1
|
Tsai ML, Hsieh KLC, Liu YL, Yang YS, Chang H, Wong TT, Peng SJ. Morphometric and radiomics analysis toward the prediction of epilepsy associated with supratentorial low-grade glioma in children. Cancer Imaging 2025; 25:63. [PMID: 40390117 PMCID: PMC12090388 DOI: 10.1186/s40644-025-00881-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Accepted: 05/12/2025] [Indexed: 05/21/2025] Open
Abstract
OBJECTIVES Understanding the impact of epilepsy on pediatric brain tumors is crucial to diagnostic precision and optimal treatment selection. This study investigated MRI radiomics features, tumor location, voxel-based morphometry (VBM) for gray matter density, and tumor volumetry to differentiate between children with low grade glioma (LGG)-associated epilepsies and those without, and further identified key radiomics features for predicting of epilepsy risk in children with supratentorial LGG to construct an epilepsy prediction model. METHODS A total of 206 radiomics features of tumors and voxel-based morphometric analysis of tumor location features were extracted from T2-FLAIR images in a primary cohort of 48 children with LGG with epilepsy (N = 23) or without epilepsy (N = 25), prior to surgery. Feature selection was performed using the minimum redundancy maximum relevance algorithm, and leave-one-out cross-validation was applied to assess the predictive performance of radiomics and tumor location signatures in differentiating epilepsy-associated LGG from non-epilepsy cases. RESULTS Voxel-based morphometric analysis showed significant positive t-scores within bilateral temporal cortex and negative t-scores in basal ganglia between epilepsy and non-epilepsy groups. Eight radiomics features were identified as significant predictors of epilepsy in LGG, encompassing characteristics of 2 locations, 2 shapes, 1 image gray scale intensity, and 3 textures. The most important predictor was temporal lobe involvement, followed by high dependence high grey level emphasis, elongation, area density, information correlation 1, midbrain and intensity range. The Linear Support Vector Machine (SVM) model yielded the best prediction performance, when implemented with a combination of radiomics features and tumor location features, as evidenced by the following metrics: precision (0.955), recall (0.913), specificity (0.960), accuracy (0.938), F-1 score (0.933), and area under curve (AUC) (0.950). CONCLUSION Our findings demonstrated the efficacy of machine learning models based on radiomics features and voxel-based anatomical locations in predicting the risk of epilepsy in supratentorial LGG. This model provides a highly accurate tool for distinguishing epilepsy-associated LGG in children, supporting precise treatment planning. TRIAL REGISTRATION Not applicable.
Collapse
Affiliation(s)
- Min-Lan Tsai
- Department of Pediatrics, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University Hospital, Taipei, Taiwan
| | - Kevin Li-Chun Hsieh
- Department of Medical Imaging, School of Medicine, Taipei Medical University Hospital, Taipei, Taiwan
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University Hospital, Taipei, Taiwan
| | - Yen-Lin Liu
- Department of Pediatrics, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yi-Shan Yang
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Taipei Medical University Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University Hospital, Taipei, Taiwan
| | - Hsi Chang
- Department of Pediatrics, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University Hospital, Taipei, Taiwan
| | - Tai-Tong Wong
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Taipei Medical University Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University Hospital, Taipei, Taiwan
| | - Syu-Jyun Peng
- In-Service Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, No.250, Wuxing St., Xinyi Dist, Taipei City, 110, Taiwan.
- Clinical Big Data Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
2
|
Westerlund LH, Bergström CK, Laakkonen PM, Le Joncour V. Deciphering the Dialogue between Brain Tumors, Neurons, and Astrocytes. THE AMERICAN JOURNAL OF PATHOLOGY 2025:S0002-9440(25)00153-1. [PMID: 40345526 DOI: 10.1016/j.ajpath.2025.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/19/2025] [Accepted: 04/02/2025] [Indexed: 05/11/2025]
Abstract
Glioblastoma (GB) and brain metastases (BM) from peripheral tumors account for most cases of tumors in the central nervous system (CNS) while also being the deadliest. From a structural point of view, malignant brain tumors are classically characterized by hypercellularity of glioma and vascular endothelial cells. Given these atypical histologic features, GB and BM have long been considered as "foreign" entities with few to no connections to the brain parenchyma. The identification of intricate connections established between GB cells and the brain parenchyma paired with the ability of peripheral metastatic cells to form functional synapses with neurons challenged the concept of brain tumors disconnected from the CNS. Tumor cell integration to the CNS alters brain functionality in patients and accelerates cancer progression. Next-generation precision medicine should therefore attempt to disconnect brain cancer cells from the brain. This review encompasses recent discoveries on the mechanisms underlying these relationships and discusses the impact of these connections on tumor progression. It also summarizes the therapeutic opportunities of interrupting the dialogue between healthy and neoplastic brains.
Collapse
Affiliation(s)
- Leevi H Westerlund
- Translational Cancer Medicine Research Program-CAN-PRO, Faculty of Medicine, Helsinki, Finland; Helsinki University Central Hospital, Helsinki, Finland
| | - Camilla K Bergström
- Neuroscience Center, HiLIFE-Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Pirjo M Laakkonen
- Translational Cancer Medicine Research Program-CAN-PRO, Faculty of Medicine, Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Laboratory Animal Centre, HiLIFE-Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.
| | - Vadim Le Joncour
- Neuroscience Center, HiLIFE-Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
| |
Collapse
|
3
|
Stefan H, Bösebeck F, Rössler K. Brain tumor-associated epilepsies in adulthood: Current state of diagnostic and individual treatment options. Seizure 2025; 128:29-37. [PMID: 38910076 DOI: 10.1016/j.seizure.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/14/2024] [Accepted: 06/03/2024] [Indexed: 06/25/2024] Open
Abstract
Brain tumors are one of the most frequent causes of structural epilepsy and set a major burden on treatment costs and the social integrity of patients. Although promising oncological treatment strategies are already available, epileptological treatment is often intractable and requires lifelong epileptological care. Therefore, treatment strategies must be adapted to age-related needs, and specific aspects of late-onset epilepsy (LOE) must be considered. The practical implementation of individual decisions from tumor boards and the current state of the art in scientific knowledge about pathological mechanisms, modern diagnostic procedures and biomarkers, and patient-individualized treatment options into practical epileptological disease management is a prerequisite. This narrative review focuses on the current work progress regarding pathogenesis, diagnosis, and therapy. Exemplarily, interdisciplinary approaches for optimized individualized therapy will be discussed, emphasizing the combination of neurological-epileptological and oncological perspectives.
Collapse
Affiliation(s)
- Hermann Stefan
- Department of Neurology, Biomagnetism, University Hospital Erlangen, Germany; Private Practice, 50, Allee am Röthelheimpark, Erlangen, Germany.
| | - Frank Bösebeck
- AGAPLESION Diakonieklinikum Rotenburg, Neurological Clinic - Epilepsy Center, Rotenburg, Germany
| | - Karl Rössler
- Medizinische Universität Wien, Klinik für Neurochirurgie, Wien, Austria
| |
Collapse
|
4
|
Lee Y, Lee E, Roh TH, Kim SH. Association between Levetiracetam Use and Survival in Patients with Glioblastoma: A Nationwide Population-Based Study. Cancer Res Treat 2025; 57:369-377. [PMID: 39265622 PMCID: PMC12016850 DOI: 10.4143/crt.2024.355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 09/05/2024] [Indexed: 09/14/2024] Open
Abstract
PURPOSE This study aimed to investigate whether levetiracetam (LEV), the most used antiepileptic drug, influences survival in patients with glioblastoma (GBM), using a national database. MATERIALS AND METHODS This study used data from the Korea Health Insurance Review and Assessment database. Patients diagnosed with GBM between 2007-2018 treated with standard therapy were included. The study population was divided into long-term (≥ 60 days) and short-term (< 30 days) LEV groups. A separate long-term valproic acid (VPA) group (≥ 60 days) was identified for comparison. Demographics, disease characteristics, and treatment parameters were collected. Kaplan-Meier method and Cox regression were used to compare survival outcomes between the groups. RESULTS Overall, 2,971 patients were included, with 1,319 and 1,652 in the short-term and long-term LEV groups, respectively. The median overall survival (OS) for the entire population was 19.15 months post-surgery. Kaplan-Meier analysis revealed a significantly longer median OS in the long-term LEV group versus the short-term LEV group. After adjusting for confounders, Cox proportional hazard analysis revealed an association of long-term LEV use with improved survival, which was also observed in a subgroup analysis of patients without preoperative seizure history. The long-term LEV group demonstrated longer median OS, compared with the long-term VPA group. CONCLUSION Our nationwide population-based study found an association between long-term LEV use and improved survival in patients with GBM, regardless of preoperative seizure history. Prospective studies are needed to validate these findings and investigate the potential impact of LEV on the survival outcomes of patients with GBM.
Collapse
Affiliation(s)
- Yeonhu Lee
- Department of Neurosurgery, Ajou University School of Medicine, Suwon, Korea
| | - Eunyoung Lee
- Department of Neurology, McGovern Medical School at UTHealth, Houston, TX, USA
| | - Tae Hoon Roh
- Department of Neurosurgery, Ajou University School of Medicine, Suwon, Korea
| | - Se-Hyuk Kim
- Department of Neurosurgery, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
5
|
Wang Y, Gao A, Yang H, Bai J, Zhao G, Zhang H, Song Y, Wang C, Zhang Y, Cheng J, Yang G. Using partially shared radiomics features to simultaneously identify isocitrate dehydrogenase mutation status and epilepsy in glioma patients from MRI images. Sci Rep 2025; 15:3591. [PMID: 39875517 PMCID: PMC11775202 DOI: 10.1038/s41598-025-87778-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/22/2025] [Indexed: 01/30/2025] Open
Abstract
Prediction of isocitrate dehydrogenase (IDH) mutation status and epilepsy occurrence are important to glioma patients. Although machine learning models have been constructed for both issues, the correlation between them has not been explored. Our study aimed to exploit this correlation to improve the performance of both of the IDH mutation status identification and epilepsy diagnosis models in patients with glioma II-IV. 399 patients were retrospectively enrolled and divided into a training (n = 279) and an independent test (n = 120) cohort. Multi-center dataset (n = 228) from The Cancer Imaging Archive (TCIA) was used for external test for identification of IDH mutation status. Region of interests comprising the entire tumor and peritumoral edema were automatically segmented using a pre-trained deep learning model. Radiomic features were extracted from T1-weighted, T2-weighted, post-Gadolinium T1 weighted, and T2 fluid-attenuated inversion recovery images. We proposed an iterative approach derived from LASSO to select features shared by two tasks and features specific to each task, before using them to construct the final models. Receiver operating characteristic (ROC) analysis was employed to evaluate the model. The IDH mutation identification model achieved area under the ROC curve (AUC) values of 0.948, 0.946 and 0.860 on the training, internal test, and external test cohorts, respectively. The epilepsy diagnosis model achieved AUCs of 0.924 and 0.880 on the training and internal test cohorts, respectively. The proposed models can identify IDH status and epilepsy with fewer features, thus having better interpretability and lower risk of overfitting. This not only improves its chance of application in clinical settings, but also provides a new scheme to study multiple correlated clinical tasks.
Collapse
Affiliation(s)
- Yida Wang
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, China
- Institute of Magnetic Resonance and Molecular Imaging in Medicine, East China Normal University, Shanghai, China
| | - Ankang Gao
- Department of MRI, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongxi Yang
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, China
- Institute of Magnetic Resonance and Molecular Imaging in Medicine, East China Normal University, Shanghai, China
| | - Jie Bai
- Department of MRI, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guohua Zhao
- Department of MRI, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huiting Zhang
- MR Scientific Marketing, Siemens Healthineers China, Shanghai, China
| | - Yang Song
- MR Scientific Marketing, Siemens Healthineers China, Shanghai, China
| | - Chenglong Wang
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, China
- Institute of Magnetic Resonance and Molecular Imaging in Medicine, East China Normal University, Shanghai, China
| | - Yong Zhang
- Department of MRI, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingliang Cheng
- Department of MRI, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Guang Yang
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, China.
- Institute of Magnetic Resonance and Molecular Imaging in Medicine, East China Normal University, Shanghai, China.
| |
Collapse
|
6
|
Laurenge A, Castro-Vega LJ, Huberfeld G. Reciprocal interactions between glioma and tissue-resident cells fueling tumor progression. HANDBOOK OF CLINICAL NEUROLOGY 2025; 210:177-190. [PMID: 40148044 DOI: 10.1016/b978-0-443-19102-2.00007-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Gliomas are the most frequent primary brain tumor and are essentially incurable. While nondiffuse gliomas are circumscribed, diffuse gliomas display an aggressive behavior characterized by tumor cell migration over large distances into the brain parenchyma, thereby precluding curative surgical resection. Almost all diffuse gliomas progress and recur as higher grades and become resistant to standard-of-care treatments. It is being increasingly recognized that glioma cells establish functional interactions with cells residing in the tumor microenvironment. Of these, tumor-associated microglia and macrophages (TAMs) play critical roles in immunosuppression through modulation of the extracellular matrix, and the secretion of molecules such as cytokines, neurotrophic factors, and micro-RNAs (miRNAs). Conversely, glioma cell signals influence cell states and drive the metabolic reprogramming of TAMs. Similarly, emergent evidence indicates that neuronal activity influences glioma by released factors and by establishing functional synapses with glioma cells to promote tumor growth and invasion. Glioma cells also affect local neuronal activities and maintain connections through microtube gap junctions to amplify local effects. Here, we discuss the molecular mechanisms underlying bidirectional interactions between glioma cells and TAMs, as well as between glioma cells and neurons. A better understanding of these cellular cross talks is crucial for the development of novel therapeutic strategies for diffuse gliomas.
Collapse
Affiliation(s)
- Alice Laurenge
- Genetics & Development of Brain Tumors Laboratory, ICM - Paris Brain Institute, Sorbonne University, UMR S 1127, Inserm U 1127, CNRS UMR 7225, F-75013, Paris, France; AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Neuro-Oncology Department, F-75013, Paris, France
| | - Luis Jaime Castro-Vega
- Genetics & Development of Brain Tumors Laboratory, ICM - Paris Brain Institute, Sorbonne University, UMR S 1127, Inserm U 1127, CNRS UMR 7225, F-75013, Paris, France
| | - Gilles Huberfeld
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Neuronal Signaling in Epilepsy and Glioma, Paris, France; Department of Neurology, Hôpital Fondation Adolphe de Rothschild, Paris, France.
| |
Collapse
|
7
|
Cases‐Cunillera S, Friker LL, Müller P, Becker AJ, Gielen GH. From bedside to bench: New insights in epilepsy-associated tumors based on recent classification updates and animal models on brain tumor networks. Mol Oncol 2024; 18:2951-2965. [PMID: 38899375 PMCID: PMC11619802 DOI: 10.1002/1878-0261.13680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 12/28/2023] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Low-grade neuroepithelial tumors (LGNTs), particularly those with glioneuronal histology, are highly associated with pharmacoresistant epilepsy. Increasing research focused on these neoplastic lesions did not translate into drug discovery; and anticonvulsant or antitumor therapies are not available yet. During the last years, animal modeling has improved, thereby leading to the possibility of generating brain tumors in mice mimicking crucial genetic, molecular and immunohistological features. Among them, intraventricular in utero electroporation (IUE) has been proven to be a valuable tool for the generation of animal models for LGNTs allowing endogenous tumor growth within the mouse brain parenchyma. Epileptogenicity is mostly determined by the slow-growing patterns of these tumors, thus mirroring intrinsic interactions between tumor cells and surrounding neurons is crucial to investigate the mechanisms underlying convulsive activity. In this review, we provide an updated classification of the human LGNT and summarize the most recent data from human and animal models, with a focus on the crosstalk between brain tumors and neuronal function.
Collapse
Affiliation(s)
- Silvia Cases‐Cunillera
- INSERM U1266, Neuronal Signaling in Epilepsy and GliomaInstitute of Psychiatry and Neuroscience of Paris (IPNP), Université Paris CitéParisFrance
- Section for Translational Epilepsy ResearchInstitute of Neuropathology, University Hospital BonnBonnGermany
| | - Lea L. Friker
- Institute of NeuropathologyUniversity Hospital BonnBonnGermany
| | - Philipp Müller
- Section for Translational Epilepsy ResearchInstitute of Neuropathology, University Hospital BonnBonnGermany
| | - Albert J. Becker
- Section for Translational Epilepsy ResearchInstitute of Neuropathology, University Hospital BonnBonnGermany
| | | |
Collapse
|
8
|
Roux A, Saadi TA, Luo M, Le PU, Diaz R, Petrecca K. Working towards understanding the natural history and treatment response of noncanonical IDH mutant astrocytomas. Neurochirurgie 2024; 70:101599. [PMID: 39341335 DOI: 10.1016/j.neuchi.2024.101599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/07/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024]
Affiliation(s)
- Alexandre Roux
- GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, Service de Neurochirurgie, F-75014 Paris, France; Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, IMA-Brain, 75014 Paris, France.
| | - Tariq Al Saadi
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
| | - Michael Luo
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
| | - Phuong Uyen Le
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
| | - Roberto Diaz
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
| | - Kevin Petrecca
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
9
|
Lv W, Wang Y. Neural Influences on Tumor Progression Within the Central Nervous System. CNS Neurosci Ther 2024; 30:e70097. [PMID: 39469896 PMCID: PMC11519750 DOI: 10.1111/cns.70097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/21/2024] [Accepted: 10/13/2024] [Indexed: 10/30/2024] Open
Abstract
For decades, researchers have studied how brain tumors, the immune system, and drugs interact. With the advances in cancer neuroscience, which centers on defining and therapeutically targeting nervous system-cancer interactions, both within the local tumor microenvironment (TME) and on a systemic level, the subtle relationship between neurons and tumors in the central nervous system (CNS) has been deeply studied. Neurons, as the executors of brain functional activities, have been shown to significantly influence the emergence and development of brain tumors, including both primary and metastatic tumors. They engage with tumor cells via chemical or electrical synapses, directly regulating tumors or via intricate coupling networks, and also contribute to the TME through paracrine signaling, secreting proteins that exert regulatory effects. For instance, in a study involving a mouse model of glioblastoma, the authors observed a 42% increase in tumor volume when neuronal activity was stimulated, compared to controls (p < 0.01), indicating a direct correlation between neural activity and tumor growth. These thought-provoking results offer promising new strategies for brain tumor therapies, highlighting the potential of neuronal modulation to curb tumor progression. Future strategies may focus on developing drugs to inhibit or neutralize proteins and other bioactive substances secreted by neurons, break synaptic connections and interactions between infiltrating cells and tumor cells, as well as disrupt electrical coupling within glioma cell networks. By harnessing the insights gained from this research, we aspire to usher in a new era of brain tumor therapies that are both more potent and precise.
Collapse
Affiliation(s)
- Wenhao Lv
- Affiliated Hospital of Hangzhou Normal UniversityHangzhou Normal UniversityHangzhouZhejiangChina
- School of PharmacyHangzhou Normal UniversityHangzhouZhejiangChina
| | - Yongjie Wang
- School of PharmacyHangzhou Normal UniversityHangzhouZhejiangChina
| |
Collapse
|
10
|
Nakai M, Nishimoto S, Higashibeppu Y, Inoue Y. Efficacy of perampanel by etiology in Japanese patients with epilepsy-subpopulation analysis of a prospective post-marketing observational study. Epilepsia Open 2024; 9:1772-1782. [PMID: 38963336 PMCID: PMC11450607 DOI: 10.1002/epi4.13002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/27/2024] [Accepted: 06/17/2024] [Indexed: 07/05/2024] Open
Abstract
OBJECTIVE To examine the efficacy and safety of perampanel (PER) in patients with post-stroke epilepsy (PSE), brain tumor-related epilepsy (BTRE), and post-traumatic epilepsy (PTE) using Japanese real-world data. METHODS The prospective post-marketing observational study included patients with focal seizures with or without focal to bilateral tonic-clonic seizures who received PER combination therapy. The observation period was 24 or 52 weeks after the initial PER administration. The safety and efficacy analysis included 3716 and 3272 patients, respectively. This post hoc analysis examined responder rate (50% reduction in seizure frequency), seizure-free rate (proportion of patients who achieved seizure-free), and safety in patients included in the post-marketing study who had PSE, BTRE, and PTE in the 4 weeks prior to the last observation. RESULTS Overall, 402, 272, and 186 patients were included in the PSE, BTRE, and PTE subpopulations, and 2867 controls in the "Other" population (etiologies other than PSE, BTRE, or PTE). Mean modal dose (the most frequently administered dose) values at 52 weeks were 3.38, 3.36, 3.64, and 4.04 mg/day for PSE, BTRE, PTE, and "Other," respectively; PER retention rates were 56.2%, 54.0%, 52.6%, and 59.7%, respectively. Responder rates (% [95% confidence interval]) were 82% (76.3%-86.5%), 78% (70.8%-83.7%), 67% (56.8%-75.6%), and 50% (47.9%-52.7%) for PSE, BTRE, PTE, and "Other," respectively, and seizure-free rates were 71% (64.5%-76.5%), 62% (54.1%-69.0%), 50% (40.6%-60.4%), and 28% (25.8%-30.1%), respectively. Adverse drug reactions tended to occur less frequently in the PSE (14.7%), BTRE (16.5%), and PTE (16.7%) subpopulations than in the "Other" population (26.3%). SIGNIFICANCE In real-world clinical conditions, efficacy and tolerability for PER combination therapy were observed at low PER doses for the PSE, BTRE, and PTE subpopulations. PLAIN LANGUAGE SUMMARY To find out how well the medication perampanel works and whether it is safe for people who have epilepsy after having had a stroke, brain tumor, or head injury, we used information from real-life medical situations in Japan. We looked at the data of about 3700 Japanese patients with epilepsy who were treated with perampanel. We found that perampanel was used at lower doses and better at controlling seizures, and had fewer side effects for patients with epilepsy caused by these etiologies than the control group.
Collapse
Affiliation(s)
- Miku Nakai
- Neurology DepartmentMedical Headquarters, Eisai Co., Ltd.TokyoJapan
| | - Shohei Nishimoto
- Neurology DepartmentMedical Headquarters, Eisai Co., Ltd.TokyoJapan
| | - Yoichi Higashibeppu
- Clinical Planning and Development DepartmentMedical Headquarters, Eisai Co., Ltd.TokyoJapan
| | - Yushi Inoue
- National Epilepsy CenterNHO Shizuoka Institute of Epilepsy and Neurological DisordersShizuokaJapan
| |
Collapse
|
11
|
Ehara T, Ohka F, Motomura K, Saito R. Epilepsy in Patients with Gliomas. Neurol Med Chir (Tokyo) 2024; 64:253-260. [PMID: 38839295 PMCID: PMC11304448 DOI: 10.2176/jns-nmc.2023-0299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/02/2024] [Indexed: 06/07/2024] Open
Abstract
Brain tumor-related epilepsy (BTRE) is a complication that significantly impairs the quality of life and course of treatment of patients with brain tumors. Several recent studies have shed further light on the mechanisms and pathways by which genes and biological molecules in the tumor microenvironment can cause epilepsy. Moreover, epileptic seizures have been found to promote the growth of brain tumors, making the control of epilepsy a critical factor in treating brain tumors. In this study, we summarize the previous research and recent findings concerning BTRE. Expectedly, a deeper understanding of the underlying genetic and molecular mechanisms leads to safer and more effective treatments for suppressing epileptic symptoms and tumor growth.
Collapse
Affiliation(s)
- Takuro Ehara
- Department of Neuro-Oncology/Neurosurgery, International Medical Center, Saitama Medical University
| | - Fumiharu Ohka
- Department of Neurosurgery, Nagoya University Graduate School of Medicine
| | - Kazuya Motomura
- Department of Neurosurgery, Nagoya University Graduate School of Medicine
| | - Ryuta Saito
- Department of Neurosurgery, Nagoya University Graduate School of Medicine
| |
Collapse
|
12
|
Feyissa AM. Wild Seizing Gliomas! Time-Dependent Characteristics and Prognosis of Glioblastoma-Related Epilepsy. Epilepsy Curr 2024; 24:271-273. [PMID: 39309056 PMCID: PMC11412406 DOI: 10.1177/15357597241253374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/13/2024] [Accepted: 04/22/2024] [Indexed: 09/25/2024] Open
Abstract
Characteristics and Prognosis of Tumor-Related Epilepsy During Tumor Evolution in Patients With IDH Wild-Type Glioblastoma Pallud J, Roux A, Moiraghi A, Aboubakr O, Elia A, Guinard E, Oppenheim C, Tauziede-Espariat A, Parraga E, Gavaret M, Chrètien F, Huberfeld G, Zanello M. Neurology . 2024;102(1): e207902. doi:10.1212/WNL.0000000000207902 Background and Objectives: Tumor-related epilepsy is a well-known symptom of glioblastoma. However, the particular characteristics of epileptic seizures related to glioblastoma, isocitrate dehydrogenase (IDH)-wild-type is almost unexplored longitudinally during the whole course of the disease. We assessed tumor-related epilepsy and seizure control during tumor evolution and the prognostic significance of tumor-related epilepsy. Methods: We performed an observational, retrospective single-center study at one tertiary referral neuro-oncology surgical center (2000-2020). We included adult patients treated for a newly diagnosed supratentorial glioblastoma, IDH-wild-type with available preoperative and postoperative MRI and with available epileptic seizure status at diagnosis. To determine factors associated with tumor-related epilepsy or seizure control, univariate analyses were performed using the χ2 or Fisher exact tests for categorical variables and the unpaired t test or Mann-Whitney rank-sum test for continuous variables. Predictors associated with tumor-related epilepsy and seizure control in unadjusted analysis were entered into backward stepwise logistic regression models. Results: One thousand six patients were enrolled. The cumulative incidence of tumor-related epilepsy increased during tumor evolution (33.1% at diagnosis, 44.7% after oncologic treatment, 52.4% at progression, and 51.8% at the end-of-life phase) and is related to tumor features (cortex involvement, no necrosis, and small volume). Uncontrolled epileptic seizures increased during tumor evolution (20.1% at diagnosis, 32.0% after oncologic treatment, 46.7% at progression, and 41.1% at the end-of-life phase). Epileptic seizure control after oncologic treatment was related to seizure features (uncontrolled before oncologic treatment and focal-to-bilateral tonic-clonic seizures) and to the extent of resection. Epileptic seizure control at tumor progression was related to seizure features (presence at diagnosis and uncontrolled after oncologic treatment) and to the time to progression. Tumor-related epilepsy at diagnosis was a predictor of a longer overall survival (adjusted hazard ratio, 0.78; 95% CI 0.67-0.90; p < 0.001) independent of age, Karnofsky Performance Status score, tumor location and volume, extent of resection, standard combined chemoradiotherapy, levetiracetam use, and MGMT promoter methylation. Discussion: The progression of tumor-related epilepsy with the evolution of glioblastoma, IDH-wild-type, and the effects of surgery on seizure control argue for proper antiseizure medication and maximal safe resection. Tumor-related epilepsy is an independent predictor of a longer survival.
Collapse
|
13
|
Strzelczyk A, Maschio M, Pensel MC, Coppola A, Takahashi S, Izumoto S, Trinka E, Cappucci S, Sainz-Fuertes R, Villanueva V. Perampanel for Treatment of People with a Range of Epilepsy Aetiologies in Clinical Practice: Evidence from the PERMIT Extension Study. Neurol Ther 2024; 13:825-855. [PMID: 38678505 PMCID: PMC11136933 DOI: 10.1007/s40120-024-00618-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/05/2024] [Indexed: 05/01/2024] Open
Abstract
INTRODUCTION It is important to assess the effectiveness of an antiseizure medication in treating different epilepsy aetiologies to optimise individualised therapeutic approaches. Data from the PERaMpanel pooled analysIs of effecTiveness and tolerability (PERMIT) Extension study were used to assess the effectiveness and safety/tolerability of perampanel (PER) when used to treat individuals with a range of epilepsy aetiologies in clinical practice. METHODS A post hoc analysis was conducted of PERMIT Extension data from individuals with a known aetiology. Retention was assessed after 3, 6 and 12 months. Effectiveness was assessed after 3, 6 and 12 months and at the last visit (last observation carried forward). Effectiveness assessments included responder rate (≥ 50% seizure frequency reduction) and seizure freedom rate (no seizures since at least the prior visit). Safety/tolerability was assessed by evaluating adverse events (AEs) and AEs leading to discontinuation. RESULTS PERMIT Extension included 1945 individuals with structural aetiology, 1012 with genetic aetiology, 93 with an infectious aetiology, and 26 with an immune aetiology. Retention rates at 12 months were 61.1% (structural), 65.9% (genetic), 56.8% (infectious) and 56.5% (immune). At the last visit, responder rates (total seizures) were 43.3% (structural), 68.3% (genetic), 37.0% (infectious) and 20.0% (immune), and corresponding seizure freedom rates were 15.8%, 46.5%, 11.1% and 5.0%, respectively. AE incidence rates were 58.0% (structural), 46.5% (genetic), 51.1% (infectious) and 65.0% (immune), and corresponding rates of discontinuation due to AEs over 12 months were 18.9%, 16.4%, 18.5% and 21.7%, respectively. The types of AEs reported were generally consistent across aetiology subgroups, with no idiosyncratic AEs emerging. CONCLUSION Although PER was effective and generally well tolerated when used to treat individuals with a range of epilepsy aetiologies in clinical practice, variability in its effectiveness and tolerability across the subgroups indicates that PER may be particularly useful for individuals with specific epilepsy aetiologies.
Collapse
Affiliation(s)
- Adam Strzelczyk
- Goethe-University Frankfurt, Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany.
| | - Marta Maschio
- Center for Tumor-Related Epilepsy, UOSD Neuroncology, IRCCS IFO Regina Elena National Cancer Institute, Rome, Italy
| | - Max C Pensel
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Antonietta Coppola
- Department of Neuroscience, Odontostomatological and Reproductive Sciences, Epilepsy Centre, Federico II University of Naples, Naples, Italy
| | - Satoru Takahashi
- Department of Neurosurgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shuichi Izumoto
- Department of Neurosurgery, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Eugen Trinka
- Department of Neurology, Centre for Cognitive Neuroscience, Member of EpiCARE, Christian-Doppler University Hospital, Paracelsus Medical University, Salzburg, Austria
- Neuroscience Institute, Centre for Cognitive Neuroscience, Christian-Doppler University Hospital, Paracelsus Medical University, Salzburg, Austria
- Institute of Public Health, Medical Decision-Making and HTA, UMIT - Private University for Health Sciences, Medical Informatics and Technology, Hall in Tyrol, Austria
| | | | | | - Vicente Villanueva
- Refractory Epilepsy Unit, Hospital Universitario y Politécnico La Fe, Member of EpiCARE, Valencia, Spain
| |
Collapse
|
14
|
Meyer J, Yu K, Luna-Figueroa E, Deneen B, Noebels J. Glioblastoma disrupts cortical network activity at multiple spatial and temporal scales. Nat Commun 2024; 15:4503. [PMID: 38802334 PMCID: PMC11130179 DOI: 10.1038/s41467-024-48757-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 05/11/2024] [Indexed: 05/29/2024] Open
Abstract
The emergence of glioblastoma in cortical tissue initiates early and persistent neural hyperexcitability with signs ranging from mild cognitive impairment to convulsive seizures. The influence of peritumoral synaptic density, expansion dynamics, and spatial contours of excess glutamate upon higher order neuronal network modularity is unknown. We combined cellular and widefield imaging of calcium and glutamate fluorescent reporters in two glioblastoma mouse models with distinct synaptic microenvironments and infiltration profiles. Functional metrics of neural ensembles are dysregulated during tumor invasion depending on the stage of malignant progression and tumor cell proximity. Neural activity is differentially modulated during periods of accelerated and inhibited tumor expansion. Abnormal glutamate accumulation precedes and outpaces the spatial extent of baseline neuronal calcium signaling, indicating these processes are uncoupled in tumor cortex. Distinctive excitability homeostasis patterns and functional connectivity of local and remote neuronal populations support the promise of precision genetic diagnosis and management of this devastating brain disease.
Collapse
Affiliation(s)
- Jochen Meyer
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA.
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA.
| | - Kwanha Yu
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | | | - Benjamin Deneen
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Jeffrey Noebels
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA.
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA.
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
15
|
Lange F, Gade R, Einsle A, Porath K, Reichart G, Maletzki C, Schneider B, Henker C, Dubinski D, Linnebacher M, Köhling R, Freiman TM, Kirschstein T. A glutamatergic biomarker panel enables differentiating Grade 4 gliomas/astrocytomas from brain metastases. Front Oncol 2024; 14:1335401. [PMID: 38835368 PMCID: PMC11148222 DOI: 10.3389/fonc.2024.1335401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/16/2024] [Indexed: 06/06/2024] Open
Abstract
Background The differentiation of high-grade glioma and brain tumors of an extracranial origin is eminent for the decision on subsequent treatment regimens. While in high-grade glioma, a surgical resection of the tumor mass is a fundamental part of current standard regimens, in brain metastasis, the burden of the primary tumor must be considered. However, without a cancer history, the differentiation remains challenging in the imaging. Hence, biopsies are common that may help to identify the tumor origin. An additional tool to support the differentiation may be of great help. For this purpose, we aimed to identify a biomarker panel based on the expression analysis of a small sample of tissue to support the pathological analysis of surgery resection specimens. Given that an aberrant glutamate signaling was identified to drive glioblastoma progression, we focused on glutamate receptors and key players of glutamate homeostasis. Methods Based on surgically resected samples from 55 brain tumors, the expression of ionotropic and metabotropic glutamate receptors and key players of glutamate homeostasis were analyzed by RT-PCR. Subsequently, a receiver operating characteristic (ROC) analysis was performed to identify genes whose expression levels may be associated with either glioblastoma or brain metastasis. Results Out of a total of 29 glutamatergic genes analyzed, nine genes presented a significantly different expression level between high-grade gliomas and brain metastases. Of those, seven were identified as potential biomarker candidates including genes encoding for AMPA receptors GRIA1, GRIA2, kainate receptors GRIK1 and GRIK4, metabotropic receptor GRM3, transaminase BCAT1 and the glutamine synthetase (encoded by GLUL). Overall, the biomarker panel achieved an accuracy of 88% (95% CI: 87.1, 90.8) in predicting the tumor entity. Gene expression data, however, could not discriminate between patients with seizures from those without. Conclusion We have identified a panel of seven genes whose expression may serve as a biomarker panel to discriminate glioblastomas and brain metastases at the molecular level. After further validation, our biomarker signatures could be of great use in the decision making on subsequent treatment regimens after diagnosis.
Collapse
Affiliation(s)
- Falko Lange
- Oscar-Langendorff-Institute of Physiology, University Medical Center Rostock, Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock, University of Rostock, Rostock, Germany
| | - Richard Gade
- Oscar-Langendorff-Institute of Physiology, University Medical Center Rostock, Rostock, Germany
| | - Anne Einsle
- Oscar-Langendorff-Institute of Physiology, University Medical Center Rostock, Rostock, Germany
| | - Katrin Porath
- Oscar-Langendorff-Institute of Physiology, University Medical Center Rostock, Rostock, Germany
| | - Gesine Reichart
- Oscar-Langendorff-Institute of Physiology, University Medical Center Rostock, Rostock, Germany
| | - Claudia Maletzki
- Hematology, Oncology, Palliative Medicine, University Medical Center Rostock, Rostock, Germany
| | - Björn Schneider
- Institute of Pathology, University Medical Center Rostock, Rostock, Germany
| | - Christian Henker
- Department of Neurosurgery, University Medical Center Rostock, Rostock, Germany
| | - Daniel Dubinski
- Department of Neurosurgery, University Medical Center Rostock, Rostock, Germany
| | - Michael Linnebacher
- Molecular Oncology and Immunotherapy, Clinic of General Surgery, University Medical Center Rostock, Rostock, Germany
| | - Rüdiger Köhling
- Oscar-Langendorff-Institute of Physiology, University Medical Center Rostock, Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock, University of Rostock, Rostock, Germany
| | - Thomas M Freiman
- Department of Neurosurgery, University Medical Center Rostock, Rostock, Germany
| | - Timo Kirschstein
- Oscar-Langendorff-Institute of Physiology, University Medical Center Rostock, Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock, University of Rostock, Rostock, Germany
| |
Collapse
|
16
|
Du Y, Li R, Fu D, Zhang B, Cui A, Shao Y, Lai Z, Chen R, Chen B, Wang Z, Zhang W, Chu L. Multi-omics technologies and molecular biomarkers in brain tumor-related epilepsy. CNS Neurosci Ther 2024; 30:e14717. [PMID: 38641945 PMCID: PMC11031674 DOI: 10.1111/cns.14717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/04/2024] [Accepted: 03/29/2024] [Indexed: 04/21/2024] Open
Abstract
BACKGROUND Brain tumors are one of the leading causes of epilepsy, and brain tumor-related epilepsy (BTRE) is recognized as the major cause of intractable epilepsy, resulting in huge treatment cost and burden to patients, their families, and society. Although optimal treatment regimens are available, the majority of patients with BTRE show poor resolution of symptoms. BTRE has a very complex and multifactorial etiology, which includes several influencing factors such as genetic and molecular biomarkers. Advances in multi-omics technologies have enabled to elucidate the pathophysiological mechanisms and related biomarkers of BTRE. Here, we reviewed multi-omics technology-based research studies on BTRE published in the last few decades and discussed the present status, development, opportunities, challenges, and prospects in treating BTRE. METHODS First, we provided a general review of epilepsy, BTRE, and multi-omics techniques. Next, we described the specific multi-omics (including genomics, transcriptomics, epigenomics, proteomics, and metabolomics) techniques and related molecular biomarkers for BTRE. We then presented the associated pathogenetic mechanisms of BTRE. Finally, we discussed the development and application of novel omics techniques for diagnosing and treating BTRE. RESULTS Genomics studies have shown that the BRAF gene plays a role in BTRE development. Furthermore, the BRAF V600E variant was found to induce epileptogenesis in the neuronal cell lineage and tumorigenesis in the glial cell lineage. Several genomics studies have linked IDH variants with glioma-related epilepsy, and the overproduction of D2HG is considered to play a role in neuronal excitation that leads to seizure occurrence. The high expression level of Forkhead Box O4 (FOXO4) was associated with a reduced risk of epilepsy occurrence. In transcriptomics studies, VLGR1 was noted as a biomarker of epileptic onset in patients. Several miRNAs such as miR-128 and miRNA-196b participate in BTRE development. miR-128 might be negatively associated with the possibility of tumor-related epilepsy development. The lncRNA UBE2R2-AS1 inhibits the growth and invasion of glioma cells and promotes apoptosis. Quantitative proteomics has been used to determine dynamic changes of protein acetylation in epileptic and non-epileptic gliomas. In another proteomics study, a high expression of AQP-4 was detected in the brain of GBM patients with seizures. By using quantitative RT-PCR and immunohistochemistry assay, a study revealed that patients with astrocytomas and oligoastrocytomas showed high BCL2A1 expression and poor seizure control. By performing immunohistochemistry, several studies have reported the relationship between D2HG overproduction and seizure occurrence. Ki-67 overexpression in WHO grade II gliomas was found to be associated with poor postoperative seizure control. According to metabolomics research, the PI3K/AKT/mTOR pathway is associated with the development of glioma-related epileptogenesis. Another metabolomics study found that SV2A, P-gb, and CAD65/67 have the potential to function as biomarkers for BTRE. CONCLUSIONS Based on the synthesized information, this review provided new research perspectives and insights into the early diagnosis, etiological factors, and personalized treatment of BTRE.
Collapse
Affiliation(s)
- Yaoqiang Du
- Laboratory Medicine Center, Department of Transfusion MedicineZhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical CollegeHangzhouChina
- School of Basic Medical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Rusong Li
- The Second School of Clinical MedicineZhejiang Chinese Medical UniversityHangzhouChina
| | - Danqing Fu
- School of Basic Medical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Biqin Zhang
- Cancer Center, Department of HematologyZhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical CollegeHangzhouChina
| | - Ailin Cui
- Cancer Center, Department of Ultrasound MedicineZhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical CollegeHangzhouChina
| | - Yutian Shao
- Zhejiang BioAsia Life Science InstitutePinghuChina
| | - Zeyu Lai
- The Second School of Clinical MedicineZhejiang Chinese Medical UniversityHangzhouChina
| | - Rongrong Chen
- School of Clinical MedicineHangzhou Normal UniversityHangzhouChina
| | - Bingyu Chen
- Laboratory Medicine Center, Department of Transfusion MedicineZhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical CollegeHangzhouChina
| | - Zhen Wang
- Laboratory Medicine Center, Department of Transfusion MedicineZhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical CollegeHangzhouChina
| | - Wei Zhang
- The Second School of Clinical MedicineZhejiang Chinese Medical UniversityHangzhouChina
| | - Lisheng Chu
- School of Basic Medical SciencesZhejiang Chinese Medical UniversityHangzhouChina
- Department of PhysiologyZhejiang Chinese Medical UniversityHangzhouChina
| |
Collapse
|
17
|
Cui X, Wang Q, Liu X, Kang C. Levetiracetam: A Potent Sword against Microglia Polarization in Gliomas. Clin Cancer Res 2024; 30:1073-1075. [PMID: 38170191 DOI: 10.1158/1078-0432.ccr-23-3322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/01/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024]
Abstract
Crosstalk between tumor cells and peritumoral cells contributes to immunosuppressive microenvironment formation in glioblastomas (GBM). A recent study revealed that glioma stem cells activated neuronal activity to promote microglial M2 polarization, leading to GBM progression, which could be pharmacologically blocked by levetiracetam, providing a practical strategy for GBM immunotherapy. See related article by Guo et al., p. 1160.
Collapse
Affiliation(s)
- Xiaoteng Cui
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, P.R China
- Key Laboratory of Post-Neuro Injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, P.R. China
| | - Qixue Wang
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, P.R China
- Key Laboratory of Post-Neuro Injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, P.R. China
| | - Xiaomin Liu
- Neuro-Oncology Center, Tianjin Huanhu Hospital, Nankai University, Tianjin, P.R. China
| | - Chunsheng Kang
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, P.R China
- Key Laboratory of Post-Neuro Injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, P.R. China
| |
Collapse
|
18
|
Tobochnik S, Dorotan MKC, Ghosh HS, Lapinskas E, Vogelzang J, Reardon DA, Ligon KL, Bi WL, Smirnakis SM, Lee JW. Glioma genetic profiles associated with electrophysiologic hyperexcitability. Neuro Oncol 2024; 26:323-334. [PMID: 37713468 PMCID: PMC10836775 DOI: 10.1093/neuonc/noad176] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Indexed: 09/17/2023] Open
Abstract
BACKGROUND Distinct genetic alterations determine glioma aggressiveness, however, the diversity of somatic mutations contributing to peritumoral hyperexcitability and seizures over the course of the disease is uncertain. This study aimed to identify tumor somatic mutation profiles associated with clinically significant hyperexcitability. METHODS A single center cohort of adults with WHO grades 1-4 glioma and targeted exome sequencing (n = 1716) was analyzed and cross-referenced with a validated EEG database to identify the subset of individuals who underwent continuous EEG monitoring (n = 206). Hyperexcitability was defined by the presence of lateralized periodic discharges and/or electrographic seizures. Cross-validated discriminant analysis models trained exclusively on recurrent somatic mutations were used to identify variants associated with hyperexcitability. RESULTS The distribution of WHO grades and tumor mutational burdens were similar between patients with and without hyperexcitability. Discriminant analysis models classified the presence or absence of EEG hyperexcitability with an overall accuracy of 70.9%, regardless of IDH1 R132H inclusion. Predictive variants included nonsense mutations in ATRX and TP53, indel mutations in RBBP8 and CREBBP, and nonsynonymous missense mutations with predicted damaging consequences in EGFR, KRAS, PIK3CA, TP53, and USP28. This profile improved estimates of hyperexcitability in a multivariate analysis controlling for age, sex, tumor location, integrated pathologic diagnosis, recurrence status, and preoperative epilepsy. Predicted somatic mutation variants were over-represented in patients with hyperexcitability compared to individuals without hyperexcitability and those who did not undergo continuous EEG. CONCLUSION These findings implicate diverse glioma somatic mutations in cancer genes associated with peritumoral hyperexcitability. Tumor genetic profiling may facilitate glioma-related epilepsy prognostication and management.
Collapse
Affiliation(s)
- Steven Tobochnik
- Department of Neurology, VA Boston Healthcare System, Boston, Massachusetts, USA
- Department of Neurology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | | | - Hia S Ghosh
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Emily Lapinskas
- Department of Neurology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Jayne Vogelzang
- Department of Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - David A Reardon
- Department of Medical Oncology, Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Keith L Ligon
- Department of Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Wenya Linda Bi
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Stelios M Smirnakis
- Department of Neurology, VA Boston Healthcare System, Boston, Massachusetts, USA
- Department of Neurology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Jong Woo Lee
- Department of Neurology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| |
Collapse
|
19
|
Pallud J, Roux A, Moiraghi A, Aboubakr O, Elia A, Guinard E, Oppenheim C, Tauziede-Espariat A, Parraga E, Gavaret M, Chrètien F, Huberfeld G, Zanello M. Characteristics and Prognosis of Tumor-Related Epilepsy During Tumor Evolution in Patients With IDH Wild-Type Glioblastoma. Neurology 2024; 102:e207902. [PMID: 38165369 PMCID: PMC10834129 DOI: 10.1212/wnl.0000000000207902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 10/03/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Tumor-related epilepsy is a well-known symptom of glioblastoma. However, the particular characteristics of epileptic seizures related to glioblastoma, isocitrate dehydrogenase (IDH)-wild-type is almost unexplored longitudinally during the whole course of the disease. We assessed tumor-related epilepsy and seizure control during tumor evolution and the prognostic significance of tumor-related epilepsy. METHODS We performed an observational, retrospective single-center study at one tertiary referral neuro-oncology surgical center (2000-2020). We included adult patients treated for a newly diagnosed supratentorial glioblastoma, IDH-wild-type with available preoperative and postoperative MRI and with available epileptic seizure status at diagnosis. To determine factors associated with tumor-related epilepsy or seizure control, univariate analyses were performed using the χ2 or Fisher exact tests for categorical variables and the unpaired t test or Mann-Whitney rank-sum test for continuous variables. Predictors associated with tumor-related epilepsy and seizure control in unadjusted analysis were entered into backward stepwise logistic regression models. RESULTS One thousand six patients were enrolled. The cumulative incidence of tumor-related epilepsy increased during tumor evolution (33.1% at diagnosis, 44.7% after oncologic treatment, 52.4% at progression, and 51.8% at the end-of-life phase) and is related to tumor features (cortex involvement, no necrosis, and small volume). Uncontrolled epileptic seizures increased during tumor evolution (20.1% at diagnosis, 32.0% after oncologic treatment, 46.7% at progression, and 41.1% at the end-of-life phase). Epileptic seizure control after oncologic treatment was related to seizure features (uncontrolled before oncologic treatment and focal-to-bilateral tonic-clonic seizures) and to the extent of resection. Epileptic seizure control at tumor progression was related to seizure features (presence at diagnosis and uncontrolled after oncologic treatment) and to the time to progression. Tumor-related epilepsy at diagnosis was a predictor of a longer overall survival (adjusted hazard ratio, 0.78; 95% CI 0.67-0.90; p < 0.001) independent of age, Karnofsky Performance Status score, tumor location and volume, extent of resection, standard combined chemoradiotherapy, levetiracetam use, and MGMT promoter methylation. DISCUSSION The progression of tumor-related epilepsy with the evolution of glioblastoma, IDH-wild-type and the effects of surgery on seizure control argue for proper antiseizure medication and maximal safe resection. Tumor-related epilepsy is an independent predictor of a longer survival.
Collapse
Affiliation(s)
- Johan Pallud
- From the Université Paris Cité (J.P., A.R., A.M., A.E., E.G., C.O., M.G., M.Z.), Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266; Departments of Neurosurgery (J.P., A.R., A.M., O.A., A.E., E.P., M.Z.), Neurophysiology (E.G., M.G.), Neuroradiology (C.O.), Neuropathology (A.T.-E., F.C.), and Neurology (G.H.), Hôpital Fondation Adolphe de Rothschild; and Neuroglial Interactions in Cerebral Physiopathology (G.H.), Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Université PSL Paris, France
| | - Alexandre Roux
- From the Université Paris Cité (J.P., A.R., A.M., A.E., E.G., C.O., M.G., M.Z.), Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266; Departments of Neurosurgery (J.P., A.R., A.M., O.A., A.E., E.P., M.Z.), Neurophysiology (E.G., M.G.), Neuroradiology (C.O.), Neuropathology (A.T.-E., F.C.), and Neurology (G.H.), Hôpital Fondation Adolphe de Rothschild; and Neuroglial Interactions in Cerebral Physiopathology (G.H.), Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Université PSL Paris, France
| | - Alessandro Moiraghi
- From the Université Paris Cité (J.P., A.R., A.M., A.E., E.G., C.O., M.G., M.Z.), Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266; Departments of Neurosurgery (J.P., A.R., A.M., O.A., A.E., E.P., M.Z.), Neurophysiology (E.G., M.G.), Neuroradiology (C.O.), Neuropathology (A.T.-E., F.C.), and Neurology (G.H.), Hôpital Fondation Adolphe de Rothschild; and Neuroglial Interactions in Cerebral Physiopathology (G.H.), Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Université PSL Paris, France
| | - Oumaima Aboubakr
- From the Université Paris Cité (J.P., A.R., A.M., A.E., E.G., C.O., M.G., M.Z.), Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266; Departments of Neurosurgery (J.P., A.R., A.M., O.A., A.E., E.P., M.Z.), Neurophysiology (E.G., M.G.), Neuroradiology (C.O.), Neuropathology (A.T.-E., F.C.), and Neurology (G.H.), Hôpital Fondation Adolphe de Rothschild; and Neuroglial Interactions in Cerebral Physiopathology (G.H.), Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Université PSL Paris, France
| | - Angela Elia
- From the Université Paris Cité (J.P., A.R., A.M., A.E., E.G., C.O., M.G., M.Z.), Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266; Departments of Neurosurgery (J.P., A.R., A.M., O.A., A.E., E.P., M.Z.), Neurophysiology (E.G., M.G.), Neuroradiology (C.O.), Neuropathology (A.T.-E., F.C.), and Neurology (G.H.), Hôpital Fondation Adolphe de Rothschild; and Neuroglial Interactions in Cerebral Physiopathology (G.H.), Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Université PSL Paris, France
| | - Eléonore Guinard
- From the Université Paris Cité (J.P., A.R., A.M., A.E., E.G., C.O., M.G., M.Z.), Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266; Departments of Neurosurgery (J.P., A.R., A.M., O.A., A.E., E.P., M.Z.), Neurophysiology (E.G., M.G.), Neuroradiology (C.O.), Neuropathology (A.T.-E., F.C.), and Neurology (G.H.), Hôpital Fondation Adolphe de Rothschild; and Neuroglial Interactions in Cerebral Physiopathology (G.H.), Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Université PSL Paris, France
| | - Catherine Oppenheim
- From the Université Paris Cité (J.P., A.R., A.M., A.E., E.G., C.O., M.G., M.Z.), Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266; Departments of Neurosurgery (J.P., A.R., A.M., O.A., A.E., E.P., M.Z.), Neurophysiology (E.G., M.G.), Neuroradiology (C.O.), Neuropathology (A.T.-E., F.C.), and Neurology (G.H.), Hôpital Fondation Adolphe de Rothschild; and Neuroglial Interactions in Cerebral Physiopathology (G.H.), Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Université PSL Paris, France
| | - Arnault Tauziede-Espariat
- From the Université Paris Cité (J.P., A.R., A.M., A.E., E.G., C.O., M.G., M.Z.), Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266; Departments of Neurosurgery (J.P., A.R., A.M., O.A., A.E., E.P., M.Z.), Neurophysiology (E.G., M.G.), Neuroradiology (C.O.), Neuropathology (A.T.-E., F.C.), and Neurology (G.H.), Hôpital Fondation Adolphe de Rothschild; and Neuroglial Interactions in Cerebral Physiopathology (G.H.), Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Université PSL Paris, France
| | - Eduardo Parraga
- From the Université Paris Cité (J.P., A.R., A.M., A.E., E.G., C.O., M.G., M.Z.), Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266; Departments of Neurosurgery (J.P., A.R., A.M., O.A., A.E., E.P., M.Z.), Neurophysiology (E.G., M.G.), Neuroradiology (C.O.), Neuropathology (A.T.-E., F.C.), and Neurology (G.H.), Hôpital Fondation Adolphe de Rothschild; and Neuroglial Interactions in Cerebral Physiopathology (G.H.), Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Université PSL Paris, France
| | - Martine Gavaret
- From the Université Paris Cité (J.P., A.R., A.M., A.E., E.G., C.O., M.G., M.Z.), Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266; Departments of Neurosurgery (J.P., A.R., A.M., O.A., A.E., E.P., M.Z.), Neurophysiology (E.G., M.G.), Neuroradiology (C.O.), Neuropathology (A.T.-E., F.C.), and Neurology (G.H.), Hôpital Fondation Adolphe de Rothschild; and Neuroglial Interactions in Cerebral Physiopathology (G.H.), Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Université PSL Paris, France
| | - Fabrice Chrètien
- From the Université Paris Cité (J.P., A.R., A.M., A.E., E.G., C.O., M.G., M.Z.), Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266; Departments of Neurosurgery (J.P., A.R., A.M., O.A., A.E., E.P., M.Z.), Neurophysiology (E.G., M.G.), Neuroradiology (C.O.), Neuropathology (A.T.-E., F.C.), and Neurology (G.H.), Hôpital Fondation Adolphe de Rothschild; and Neuroglial Interactions in Cerebral Physiopathology (G.H.), Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Université PSL Paris, France
| | - Gilles Huberfeld
- From the Université Paris Cité (J.P., A.R., A.M., A.E., E.G., C.O., M.G., M.Z.), Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266; Departments of Neurosurgery (J.P., A.R., A.M., O.A., A.E., E.P., M.Z.), Neurophysiology (E.G., M.G.), Neuroradiology (C.O.), Neuropathology (A.T.-E., F.C.), and Neurology (G.H.), Hôpital Fondation Adolphe de Rothschild; and Neuroglial Interactions in Cerebral Physiopathology (G.H.), Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Université PSL Paris, France
| | - Marc Zanello
- From the Université Paris Cité (J.P., A.R., A.M., A.E., E.G., C.O., M.G., M.Z.), Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266; Departments of Neurosurgery (J.P., A.R., A.M., O.A., A.E., E.P., M.Z.), Neurophysiology (E.G., M.G.), Neuroradiology (C.O.), Neuropathology (A.T.-E., F.C.), and Neurology (G.H.), Hôpital Fondation Adolphe de Rothschild; and Neuroglial Interactions in Cerebral Physiopathology (G.H.), Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Université PSL Paris, France
| |
Collapse
|
20
|
Kuang X, Chen S, Ye Q. The Role of Histone Deacetylases in NLRP3 Inflammasomesmediated Epilepsy. Curr Mol Med 2024; 24:980-1003. [PMID: 37519210 DOI: 10.2174/1566524023666230731095431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/08/2023] [Accepted: 06/19/2023] [Indexed: 08/01/2023]
Abstract
Epilepsy is one of the most common brain disorders that not only causes death worldwide, but also affects the daily lives of patients. Previous studies have revealed that inflammation plays an important role in the pathophysiology of epilepsy. Activation of inflammasomes can promote neuroinflammation by boosting the maturation of caspase-1 and the secretion of various inflammatory effectors, including chemokines, interleukins, and tumor necrosis factors. With the in-depth research on the mechanism of inflammasomes in the development of epilepsy, it has been discovered that NLRP3 inflammasomes may induce epilepsy by mediating neuronal inflammatory injury, neuronal loss and blood-brain barrier dysfunction. Therefore, blocking the activation of the NLRP3 inflammasomes may be a new epilepsy treatment strategy. However, the drugs that specifically block NLRP3 inflammasomes assembly has not been approved for clinical use. In this review, the mechanism of how HDACs, an inflammatory regulator, regulates the activation of NLRP3 inflammasome is summarized. It helps to explore the mechanism of the HDAC inhibitors inhibiting brain inflammatory damage so as to provide a potential therapeutic strategy for controlling the development of epilepsy.
Collapse
Affiliation(s)
- Xi Kuang
- Hainan Health Vocational College,Haikou, Hainan, 570311, China
| | - Shuang Chen
- Hubei Provincial Hospital of Integrated Chinese and Western Medicine, 430022, Hubei, China
| | - Qingmei Ye
- Hainan General Hospital & Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan, China
| |
Collapse
|
21
|
Mortazavi A, Khan AU, Nieblas-Bedolla E, Boddeti U, Bachani M, Ksendzovsky A, Johnson K, Zaghloul KA. Differential gene expression underlying epileptogenicity in patients with gliomas. Neurooncol Adv 2024; 6:vdae103. [PMID: 39022648 PMCID: PMC11252565 DOI: 10.1093/noajnl/vdae103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
Background Seizures are a common sequela for patients suffering from gliomas. Molecular properties are known to influence the initiation of seizures that may influence tumor growth. Different levels of gene expression with seizures related to gliomas remain unclear. We analyzed RNA sequencing of gliomas to further probe these differences. Methods Total RNA sequencing was obtained from The Cancer Genome Atlas-Lower-Grade Glioma project, comprised of 2021 World Health Organization classification low-grade gliomas, including IDH-mutant and IDH-wild type, to distinguish differential expression in patients who did and did not experience seizures. Utilizing QIAGEN Ingenuity Pathways Analysis, we identified canonical and functional pathways to characterize differential expression. Results Of 289 patients with gliomas, 83 (28.7%) had available information regarding seizure occurrence prior to intervention and other pertinent variables of interest. Of these, 50 (60.2%) were allocated to the seizure group. When comparing the level of RNA expression from these tumors between the seizure and non-seizure groups, 52 genes that were significantly differentially regulated were identified. We found canonical pathways that were altered, most significantly RhoGDI and semaphorin neuronal repulsive signaling. Functional gene analysis revealed tumors that promoted seizures had significantly increased functional gene sets involving neuronal differentiation and synaptogenesis. Conclusions In the setting of gliomas, differences in tumor gene expression exist between individuals with and without seizures, despite similarities in patient demographics and other tumor characteristics. There are significant differences in gene expression associated with neuron development and synaptogenesis, ultimately suggesting a mechanistic role of a tumor-neuron synapse in seizure initiation.
Collapse
Affiliation(s)
- Armin Mortazavi
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, USA
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Anas U Khan
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | | | - Ujwal Boddeti
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Muzna Bachani
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Alexander Ksendzovsky
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Kory Johnson
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Kareem A Zaghloul
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| |
Collapse
|
22
|
Müller P, Dietrich D, Schoch S, Pitsch J, Becker AJ, Cases-Cunillera S. Ganglioglioma cells potentiate neuronal network synchronicity and elicit burst discharges via released factors. Neurobiol Dis 2024; 190:106364. [PMID: 38008342 DOI: 10.1016/j.nbd.2023.106364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 11/28/2023] Open
Abstract
Gangliogliomas (GGs) represent the most frequent glioneuronal tumor entity associated with chronic recurrent seizures; rare anaplastic GGs variants retain the glioneuronal character. So far, key mechanisms triggering chronic hyperexcitability in the peritumoral area are unresolved. Based on a recent mouse model for anaplastic GG (BRAFV600E, mTOR activation and Trp53KO) we here assessed the influence of GG-secreted factors on non-neoplastic cells in-vitro. We generated conditioned medium (CM) from primary GG cell cultures to developing primary cortical neurons cultured on multielectrode-arrays and assessed their electrical activity in comparison to neurons incubated with naïve and neuronal CMs. Our results showed that the GG CM, while not affecting the mean firing rates of networks, strongly accelerated the formation of functional networks as indicated increased synchrony of firing and burst activity. Washing out the GG CM did not reverse these effects indicating an irreversible effect on the neuronal network. Mass spectrometry analysis of GG CM detected several enriched proteins associated with neurogenesis as well as gliogenesis, including Gap43, App, Apoe, S100a8, Tnc and Sod1. Concomitantly, immunocytochemical analysis of the neuronal cultures exposed to GG CM revealed abundant astrocytes suggesting that the GG-secreted factors induce astroglial proliferation. Pharmacological inhibition of astrocyte proliferation only partially reversed the accelerated network maturation in neuronal cultures exposed to GG CM indicating that the GG CM exerts a direct effect on the neuronal component. Taken together, we demonstrate that GG-derived paracrine signaling alone is sufficient to induce accelerated neuronal network development accompanied by astrocytic proliferation. Perspectively, a deeper understanding of factors involved may serve as the basis for future therapeutic approaches.
Collapse
Affiliation(s)
- Philipp Müller
- Institute of Neuropathology, Section for Translational Epilepsy Research, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Dirk Dietrich
- Department of Neurosurgery, University Hospital Bonn, 53127 Bonn, Germany
| | - Susanne Schoch
- Institute of Neuropathology, Section for Translational Epilepsy Research, Medical Faculty, University of Bonn, 53127 Bonn, Germany; Department of Epileptology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Julika Pitsch
- Department of Epileptology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Albert J Becker
- Institute of Neuropathology, Section for Translational Epilepsy Research, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Silvia Cases-Cunillera
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Neuronal Signaling in Epilepsy and Glioma, 75014 Paris, France.
| |
Collapse
|
23
|
Rudà R, Bruno F, Pellerino A. Epilepsy in gliomas: recent insights into risk factors and molecular pathways. Curr Opin Neurol 2023; 36:557-563. [PMID: 37865836 DOI: 10.1097/wco.0000000000001214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to discuss the molecular pathways governing the development of seizures in glioma patients. RECENT FINDINGS The intrinsic epileptogenicity of the neuronal component of glioneuronal and neuronal tumors is the most relevant factor for seizure development. The two major molecular alterations behind epileptogenicity are the rat sarcoma virus (RAS)/mitogen-activated protein kinase / extracellular signal-regulated kinase (MAPK/ERK) and phosphatidylinositol-3-kinase / protein kinase B / mammalian target of rapamycin (P13K/AKT/mTOR) pathways. The BRAFv600E mutation has been shown in experimental models to contribute to epileptogenicity, and its inhibition is effective in controlling both seizures and tumor growth. Regarding circumscribed astrocytic gliomas, either BRAFv600E mutation or mTOR hyperactivation represent targets of treatment. The mechanisms of epileptogenicity of diffuse lower-grade gliomas are different: in addition to enhanced glutamatergic mechanisms, the isocitrate dehydrogenase (IDH) 1/2 mutations and their product D2-hydroxyglutarate (D2HG), which is structurally similar to glutamate, exerts excitatory effects on neurons also dependent on the presence of astrocytes. In preclinical models IDH1/2 inhibitors seem to impact both tumor growth and seizures. Conversely, the molecular factors behind the epileptogenicity of glioblastoma are unknown. SUMMARY This review summarizes the current state of molecular knowledge on epileptogenicity in gliomas and highlights the relationships between epileptogenicity and tumor growth.
Collapse
Affiliation(s)
- Roberta Rudà
- Division of Neuro-Oncology, Department of Neuroscience 'Rita Levi Montalcini', University of Turin, Turin, Italy
| | | | | |
Collapse
|
24
|
Wang W, Li X, Ye L, Yin J. A novel deep learning model for glioma epilepsy associated with the identification of human cytomegalovirus infection injuries based on head MR. Front Microbiol 2023; 14:1291692. [PMID: 38029188 PMCID: PMC10653318 DOI: 10.3389/fmicb.2023.1291692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose In this study, a deep learning model was established based on head MRI to predict a crucial evaluation parameter in the assessment of injuries resulting from human cytomegalovirus infection: the occurrence of glioma-related epilepsy. The relationship between glioma and epilepsy was investigated, which serves as a significant indicator of labor force impairment. Methods This study enrolled 142 glioma patients, including 127 from Shengjing Hospital of China Medical University, and 15 from the Second Affiliated Hospital of Dalian Medical University. T1 and T2 sequence images of patients' head MRIs were utilized to predict the occurrence of glioma-associated epilepsy. To validate the model's performance, the results of machine learning and deep learning models were compared. The machine learning model employed manually annotated texture features from tumor regions for modeling. On the other hand, the deep learning model utilized fused data consisting of tumor-containing T1 and T2 sequence images for modeling. Results The neural network based on MobileNet_v3 performed the best, achieving an accuracy of 86.96% on the validation set and 75.89% on the test set. The performance of this neural network model significantly surpassed all the machine learning models, both on the validation and test sets. Conclusion In this study, we have developed a neural network utilizing head MRI, which can predict the likelihood of glioma-associated epilepsy in untreated glioma patients based on T1 and T2 sequence images. This advancement provides forensic support for the assessment of injuries related to human cytomegalovirus infection.
Collapse
Affiliation(s)
- Wei Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Xuanyi Li
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Lou Ye
- Department of Hematology, Da Qing Long Nan Hospital, Daqing, Heilongjiang, China
| | - Jian Yin
- Epileptic Center of Liaoning, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
25
|
Feyissa AM, Sanchez-Boluarte SS, Moniz-Garcia D, Chaichana KL, Sherman WJ, Freund BE, Tatum WO, Middlebrooks EH, Sirven JI, Quinones-Hinojosa A. Risk factors for preoperative and postoperative seizures in patients with glioblastoma according to the 2021 World Health Organization classification. Seizure 2023; 112:26-31. [PMID: 37729723 DOI: 10.1016/j.seizure.2023.09.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/06/2023] [Accepted: 09/14/2023] [Indexed: 09/22/2023] Open
Abstract
OBJECTIVE To identify risk factors for developing glioblastoma (GBM) related preoperative (PRS) and postoperative seizures (POS). Also, we aimed to analyze the impact of PRS and POS on survival in a GBM cohort according to the revised 2021 WHO glioma classification. METHODS We performed a single-center retrospective cohort study of patients with GBM (according to the 2021 World Health Organization Classification) treated at Mayo Clinic Florida between January 2018 and July 2022. Seizures were stratified into preoperative seizures (PRS) and postoperative seizures (POS, >7 days after surgery). Associations between patients' characteristics and overall survival with PRS and POS were assessed. RESULTS One hundred nineteen adults (mean =60.9 years), 49 (41.2 %) females, were identified. The rates of PRS and POS in the cohort were 35.3 % (n = 42) and 37.8 % (n = 45), respectively. Patients with PRS were younger (p = 0.035) and were likely to undergo intraoperative electrocorticography. The incidence of PRS (p = 0.049) and POS (p<0.001) was lower among patients with tumors located in the occipital location. PRS increased the risk of POS after adjusting for age and sex (RR: 2.59, CI = 1.44-4.65, p = 0.001). There was no association between PRS or POS and other patient-related factors, including several tumor molecular markers (TMMs) examined. PRS (p = 0.036), POS (p<0.001), and O6-Methylguanine-DNA Methyltransferase (MGMT) promotor methylation status (p = 0.032) were associated with longer survival time. CONCLUSIONS PRS and POS are associated with non-occipital tumor location and longer survival time in patients with GBM. While younger ages predicted PRS, PRS predicted POS. Well-designed prospective studies with larger sample sizes are needed to clarify the influence of TMMs in the genesis of epileptic seizures in patients with GBM.
Collapse
Affiliation(s)
| | | | | | | | - Wendy J Sherman
- Department of Neurology, Mayo Clinic Florida, FL, United States
| | - Brin E Freund
- Department of Neurology, Mayo Clinic Florida, FL, United States
| | - William O Tatum
- Department of Neurology, Mayo Clinic Florida, FL, United States
| | | | - Joseph I Sirven
- Department of Neurology, Mayo Clinic Florida, FL, United States
| | | |
Collapse
|
26
|
Zhang J, Gong L, Zhu H, Sun W, Tian J, Zhang Y, Liu Q, Li X, Zhang F, Wang S, Zhu S, Ding D, Zhang W, Yang C. RICH2 decreases the mitochondrial number and affects mitochondrial localization in diffuse low-grade glioma-related epilepsy. Neurobiol Dis 2023; 188:106344. [PMID: 37926169 DOI: 10.1016/j.nbd.2023.106344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/07/2023] Open
Abstract
Epilepsy, a common complication of diffuse low-grade gliomas (DLGGs; diffuse oligodendroglioma and astrocytoma collectively), severely compromises the quality of life of patients. DLGG epileptogenicity may primarily be generated by interactions between the tumor and the neocortex. Neuronal uptake of dysfunctional mitochondria from the extracellular environment can lead to abnormal neuronal discharge. Mitochondrial dysfunction is frequently observed in gliomas that can transmigrate across the plasma membranes. Here, we examined the role of the Rho GTPase-activating protein 44 (RICH2) in mitochondrial dynamics and DLGG-related epilepsy. We investigated the association between mitochondrial and RICH2 expression in human DLGG tissues using immunohistochemistry. We examined the association between RICH2 and epilepsy in nude mouse glioma models by electrophysiology. The effect of RICH2 on mitochondrial morphology and calcium motility were assessed by single cell fluorescence microscopy. Quantitative RT-PCR (qRT-PCR) and Western blot analysis were performed to characterize RICH2 induced expression changes in the genes related to mitochondrial dynamics, mitogenesis and mitochondrial function. We found that RICH2 expression was higher in oligodendroglioma than in astrocytoma and was correlated with better prognosis and higher epilepsy rate in patients. The expression of mitochondria may be associated with clinical DLGG-related epilepsy and reduced by RICH2 overexpression. And RICH2 could promote DLGG-related epilepsy in tumorigenic nude mice. RICH2 overexpression decreased calcium flow and the mitochondria released from glioma cells (SW1088 and U251) into the extracellular environment, potentially via downregulation of MFN-1/MFN-2 levels which suggests reduced mitochondrial fusion. In addition, we observed decreased mitochondrial trafficking into neurons (released from glioma cells and trafficked into neurons), which could explain the higher incidence of DLGG-related epilepsy due to reduced neuroprotection. Furthermore, RICH2 downregulated MAPK/ERK/HIF-1 pathway. In conclusion, these results suggest that RICH2 could promote epilepsy by (i) inhibiting mitochondrial fusion via MFN downregulation and Drp-1 upregulation; (ii) altering the MAPK/ERK/Hif-1 signaling axis. RICH2 may be a potential target in the treatment of DLGG-related epilepsy.
Collapse
Affiliation(s)
- Jiarui Zhang
- Department of Pathology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China; Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Li Gong
- Department of Pathology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Huayu Zhu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Wei Sun
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Jing Tian
- Department of Pathology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Yan Zhang
- Department of Pathology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Qiao Liu
- Department of Pathology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiaolan Li
- Department of Pathology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Fuqin Zhang
- Department of Pathology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Shumei Wang
- Department of Pathology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Shaojun Zhu
- Department of Pathology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Dongjing Ding
- Department of Pathology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Wei Zhang
- Department of Pathology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China.
| | - Chen Yang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
27
|
Lia A, Di Spiezio A, Vitalini L, Tore M, Puja G, Losi G. Ion Channels and Ionotropic Receptors in Astrocytes: Physiological Functions and Alterations in Alzheimer's Disease and Glioblastoma. Life (Basel) 2023; 13:2038. [PMID: 37895420 PMCID: PMC10608464 DOI: 10.3390/life13102038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/03/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
The human brain is composed of nearly one hundred billion neurons and an equal number of glial cells, including macroglia, i.e., astrocytes and oligodendrocytes, and microglia, the resident immune cells of the brain. In the last few decades, compelling evidence has revealed that glial cells are far more active and complex than previously thought. In particular, astrocytes, the most abundant glial cell population, not only take part in brain development, metabolism, and defense against pathogens and insults, but they also affect sensory, motor, and cognitive functions by constantly modulating synaptic activity. Not surprisingly, astrocytes are actively involved in neurodegenerative diseases (NDs) and other neurological disorders like brain tumors, in which they rapidly become reactive and mediate neuroinflammation. Reactive astrocytes acquire or lose specific functions that differently modulate disease progression and symptoms, including cognitive impairments. Astrocytes express several types of ion channels, including K+, Na+, and Ca2+ channels, transient receptor potential channels (TRP), aquaporins, mechanoreceptors, and anion channels, whose properties and functions are only partially understood, particularly in small processes that contact synapses. In addition, astrocytes express ionotropic receptors for several neurotransmitters. Here, we provide an extensive and up-to-date review of the roles of ion channels and ionotropic receptors in astrocyte physiology and pathology. As examples of two different brain pathologies, we focus on Alzheimer's disease (AD), one of the most diffuse neurodegenerative disorders, and glioblastoma (GBM), the most common brain tumor. Understanding how ion channels and ionotropic receptors in astrocytes participate in NDs and tumors is necessary for developing new therapeutic tools for these increasingly common neurological conditions.
Collapse
Affiliation(s)
- Annamaria Lia
- Department Biomedical Science, University of Padova, 35131 Padova, Italy; (A.L.); (A.D.S.)
| | - Alessandro Di Spiezio
- Department Biomedical Science, University of Padova, 35131 Padova, Italy; (A.L.); (A.D.S.)
- Neuroscience Institute (CNR-IN), Padova Section, 35131 Padova, Italy
| | - Lorenzo Vitalini
- Department Life Science, University of Modena and Reggio Emilia, 41125 Modena, Italy; (L.V.); (G.P.)
| | - Manuela Tore
- Institute of Nanoscience (CNR-NANO), Modena Section, 41125 Modena, Italy;
- Department Biomedical Science, Metabolic and Neuroscience, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Giulia Puja
- Department Life Science, University of Modena and Reggio Emilia, 41125 Modena, Italy; (L.V.); (G.P.)
| | - Gabriele Losi
- Institute of Nanoscience (CNR-NANO), Modena Section, 41125 Modena, Italy;
- Department Biomedical Science, Metabolic and Neuroscience, University of Modena and Reggio Emilia, 41125 Modena, Italy
| |
Collapse
|
28
|
Hauff NS, Storstein A. Seizure Management and Prophylaxis Considerations in Patients with Brain Tumors. Curr Oncol Rep 2023; 25:787-792. [PMID: 37071297 PMCID: PMC10256653 DOI: 10.1007/s11912-023-01410-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2023] [Indexed: 04/19/2023]
Abstract
PURPOSE OF REVIEW The article gives an overview of the current knowledge in the management of tumor related epilepsy, including systematic reviews and consensus statements as well as recent insight into a potentially more individualized treatment approach. RECENT FINDINGS Tumor molecular markers as IDH1 mutation and MGMT methylation status may provide future treatment targets. Seizure control should be included as a metric in assessing efficacy of tumor treatment. Prophylactic treatment is recommended in all brain tumor patients after the first seizure. Epilepsy has a profound effect on the quality of life in this patient group. The clinician should tailor the choice of seizure prophylactic treatment to the individual patient, with the goal of limiting adverse effects, avoiding interactions and obtaining a high degree of seizure freedom. Status epilepticus is associated with inferior survival and must be treated promptly. A multidisciplinary team should treat patients with brain tumors and epilepsy.
Collapse
Affiliation(s)
- Nils Stenvågnes Hauff
- Department of Neurology, Haukeland University Hospital, Jonas Lies Vei 65, 5021, Bergen, Norway.
| | - Anette Storstein
- Department of Neurology, Haukeland University Hospital, Jonas Lies Vei 65, 5021, Bergen, Norway
| |
Collapse
|
29
|
Sansone G, Pini L, Salvalaggio A, Gaiola M, Volpin F, Baro V, Padovan M, Anglani M, Facchini S, Chioffi F, Zagonel V, D’Avella D, Denaro L, Lombardi G, Corbetta M. Patterns of gray and white matter functional networks involvement in glioblastoma patients: indirect mapping from clinical MRI scans. Front Neurol 2023; 14:1175576. [PMID: 37409023 PMCID: PMC10318144 DOI: 10.3389/fneur.2023.1175576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/22/2023] [Indexed: 07/07/2023] Open
Abstract
Background Resting-state functional-MRI studies identified several cortical gray matter functional networks (GMNs) and white matter functional networks (WMNs) with precise anatomical localization. Here, we aimed at describing the relationships between brain's functional topological organization and glioblastoma (GBM) location. Furthermore, we assessed whether GBM distribution across these networks was associated with overall survival (OS). Materials and methods We included patients with histopathological diagnosis of IDH-wildtype GBM, presurgical MRI and survival data. For each patient, we recorded clinical-prognostic variables. GBM core and edema were segmented and normalized to a standard space. Pre-existing functional connectivity-based atlases were used to define network parcellations: 17 GMNs and 12 WMNs were considered in particular. We computed the percentage of lesion overlap with GMNs and WMNs, both for core and edema. Differences between overlap percentages were assessed through descriptive statistics, ANOVA, post-hoc tests, Pearson's correlation tests and canonical correlations. Multiple linear and non-linear regression tests were employed to explore relationships with OS. Results 99 patients were included (70 males, mean age 62 years). The most involved GMNs included ventral somatomotor, salient ventral attention and default-mode networks; the most involved WMNs were ventral frontoparietal tracts, deep frontal white matter, and superior longitudinal fasciculus system. Superior longitudinal fasciculus system and dorsal frontoparietal tracts were significantly more included in the edema (p < 0.001). 5 main patterns of GBM core distribution across functional networks were found, while edema localization was less classifiable. ANOVA showed significant differences between mean overlap percentages, separately for GMNs and WMNs (p-values<0.0001). Core-N12 overlap predicts higher OS, although its inclusion does not increase the explained OS variance. Discussion and conclusion Both GBM core and edema preferentially overlap with specific GMNs and WMNs, especially associative networks, and GBM core follows five main distribution patterns. Some inter-related GMNs and WMNs were co-lesioned by GBM, suggesting that GBM distribution is not independent of the brain's structural and functional organization. Although the involvement of ventral frontoparietal tracts (N12) seems to have some role in predicting survival, network-topology information is overall scarcely informative about OS. fMRI-based approaches may more effectively demonstrate the effects of GBM on brain networks and survival.
Collapse
Affiliation(s)
- Giulio Sansone
- Department of Neuroscience, University of Padova, Padova, Italy
| | - Lorenzo Pini
- Padova Neuroscience Center (PNC), University of Padova, Padova, Italy
| | - Alessandro Salvalaggio
- Department of Neuroscience, University of Padova, Padova, Italy
- Padova Neuroscience Center (PNC), University of Padova, Padova, Italy
| | - Matteo Gaiola
- Department of Neuroscience, University of Padova, Padova, Italy
| | - Francesco Volpin
- Division of Neurosurgery, Azienda Ospedaliera Università di Padova, Padova, Italy
| | - Valentina Baro
- Academic Neurosurgery, Department of Neurosciences, University of Padova, Padova, Italy
| | - Marta Padovan
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | | | - Silvia Facchini
- Department of Neuroscience, University of Padova, Padova, Italy
| | - Franco Chioffi
- Division of Neurosurgery, Azienda Ospedaliera Università di Padova, Padova, Italy
| | - Vittorina Zagonel
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Domenico D’Avella
- Academic Neurosurgery, Department of Neurosciences, University of Padova, Padova, Italy
| | - Luca Denaro
- Academic Neurosurgery, Department of Neurosciences, University of Padova, Padova, Italy
| | - Giuseppe Lombardi
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Maurizio Corbetta
- Department of Neuroscience, University of Padova, Padova, Italy
- Padova Neuroscience Center (PNC), University of Padova, Padova, Italy
- Venetian Institute of Molecular Medicine (VIMM), Fondazione Biomedica, Padova, Italy
| |
Collapse
|
30
|
Fujii J, Osaki T, Soma Y, Matsuda Y. Critical Roles of the Cysteine-Glutathione Axis in the Production of γ-Glutamyl Peptides in the Nervous System. Int J Mol Sci 2023; 24:ijms24098044. [PMID: 37175751 PMCID: PMC10179188 DOI: 10.3390/ijms24098044] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
γ-Glutamyl moiety that is attached to the cysteine (Cys) residue in glutathione (GSH) protects it from peptidase-mediated degradation. The sulfhydryl group of the Cys residue represents most of the functions of GSH, which include electron donation to peroxidases, protection of reactive sulfhydryl in proteins via glutaredoxin, and glutathione conjugation of xenobiotics, whereas Cys-derived sulfur is also a pivotal component of some redox-responsive molecules. The amount of Cys that is available tends to restrict the capacity of GSH synthesis. In in vitro systems, cystine is the major form in the extracellular milieu, and a specific cystine transporter, xCT, is essential for survival in most lines of cells and in many primary cultivated cells as well. A reduction in the supply of Cys causes GPX4 to be inhibited due to insufficient GSH synthesis, which leads to iron-dependent necrotic cell death, ferroptosis. Cells generally cannot take up GSH without the removal of γ-glutamyl moiety by γ-glutamyl transferase (GGT) on the cell surface. Meanwhile, the Cys-GSH axis is essentially common to certain types of cells; primarily, neuronal cells that contain a unique metabolic system for intercellular communication concerning γ-glutamyl peptides. After a general description of metabolic processes concerning the Cys-GSH axis, we provide an overview and discuss the significance of GSH-related compounds in the nervous system.
Collapse
Affiliation(s)
- Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata 990-9585, Japan
| | - Tsukasa Osaki
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata 990-9585, Japan
| | - Yuya Soma
- Graduate School of Nursing, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan
| | - Yumi Matsuda
- Graduate School of Nursing, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan
| |
Collapse
|
31
|
Perez-Somarriba M, Santa-María V, Cruz O, Muchart J, Gene N, Hinojosa Mena-Bernal J, Gonzalez V, Morales La Madrid A. Seizure control in tumor-associated epilepsy secondary to BRAF inhibition. Pediatr Blood Cancer 2023; 70:e30073. [PMID: 36326132 DOI: 10.1002/pbc.30073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/23/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022]
Affiliation(s)
| | - Vicente Santa-María
- Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Ofelia Cruz
- Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Jordi Muchart
- Department of Radiology, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Nagore Gene
- Department of Developmental Tumor Biology Laboratory, Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu, Barcelona, Spain
| | | | - Veronica Gonzalez
- Department of Pediatric Neurology, Hospital Sant Joan de Déu, Barcelona, Spain
| | | |
Collapse
|
32
|
Tobochnik S, Dorotan MKC, Ghosh HS, Lapinskas E, Vogelzang J, Reardon DA, Ligon KL, Bi WL, Smirnakis SM, Lee JW. Glioma genetic profiles associated with electrophysiologic hyperexcitability. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.02.22.23285841. [PMID: 36865325 PMCID: PMC9980233 DOI: 10.1101/2023.02.22.23285841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Distinct genetic alterations determine glioma aggressiveness, however the diversity of somatic mutations contributing to peritumoral hyperexcitability and seizures is uncertain. In a large cohort of patients with sequenced gliomas (n=1716), we used discriminant analysis models to identify somatic mutation variants associated with electrographic hyperexcitability in a subset with continuous EEG recording (n=206). Overall tumor mutational burdens were similar between patients with and without hyperexcitability. A cross-validated model trained exclusively on somatic mutations classified the presence or absence of hyperexcitability with an overall accuracy of 70.9%, and improved estimates of hyperexcitability and anti-seizure medication failure in multivariate analysis incorporating traditional demographic factors and tumor molecular classifications. Somatic mutation variants of interest were also over-represented in patients with hyperexcitability compared to internal and external reference cohorts. These findings implicate diverse mutations in cancer genes associated with the development of hyperexcitability and response to treatment.
Collapse
Affiliation(s)
- Steven Tobochnik
- Department of Neurology, VA Boston Healthcare System, Boston, MA
- Department of Neurology, Brigham and Women’s Hospital, Boston, MA
| | | | - Hia S. Ghosh
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA
| | - Emily Lapinskas
- Department of Neurology, Brigham and Women’s Hospital, Boston, MA
| | - Jayne Vogelzang
- Department of Pathology, Dana-Farber Cancer Institute, Boston, MA
| | - David A. Reardon
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Keith L. Ligon
- Department of Pathology, Dana-Farber Cancer Institute, Boston, MA
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA
| | - Wenya Linda Bi
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA
| | - Stelios M. Smirnakis
- Department of Neurology, VA Boston Healthcare System, Boston, MA
- Department of Neurology, Brigham and Women’s Hospital, Boston, MA
| | - Jong Woo Lee
- Department of Neurology, Brigham and Women’s Hospital, Boston, MA
| |
Collapse
|
33
|
Antitumor Potential of Antiepileptic Drugs in Human Glioblastoma: Pharmacological Targets and Clinical Benefits. Biomedicines 2023; 11:biomedicines11020582. [PMID: 36831117 PMCID: PMC9953000 DOI: 10.3390/biomedicines11020582] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Glioblastoma (GBM) is characterized by fast-growing cells, genetic and phenotypic heterogeneity, and radio-chemo-therapy resistance, contributing to its dismal prognosis. Various medical comorbidities are associated with the natural history of GBM. The most disabling and greatly affecting patients' quality of life are neurodegeneration, cognitive impairment, and GBM-related epilepsy (GRE). Hallmarks of GBM include molecular intrinsic mediators and pathways, but emerging evidence supports the key role of non-malignant cells within the tumor microenvironment in GBM aggressive behavior. In this context, hyper-excitability of neurons, mediated by glutamatergic and GABAergic imbalance, contributing to GBM growth strengthens the cancer-nervous system crosstalk. Pathogenic mechanisms, clinical features, and pharmacological management of GRE with antiepileptic drugs (AEDs) and their interactions are poorly explored, yet it is a potentially promising field of research in cancer neuroscience. The present review summarizes emerging cooperative mechanisms in oncogenesis and epileptogenesis, focusing on the neuron-to-glioma interface. The main effects and efficacy of selected AEDs used in the management of GRE are discussed in this paper, as well as their potential beneficial activity as antitumor treatment. Overall, although still many unclear processes overlapping in GBM growth and seizure onset need to be elucidated, this review focuses on the intriguing targeting of GBM-neuron mutual interactions to improve the outcome of the so challenging to treat GBM.
Collapse
|
34
|
Proteogenomics of diffuse gliomas reveal molecular subtypes associated with specific therapeutic targets and immune-evasion mechanisms. Nat Commun 2023; 14:505. [PMID: 36720864 PMCID: PMC9889805 DOI: 10.1038/s41467-023-36005-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 01/12/2023] [Indexed: 02/02/2023] Open
Abstract
Diffuse gliomas are devastating brain tumors. Here, we perform a proteogenomic profiling of 213 retrospectively collected glioma tumors. Proteogenomic analysis reveals the downstream biological events leading by EGFR-, IDH1-, TP53-mutations. The comparative analysis illustrates the distinctive features of GBMs and LGGs, indicating CDK2 inhibitor might serve as a promising drug target for GBMs. Further proteogenomic integrative analysis combined with functional experiments highlight the cis-effect of EGFR alterations might lead to glioma tumor cell proliferation through ERK5 medicates nucleotide synthesis process. Proteome-based stratification of gliomas defines 3 proteomic subgroups (S-Ne, S-Pf, S-Im), which could serve as a complement to WHO subtypes, and would provide the essential framework for the utilization of specific targeted therapies for particular glioma subtypes. Immune clustering identifies three immune subtypes with distinctive immune cell types. Further analysis reveals higher EGFR alteration frequencies accounts for elevation of immune check point protein: PD-L1 and CD70 in T-cell infiltrated tumors.
Collapse
|
35
|
Ion Channels in Gliomas-From Molecular Basis to Treatment. Int J Mol Sci 2023; 24:ijms24032530. [PMID: 36768856 PMCID: PMC9916861 DOI: 10.3390/ijms24032530] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 01/31/2023] Open
Abstract
Ion channels provide the basis for the nervous system's intrinsic electrical activity. Neuronal excitability is a characteristic property of neurons and is critical for all functions of the nervous system. Glia cells fulfill essential supportive roles, but unlike neurons, they also retain the ability to divide. This can lead to uncontrolled growth and the formation of gliomas. Ion channels are involved in the unique biology of gliomas pertaining to peritumoral pathology and seizures, diffuse invasion, and treatment resistance. The emerging picture shows ion channels in the brain at the crossroads of neurophysiology and fundamental pathophysiological processes of specific cancer behaviors as reflected by uncontrolled proliferation, infiltration, resistance to apoptosis, metabolism, and angiogenesis. Ion channels are highly druggable, making them an enticing therapeutic target. Targeting ion channels in difficult-to-treat brain tumors such as gliomas requires an understanding of their extremely heterogenous tumor microenvironment and highly diverse molecular profiles, both representing major causes of recurrence and treatment resistance. In this review, we survey the current knowledge on ion channels with oncogenic behavior within the heterogeneous group of gliomas, review ion channel gene expression as genomic biomarkers for glioma prognosis and provide an update on therapeutic perspectives for repurposed and novel ion channel inhibitors and electrotherapy.
Collapse
|
36
|
The Role of Hyperexcitability in Gliomagenesis. Int J Mol Sci 2023; 24:ijms24010749. [PMID: 36614191 PMCID: PMC9820922 DOI: 10.3390/ijms24010749] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/20/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Glioblastoma is the most common malignant primary brain tumor. Recent studies have demonstrated that excitatory or activity-dependent signaling-both synaptic and non-synaptic-contribute to the progression of glioblastoma. Glutamatergic receptors may be stimulated via neuron-tumor synapses or release of glutamate by the tumor itself. Ion currents generated by these receptors directly alter the structure of membrane adhesion molecules and cytoskeletal proteins to promote migratory behavior. Additionally, the hyperexcitable milieu surrounding glioma increases the rate at which tumor cells proliferate and drive recurrent disease. Inhibition of excitatory signaling has shown to effectively reduce its pro-migratory and -proliferative effects.
Collapse
|
37
|
Feyissa AM, Rosenfeld SS, Quiñones-Hinojosa A. Altered glutamatergic and inflammatory pathways promote glioblastoma growth, invasion, and seizures: An overview. J Neurol Sci 2022; 443:120488. [PMID: 36368135 DOI: 10.1016/j.jns.2022.120488] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/03/2022] [Accepted: 11/02/2022] [Indexed: 11/07/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive malignant primary brain cancer. Drug-resistant seizures and cognitive impairments often accompany the invasion of the neocortex by the GBM cells. Recent studies suggest that seizures and glioma share common pathogenic mechanisms and may influence each other. One explanation for the close link between the two conditions is elevated glutamate in the tumor microenvironment (TME) due to an increased expression of the cystine-glutamate transporter with ensuing overactivity of glutamatergic signaling. Excess glutamate in the TME also encourages the polarization of pro-inflammatory tumor-associated macrophages to an anti-inflammatory state causing TME immunosuppression and facilitating tumor invasion. Besides, the recently discovered glutamatergic neurogliomal synapses, partially via their influence on calcium communication in microtube-connected tumor cell networks, drive the progression of GBM by stimulating glioma invasion and growth. Moreover, neuroinflammatory pathways have been shown to have several points of intersection with glutamatergic signaling in the TME, further promoting both epileptogenesis and oncogenesis. Future studies identifying pharmacotherapeutics targeting these elements is an extremely attractive therapeutic strategy for GBM, for which very little therapeutic progress has been made in the past two decades.
Collapse
Affiliation(s)
| | - Steven S Rosenfeld
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA; Department of Hematology/Oncology, Mayo Clinic, Jacksonville, FL, USA
| | | |
Collapse
|
38
|
Tyagunova EE, Zakharov AS, Glukhov AI, Dobrokhotova VZ, Shlapakov TI, Kozlov VV, Korotkova NV, Tyagunova TE. Features of epileptiform activity in patients with diagnosed glioblastoma: from genetic and biochemical mechanisms to clinical aspects. HEAD AND NECK TUMORS (HNT) 2022. [DOI: 10.17650/2222-1468-2022-12-3-102-113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Introduction. glioblastomas multiforme (grade Iv gliomas) are common and the most aggressive primary tumors of the brain with very unfavorable prognosis. In all previously published papers on epileptiform activity in glioblastomas, not enough information on encephalogram results is presented.Aim. To study the features of epileptiform activity in patients with glioblastomas and development of a plan for further study of these patients.Materials and methods. An analysis of articles from Elsevier, Embase, Scopus, The Cochrane Library, global Health, Russian Science Citation Index (RSCI) databases, Scholar, google, web of Science, pubmed search engines and scientific electronic library CyberLeninka was performed. materials were selected considering journal indexing system and citations, scientific novelty of the studies, statistical significance of the results. publications repeating data from previous articles or describing animal experiments were excluded from analysis.Results. During the study, data on mechanisms of epileptiform activity pathogenesis, predisposing factors (tumor location in the temporal, frontal or parietal lobes, IDH-1 and / or IDH-2 gene mutations), treatment options in patients with glioblastomas were systemized. Additionally, and original plan of data accumulation for clinical studied taking into account limitations of the previous studies was developed to increase quality of results interpretation.Conclusion. Epileptiform symptoms in glioblastomas negatively affect patients’ quality of life and lifespan. Currently, researchers actively search for an effective method of treatment of epileptic seizures in patients with glioblastomas. The most effective is combination of temozolomide with valproate and levetiracetam due to good control of seizure frequency, low toxicity, and pharmacological synergy between the drugs.
Collapse
Affiliation(s)
- E. E. Tyagunova
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia
| | - A. S. Zakharov
- Pavlov Ryazan State Medical University, Ministry of Health of Russia
| | - A. I. Glukhov
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia; M.V. Lomonosov Moscow State University
| | - V. Z. Dobrokhotova
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia; N. N. Blokhin National Research Institute of Oncology, Ministry of Health of Russia
| | - T. I. Shlapakov
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia
| | - V. V. Kozlov
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia
| | - N. V. Korotkova
- Pavlov Ryazan State Medical University, Ministry of Health of Russia
| | | |
Collapse
|
39
|
Nakamura Y, Inoue A, Nishikawa M, Ohnishi T, Yano H, Kanemura Y, Ohtsuka Y, Ozaki S, Kusakabe K, Suehiro S, Yamashita D, Shigekawa S, Watanabe H, Kitazawa R, Tanaka J, Kunieda T. Quantitative measurement of peritumoral concentrations of glutamate, N-acetyl aspartate, and lactate on magnetic resonance spectroscopy predicts glioblastoma-related refractory epilepsy. Acta Neurochir (Wien) 2022; 164:3253-3266. [PMID: 36107232 DOI: 10.1007/s00701-022-05363-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/03/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Increased extracellular glutamate is known to cause epileptic seizures in patients with glioblastoma (GBM). However, predicting whether the seizure will be refractory is difficult. The present study investigated whether evaluation of the levels of various metabolites, including glutamate, can predict the occurrence of refractory seizure in GBM by quantitative measurement of metabolite concentrations on magnetic resonance spectroscopy (MRS). METHODS Forty patients were treated according to the same treatment protocol for primary GBM at Ehime University Hospital between April 2017 and July 2021. Of these patients, 23 underwent MRS to determine concentrations of metabolites, including glutamate, N-acetylaspartate, creatine, and lactate, in the tumor periphery by applying LC-Model. The concentration of each metabolite was expressed as a ratio to creatine concentration. Patients were divided into three groups: Type A, patients with no seizures; Type B, patients with seizures that disappeared after treatment; and Type C, patients with seizures that remained unrelieved or appeared after treatment (refractory seizures). Relationships between concentrations of metabolites and seizure types were investigated. RESULTS In 23 GBMs, seizures were confirmed in 11 patients, including Type B in four and Type C in seven. Patients with epilepsy (Type B or C) showed significantly higher glutamate and N-acetylaspartate values than did non-epilepsy patients (Type A) (p < 0.05). No significant differences in glutamate or N-acetylaspartate levels were seen between Types B and C. Conversely, Type C showed significantly higher concentrations of lactate than did Type B (p = 0.001). Cutoff values of lactate-to-creatine, glutamate-to-creatine, and N-acetylaspartate-to-creatine ratios for refractory seizure were > 1.25, > 1.09, and > 0.88, respectively. CONCLUSIONS Extracellular concentrations of glutamate, N-acetylaspartate, and lactate in the tumor periphery were significantly elevated in patients with GBM with refractory seizures. Measurement of these metabolites on MRS may predict refractory epilepsy in such patients and could be an indicator for continuing the use of antiepileptic drugs.
Collapse
Affiliation(s)
- Yawara Nakamura
- Department of Neurosurgery, Ehime University School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Akihiro Inoue
- Department of Neurosurgery, Ehime University School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan.
| | - Masahiro Nishikawa
- Department of Neurosurgery, Ehime University School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Takanori Ohnishi
- Department of Neurosurgery, Washoukai Sadamoto Hospital, 1-6-1 Takehara, Matsuyama, Ehime, 790-0052, Japan
| | - Hajime Yano
- Department of Molecular and Cellular Physiology, Ehime University School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Yonehiro Kanemura
- Department of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital, 2-1-14 Hoenzaka, Osaka, 540-0006, Japan.,Department of Neurosurgery, National Hospital Organization Osaka National Hospital, 2-1-14 Hoenzaka, Osaka, 540-0006, Japan
| | - Yoshihiro Ohtsuka
- Department of Neurosurgery, Ehime University School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Saya Ozaki
- Department of Neurosurgery, Ehime University School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Kosuke Kusakabe
- Department of Neurosurgery, Ehime University School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Satoshi Suehiro
- Department of Neurosurgery, Ehime University School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Daisuke Yamashita
- Department of Neurosurgery, Ehime University School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Seiji Shigekawa
- Department of Neurosurgery, Ehime University School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Hideaki Watanabe
- Department of Neurosurgery, Ehime University School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Riko Kitazawa
- Division of Diagnostic Pathology, Ehime University Hospital, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Junya Tanaka
- Department of Molecular and Cellular Physiology, Ehime University School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Takeharu Kunieda
- Department of Neurosurgery, Ehime University School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| |
Collapse
|
40
|
NMDA receptor signaling induces the chemoresistance of temozolomide via upregulation of MGMT expression in glioblastoma cells. J Neurooncol 2022; 160:375-388. [DOI: 10.1007/s11060-022-04154-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/29/2022] [Indexed: 11/25/2022]
|
41
|
Wang W, Gao R, Ren Z, Yang D, Sun K, Li X, Yan S. Global trends in research of glutamate in epilepsy during past two decades: A bibliometric analysis. Front Neurosci 2022; 16:1042642. [PMID: 36340784 PMCID: PMC9630577 DOI: 10.3389/fnins.2022.1042642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/06/2022] [Indexed: 11/26/2022] Open
Abstract
Epilepsy affects more than 70 million people in the world. It is characterized by recurrent spontaneous seizures, and it is related to many neurological, cognitive, and psychosocial consequences. Glutamate neurotransmitter dysfunction has essential functions in the pathophysiology of epilepsy. In this work, bibliometric analysis was conducted to explore the trends, frontiers, and hotspots of the global scientific output of glutamate in epilepsy research in the past 20 years. The Science Citation Index Expanded of the Web of Science Core Collection (WoSCC) was searched to obtain information on publications and records published between 2002 and 2021. VOSviewer and CiteSpace were used to conduct bibliometric and visual analyses on the overall distribution of annual output, major countries, active institutions, journals, authors, commonly cited literature, and keywords. The impact and quality of the papers were assessed using the global citation score (GCS). Four thousand eight hundred ninety-one publications were retrieved in total. During the past two decades, the number of publications (Np) associated with glutamate in epilepsy has risen yearly. The United States has published the most papers; its H-index and number of citations are also the highest. The League of European Research Universities (LERU) was the most productive institution. In 2016, the total score of the paper written by Zhang Y was 854, ranking first. The keywords that appear most frequently are “epilepsy,” “glutamate,” “temporal lobe epilepsy (TLE),” “hippocampus,” and “seizures.” This study showed that although the publications related to epileptic glutamate fluctuated slightly, the Np increased overall. The United States is a great creator and influential country in this field. The first three authors are Eid, T., Aronica, E., and Smolders, I. “spectrum,” “animal model,” “inflammation,” “mutation,” “dysfunction,” and “prefrontal cortex” are increasing research hotspots. By recognizing the most critical indicators (researchers, countries, research institutes, and journals of glutamate release in epilepsy research), the research hotspot of glutamate in epilepsy could help countries, scholars, and policymakers in this field enhance their understanding of the role of glutamate in epilepsy and make decisions.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pharmacy, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Runshi Gao
- Department of Functional Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhiwei Ren
- Xuanwu Hospital, Beijing Institute of Functional Neurosurgery, Capital Medical University, Beijing, China
| | - Dongju Yang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ke Sun
- Department of Functional Neurology, National Center for Children’s Health of China, Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | - Xiaoling Li
- Department of Pharmacy, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Suying Yan
- Department of Pharmacy, Xuanwu Hospital, Capital Medical University, Beijing, China
- *Correspondence: Suying Yan,
| |
Collapse
|
42
|
Altered Extracellular Matrix as an Alternative Risk Factor for Epileptogenicity in Brain Tumors. Biomedicines 2022; 10:biomedicines10102475. [PMID: 36289737 PMCID: PMC9599244 DOI: 10.3390/biomedicines10102475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Seizures are one of the most common symptoms of brain tumors. The incidence of seizures differs among brain tumor type, grade, location and size, but paediatric-type diffuse low-grade gliomas/glioneuronal tumors are often highly epileptogenic. The extracellular matrix (ECM) is known to play a role in epileptogenesis and tumorigenesis because it is involved in the (re)modelling of neuronal connections and cell-cell signaling. In this review, we discuss the epileptogenicity of brain tumors with a focus on tumor type, location, genetics and the role of the extracellular matrix. In addition to functional problems, epileptogenic tumors can lead to increased morbidity and mortality, stigmatization and life-long care. The health advantages can be major if the epileptogenic properties of brain tumors are better understood. Surgical resection is the most common treatment of epilepsy-associated tumors, but post-surgery seizure-freedom is not always achieved. Therefore, we also discuss potential novel therapies aiming to restore ECM function.
Collapse
|
43
|
Ge H, Di G, Yan Z, Liu D, Liu Y, Song K, Yang K, Hu X, Jiang Z, Hu X, Tian L, Xiao C, Zou Y, Liu H, Chen J. Does epilepsy always indicate worse outcomes? A longitudinal follow-up analysis of 485 glioma patients. World J Surg Oncol 2022; 20:297. [PMID: 36117154 PMCID: PMC9484070 DOI: 10.1186/s12957-022-02772-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/19/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Epilepsy is one of the most common glioma complications, and the two may be connected in more ways than we understand. We aimed to investigate the clinical features of glioma-associated epilepsy and explore the risk factors associated with it. METHODS We collected clinical information from 485 glioma patients in the Nanjing Brain Hospital and conducted 4 periodic follow-up visits. Based on the collected data, we analyzed the clinical characteristics of glioma patients with or without epilepsy and their relationship with survival. RESULTS Among glioma patients, younger people were more likely to have epilepsy. However, epilepsy incidence was independent of gender. Patients with grade II gliomas were most likely to develop epilepsy, while those with grade IV gliomas were least likely. There was no difference in Karnofsky Performance Status scores between patients with glioma-associated epilepsy and those without epilepsy. Additionally, epilepsy was independently associated with longer survival in the World Health Organization grade IV glioma patients. For grades II, III, and IV tumors, the 1-year survival rate of the epilepsy group was higher than that of the non-epilepsy group. CONCLUSIONS Epilepsy did not lead to worse admission performance and correlated with a better prognosis for patients with grade IV glioma.
Collapse
Affiliation(s)
- Honglin Ge
- Department of Neurosurgery, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Guangfu Di
- Department of Neurosurgery, the First Affiliated Hospital (Yijishan Hospital), Wannan Medical College, Wuhu, China
| | - Zheng Yan
- Department of Neurosurgery, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Dongming Liu
- Department of Neurosurgery, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Yong Liu
- Department of Neurosurgery, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| | - Kun Song
- Department of Pathology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Kun Yang
- Department of Neurosurgery, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Xinhua Hu
- Department of Neurosurgery, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.,Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Zijuan Jiang
- Department of Neurosurgery, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Xiao Hu
- Department of Radiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Lei Tian
- Department of Radiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Chaoyong Xiao
- Department of Radiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Yuanjie Zou
- Department of Neurosurgery, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Hongyi Liu
- Department of Neurosurgery, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.,Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Jiu Chen
- Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, 210029, Jiangsu, China. .,Institute of Neuropsychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Fourth Clinical College of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
44
|
Pan C, Winkler F. Insights and opportunities at the crossroads of cancer and neuroscience. Nat Cell Biol 2022; 24:1454-1460. [PMID: 36097070 DOI: 10.1038/s41556-022-00978-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 05/17/2022] [Indexed: 11/09/2022]
Abstract
The biological and pathological importance of mutual interactions between the nervous system and cancer have become increasingly evident. The emerging field of cancer neuroscience aims to decipher key signalling factors of cancer-nervous system crosstalk and to exploit these modulators as targets for improved anticancer therapies. Here we discuss the key achievements in cancer neuroscience research, inspire further interactions on a variety of related research topics, and provide a roadmap for future studies.
Collapse
Affiliation(s)
- Chenchen Pan
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Frank Winkler
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany. .,Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
45
|
Seidel S, Wehner T, Miller D, Wellmer J, Schlegel U, Grönheit W. Brain tumor related epilepsy: pathophysiological approaches and rational management of antiseizure medication. Neurol Res Pract 2022; 4:45. [PMID: 36059029 PMCID: PMC9442934 DOI: 10.1186/s42466-022-00205-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/13/2022] [Indexed: 11/10/2022] Open
Abstract
Background Brain tumor related epilepsy (BTRE) is a common complication of cerebral tumors and its incidence is highly dependent on the type of tumor, ranging from 10–15% in brain metastases to > 80% in low grade gliomas. Clinical management is challenging and has to take into account aspects beyond the treatment of non-tumoral epilepsy. Main body Increasing knowledge about the pathophysiology of BTRE, particularly on glutamatergic mechanisms of oncogenesis and epileptogenesis, might influence management of anti-tumor and BTRE treatment in the future. The first seizure implies the diagnosis of epilepsy in patients with brain tumors. Due to the lack of prospective randomized trials in BTRE, general recommendations for focal epilepsies currently apply concerning the initiation of antiseizure medication (ASM). Non-enzyme inducing ASM is preferable. Prospective trials are needed to evaluate, if AMPA inhibitors like perampanel possess anti-tumor effects. ASM withdrawal has to be weighed very carefully against the risk of seizure recurrence, but can be achievable in selected patients. Permission to drive is possible for some patients with BTRE under well-defined conditions, but requires thorough neurological, radiological, ophthalmological and neuropsychological examination.
Conclusion An evolving knowledge on pathophysiology of BTRE might influence future therapy. Randomized trials on ASM in BTRE with reliable endpoints are needed. Management of withdrawal of ASMs and permission to drive demands thorough diagnostic as well as neurooncological and epileptological expertise.
Collapse
|
46
|
Epilepsy in Older Persons. Neurol Clin 2022; 40:891-905. [DOI: 10.1016/j.ncl.2022.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
47
|
Kumar TS, Afnan WM, Chan CY, Audrey C, Fong SL, Rajandram R, Lim KS, Narayanan V. Impact of seizures and antiseizure medication on survival in patients with glioma. J Neurooncol 2022; 159:657-664. [PMID: 36036318 DOI: 10.1007/s11060-022-04108-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 07/27/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE Seizures are a common presenting symptom among patients with low- and high-grade glioma. However, the impact and inter-relationship between the presence of seizures, anti-seizure medication (ASM) and survival are unclear. We retrospectively analyzed the incidence of seizures and identified the pattern and relationship of anti-seizure medication on survival in our cohort of patients with glioma. METHODS We evaluated all glioma patients who underwent treatment at the University of Malaya Medical Centre (UMMC) between 2008 and 2020. Demographic and clinical data of seizures and pattern of ASM administration in comparison to overall survival were analyzed. RESULTS A total of 235 patients were studied, with a minimum of one year clinical follow-up post-treatment. The median survival for low-grade glioma was 38 months whereas high-grade glioma was 15 months. One-third of our glioma patients (n = 74) presented with seizures. All patients with seizures and a further 31% of patients without seizures were started on anti-seizure medication preoperatively. Seizure and Levetiracetam (LEV) were significantly associated with OS on univariate analysis. However, only LEV (HR 0.49; 95% CI 0.23-0.87; p=0.02) was significantly associated with improving overall survival (OS) on multivariate analysis. Once ASM was adjusted for relevant factors and each other, LEV was associated with improved survival in all grade gliomas (HR 0.52; 95% CI 0.31-0.88; p=0.02) and specifically high-grade gliomas (HR 0.53; 95% CI 0.30-0.94; p=0.03). CONCLUSIONS Pre-operative seizures among patients with glioma indicated a better overall prognosis. The administration of ASM, specifically LEV was associated with a significant survival advantage in our retrospective cohort of patients.
Collapse
Affiliation(s)
- Thinisha Sathis Kumar
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
- Hospital Tanah Merah Kelantan, Tanah Merah, Malaysia
| | - Wan Muhammad Afnan
- Division of Neurology, Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
- Hospital Tanah Merah Kelantan, Tanah Merah, Malaysia
| | - Chet-Ying Chan
- Division of Neurology, Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
- Hospital Tanah Merah Kelantan, Tanah Merah, Malaysia
| | - Christine Audrey
- Division of Neurology, Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
- Hospital Tanah Merah Kelantan, Tanah Merah, Malaysia
| | - Si-Lei Fong
- Division of Neurology, Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
- Hospital Tanah Merah Kelantan, Tanah Merah, Malaysia
| | - Retnagowri Rajandram
- Department of Surgery, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
- Hospital Tanah Merah Kelantan, Tanah Merah, Malaysia
| | - Kheng-Seang Lim
- Division of Neurology, Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
- Hospital Tanah Merah Kelantan, Tanah Merah, Malaysia
| | - Vairavan Narayanan
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia.
- Hospital Tanah Merah Kelantan, Tanah Merah, Malaysia.
| |
Collapse
|
48
|
Hörnschemeyer J, Kirschstein T, Reichart G, Sasse C, Venus J, Einsle A, Porath K, Linnebacher M, Köhling R, Lange F. Studies on Biological and Molecular Effects of Small-Molecule Kinase Inhibitors on Human Glioblastoma Cells and Organotypic Brain Slices. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081258. [PMID: 36013437 PMCID: PMC9409734 DOI: 10.3390/life12081258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/13/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022]
Abstract
Glioblastoma is the most common and aggressive primary brain tumor. Multiple genetic and epigenetic alterations in several major signaling pathways—including the phosphoinositide 3-kinases (PI3K)/AKT/mTOR and the Raf/MEK/ERK pathway—could be found. We therefore aimed to investigate the biological and molecular effects of small-molecule kinase inhibitors that may interfere with those pathways. For this purpose, patient-derived glioblastoma cells were challenged with dactolisib, ipatasertib, MK-2206, regorafenib, or trametinib. To determine the effects of the small-molecule kinase inhibitors, assays of cell proliferation and apoptosis and immunoblot analyses were performed. To further investigate the effects of ipatasertib on organotypic brain slices harboring glioblastoma cells, the tumor growth was estimated. In addition, the network activity in brain slices was assessed by electrophysiological field potential recordings. Multi-kinase inhibitor regorafenib and both MK-2206 and dactolisib were very effective in all preclinical tumor models, while with respect to trametinib, two cell lines were found to be highly resistant. Only in HROG05 cells, ipatasertib showed anti-tumoral effects in vitro and in organotypic brain slices. Additionally, ipatasertib diminished synchronous network activity in organotypic brain slices. Overall, our data suggest that ipatasertib was only effective in selected tumor models, while especially regorafenib and MK-2206 presented a uniform response pattern.
Collapse
Affiliation(s)
- Julia Hörnschemeyer
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Timo Kirschstein
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, 18057 Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock, University of Rostock, 18147 Rostock, Germany
| | - Gesine Reichart
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Christin Sasse
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Jakob Venus
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Anne Einsle
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Katrin Porath
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Michael Linnebacher
- Clinic for General Surgery, Molecular Oncology and Immunotherapy, Rostock University Medical Center, 18057 Rostock, Germany
| | - Rüdiger Köhling
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, 18057 Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock, University of Rostock, 18147 Rostock, Germany
| | - Falko Lange
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, 18057 Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock, University of Rostock, 18147 Rostock, Germany
- Correspondence:
| |
Collapse
|
49
|
The dual action of glioma-derived exosomes on neuronal activity: synchronization and disruption of synchrony. Cell Death Dis 2022; 13:705. [PMID: 35963860 PMCID: PMC9376103 DOI: 10.1038/s41419-022-05144-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/28/2022] [Accepted: 07/28/2022] [Indexed: 01/21/2023]
Abstract
Seizures represent a frequent symptom in gliomas and significantly impact patient morbidity and quality of life. Although the pathogenesis of tumor-related seizures is not fully understood, accumulating evidence indicates a key role of the peritumoral microenvironment. Brain cancer cells interact with neurons by forming synapses with them and by releasing exosomes, cytokines, and other small molecules. Strong interactions among neurons often lead to the synchronization of their activity. In this paper, we used an in vitro model to investigate the role of exosomes released by glioma cell lines and by patient-derived glioma stem cells (GSCs). The addition of exosomes released by U87 glioma cells to neuronal cultures at day in vitro (DIV) 4, when neurons are not yet synchronous, induces synchronization. At DIV 7-12 neurons become highly synchronous, and the addition of the same exosomes disrupts synchrony. By combining Ca2+ imaging, electrical recordings from single neurons with patch-clamp electrodes, substrate-integrated microelectrode arrays, and immunohistochemistry, we show that synchronization and de-synchronization are caused by the combined effect of (i) the formation of new neuronal branches, associated with a higher expression of Arp3, (ii) the modification of synaptic efficiency, and (iii) a direct action of exosomes on the electrical properties of neurons, more evident at DIV 7-12 when the threshold for spike initiation is significantly reduced. At DIV 7-12 exosomes also selectively boost glutamatergic signaling by increasing the number of excitatory synapses. Remarkably, de-synchronization was also observed with exosomes released by glioma-associated stem cells (GASCs) from patients with low-grade glioma but not from patients with high-grade glioma, where a more variable outcome was observed. These results show that exosomes released from glioma modify the electrical properties of neuronal networks and that de-synchronization caused by exosomes from low-grade glioma can contribute to the neurological pathologies of patients with brain cancers.
Collapse
|
50
|
Li B, Liu Y, Sun S. Pump proton inhibitors display anti-tumour potential in glioma. Cell Prolif 2022:e13321. [PMID: 35961680 DOI: 10.1111/cpr.13321] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/28/2022] [Accepted: 07/14/2022] [Indexed: 11/03/2022] Open
Abstract
OBJECTIVES Glioma is one of the most aggressive brain tumours with poor overall survival despite advanced technology in surgical resection, chemotherapy and radiation. Progression and recurrence are the hinge causes of low survival. Our aim is to explain the concrete mechanism in the proliferation and progression of tumours based on tumour microenvironment (TME). The main purpose is to illustrate the mechanism of proton pump inhibitors (PPIs) in affecting acidity, hypoxia, oxidative stress, inflammatory response and autophagy based on the TME to induce apoptosis and enhance the sensitivity of chemoradiotherapy. FINDINGS TME is the main medium for tumour growth and progression. Acidity, hypoxia, inflammatory response, autophagy, angiogenesis and so on are the main causes of tumour progress. PPIs, as a common clinical drug to inhibit gastric acid secretion, have the advantages of fast onset, long action time and small adverse reactions. Nowadays, several kinds of literature highlight the potential of PPIs in inhibiting tumour progression. However, long-term use of PPIs alone also has obvious side effects. Therefore, till now, how to apply PPIs to promote the effect of radio-chemotherapy and find the concrete dose and concentration of combined use are novel challenges. CONCLUSIONS PPIs display the potential in enhancing the sensitivity of chemoradiotherapy to defend against glioma based on TME. In the clinic, it is also necessary to explore specific concentrations and dosages in synthetic applications.
Collapse
Affiliation(s)
- Bihan Li
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Ying Liu
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Shilong Sun
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|