1
|
Stransky F, Kostrz D, Follenfant M, Pomplun S, Meyners C, Strick T, Hausch F, Gosse C. Use of DNA forceps to measure receptor-ligand dissociation equilibrium constants in a single-molecule competition assay. Methods Enzymol 2024; 694:51-82. [PMID: 38492958 DOI: 10.1016/bs.mie.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2024]
Abstract
The ability of biophysicists to decipher the behavior of individual biomolecules has steadily improved over the past thirty years. However, it still remains unclear how an ensemble of data acquired at the single-molecule level compares with the data acquired on an ensemble of the same molecules. We here propose an assay to tackle this question in the context of dissociation equilibrium constant measurements. A sensor is built by engrafting a receptor and a ligand onto a flexible dsDNA scaffold and mounting this assembly on magnetic tweezers. This way, looking at the position of the magnetic bead enables one to determine in real-time if the two molecular partners are associated or not. Next, to quantify the affinity of the scrutinized single-receptor for a given competitor, various amounts of the latter molecule are introduced in solution and the equilibrium response of the sensor is monitored throughout the titration protocol. Proofs of concept are established for the binding of three rapamycin analogs to the FKBP12 cis-trans prolyl isomerase. For each of these drugs the mean affinity constant obtained on a ten of individual receptors agrees with the one previously determined in a bulk assay. Furthermore, experimental contingencies are sufficient to explain the dispersion observed over the single-molecule values.
Collapse
Affiliation(s)
- François Stransky
- Institut de Biologie de l'Ecole Normale Supérieure, ENS, CNRS, INSERM, PSL Research University, Paris, France
| | - Dorota Kostrz
- Institut de Biologie de l'Ecole Normale Supérieure, ENS, CNRS, INSERM, PSL Research University, Paris, France
| | - Maryne Follenfant
- Institut de Biologie de l'Ecole Normale Supérieure, ENS, CNRS, INSERM, PSL Research University, Paris, France
| | - Sebastian Pomplun
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Christian Meyners
- Department of Chemistry and Biochemistry, Technical University Darmstadt, Darmstadt, Germany
| | - Terence Strick
- Institut de Biologie de l'Ecole Normale Supérieure, ENS, CNRS, INSERM, PSL Research University, Paris, France
| | - Felix Hausch
- Department of Chemistry and Biochemistry, Technical University Darmstadt, Darmstadt, Germany; Centre for Synthetic Biology, Technical University Darmstadt, Darmstadt, Germany
| | - Charlie Gosse
- Institut de Biologie de l'Ecole Normale Supérieure, ENS, CNRS, INSERM, PSL Research University, Paris, France.
| |
Collapse
|
2
|
Dissecting the cytochrome c 2-reaction centre interaction in bacterial photosynthesis using single molecule force spectroscopy. Biochem J 2019; 476:2173-2190. [PMID: 31320503 PMCID: PMC6688529 DOI: 10.1042/bcj20170519] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 11/17/2022]
Abstract
The reversible docking of small, diffusible redox proteins onto a membrane protein complex is a common feature of bacterial, mitochondrial and photosynthetic electron transfer (ET) chains. Spectroscopic studies of ensembles of such redox partners have been used to determine ET rates and dissociation constants. Here, we report a single-molecule analysis of the forces that stabilise transient ET complexes. We examined the interaction of two components of bacterial photosynthesis, cytochrome c 2 and the reaction centre (RC) complex, using dynamic force spectroscopy and PeakForce quantitative nanomechanical imaging. RC-LH1-PufX complexes, attached to silicon nitride AFM probes and maintained in a photo-oxidised state, were lowered onto a silicon oxide substrate bearing dispersed, immobilised and reduced cytochrome c 2 molecules. Microscale patterns of cytochrome c 2 and the cyan fluorescent protein were used to validate the specificity of recognition between tip-attached RCs and surface-tethered cytochrome c 2 Following the transient association of photo-oxidised RC and reduced cytochrome c 2 molecules, retraction of the RC-functionalised probe met with resistance, and forces between 112 and 887 pN were required to disrupt the post-ET RC-c 2 complex, depending on the retraction velocities used. If tip-attached RCs were reduced instead, the probability of interaction with reduced cytochrome c 2 molecules decreased 5-fold. Thus, the redox states of the cytochrome c 2 haem cofactor and RC 'special pair' bacteriochlorophyll dimer are important for establishing a productive ET complex. The millisecond persistence of the post-ET cytochrome c 2[oxidised]-RC[reduced] 'product' state is compatible with rates of cyclic photosynthetic ET, at physiologically relevant light intensities.
Collapse
|
3
|
Kwiatkowski A, Kolehmainen E, Ośmiałowski B. Conformational and Tautomeric Control by Supramolecular Approach in Ureido- N- iso-propyl, N'-4-(3-pyridin-2-one) pyrimidine. Molecules 2019; 24:molecules24132491. [PMID: 31288375 PMCID: PMC6651695 DOI: 10.3390/molecules24132491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 06/29/2019] [Accepted: 07/05/2019] [Indexed: 11/17/2022] Open
Abstract
Ureido-N-iso-propyl,N’-4-(3-pyridin-2-one)pyrimidine (1) and its 2-methoxy pyridine derivative (1Me) has been designed and prepared. The conformational equilibrium in urea moiety and tautomerism in the pyrimidine part have been investigated by variable temperature and 1H NMR titrations as well as DFT quantum chemical calculations. The studied compounds readily associate by triple hydrogen bonding with 2-aminonaphthyridine (A) and/or 2,6-bis(acetylamino)pyridine (B). In 1, the proton is forced to 1,3-tautomeric shift upon stimuli and keeps it position, even when one of the partners in the complex was replaced by another molecule. The observed tautomerism controlled by conformational state (kinetic trapping effect) opens new possibilities in molecular sensing that are based on the fact that reverse reaction is not preferred.
Collapse
Affiliation(s)
- Adam Kwiatkowski
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarin Street, 87-100 Toruń, Poland
| | - Erkki Kolehmainen
- Department of Chemistry, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
| | - Borys Ośmiałowski
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarin Street, 87-100 Toruń, Poland.
| |
Collapse
|
4
|
Pan Y, Wang B, Reese RA, Xu B. The molecular basis of interaction domains of full-length PrP with lipid membranes. NANOSCALE 2019; 11:12087-12091. [PMID: 31204758 DOI: 10.1039/c9nr02735a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
PrP-lipid membrane interactions are critical to PrP structural conversion and neurotoxicity, but its molecular mechanism remains unclear. A two-dimensional histogram of force-distance curves and a worm-like chain model revealed three binding regions at the PrP N-terminal, providing the molecular basis for understanding the interactions between full-length PrP and lipid membranes.
Collapse
Affiliation(s)
- Yangang Pan
- Single Molecule Study Lab., College of Engineering, University of Georgia, Athens, GA 30602, USA. and Department of Pharmaceutical Sciences, University of Nebraska, Omaha, NE 68195, USA
| | - Bin Wang
- Single Molecule Study Lab., College of Engineering, University of Georgia, Athens, GA 30602, USA. and United States Department of Agriculture, Agricultural Research Service, National Poultry Research Canter, Athens, GA 30605, USA
| | - R Alexander Reese
- Single Molecule Study Lab., College of Engineering, University of Georgia, Athens, GA 30602, USA.
| | - Bingqian Xu
- Single Molecule Study Lab., College of Engineering, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
5
|
Sheng KL, Pridham KJ, Sheng Z, Lamouille S, Varghese RT. Functional Blockade of Small GTPase RAN Inhibits Glioblastoma Cell Viability. Front Oncol 2019; 8:662. [PMID: 30671385 PMCID: PMC6331428 DOI: 10.3389/fonc.2018.00662] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 12/13/2018] [Indexed: 11/13/2022] Open
Abstract
Glioblastoma, the most common malignant tumor in the brain, lacks effective treatments and is currently incurable. To identify novel drug targets for this deadly cancer, the publicly available results of RNA interference screens from the Project Achilles database were analyzed. Ten candidate genes were identified as survival genes in 15 glioblastoma cell lines. RAN, member RAS oncogene family (RAN) was expressed in glioblastoma at the highest level among all candidates based upon cDNA microarray data. However, Kaplan-Meier survival analysis did not show any correlation between RAN mRNA levels and patient survival. Because RAN is a small GTPase that regulates nuclear transport controlled by karyopherin subunit beta 1 (KPNB1), RAN was further analyzed together with KPNB1. Indeed, GBM patients with high levels of RAN also had more KPNB1 and levels of KPNB1 alone did not relate to patient prognosis. Through a Cox multivariate analysis, GBM patients with high levels of RAN and KPNB1 showed significantly shorter life expectancy when temozolomide and promoter methylation of O6-methylguanine DNA methyltransferase were used as covariates. These results indicate that RAN and KPNB1 together are associated with drug resistance and GBM poor prognosis. Furthermore, the functional blockade of RAN and KPNB1 by importazole remarkably suppressed cell viability and activated apoptosis in GBM cells expressing high levels of RAN, while having a limited effect on astrocytes and GBM cells with undetectable RAN. Together, our results demonstrate that RAN activity is important for GBM survival and the functional blockade of RAN/KPNB1 is an appealing therapeutic approach.
Collapse
Affiliation(s)
- Kevin L Sheng
- Fralin Biomedical Research Institute at VTC, Roanoke, VA, United States
| | - Kevin J Pridham
- Fralin Biomedical Research Institute at VTC, Roanoke, VA, United States
| | - Zhi Sheng
- Fralin Biomedical Research Institute at VTC, Roanoke, VA, United States.,Department of Internal Medicine, Virginia Tech Carilion School of Medicine, Roanoke, VA, United States.,Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA, United States.,Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, United States.,Faculty of Health Science, Virginia Tech, Blacksburg, VA, United States
| | - Samy Lamouille
- Fralin Biomedical Research Institute at VTC, Roanoke, VA, United States.,Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA, United States.,Department of Biological Sciences, College of Science, Virginia Tech, Blacksburg, VA, United States
| | - Robin T Varghese
- Department of Biological Affairs and Research, Edward Via College of Osteopathic Medicine, Blacksburg, VA, United States
| |
Collapse
|
6
|
Watters K, Inankur B, Gardiner JC, Warrick J, Sherer NM, Yin J, Palmenberg AC. Differential Disruption of Nucleocytoplasmic Trafficking Pathways by Rhinovirus 2A Proteases. J Virol 2017; 91:e02472-16. [PMID: 28179529 PMCID: PMC5375692 DOI: 10.1128/jvi.02472-16] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 02/01/2017] [Indexed: 01/11/2023] Open
Abstract
The RNA rhinoviruses (RV) encode 2A proteases (2Apro) that contribute essential polyprotein processing and host cell shutoff functions during infection, including the cleavage of Phe/Gly-containing nucleoporin proteins (Nups) within nuclear pore complexes (NPC). Within the 3 RV species, multiple divergent genotypes encode diverse 2Apro sequences that act differentially on specific Nups. Since only subsets of Phe/Gly motifs, particularly those within Nup62, Nup98, and Nup153, are recognized by transport receptors (karyopherins) when trafficking large molecular cargos through the NPC, the processing preferences of individual 2Apro predict RV genotype-specific targeting of NPC pathways and cargos. To test this idea, transformed HeLa cell lines were created with fluorescent cargos (mCherry) for the importin α/β, transportin 1, and transportin 3 import pathways and the Crm1-mediated export pathway. Live-cell imaging of single cells expressing recombinant RV 2Apro (A16, A45, B04, B14, B52, C02, and C15) showed disruption of each pathway with measurably different efficiencies and reaction rates. The B04 and B52 proteases preferentially targeted Nups in the import pathways, while B04 and C15 proteases were more effective against the export pathway. Virus-type-specific trends were also observed during infection of cells with A16, B04, B14, and B52 viruses or their chimeras, as measured by NF-κB (p65/Rel) translocation into the nucleus and the rates of virus-associated cytopathic effects. This study provides new tools for evaluating the host cell response to RV infections in real time and suggests that differential 2Apro activities explain, in part, strain-dependent host responses and diverse RV disease phenotypes.IMPORTANCE Genetic variation among human rhinovirus types includes unexpected diversity in the genes encoding viral proteases (2Apro) that help these viruses achieve antihost responses. When the enzyme activities of 7 different 2Apro were measured comparatively in transformed cells programed with fluorescent reporter systems and by quantitative cell imaging, the cellular substrates, particularly in the nuclear pore complex, used by these proteases were indeed attacked at different rates and with different affinities. The importance of this finding is that it provides a mechanistic explanation for how different types (strains) of rhinoviruses may elicit different cell responses that directly or indirectly lead to distinct disease phenotypes.
Collapse
Affiliation(s)
- Kelly Watters
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Bahar Inankur
- Wisconsin Institutes for Discovery and Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jaye C Gardiner
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- McArdle Laboratories for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jay Warrick
- Wisconsin Institutes for Medical Research and Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Nathan M Sherer
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- McArdle Laboratories for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - John Yin
- Wisconsin Institutes for Discovery and Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ann C Palmenberg
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
7
|
Directly measuring single-molecule heterogeneity using force spectroscopy. Proc Natl Acad Sci U S A 2016; 113:E3852-61. [PMID: 27317744 DOI: 10.1073/pnas.1518389113] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
One of the most intriguing results of single-molecule experiments on proteins and nucleic acids is the discovery of functional heterogeneity: the observation that complex cellular machines exhibit multiple, biologically active conformations. The structural differences between these conformations may be subtle, but each distinct state can be remarkably long-lived, with interconversions between states occurring only at macroscopic timescales, fractions of a second or longer. Although we now have proof of functional heterogeneity in a handful of systems-enzymes, motors, adhesion complexes-identifying and measuring it remains a formidable challenge. Here, we show that evidence of this phenomenon is more widespread than previously known, encoded in data collected from some of the most well-established single-molecule techniques: atomic force microscopy or optical tweezer pulling experiments. We present a theoretical procedure for analyzing distributions of rupture/unfolding forces recorded at different pulling speeds. This results in a single parameter, quantifying the degree of heterogeneity, and also leads to bounds on the equilibration and conformational interconversion timescales. Surveying 10 published datasets, we find heterogeneity in 5 of them, all with interconversion rates slower than 10 s(-1) Moreover, we identify two systems where additional data at realizable pulling velocities is likely to find a theoretically predicted, but so far unobserved crossover regime between heterogeneous and nonheterogeneous behavior. The significance of this regime is that it will allow far more precise estimates of the slow conformational switching times, one of the least understood aspects of functional heterogeneity.
Collapse
|
8
|
Adams NBP, Vasilev C, Brindley AA, Hunter CN. Nanomechanical and Thermophoretic Analyses of the Nucleotide-Dependent Interactions between the AAA(+) Subunits of Magnesium Chelatase. J Am Chem Soc 2016; 138:6591-7. [PMID: 27133226 PMCID: PMC4882731 DOI: 10.1021/jacs.6b02827] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In chlorophyll biosynthesis, the magnesium chelatase enzyme complex catalyzes the insertion of a Mg(2+) ion into protoporphyrin IX. Prior to this event, two of the three subunits, the AAA(+) proteins ChlI and ChlD, form a ChlID-MgATP complex. We used microscale thermophoresis to directly determine dissociation constants for the I-D subunits from Synechocystis, and to show that the formation of a ChlID-MgADP complex, mediated by the arginine finger and the sensor II domain on ChlD, is necessary for the assembly of the catalytically active ChlHID-MgATP complex. The N-terminal AAA(+) domain of ChlD is essential for complex formation, but some stability is preserved in the absence of the C-terminal integrin domain of ChlD, particularly if the intervening polyproline linker region is retained. Single molecule force spectroscopy (SMFS) was used to determine the factors that stabilize formation of the ChlID-MgADP complex at the single molecule level; ChlD was attached to an atomic force microscope (AFM) probe in two different orientations, and the ChlI subunits were tethered to a silica surface; the probability of subunits interacting more than doubled in the presence of MgADP, and we show that the N-terminal AAA(+) domain of ChlD mediates this process, in agreement with the microscale thermophoresis data. Analysis of the unbinding data revealed a most probable interaction force of around 109 pN for formation of single ChlID-MgADP complexes. These experiments provide a quantitative basis for understanding the assembly and function of the Mg chelatase complex.
Collapse
Affiliation(s)
- Nathan B P Adams
- Department of Molecular Biology and Biotechnology, The University of Sheffield , Sheffield S10 2TN, United Kingdom
| | - Cvetelin Vasilev
- Department of Molecular Biology and Biotechnology, The University of Sheffield , Sheffield S10 2TN, United Kingdom
| | - Amanda A Brindley
- Department of Molecular Biology and Biotechnology, The University of Sheffield , Sheffield S10 2TN, United Kingdom
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, The University of Sheffield , Sheffield S10 2TN, United Kingdom
| |
Collapse
|
9
|
Guo Q, He Y, Lu HP. Interrogating the activities of conformational deformed enzyme by single-molecule fluorescence-magnetic tweezers microscopy. Proc Natl Acad Sci U S A 2015; 112:13904-9. [PMID: 26512103 PMCID: PMC4653173 DOI: 10.1073/pnas.1506405112] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Characterizing the impact of fluctuating enzyme conformation on enzymatic activity is critical in understanding the structure-function relationship and enzymatic reaction dynamics. Different from studying enzyme conformations under a denaturing condition, it is highly informative to manipulate the conformation of an enzyme under an enzymatic reaction condition while monitoring the real-time enzymatic activity changes simultaneously. By perturbing conformation of horseradish peroxidase (HRP) molecules using our home-developed single-molecule total internal reflection magnetic tweezers, we successfully manipulated the enzymatic conformation and probed the enzymatic activity changes of HRP in a catalyzed H2O2-amplex red reaction. We also observed a significant tolerance of the enzyme activity to the enzyme conformational perturbation. Our results provide a further understanding of the relation between enzyme behavior and enzymatic conformational fluctuation, enzyme-substrate interactions, enzyme-substrate active complex formation, and protein folding-binding interactions.
Collapse
Affiliation(s)
- Qing Guo
- Department of Chemistry, Center for Photochemical Sciences, Bowling Green State University, Bowling Green, OH 43403
| | - Yufan He
- Department of Chemistry, Center for Photochemical Sciences, Bowling Green State University, Bowling Green, OH 43403
| | - H Peter Lu
- Department of Chemistry, Center for Photochemical Sciences, Bowling Green State University, Bowling Green, OH 43403
| |
Collapse
|
10
|
Gupta VK. Stochastic simulation of single-molecule pulling experiments. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2014; 37:99. [PMID: 25348662 DOI: 10.1140/epje/i2014-14099-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 10/03/2014] [Accepted: 10/08/2014] [Indexed: 06/04/2023]
Abstract
Single-molecule pulling experiments are widely used for studying the structure, dynamics, and function of single biological molecules via applying mechanical forces on them in a controlled way. Pulling at a constant speed or at a constant force builds up a mechanical force on a molecule or molecular complex leading to a molecular transition such as the dissociation of a molecular complex, unfolding of a protein, or unwrapping of a higher-order structure. We perform Brownian dynamics and Monte Carlo simulations of single-molecule pulling experiments. Through our simulations we demonstrate that the molecular transition rate based on the Kramers theory in the high-barrier limit becomes unsuitable as the applied force approaches the critical force at which the barrier disappears. We also demonstrate that use of molecular transition rate based on mean first passage time (MFPT) approach would be more relevant in describing molecular transition especially as the applied force approaches the critical force.
Collapse
Affiliation(s)
- V K Gupta
- Colorado State University, 80523, Fort Collins, Colorado, USA,
| |
Collapse
|
11
|
Vasilev C, Brindley AA, Olsen JD, Saer RG, Beatty JT, Hunter CN. Nano-mechanical mapping of the interactions between surface-bound RC-LH1-PufX core complexes and cytochrome c 2 attached to an AFM probe. PHOTOSYNTHESIS RESEARCH 2014; 120:169-180. [PMID: 23539360 PMCID: PMC4104003 DOI: 10.1007/s11120-013-9812-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 03/11/2013] [Indexed: 05/29/2023]
Abstract
Electron transfer pathways in photosynthesis involve interactions between membrane-bound complexes such as reaction centres with an extrinsic partner. In this study, the biological specificity of electron transfer between the reaction centre-light-harvesting 1-PufX complex and its extrinsic electron donor, cytochrome c 2, formed the basis for mapping the location of surface-attached RC-LH1-PufX complexes using atomic force microscopy (AFM). This nano-mechanical mapping method used an AFM probe functionalised with cyt c 2 molecules to quantify the interaction forces involved, at the single-molecule level under native conditions. With surface-bound RC-His12-LH1-PufX complexes in the photo-oxidised state, the mean interaction force with cyt c 2 is approximately 480 pN with an interaction frequency of around 66 %. The latter value lowered 5.5-fold when chemically reduced RC-His12-LH1-PufX complexes are imaged in the dark to abolish electron transfer from cyt c 2 to the RC. The correspondence between topographic and adhesion images recorded over the same area of the sample shows that affinity-based AFM methods are a useful tool when topology alone is insufficient for spatially locating proteins at the surface of photosynthetic membranes.
Collapse
Affiliation(s)
- Cvetelin Vasilev
- />Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN UK
| | - Amanda A. Brindley
- />Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN UK
| | - John D. Olsen
- />Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN UK
| | - Rafael G. Saer
- />Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z3 Canada
| | - J. T. Beatty
- />Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z3 Canada
| | - C. N. Hunter
- />Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN UK
| |
Collapse
|
12
|
Brucale M, Schuler B, Samorì B. Single-molecule studies of intrinsically disordered proteins. Chem Rev 2014; 114:3281-317. [PMID: 24432838 DOI: 10.1021/cr400297g] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Marco Brucale
- Institute for the Study of Nanostructured Materials (ISMN), Italian National Council of Research (CNR) , Area della Ricerca Roma1, Via Salaria km 29.3 00015 Monterotondo (Rome), Italy
| | | | | |
Collapse
|
13
|
Beta-like importins mediate the nuclear translocation of mitogen-activated protein kinases. Mol Cell Biol 2013; 34:259-70. [PMID: 24216760 DOI: 10.1128/mcb.00799-13] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The rapid nuclear translocation of signaling proteins upon stimulation is important for the regulation of de novo gene expression. We have studied the stimulated nuclear shuttling of c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinases (MAPKs) and found that they translocate into the nucleus in a Ran-dependent, but NLS- or NTS-independent, manner, unrelated to their catalytic activity. We show that this translocation involves three β-like importins, importins 3, 7, and 9 (Imp3/7/9). Knockdown of these importins inhibits the nuclear translocation of the MAPKs and, thereby, activation of their transcription factor targets. We further demonstrate that the translocation requires the stimulated formation of heterotrimers composed of Imp3/Imp7/MAPK or Imp3/Imp9/MAPK. JNK1/2 and p38α/β bind to either Imp7 or Imp9 upon stimulated posttranslational modification of the two Imps, while Imp3 joins the complex after its stimulation-induced phosphorylation. Once formed, these heterotrimers move to the nuclear envelope, where importin 3 remains, while importins 7 and 9 escort the MAPKs into the nucleus. These results suggest that β-like importins are central mediators of stimulated nuclear translocation of signaling proteins and therefore add a central level of regulation to stimulated transcription.
Collapse
|
14
|
Improved ligand discrimination by force-induced unbinding of the T cell receptor from peptide-MHC. Biophys J 2013; 104:1670-5. [PMID: 23601314 DOI: 10.1016/j.bpj.2013.03.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 03/11/2013] [Accepted: 03/15/2013] [Indexed: 01/22/2023] Open
Abstract
T cell activation is mediated via the recognition of peptides by the T cell receptor (TCR). This receptor ligand interaction is highly specific, and the TCR has to discriminate between a huge number of peptides presented by the products of the major histocompatibility complexes (MHCs). Recent studies indicate that cells probe the TCR-pMHC interaction by imposing force on the interaction. Here we investigated in a theoretical analysis the consequences of such force-induced unbinding for T cell recognition. Our findings are as follows. First, the bond rupture under force is much faster, improving the time resolution of the discrimination process. Second, cells can access additional parameters characterizing the shape of the binding energy surface. Third, load-induced unbinding yields a reduced coefficient of variation of the bond lifetimes, which improves the discriminative power even between peptide/MHCs (pMHCs) with similar off-rates.
Collapse
|
15
|
Rangl M, Ebner A, Yamada J, Rankl C, Tampé R, Gruber HJ, Rexach M, Hinterdorfer P. Single-Molecule Analysis of the Recognition Forces Underlying Nucleo-Cytoplasmic Transport. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201305359] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
16
|
Rangl M, Ebner A, Yamada J, Rankl C, Tampé R, Gruber HJ, Rexach M, Hinterdorfer P. Single-molecule analysis of the recognition forces underlying nucleo-cytoplasmic transport. Angew Chem Int Ed Engl 2013; 52:10356-9. [PMID: 24038953 DOI: 10.1002/anie.201305359] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Indexed: 01/13/2023]
Affiliation(s)
- Martina Rangl
- Institute for Biophysics, Johannes Kepler University Linz, Gruberstr. 40, 4020 Linz (Austria)
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Taltynov O, Demeulemeester J, Christ F, De Houwer S, Tsirkone VG, Gerard M, Weeks SD, Strelkov SV, Debyser Z. Interaction of transportin-SR2 with Ras-related nuclear protein (Ran) GTPase. J Biol Chem 2013; 288:25603-25613. [PMID: 23878195 DOI: 10.1074/jbc.m113.484345] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) and other lentiviruses are capable of infecting non-dividing cells and, therefore, need to be imported into the nucleus before integration into the host cell chromatin. Transportin-SR2 (TRN-SR2, Transportin-3, TNPO3) is a cellular karyopherin implicated in nuclear import of HIV-1. A model in which TRN-SR2 imports the viral preintegration complex into the nucleus is supported by direct interaction between TRN-SR2 and HIV-1 integrase (IN). Residues in the C-terminal domain of HIV-1 IN that mediate binding to TRN-SR2 were recently delineated. As for most nuclear import cargoes, the driving force behind HIV-1 preintegration complex import is likely a gradient of the GDP- and GTP-bound forms of Ran, a small GTPase. In this study we offer biochemical and structural characterization of the interaction between TRN-SR2 and Ran. By size exclusion chromatography we demonstrate stable complex formation of TRN-SR2 and RanGTP in solution. Consistent with the behavior of normal nuclear import cargoes, HIV-1 IN is released from the complex with TRN-SR2 by RanGTP. Although in concentrated solutions TRN-SR2 by itself was predominantly present as a dimer, the TRN-SR2-RanGTP complex was significantly more compact. Further analysis supported a model wherein one monomer of TRN-SR2 is bound to one monomer of RanGTP. Finally, we present a homology model of the TRN-SR2-RanGTP complex that is in excellent agreement with the experimental small angle x-ray scattering data.
Collapse
Affiliation(s)
- Oliver Taltynov
- From the Laboratory for Molecular Virology and Gene Therapy and
| | | | - Frauke Christ
- From the Laboratory for Molecular Virology and Gene Therapy and
| | | | - Vicky G Tsirkone
- Laboratory for Biocrystallography, KU Leuven, B-3000 Leuven, Belgium
| | - Melanie Gerard
- From the Laboratory for Molecular Virology and Gene Therapy and
| | - Stephen D Weeks
- Laboratory for Biocrystallography, KU Leuven, B-3000 Leuven, Belgium
| | - Sergei V Strelkov
- Laboratory for Biocrystallography, KU Leuven, B-3000 Leuven, Belgium
| | - Zeger Debyser
- From the Laboratory for Molecular Virology and Gene Therapy and.
| |
Collapse
|
18
|
Farrance OE, Hann E, Kaminska R, Housden NG, Derrington SR, Kleanthous C, Radford SE, Brockwell DJ. A force-activated trip switch triggers rapid dissociation of a colicin from its immunity protein. PLoS Biol 2013; 11:e1001489. [PMID: 23431269 PMCID: PMC3576412 DOI: 10.1371/journal.pbio.1001489] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 01/09/2013] [Indexed: 01/24/2023] Open
Abstract
A single-molecule force study shows that rapid dissociation of a high-affinity protein interaction can be triggered by site-specific remodelling of one protein partner, and that prevention of remodelling maintains avidity. Colicins are protein antibiotics synthesised by Escherichia coli strains to target and kill related bacteria. To prevent host suicide, colicins are inactivated by binding to immunity proteins. Despite their high avidity (Kd≈fM, lifetime ≈4 days), immunity protein release is a pre-requisite of colicin intoxication, which occurs on a timescale of minutes. Here, by measuring the dynamic force spectrum of the dissociation of the DNase domain of colicin E9 (E9) and immunity protein 9 (Im9) complex using an atomic force microscope we show that application of low forces (<20 pN) increases the rate of complex dissociation 106-fold, to a timescale (lifetime ≈10 ms) compatible with intoxication. We term this catastrophic force-triggered increase in off-rate a trip bond. Using mutational analysis, we elucidate the mechanism of this switch in affinity. We show that the N-terminal region of E9, which has sparse contacts with the hydrophobic core, is linked to an allosteric activator region in E9 (residues 21–30) whose remodelling triggers immunity protein release. Diversion of the force transduction pathway by the introduction of appropriately positioned disulfide bridges yields a force resistant complex with a lifetime identical to that measured by ensemble techniques. A trip switch within E9 is ideal for its function as it allows bipartite complex affinity, whereby the stable colicin:immunity protein complex required for host protection can be readily converted to a kinetically unstable complex whose dissociation is necessary for cellular invasion and competitor death. More generally, the observation of two force phenotypes for the E9:Im9 complex demonstrates that force can re-sculpt the underlying energy landscape, providing new opportunities to modulate biological reactions in vivo; this rationalises the commonly observed discrepancy between off-rates measured by dynamic force spectroscopy and ensemble methods. Many proteins interact with other proteins as part of their function. One method of modulating the activity of protein complexes is to break them apart. Some complexes, however, are extremely kinetically stable and it is unclear how these can dissociate on a biologically relevant timescale. In this study we address this question using protein complexes between colicin E9 (a bacterial toxin) and its immunity protein Im9. These highly avid complexes (with a lifetime of days) must be broken apart for colicin to be activated. By using single-molecule force methods we show that pulling on one end of colicin E9 drastically destabilises the complex so that it dissociates a million-fold faster than its intrinsic rate. We then show that preventing this destabilisation (by the insertion of cross-links that pin the N-terminus of E9 in place) yields a kinetically stable complex. It has previously been postulated that force can destabilise a protein complex by partially unfolding one or more binding partners. Our work provides new experimental evidence that shows this is the case and provides a mechanism for this phenomenon, which we term a trip bond. For the E9:Im9 complex, trip bond behaviour allows a stable complex to be rapidly dissociated by application of a surprisingly small force.
Collapse
Affiliation(s)
- Oliver E. Farrance
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, United Kingdom
| | - Eleanore Hann
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, United Kingdom
| | - Renata Kaminska
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | | | - Sasha R. Derrington
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, United Kingdom
| | - Colin Kleanthous
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Sheena E. Radford
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, United Kingdom
| | - David J. Brockwell
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, United Kingdom
- * E-mail:
| |
Collapse
|
19
|
Attwood SJ, Simpson AMC, Stone R, Hamaia S, Roy D, Farndale R, Ouberai M, Welland ME. A simple bioconjugate attachment protocol for use in single molecule force spectroscopy experiments based on mixed self-assembled monolayers. Int J Mol Sci 2012. [PMID: 23202965 PMCID: PMC3497339 DOI: 10.3390/ijms131013521] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Single molecule force spectroscopy is a technique that can be used to probe the interaction force between individual biomolecular species. We focus our attention on the tip and sample coupling chemistry, which is crucial to these experiments. We utilised a novel approach of mixed self-assembled monolayers of alkanethiols in conjunction with a heterobifunctional crosslinker. The effectiveness of the protocol is demonstrated by probing the biotin-avidin interaction. We measured unbinding forces comparable to previously reported values measured at similar loading rates. Specificity tests also demonstrated a significant decrease in recognition after blocking with free avidin.
Collapse
Affiliation(s)
- Simon J. Attwood
- Nanoscience Centre, Department of Engineering, Cambridge University, Cambridge, CB3 0FF, UK; E-Mails: (S.J.A.); (M.O.)
| | - Anna M. C. Simpson
- Department of Biochemistry, Cambridge University, Cambridge, CB2 1QW, UK; E-Mails: (A.M.C.S.); (R.S.); (S.W.H.); (R.W.F.)
| | - Rachael Stone
- Department of Biochemistry, Cambridge University, Cambridge, CB2 1QW, UK; E-Mails: (A.M.C.S.); (R.S.); (S.W.H.); (R.W.F.)
| | - SamirW. Hamaia
- Department of Biochemistry, Cambridge University, Cambridge, CB2 1QW, UK; E-Mails: (A.M.C.S.); (R.S.); (S.W.H.); (R.W.F.)
| | - Debdulal Roy
- National Physical Laboratory, Teddington, TW11 0LW, UK; E-Mail:
| | - RichardW. Farndale
- Department of Biochemistry, Cambridge University, Cambridge, CB2 1QW, UK; E-Mails: (A.M.C.S.); (R.S.); (S.W.H.); (R.W.F.)
| | - Myriam Ouberai
- Nanoscience Centre, Department of Engineering, Cambridge University, Cambridge, CB3 0FF, UK; E-Mails: (S.J.A.); (M.O.)
| | - Mark E. Welland
- Nanoscience Centre, Department of Engineering, Cambridge University, Cambridge, CB3 0FF, UK; E-Mails: (S.J.A.); (M.O.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +44-1223-760305; Fax: +44 -1223-760309
| |
Collapse
|
20
|
Affiliation(s)
- Elias M. Puchner
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94158;
| | - Hermann E. Gaub
- Center for Nanoscience and Department of Physics, University of Munich, 80799 Munich, Germany;
| |
Collapse
|
21
|
Bottaro S, Boomsma W, E. Johansson K, Andreetta C, Hamelryck T, Ferkinghoff-Borg J. Subtle Monte Carlo Updates in Dense Molecular Systems. J Chem Theory Comput 2012; 8:695-702. [DOI: 10.1021/ct200641m] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sandro Bottaro
- Department of Electrical Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Wouter Boomsma
- Department of Electrical Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark
- Department of Astronomy and Theoretical Physics, Lund University, Lund, Sweden
| | | | | | - Thomas Hamelryck
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
22
|
Lott K, Cingolani G. The importin β binding domain as a master regulator of nucleocytoplasmic transport. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1813:1578-92. [PMID: 21029753 PMCID: PMC3037977 DOI: 10.1016/j.bbamcr.2010.10.012] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 10/11/2010] [Accepted: 10/19/2010] [Indexed: 12/16/2022]
Abstract
Specific and efficient recognition of import cargoes is essential to ensure nucleocytoplasmic transport. To this end, the prototypical karyopherin importin β associates with import cargoes directly or, more commonly, through import adaptors, such as importin α and snurportin. Adaptor proteins bind the nuclear localization sequence (NLS) of import cargoes while recruiting importin β via an N-terminal importin β binding (IBB) domain. The use of adaptors greatly expands and amplifies the repertoire of cellular cargoes that importin β can efficiently import into the cell nucleus and allows for fine regulation of nuclear import. Accordingly, the IBB domain is a dedicated NLS, unique to adaptor proteins that functions as a molecular liaison between importin β and import cargoes. This review provides an overview of the molecular role played by the IBB domain in orchestrating nucleocytoplasmic transport. Recent work has determined that the IBB domain has specialized functions at every step of the import and export pathway. Unexpectedly, this stretch of ~40 amino acids plays an essential role in regulating processes such as formation of the import complex, docking and translocation through the nuclear pore complex (NPC), release of import cargoes into the cell nucleus and finally recycling of import adaptors and importin β into the cytoplasm. Thus, the IBB domain is a master regulator of nucleocytoplasmic transport, whose complex molecular function is only recently beginning to emerge. This article is part of a Special Issue entitled: Regulation of Signaling and Cellular Fate through Modulation of Nuclear Protein Import.
Collapse
Affiliation(s)
- Kaylen Lott
- Dept. of Biochemistry and Molecular Biology, Thomas Jefferson University, 233 South 10th Street, Philadelphia, PA 19107, USA
- Dept. of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA
| | - Gino Cingolani
- Dept. of Biochemistry and Molecular Biology, Thomas Jefferson University, 233 South 10th Street, Philadelphia, PA 19107, USA
| |
Collapse
|
23
|
Chtcheglova LA, Hinterdorfer P. Simultaneous topography and recognition imaging on endothelial cells. J Mol Recognit 2011; 24:788-94. [DOI: 10.1002/jmr.1126] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
24
|
Wildling L, Unterauer B, Zhu R, Rupprecht A, Haselgrübler T, Rankl C, Ebner A, Vater D, Pollheimer P, Pohl EE, Hinterdorfer P, Gruber HJ. Linking of sensor molecules with amino groups to amino-functionalized AFM tips. Bioconjug Chem 2011; 22:1239-48. [PMID: 21542606 PMCID: PMC3115690 DOI: 10.1021/bc200099t] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
The measuring tip of an atomic force microscope (AFM) can be upgraded to a specific biosensor by attaching one or a few biomolecules to the apex of the tip. The biofunctionalized tip is then used to map cognate target molecules on a sample surface or to study biophysical parameters of interaction with the target molecules. The functionality of tip-bound sensor molecules is greatly enhanced if they are linked via a thin, flexible polymer chain. In a typical scheme of tip functionalization, reactive groups are first generated on the tip surface, a bifunctional cross-linker is then attached with one of its two reactive ends, and finally the probe molecule of interest is coupled to the free end of the cross-linker. Unfortunately, the most popular functional group generated on the tip surface is the amino group, while at the same time, the only useful coupling functions of many biomolecules (such as antibodies) are also NH2 groups. In the past, various tricks or detours were applied to minimize the undesired bivalent reaction of bifunctional linkers with adjacent NH2 groups on the tip surface. In the present study, an uncompromising solution to this problem was found with the help of a new cross-linker (“acetal-PEG-NHS”) which possesses one activated carboxyl group and one acetal-protected benzaldehyde function. The activated carboxyl ensures rapid unilateral attachment to the amino-functionalized tip, and only then is the terminal acetal group converted into the amino-reactive benzaldehyde function by mild treatment (1% citric acid, 1–10 min) which does not harm the AFM tip. As an exception, AFM tips with magnetic coating become demagnetized in 1% citric acid. This problem was solved by deprotecting the acetal group before coupling the PEG linker to the AFM tip. Bivalent binding of the corresponding linker (“aldehyde-PEG-NHS”) to adjacent NH2 groups on the tip was largely suppressed by high linker concentrations. In this way, magnetic AFM tips could be functionalized with an ethylene diamine derivative of ATP which showed specific interaction with mitochondrial uncoupling protein 1 (UCP1) that had been purified and reconstituted in a mica-supported planar lipid bilayer.
Collapse
Affiliation(s)
- Linda Wildling
- Institute of Biophysics, J. Kepler University, Altenberger Str. 69, A-4040 Linz, Austria
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Kamada M, Toda M, Sekijima M, Takata M, Joe K. Analysis of motion features for molecular dynamics simulation of proteins. Chem Phys Lett 2011. [DOI: 10.1016/j.cplett.2010.12.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Wallnoefer HG, Lingott T, Gutiérrez JM, Merfort I, Liedl KR. Backbone flexibility controls the activity and specificity of a protein-protein interface: specificity in snake venom metalloproteases. J Am Chem Soc 2010; 132:10330-7. [PMID: 20617834 DOI: 10.1021/ja909908y] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Protein-protein interfaces have crucial functions in many biological processes. The large interaction areas of such interfaces show complex interaction motifs. Even more challenging is the understanding of (multi)specificity in protein-protein binding. Many proteins can bind several partners to mediate their function. A perfect paradigm to study such multispecific protein-protein interfaces are snake venom metalloproteases (SVMPs). Inherently, they bind to a variety of basement membrane proteins of capillaries, hydrolyze them, and induce profuse bleeding. However, despite having a high sequence homology, some SVMPs show a strong hemorrhagic activity, while others are (almost) inactive. We present computer simulations indicating that the activity to induce hemorrhage, and thus the capability to bind the potential reaction partners, is related to the backbone flexibility in a certain surface region. A subtle interplay between flexibility and rigidity of two loops seems to be the prerequisite for the proteins to carry out their damaging function. Presumably, a significant alteration in the backbone dynamics makes the difference between SVMPs that induce hemorrhage and the inactive ones.
Collapse
Affiliation(s)
- Hannes G Wallnoefer
- Institute of General, Inorganic and Theoretical Chemistry, Faculty of Chemistry and Pharmacy, University of Innsbruck, Innrain 52a, A-6020 Innsbruck, Austria
| | | | | | | | | |
Collapse
|
27
|
Bhardwaj A, Cingolani G. Conformational selection in the recognition of the snurportin importin beta binding domain by importin beta. Biochemistry 2010; 49:5042-7. [PMID: 20476751 DOI: 10.1021/bi100292y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The structural flexibility of beta-karyopherins is critical to mediate the interaction with transport substrates, nucleoporins, and the GTPase Ran. In this paper, we provide structural evidence that the molecular recognition of the transport adaptor snurportin by importin beta follows the population selection mechanism. We have captured two drastically different conformations of importin beta bound to the snurportin importin beta binding domain trapped in the same crystallographic asymmetric unit. We propose the population selection may be a general mechanism used by beta-karyopherins to recognize transport substrates.
Collapse
Affiliation(s)
- Anshul Bhardwaj
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 233 South 10th Street, Philadelphia, Pennsylvania 19107, USA
| | | |
Collapse
|
28
|
Lott K, Bhardwaj A, Mitrousis G, Pante N, Cingolani G. The importin beta binding domain modulates the avidity of importin beta for the nuclear pore complex. J Biol Chem 2010; 285:13769-80. [PMID: 20197273 DOI: 10.1074/jbc.m109.095760] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Importin beta mediates active passage of cellular substrates through the nuclear pore complex (NPC). Adaptors such as importin alpha and snurportin associate with importin beta via an importin beta binding (IBB) domain. The intrinsic structural flexibility of importin beta allows its concerted interactions with IBB domains, phenylalanine-glycine nucleoporins, and the GTPase Ran during transport. In this paper, we provide evidence that the nature of the IBB domain modulates the affinity of the import complex for the NPC. In permeabilized cells, importin beta imports a cargo fused to the snurportin IBB (sIBB) with approximately 70% reduced energy requirement as compared with the classical importin alpha IBB. At the molecular level, this is explained by approximately 200-fold reduced affinity of importin beta for Nup62, when bound to the sIBB. Consistently, in vivo, the importin beta.sIBB complex has greatly reduced persistence inside the central channel of the NPC. We propose that by controlling the degree of strain in the tertiary structure of importin beta, the IBB domain modulates the affinity of the import complex for nucleoporins, thus dictating its persistence inside the NPC.
Collapse
Affiliation(s)
- Kaylen Lott
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | |
Collapse
|
29
|
Grant BJ, Gorfe AA, McCammon JA. Large conformational changes in proteins: signaling and other functions. Curr Opin Struct Biol 2010; 20:142-7. [PMID: 20060708 DOI: 10.1016/j.sbi.2009.12.004] [Citation(s) in RCA: 168] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 12/10/2009] [Accepted: 12/11/2009] [Indexed: 11/30/2022]
Abstract
Guanine and adenine nucleotide triphosphatases, such as Ras proteins and protein kinases, undergo large conformational changes upon ligand binding in the course of their functions. New computer simulation methods have combined with experimental studies to deepen our understanding of these phenomena. In particular, a 'conformational selection' picture is emerging, where alterations in the relative populations of pre-existing conformations can best describe the conformational switching activity of these important proteins.
Collapse
Affiliation(s)
- Barry J Grant
- Department of Chemistry and Biochemistry and Center for Theoretical Biological Physics, University of California San Diego, La Jolla, CA, USA
| | | | | |
Collapse
|
30
|
Boehr DD, Nussinov R, Wright PE. The role of dynamic conformational ensembles in biomolecular recognition. Nat Chem Biol 2010; 5:789-96. [PMID: 19841628 DOI: 10.1038/nchembio.232] [Citation(s) in RCA: 1510] [Impact Index Per Article: 100.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Molecular recognition is central to all biological processes. For the past 50 years, Koshland's 'induced fit' hypothesis has been the textbook explanation for molecular recognition events. However, recent experimental evidence supports an alternative mechanism. 'Conformational selection' postulates that all protein conformations pre-exist, and the ligand selects the most favored conformation. Following binding the ensemble undergoes a population shift, redistributing the conformational states. Both conformational selection and induced fit appear to play roles. Following binding by a primary conformational selection event, optimization of side chain and backbone interactions is likely to proceed by an induced fit mechanism. Conformational selection has been observed for protein-ligand, protein-protein, protein-DNA, protein-RNA and RNA-ligand interactions. These data support a new molecular recognition paradigm for processes as diverse as signaling, catalysis, gene regulation and protein aggregation in disease, which has the potential to significantly impact our views and strategies in drug design, biomolecular engineering and molecular evolution.
Collapse
Affiliation(s)
- David D Boehr
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, USA.
| | | | | |
Collapse
|
31
|
Bizzarri AR, Cannistraro S. Atomic Force Spectroscopy in Biological Complex Formation: Strategies and Perspectives. J Phys Chem B 2009; 113:16449-64. [DOI: 10.1021/jp902421r] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Anna Rita Bizzarri
- Biophysics and Nanoscience Centre, CNISM, Facoltà di Scienze, Università della Tuscia, Largo dell’Università, 01100 Viterbo, Italy
| | - Salvatore Cannistraro
- Biophysics and Nanoscience Centre, CNISM, Facoltà di Scienze, Università della Tuscia, Largo dell’Università, 01100 Viterbo, Italy
| |
Collapse
|
32
|
Rangl M, Nevo R, Liashkovich I, Shahin V, Reich Z, Ebner A, Hinterdorfer P. Stable, non-destructive immobilization of native nuclear membranes to micro-structured PDMS for single-molecule force spectroscopy. Chemphyschem 2009; 10:1553-8. [PMID: 19507204 PMCID: PMC3013320 DOI: 10.1002/cphc.200900219] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Indexed: 11/08/2022]
Abstract
In eukaryotic cells the nucleus is separated from the cytoplasm by a double-membraned nuclear envelope (NE). Exchange of molecules between the two compartments is mediated by nuclear pore complexes (NPCs) that are embedded in the NE membranes. The translocation of molecules such as proteins and RNAs through the nuclear membrane is executed by transport shuttling factors (karyopherines). They thereby dock to particular binding sites located all over the NPC, the so-called phenylalanine-glycin nucleoporines (FG Nups). Molecular recognition force spectroscopy (MRFS) allows investigations of the binding at the single-molecule level. Therefore the AFM tip carries a ligand for example, a particular karyopherin whereas the nuclear membrane with its receptors is mounted on a surface. Hence, one of the first requirements to study the nucleocytoplasmatic transport mechanism using MRFS is the development of an optimized membrane preparation that preserves structure and function of the NPCs. In this study we present a stable non-destructive preparation method of Xenopus laevis nuclear envelopes. We use micro-structured polydimethylsiloxane (PDMS) that provides an ideal platform for immobilization and biological integrity due to its elastic, chemical and mechanical properties. It is a solid basis for studying molecular recognition, transport interactions, and translocation processes through the NPC. As a first recognition system we investigate the interaction between an important transport shuttling factor, importin beta, and its binding sites on the NPC, the FG-domains.
Collapse
Affiliation(s)
- Martina Rangl
- Institute for Biophysics, Johannes Kepler University of Linz, Altenbergerstr. 69, 4040 Linz (Austria)
| | - Reinat Nevo
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100 (Israel)
| | - Ivan Liashkovich
- Department of Physiology, University of Münster, Robert-Koch-str. 27b, 48149 Münster (Germany)
| | - Victor Shahin
- Department of Physiology, University of Münster, Robert-Koch-str. 27b, 48149 Münster (Germany)
| | - Ziv Reich
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100 (Israel)
| | - Andreas Ebner
- Institute for Biophysics, Johannes Kepler University of Linz, Altenbergerstr. 69, 4040 Linz (Austria)
| | - Peter Hinterdorfer
- Institute for Biophysics, Johannes Kepler University of Linz, Altenbergerstr. 69, 4040 Linz (Austria)
| |
Collapse
|
33
|
Clarke SR, Andre G, Walsh EJ, Dufrêne YF, Foster TJ, Foster SJ. Iron-regulated surface determinant protein A mediates adhesion of Staphylococcus aureus to human corneocyte envelope proteins. Infect Immun 2009; 77:2408-16. [PMID: 19307218 PMCID: PMC2687344 DOI: 10.1128/iai.01304-08] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Revised: 12/08/2008] [Accepted: 03/12/2009] [Indexed: 12/21/2022] Open
Abstract
The ability of Staphylococcus aureus to colonize the human nares is a crucial prerequisite for disease. IsdA is a major S. aureus surface protein that is expressed during human infection and required for nasal colonization and survival on human skin. In this work, we show that IsdA binds to involucrin, loricrin, and cytokeratin K10, proteins that are present in the cornified envelope of human desquamated epithelial cells. To measure the forces and dynamics of the interaction between IsdA and loricrin (the most abundant protein of the cornified envelope), single-molecule force spectroscopy was used, demonstrating high-specificity binding. IsdA acts as a cellular adhesin to the human ligands, promoting whole-cell binding to immobilized proteins, even in the absence of other S. aureus components (as shown by heterologous expression in Lactococcus lactis). Inhibition experiments revealed the binding of the human ligands to the same IsdA region. This region was mapped to the NEAT domain of IsdA. The NEAT domain also was found to be required for S. aureus whole-cell binding to the ligands as well as to human nasal cells. Thus, IsdA is an important adhesin to human ligands, which predominate in its primary ecological niche.
Collapse
Affiliation(s)
- Simon R Clarke
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, United Kingdom
| | | | | | | | | | | |
Collapse
|
34
|
Verbelen C, Christiaens N, Alsteens D, Dupres V, Baulard AR, Dufrêne YF. Molecular mapping of lipoarabinomannans on mycobacteria. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:4324-4327. [PMID: 19278203 DOI: 10.1021/la900302a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Although the chemical composition of mycobacterial cell walls is well known, the 3D organization of the various constituents is not fully understood. In particular, it is unclear whether the major wall component lipoarabinomannan (LAM) is exposed on the outermost surface or hindered by other constituents such as mycolic acids. To address this pertinent question, we used atomic force microscopy (AFM) with tips bearing anti-LAM antibodies to detect single LAM molecules on Mycobacterium bovis BCG cells. First, we showed the ability of anti-LAM tips to detect isolated, purified LAM molecules. We then mapped the distribution of LAM on mycobacteria, prior to and after treatment with the drug isoniazid. We found that LAM was not exposed on the surface of native cells, pointing to the presence of a homogeneous layer of mycolic acids, whereas it was greatly exposed on isoniazid-treated cells, in agreement with the action mode of the drug. This single-molecule study provides novel insight into the architecture of mycobacterial cell walls and offers promising perspectives for understanding the action modes of antimycobacterial drugs.
Collapse
Affiliation(s)
- Claire Verbelen
- Unité de Chimie des Interfaces, Université Catholique de Louvain, Croix du Sud 2/18, B-1348 Louvain-la-Neuve, Belgium
| | | | | | | | | | | |
Collapse
|
35
|
Verbelen C, Dufrêne YF. Direct measurement of Mycobacterium-fibronectin interactions. Integr Biol (Camb) 2009; 1:296-300. [PMID: 20023729 DOI: 10.1039/b901396b] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bacterial surface-associated proteins play essential roles in mediating pathogen-host interactions and represent privileged targets for anti-adhesion therapy. We used atomic force microscopy (AFM) to investigate, in vivo, the binding strength and surface distribution of fibronectin attachment proteins (FAPs) in Mycobacterium bovis bacillus Calmette-Guérin (BCG). We measured the specific binding forces of FAPs ( approximately 50 pN) and found that they increased with the loading rate, as observed earlier for other receptor-ligand systems. We also mapped the distribution of FAPs, revealing that the proteins are widely exposed on the mycobacterial surface. To demonstrate that the proteins are surface-associated, we showed that treatment of the cells with pullulanase, an enzyme possessing carbohydrate-degrading activities, or with protease, an enzyme that conducts proteolysis, led to a substantial reduction of the FAP surface density. A similar trend was also noted following treatment with ethambutol, an antibiotic which inhibits the synthesis of cell wall polysaccharides. The nanoscale analyses presented here complement traditional proteomic and molecular biology approaches for the functional analysis of surface-associated proteins, and may help in the search for novel anti-adhesive drugs.
Collapse
Affiliation(s)
- Claire Verbelen
- Unité de Chimie des Interfaces, Université Catholique de Louvain, Croix du Sud 2/18, B-1348, Louvain-la-Neuve, Belgium
| | | |
Collapse
|
36
|
Takahashi H, Hizume K, Kumeta M, H Yoshimura S, Takeyasu K. Single-molecule anatomy by atomic force microscopy and recognition imaging. ARCHIVES OF HISTOLOGY AND CYTOLOGY 2009; 72:217-25. [PMID: 21471656 DOI: 10.1679/aohc.72.217] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Atomic force microscopy (AFM) has been a useful technique to visualize cellular and molecular structures at single-molecule resolution. The combination of imaging and force modes has also allowed the characterization of physical properties of biological macromolecules in relation to their structures. Furthermore, recognition imaging, which is obtained under the TREC(TM) (Topography and RECognition) mode of AFM, can map a specific protein of interest within an AFM image. In this study, we first demonstrated structural properties of purified α Actinin-4 by conventional AFM. Since this molecule is an actin binding protein that cross-bridges actin filaments and anchors it to integrin via tailin-vinculin-α actinin adaptor-interaction, we investigated their structural properties using the recognition mode of AFM. For this purpose, we attached an anti-α Actinin-4 monoclonal antibody to the AFM cantilever and performed recognition imaging against α Actinin-4. We finally succeeded in mapping the epitopic region within the α Actinin-4 molecule. Thus, recognition imaging using an antibody coupled AFM cantilever will be useful for single-molecule anatomy of biological macromolecules and structures.
Collapse
Affiliation(s)
- Hirohide Takahashi
- Laboratory of Plasma Membrane and Nuclear Signaling, Kyoto University Graduate School of Biostudies, Japan
| | | | | | | | | |
Collapse
|
37
|
Strunk JJ, Gregor I, Becker Y, Lamken P, Lata S, Reichel A, Enderlein J, Piehler J. Probing Protein Conformations by in Situ Non-Covalent Fluorescence Labeling. Bioconjug Chem 2008; 20:41-6. [DOI: 10.1021/bc8002088] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jennifer Julia Strunk
- Institute of Biochemistry and Cluster of Excellence Macromolecular Complexes (CEF), Johann Wolfgang Goethe-University, Frankfurt/Main, Germany, Department of Molecular Neurosensorics, Caesar Research Centre, Bonn, Germany, and Institute of Physical and Theoretical Chemistry, Eberhard-Karls-University, Tübingen, Germany
| | - Ingo Gregor
- Institute of Biochemistry and Cluster of Excellence Macromolecular Complexes (CEF), Johann Wolfgang Goethe-University, Frankfurt/Main, Germany, Department of Molecular Neurosensorics, Caesar Research Centre, Bonn, Germany, and Institute of Physical and Theoretical Chemistry, Eberhard-Karls-University, Tübingen, Germany
| | - Yvonne Becker
- Institute of Biochemistry and Cluster of Excellence Macromolecular Complexes (CEF), Johann Wolfgang Goethe-University, Frankfurt/Main, Germany, Department of Molecular Neurosensorics, Caesar Research Centre, Bonn, Germany, and Institute of Physical and Theoretical Chemistry, Eberhard-Karls-University, Tübingen, Germany
| | - Peter Lamken
- Institute of Biochemistry and Cluster of Excellence Macromolecular Complexes (CEF), Johann Wolfgang Goethe-University, Frankfurt/Main, Germany, Department of Molecular Neurosensorics, Caesar Research Centre, Bonn, Germany, and Institute of Physical and Theoretical Chemistry, Eberhard-Karls-University, Tübingen, Germany
| | - Suman Lata
- Institute of Biochemistry and Cluster of Excellence Macromolecular Complexes (CEF), Johann Wolfgang Goethe-University, Frankfurt/Main, Germany, Department of Molecular Neurosensorics, Caesar Research Centre, Bonn, Germany, and Institute of Physical and Theoretical Chemistry, Eberhard-Karls-University, Tübingen, Germany
| | - Annett Reichel
- Institute of Biochemistry and Cluster of Excellence Macromolecular Complexes (CEF), Johann Wolfgang Goethe-University, Frankfurt/Main, Germany, Department of Molecular Neurosensorics, Caesar Research Centre, Bonn, Germany, and Institute of Physical and Theoretical Chemistry, Eberhard-Karls-University, Tübingen, Germany
| | - Jörg Enderlein
- Institute of Biochemistry and Cluster of Excellence Macromolecular Complexes (CEF), Johann Wolfgang Goethe-University, Frankfurt/Main, Germany, Department of Molecular Neurosensorics, Caesar Research Centre, Bonn, Germany, and Institute of Physical and Theoretical Chemistry, Eberhard-Karls-University, Tübingen, Germany
| | - Jacob Piehler
- Institute of Biochemistry and Cluster of Excellence Macromolecular Complexes (CEF), Johann Wolfgang Goethe-University, Frankfurt/Main, Germany, Department of Molecular Neurosensorics, Caesar Research Centre, Bonn, Germany, and Institute of Physical and Theoretical Chemistry, Eberhard-Karls-University, Tübingen, Germany
| |
Collapse
|
38
|
Forwood JK, Lonhienne TG, Marfori M, Robin G, Meng W, Guncar G, Liu SM, Stewart M, Carroll BJ, Kobe B. Kap95p binding induces the switch loops of RanGDP to adopt the GTP-bound conformation: implications for nuclear import complex assembly dynamics. J Mol Biol 2008; 383:772-82. [PMID: 18708071 DOI: 10.1016/j.jmb.2008.07.090] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 07/31/2008] [Accepted: 07/31/2008] [Indexed: 11/20/2022]
Abstract
The asymmetric distribution of the nucleotide-bound state of Ran across the nuclear envelope is crucial for determining the directionality of nuclear transport. In the nucleus, Ran is primarily in the guanosine 5'-triphosphate (GTP)-bound state, whereas in the cytoplasm, Ran is primarily guanosine 5'-diphosphate (GDP)-bound. Conformational changes within the Ran switch I and switch II loops are thought to modulate its affinity for importin-beta. Here, we show that RanGDP and importin-beta form a stable complex with a micromolar dissociation constant. This complex can be dissociated by importin-beta binding partners such as importin-alpha. Surprisingly, the crystal structure of the Kap95p-RanGDP complex shows that Kap95p induces the switch I and II regions of RanGDP to adopt a conformation that resembles that of the GTP-bound form. The structure of the complex provides insights into the structural basis for the gradation of affinities regulating nuclear protein transport.
Collapse
Affiliation(s)
- Jade K Forwood
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga 2650, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
The ‘new view’ of proteins sees protein reactions as parallel processes occurring along funnelled energy landscapes. These landscapes are generally not smooth, but are superimposed by hills and valleys of different heights and widths leading to roughness on the energy surface. In the present paper, we describe the origins of protein energy landscape roughness, measurements of its scale and its implications.
Collapse
|
40
|
Multiple receptors involved in human rhinovirus attachment to live cells. Proc Natl Acad Sci U S A 2008; 105:17778-83. [PMID: 18997008 DOI: 10.1073/pnas.0806451105] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Minor group human rhinoviruses (HRVs) attach to members of the low-density lipoprotein receptor family and are internalized via receptor-mediated endocytosis. The attachment of HRV2 to the cell surface, the first step in infection, was characterized at the single-molecule level by atomic force spectroscopy. Sequential binding of multiple receptors was evident from recordings of characteristic quantized force spectra, which suggests that multiple receptors bound to the virus in a timely manner. Unbinding forces required to detach the virus from the cell membrane increased within a time frame of several hundred milliseconds. The number of receptors involved in virus binding was determined, and estimates for on-rate, off-rate, and equilibrium binding constant of the interaction between HRV2 and plasma membrane-anchored receptors were obtained.
Collapse
|
41
|
Abstract
The lysin motif (LysM) is a ubiquitous protein module that binds peptidoglycan and structurally related molecules. Here, we used single-molecule force spectroscopy (SMFS) to measure and localize individual LysM-peptidoglycan interactions on both model and cellular surfaces. LysM modules of the major autolysin AcmA of Lactococcus lactis were bound to gold-coated atomic force microscopy tips, while peptidoglycan was covalently attached onto model supports. Multiple force curves recorded between the LysM tips and peptidoglycan surfaces yielded a bimodal distribution of binding forces, presumably reflecting the occurrence of one and two LysM-peptidoglycan interactions, respectively. The specificity of the measured interaction was confirmed by performing blocking experiments with free peptidoglycan. Next, the LysM tips were used to map single LysM interactions on the surfaces of L. lactis cells. Strikingly, native cells showed very poor binding, suggesting that peptidoglycan was hindered by other cell wall constituents. Consistent with this notion, treatment of the cells with trichloroacetic acid, which removes peptidoglycan-associated polymers, resulted in substantial and homogeneous binding of the LysM tip. These results provide novel insight into the binding forces of bacterial LysMs and show that SMFS is a promising tool for studying the heterologous display of proteins or peptides on bacterial surfaces.
Collapse
|
42
|
Puchner EM, Franzen G, Gautel M, Gaub HE. Comparing proteins by their unfolding pattern. Biophys J 2008; 95:426-34. [PMID: 18550806 PMCID: PMC2426622 DOI: 10.1529/biophysj.108.129999] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Accepted: 03/05/2008] [Indexed: 11/18/2022] Open
Abstract
Single molecule force spectroscopy has evolved into an important and extremely powerful technique for investigating the folding potentials of biomolecules. Mechanical tension is applied to individual molecules, and the subsequent, often stepwise unfolding is recorded in force extension traces. However, because the energy barriers of the folding potentials are often close to the thermal energy, both the extensions and the forces at which these barriers are overcome are subject to marked fluctuations. Therefore, force extension traces are an inadequate representation despite widespread use particularly when large populations of proteins need to be compared and analyzed. We show in this article that contour length, which is independent of fluctuations and alterable experimental parameters, is a more appropriate variable than extension. By transforming force extension traces into contour length space, histograms are obtained that directly represent the energy barriers. In contrast to force extension traces, such barrier position histograms can be averaged to investigate details of the unfolding potential. The cross-superposition of barrier position histograms allows us to detect and visualize the order of unfolding events. We show with this approach that in contrast to the sequential unfolding of bacteriorhodopsin, two main steps in the unfolding of the enzyme titin kinase are independent of each other. The potential of this new method for accurate and automated analysis of force spectroscopy data and for novel automated screening techniques is shown with bacteriorhodopsin and with protein constructs containing GFP and titin kinase.
Collapse
Affiliation(s)
- Elias M Puchner
- Lehrstuhl für Angewandte Physik and Center for Nanoscience, LMU München, Munich, Germany.
| | | | | | | |
Collapse
|
43
|
Verbelen C, Gruber HJ, Dufrêne YF. The NTA-His6 bond is strong enough for AFM single-molecular recognition studies. J Mol Recognit 2008; 20:490-4. [PMID: 17712775 DOI: 10.1002/jmr.833] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
There is a need in current atomic force microscopy (AFM) molecular recognition studies for generic methods for the stable, functional attachment of proteins on tips and solid supports. In the last few years, the site-directed nitrilotriacetic acid (NTA)-polyhistidine (Hisn) system has been increasingly used towards this goal. Yet, a crucial question in this context is whether the NTA-Hisn bond is sufficiently strong for ensuring stable protein immobilization during force spectroscopy measurements. Here, we measured the forces between AFM tips modified with NTA-terminated alkanethiols and solid supports functionalized with His6-Gly-Cys peptides in the presence of Ni2+. The force histogram obtained at a loading rate of 6600 pN s(-1) showed three maxima at rupture forces of 153 +/- 57 pN, 316 +/- 50 pN and 468 +/- 44 pN, that we attribute primarily to monovalent and multivalent interactions between a single His6 moiety and one, two and three NTA groups, respectively. The measured forces are well above the 50-100 pN unbinding forces typically observed by AFM for receptor-ligand pairs. The plot of adhesion force versus log (loading rate) revealed a linear regime, from which we deduced a kinetic off-rate constant of dissociation, k(off) approximately 0.07 s(-1). This value is in the range of that estimated for the multivalent interaction involving two NTA, using fluorescence measurements, and may account for an increased binding stability of the NTA-His6 bond. We conclude that the NTA-His6 system is a powerful, well-suited platform for the stable, oriented immobilization of proteins in AFM single-molecule studies.
Collapse
Affiliation(s)
- Claire Verbelen
- Unité de Chimie des Interfaces, Université catholique de Louvain, Croix du Sud 2/18, B-1348 Louvain-la-Neuve, Belgium
| | | | | |
Collapse
|
44
|
Functionalization of Probe Tips and Supports for Single-Molecule Recognition Force Microscopy. Top Curr Chem (Cham) 2008; 285:29-76. [DOI: 10.1007/128_2007_24] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
45
|
Recent progress in AFM molecular recognition studies. Pflugers Arch 2007; 456:237-45. [PMID: 18157727 DOI: 10.1007/s00424-007-0413-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Revised: 11/23/2007] [Accepted: 11/27/2007] [Indexed: 10/22/2022]
|
46
|
Han F, Zhang X. Characterization of a ras-related nuclear protein (Ran protein) up-regulated in shrimp antiviral immunity. FISH & SHELLFISH IMMUNOLOGY 2007; 23:937-44. [PMID: 17703953 DOI: 10.1016/j.fsi.2007.01.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Revised: 01/18/2007] [Accepted: 01/26/2007] [Indexed: 05/16/2023]
Abstract
Diseases caused by viruses, especially white spot syndrome virus (WSSV), are the greatest challenge to worldwide shrimp aquaculture. Therefore, the innate immunity of shrimp has attracted extensive attentions these years. To date, however, no mechanism of immuno-related signal transduction pathway has been reported. In this investigation, an important signal transduction factor-Ran gene encoding ras-related nuclear protein (Ran protein) was characterized in shrimp. The shrimp Ran gene, without introns when compared with genomic DNA, was 645 bp in length. The GTP-binding assay showed that the Ran protein had GTP-binding activity. The results of RT-PCR and Western blot indicated that the transcript and protein of Ran were detected in every tissue of shrimp including hepatopancreas, haemolymph, gill, intestine, heart and muscle. In the WSSV-resistant and WSSV-infected shrimp at 4h postinfection, the Ran gene was obviously up-regulated, indicating that it played a role in shrimp immunity against virus infection. This study, therefore, might provide a clue to elucidate shrimp innate immunity.
Collapse
Affiliation(s)
- Fang Han
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, PR China
| | | |
Collapse
|
47
|
Single-molecule force spectroscopy of mycobacterial adhesin-adhesin interactions. J Bacteriol 2007; 189:8801-6. [PMID: 17933894 DOI: 10.1128/jb.01299-07] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The heparin-binding hemagglutinin (HBHA) is one of the few virulence factors identified for Mycobacterium tuberculosis. It is a surface-associated adhesin that expresses a number of different activities, including mycobacterial adhesion to nonphagocytic cells and microbial aggregation. Previous evidence indicated that HBHA is likely to form homodimers or homopolymers via a predicted coiled-coil region located within the N-terminal portion of the molecule. Here, we used single-molecule atomic-force microscopy to measure individual homophilic HBHA-HBHA interaction forces. Force curves recorded between tips and supports derivatized with HBHA proteins exposing their N-terminal domains showed a bimodal distribution of binding forces reflecting the formation of dimers or multimers. Moreover, the binding peaks showed elongation forces that were consistent with the unfolding of alpha-helical coiled-coil structures. By contrast, force curves obtained for proteins exposing their lysine-rich C-terminal domains showed a broader distribution of binding events, suggesting that they originate primarily from intermolecular electrostatic bridges between cationic and anionic residues rather than from specific coiled-coil interactions. Notably, similar homophilic HBHA-HBHA interactions were demonstrated on live mycobacteria producing HBHA, while they were not observed on an HBHA-deficient mutant. Together with the fact that HBHA mediates bacterial aggregation, these observations suggest that the single homophilic HBHA interactions measured here reflect the formation of multimers that may promote mycobacterial aggregation.
Collapse
|
48
|
Yersin A, Osada T, Ikai A. Exploring transferrin-receptor interactions at the single-molecule level. Biophys J 2007; 94:230-40. [PMID: 17872962 PMCID: PMC2134874 DOI: 10.1529/biophysj.107.114637] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Interaction between the iron transporter protein transferrin (Tf) and its receptor at the cell surface is fundamental for most living organisms. Tf receptor (TfR) binds iron-loaded Tf (holo-Tf) and transports it to endosomes, where acidic pH favors iron release. Iron-free Tf (apo-Tf) is then brought back to the cell surface and dissociates from TfR. Here we investigated the Tf-TfR interaction at the single-molecule level under different conditions encountered during the Tf cycle. An atomic force microscope tip functionalized with holo-Tf or apo-Tf was used to probe TfR. We tested both purified TfR anchored to a mica substrate and in situ TfR at the surface of living cells. Dynamic force measurements showed similar results for TfR on mica or at the cell surface but revealed striking differences between holo-Tf-TfR and apo-Tf-TfR interactions. First, the forces necessary to unbind holo-Tf and TfR are always stronger compared to the apo-Tf-TfR interaction. Second, dissociation of holo-Tf-TfR complex involves overcoming two energy barriers, whereas the apo-Tf-TfR unbinding pathway comprises only one energy barrier. These results agree with a model that proposes differences in the contact points between holo-Tf-TfR and apo-Tf-TfR interactions.
Collapse
Affiliation(s)
- Alexandre Yersin
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan.
| | | | | |
Collapse
|
49
|
Ritco-Vonsovici M, Ababou A, Horton M. Molecular plasticity of beta-catenin: new insights from single-molecule measurements and MD simulation. Protein Sci 2007; 16:1984-98. [PMID: 17660262 PMCID: PMC2206973 DOI: 10.1110/ps.072773007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The multifunctional protein, beta-catenin, has essential roles in cell adhesion and, through the Wnt signaling pathway, in controlling cell differentiation, development, and generation of cancer. Could distinct molecular forms of beta-catenin underlie these two functions? Our single-molecule force spectroscopy of armadillo beta-catenin, with molecular dynamics (MD) simulation, suggests a model in which the cell generates various forms of beta-catenin, in equilibrium. We find beta-catenin and the transcriptional factor Tcf4 form two complexes with different affinities. Specific cellular response is achieved by the ligand binding to a particular matching preexisting conformer. Our MD simulation indicates that complexes derive from two conformers of the core region of the protein, whose preexisting molecular forms could arise from small variations in flexible regions of the beta-catenin main binding site. This mechanism for the generation of the various forms offers a route to tailoring future therapeutic strategies.
Collapse
Affiliation(s)
- Monica Ritco-Vonsovici
- London Centre for Nanotechnology and Department of Medicine, University College London, London WC1E 6JJ, United Kingdom
| | | | | |
Collapse
|
50
|
Lee CK, Wang YM, Huang LS, Lin S. Atomic force microscopy: Determination of unbinding force, off rate and energy barrier for protein–ligand interaction. Micron 2007; 38:446-61. [PMID: 17015017 DOI: 10.1016/j.micron.2006.06.014] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Revised: 06/17/2006] [Accepted: 06/19/2006] [Indexed: 11/19/2022]
Abstract
Recently, atomic force microscopy (AFM) based force measurements have been applied biophysically and clinically to the field of molecular recognition as well as to the evaluation of dynamic parameters for various interactions between proteins and ligands in their native environment. The aim of this review is to describe the use of the AFM to measure the forces that control biological interaction, focusing especially on protein-ligand and protein-protein interaction modes. We first considered the measurements of specific and non-specific unbinding forces which together control protein-ligand interactions. As such, we will look at the theoretical background of AFM force measurement curves for evaluating the unbinding forces of protein-ligand complexes. Three AFM model dynamic parameters developed recently for use in protein-ligand interactions are reviewed: (i) unbinding forces, (ii) off rates, and (iii) binding energies. By reviewing the several techniques developed for measuring forces between biological structures and intermolecular forces in the literature, we show that use of an AFM for these applications provides an excellent tool in terms of spatial resolution and lateral resolution, especially for protein-protein and protein-ligand interactions.
Collapse
Affiliation(s)
- Chih-Kung Lee
- Institute of Applied Mechanics, National Taiwan University, Taipei, Taiwan
| | | | | | | |
Collapse
|