shj.2024.100349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/10/2024] [Accepted: 06/20/2024] [Indexed: 03/25/2025]
Abstract
Cardiovascular diseases (CVDs) remain the leading cause of morbidity and mortality globally, placing an immense burden on health care costs worldwide. The emergence of therapeutic ultrasound-based therapies in the CVD management represents a promising innovative strategy beyond current established approaches. This paper explores three distinct modalities of ultrasound-based therapies-high-intensity focused ultrasound, extracorporeal shock wave therapy, and low-intensity pulsed ultrasound-each characterized by unique acoustic parameters and mechanisms of action tailored to specific therapeutic outcomes. High-intensity focused ultrasound was shown to be beneficial as an adjunct in the treatment of myocardial infarction and arrhythmias. It has also been investigated for the in vivo treatment of resistant hypertension, symptomatic aortic valve stenosis, arterial stenosis, tumors, hypertrophic cardiomyopathy, and external cardiac pacing. Extracorporeal shock wave therapy was shown to be beneficial in the treatment of chronic refractory angina pectoris, while low-intensity pulsed ultrasound was shown to be beneficial in dissolving blood clots and improving blood flow in the treatment of acute pulmonary embolism, despite its association with an increased risk of bleeding. Ultrasound-based therapies are, therefore, a potential adjunct and comparatively safe adjuncts for managing challenging CVD cases. Further investigations are essential to validate their long-term effectiveness and safety, particularly for high-risk individuals susceptible to postprocedural complications.
Collapse
Affiliation(s)
- Amit Bansal
- Bergen COVID-19 Research group and Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Infectious Diseases, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Bernard Bulwer
- Cardiovascular Imaging Core Laboratory, Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston
| | - Ricarda von Krüchten
- Stanford University, School of Medicine, Stanford, United States
- University of Freiburg, Medical Center, Freiburg, Germany
| | - Jagkirat Singh
- Department of Neurology, Creighton University, School of Medicine, Omaha
| | - Rajan Rehan
- University of Sydney Medical School, Sydney, Australia
| | - Ata Doost
- Macquarie University, Faculty of Medicine and Health Sciences and Macquarie University Hospital, Sydney, Australia
| |
Collapse
|
6
|
Utpal BK, Roy SC, Zehravi M, Sweilam SH, Raja AD, Haque MA, Nayak C, Balakrishnan S, Singh LP, Panigrahi S, Alshehri MA, Rab SO, Minhaj NS, Emran TB. Polyphenols as Wnt/β-catenin pathway modulators: A promising strategy in clinical neurodegeneration. Animal Model Exp Med 2025; 8:266-286. [PMID: 39808166 PMCID: PMC11871115 DOI: 10.1002/ame2.12525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/18/2024] [Indexed: 01/16/2025] Open
Abstract
Polyphenols, a diverse group of naturally occurring compounds found in plants, have garnered significant attention for their potential therapeutic properties in treating neurodegenerative diseases (NDs). The Wnt/β-catenin (WβC) signaling pathway, a crucial player in neurogenesis, neuronal survival, and synaptic plasticity, is involved in several cellular mechanisms related to NDs. Dysregulation of this pathway is a hallmark in the development of various NDs. This study explores multiple polyphenolic compounds, such as flavonoids, stilbenes, lignans, and phenolic acids, and their potential to protect the nervous system. It provides a comprehensive analysis of their effects on the WβC pathway, elucidating their modes of action. The study highlights the dual function of polyphenols in regulating and protecting the nervous system, providing reassurance about the research benefits. This review provides a comprehensive analysis of the results obtained from both in vitro studies and in vivo research, shedding light on how these substances influence the various components of the pathway. The focus is mainly on the molecular mechanisms that allow polyphenols to reduce oxidative stress, inflammation, and apoptotic processes, ultimately improving the function and survival of neurons. This study aims to offer a thorough understanding of the potential of polyphenols in targeting the WβC signaling pathway, which could lead to the development of innovative therapeutic options for NDs.
Collapse
Affiliation(s)
- Biswajit Kumar Utpal
- Department of Pharmacy, Faculty of Health and Life SciencesDaffodil International UniversityDhakaBangladesh
| | - Sajib Chandra Roy
- Department of Pharmacy, Faculty of PharmacyUniversity of DhakaDhakaBangladesh
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry and PharmacyBuraydah Private CollegesBuraydahSaudi Arabia
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of PharmacyPrince Sattam Bin Abdulaziz UniversityAl‐KharjSaudi Arabia
- Department of Pharmacognosy, Faculty of PharmacyEgyptian Russian UniversityCairoEgypt
| | - A. Dinesh Raja
- Department of PharmaceuticsKMCH College of PharmacyCoimbatoreIndia
| | - M. Akiful Haque
- Department of Pharmaceutical Analysis, School of Pharmacy, Anurag University, HyderabadIndia
| | - Chandan Nayak
- Department of Pharmaceutics, School of PharmacyArka Jain UniversityJharkhandIndia
| | - Senthilkumar Balakrishnan
- Department of PharmaceuticsJKKMMRF‐Annai JKK Sampoorani Ammal College of PharmacyKomarapalayamNamakkalIndia
| | - Laliteshwar Pratap Singh
- Department of Pharmaceutical Chemistry, Narayan Institute of PharmacyGopal Narayan Singh UniversitySasaramIndia
| | - Saswati Panigrahi
- Department of Pharmaceutical ChemistrySt. John Institute of Pharmacy and ResearchVevoorPalgharIndia
| | | | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical ScienceKing Khalid UniversityAbhaSaudi Arabia
| | - Najmus Sakib Minhaj
- Department of Pharmacy, Faculty of PharmacyUniversity of DhakaDhakaBangladesh
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Health and Life SciencesDaffodil International UniversityDhakaBangladesh
| |
Collapse
|
7
|
Fan CH, Yeh CK. Theranostic nanomaterials for intervention of the blood–brain barrier. THERANOSTICS NANOMATERIALS IN DRUG DELIVERY 2025:395-410. [DOI: 10.1016/b978-0-443-22044-9.00014-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
8
|
Xia F, Peng Y, Yue W, Luo M, Teng M, Chen CM, Pala S, Yu X, Ma Y, Acharya M, Arakawa R, Martin LW, Lin L. High sound pressure piezoelectric micromachined ultrasonic transducers using sputtered potassium sodium niobate. MICROSYSTEMS & NANOENGINEERING 2024; 10:205. [PMID: 39725681 DOI: 10.1038/s41378-024-00841-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/05/2024] [Accepted: 10/28/2024] [Indexed: 12/28/2024]
Abstract
This work presents air-coupled piezoelectric micromachined ultrasonic transducers (pMUTs) with high sound pressure level (SPL) under low-driving voltages by utilizing sputtered potassium sodium niobate K0.34Na0.66NbO3 (KNN) films. A prototype single KNN pMUT has been tested to show a resonant frequency at 106.3 kHz under 4 Vp-p with outstanding characteristics: (1) a large vibration amplitude of 3.74 μm/V, and (2) a high acoustic root mean square (RMS) sound pressure level of 105.5 dB/V at 10 cm, which is 5-10 times higher than those of AlN-based pMUTs at a similar frequency. There are various potential sensing and actuating applications, such as fingerprint sensing, touch point, and gesture recognition. In this work, we present demonstrations in three fields: haptics, loudspeakers, and rangefinders. For haptics, an array of 15 × 15 KNN pMUTs is used as a non-contact actuator to provide a focal pressure of around 160.3 dB RMS SPL at a distance of 15 mm. This represents the highest output pressure achieved by an airborne pMUT for haptic sensation on human palms. When used as a loudspeaker, a single pMUT element with a resonant frequency close to the audible range at 22.8 kHz is characterized. It is shown to be able to generate a uniform acoustic output with an amplitude modulation scheme. In the rangefinder application, pulse-echo measurements using a single pMUT element demonstrate good transceiving results, capable of detecting objects up to 2.82 m away. As such, this new class of high-SPL and low-driving-voltage pMUTs could be further extended to other applications requiring high acoustic pressure and a small form factor.
Collapse
Affiliation(s)
- Fan Xia
- Department of Mechanical Engineering, University of California, Berkeley, CA, 94720, USA
| | - Yande Peng
- Department of Mechanical Engineering, University of California, Berkeley, CA, 94720, USA
| | - Wei Yue
- Department of Mechanical Engineering, University of California, Berkeley, CA, 94720, USA
| | - Mingze Luo
- School of Electronic Science and Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Megan Teng
- Department of Mechanical Engineering, University of California, Berkeley, CA, 94720, USA
| | - Chun-Ming Chen
- Department of Mechanical Engineering, University of California, Berkeley, CA, 94720, USA
| | - Sedat Pala
- Department of Mechanical Engineering, University of California, Berkeley, CA, 94720, USA
| | - Xiaoyang Yu
- Bioengineering and Biomedical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Yuanzheng Ma
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Megha Acharya
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
| | - Ryuichi Arakawa
- Scientific Research Laboratory Div., Niterra Co., Ltd, Nagoya, 461-0005, Japan
| | - Lane W Martin
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
- Departments of Materials Science and NanoEngineering, Chemistry, and Physics and Astronomy and the Rice Advanced Materials Institute, Rice University, Houston, TX, 77005, USA
| | - Liwei Lin
- Department of Mechanical Engineering, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
9
|
Campisi BM, Costanzo R, Noto M, Cipollina GP, Marino S, DI Lorenzo G, Bonosi L, Brunasso L, Iacopino DG, Maugeri R. The role of MRgFUS in the treatment of neuropsychiatric disorders: a state of the art. J Neurosurg Sci 2024; 68:660-667. [PMID: 39101216 DOI: 10.23736/s0390-5616.24.06306-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
INTRODUCTION Magnetic resonance-guided focused ultrasound (MRgFUS) is a contemporary non-invasive ablative procedure that utilizes high- or low-intensity ultrasound, guided and monitored by magnetic resonance imaging (MRI). While MRgFUS has been established as an effective treatment for conditions like essential tremor and tremor-dominant Parkinson's disease, it has recently emerged as a safe and promising ablative minimally invasive procedure for the management of treatment-resistant psychiatric disorders. Indeed, despite the availability of various pharmacological and behavioral therapies, a subset of psychiatric patients remains refractory to conventional treatments. EVIDENCE ACQUISITION To assess the feasibility and safety of MRgFUS in psychiatric disorders, a comprehensive literature search in PubMed and Scopus databases was conducted, resulting in the inclusion of five relevant articles in this review. EVIDENCE SYNTHESIS While data on this innovative procedure are still limited, MRgFUS demonstrates potential as a safer and less invasive surgical technique for treating these disorders. CONCLUSIONS Continued research efforts and data validation are imperative to establish MRgFUS as an additional, minimally invasive procedure for treatment-resistant psychiatric patients in the near future.
Collapse
Affiliation(s)
- Benedetta M Campisi
- School of Medicine in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, Clinic of Neurosurgery, Paolo Giaccone University Hospital, University of Palermo, Palermo, Italy
| | - Roberta Costanzo
- School of Medicine in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, Clinic of Neurosurgery, Paolo Giaccone University Hospital, University of Palermo, Palermo, Italy -
| | - Manfredi Noto
- School of Medicine in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, Clinic of Neurosurgery, Paolo Giaccone University Hospital, University of Palermo, Palermo, Italy
| | - Giuseppe P Cipollina
- School of Medicine in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, Clinic of Neurosurgery, Paolo Giaccone University Hospital, University of Palermo, Palermo, Italy
| | - Silvia Marino
- Neurology Center Bonino Pulejo Messina IRCCS, Messina, Italy
| | | | - Lapo Bonosi
- School of Medicine in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, Clinic of Neurosurgery, Paolo Giaccone University Hospital, University of Palermo, Palermo, Italy
| | - Lara Brunasso
- School of Medicine in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, Clinic of Neurosurgery, Paolo Giaccone University Hospital, University of Palermo, Palermo, Italy
| | - Domenico G Iacopino
- School of Medicine in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, Clinic of Neurosurgery, Paolo Giaccone University Hospital, University of Palermo, Palermo, Italy
| | - Rosario Maugeri
- School of Medicine in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, Clinic of Neurosurgery, Paolo Giaccone University Hospital, University of Palermo, Palermo, Italy
| |
Collapse
|
10
|
Zhou H, Li F, Lin Z, Meng L, Chen D, Zhang Q, Niu L. Holographic Ultrasound Modulates Neural Activity in a 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine-Induced Mouse Model of Parkinson's Disease. RESEARCH (WASHINGTON, D.C.) 2024; 7:0516. [PMID: 39507404 PMCID: PMC11538569 DOI: 10.34133/research.0516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 11/08/2024]
Abstract
Ultrasound (US) has emerged as a noninvasive neurostimulation method for motor control in Parkinson's disease (PD). Previous in vivo US neuromodulation studies for PD were single-target stimulation. However, the motor symptoms of PD are linked with neural circuit dysfunction, and multi-target stimulation is conducted in clinical treatment for PD. Thus, in the present study, we achieved multi-target US stimulation using holographic lens transducer based on the Rayleigh-Sommerfeld diffraction integral and time-reversal methods. We demonstrated that holographic US stimulation of the bilateral dorsal striatum (DS) could improve the motor function in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD. The holographic US wave (fundamental frequency: 3 MHz, pulse repetition frequency: 500 Hz, duty cycle: 20%, tone-burst duration: 0.4 ms, sonication duration: 1 s, interstimulus interval: 4 s, spatial-peak temporal-average intensity: 180 mw/cm2) was delivered to the bilateral DS 20 min per day for consecutive 10 d after the last injection of MPTP. Immunohistochemical c-Fos staining demonstrated that holographic US significantly increased the c-Fos-positive neurons in the bilateral DS compared with the sham group (P = 0.003). Moreover, our results suggested that holographic US stimulation of the bilateral DS ameliorated motor dysfunction (P < 0.05) and protected the dopaminergic (DA) neurons (P < 0.001). The neuroprotective effect of holographic US was associated with the prevention of axon degeneration and the reinforcement of postsynaptic densities [growth associated protein-43 (P < 0.001), phosphorylated Akt (P = 0.001), β3-tubulin (P < 0.001), phosphorylated CRMP2 (P = 0.037), postsynaptic density (P = 0.023)]. These data suggested that holographic US-induced acoustic radiation force has the potential to achieve multi-target neuromodulation and could serve as a reliable tool for the treatment of PD.
Collapse
Affiliation(s)
- Hui Zhou
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, China.
- Tech X Academy,
Shenzhen Polytechnic University, Shenzhen, China
| | - Fei Li
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, China.
| | - Zhengrong Lin
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, China.
| | - Long Meng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, China.
| | - Dan Chen
- Institute of Ultrasonic Technology, Institute of Intelligent Manufacturing Technology,
Shenzhen Polytechnic University, Shenzhen, China
| | - Qingping Zhang
- School of Electronic and Communication Engineering,
Shenzhen Polytechnic University, Shenzhen, China
| | - Lili Niu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
11
|
Tang M, Guo JJ, Guo RX, Xu SJ, Lou Q, Hu QX, Li WY, Yu JB, Yao Q, Wang QW. Progress of research and application of non-pharmacologic intervention in Alzheimer's disease. J Alzheimers Dis 2024; 102:275-294. [PMID: 39573867 DOI: 10.1177/13872877241289396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease characterized by amyloid-β (Aβ) deposition and neurofibrillary tangles formed by high phosphorylation of tau protein. At present, drug therapy is the main strategy of AD treatment, but its effects are limited to delaying or alleviating AD. Recently, non-pharmacologic intervention has attracted more attention, and more studies have confirmed that non-pharmacologic intervention in AD can improve the patient's cognitive function and quality of life. This paper summarizes the current non-pharmacologic intervention in AD, to provide useful supplementary means for AD intervention.
Collapse
Affiliation(s)
- Min Tang
- Ningbo Rehabilitation Hospital, Ningbo, Zhejiang, China
| | - Jie-Jie Guo
- The First People's Hospital of Wenling, Taizhou, Zhejiang, China
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Rong-Xia Guo
- School of Teacher Education, Ningbo University, Ningbo, Zhejiang, China
| | - Shu-Jun Xu
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Qiong Lou
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Qiao-Xia Hu
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Wan-Yi Li
- Ningbo Rehabilitation Hospital, Ningbo, Zhejiang, China
| | - Jing-Bo Yu
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Qi Yao
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Qin-Wen Wang
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
12
|
Knowles JK, Warren AEL, Mohamed IS, Stafstrom CE, Koh HY, Samanta D, Shellhaas RA, Gupta G, Dixon‐Salazar T, Tran L, Bhatia S, McCabe JM, Patel AD, Grinspan ZM. Clinical trials for Lennox-Gastaut syndrome: Challenges and priorities. Ann Clin Transl Neurol 2024; 11:2818-2835. [PMID: 39440617 PMCID: PMC11572735 DOI: 10.1002/acn3.52211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 09/05/2024] [Indexed: 10/25/2024] Open
Abstract
OBJECTIVE Lennox-Gastaut syndrome (LGS) is a severe, childhood-onset epilepsy that is typically refractory to treatment. We surveyed the current landscape of LGS treatment, aiming to identify challenges to the development of efficacious therapies, and to articulate corresponding priorities toward clinical trials that improve outcomes. METHODS The LGS Special Interest Group of the Pediatric Epilepsy Research Consortium integrated evidence from the literature and expert opinion, into a narrative review. RESULTS We provide an overview of approved and emerging medical, dietary, surgical and neuromodulation approaches for LGS. We note that quality of care could be improved by standardizing LGS treatment based on expert consensus and empirical data. Whereas LGS natural history is incompletely understood, prospective studies and use of large retrospective datasets to understand LGS across the lifespan would enable clinical trials that address these dynamics. Recent discoveries related to LGS pathophysiology should enable development of disease-modifying therapies, which are currently lacking. Finally, clinical trials have focused chiefly on seizures involving "drops," but should incorporate additional patient-centered outcomes, using emerging measures adapted to people with LGS. INTERPRETATION Clinicians and researchers should enact these priorities, with the goal of patient-centered clinical trials that are tailored to LGS pathophysiology and natural history.
Collapse
Affiliation(s)
- Juliet K. Knowles
- Department of NeurologyStanford University School of MedicineStanfordCaliforniaUSA
| | - Aaron E. L. Warren
- Department of NeurosurgeryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | | | - Carl E. Stafstrom
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Hyun Yong Koh
- Department of Pediatrics, Section of Neurology and Developmental NeuroscienceBaylor College of MedicineHoustonTexasUSA
| | - Debopam Samanta
- Department of PediatricsUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Renée A. Shellhaas
- Department of NeurologyWashington University in St. LouisSt. LouisMissouriUSA
| | - Gita Gupta
- Department of PediatricsUniversity of MichiganAnn ArborMichiganUSA
| | | | - Linh Tran
- Jane and John Justin Institute for Mind HealthCook Children's Medical CenterFort WorthTexasUSA
| | - Sonal Bhatia
- Division of Pediatric NeurologyMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | | | - Anup D. Patel
- Department of PediatricsThe Ohio State University College of MedicineColumbusOhioUSA
- The Center for Clinical ExcellenceNationwide Children's HospitalColumbusOhioUSA
| | | |
Collapse
|
13
|
Zhao L, Xu K, Talyzina I, Shi J, Li S, Yang Y, Zhang S, Zheng J, Sobolevsky AI, Chen H, Cui J. Human TRPV4 engineering yields an ultrasound-sensitive actuator for sonogenetics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.16.618766. [PMID: 39464052 PMCID: PMC11507911 DOI: 10.1101/2024.10.16.618766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Sonogenetics offers non-invasive and cell-type specific modulation of cells genetically engineered to express ultrasound-sensitive actuators. Finding an ion channel to serve as sonogenetic actuator it critical for advancing this promising technique. Here, we show that ultrasound can activate human TRP channel hTRPV4. By screening different hTRPV4 variants, we identify a mutation F617L that increases mechano-sensitivity of this channel to ultrasound, while reduces its sensitivity to hypo-osmolarity, elevated temperature, and agonist. This altered sensitivity profile correlates with structural differences in hTRPV4-F617L compared to wild-type channels revealed by our cryo-electron microscopy analysis. We also show that hTRPV4-F617L can serve as a sonogenetic actuator for neuromodulation in freely moving mice. Our findings demonstrate the use of structure-guided mutagenesis to engineer ion channels with tailored properties of ideal sonogenetic actuators.
Collapse
|
14
|
Xu T, Zhang Y, Li D, Lai C, Wang S, Zhang S. Mechanosensitive Ion Channels Piezo1 and Piezo2 Mediate Motor Responses In Vivo During Transcranial Focused Ultrasound Stimulation of the Rodent Cerebral Motor Cortex. IEEE Trans Biomed Eng 2024; 71:2900-2910. [PMID: 38748529 DOI: 10.1109/tbme.2024.3401136] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
OBJECTIVE Transcranial focused ultrasound (tFUS) neuromodulation offers a noninvasive, safe, deep brain stimulation with high precision, presenting potential in understanding neural circuits and treating brain disorders. This in vivo study investigated the mechanism of tFUS in activating the opening of the mechanosensitive ion channels Piezo1 and Piezo2 in the mouse motor cortex to induce motor responses. METHODS Piezo1 and Piezo2 were knocked down separately in the mouse motor cortex, followed by EMG and motor cortex immunofluorescence comparisons before and after knockdown under tFUS stimulation. RESULTS The results demonstrated that the stimulation-induced motor response success rates in Piezo knockdown mice were lower compared to the control group (Piezo1 knockdown: 57.63% ± 14.62%, Piezo2 knockdown: 73.71% ± 13.10%, Control mice: 85.69% ± 10.23%). Both Piezo1 and Piezo2 knockdowns showed prolonged motor response times (Piezo1 knockdown: 0.62 ± 0.19 s, Piezo2 knockdown: 0.60 ± 0.13 s, Control mice: 0.44 ± 0.12 s) compared to controls. Additionally, Piezo knockdown animals subjected to tFUS showed reduced immunofluorescent c-Fos expression in the target area when measured in terms of cells per unit area compared to the control group. CONCLUSION This in vivo study confirms the pivotal role of Piezo channels in tFUS-induced neuromodulation, highlighting their influence on motor response efficacy and timing. SIGNIFICANCE This study provides insights into the mechanistic underpinnings of noninvasive brain stimulation techniques and opens avenues for developing targeted therapies for neural disorders.
Collapse
|
15
|
Wang M, Xie Z, Wang T, Dong S, Ma Z, Zhang X, Li X, Yuan Y. Low-intensity transcranial ultrasound stimulation improves memory behavior in an ADHD rat model by modulating cortical functional network connectivity. Neuroimage 2024; 299:120841. [PMID: 39244077 DOI: 10.1016/j.neuroimage.2024.120841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/09/2024] Open
Abstract
Working memory in attention deficit hyperactivity disorder (ADHD) is closely related to cortical functional network connectivity (CFNC), such as abnormal connections between the frontal, temporal, occipital cortices and with other brain regions. Low-intensity transcranial ultrasound stimulation (TUS) has the advantages of non-invasiveness, high spatial resolution, and high penetration depth and can improve ADHD memory behavior. However, how it modulates CFNC in ADHD and the CFNC mechanism that improves working memory behavior in ADHD remain unclear. In this study, we observed working memory impairment in ADHD rats, establishing a corresponding relationship between changes in CFNCs and the behavioral state during the working memory task. Specifically, we noted abnormalities in the information transmission and processing capabilities of CFNC in ADHD rats while performing working memory tasks. These abnormalities manifested in the network integration ability of specific areas, as well as the information flow and functional differentiation of CFNC. Furthermore, our findings indicate that TUS effectively enhances the working memory ability of ADHD rats by modulating information transmission, processing, and integration capabilities, along with adjusting the information flow and functional differentiation of CFNC. Additionally, we explain the CFNC mechanism through which TUS improves working memory in ADHD. In summary, these findings suggest that CFNCs are important in working memory behaviors in ADHD.
Collapse
Affiliation(s)
- Mengran Wang
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China; Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao 066004, China
| | - Zhenyu Xie
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China; Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao 066004, China
| | - Teng Wang
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China; Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao 066004, China
| | - Shuxun Dong
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China; Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao 066004, China
| | - Zhenfang Ma
- Department of Rehabilitation, Hebei General Hospital, Shijiazhuang 050000, China
| | - Xiangjian Zhang
- Department of Neurology, Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Xin Li
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China; Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao 066004, China.
| | - Yi Yuan
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China; Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao 066004, China.
| |
Collapse
|
16
|
Liu Z, Zhang H, Lu K, Chen L, Zhang Y, Xu Z, Zhou H, Sun J, Xu M, Ouyang Q, Thompson GJ, Yang Y, Su N, Cai X, Cao L, Zhao Y, Jiang L, Zheng Y, Zhang X. Low-intensity pulsed ultrasound modulates disease progression in the SOD1 G93A mouse model of amyotrophic lateral sclerosis. Cell Rep 2024; 43:114660. [PMID: 39180748 DOI: 10.1016/j.celrep.2024.114660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/01/2024] [Accepted: 08/05/2024] [Indexed: 08/26/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by the progressive loss of motor neurons in the brain and spinal cord, and there are no effective drug treatments. Low-intensity pulsed ultrasound (LIPUS) has garnered attention as a promising noninvasive neuromodulation method. In this study, we investigate its effects on the motor cortex and underlying mechanisms using the SOD1G93A mouse model of ALS. Our results show that LIPUS treatment delays disease onset and prolongs lifespan in ALS mice. LIPUS significantly increases cerebral blood flow in the motor cortex by preserving vascular endothelial cell integrity and increasing microvascular density, which may be mediated via the ion channel TRPV4. RNA sequencing analysis reveals that LIPUS substantially reduces the expression of genes associated with neuroinflammation. These findings suggest that LIPUS applied to the motor cortex may represent a potentially effective therapeutic tool for the treatment of ALS.
Collapse
Affiliation(s)
- Zihao Liu
- Department of Ultrasonography, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Huan Zhang
- Department of Ultrasonography, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Kaili Lu
- Department of Neurology, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Li Chen
- Department of Neurology, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Yueqi Zhang
- Department of Neurology, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Zhouwei Xu
- Department of Neurology, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Hongsheng Zhou
- Institute of Advanced Ultrasonic Technology, National Innovation Center par Excellence, Shanghai 201203, China
| | - Junfeng Sun
- Shanghai Med-X Engineering Research Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Mengyang Xu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Qi Ouyang
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Garth J Thompson
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Yi Yang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ni Su
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaojun Cai
- Department of Ultrasonography, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Li Cao
- Department of Neurology, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai 200233, China; Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai 200233, China
| | - Yuwu Zhao
- Department of Neurology, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Lixian Jiang
- Department of Ultrasonography, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai 200233, China.
| | - Yuanyi Zheng
- Department of Ultrasonography, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai 200233, China.
| | - Xiaojie Zhang
- Department of Neurology, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai 200233, China.
| |
Collapse
|
17
|
Guo Y, Lee H, Kim C, Park C, Yamamichi A, Chuntova P, Gallus M, Bernabeu MO, Okada H, Jo H, Arvanitis C. Ultrasound frequency-controlled microbubble dynamics in brain vessels regulate the enrichment of inflammatory pathways in the blood-brain barrier. Nat Commun 2024; 15:8021. [PMID: 39271721 PMCID: PMC11399249 DOI: 10.1038/s41467-024-52329-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
Microbubble-enhanced ultrasound provides a noninvasive physical method to locally overcome major obstacles to the accumulation of blood-borne therapeutics in the brain, posed by the blood-brain barrier (BBB). However, due to the highly nonlinear and coupled behavior of microbubble dynamics in brain vessels, the impact of microbubble resonant effects on BBB signaling and function remains undefined. Here, combined theoretical and prospective experimental investigations reveal that microbubble resonant effects in brain capillaries can control the enrichment of inflammatory pathways that are sensitive to wall shear stress and promote differential expression of a range of transcripts in the BBB, supporting the notion that microbubble dynamics exerted mechanical stress can be used to establish molecular, in addition to spatial, therapeutic windows to target brain diseases. Consistent with these findings, a robust increase in cytotoxic T-cell accumulation in brain tumors was observed, demonstrating the functional relevance and potential clinical significance of the observed immuno-mechano-biological responses.
Collapse
Affiliation(s)
- Yutong Guo
- Georgia Institute of Technology, Woodruff School of Mechanical Engineering, Atlanta, USA
- Stanford University, Department of Radiology, Stanford, USA
| | - Hohyun Lee
- Georgia Institute of Technology, Woodruff School of Mechanical Engineering, Atlanta, USA
| | - Chulyong Kim
- Georgia Institute of Technology, Woodruff School of Mechanical Engineering, Atlanta, USA
| | - Christian Park
- Georgia Institute of Technology and Emory University, Coulter Department of Biomedical Engineering, Atlanta, USA
| | - Akane Yamamichi
- University of California San Francisco, Department of Neurological Surgery, San Francisco, USA
| | - Pavlina Chuntova
- University of California San Francisco, Department of Neurological Surgery, San Francisco, USA
| | - Marco Gallus
- University of California San Francisco, Department of Neurological Surgery, San Francisco, USA
| | - Miguel O Bernabeu
- The University of Edinburgh, Centre for Medical Informatics, Usher Institute, Edinburgh, United Kingdom
- The University of Edinburgh, The Bayes Centre, Edinburgh, United Kingdom
| | - Hideho Okada
- University of California San Francisco, Department of Neurological Surgery, San Francisco, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, USA
| | - Hanjoong Jo
- Georgia Institute of Technology and Emory University, Coulter Department of Biomedical Engineering, Atlanta, USA
- Emory University, Department of Medicine, Atlanta, USA
| | - Costas Arvanitis
- Georgia Institute of Technology, Woodruff School of Mechanical Engineering, Atlanta, USA.
- Georgia Institute of Technology and Emory University, Coulter Department of Biomedical Engineering, Atlanta, USA.
| |
Collapse
|
18
|
Wang L, Du J, Liu Q, Wang D, Wang W, Lei M, Li K, Li Y, Hao A, Sang Y, Yi F, Zhou W, Liu H, Mao C, Qiu J. Wrapping stem cells with wireless electrical nanopatches for traumatic brain injury therapy. Nat Commun 2024; 15:7223. [PMID: 39174514 PMCID: PMC11341554 DOI: 10.1038/s41467-024-51098-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 07/29/2024] [Indexed: 08/24/2024] Open
Abstract
Electrical stimulation holds promise for enhancing neuronal differentiation of neural stem cells to treat traumatic brain injury. However, once the stem cells leave the stimulating material and migrate post transplantation, electrical stimulation on them is diminished. Here, we wrap the stem cells with wireless electrical nanopatches, the conductive graphene nanosheets. Under electromagnetic induction, electrical stimulation can thus be applied in-situ to individual nanopatch-wrapped stem cells on demand, stimulating their neuronal differentiation through a MAPK/ERK signaling pathway. Consequently, 41% of the nanopatch-wrapped stem cells differentiate into functional neurons in 5 days, as opposed to only 16.3% of the unwrapped ones. The brain injury male mice implanted with the nanopatch-wrapped stem cells and exposed to a rotating magnetic field 30 min/day exhibit significant recovery of brain tissues, behaviors, and cognitions, within 28 days. This study opens up an avenue to individualized electrical stimulation of transplanted stem cells for treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Liang Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Jingyi Du
- Key Laboratory for Experimental Teratology of Ministry of Education, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Qilu Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Dongshuang Wang
- Key Laboratory for Experimental Teratology of Ministry of Education, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Wenhan Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Ming Lei
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Keyi Li
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Yiwei Li
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Aijun Hao
- Key Laboratory for Experimental Teratology of Ministry of Education, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Yuanhua Sang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Fan Yi
- The Key Laboratory of Infection and Immunity of Shandong Province, Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Wenjuan Zhou
- Key Laboratory for Experimental Teratology of Ministry of Education, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China.
- Shandong Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China.
| | - Hong Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China.
| | - Chuanbin Mao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China.
| | - Jichuan Qiu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China.
| |
Collapse
|
19
|
Pan X, Huang W, Nie G, Wang C, Wang H. Ultrasound-Sensitive Intelligent Nanosystems: A Promising Strategy for the Treatment of Neurological Diseases. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2303180. [PMID: 37871967 DOI: 10.1002/adma.202303180] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/26/2023] [Indexed: 10/25/2023]
Abstract
Neurological diseases are a major global health challenge, affecting hundreds of millions of people worldwide. Ultrasound therapy plays an irreplaceable role in the treatment of neurological diseases due to its noninvasive, highly focused, and strong tissue penetration capabilities. However, the complexity of brain and nervous system and the safety risks associated with prolonged exposure to ultrasound therapy severely limit the applicability of ultrasound therapy. Ultrasound-sensitive intelligent nanosystems (USINs) are a novel therapeutic strategy for neurological diseases that bring greater spatiotemporal controllability and improve safety to overcome these challenges. This review provides a detailed overview of therapeutic strategies and clinical advances of ultrasound in neurological diseases, focusing on the potential of USINs-based ultrasound in the treatment of neurological diseases. Based on the physical and chemical effects induced by ultrasound, rational design of USINs is a prerequisite for improving the efficacy of ultrasound therapy. Recent developments of ultrasound-sensitive nanocarriers and nanoagents are systemically reviewed. Finally, the challenges and developing prospects of USINs are discussed in depth, with a view to providing useful insights and guidance for efficient ultrasound treatment of neurological diseases.
Collapse
Affiliation(s)
- Xueting Pan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Wenping Huang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Changyong Wang
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing, 100850, China
| | - Hai Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
20
|
Sahoo R, Sarkar AK, Ali H, Jana NR. Ultrasound-Responsive Nanodroplet-Based Targeted Therapy via Conversion to Microbubbles. ACS APPLIED BIO MATERIALS 2024; 7:1852-1861. [PMID: 38391393 DOI: 10.1021/acsabm.3c01245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Ultrasound-based therapy is appealing as it can be used via a wireless approach at remote parts of the body including the brain. Microbubbles are commonly used in such therapy due to their highly sound-responsive property. However, the larger size of microbubbles limits selective targeting in vitro/in vivo. Here, we report the design of nanodroplets of 70-130 nm in size that can be easily converted to microbubbles via ultrasound exposure. The advantage of this approach is that smaller nanodroplets can be used for cell/subcellular targeting, and next, they can be used for therapy by converting to microbubbles. More specifically, folate/dopamine-terminated perfluorohexane nanodroplets are designed that are loaded with a molecular drug. These nanodroplets are used for selective cell targeting, followed by ultrasound-induced microbubble conversion that is associated with drug release and intracellular reactive oxygen species generation. This approach has been used for selective cell therapy applications. The designed nanodroplet and approach can be used for the enhanced therapeutic performance of existing drugs.
Collapse
Affiliation(s)
- Rajkumar Sahoo
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700 032, India
| | - Ankan Kumar Sarkar
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700 032, India
| | - Haydar Ali
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700 032, India
| | - Nikhil R Jana
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700 032, India
| |
Collapse
|
21
|
Cho ER, Kang DH. Development and investigation of ultrasound-assisted pulsed ohmic heating for inactivation of foodborne pathogens in milk with different fat content. Food Res Int 2024; 179:113978. [PMID: 38342529 DOI: 10.1016/j.foodres.2024.113978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 02/13/2024]
Abstract
The central objective of this research was to develop an ultrasound-assisted pulsed ohmic heating (POH) system for inactivation of food-borne pathogens in phosphate buffered saline (PBS) and milk with 0-3.6% fat and investigate its bactericidal effect. Combining ultrasound with POH did not significantly affect the temperature profile of samples. Both POH alone and ultrasound-assisted POH took 120 s to heat PBS 60℃. Milk with 0, 1, and 3.6% fat was heated to 60℃ by POH alone and ultrasound-assisted POH after 335, 475, and 525 s, respectively. This is because the electrical conductivity of the samples was the same for POH alone and ultrasound-assisted POH. Despite identical temperature profiles, ultrasound-assisted POH exerted a synergistic effect on the reduction of Escherichia coli O157:H7, Salmonella Typhimurium, Listeria monocytogenes, and Staphylococcus aureus. In particular, the inactivation level of S. Typhimurium in PBS subjected to ultrasound-assisted POH treatment for 120 s corresponding to a treatment temperature of 60℃ was 3.73 log units higher than the sum of each treatment alone. A propidium iodide assay, intracellular protein measurements, and scanning electron microscopy revealed that ultrasound-assisted POH treatment provoked lethal cell membrane damage and leakage of intracellular proteins. Meanwhile, fat in milk reduced the efficacy of the bacterial inactivation of the ultrasound-assisted POH system due to its low electrical conductivity and sonoprotective effect. After ultrasound-assisted POH treatment at 60℃, there were no significant differences (P > 0.05) in the pH, color, and apparent viscosity of milk between the untreated and treated group.
Collapse
Affiliation(s)
- Eun-Rae Cho
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute of Agricultural and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea; Institutes of Green Bio Science & Technology, Seoul National University, Pyeongchang-gun, Gangwon do, 25354, Republic of Korea
| | - Dong-Hyun Kang
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute of Agricultural and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea; Institutes of Green Bio Science & Technology, Seoul National University, Pyeongchang-gun, Gangwon do, 25354, Republic of Korea.
| |
Collapse
|
22
|
Eleni Karakatsani M, Estrada H, Chen Z, Shoham S, Deán-Ben XL, Razansky D. Shedding light on ultrasound in action: Optical and optoacoustic monitoring of ultrasound brain interventions. Adv Drug Deliv Rev 2024; 205:115177. [PMID: 38184194 PMCID: PMC11298795 DOI: 10.1016/j.addr.2023.115177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/27/2023] [Accepted: 12/31/2023] [Indexed: 01/08/2024]
Abstract
Monitoring brain responses to ultrasonic interventions is becoming an important pillar of a growing number of applications employing acoustic waves to actuate and cure the brain. Optical interrogation of living tissues provides a unique means for retrieving functional and molecular information related to brain activity and disease-specific biomarkers. The hybrid optoacoustic imaging methods have further enabled deep-tissue imaging with optical contrast at high spatial and temporal resolution. The marriage between light and sound thus brings together the highly complementary advantages of both modalities toward high precision interrogation, stimulation, and therapy of the brain with strong impact in the fields of ultrasound neuromodulation, gene and drug delivery, or noninvasive treatments of neurological and neurodegenerative disorders. In this review, we elaborate on current advances in optical and optoacoustic monitoring of ultrasound interventions. We describe the main principles and mechanisms underlying each method before diving into the corresponding biomedical applications. We identify areas of improvement as well as promising approaches with clinical translation potential.
Collapse
Affiliation(s)
- Maria Eleni Karakatsani
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Héctor Estrada
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Zhenyue Chen
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Shy Shoham
- Department of Ophthalmology and Tech4Health and Neuroscience Institutes, NYU Langone Health, NY, USA
| | - Xosé Luís Deán-Ben
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland.
| | - Daniel Razansky
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland.
| |
Collapse
|
23
|
Shan F, Zhang N, Yao X, Li Y, Wang Z, Zhang C, Wang Y. Mechanosensitive channel of large conductance enhances the mechanical stretching-induced upregulation of glycolysis and oxidative metabolism in Schwann cells. Cell Commun Signal 2024; 22:93. [PMID: 38302971 PMCID: PMC10835878 DOI: 10.1186/s12964-024-01497-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 01/21/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Physical exercise directly stretching the peripheral nerve promotes nerve regeneration; however, its action mechanism remains elusive. Our present study aimed to investigate the effects of mechanosensitive channel of large conductance (MscL) activated by mechanical stretching on the cultured Schwann cells (SCs) and explore the possible mechanism. METHODS Primary SCs from neonatal mice at 3-5 days of age were derived and transfected with the lentivirus vector expressing a mutant version of MscL, MscL-G22S. We first detected the cell viability and calcium ion (Ca2+) influx in the MscL-G22S-expressing SCs with low-intensity mechanical stretching and the controls. Proteomic and energy metabolomics analyses were performed to investigate the comprehensive effects of MscL-G22S activation on SCs. Measurement of glycolysis- and oxidative phosphorylation-related molecules and ATP production were respectively performed to further validate the effects of MscL-G22S activation on SCs. Finally, the roles of phosphatidylinositol-3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling pathway in the mechanism of energy metabolism modulation of SCs by MscL-G22S activation was investigated. RESULTS Mechanical stretching-induced MscL-G22S activation significantly increased the cell viability and Ca2+ influx into the SCs. Both the proteomic and targeted energy metabolomics analysis indicated the upregulation of energy metabolism as the main action mechanism of MscL-G22S-activation on SCs. MscL-G22S-activated SCs showed significant upregulation of glycolysis and oxidative phosphorylation when SCs with stretching alone had only mild upregulation of energy metabolism than those without stimuli. MscL-G22S activation caused significant phosphorylation of the PI3K/AKT/mTOR signaling pathway and upregulation of HIF-1α/c-Myc. Inhibition of PI3K abolished the MscL-G22S activation-induced upregulation of HIF-1α/c-Myc signaling in SCs and reduced the levels of glycolysis- and oxidative phosphorylation-related substrates and mitochondrial activity. CONCLUSION Mechanical stretching activates MscL-G22S to significantly promote the energy metabolism of SCs and the production of energic substrates, which may be applied to enhance nerve regeneration via the glia-axonal metabolic coupling.
Collapse
Affiliation(s)
- Fangzhen Shan
- Medical Research Centre, Affiliated Hospital of Jining Medical University, Jining, Shandong Province, China
| | - Nannan Zhang
- Department of Respiratory and Critical Care, Affiliated Hospital of Jining Medical University, Jining, Shandong Province, China
| | - Xiaoying Yao
- Medical Research Centre, Affiliated Hospital of Jining Medical University, Jining, Shandong Province, China
| | - Yi Li
- Department of Neurology, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Jining City, Shandong Province, 272029, China
| | - Zihao Wang
- Cheeloo Medical College, Shandong University, Jinan, Shandong Province, China
| | - Chuanji Zhang
- College of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Yuzhong Wang
- Medical Research Centre, Affiliated Hospital of Jining Medical University, Jining, Shandong Province, China.
- Department of Neurology, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Jining City, Shandong Province, 272029, China.
| |
Collapse
|
24
|
Dolai J, Maity A, Mukherjee B, Ray R, Jana NR. Piezoelectric Amyloid Fibril for Energy Harvesting, Reactive Oxygen Species Generation, and Wireless Cell Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:217-227. [PMID: 38123449 DOI: 10.1021/acsami.3c14254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Biomolecular piezoelectric materials are envisioned for advanced biomedical applications for their robust piezoelectricity, biocompatibility, and flexibility. Here, we report the piezoelectric property of amyloid fibrils derived from three distinct proteins: lysozyme, insulin, and amyloid-β. We found that piezoelectric properties are dependent on the extent of the β-sheet structure and the extent of fibril anisotropy. We have observed the piezoelectric constant value in the range of 24-42 pm/V for fibrils made of lysozyme/insulin/amyloid-β, and for the sheet/bundle-like structure of lysozyme aggregates, the value becomes 62 pm/V. These piezoelectric constant values are 4-10 times higher than the native lysozyme/insulin/amyloid proteins. Computational studies show that extension of the β-sheet structure produces an asymmetric arrangement of charges (in creating dipole moment) and mechanical stress induces an aligned orientation of these dipoles that results in a piezoelectric effect. It is shown that these piezoelectric fibrils can harvest mechanical as well as ultrasound-based energy to produce a voltage of up to 1 V and a current of up to 13 nA. These fibrils are employed for reactive oxygen species (ROS) generation under ultrasound exposure and utilized for ultrasonic degradation of organic pollutants or killing of cancer cells via intracellular ROS generation under ultrasound exposure. Our findings demonstrate that the piezoelectric property of protein fibrils has potential for wireless therapeutic applications and may have physiological roles that are yet to be explored.
Collapse
Affiliation(s)
- Jayanta Dolai
- School of Materials Science, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Anupam Maity
- School of Materials Science, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Buddhadev Mukherjee
- School of Materials Science, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Reeddhi Ray
- School of Materials Science, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Nikhil R Jana
- School of Materials Science, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India
| |
Collapse
|
25
|
Chaves JCS, Wasielewska JM, Cuní-López C, Rantanen LM, Lee S, Koistinaho J, White AR, Oikari LE. Alzheimer's disease brain endothelial-like cells reveal differential drug transporter expression and modulation by potentially therapeutic focused ultrasound. Neurotherapeutics 2024; 21:e00299. [PMID: 38241156 PMCID: PMC10903103 DOI: 10.1016/j.neurot.2023.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 10/28/2023] [Indexed: 01/21/2024] Open
Abstract
The blood-brain barrier (BBB) has a key function in maintaining homeostasis in the brain, partly modulated by transporters, which are highly expressed in brain endothelial cells (BECs). Transporters mediate the uptake or efflux of compounds to and from the brain and they can also challenge the delivery of drugs for the treatment of Alzheimer's disease (AD). Currently there is a limited understanding of changes in BBB transporters in AD. To investigate this, we generated brain endothelial-like cells (iBECs) from induced pluripotent stem cells (iPSCs) with familial AD (FAD) Presenilin 1 (PSEN1) mutation and identified AD-specific differences in transporter expression compared to control (ctrl) iBECs. We first characterized the expression levels of 12 BBB transporters in AD-, Ctrl-, and isogenic (PSEN1 corrected) iBECs to identify any AD specific differences. We then exposed the cells to focused ultrasound (FUS) in the absence (FUSonly) or presence of microbubbles (MB) (FUS+MB), which is a novel therapeutic method that can be used to transiently open the BBB to increase drug delivery into the brain, however its effects on BBB transporter expression are largely unknown. Following FUSonly and FUS+MB, we investigated whether the expression or activity of key transporters could be modulated. Our findings demonstrate that PSEN1 mutant FAD (PSEN1AD) possess phenotypical differences compared to control iBECs in BBB transporter expression and function. Additionally, we show that FUSonly and FUS+MB can modulate BBB transporter expression and functional activity in iBECs, having potential implications on drug penetration and amyloid clearance. These findings highlight the differential responses of patient cells to FUS treatment, with patient-derived models likely providing an important tool for modelling therapeutic effects of FUS.
Collapse
Affiliation(s)
- Juliana C S Chaves
- Mental Health and Neuroscience, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, QUT, Brisbane, QLD, Australia
| | - Joanna M Wasielewska
- Mental Health and Neuroscience, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Carla Cuní-López
- Mental Health and Neuroscience, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Laura M Rantanen
- Mental Health and Neuroscience, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, QUT, Brisbane, QLD, Australia
| | - Serine Lee
- Mental Health and Neuroscience, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Jari Koistinaho
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neuroscience Center, Kuopio, Finland; Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Anthony R White
- Mental Health and Neuroscience, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, QUT, Brisbane, QLD, Australia; Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Lotta E Oikari
- Mental Health and Neuroscience, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.
| |
Collapse
|
26
|
Zhang B, Zeng J, Zhang J, Song K, Kuang L, Wu X, Zhao G, Shang H, Ni Z, Chen L. Research trends and perspective of low-intensity pulsed ultrasound in orthopedic rehabilitation treatment based on Web of Science: A bibliometric analysis. J Back Musculoskelet Rehabil 2024; 37:1189-1203. [PMID: 38758991 DOI: 10.3233/bmr-230273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
Abstract
BACKGROUND Ultrasound has a long history as a diagnostic and therapeutic tool. Low-intensity pulsed ultrasound (LIPUS), whose intensity is below 300 mW/cm2, has been widely used in orthopedic rehabilitation treatment. However, the detailed bioeffects and underlying mechanisms of LIPUS treatment need to be explored. OBJECTIVE To make a comprehensive view of the field, bibliometric and visualization analysis was used to reveal the global research trends of LIPUS in orthopedics and rehabilitation treatment between 1994 and 2023. METHODS All literature data on LIPUS were retrieved from the Web of Science Core Collection database. VOSviewer and CiteSpace were applied for the bibliometric and visualization analysis. RESULTS A total of 760 publications were included. The distribution of publications generally showed an unstable rising trend. China had the highest number of publications (28.0%), and Chong Qing Medical University was the organization with the highest number of publications (5.8%). Ultrasound in Medicine and Biology had the highest number of publications (8.8%), while BMJ-British Medical Journal had the highest impact factor among the retrieved journals. Ling Qin from the Chinese University of Hong Kong was the most active researcher. Our overlay visualization map showed that the keywords such as pain, knee osteoarthritis, apoptosis, chondrocytes, cartilage, and autophagy, which link to osteoarthritis, have becoming the new research trends and hotspots. CONCLUSION LIPUS is a popular and increasingly important area of orthopedic rehabilitation, and collaboration of authors from different countries should be further strengthened. Predictably, clinical application of LIPUS on chronic inflammation-related diseases and regenerative medicine, and in-depth biological mechanisms are the orientations of LIPUS in orthopedic rehabilitation treatment.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
- Rehabilitation Department, Key Specialty of Neck and Low Back Pain Rehabilitation, Xingcheng Special Duty Sanatorium, Xingcheng, Liaoning, China
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Jiahao Zeng
- Rehabilitation Department, Key Specialty of Neck and Low Back Pain Rehabilitation, Xingcheng Special Duty Sanatorium, Xingcheng, Liaoning, China
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Jiayi Zhang
- Rehabilitation Department, Key Specialty of Neck and Low Back Pain Rehabilitation, Xingcheng Special Duty Sanatorium, Xingcheng, Liaoning, China
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Keyan Song
- Rehabilitation Department, Key Specialty of Neck and Low Back Pain Rehabilitation, Xingcheng Special Duty Sanatorium, Xingcheng, Liaoning, China
| | - Liang Kuang
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiangbo Wu
- Department of Rehabilitation Medicine, Xi-Jing Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, Shaanxi, China
| | - Guang Zhao
- Rehabilitation Department, Key Specialty of Neck and Low Back Pain Rehabilitation, Xingcheng Special Duty Sanatorium, Xingcheng, Liaoning, China
| | - Huijuan Shang
- Rehabilitation Department, Key Specialty of Neck and Low Back Pain Rehabilitation, Xingcheng Special Duty Sanatorium, Xingcheng, Liaoning, China
| | - Zhenhong Ni
- Department of Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, China
| | - Lin Chen
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
27
|
Ma X, Li T, Du L, Han T. Research and progress of focused ultrasound in the treatment of Alzheimer's disease. Front Neurol 2023; 14:1323386. [PMID: 38187144 PMCID: PMC10771294 DOI: 10.3389/fneur.2023.1323386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/30/2023] [Indexed: 01/09/2024] Open
Abstract
Alzheimer's disease is one of the most common degenerative diseases of the central nervous system, with progressive cognitive and memory impairment and decreased ability of daily life as the cardinal symptoms, influencing the life quality of patients severely. There are currently approximately 46 million people living with Alzheimer's disease worldwide, and the number is expected to triple by 2050, which will pose a huge challenge for healthcare. At present, the Food and Drug Administration of the United States has approved five main drugs for the clinical treatment of Alzheimer's disease, which are cholinesterase inhibitors tacrine, galantamine, capalatine and donepezil, and N-methyl-d-aspartate receptor antagonist memantine, although these drugs have shown good efficacy in clinical trials, the actual clinical effect is less effective due to the existence of blood brain barrier. With the continuous development of ultrasound technology in recent years, focused ultrasound, as a non-invasive treatment technique, may target ultrasound energy to the deep brain for treatment without damaging the surrounding tissue. For the past few years, some studies could use focused ultrasound combined with microvesicles to induce blood brain barrier opening and targeted drug delivery to treat Alzheimer's disease, providing new opportunities for the treatment of Alzheimer's disease. This article reviews the application research and progress of focused ultrasound in the treatment of Alzheimer's disease, in order to provide new directions and ideas for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Xishun Ma
- Department of Ultrasound, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Tongxia Li
- Department of Tuberculosis, Qingdao Chest Hospital, Qingdao, China
| | - Lizhen Du
- Department of Ultrasound, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Tongliang Han
- Department of Ultrasound, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| |
Collapse
|
28
|
Guo H, Salahshoor H, Wu D, Yoo S, Sato T, Tsao DY, Shapiro MG. Effects of focused ultrasound in a "clean" mouse model of ultrasonic neuromodulation. iScience 2023; 26:108372. [PMID: 38047084 PMCID: PMC10690554 DOI: 10.1016/j.isci.2023.108372] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 10/05/2023] [Accepted: 10/26/2023] [Indexed: 12/05/2023] Open
Abstract
Recent studies on ultrasonic neuromodulation (UNM) in rodents have shown that focused ultrasound (FUS) can activate peripheral auditory pathways, leading to off-target and brain-wide excitation, which obscures the direct activation of the target area by FUS. To address this issue, we developed a new mouse model, the double transgenic Pou4f3+/DTR × Thy1-GCaMP6s, which allows for inducible deafening using diphtheria toxin and minimizes off-target effects of UNM while allowing effects on neural activity to be visualized with fluorescent calcium imaging. Using this model, we found that the auditory confounds caused by FUS can be significantly reduced or eliminated within a certain pressure range. At higher pressures, FUS can result in focal fluorescence dips at the target, elicit non-auditory sensory confounds, and damage tissue, leading to spreading depolarization. Under the acoustic conditions we tested, we did not observe direct calcium responses in the mouse cortex. Our findings provide a cleaner animal model for UNM and sonogenetics research, establish a parameter range within which off-target effects are confidently avoided, and reveal the non-auditory side effects of higher-pressure stimulation.
Collapse
Affiliation(s)
- Hongsun Guo
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Hossein Salahshoor
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| | - Di Wu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Sangjin Yoo
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Tomokazu Sato
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Doris Y. Tsao
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, Pasadena, CA 91125, USA
| | - Mikhail G. Shapiro
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
- Howard Hughes Medical Institute, Pasadena, CA 91125, USA
| |
Collapse
|
29
|
Cornelssen C, Finlinson E, Rolston JD, Wilcox KS. Ultrasonic therapies for seizures and drug-resistant epilepsy. Front Neurol 2023; 14:1301956. [PMID: 38162441 PMCID: PMC10756913 DOI: 10.3389/fneur.2023.1301956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/09/2023] [Indexed: 01/03/2024] Open
Abstract
Ultrasonic therapy is an increasingly promising approach for the treatment of seizures and drug-resistant epilepsy (DRE). Therapeutic focused ultrasound (FUS) uses thermal or nonthermal energy to either ablate neural tissue or modulate neural activity through high- or low-intensity FUS (HIFU, LIFU), respectively. Both HIFU and LIFU approaches have been investigated for reducing seizure activity in DRE, and additional FUS applications include disrupting the blood-brain barrier in the presence of microbubbles for targeted-drug delivery to the seizure foci. Here, we review the preclinical and clinical studies that have used FUS to treat seizures. Additionally, we review effective FUS parameters and consider limitations and future directions of FUS with respect to the treatment of DRE. While detailed studies to optimize FUS applications are ongoing, FUS has established itself as a potential noninvasive alternative for the treatment of DRE and other neurological disorders.
Collapse
Affiliation(s)
- Carena Cornelssen
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, United States
| | - Eli Finlinson
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, United States
| | - John D. Rolston
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
- Department of Neurosurgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Karen S. Wilcox
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, United States
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
30
|
Yin Y, Yan S, Huang J, Zhang B. Transcranial Ultrasonic Focusing by a Phased Array Based on Micro-CT Images. SENSORS (BASEL, SWITZERLAND) 2023; 23:9702. [PMID: 38139547 PMCID: PMC10747353 DOI: 10.3390/s23249702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023]
Abstract
In this paper, we utilize micro-computed tomography (micro-CT) to obtain micro-CT images with a resolution of 60 μm and establish a micro-CT model based on the k-wave toolbox, which can visualize the microstructures in trabecular bone, including pores and bone layers. The transcranial ultrasound phased array focusing field characteristics in the micro-CT model are investigated. The ultrasonic waves are multiply scattered in skull and time delays calculations from the transducer to the focusing point are difficult. For this reason, we adopt the pulse compression method and the linear frequency modulation Barker code to compute the time delay and implement phased array focusing in the micro-CT model. It is shown by the simulation results that ultrasonic loss is mainly caused by scattering from the microstructures of the trabecular bone. The ratio of main and side lobes of the cross-correlation calculation is improved by 5.53 dB using the pulse compression method. The focusing quality and the calculation accuracy of time delay are improved. Meanwhile, the beamwidth at the focal point and the sound pressure amplitude decrease with the increase in the signal frequency. Focusing at different depths indicates that the beamwidth broadens with the increase in the focusing depth, and beam deflection focusing maintains good consistency in the focusing effect at a distance of 9 mm from the focal point. This indicates that the phased-array method has good focusing results and focus tunability in deep cranial brain. In addition, the sound pressure at the focal point can be increased by 8.2% through amplitude regulation, thereby enhancing focusing efficiency. The preliminary experiment verification is conducted with an ex vivo skull. It is shown by the experimental results that the phased array focusing method using pulse compression to calculate the time delay can significantly improve the sound field focusing effect and is a very effective transcranial ultrasound focusing method.
Collapse
Affiliation(s)
- Yuxin Yin
- Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China; (Y.Y.); (S.Y.); (B.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shouguo Yan
- Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China; (Y.Y.); (S.Y.); (B.Z.)
| | - Juan Huang
- Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China; (Y.Y.); (S.Y.); (B.Z.)
| | - Bixing Zhang
- Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China; (Y.Y.); (S.Y.); (B.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
31
|
Wang L, Chang G, Yang M, Xu Z, Wang J, Xu H, He M, Dai L, Zhao Y, Ji Z, Zhang L. The Noninvasive Sonothermogenetics Used for Neuromodulation in M1 Region of Mice Brain by Overexpression of TRPV1. Neuroscience 2023; 527:22-36. [PMID: 37482284 DOI: 10.1016/j.neuroscience.2023.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 07/12/2023] [Accepted: 07/15/2023] [Indexed: 07/25/2023]
Abstract
Sonogenetics is preferred for neuroregulation and the treatment of brain diseases due to its noninvasive properties. Ultrasonic stimulation produces thermal and mechanical effects, among others. Since transient receptor potential vanilloid 1 (TRPV1) could be activated at 42 °C, it is overexpressed in the M1 region of the mouse motor cortex to sense the change of temperature upon being stimulated by focused ultrasound. Whether the heat generated by ultrasonic stimulation could activate TRPV1 in the M1 region and induce changes in electromyography (EMG) signals collected from the mice's triceps was carefully verified. The position of the focused ultrasound and the temperature of the tissue at the location of the focused position were simulated using COMSOL software and verified via experiments. For Neuro-2a cells with TRPV1 overexpression, 42 °C could activate the TRPV1 and induce calcium influx. For mice with TRPV1 overexpression in the M1 region, tissue temperature of >42 °C in the M1 region induces an increased number of cfos, suggesting that neurons with overexpressed TRPV1 in the M1 region can be activated using focused ultrasound. Furthermore, when the temperature is >42 °C, the peak-to-peak value of the EMG signal for mice with TRPV1 overexpression in the M1 region was higher than that for mice without TRPV1 overexpression. The immunohistochemical results showed that ultrasound was not harmful to the stimulation site. The noninvasive ultrasound stimulation combined with thermosensitive protein TRPV1 overexpressed in neurocytes as sonothermogenetics technology has great potential to be used for the treatment of neurological diseases.
Collapse
Affiliation(s)
- Lulu Wang
- BGI College, Zhengzhou University, No. 40 Daxue Road, Zhengzhou 450007, China; Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, No. 40 Daxue Road, Zhengzhou 450052, China
| | - Guanglei Chang
- BGI College, Zhengzhou University, No. 40 Daxue Road, Zhengzhou 450007, China; Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, No. 40 Daxue Road, Zhengzhou 450052, China
| | - Miaomiao Yang
- School of Basic Medical Sciences, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
| | - Zhaobin Xu
- BGI College, Zhengzhou University, No. 40 Daxue Road, Zhengzhou 450007, China; Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, No. 40 Daxue Road, Zhengzhou 450052, China
| | - Jianye Wang
- Institute of Physics, Henan Academy of Sciences, Zhengzhou 450046, China
| | - Hongliang Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou 450052, Henan Province, China
| | - Meixia He
- BGI College, Zhengzhou University, No. 40 Daxue Road, Zhengzhou 450007, China; Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, No. 40 Daxue Road, Zhengzhou 450052, China
| | - Liping Dai
- BGI College, Zhengzhou University, No. 40 Daxue Road, Zhengzhou 450007, China; Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, No. 40 Daxue Road, Zhengzhou 450052, China
| | - Yang Zhao
- BGI College, Zhengzhou University, No. 40 Daxue Road, Zhengzhou 450007, China; Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, No. 40 Daxue Road, Zhengzhou 450052, China
| | - Zhenyu Ji
- BGI College, Zhengzhou University, No. 40 Daxue Road, Zhengzhou 450007, China; Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, No. 40 Daxue Road, Zhengzhou 450052, China.
| | - Liguo Zhang
- BGI College, Zhengzhou University, No. 40 Daxue Road, Zhengzhou 450007, China; Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, No. 40 Daxue Road, Zhengzhou 450052, China.
| |
Collapse
|
32
|
Thangaleela S, Sivamaruthi BS, Kesika P, Mariappan S, Rashmi S, Choeisoongnern T, Sittiprapaporn P, Chaiyasut C. Neurological Insights into Sleep Disorders in Parkinson's Disease. Brain Sci 2023; 13:1202. [PMID: 37626558 PMCID: PMC10452387 DOI: 10.3390/brainsci13081202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/07/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Parkinson's disease (PD) is a common multidimensional neurological disorder characterized by motor and non-motor features and is more prevalent in the elderly. Sleep disorders and cognitive disturbances are also significant characteristics of PD. Sleep is an important physiological process for normal human cognition and physical functioning. Sleep deprivation negatively impacts human physical, mental, and behavioral functions. Sleep disturbances include problems falling asleep, disturbances occurring during sleep, abnormal movements during sleep, insufficient sleep, and excessive sleep. The most recognizable and known sleep disorders, such as rapid-eye-movement behavior disorder (RBD), insomnia, excessive daytime sleepiness (EDS), restless legs syndrome (RLS), sleep-related breathing disorders (SRBDs), and circadian-rhythm-related sleep-wake disorders (CRSWDs), have been associated with PD. RBD and associated emotional disorders are common non-motor symptoms of PD. In individuals, sleep disorders and cognitive impairment are important prognostic factors for predicting progressing neurodegeneration and developing dementia conditions in PD. Studies have focused on RBD and its associated neurological changes and functional deficits in PD patients. Other risks, such as cognitive decline, anxiety, and depression, are related to RBD. Sleep-disorder diagnosis is challenging, especially in identifying the essential factors that disturb the sleep-wake cycle and the co-existence of other concomitant sleep issues, motor symptoms, and breathing disorders. Focusing on sleep patterns and their disturbances, including genetic and other neurochemical changes, helps us to better understand the central causes of sleep alterations and cognitive functions in PD patients. Relations between α-synuclein aggregation in the brain and gender differences in sleep disorders have been reported. The existing correlation between sleep disorders and levels of α-synuclein in the cerebrospinal fluid indicates the risk of progression of synucleinopathies. Multidirectional approaches are required to correlate sleep disorders and neuropsychiatric symptoms and diagnose sensitive biomarkers for neurodegeneration. The evaluation of sleep pattern disturbances and cognitive impairment may aid in the development of novel and effective treatments for PD.
Collapse
Affiliation(s)
- Subramanian Thangaleela
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (S.T.); (B.S.S.); (P.K.)
| | - Bhagavathi Sundaram Sivamaruthi
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (S.T.); (B.S.S.); (P.K.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Periyanaina Kesika
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (S.T.); (B.S.S.); (P.K.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Subramanian Rashmi
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (S.T.); (B.S.S.); (P.K.)
| | - Thiwanya Choeisoongnern
- Neuropsychological Research Laboratory, Neuroscience Research Center, School of Anti-Aging and Regenerative Medicine, Mae Fah Luang University, Bangkok 10110, Thailand
| | - Phakkharawat Sittiprapaporn
- Neuropsychological Research Laboratory, Neuroscience Research Center, School of Anti-Aging and Regenerative Medicine, Mae Fah Luang University, Bangkok 10110, Thailand
| | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (S.T.); (B.S.S.); (P.K.)
| |
Collapse
|
33
|
Selvarajan S, Shim H, Byun E, Kim A, Song SH. Protein redox by a piezoelectric acousto-nanodevice. NANOSCALE 2023; 15:12889-12893. [PMID: 37477602 DOI: 10.1039/d3nr01523h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Protein redox is responsible for many crucial biological processes; thus, the ability to modulate the redox proteins through external stimuli presents a unique opportunity to tune the system. In this work, we present an acousto-nanodevice that is capable of oxidizing redox protein under ultrasonic irradiation via surface-engineered barium titanate (BTO) nanoparticles with a gold half-coating. Using cytochrome c as the model protein, we demonstrate nanodevice-mediated protein oxidation. BINased on our experimental observations, we reveal that the electron transfer occurs in one direction due to the alternating electrical polarization of BTO under ultrasound. Such unique unidirectional electron transfer is enabled by modulating the work function of the gold surface with respect to the redox center. The new class of ultrasonically powered nano-sized protein redox agents could be a modulator for biological processes with high selectivity and deeper treatment sites.
Collapse
Affiliation(s)
- Sophia Selvarajan
- Department of Electronics Engineering, Sookmyung Women's University, Seoul 04310, Republic of Korea.
- Department of Medical Engineering, University of South Florida, Tampa, FL, 33602, USA.
| | - Hyunji Shim
- Department of Electronics Engineering, Sookmyung Women's University, Seoul 04310, Republic of Korea.
| | - Eunjeong Byun
- Department of Electronics Engineering, Sookmyung Women's University, Seoul 04310, Republic of Korea.
| | - Albert Kim
- Department of Medical Engineering, University of South Florida, Tampa, FL, 33602, USA.
| | - Seung Hyun Song
- Department of Electronics Engineering, Sookmyung Women's University, Seoul 04310, Republic of Korea.
| |
Collapse
|
34
|
Kinfe T. MR-guided high-intensity focused ultrasound for chronic pain: where do we stand? Expert Rev Neurother 2023; 23:757-761. [PMID: 37556732 DOI: 10.1080/14737175.2023.2246659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/11/2023]
Affiliation(s)
- Thomas Kinfe
- Division of Functional Neurosurgery and Stereotaxy, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
35
|
Hughes A, Khan DS, Alkins R. Current and Emerging Systems for Focused Ultrasound-Mediated Blood-Brain Barrier Opening. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:1479-1490. [PMID: 37100672 DOI: 10.1016/j.ultrasmedbio.2023.02.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/09/2023] [Accepted: 02/23/2023] [Indexed: 05/17/2023]
Abstract
With an ever-growing list of neurological applications of focused ultrasound (FUS), there has been a consequent increase in the variety of systems for delivering ultrasound energy to the brain. Specifically, recent successful pilot clinical trials of blood-brain barrier (BBB) opening with FUS have generated substantial interest in the future applications of this relatively novel therapy, with divergent, purpose-built technologies emerging. With many of these technologies at various stages of pre-clinical and clinical investigation, this article seeks to provide an overview and analysis of the numerous medical devices in active use and under development for FUS-mediated BBB opening.
Collapse
Affiliation(s)
- Alec Hughes
- School of Medicine, Faculty of Health Sciences, Queen's University, Kingston, ON, Canada
| | - Dure S Khan
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Ryan Alkins
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada; Division of Neurosurgery, Department of Surgery, Kingston Health Sciences Centre, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
36
|
Guo H, Salahshoor H, Wu D, Yoo S, Sato T, Tsao DY, Shapiro MG. Effects of focused ultrasound in a "clean" mouse model of ultrasonic neuromodulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.541780. [PMID: 37293117 PMCID: PMC10245917 DOI: 10.1101/2023.05.22.541780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Recent studies on ultrasonic neuromodulation (UNM) in rodents have shown that focused ultrasound (FUS) can activate peripheral auditory pathways, leading to off-target and brain-wide excitation, which obscures the direct activation of the target area by FUS. To address this issue, we developed a new mouse model, the double transgenic Pou4f3+/DTR × Thy1-GCaMP6s, which allows for inducible deafening using diphtheria toxin and minimizes off-target effects of UNM while allowing effects on neural activity to be visualized with fluorescent calcium imaging. Using this model, we found that the auditory confounds caused by FUS can be significantly reduced or eliminated within a certain pressure range. At higher pressures, FUS can result in focal fluorescence dips at the target, elicit non-auditory sensory confounds, and damage tissue, leading to spreading depolarization. Under the acoustic conditions we tested, we did not observe direct calcium responses in the mouse cortex. Our findings provide a cleaner animal model for UNM and sonogenetics research, establish a parameter range within which off-target effects are confidently avoided, and reveal the non-auditory side effects of higher-pressure stimulation.
Collapse
|
37
|
Zhang Y, Wang J, Ghobadi SN, Zhou H, Huang A, Gerosa M, Hou Q, Keunen O, Golebiewska A, Habte FG, Grant GA, Paulmurugan R, Lee KS, Wintermark M. Molecular Identity Changes of Tumor-Associated Macrophages and Microglia After Magnetic Resonance Imaging-Guided Focused Ultrasound-Induced Blood-Brain Barrier Opening in a Mouse Glioblastoma Model. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:1082-1090. [PMID: 36717283 PMCID: PMC10059983 DOI: 10.1016/j.ultrasmedbio.2022.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/11/2022] [Accepted: 12/10/2022] [Indexed: 05/11/2023]
Abstract
An orthotopically allografted mouse GL26 glioma model (Ccr2RFP/wt-Cx3cr1GFP/wt) was used to evaluate the effect of transient, focal opening of the blood-brain barrier (BBB) on the composition of tumor-associated macrophages and microglia (TAMs). BBB opening was induced by magnetic resonance imaging (MRI)-guided focused ultrasound (MRgFUS) combined with microbubbles. CX3CR1-GFP cells and CCR2-RFP cells in brain tumors were quantified in microscopic images. Tumors in animals treated with a single session of MRgFUS did not exhibit significant changes in cell numbers when compared with tumors in animals not receiving FUS. However, tumors that received two or three sessions of MRgFUS had significantly increased amounts of both CX3CR1-GFP and CCR2-RFP cells. The effect of MRgFUS on immune cell composition was also characterized and quantified using flow cytometry. Glioma implantation resulted in increased amounts of lymphocytes, monocytes and neutrophils in the brain parenchyma. Tumors administered MRgFUS exhibited increased numbers of monocytes and monocyte-derived TAMs. In addition, MRgFUS-treated tumors exhibited more CD80+ cells in monocytes and microglia. In summary, transient, focal opening of the BBB using MRgFUS combined with microbubbles can activate the homing and differentiation of monocytes and induce a shift toward a more pro-inflammatory status of the immune environment in glioblastoma.
Collapse
Affiliation(s)
- Yanrong Zhang
- Department of Radiology, Neuroradiology Division, Stanford University, Stanford, CA, USA
| | - Jing Wang
- Department of Radiology, Neuroradiology Division, Stanford University, Stanford, CA, USA; Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Sara Natasha Ghobadi
- Department of Radiology, Neuroradiology Division, Stanford University, Stanford, CA, USA
| | - Haiyan Zhou
- Department of Radiology, Neuroradiology Division, Stanford University, Stanford, CA, USA; Acupuncture and Tuina School/Third Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Ai Huang
- Department of Radiology, Neuroradiology Division, Stanford University, Stanford, CA, USA; Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Marco Gerosa
- Department of Radiology, Neuroradiology Division, Stanford University, Stanford, CA, USA; Department of Diagnostic and Public Health, University of Verona, Verona, Italy
| | - Qingyi Hou
- Department of Radiology, Neuroradiology Division, Stanford University, Stanford, CA, USA; Department of Nuclear Medicine, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Olivier Keunen
- In Vivo Imaging Facility, Luxembourg Institute of Health, Luxembourg
| | - Anna Golebiewska
- Department of Oncology, Luxembourg Institute of Health, Luxembourg
| | - Frezghi G Habte
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford, CA, USA
| | - Gerald A Grant
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, CA, USA
| | - Ramasamy Paulmurugan
- Molecular Imaging Program at Stanford (MIPS), Canary Center for Cancer Early Detection, Department of Radiology, Stanford University, Stanford, CA, USA
| | - Kevin S Lee
- Departments of Neuroscience and Neurosurgery and Center for Brain, Immunology, and Glia, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Max Wintermark
- Department of Neuroradiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
38
|
Qi X, Sun J, Zhu J, Kong D, Roberts N, Dong Y, Huang X, He Q, Xing H, Gong Q. SPatiotemporal-ENcoded acoustic radiation force imaging of focused ultrasound. Front Hum Neurosci 2023; 17:1184629. [PMID: 37180550 PMCID: PMC10172656 DOI: 10.3389/fnhum.2023.1184629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 04/03/2023] [Indexed: 05/16/2023] Open
Abstract
Neuromodulation technology has provided novel therapeutic approaches for diseases caused by neural circuit dysfunction. Transcranial focused ultrasound (FU) is an emerging neuromodulation approach that combines noninvasiveness with relatively sharp focus, even in deep brain regions. It has numerous advantages such as high precision and good safety in neuromodulation, allowing for modulation of both peripheral and central nervous systems. To ensure accurate treatment targeting in FU neuromodulation, a magnetic resonance acoustic radiation force imaging (MR-ARFI) sequence is crucial for the visualization of the focal point. Currently, the commonly used 2D Spin Echo ARFI (2D SE-ARFI) sequence suffers from the long acquisition time, while the echo planar imaging ARFI (EPI-ARFI) sequence with a shorter acquisition time is vulnerable to the magnetic field inhomogeneities. To address these problems, we proposed a spatiotemporal-encoded acoustic radiation force imaging sequence (i.e., SE-SPEN-ARFI, shortened to SPEN-ARFI) in this study. The displacement at the focal spot obtained was highly consistent with that of the SE-ARFI sequence. Our research shows that SPEN-ARFI allows for rapid image acquisition and has less image distortions even under great field inhomogeneities. Therefore, a SPEN-ARFI sequence is a practical alternative for the treatment planning in ultrasound neuromodulation.
Collapse
Affiliation(s)
- Xu Qi
- College of Physics, Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Jiayu Sun
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Jiayu Zhu
- Central Research Institute, United Imaging Healthcare Group, Shanghai, China
| | - Dechen Kong
- College of Physics, Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Neil Roberts
- College of Physics, Sichuan University, Chengdu, China
- Edinburgh Imaging and Centre for Reproductive Health (CFRH), Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Yijing Dong
- Central Research Institute, United Imaging Healthcare Group, Shanghai, China
| | - Xiaoqi Huang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Qiang He
- Brain Laboratory, United Imaging Research Institute of Innovative Medical Equipment, Shenzhen, China
| | - Haoyang Xing
- College of Physics, Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| |
Collapse
|
39
|
Rasouli R, Villegas KM, Tabrizian M. Acoustofluidics - changing paradigm in tissue engineering, therapeutics development, and biosensing. LAB ON A CHIP 2023; 23:1300-1338. [PMID: 36806847 DOI: 10.1039/d2lc00439a] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
For more than 70 years, acoustic waves have been used to screen, diagnose, and treat patients in hundreds of medical devices. The biocompatible nature of acoustic waves, their non-invasive and contactless operation, and their compatibility with wide visualization techniques are just a few of the many features that lead to the clinical success of sound-powered devices. The development of microelectromechanical systems and fabrication technologies in the past two decades reignited the spark of acoustics in the discovery of unique microscale bio applications. Acoustofluidics, the combination of acoustic waves and fluid mechanics in the nano and micro-realm, allowed researchers to access high-resolution and controllable manipulation and sensing tools for particle separation, isolation and enrichment, patterning of cells and bioparticles, fluid handling, and point of care biosensing strategies. This versatility and attractiveness of acoustofluidics have led to the rapid expansion of platforms and methods, making it also challenging for users to select the best acoustic technology. Depending on the setup, acoustic devices can offer a diverse level of biocompatibility, throughput, versatility, and sensitivity, where each of these considerations can become the design priority based on the application. In this paper, we aim to overview the recent advancements of acoustofluidics in the multifaceted fields of regenerative medicine, therapeutic development, and diagnosis and provide researchers with the necessary information needed to choose the best-suited acoustic technology for their application. Moreover, the effect of acoustofluidic systems on phenotypic behavior of living organisms are investigated. The review starts with a brief explanation of acoustofluidic principles, the different working mechanisms, and the advantages or challenges of commonly used platforms based on the state-of-the-art design features of acoustofluidic technologies. Finally, we present an outlook of potential trends, the areas to be explored, and the challenges that need to be overcome in developing acoustofluidic platforms that can echo the clinical success of conventional ultrasound-based devices.
Collapse
Affiliation(s)
- Reza Rasouli
- Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada.
| | - Karina Martinez Villegas
- Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada.
| | - Maryam Tabrizian
- Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada.
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
40
|
Chen M, Peng C, Wu H, Huang CC, Kim T, Traylor Z, Muller M, Chhatbar PY, Nam CS, Feng W, Jiang X. Numerical and experimental evaluation of low-intensity transcranial focused ultrasound wave propagation using human skulls for brain neuromodulation. Med Phys 2023; 50:38-49. [PMID: 36342303 PMCID: PMC10099743 DOI: 10.1002/mp.16090] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Low-intensity transcranial focused ultrasound (tFUS) has gained considerable attention as a promising noninvasive neuromodulatory technique for human brains. However, the complex morphology of the skull hinders scholars from precisely predicting the acoustic energy transmitted and the region of the brain impacted during the sonication. This is due to the fact that different ultrasound frequencies and skull morphology variations greatly affect wave propagation through the skull. PURPOSE Although the acoustic properties of human skull have been studied for tFUS applications, such as tumor ablation using a multielement phased array, there is no consensus about how to choose a single-element focused ultrasound (FUS) transducer with a suitable frequency for neuromodulation. There are interests in exploring the magnitude and dimension of tFUS beam through human parietal bone for modulating specific brain lobes. Herein, we aim to investigate the wave propagation of tFUS on human skulls to understand and address the concerns above. METHODS Both experimental measurements and numerical modeling were conducted to investigate the transmission efficiency and beam pattern of tFUS on five human skulls (C3 and C4 regions) using single-element FUS transducers with six different frequencies (150-1500 kHz). The degassed skull was placed in a water tank, and a calibrated hydrophone was utilized to measure acoustic pressure past it. The cranial computed tomography scan data of each skull were obtained to derive a high-resolution acoustic model (grid point spacing: 0.25 mm) in simulations. Meanwhile, we modified the power-law exponent of acoustic attenuation coefficient to validate numerical modeling and enabled it to be served as a prediction tool, based on the experimental measurements. RESULTS The transmission efficiency and -6 dB beamwidth were evaluated and compared for various frequencies. An exponential decrease in transmission efficiency and a logarithmic decrease of -6 dB beamwidth with an increase in ultrasound frequency were observed. It is found that a >750 kHz ultrasound leads to a relatively lower tFUS transmission efficiency (<5%), whereas a <350 kHz ultrasound contributes to a relatively broader beamwidth (>5 mm). Based on these observations, we further analyzed the dependence of tFUS wave propagation on FUS transducer aperture size. CONCLUSIONS We successfully studied tFUS wave propagation through human skulls at different frequencies experimentally and numerically. The findings have important implications to predict tFUS wave propagation for ultrasound neuromodulation in clinical applications, and guide researchers to develop advanced ultrasound transducers as neural interfaces.
Collapse
Affiliation(s)
- Mengyue Chen
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Chang Peng
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina, USA.,School of Biomedical Engineering, ShanghaiTech University, Shanghai, China
| | - Huaiyu Wu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Chih-Chung Huang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina, USA.,Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Taewon Kim
- Department of Neurology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Zachary Traylor
- Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Marie Muller
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Pratik Y Chhatbar
- Department of Neurology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Chang S Nam
- Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Wuwei Feng
- Department of Neurology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Xiaoning Jiang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
41
|
Leinenga G, Bodea L, Schröder J, Sun G, Zhou Y, Song J, Grubman A, Polo JM, Götz J. Transcriptional signature in microglia isolated from an Alzheimer's disease mouse model treated with scanning ultrasound. Bioeng Transl Med 2023; 8:e10329. [PMID: 36684089 PMCID: PMC9842024 DOI: 10.1002/btm2.10329] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/18/2022] [Accepted: 04/04/2022] [Indexed: 01/25/2023] Open
Abstract
Transcranial scanning ultrasound combined with intravenously injected microbubbles (SUS+MB) has been shown to transiently open the blood-brain barrier and reduce the amyloid-β (Aβ) pathology in the APP23 mouse model of Alzheimer's disease (AD). This has been accomplished through the activation of microglial cells; however, their response to the SUS treatment is incompletely understood. Here, wild-type (WT) and APP23 mice were subjected to SUS+MB, using nonsonicated mice as sham controls. After 48 h, the APP23 mice were injected with methoxy-XO4 to label Aβ aggregates, followed by microglial isolation into XO4+ and XO4- populations using flow cytometry. Both XO4+ and XO4- cells were subjected to RNA sequencing and transcriptome profiling. The analysis of the microglial cells revealed a clear segregation depending on genotype (AD model vs. WT mice) and Aβ internalization (XO4+ vs. XO4- microglia), but interestingly, no differences were found between SUS+MB and sham in WT mice. Differential gene expression analysis in APP23 mice detected 278 genes that were significantly changed by SUS+MB in the XO4+ cells (248 up/30 down) and 242 in XO- cells (225 up/17 down). Pathway analysis highlighted differential expression of genes related to the phagosome pathway and marked upregulation of cell cycle-related transcripts in XO4+ and XO4- microglia isolated from SUS+MB-treated APP23 mice. Together, this highlights the complexity of the microglial response to transcranial ultrasound, with potential applications for the treatment of AD.
Collapse
Affiliation(s)
- Gerhard Leinenga
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of QueenslandBrisbane (St Lucia Campus)QueenslandAustralia
| | - Liviu‐Gabriel Bodea
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of QueenslandBrisbane (St Lucia Campus)QueenslandAustralia
| | - Jan Schröder
- Department of Anatomy & Developmental Biology and the Australian Regenerative Medicine InstituteMonash UniversityMelbourneVictoriaAustralia
| | - Giuzhi Sun
- Department of Anatomy & Developmental Biology and the Australian Regenerative Medicine InstituteMonash UniversityMelbourneVictoriaAustralia
| | - Yichen Zhou
- Department of Anatomy & Developmental Biology and the Australian Regenerative Medicine InstituteMonash UniversityMelbourneVictoriaAustralia
| | - Jae Song
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of QueenslandBrisbane (St Lucia Campus)QueenslandAustralia
| | - Alexandra Grubman
- Department of Anatomy & Developmental Biology and the Australian Regenerative Medicine InstituteMonash UniversityMelbourneVictoriaAustralia
| | - Jose M. Polo
- Department of Anatomy & Developmental Biology and the Australian Regenerative Medicine InstituteMonash UniversityMelbourneVictoriaAustralia
| | - Jürgen Götz
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of QueenslandBrisbane (St Lucia Campus)QueenslandAustralia
| |
Collapse
|
42
|
Sousa JA, Bernardes C, Bernardo-Castro S, Lino M, Albino I, Ferreira L, Brás J, Guerreiro R, Tábuas-Pereira M, Baldeiras I, Santana I, Sargento-Freitas J. Reconsidering the role of blood-brain barrier in Alzheimer's disease: From delivery to target. Front Aging Neurosci 2023; 15:1102809. [PMID: 36875694 PMCID: PMC9978015 DOI: 10.3389/fnagi.2023.1102809] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
The existence of a selective blood-brain barrier (BBB) and neurovascular coupling are two unique central nervous system vasculature features that result in an intimate relationship between neurons, glia, and blood vessels. This leads to a significant pathophysiological overlap between neurodegenerative and cerebrovascular diseases. Alzheimer's disease (AD) is the most prevalent neurodegenerative disease whose pathogenesis is still to be unveiled but has mostly been explored under the light of the amyloid-cascade hypothesis. Either as a trigger, bystander, or consequence of neurodegeneration, vascular dysfunction is an early component of the pathological conundrum of AD. The anatomical and functional substrate of this neurovascular degeneration is the BBB, a dynamic and semi-permeable interface between blood and the central nervous system that has consistently been shown to be defective. Several molecular and genetic changes have been demonstrated to mediate vascular dysfunction and BBB disruption in AD. The isoform ε4 of Apolipoprotein E is at the same time the strongest genetic risk factor for AD and a known promoter of BBB dysfunction. Low-density lipoprotein receptor-related protein 1 (LRP-1), P-glycoprotein, and receptor for advanced glycation end products (RAGE) are examples of BBB transporters implicated in its pathogenesis due to their role in the trafficking of amyloid-β. This disease is currently devoid of strategies that change the natural course of this burdening illness. This unsuccess may partly be explained by our misunderstanding of the disease pathogenesis and our inability to develop drugs that are effectively delivered to the brain. BBB may represent a therapeutic opportunity as a target itself or as a therapeutic vehicle. In this review, we aim to explore the role of BBB in the pathogenesis of AD including the genetic background and detail how it can be targeted in future therapeutic research.
Collapse
Affiliation(s)
- João André Sousa
- Department of Neurology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Catarina Bernardes
- Department of Neurology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Sara Bernardo-Castro
- Department of Neurology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Miguel Lino
- Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Inês Albino
- Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Lino Ferreira
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - José Brás
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, United States
| | - Rita Guerreiro
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, United States
| | - Miguel Tábuas-Pereira
- Department of Neurology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Inês Baldeiras
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Isabel Santana
- Department of Neurology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - João Sargento-Freitas
- Department of Neurology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| |
Collapse
|
43
|
Belkacem AN, Jamil N, Khalid S, Alnajjar F. On closed-loop brain stimulation systems for improving the quality of life of patients with neurological disorders. Front Hum Neurosci 2023; 17:1085173. [PMID: 37033911 PMCID: PMC10076878 DOI: 10.3389/fnhum.2023.1085173] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
Emerging brain technologies have significantly transformed human life in recent decades. For instance, the closed-loop brain-computer interface (BCI) is an advanced software-hardware system that interprets electrical signals from neurons, allowing communication with and control of the environment. The system then transmits these signals as controlled commands and provides feedback to the brain to execute specific tasks. This paper analyzes and presents the latest research on closed-loop BCI that utilizes electric/magnetic stimulation, optogenetic, and sonogenetic techniques. These techniques have demonstrated great potential in improving the quality of life for patients suffering from neurodegenerative or psychiatric diseases. We provide a comprehensive and systematic review of research on the modalities of closed-loop BCI in recent decades. To achieve this, the authors used a set of defined criteria to shortlist studies from well-known research databases into categories of brain stimulation techniques. These categories include deep brain stimulation, transcranial magnetic stimulation, transcranial direct-current stimulation, transcranial alternating-current stimulation, and optogenetics. These techniques have been useful in treating a wide range of disorders, such as Alzheimer's and Parkinson's disease, dementia, and depression. In total, 76 studies were shortlisted and analyzed to illustrate how closed-loop BCI can considerably improve, enhance, and restore specific brain functions. The analysis revealed that literature in the area has not adequately covered closed-loop BCI in the context of cognitive neural prosthetics and implanted neural devices. However, the authors demonstrate that the applications of closed-loop BCI are highly beneficial, and the technology is continually evolving to improve the lives of individuals with various ailments, including those with sensory-motor issues or cognitive deficiencies. By utilizing emerging techniques of stimulation, closed-loop BCI can safely improve patients' cognitive and affective skills, resulting in better healthcare outcomes.
Collapse
Affiliation(s)
- Abdelkader Nasreddine Belkacem
- Department of Computer and Network Engineering, College of Information Technology, UAE University, Al-Ain, United Arab Emirates
- *Correspondence: Abdelkader Nasreddine Belkacem
| | - Nuraini Jamil
- Department of Computer Science and Software Engineering, College of Information Technology, UAE University, Al-Ain, United Arab Emirates
| | - Sumayya Khalid
- Department of Computer Science and Software Engineering, College of Information Technology, UAE University, Al-Ain, United Arab Emirates
| | - Fady Alnajjar
- Department of Computer Science and Software Engineering, College of Information Technology, UAE University, Al-Ain, United Arab Emirates
- Center for Brain Science, RIKEN, Saitama, Japan
- Fady Alnajjar
| |
Collapse
|
44
|
Becker CR, Milad MR. Contemporary Approaches Toward Neuromodulation of Fear Extinction and Its Underlying Neural Circuits. Curr Top Behav Neurosci 2023; 64:353-387. [PMID: 37658219 DOI: 10.1007/7854_2023_442] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
Neuroscience and neuroimaging research have now identified brain nodes that are involved in the acquisition, storage, and expression of conditioned fear and its extinction. These brain regions include the ventromedial prefrontal cortex (vmPFC), dorsal anterior cingulate cortex (dACC), amygdala, insular cortex, and hippocampus. Psychiatric neuroimaging research shows that functional dysregulation of these brain regions might contribute to the etiology and symptomatology of various psychopathologies, including anxiety disorders and post traumatic stress disorder (PTSD) (Barad et al. Biol Psychiatry 60:322-328, 2006; Greco and Liberzon Neuropsychopharmacology 41:320-334, 2015; Milad et al. Biol Psychiatry 62:1191-1194, 2007a, Biol Psychiatry 62:446-454, b; Maren and Quirk Nat Rev Neurosci 5:844-852, 2004; Milad and Quirk Annu Rev Psychol 63:129, 2012; Phelps et al. Neuron 43:897-905, 2004; Shin and Liberzon Neuropsychopharmacology 35:169-191, 2009). Combined, these findings indicate that targeting the activation of these nodes and modulating their functional interactions might offer an opportunity to further our understanding of how fear and threat responses are formed and regulated in the human brain, which could lead to enhancing the efficacy of current treatments or creating novel treatments for PTSD and other psychiatric disorders (Marin et al. Depress Anxiety 31:269-278, 2014; Milad et al. Behav Res Ther 62:17-23, 2014). Device-based neuromodulation techniques provide a promising means for directly changing or regulating activity in the fear extinction network by targeting functionally connected brain regions via stimulation patterns (Raij et al. Biol Psychiatry 84:129-137, 2018; Marković et al. Front Hum Neurosci 15:138, 2021). In the past ten years, notable advancements in the precision, safety, comfort, accessibility, and control of administration have been made to the established device-based neuromodulation techniques to improve their efficacy. In this chapter we discuss ten years of progress surrounding device-based neuromodulation techniques-Electroconvulsive Therapy (ECT), Transcranial Magnetic Stimulation (TMS), Magnetic Seizure Therapy (MST), Transcranial Focused Ultrasound (TUS), Deep Brain Stimulation (DBS), Vagus Nerve Stimulation (VNS), and Transcranial Electrical Stimulation (tES)-as research and clinical tools for enhancing fear extinction and treating PTSD symptoms. Additionally, we consider the emerging research, current limitations, and possible future directions for these techniques.
Collapse
Affiliation(s)
- Claudia R Becker
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, USA
| | - Mohammed R Milad
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
45
|
Wang Y, Bai Y, Xiao X, Wang L, Wei G, Guo M, Song X, Tian Y, Ming D, Yang J, Zheng C. Low-intensity focused ultrasound stimulation reverses social avoidance behavior in mice experiencing social defeat stress. Cereb Cortex 2022; 32:5580-5596. [PMID: 35188969 DOI: 10.1093/cercor/bhac037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 01/25/2023] Open
Abstract
The excitatory neurons of the medial prefrontal cortex (mPFC) respond to social stimuli. However, little is known about how the neural activity is altered during social avoidance, and whether it could act as a target of low-intensity focused ultrasound stimulation (LIFUS) to rescue social deficits. The present study aimed to investigate the mechanisms of neuronal activities and inflammatory responses underlying the effect of LIFUS on social avoidance. We found that chronic LIFUS stimulation can effectively improve social avoidance in the defeated mice. Calcium imaging recordings by fiber photometry in the defeated mice showed inhibited ensemble activity during social behaviors. LIFUS instantaneously triggered the mPFC neuronal activities, and chronic LIFUS significantly enhanced their neuronal excitation related to social interactions. We further found that the excessive activation of microglial cells and the overexpression of the inflammation signaling, i.e. Toll-like receptors(TLR4)/nuclear factor-kappaB(NF-КB), in mPFC were significantly inhibited by LIFUS. These results suggest that the LIFUS may inhibit social avoidance behavior by reducing activation of the inflammatory response, increasing neuronal excitation, and protecting the integrity of the neuronal structure in the mPFC. Our findings raised the possibility of LIFUS being applied as novel neuromodulation for social avoidance treatment in neuropsychiatric diseases.
Collapse
Affiliation(s)
- Yimeng Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, #92 Weijin Road, Tianjin 300072, China
| | - Yang Bai
- Academy of Medical Engineering and Translational Medicine, Tianjin University, #92 Weijin Road, Tianjin 300072, China
| | - Xi Xiao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, #92 Weijin Road, Tianjin 300072, China.,Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin 300072, China
| | - Ling Wang
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin 300072, China.,School of Precision Instruments and Optoelectronics Engineering, Department of Biomedical Engineering, Tianjin University, #92 Weijin Road, Tianjin 300072, China
| | - Ganjiang Wei
- Academy of Medical Engineering and Translational Medicine, Tianjin University, #92 Weijin Road, Tianjin 300072, China
| | - Mingkun Guo
- Academy of Medical Engineering and Translational Medicine, Tianjin University, #92 Weijin Road, Tianjin 300072, China
| | - Xizi Song
- Academy of Medical Engineering and Translational Medicine, Tianjin University, #92 Weijin Road, Tianjin 300072, China.,Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin 300072, China
| | - Yutao Tian
- Academy of Medical Engineering and Translational Medicine, Tianjin University, #92 Weijin Road, Tianjin 300072, China.,Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin 300072, China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, #92 Weijin Road, Tianjin 300072, China.,Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin 300072, China.,School of Precision Instruments and Optoelectronics Engineering, Department of Biomedical Engineering, Tianjin University, #92 Weijin Road, Tianjin 300072, China
| | - Jiajia Yang
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin 300072, China.,School of Precision Instruments and Optoelectronics Engineering, Department of Biomedical Engineering, Tianjin University, #92 Weijin Road, Tianjin 300072, China
| | - Chenguang Zheng
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin 300072, China.,School of Precision Instruments and Optoelectronics Engineering, Department of Biomedical Engineering, Tianjin University, #92 Weijin Road, Tianjin 300072, China
| |
Collapse
|
46
|
Lee H, Guo Y, Ross JL, Schoen S, Degertekin FL, Arvanitis C. Spatially targeted brain cancer immunotherapy with closed-loop controlled focused ultrasound and immune checkpoint blockade. SCIENCE ADVANCES 2022; 8:eadd2288. [PMID: 36399574 PMCID: PMC9674274 DOI: 10.1126/sciadv.add2288] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 10/21/2022] [Indexed: 05/28/2023]
Abstract
Despite the challenges in treating glioblastomas (GBMs) with immune adjuvants, increasing evidence suggests that targeting the immune cells within the tumor microenvironment (TME) can lead to improved responses. Here, we present a closed-loop controlled, microbubble-enhanced focused ultrasound (MB-FUS) system and test its abilities to safely and effectively treat GBMs using immune checkpoint blockade. The proposed system can fine-tune the exposure settings to promote MB acoustic emission-dependent expression of the proinflammatory marker ICAM-1 and delivery of anti-PD1 in a mouse model of GBM. In addition to enhanced interaction of proinflammatory macrophages within the PD1-expressing TME and significant improvement in survival (P < 0.05), the combined treatment induced long-lived memory T cell formation within the brain that supported tumor rejection in rechallenge experiments. Collectively, our findings demonstrate the ability of MB-FUS to augment the therapeutic impact of immune checkpoint blockade in GBMs and reinforce the notion of spatially tumor-targeted (loco-regional) brain cancer immunotherapy.
Collapse
Affiliation(s)
- Hohyun Lee
- G.W. School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Yutong Guo
- G.W. School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - James L. Ross
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Scott Schoen
- Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
| | - F. Levent Degertekin
- G.W. School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Costas Arvanitis
- G.W. School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Georgia Institute of Technology and Emory University, Department of Biomedical Engineering, Atlanta, GA, USA
| |
Collapse
|
47
|
Opportunities and challenges in delivering biologics for Alzheimer's disease by low-intensity ultrasound. Adv Drug Deliv Rev 2022; 189:114517. [PMID: 36030018 DOI: 10.1016/j.addr.2022.114517] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/15/2022] [Accepted: 08/19/2022] [Indexed: 01/24/2023]
Abstract
Low-intensity ultrasound combined with intravenously injected microbubbles (US+MB) is a novel treatment modality for brain disorders, including Alzheimer's disease (AD), safely and transiently allowing therapeutic agents to overcome the blood-brain barrier (BBB) that constitutes a major barrier for therapeutic agents. Here, we first provide an update on immunotherapies in AD and how US+MB has been applied to AD mouse models and in clinical trials, considering the ultrasound and microbubble parameter space. In the second half of the review, we compare different in vitro BBB models and discuss strategies for combining US+MB with BBB modulators (targeting molecules such as claudin-5), and highlight the insight provided by super-resolution microscopy. Finally, we conclude with a short discussion on how in vitro findings can inform the design of animal studies, and how the insight gained may aid treatment optimization in the clinical ultrasound space.
Collapse
|
48
|
Arsiwala TA, Sprowls SA, Blethen KE, Fladeland RA, Wolford CP, Kielkowski BN, Glass MJ, Wang P, Wilson O, Carpenter JS, Ranjan M, Finomore V, Rezai A, Lockman PR. Characterization of passive permeability after low intensity focused ultrasound mediated blood-brain barrier disruption in a preclinical model. Fluids Barriers CNS 2022; 19:72. [PMID: 36076213 PMCID: PMC9461249 DOI: 10.1186/s12987-022-00369-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/29/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Systemic drug delivery to the central nervous system is limited by presence of the blood-brain barrier (BBB). Low intensity focused ultrasound (LiFUS) is a non-invasive technique to disrupt the BBB, though there is a lack of understanding of the relationship between LiFUS parameters, such as cavitation dose, time of sonication, microbubble dose, and the time course and magnitude of BBB disruption. Discrepancies in these data arise from experimentation with modified, clinically untranslatable transducers and inconsistent parameters for sonication. In this report, we characterize microbubble and cavitation doses as LiFUS variables as they pertain to the time course and size of BBB opening with a clinical Insightec FUS system. METHODS Female Nu/Nu athymic mice were exposed to LiFUS using the ExAblate Neuro system (v7.4, Insightec, Haifa, Israel) following target verification with magnetic resonance imaging (MRI). Microbubble and cavitation doses ranged from 4-400 μL/kg, and 0.1-1.5 cavitation dose, respectively. The time course and magnitude of BBB opening was evaluated using fluorescent tracers, ranging in size from 105-10,000 Da, administered intravenously at different times pre- or post-LiFUS. Quantitative autoradiography and fluorescence microscopy were used to quantify tracer accumulation in brain. RESULTS We observed a microbubble and cavitation dose dependent increase in tracer uptake within brain after LiFUS. Tracer accumulation was size dependent, with 14C-AIB (100 Da) accumulating to a greater degree than larger markers (~ 625 Da-10 kDa). Our data suggest opening of the BBB via LiFUS is time dependent and biphasic. Accumulation of solutes was highest when administered prior to LiFUS mediated disruption (2-fivefold increases), but was also significantly elevated at 6 h post treatment for both 14C-AIB and Texas Red. CONCLUSION The magnitude of LiFUS mediated BBB opening correlates with concentration of microbubbles, cavitation dose as well as time of tracer administration post-sonication. These data help define the window of maximal BBB opening and applicable sonication parameters on a clinically translatable and commercially available FUS system that can be used to improve passive permeability and accumulation of therapeutics targeting the brain.
Collapse
Affiliation(s)
- Tasneem A. Arsiwala
- grid.268154.c0000 0001 2156 6140Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, HSC, Morgantown, 1 Medical Center Dr, Morgantown, WV 26506 USA
| | - Samuel A. Sprowls
- grid.268154.c0000 0001 2156 6140Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, HSC, Morgantown, 1 Medical Center Dr, Morgantown, WV 26506 USA ,grid.239578.20000 0001 0675 4725Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106 USA
| | - Kathryn E. Blethen
- grid.268154.c0000 0001 2156 6140Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, HSC, Morgantown, 1 Medical Center Dr, Morgantown, WV 26506 USA
| | - Ross A. Fladeland
- grid.268154.c0000 0001 2156 6140Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, HSC, Morgantown, 1 Medical Center Dr, Morgantown, WV 26506 USA
| | - Cullen P. Wolford
- grid.268154.c0000 0001 2156 6140Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, HSC, Morgantown, 1 Medical Center Dr, Morgantown, WV 26506 USA
| | - Brooke N. Kielkowski
- grid.268154.c0000 0001 2156 6140Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, HSC, Morgantown, 1 Medical Center Dr, Morgantown, WV 26506 USA
| | - Morgan J. Glass
- grid.268154.c0000 0001 2156 6140Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, HSC, Morgantown, 1 Medical Center Dr, Morgantown, WV 26506 USA
| | - Peng Wang
- grid.268154.c0000 0001 2156 6140Rockefeller Neuroscience Institute, West Virginia University, 1 Medical Center Dr, Morgantown, WV 26505 USA
| | - Olivia Wilson
- grid.268154.c0000 0001 2156 6140Rockefeller Neuroscience Institute, West Virginia University, 1 Medical Center Dr, Morgantown, WV 26505 USA
| | - Jeffrey S. Carpenter
- grid.268154.c0000 0001 2156 6140Rockefeller Neuroscience Institute, West Virginia University, 1 Medical Center Dr, Morgantown, WV 26505 USA ,grid.268154.c0000 0001 2156 6140Departments of Neuroscience, Neuroradiology, and Neurosurgery, West Virginia University, 1 Medical Center Dr, Morgantown, WV 26505 USA
| | - Manish Ranjan
- grid.268154.c0000 0001 2156 6140Rockefeller Neuroscience Institute, West Virginia University, 1 Medical Center Dr, Morgantown, WV 26505 USA ,grid.268154.c0000 0001 2156 6140Departments of Neuroscience, Neuroradiology, and Neurosurgery, West Virginia University, 1 Medical Center Dr, Morgantown, WV 26505 USA
| | - Victor Finomore
- grid.268154.c0000 0001 2156 6140Departments of Neuroscience, Neuroradiology, and Neurosurgery, West Virginia University, 1 Medical Center Dr, Morgantown, WV 26505 USA
| | - Ali Rezai
- grid.268154.c0000 0001 2156 6140Rockefeller Neuroscience Institute, West Virginia University, 1 Medical Center Dr, Morgantown, WV 26505 USA ,grid.268154.c0000 0001 2156 6140Departments of Neuroscience, Neuroradiology, and Neurosurgery, West Virginia University, 1 Medical Center Dr, Morgantown, WV 26505 USA
| | - Paul R. Lockman
- grid.268154.c0000 0001 2156 6140Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, HSC, Morgantown, 1 Medical Center Dr, Morgantown, WV 26506 USA ,grid.268154.c0000 0001 2156 6140Departments of Neuroscience, Neuroradiology, and Neurosurgery, West Virginia University, 1 Medical Center Dr, Morgantown, WV 26505 USA
| |
Collapse
|
49
|
Guo J, Hai H, Ma Y. Application of extracorporeal shock wave therapy in nervous system diseases: A review. Front Neurol 2022; 13:963849. [PMID: 36062022 PMCID: PMC9428455 DOI: 10.3389/fneur.2022.963849] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/21/2022] [Indexed: 11/29/2022] Open
Abstract
Neurological disorders are one of the leading causes of morbidity and mortality worldwide, and their therapeutic options remain limited. Recent animal and clinical studies have shown the potential of extracorporeal shock wave therapy (ESWT) as an innovative, safe, and cost-effective option to treat neurological disorders. Moreover, the cellular and molecular mechanism of ESWT has been proposed to better understand the regeneration and repairment of neurological disorders by ESWT. In this review, we discuss the principles of ESWT, the animal and clinical studies involving the use of ESWT to treat central and peripheral nervous system diseases, and the proposed cellular and molecular mechanism of ESWT. We also discuss the challenges encountered when applying ESWT to the human brain and spinal cord and the new potential applications of ESWT in treating neurological disorders.
Collapse
|
50
|
Fan CH, Ho YJ, Lin CW, Wu N, Chiang PH, Yeh CK. State-of-the-art of ultrasound-triggered drug delivery from ultrasound-responsive drug carriers. Expert Opin Drug Deliv 2022; 19:997-1009. [PMID: 35930441 DOI: 10.1080/17425247.2022.2110585] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The development of new tools to locally and non-invasively transferring therapeutic substances at the desired site in deep living tissue has been a long sought-after goal within the drug delivery field. Among the established methods, ultrasound (US) with US-responsive carriers holds great promise and demonstrates on-demand delivery of a variety of functional substances with spatial precision of several millimeters in deep-seated tissues in animal models and humans. These properties have motivated several explorations of US with US responsive carriers as a modality for neuromodulation and the treatment of various diseases, such as stroke and cancer. AREAS COVERED This article briefly discussed three specific mechanisms that enhance in vivo drug delivery via US with US-responsive carriers: 1) permeabilizing cellular membrane, 2) increasing the permeability of vessels, and 3) promoting cellular endocytotic uptake. Besides, a series of US-responsive drug carriers are discussed, with an emphasis on the relation between structural feature and therapeutic outcome. EXPERT OPINION This article summarized current development for each of US-responsive drug carrier, focusing on the routes of enhancing delivery and applications. The mechanisms of interaction between US-responsive carriers and US energy, such as cavitation, hyperthermia, and reactive oxygen species, as well as how these interactions can improve drug delivery into target cell/tissue. It can be expected that there are serval efforts to further identification of US-responsive particles, design of novel US waveform sequence, and survey of optimal combination between US parameters and US-responsive carriers for better controlling the spatiotemporal drug release profile, stability, and safety in vivo. The authors believe these will provide novel tools for precisely designing treatment strategies and significantly benefit the clinical management of several diseases.
Collapse
Affiliation(s)
- Ching-Hsiang Fan
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan.,Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Ju Ho
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Chia-Wei Lin
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Nan Wu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Pei-Hua Chiang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Chih-Kuang Yeh
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|