1
|
Kita K, Morkos C, Nolan K. Maintenance of stem cell self-renewal by sex chromosomal zinc-finger transcription factors. World J Methodol 2024; 14:97664. [PMID: 39712568 PMCID: PMC11287546 DOI: 10.5662/wjm.v14.i4.97664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/10/2024] [Accepted: 07/17/2024] [Indexed: 07/26/2024] Open
Abstract
In this Editorial review, we would like to focus on a very recent discovery showing the global autosomal gene regulation by Y- and inactivated X-chromosomal transcription factors, zinc finger gene on the Y chromosome (ZFY) and zinc finger protein X-linked (ZFX). ZFX and ZFY are both zinc-finger proteins that encode general transcription factors abundant in hematopoietic and embryonic stem cells. Although both proteins are homologs, interestingly, the regulation of self-renewal by these transcriptional factors is almost exclusive to ZFX. This fact implies that there are some differential roles between ZFX and ZFY in regulating the maintenance of self-renewal activity in stem cells. Besides the maintenance of stemness, ZFX overexpression or mutations may be linked to certain cancers. Although cancers and stem cells are double-edged swords, there is no study showing the link between ZFX activity and the telomere. Thus, stemness or cancers with ZFX may be linked to other molecules, such as Oct4, Sox2, Klf4, and others. Based on very recent studies and a few lines of evidence in the past decade, it appears that the ZFX is linked to the canonical Wnt signaling, which is one possible mechanism to explain the role of ZFX in the self-renewal of stem cells.
Collapse
Affiliation(s)
- Katsuhiro Kita
- Department of Biology, St. Francis College, Brooklyn, NY 11201, United States
| | - Celine Morkos
- Department of Biology, St. Francis College, Brooklyn, NY 11201, United States
| | - Kathleen Nolan
- Department of Biology, St. Francis College, Brooklyn, NY 11201, United States
| |
Collapse
|
2
|
Wernig-Zorc S, Kugler F, Schmutterer L, Räß P, Hausmann C, Holzinger S, Längst G, Schwartz U. nucMACC: An MNase-seq pipeline to identify structurally altered nucleosomes in the genome. SCIENCE ADVANCES 2024; 10:eadm9740. [PMID: 38959309 PMCID: PMC11221511 DOI: 10.1126/sciadv.adm9740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/30/2024] [Indexed: 07/05/2024]
Abstract
Micrococcal nuclease sequencing is the state-of-the-art method for determining chromatin structure and nucleosome positioning. Data analysis is complex due to the AT-dependent sequence bias of the endonuclease and the requirement for high sequencing depth. Here, we present the nucleosome-based MNase accessibility (nucMACC) pipeline unveiling the regulatory chromatin landscape by measuring nucleosome accessibility and stability. The nucMACC pipeline represents a systematic and genome-wide approach for detecting unstable ("fragile") nucleosomes. We have characterized the regulatory nucleosome landscape in Drosophila melanogaster, Saccharomyces cerevisiae, and mammals. Two functionally distinct sets of promoters were characterized, one associated with an unstable nucleosome and the other being nucleosome depleted. We show that unstable nucleosomes present intermediate states of nucleosome remodeling, preparing inducible genes for transcriptional activation in response to stimuli or stress. The presence of unstable nucleosomes correlates with RNA polymerase II proximal pausing. The nucMACC pipeline offers unparalleled precision and depth in nucleosome research and is a valuable tool for future nucleosome studies.
Collapse
Affiliation(s)
- Sara Wernig-Zorc
- Regensburg Center for Biochemistry (RCB), University of Regensburg, Regensburg, Germany
| | - Fabian Kugler
- Regensburg Center for Biochemistry (RCB), University of Regensburg, Regensburg, Germany
| | - Leo Schmutterer
- NGS Analysis Center Biology and Pre-clinical Medicine, University of Regensburg, Regensburg, Germany
| | - Patrick Räß
- NGS Analysis Center Biology and Pre-clinical Medicine, University of Regensburg, Regensburg, Germany
| | - Clemens Hausmann
- NGS Analysis Center Biology and Pre-clinical Medicine, University of Regensburg, Regensburg, Germany
| | - Simon Holzinger
- Regensburg Center for Biochemistry (RCB), University of Regensburg, Regensburg, Germany
| | - Gernot Längst
- Regensburg Center for Biochemistry (RCB), University of Regensburg, Regensburg, Germany
| | - Uwe Schwartz
- NGS Analysis Center Biology and Pre-clinical Medicine, University of Regensburg, Regensburg, Germany
| |
Collapse
|
3
|
Orsetti A, van Oosten D, Vasarhelyi RG, Dănescu TM, Huertas J, van Ingen H, Cojocaru V. Structural dynamics in chromatin unraveling by pioneer transcription factors. Biophys Rev 2024; 16:365-382. [PMID: 39099839 PMCID: PMC11297019 DOI: 10.1007/s12551-024-01205-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/18/2024] [Indexed: 08/06/2024] Open
Abstract
Pioneer transcription factors are proteins with a dual function. First, they regulate transcription by binding to nucleosome-free DNA regulatory elements. Second, they bind to DNA while wrapped around histone proteins in the chromatin and mediate chromatin opening. The molecular mechanisms that connect the two functions are yet to be discovered. In recent years, pioneer factors received increased attention mainly because of their crucial role in promoting cell fate transitions that could be used for regenerative therapies. For example, the three factors required to induce pluripotency in somatic cells, Oct4, Sox2, and Klf4 were classified as pioneer factors and studied extensively. With this increased attention, several structures of complexes between pioneer factors and chromatin structural units (nucleosomes) have been resolved experimentally. Furthermore, experimental and computational approaches have been designed to study two unresolved, key scientific questions: First, do pioneer factors induce directly local opening of nucleosomes and chromatin fibers upon binding? And second, how do the unstructured tails of the histones impact the structural dynamics involved in such conformational transitions? Here we review the current knowledge about transcription factor-induced nucleosome dynamics and the role of the histone tails in this process. We discuss what is needed to bridge the gap between the static views obtained from the experimental structures and the key structural dynamic events in chromatin opening. Finally, we propose that integrating nuclear magnetic resonance spectroscopy with molecular dynamics simulations is a powerful approach to studying pioneer factor-mediated dynamics of nucleosomes and perhaps small chromatin fibers using native DNA sequences.
Collapse
Affiliation(s)
- Andrea Orsetti
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Daphne van Oosten
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | | | - Theodor-Marian Dănescu
- Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Jan Huertas
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, England
| | - Hugo van Ingen
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Vlad Cojocaru
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
- STAR-UBB Institute, Babeş-Bolyai University, Cluj-Napoca, Romania
- Max Planck Institute for Molecular Biomedicine, Münster, Germany
| |
Collapse
|
4
|
Shtumpf M, Jeong S, Bikova M, Mamayusupova H, Ruje L, Teif VB. Aging clock based on nucleosome reorganisation derived from cell-free DNA. Aging Cell 2024; 23:e14100. [PMID: 38337183 PMCID: PMC11113261 DOI: 10.1111/acel.14100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
Aging induces systematic changes in the distribution of nucleosomes, which affect gene expression programs. Here we reconstructed nucleosome maps based on cell-free DNA (cfDNA) extracted from blood plasma using four cohorts of people of different ages. We show that nucleosomes tend to be separated by larger genomic distances in older people, and age correlates with the nucleosome repeat length (NRL). Furthermore, we developed the first aging clock based on cfDNA nucleosomics. Machine learning based on cfDNA distance distributions allowed predicting person's age with the median absolute error of 3-3.5 years.
Collapse
Affiliation(s)
| | - Seihee Jeong
- School of Life SciencesUniversity of EssexColchesterUK
| | - Milena Bikova
- School of Life SciencesUniversity of EssexColchesterUK
| | | | - Luminita Ruje
- School of Life SciencesUniversity of EssexColchesterUK
| | | |
Collapse
|
5
|
Jacob DR, Guiblet WM, Mamayusupova H, Shtumpf M, Ciuta I, Ruje L, Gretton S, Bikova M, Correa C, Dellow E, Agrawal SP, Shafiei N, Drobysevskaja A, Armstrong CM, Lam JDG, Vainshtein Y, Clarkson CT, Thorn GJ, Sohn K, Pradeepa MM, Chandrasekharan S, Brooke GN, Klenova E, Zhurkin VB, Teif VB. Nucleosome reorganisation in breast cancer tissues. Clin Epigenetics 2024; 16:50. [PMID: 38561804 PMCID: PMC10986098 DOI: 10.1186/s13148-024-01656-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/11/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Nucleosome repositioning in cancer is believed to cause many changes in genome organisation and gene expression. Understanding these changes is important to elucidate fundamental aspects of cancer. It is also important for medical diagnostics based on cell-free DNA (cfDNA), which originates from genomic DNA regions protected from digestion by nucleosomes. RESULTS We have generated high-resolution nucleosome maps in paired tumour and normal tissues from the same breast cancer patients using MNase-assisted histone H3 ChIP-seq and compared them with the corresponding cfDNA from blood plasma. This analysis has detected single-nucleosome repositioning at key regulatory regions in a patient-specific manner and common cancer-specific patterns across patients. The nucleosomes gained in tumour versus normal tissue were particularly informative of cancer pathways, with ~ 20-fold enrichment at CpG islands, a large fraction of which marked promoters of genes encoding DNA-binding proteins. The tumour tissues were characterised by a 5-10 bp decrease in the average distance between nucleosomes (nucleosome repeat length, NRL), which is qualitatively similar to the differences between pluripotent and differentiated cells. This effect was correlated with gene activity, differential DNA methylation and changes in local occupancy of linker histone variants H1.4 and H1X. CONCLUSIONS Our study offers a novel resource of high-resolution nucleosome maps in breast cancer patients and reports for the first time the effect of systematic decrease of NRL in paired tumour versus normal breast tissues from the same patient. Our findings provide a new mechanistic understanding of nucleosome repositioning in tumour tissues that can be valuable for patient diagnostics, stratification and monitoring.
Collapse
Affiliation(s)
- Divya R Jacob
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Wilfried M Guiblet
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Hulkar Mamayusupova
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Mariya Shtumpf
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Isabella Ciuta
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Luminita Ruje
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Svetlana Gretton
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
- School of Engineering, Arts, Science and Technology, University of Suffolk, James Hehir Building, University Avenue, Ipswich, Suffolk, IP3 0FS, UK
| | - Milena Bikova
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Clark Correa
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Emily Dellow
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Shivam P Agrawal
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Navid Shafiei
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | | | - Chris M Armstrong
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Jonathan D G Lam
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Yevhen Vainshtein
- Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB, Nobelstraße 12, 70569, Stuttgart, Germany
| | - Christopher T Clarkson
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
- University College London, Gower St, Bloomsbury, London, WC1E 6BT, UK
| | - Graeme J Thorn
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Kai Sohn
- Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB, Nobelstraße 12, 70569, Stuttgart, Germany
| | - Madapura M Pradeepa
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
| | - Sankaran Chandrasekharan
- Colchester General Hospital, East Suffolk and North Essex NHS Foundation Trust, Turner Road, Colchester, CO4 5JL, UK
| | - Greg N Brooke
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Elena Klenova
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Victor B Zhurkin
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Vladimir B Teif
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK.
| |
Collapse
|
6
|
Chen P, Li G, Li W. Nucleosome Dynamics Derived at the Single-Molecule Level Bridges Its Structures and Functions. JACS AU 2024; 4:866-876. [PMID: 38559720 PMCID: PMC10976579 DOI: 10.1021/jacsau.3c00658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 04/04/2024]
Abstract
Nucleosome, the building block of chromatin, plays pivotal roles in all DNA-related processes. While cryogenic-electron microscopy (cryo-EM) has significantly advanced our understanding of nucleosome structures, the emerging field of single-molecule force spectroscopy is illuminating their dynamic properties. This technique is crucial for revealing how nucleosome behavior is influenced by chaperones, remodelers, histone variants, and post-translational modifications, particularly in their folding and unfolding mechanisms under tension. Such insights are vital for deciphering the complex interplay in nucleosome assembly and structural regulation, highlighting the nucleosome's versatility in response to DNA activities. In this Perspective, we aim to consolidate the latest advancements in nucleosome dynamics, with a special focus on the revelations brought forth by single-molecule manipulation. Our objective is to highlight the insights gained from studying nucleosome dynamics through this innovative approach, emphasizing the transformative impact of single-molecule manipulation techniques in the field of chromatin research.
Collapse
Affiliation(s)
- Ping Chen
- National
Laboratory of Biomacromolecules and Key Laboratory of Epigenetic Regulation
and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China
- Department
of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory
for Tumor Invasion and Metastasis, Capital
Medical University, Beijing 100069, P. R. China
| | - Guohong Li
- National
Laboratory of Biomacromolecules and Key Laboratory of Epigenetic Regulation
and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wei Li
- National
Laboratory of Biomacromolecules and Key Laboratory of Epigenetic Regulation
and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China
| |
Collapse
|
7
|
Peng Y, Song W, Teif VB, Ovcharenko I, Landsman D, Panchenko AR. Detection of new pioneer transcription factors as cell-type-specific nucleosome binders. eLife 2024; 12:RP88936. [PMID: 38293962 PMCID: PMC10945518 DOI: 10.7554/elife.88936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024] Open
Abstract
Wrapping of DNA into nucleosomes restricts accessibility to DNA and may affect the recognition of binding motifs by transcription factors. A certain class of transcription factors, the pioneer transcription factors, can specifically recognize their DNA binding sites on nucleosomes, initiate local chromatin opening, and facilitate the binding of co-factors in a cell-type-specific manner. For the majority of human pioneer transcription factors, the locations of their binding sites, mechanisms of binding, and regulation remain unknown. We have developed a computational method to predict the cell-type-specific ability of transcription factors to bind nucleosomes by integrating ChIP-seq, MNase-seq, and DNase-seq data with details of nucleosome structure. We have demonstrated the ability of our approach in discriminating pioneer from canonical transcription factors and predicted new potential pioneer transcription factors in H1, K562, HepG2, and HeLa-S3 cell lines. Last, we systematically analyzed the interaction modes between various pioneer transcription factors and detected several clusters of distinctive binding sites on nucleosomal DNA.
Collapse
Affiliation(s)
- Yunhui Peng
- Institute of Biophysics and Department of Physics, Central China Normal UniversityWuhanChina
- National Library of Medicine, National Institutes of HealthBethesdaUnited States
| | - Wei Song
- National Library of Medicine, National Institutes of HealthBethesdaUnited States
| | - Vladimir B Teif
- School of Life Sciences, University of Essex, Wivenhoe ParkColchesterUnited Kingdom
| | - Ivan Ovcharenko
- National Library of Medicine, National Institutes of HealthBethesdaUnited States
| | - David Landsman
- National Library of Medicine, National Institutes of HealthBethesdaUnited States
| | - Anna R Panchenko
- Department of Pathology and Molecular Medicine, Queen’s UniversityKingstonCanada
- Department of Biology and Molecular Sciences, Queen’s UniversityKingstonCanada
- School of Computing, Queen’s UniversityKingstonCanada
- Ontario Institute of Cancer ResearchTorontoCanada
| |
Collapse
|
8
|
Shi J, Wang Z, Wang Z, Shao G, Li X. Epigenetic regulation in adult neural stem cells. Front Cell Dev Biol 2024; 12:1331074. [PMID: 38357000 PMCID: PMC10864612 DOI: 10.3389/fcell.2024.1331074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/12/2024] [Indexed: 02/16/2024] Open
Abstract
Neural stem cells (NSCs) exhibit self-renewing and multipotential properties. Adult NSCs are located in two neurogenic regions of adult brain: the ventricular-subventricular zone (V-SVZ) of the lateral ventricle and the subgranular zone of the dentate gyrus in the hippocampus. Maintenance and differentiation of adult NSCs are regulated by both intrinsic and extrinsic signals that may be integrated through expression of some key factors in the adult NSCs. A number of transcription factors have been shown to play essential roles in transcriptional regulation of NSC cell fate transitions in the adult brain. Epigenetic regulators have also emerged as key players in regulation of NSCs, neural progenitor cells and their differentiated progeny via epigenetic modifications including DNA methylation, histone modifications, chromatin remodeling and RNA-mediated transcriptional regulation. This minireview is primarily focused on epigenetic regulations of adult NSCs during adult neurogenesis, in conjunction with transcriptional regulation in these processes.
Collapse
Affiliation(s)
- Jiajia Shi
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zilin Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zhijun Wang
- Zhenhai Lianhua Hospital, Ningbo City, Zhejiang, China
| | - Guofeng Shao
- Department of Cardiothoracic Surgery, Lihuili Hospital Affiliated to Ningbo University, Ningbo City, Zhejiang, China
| | - Xiajun Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
9
|
MacCarthy CM, Wu G, Malik V, Menuchin-Lasowski Y, Velychko T, Keshet G, Fan R, Bedzhov I, Church GM, Jauch R, Cojocaru V, Schöler HR, Velychko S. Highly cooperative chimeric super-SOX induces naive pluripotency across species. Cell Stem Cell 2024; 31:127-147.e9. [PMID: 38141611 DOI: 10.1016/j.stem.2023.11.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 09/02/2023] [Accepted: 11/20/2023] [Indexed: 12/25/2023]
Abstract
Our understanding of pluripotency remains limited: iPSC generation has only been established for a few model species, pluripotent stem cell lines exhibit inconsistent developmental potential, and germline transmission has only been demonstrated for mice and rats. By swapping structural elements between Sox2 and Sox17, we built a chimeric super-SOX factor, Sox2-17, that enhanced iPSC generation in five tested species: mouse, human, cynomolgus monkey, cow, and pig. A swap of alanine to valine at the interface between Sox2 and Oct4 delivered a gain of function by stabilizing Sox2/Oct4 dimerization on DNA, enabling generation of high-quality OSKM iPSCs capable of supporting the development of healthy all-iPSC mice. Sox2/Oct4 dimerization emerged as the core driver of naive pluripotency with its levels diminished upon priming. Transient overexpression of the SK cocktail (Sox+Klf4) restored the dimerization and boosted the developmental potential of pluripotent stem cells across species, providing a universal method for naive reset in mammals.
Collapse
Affiliation(s)
| | - Guangming Wu
- Max Planck Institute for Molecular Biomedicine, Münster, Germany; International Bio Island, Guangzhou, China; MingCeler Biotech, Guangzhou, China
| | - Vikas Malik
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Taras Velychko
- Max Planck Institute for Molecular Biomedicine, Münster, Germany; Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Gal Keshet
- Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rui Fan
- Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Ivan Bedzhov
- Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - George M Church
- Department of Genetics, Harvard Medical School, Boston, MA, USA; Wyss Institute, Harvard University, Boston, MA, USA
| | - Ralf Jauch
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Centre for Translational Stem Cell Biology, Hong Kong SAR, China
| | - Vlad Cojocaru
- Max Planck Institute for Molecular Biomedicine, Münster, Germany; University of Utrecht, Utrecht, the Netherlands; STAR-UBB Institute, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Hans R Schöler
- Max Planck Institute for Molecular Biomedicine, Münster, Germany.
| | - Sergiy Velychko
- Max Planck Institute for Molecular Biomedicine, Münster, Germany; Department of Genetics, Harvard Medical School, Boston, MA, USA; Wyss Institute, Harvard University, Boston, MA, USA.
| |
Collapse
|
10
|
Peng Y, Song W, Teif VB, Ovcharenko I, Landsman D, Panchenko AR. Detection of new pioneer transcription factors as cell-type specific nucleosome binders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.10.540098. [PMID: 37425841 PMCID: PMC10327179 DOI: 10.1101/2023.05.10.540098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Wrapping of DNA into nucleosomes restricts accessibility to the DNA and may affect the recognition of binding motifs by transcription factors. A certain class of transcription factors, the pioneer transcription factors, can specifically recognize their DNA binding sites on nucleosomes, may initiate local chromatin opening and facilitate the binding of co-factors in a cell-type-specific manner. For the majority of human pioneer transcription factors, the locations of their binding sites, mechanisms of binding and regulation remain unknown. We have developed a computational method to predict the cell-type-specific ability of transcription factors to bind nucleosomes by integrating ChIP-seq, MNase-seq and DNase-seq data with details of nucleosome structure. We have demonstrated the ability of our approach in discriminating pioneer from canonical transcription factors and predicted new potential pioneer transcription factors in H1, K562, HepG2 and HeLa cell lines. Lastly, we systemically analyzed the interaction modes between various pioneer transcription factors and detected several clusters of distinctive binding sites on nucleosomal DNA.
Collapse
Affiliation(s)
- Yunhui Peng
- current address: Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China
- National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Wei Song
- National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Vladimir B. Teif
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Ivan Ovcharenko
- National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - David Landsman
- National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Anna R. Panchenko
- Department of Pathology and Molecular Medicine, Queen’s University, ON, Canada
- Department of Biology and Molecular Sciences, Queen’s University, ON, Canada
- School of Computing, Queen’s University, ON, Canada
- Ontario Institute of Cancer Research, Toronto, ON, Canada
| |
Collapse
|
11
|
Zhu D, Wang H, Wu W, Geng S, Zhong G, Li Y, Guo H, Long G, Ren Q, Luan Y, Duan C, Wei B, Ma J, Li S, Zhou J, Mao M. Circulating cell-free DNA fragmentation is a stepwise and conserved process linked to apoptosis. BMC Biol 2023; 21:253. [PMID: 37953260 PMCID: PMC10642009 DOI: 10.1186/s12915-023-01752-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 10/31/2023] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND Circulating cell-free DNA (cfDNA) is a pool of short DNA fragments mainly released from apoptotic hematopoietic cells. Nevertheless, the precise physiological process governing the DNA fragmentation and molecular profile of cfDNA remains obscure. To dissect the DNA fragmentation process, we use a human leukemia cell line HL60 undergoing apoptosis to analyze the size distribution of DNA fragments by shallow whole-genome sequencing (sWGS). Meanwhile, we also scrutinize the size profile of plasma cfDNA in 901 healthy human subjects and 38 dogs, as well as 438 patients with six common cancer types by sWGS. RESULTS Distinct size distribution profiles were observed in the HL60 cell pellet and supernatant, suggesting fragmentation is a stepwise process. Meanwhile, C-end preference was seen in both intracellular and extracellular cfDNA fragments. Moreover, the cfDNA profiles are characteristic and conserved across mammals. Compared with healthy subjects, distinct cfDNA profiles with a higher proportion of short fragments and lower C-end preference were found in cancer patients. CONCLUSIONS Our study provides new insight into fragmentomics of circulating cfDNA processing, which will be useful for early diagnosis of cancer and surveillance during cancer progression.
Collapse
Affiliation(s)
- Dandan Zhu
- Clinical Laboratories, Shenyou Bio, Zhengzhou, 450000, China
| | - Haihong Wang
- Shanghai Institute of Hematology, CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, State Key Laboratory of Medical Genomics, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wei Wu
- Research & Development, SeekIn Inc, Shenzhen, 518000, China
| | - Shuaipeng Geng
- Clinical Laboratories, Shenyou Bio, Zhengzhou, 450000, China
| | - Guolin Zhong
- Research & Development, SeekIn Inc, Shenzhen, 518000, China
| | - Yunfei Li
- Research & Development, SeekIn Inc, Shenzhen, 518000, China
| | - Han Guo
- Clinical Laboratories, Shenyou Bio, Zhengzhou, 450000, China
| | - Guanghui Long
- Department of Hepatobiliary and Pancreatic Surgery, Peking University Shenzhen Hospital, Shenzhen, 518000, China
| | - Qingqi Ren
- Department of Hepatobiliary and Pancreatic Surgery, Peking University Shenzhen Hospital, Shenzhen, 518000, China
| | - Yi Luan
- Clinical Laboratories, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Chaohui Duan
- Clinical Laboratories, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, China
| | - Bing Wei
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450003, China
| | - Jie Ma
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450003, China
| | - Shiyong Li
- Research & Development, SeekIn Inc, Shenzhen, 518000, China
| | - Jun Zhou
- Shanghai Institute of Hematology, CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, State Key Laboratory of Medical Genomics, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Mao Mao
- Research & Development, SeekIn Inc, Shenzhen, 518000, China.
- Yonsei Song-Dang Institute for Cancer Research, Yonsei University, Seoul, 03722, South Korea.
| |
Collapse
|
12
|
Zhang X, Wang Y, Lu J, Xiao L, Chen H, Li Q, Li YY, Xu P, Ruan C, Zhou H, Zhao Y. A conserved ZFX/WNT3 axis modulates the growth and imatinib response of chronic myeloid leukemia stem/progenitor cells. Cell Mol Biol Lett 2023; 28:83. [PMID: 37864206 PMCID: PMC10589942 DOI: 10.1186/s11658-023-00496-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 10/03/2023] [Indexed: 10/22/2023] Open
Abstract
BACKGROUND Zinc finger protein X-linked (ZFX) has been shown to promote the growth of tumor cells, including leukemic cells. However, the role of ZFX in the growth and drug response of chronic myeloid leukemia (CML) stem/progenitor cells remains unclear. METHODS Real-time quantitative PCR (RT-qPCR) and immunofluorescence were used to analyze the expression of ZFX and WNT3 in CML CD34+ cells compared with normal control cells. Short hairpin RNAs (shRNAs) and clustered regularly interspaced short palindromic repeats/dead CRISPR-associated protein 9 (CRISPR/dCas9) technologies were used to study the role of ZFX in growth and drug response of CML cells. Microarray data were generated to compare ZFX-silenced CML CD34+ cells with their controls. Chromatin immunoprecipitation (ChIP) and luciferase reporter assays were performed to study the molecular mechanisms of ZFX to regulate WNT3 expression. RT-qPCR and western blotting were used to study the effect of ZFX on β-catenin signaling. RESULTS We showed that ZFX expression was significantly higher in CML CD34+ cells than in control cells. Overexpression and gene silencing experiments indicated that ZFX promoted the in vitro growth of CML cells, conferred imatinib mesylate (IM) resistance to these cells, and enhanced BCR/ABL-induced malignant transformation. Microarray data and subsequent validation revealed that WNT3 transcription was conservatively regulated by ZFX. WNT3 was highly expressed in CML CD34+ cells, and WNT3 regulated the growth and IM response of these cells similarly to ZFX. Moreover, WNT3 overexpression partially rescued ZFX silencing-induced growth inhibition and IM hypersensitivity. ZFX silencing decreased WNT3/β-catenin signaling, including c-MYC and CCND1 expression. CONCLUSION The present study identified a novel ZFX/WNT3 axis that modulates the growth and IM response of CML stem/progenitor cells.
Collapse
MESH Headings
- Humans
- Imatinib Mesylate/pharmacology
- Imatinib Mesylate/metabolism
- beta Catenin/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Stem Cells/metabolism
- Signal Transduction
- Drug Resistance, Neoplasm/genetics
- Neoplastic Stem Cells/metabolism
- Wnt3 Protein/metabolism
- Wnt3 Protein/pharmacology
Collapse
Affiliation(s)
- Xiuyan Zhang
- Cyrus Tang Medical Institute, Soochow University, Suzhou, 215123, China.
- Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| | - Yu Wang
- Cyrus Tang Medical Institute, Soochow University, Suzhou, 215123, China
| | - Jinchang Lu
- Cyrus Tang Medical Institute, Soochow University, Suzhou, 215123, China
| | - Lun Xiao
- Department of Vascular Surgery, The Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, China
| | - Hui Chen
- Cyrus Tang Medical Institute, Soochow University, Suzhou, 215123, China
| | - Quanxue Li
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Yuan-Yuan Li
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Peng Xu
- Cyrus Tang Medical Institute, Soochow University, Suzhou, 215123, China
| | - Changgeng Ruan
- Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- National Clinical Research Center for Hematologic Diseases, Suzhou, 215006, China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006, China
- MOE Engineering Center of Hematological Disease, Soochow University, Suzhou, 21513, China
| | - Haixia Zhou
- Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
- National Clinical Research Center for Hematologic Diseases, Suzhou, 215006, China.
- MOE Engineering Center of Hematological Disease, Soochow University, Suzhou, 21513, China.
| | - Yun Zhao
- Cyrus Tang Medical Institute, Soochow University, Suzhou, 215123, China.
- National Clinical Research Center for Hematologic Diseases, Suzhou, 215006, China.
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006, China.
- MOE Engineering Center of Hematological Disease, Soochow University, Suzhou, 21513, China.
| |
Collapse
|
13
|
Kerr L, Kafetzopoulos I, Grima R, Sproul D. Genome-wide single-molecule analysis of long-read DNA methylation reveals heterogeneous patterns at heterochromatin that reflect nucleosome organisation. PLoS Genet 2023; 19:e1010958. [PMID: 37782664 PMCID: PMC10569558 DOI: 10.1371/journal.pgen.1010958] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 10/12/2023] [Accepted: 09/04/2023] [Indexed: 10/04/2023] Open
Abstract
High-throughput sequencing technology is central to our current understanding of the human methylome. The vast majority of studies use chemical conversion to analyse bulk-level patterns of DNA methylation across the genome from a population of cells. While this technology has been used to probe single-molecule methylation patterns, such analyses are limited to short reads of a few hundred basepairs. DNA methylation can also be directly detected using Nanopore sequencing which can generate reads measuring megabases in length. However, thus far these analyses have largely focused on bulk-level assessment of DNA methylation. Here, we analyse DNA methylation in single Nanopore reads from human lymphoblastoid cells, to show that bulk-level metrics underestimate large-scale heterogeneity in the methylome. We use the correlation in methylation state between neighbouring sites to quantify single-molecule heterogeneity and find that heterogeneity varies significantly across the human genome, with some regions having heterogeneous methylation patterns at the single-molecule level and others possessing more homogeneous methylation patterns. By comparing the genomic distribution of the correlation to epigenomic annotations, we find that the greatest heterogeneity in single-molecule patterns is observed within heterochromatic partially methylated domains (PMDs). In contrast, reads originating from euchromatic regions and gene bodies have more ordered DNA methylation patterns. By analysing the patterns of single molecules in more detail, we show the existence of a nucleosome-scale periodicity in DNA methylation that accounts for some of the heterogeneity we uncover in long single-molecule DNA methylation patterns. We find that this periodic structure is partially masked in bulk data and correlates with DNA accessibility as measured by nanoNOMe-seq, suggesting that it could be generated by nucleosomes. Our findings demonstrate the power of single-molecule analysis of long-read data to understand the structure of the human methylome.
Collapse
Affiliation(s)
- Lyndsay Kerr
- MRC Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Ioannis Kafetzopoulos
- MRC Human Genetics Unit and CRUK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
- Current address: Altos Labs Cambridge Institute, Cambridge, United Kingdom
| | - Ramon Grima
- School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Duncan Sproul
- MRC Human Genetics Unit and CRUK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
14
|
Piroeva KV, McDonald C, Xanthopoulos C, Fox C, Clarkson CT, Mallm JP, Vainshtein Y, Ruje L, Klett LC, Stilgenbauer S, Mertens D, Kostareli E, Rippe K, Teif VB. Nucleosome repositioning in chronic lymphocytic leukemia. Genome Res 2023; 33:1649-1661. [PMID: 37699659 PMCID: PMC10691546 DOI: 10.1101/gr.277298.122] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 09/07/2023] [Indexed: 09/14/2023]
Abstract
The location of nucleosomes in the human genome determines the primary chromatin structure and regulates access to regulatory regions. However, genome-wide information on deregulated nucleosome occupancy and its implications in primary cancer cells is scarce. Here, we conducted a genome-wide comparison of high-resolution nucleosome maps in peripheral blood B cells from patients with chronic lymphocytic leukemia (CLL) and healthy individuals at single-base-pair resolution. Our investigation uncovered significant changes of nucleosome positioning in CLL. Globally, the spacing between nucleosomes-the nucleosome repeat length (NRL)-is shortened in CLL. This effect is stronger in the more aggressive IGHV-unmutated CLL subtype than in the IGHV-mutated CLL subtype. Changes in nucleosome occupancy at specific sites are linked to active chromatin remodeling and reduced DNA methylation. Nucleosomes lost or gained in CLL marks differential binding of 3D chromatin organizers such as CTCF as well as immune response-related transcription factors and delineated mechanisms of epigenetic deregulation. The principal component analysis of nucleosome occupancy in cancer-specific regions allowed the classification of samples between cancer subtypes and normal controls. Furthermore, patients could be better assigned to CLL subtypes according to differential nucleosome occupancy than based on DNA methylation or gene expression. Thus, nucleosome positioning constitutes a novel readout to dissect molecular mechanisms of disease progression and to stratify patients. Furthermore, we anticipate that the global nucleosome repositioning detected in our study, such as changes in the NRL, can be exploited for liquid biopsy applications based on cell-free DNA to stratify patients and monitor disease progression.
Collapse
Affiliation(s)
- Kristan V Piroeva
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| | - Charlotte McDonald
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| | - Charalampos Xanthopoulos
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| | - Chelsea Fox
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| | - Christopher T Clarkson
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| | - Jan-Philipp Mallm
- German Cancer Research Center (DKFZ) Heidelberg, Single Cell Open Lab, 69120 Heidelberg, Germany
- German Cancer Research Center (DKFZ) Heidelberg, Division of Chromatin Networks, 69120 Heidelberg, Germany
- Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), Heidelberg University, 69120 Heidelberg, Germany
| | - Yevhen Vainshtein
- Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB, 70569 Stuttgart, Germany
| | - Luminita Ruje
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| | - Lara C Klett
- German Cancer Research Center (DKFZ) Heidelberg, Division of Chromatin Networks, 69120 Heidelberg, Germany
- Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), Heidelberg University, 69120 Heidelberg, Germany
| | - Stephan Stilgenbauer
- Division of CLL, University Hospital Ulm, Department of Internal Medicine III, 89081 Ulm, Germany
| | - Daniel Mertens
- Division of CLL, University Hospital Ulm, Department of Internal Medicine III, 89081 Ulm, Germany
- German Cancer Research Center (DKFZ) Heidelberg, Cooperation Unit Mechanisms of Leukemogenesis, 69120 Heidelberg, Germany
| | - Efterpi Kostareli
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT9 7BL, United Kingdom;
| | - Karsten Rippe
- German Cancer Research Center (DKFZ) Heidelberg, Division of Chromatin Networks, 69120 Heidelberg, Germany;
- Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), Heidelberg University, 69120 Heidelberg, Germany
| | - Vladimir B Teif
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom;
| |
Collapse
|
15
|
Pop RT, Pisante A, Nagy D, Martin PCN, Mikheeva L, Hayat A, Ficz G, Zabet NR. Identification of mammalian transcription factors that bind to inaccessible chromatin. Nucleic Acids Res 2023; 51:8480-8495. [PMID: 37486787 PMCID: PMC10484684 DOI: 10.1093/nar/gkad614] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/11/2023] [Indexed: 07/26/2023] Open
Abstract
Transcription factors (TFs) are proteins that affect gene expression by binding to regulatory regions of DNA in a sequence specific manner. The binding of TFs to DNA is controlled by many factors, including the DNA sequence, concentration of TF, chromatin accessibility and co-factors. Here, we systematically investigated the binding mechanism of hundreds of TFs by analysing ChIP-seq data with our explainable statistical model, ChIPanalyser. This tool uses as inputs the DNA sequence binding motif; the capacity to distinguish between strong and weak binding sites; the concentration of TF; and chromatin accessibility. We found that approximately one third of TFs are predicted to bind the genome in a DNA accessibility independent fashion, which includes TFs that can open the chromatin, their co-factors and TFs with similar motifs. Our model predicted this to be the case when the TF binds to its strongest binding regions in the genome, and only a small number of TFs have the capacity to bind dense chromatin at their weakest binding regions, such as CTCF, USF2 and CEBPB. Our study demonstrated that the binding of hundreds of human and mouse TFs is predicted by ChIPanalyser with high accuracy and showed that many TFs can bind dense chromatin.
Collapse
Affiliation(s)
- Romana T Pop
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, UK
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, Oslo, Norway
| | - Alessandra Pisante
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, UK
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Dorka Nagy
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, UK
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
| | | | | | - Ateequllah Hayat
- Institute of Medical and Biomedical Education, St George's, University of London, Cranmer Terrace, Tooting SW17 0RE, London
| | - Gabriella Ficz
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Nicolae Radu Zabet
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, UK
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| |
Collapse
|
16
|
Zheng W, Wang L, He W, Hu X, Zhu Q, Gu L, Jiang C. Transcriptome profiles and chromatin states in mouse androgenetic haploid embryonic stem cells. Cell Prolif 2023; 56:e13436. [PMID: 36855927 PMCID: PMC10472531 DOI: 10.1111/cpr.13436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/12/2023] [Accepted: 02/17/2023] [Indexed: 03/02/2023] Open
Abstract
Haploid embryonic stem cells (haESCs) are derived from the inner cell mass of the haploid blastocyst, containing only one set of chromosomes. Extensive and accurate chromatin remodelling occurs during haESC derivation, but the intrinsic transcriptome profiles and chromatin structure of haESCs have not been fully explored. We profiled the transcriptomes, nucleosome positioning, and key histone modifications of four mouse haESC lines, and compared these profiles with those of other closely-related stem cell lines, MII oocytes, round spermatids, sperm, and mouse embryonic fibroblasts. haESCs had transcriptome profiles closer to those of naïve pluripotent stem cells. Consistent with the one X chromosome in haESCs, Xist was repressed, indicating no X chromosome inactivation. haESCs and ESCs shared a similar global chromatin structure. However, a nucleosome depletion region was identified in 2056 promoters in ESCs, which was absent in haESCs. Furthermore, three characteristic spatial relationships were formed between transcription factor motifs and nucleosomes in both haESCs and ESCs, specifically in the linker region, on the nucleosome central surface, and nucleosome borders. Furthermore, the chromatin state of 4259 enhancers was off in haESCs but active in ESCs. Functional annotation of these enhancers revealed enrichment in regulation of the cell cycle, a predominantly reported mechanism of haESC self-diploidization. Notably, the transcriptome profiles and chromatin structure of haESCs were highly preserved during passaging but different from those of differentiated cell types.
Collapse
Affiliation(s)
- Weisheng Zheng
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Liping Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Wenteng He
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Xinjie Hu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Qianshu Zhu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Liang Gu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Cizhong Jiang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
- Frontier Science Center for Stem Cell ResearchTongji UniversityShanghaiChina
| |
Collapse
|
17
|
Dunjić M, Jonas F, Yaakov G, More R, Mayshar Y, Rais Y, Orenbuch AH, Cheng S, Barkai N, Stelzer Y. Histone exchange sensors reveal variant specific dynamics in mouse embryonic stem cells. Nat Commun 2023; 14:3791. [PMID: 37365167 DOI: 10.1038/s41467-023-39477-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 06/15/2023] [Indexed: 06/28/2023] Open
Abstract
Eviction of histones from nucleosomes and their exchange with newly synthesized or alternative variants is a central epigenetic determinant. Here, we define the genome-wide occupancy and exchange pattern of canonical and non-canonical histone variants in mouse embryonic stem cells by genetically encoded exchange sensors. While exchange of all measured variants scales with transcription, we describe variant-specific associations with transcription elongation and Polycomb binding. We found considerable exchange of H3.1 and H2B variants in heterochromatin and repeat elements, contrasting the occupancy and little exchange of H3.3 in these regions. This unexpected association between H3.3 occupancy and exchange of canonical variants is also evident in active promoters and enhancers, and further validated by reduced H3.1 dynamics following depletion of H3.3-specific chaperone, HIRA. Finally, analyzing transgenic mice harboring H3.1 or H3.3 sensors demonstrates the vast potential of this system for studying histone exchange and its impact on gene expression regulation in vivo.
Collapse
Affiliation(s)
- Marko Dunjić
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Felix Jonas
- Department of Molecular Genetics, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Gilad Yaakov
- Department of Molecular Genetics, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Roye More
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Yoav Mayshar
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Yoach Rais
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | | | - Saifeng Cheng
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Naama Barkai
- Department of Molecular Genetics, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Yonatan Stelzer
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001, Rehovot, Israel.
| |
Collapse
|
18
|
Baksh SS, Hu J, Pratt RE, Dzau VJ, Hodgkinson CP. Rig1 receptor plays a critical role in cardiac reprogramming via YY1 signaling. Am J Physiol Cell Physiol 2023; 324:C843-C855. [PMID: 36847443 PMCID: PMC10069961 DOI: 10.1152/ajpcell.00402.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/25/2023] [Accepted: 02/15/2023] [Indexed: 03/01/2023]
Abstract
We discovered that innate immunity plays an important role in the reprogramming of fibroblasts into cardiomyocytes. In this report, we define the role of a novel retinoic acid-inducible gene 1 Yin Yang 1 (Rig1:YY1) pathway. We found that fibroblast to cardiomyocyte reprogramming efficacy was enhanced by specific Rig1 activators. To understand the mechanism of action, we performed various transcriptomic, nucleosome occupancy, and epigenomic approaches. Analysis of the datasets indicated that Rig1 agonists had no effect on reprogramming-induced changes in nucleosome occupancy or loss of inhibitory epigenetic motifs. Instead, Rig1 agonists were found to modulate cardiac reprogramming by promoting the binding of YY1 specifically to cardiac genes. To conclude, these results show that the Rig1:YY1 pathway plays a critical role in fibroblast to cardiomyocyte reprogramming.
Collapse
Affiliation(s)
- Syeda S Baksh
- Mandel Center for Heart and Vascular Research, and the Duke Cardiovascular Research Center, Duke University Medical Center, Durham, North Carolina, United States
| | - Jiabiao Hu
- Mandel Center for Heart and Vascular Research, and the Duke Cardiovascular Research Center, Duke University Medical Center, Durham, North Carolina, United States
| | - Richard E Pratt
- Mandel Center for Heart and Vascular Research, and the Duke Cardiovascular Research Center, Duke University Medical Center, Durham, North Carolina, United States
| | - Victor J Dzau
- Mandel Center for Heart and Vascular Research, and the Duke Cardiovascular Research Center, Duke University Medical Center, Durham, North Carolina, United States
| | - Conrad P Hodgkinson
- Mandel Center for Heart and Vascular Research, and the Duke Cardiovascular Research Center, Duke University Medical Center, Durham, North Carolina, United States
| |
Collapse
|
19
|
Muckenhuber M, Seufert I, Müller-Ott K, Mallm JP, Klett LC, Knotz C, Hechler J, Kepper N, Erdel F, Rippe K. Epigenetic signals that direct cell type-specific interferon beta response in mouse cells. Life Sci Alliance 2023; 6:e202201823. [PMID: 36732019 PMCID: PMC9900254 DOI: 10.26508/lsa.202201823] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 02/04/2023] Open
Abstract
The antiviral response induced by type I interferon (IFN) via the JAK-STAT signaling cascade activates hundreds of IFN-stimulated genes (ISGs) across human and mouse tissues but varies between cell types. However, the links between the underlying epigenetic features and the ISG profile are not well understood. We mapped ISGs, binding sites of the STAT1 and STAT2 transcription factors, chromatin accessibility, and histone H3 lysine modification by acetylation (ac) and mono-/tri-methylation (me1, me3) in mouse embryonic stem cells and fibroblasts before and after IFNβ treatment. A large fraction of ISGs and STAT-binding sites was cell type specific with promoter binding of a STAT1/2 complex being a key driver of ISGs. Furthermore, STAT1/2 binding to putative enhancers induced ISGs as inferred from a chromatin co-accessibility analysis. STAT1/2 binding was dependent on the chromatin context and positively correlated with preexisting H3K4me1 and H3K27ac marks in an open chromatin state, whereas the presence of H3K27me3 had an inhibitory effect. Thus, chromatin features present before stimulation represent an additional regulatory layer for the cell type-specific antiviral response.
Collapse
Affiliation(s)
- Markus Muckenhuber
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Isabelle Seufert
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Katharina Müller-Ott
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany
| | - Jan-Philipp Mallm
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany
- Single Cell Open Lab, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lara C Klett
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Caroline Knotz
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany
| | - Jana Hechler
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany
| | - Nick Kepper
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany
| | - Fabian Erdel
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany
| | - Karsten Rippe
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany
| |
Collapse
|
20
|
B1 SINE-binding ZFP266 impedes mouse iPSC generation through suppression of chromatin opening mediated by reprogramming factors. Nat Commun 2023; 14:488. [PMID: 36717582 PMCID: PMC9887000 DOI: 10.1038/s41467-023-36097-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 01/13/2023] [Indexed: 01/31/2023] Open
Abstract
Induced pluripotent stem cell (iPSC) reprogramming is inefficient and understanding the molecular mechanisms underlying this inefficiency holds the key to successfully control cellular identity. Here, we report 24 reprogramming roadblock genes identified by CRISPR/Cas9-mediated genome-wide knockout (KO) screening. Of these, depletion of the predicted KRAB zinc finger protein (KRAB-ZFP) Zfp266 strongly and consistently enhances murine iPSC generation in several reprogramming settings, emerging as the most robust roadblock. We show that ZFP266 binds Short Interspersed Nuclear Elements (SINEs) adjacent to binding sites of pioneering factors, OCT4 (POU5F1), SOX2, and KLF4, and impedes chromatin opening. Replacing the KRAB co-suppressor with co-activator domains converts ZFP266 from an inhibitor to a potent facilitator of iPSC reprogramming. We propose that the SINE-KRAB-ZFP interaction is a critical regulator of chromatin accessibility at regulatory elements required for efficient cellular identity changes. In addition, this work serves as a resource to further illuminate molecular mechanisms hindering reprogramming.
Collapse
|
21
|
Shah R, Gallardo CM, Jung YH, Clock B, Dixon JR, McFadden WM, Majumder K, Pintel DJ, Corces VG, Torbett BE, Tedbury PR, Sarafianos SG. Activation of HIV-1 proviruses increases downstream chromatin accessibility. iScience 2022; 25:105490. [PMID: 36505924 PMCID: PMC9732416 DOI: 10.1016/j.isci.2022.105490] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 09/15/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
Abstract
It is unclear how the activation of HIV-1 transcription affects chromatin structure. We interrogated chromatin organization both genome-wide and nearby HIV-1 integration sites using Hi-C and ATAC-seq. In conjunction, we analyzed the transcription of the HIV-1 genome and neighboring genes. We found that long-range chromatin contacts did not differ significantly between uninfected cells and those harboring an integrated HIV-1 genome, whether the HIV-1 genome was actively transcribed or inactive. Instead, the activation of HIV-1 transcription changes chromatin accessibility immediately downstream of the provirus, demonstrating that HIV-1 can alter local cellular chromatin structure. Finally, we examined HIV-1 and neighboring host gene transcripts with long-read sequencing and found populations of chimeric RNAs both virus-to-host and host-to-virus. Thus, multiomics profiling revealed that the activation of HIV-1 transcription led to local changes in chromatin organization and altered the expression of neighboring host genes.
Collapse
Affiliation(s)
- Raven Shah
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30329, USA
- Children’s Healthcare of Atlanta, Atlanta, GA 30329, USA
| | - Christian M. Gallardo
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Yoonhee H. Jung
- Department of Biology, Emory University, Atlanta, GA 30329, USA
| | - Ben Clock
- Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Jesse R. Dixon
- Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - William M. McFadden
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30329, USA
- Children’s Healthcare of Atlanta, Atlanta, GA 30329, USA
| | - Kinjal Majumder
- Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - David J. Pintel
- Department of Molecular Microbiology and Immunology, Christopher S. Bond Life Sciences Center, University of Missouri School of Medicine, Columbia, MO 65211, USA
| | | | - Bruce E. Torbett
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98101, USA
| | - Philip R. Tedbury
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30329, USA
- Children’s Healthcare of Atlanta, Atlanta, GA 30329, USA
| | - Stefan G. Sarafianos
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30329, USA
- Children’s Healthcare of Atlanta, Atlanta, GA 30329, USA
| |
Collapse
|
22
|
Jeong H, Grimes K, Rauwolf KK, Bruch PM, Rausch T, Hasenfeld P, Benito E, Roider T, Sabarinathan R, Porubsky D, Herbst SA, Erarslan-Uysal B, Jann JC, Marschall T, Nowak D, Bourquin JP, Kulozik AE, Dietrich S, Bornhauser B, Sanders AD, Korbel JO. Functional analysis of structural variants in single cells using Strand-seq. Nat Biotechnol 2022:10.1038/s41587-022-01551-4. [PMID: 36424487 DOI: 10.1038/s41587-022-01551-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 10/07/2022] [Indexed: 11/27/2022]
Abstract
Somatic structural variants (SVs) are widespread in cancer, but their impact on disease evolution is understudied due to a lack of methods to directly characterize their functional consequences. We present a computational method, scNOVA, which uses Strand-seq to perform haplotype-aware integration of SV discovery and molecular phenotyping in single cells by using nucleosome occupancy to infer gene expression as a readout. Application to leukemias and cell lines identifies local effects of copy-balanced rearrangements on gene deregulation, and consequences of SVs on aberrant signaling pathways in subclones. We discovered distinct SV subclones with dysregulated Wnt signaling in a chronic lymphocytic leukemia patient. We further uncovered the consequences of subclonal chromothripsis in T cell acute lymphoblastic leukemia, which revealed c-Myb activation, enrichment of a primitive cell state and informed successful targeting of the subclone in cell culture, using a Notch inhibitor. By directly linking SVs to their functional effects, scNOVA enables systematic single-cell multiomic studies of structural variation in heterogeneous cell populations.
Collapse
Affiliation(s)
- Hyobin Jeong
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.,Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Republic of Korea
| | - Karen Grimes
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.,Faculty of Biosciences, EMBL and Heidelberg University, Heidelberg, Germany
| | - Kerstin K Rauwolf
- Division of Pediatric Oncology, University Children's Hospital, Zürich, Switzerland
| | - Peter-Martin Bruch
- Department of Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany.,Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, University of Heidelberg, Heidelberg, Germany.,Department of Hematology and Oncology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Tobias Rausch
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.,Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, University of Heidelberg, Heidelberg, Germany
| | - Patrick Hasenfeld
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Eva Benito
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Tobias Roider
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.,Department of Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany.,Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, University of Heidelberg, Heidelberg, Germany
| | | | - David Porubsky
- Center for Bioinformatics, Saarland University, Saarbrücken, Germany.,Max Planck Institute for Informatics, Saarbrücken, Germany.,Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Sophie A Herbst
- Department of Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany.,Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, University of Heidelberg, Heidelberg, Germany
| | - Büşra Erarslan-Uysal
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, University of Heidelberg, Heidelberg, Germany.,Department of Pediatric Oncology, Hematology, and Immunology, University of Heidelberg and Hopp Children's Cancer Center, Heidelberg, Germany
| | - Johann-Christoph Jann
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Heidelberg, Germany
| | - Tobias Marschall
- Institute for Medical Biometry and Bioinformatics, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Daniel Nowak
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Heidelberg, Germany
| | - Jean-Pierre Bourquin
- Division of Pediatric Oncology, University Children's Hospital, Zürich, Switzerland
| | - Andreas E Kulozik
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, University of Heidelberg, Heidelberg, Germany.,Department of Pediatric Oncology, Hematology, and Immunology, University of Heidelberg and Hopp Children's Cancer Center, Heidelberg, Germany
| | - Sascha Dietrich
- Department of Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany.,Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, University of Heidelberg, Heidelberg, Germany.,Department of Hematology and Oncology, University Hospital Düsseldorf, Düsseldorf, Germany.,Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Beat Bornhauser
- Division of Pediatric Oncology, University Children's Hospital, Zürich, Switzerland
| | - Ashley D Sanders
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany. .,Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany. .,Berlin Institute of Health (BIH), Berlin, Germany. .,Charité-Universitätsmedizin, Berlin, Germany.
| | - Jan O Korbel
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany. .,Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, University of Heidelberg, Heidelberg, Germany. .,Bridging Research Division on Mechanisms of Genomic Variation and Data Science, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
23
|
DNA Sequence-Dependent Properties of Nucleosome Positioning in Regions of Distinct Chromatin States in Mouse Embryonic Stem Cells. Int J Mol Sci 2022; 23:ijms232214488. [PMID: 36430966 PMCID: PMC9693356 DOI: 10.3390/ijms232214488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022] Open
Abstract
Chromatin architecture is orchestrated, and plays crucial roles during the developmental process by regulating gene expression. In embryonic stem cells (ESCs), three types of chromatin states, including active, repressive and poised states, were previously identified and characterized with specific chromatin modification marks and different transcription activity, but it is largely unknown how nucleosomes are organized in these chromatin states. In this study, by using a DNA deformation energy model, we investigated the sequence-dependent nucleosome organization within the chromatin states in mouse ESCs. The results revealed that: (1) compared with poised genes, active genes are characterized with a higher level of nucleosome occupancy around their transcription start sites (TSS) and transcription termination sites (TTS), and both types of genes do not have a nucleosome-depleted region at their TTS, contrasting with the MNase-seq based result; (2) based on our previous DNA bending energy model, we developed an improved model capable of predicting both rotational positioning and nucleosome occupancy determined by a chemical mapping approach; (3) DNA bending-energy-based analyses demonstrated that the fragile nucleosomes positioned at both gene ends could be explained largely by enhanced rotational positioning signals encoded in DNA, but nucleosome phasing around the TSS of active genes was not determined by sequence preference; (4) the nucleosome occupancy landscape around the binding sites of some developmentally important transcription factors known to bind with different chromatin contexts, was also successfully predicted; (5) the difference of nucleosome occupancy around the TSS between CpG-rich and CpG-poor promoters was partly captured by our sequence-dependent model. Taken together, by developing an improved deformation-energy-based model, we revealed some sequence-dependent properties of the nucleosome arrangements in regions of distinct chromatin states in mouse ESCs.
Collapse
|
24
|
MacCarthy CM, Huertas J, Ortmeier C, Vom Bruch H, Tan DS, Reinke D, Sander A, Bergbrede T, Jauch R, Schöler HR, Cojocaru V. OCT4 interprets and enhances nucleosome flexibility. Nucleic Acids Res 2022; 50:10311-10327. [PMID: 36130732 PMCID: PMC9561370 DOI: 10.1093/nar/gkac755] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 07/28/2022] [Accepted: 08/24/2022] [Indexed: 01/06/2023] Open
Abstract
Pioneer transcription factors are proteins that induce cellular identity transitions by binding to inaccessible regions of DNA in nuclear chromatin. They contribute to chromatin opening and recruit other factors to regulatory DNA elements. The structural features and dynamics modulating their interaction with nucleosomes are still unresolved. From a combination of experiments and molecular simulations, we reveal here how the pioneer factor and master regulator of pluripotency, Oct4, interprets and enhances nucleosome structural flexibility. The magnitude of Oct4’s impact on nucleosome dynamics depends on the binding site position and the mobility of the unstructured tails of nucleosomal histone proteins. Oct4 uses both its DNA binding domains to propagate and stabilize open nucleosome conformations, one for specific sequence recognition and the other for nonspecific interactions with nearby regions of DNA. Our findings provide a structural basis for the versatility of transcription factors in engaging with nucleosomes and have implications for understanding how pioneer factors induce chromatin dynamics.
Collapse
Affiliation(s)
- Caitlin M MacCarthy
- Department of Cellular and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Jan Huertas
- Department of Cellular and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany.,Yusuf Hamied Department of Chemistry, University of Cambridge, UK
| | - Claudia Ortmeier
- Department of Cellular and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Hermann Vom Bruch
- Department of Cellular and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Daisylyn Senna Tan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| | - Deike Reinke
- Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Astrid Sander
- Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | | | - Ralf Jauch
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| | - Hans R Schöler
- Department of Cellular and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany.,Medical Faculty, University of Münster, Germany
| | - Vlad Cojocaru
- Department of Cellular and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany.,Computational Structural Biology Group, University of Utrecht, The Netherlands.,STAR-UBB Institute, Babeş-Bolyai University, Cluj-Napoca, Romania
| |
Collapse
|
25
|
Dehingia B, Milewska M, Janowski M, Pękowska A. CTCF shapes chromatin structure and gene expression in health and disease. EMBO Rep 2022; 23:e55146. [PMID: 35993175 PMCID: PMC9442299 DOI: 10.15252/embr.202255146] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/31/2022] [Accepted: 07/14/2022] [Indexed: 11/09/2022] Open
Abstract
CCCTC-binding factor (CTCF) is an eleven zinc finger (ZF), multivalent transcriptional regulator, that recognizes numerous motifs thanks to the deployment of distinct combinations of its ZFs. The great majority of the ~50,000 genomic locations bound by the CTCF protein in a given cell type is intergenic, and a fraction of these sites overlaps with transcriptional enhancers. Furthermore, a proportion of the regions bound by CTCF intersect genes and promoters. This suggests multiple ways in which CTCF may impact gene expression. At promoters, CTCF can directly affect transcription. At more distal sites, CTCF may orchestrate interactions between regulatory elements and help separate eu- and heterochromatic areas in the genome, exerting a chromatin barrier function. In this review, we outline how CTCF contributes to the regulation of the three-dimensional structure of chromatin and the formation of chromatin domains. We discuss how CTCF binding and architectural functions are regulated. We examine the literature implicating CTCF in controlling gene expression in development and disease both by acting as an insulator and a factor facilitating regulatory elements to efficiently interact with each other in the nuclear space.
Collapse
Affiliation(s)
- Bondita Dehingia
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental BiologyPolish Academy of SciencesWarsawPoland
| | - Małgorzata Milewska
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental BiologyPolish Academy of SciencesWarsawPoland
| | - Marcin Janowski
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental BiologyPolish Academy of SciencesWarsawPoland
| | - Aleksandra Pękowska
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental BiologyPolish Academy of SciencesWarsawPoland
| |
Collapse
|
26
|
Hörnblad A, Remeseiro S. Epigenetics, Enhancer Function and 3D Chromatin Organization in Reprogramming to Pluripotency. Cells 2022; 11:cells11091404. [PMID: 35563711 PMCID: PMC9105757 DOI: 10.3390/cells11091404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 12/22/2022] Open
Abstract
Genome architecture, epigenetics and enhancer function control the fate and identity of cells. Reprogramming to induced pluripotent stem cells (iPSCs) changes the transcriptional profile and chromatin landscape of the starting somatic cell to that of the pluripotent cell in a stepwise manner. Changes in the regulatory networks are tightly regulated during normal embryonic development to determine cell fate, and similarly need to function in cell fate control during reprogramming. Switching off the somatic program and turning on the pluripotent program involves a dynamic reorganization of the epigenetic landscape, enhancer function, chromatin accessibility and 3D chromatin topology. Within this context, we will review here the current knowledge on the processes that control the establishment and maintenance of pluripotency during somatic cell reprogramming.
Collapse
Affiliation(s)
- Andreas Hörnblad
- Umeå Centre for Molecular Medicine (UCMM), Umeå University, 901 87 Umeå, Sweden
- Correspondence: (A.H.); (S.R.)
| | - Silvia Remeseiro
- Umeå Centre for Molecular Medicine (UCMM), Umeå University, 901 87 Umeå, Sweden
- Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, 901 87 Umeå, Sweden
- Correspondence: (A.H.); (S.R.)
| |
Collapse
|
27
|
DNA sequence-dependent formation of heterochromatin nanodomains. Nat Commun 2022; 13:1861. [PMID: 35387992 PMCID: PMC8986797 DOI: 10.1038/s41467-022-29360-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 03/03/2022] [Indexed: 01/08/2023] Open
Abstract
The mammalian epigenome contains thousands of heterochromatin nanodomains (HNDs) marked by di- and trimethylation of histone H3 at lysine 9 (H3K9me2/3), which have a typical size of 3–10 nucleosomes. However, what governs HND location and extension is only partly understood. Here, we address this issue by introducing the chromatin hierarchical lattice framework (ChromHL) that predicts chromatin state patterns with single-nucleotide resolution. ChromHL is applied to analyse four HND types in mouse embryonic stem cells that are defined by histone methylases SUV39H1/2 or GLP, transcription factor ADNP or chromatin remodeller ATRX. We find that HND patterns can be computed from PAX3/9, ADNP and LINE1 sequence motifs as nucleation sites and boundaries that are determined by DNA sequence (e.g. CTCF binding sites), cooperative interactions between nucleosomes as well as nucleosome-HP1 interactions. Thus, ChromHL rationalizes how patterns of H3K9me2/3 are established and changed via the activity of protein factors in processes like cell differentiation. The ability to predict epigenetic regulation is an important challenge in biology. Here the authors describe heterochromatin nanodomains (HNDs) and compare four different types of H3K9me2/3-marked HNDs in mouse embryonic stem cells. They further develop a computational framework to predict genome-wide HND maps from DNA sequence and protein concentrations, at single-nucleotide resolution.
Collapse
|
28
|
NucPosDB: a database of nucleosome positioning in vivo and nucleosomics of cell-free DNA. Chromosoma 2022; 131:19-28. [PMID: 35061087 PMCID: PMC8776978 DOI: 10.1007/s00412-021-00766-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 11/24/2021] [Accepted: 12/20/2021] [Indexed: 01/25/2023]
Abstract
Nucleosome positioning is involved in many gene regulatory processes happening in the cell, and it may change as cells differentiate or respond to the changing microenvironment in a healthy or diseased organism. One important implication of nucleosome positioning in clinical epigenetics is its use in the “nucleosomics” analysis of cell-free DNA (cfDNA) for the purpose of patient diagnostics in liquid biopsies. The rationale for this is that the apoptotic nucleases that digest chromatin of the dying cells mostly cut DNA between nucleosomes. Thus, the short pieces of DNA in body fluids reflect the positions of nucleosomes in the cells of origin. Here, we report a systematic nucleosomics database — NucPosDB — curating published nucleosome positioning datasets in vivo as well as datasets of sequenced cell-free DNA (cfDNA) that reflect nucleosome positioning in situ in the cells of origin. Users can select subsets of the database by a number of criteria and then obtain raw or processed data. NucPosDB also reports the originally determined regions with stable nucleosome occupancy across several individuals with a given condition. An additional section provides a catalogue of computational tools for the analysis of nucleosome positioning or cfDNA experiments and theoretical algorithms for the prediction of nucleosome positioning preferences from DNA sequence. We provide an overview of the field, describe the structure of the database in this context, and demonstrate data variability using examples of different medical conditions. NucPosDB is useful both for the analysis of fundamental gene regulation processes and the training of computational models for patient diagnostics based on cfDNA. The database currently curates ~ 400 publications on nucleosome positioning in cell lines and in situ as well as cfDNA from > 10,000 patients and healthy volunteers. For open-access cfDNA datasets as well as key MNase-seq datasets in human cells, NucPosDB allows downloading processed mapped data in addition to the regions with stable nucleosome occupancy. NucPosDB is available at https://generegulation.org/nucposdb/.
Collapse
|
29
|
Leach DA, Fernandes RC, Bevan CL. Cellular specificity of androgen receptor, coregulators, and pioneer factors in prostate cancer. ENDOCRINE ONCOLOGY (BRISTOL, ENGLAND) 2022; 2:R112-R131. [PMID: 37435460 PMCID: PMC10259329 DOI: 10.1530/eo-22-0065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/08/2022] [Indexed: 07/13/2023]
Abstract
Androgen signalling, through the transcription factor androgen receptor (AR), is vital to all stages of prostate development and most prostate cancer progression. AR signalling controls differentiation, morphogenesis, and function of the prostate. It also drives proliferation and survival in prostate cancer cells as the tumour progresses; given this importance, it is the main therapeutic target for disseminated disease. AR is also essential in the surrounding stroma, for the embryonic development of the prostate and controlling epithelial glandular development. Stromal AR is also important in cancer initiation, regulating paracrine factors that excite cancer cell proliferation, but lower stromal AR expression correlates with shorter time to progression/worse outcomes. The profile of AR target genes is different between benign and cancerous epithelial cells, between castrate-resistant prostate cancer cells and treatment-naïve cancer cells, between metastatic and primary cancer cells, and between epithelial cells and fibroblasts. This is also true of AR DNA-binding profiles. Potentially regulating the cellular specificity of AR binding and action are pioneer factors and coregulators, which control and influence the ability of AR to bind to chromatin and regulate gene expression. The expression of these factors differs between benign and cancerous cells, as well as throughout disease progression. The expression profile is also different between fibroblast and mesenchymal cell types. The functional importance of coregulators and pioneer factors in androgen signalling makes them attractive therapeutic targets, but given the contextual expression of these factors, it is essential to understand their roles in different cancerous and cell-lineage states.
Collapse
Affiliation(s)
- Damien A Leach
- Division of Cancer, Imperial Centre for Translational & Experimental Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Rayzel C Fernandes
- Division of Cancer, Imperial Centre for Translational & Experimental Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Charlotte L Bevan
- Division of Cancer, Imperial Centre for Translational & Experimental Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK
| |
Collapse
|
30
|
Angeles AK, Janke F, Bauer S, Christopoulos P, Riediger AL, Sültmann H. Liquid Biopsies beyond Mutation Calling: Genomic and Epigenomic Features of Cell-Free DNA in Cancer. Cancers (Basel) 2021; 13:5615. [PMID: 34830770 PMCID: PMC8616179 DOI: 10.3390/cancers13225615] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 01/12/2023] Open
Abstract
Cell-free DNA (cfDNA) analysis using liquid biopsies is a non-invasive method to gain insights into the biology, therapy response, mechanisms of acquired resistance and therapy escape of various tumors. While it is well established that individual cancer treatment options can be adjusted by panel next-generation sequencing (NGS)-based evaluation of driver mutations in cfDNA, emerging research additionally explores the value of deep characterization of tumor cfDNA genomics and fragmentomics as well as nucleosome modifications (chromatin structure), and methylation patterns (epigenomics) for comprehensive and multi-modal assessment of cfDNA. These tools have the potential to improve disease monitoring, increase the sensitivity of minimal residual disease identification, and detection of cancers at earlier stages. Recent progress in emerging technologies of cfDNA analysis is summarized, the added potential clinical value is highlighted, strengths and limitations are identified and compared with conventional targeted NGS analysis, and current challenges and future directions are discussed.
Collapse
Affiliation(s)
- Arlou Kristina Angeles
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; (A.K.A.); (F.J.); (S.B.)
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany;
- Translational Lung Research Center, German Center for Lung Research (DZL) at Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Florian Janke
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; (A.K.A.); (F.J.); (S.B.)
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany;
- Translational Lung Research Center, German Center for Lung Research (DZL) at Heidelberg University Hospital, 69120 Heidelberg, Germany
- Medical Faculty, Heidelberg University, 69120 Heidelberg, Germany
| | - Simone Bauer
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; (A.K.A.); (F.J.); (S.B.)
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany;
- Translational Lung Research Center, German Center for Lung Research (DZL) at Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Petros Christopoulos
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany;
- Translational Lung Research Center, German Center for Lung Research (DZL) at Heidelberg University Hospital, 69120 Heidelberg, Germany
- Department of Oncology, Thoraxklinik at Heidelberg University Hospital, 69126 Heidelberg, Germany
| | - Anja Lisa Riediger
- Helmholtz Young Investigator Group, Multiparametric Methods for Early Detection of Prostate Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany;
- Department of Urology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Holger Sültmann
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; (A.K.A.); (F.J.); (S.B.)
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany;
- Translational Lung Research Center, German Center for Lung Research (DZL) at Heidelberg University Hospital, 69120 Heidelberg, Germany
| |
Collapse
|
31
|
Hanmandlu A, Zhu L, Mertens TC, Collum S, Bi W, Xiong F, Wang R, Amirthalingam RT, Ren D, Han L, Jyothula SS, Li W, Zheng WJ, Karmouty-Quintana H. Transcriptomic and Epigenetic Profiling of Fibroblasts in Idiopathic Pulmonary Fibrosis (IPF). Am J Respir Cell Mol Biol 2021; 66:53-63. [PMID: 34370624 DOI: 10.1165/rcmb.2020-0437oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF), a devastating, fibro-proliferative chronic lung disorder, is associated with expansion of fibroblasts/myofibroblasts, which leads to excessive production and deposition of extracellular matrix (ECM). IPF is typically clinically identified as end-stage lung disease, after fibrotic processes are well-established and advanced. Fibroblasts have been shown to be critically important in the development and progression of IPF. We hypothesize that differential chromatin access can drive genetic differences in IPF fibroblasts relative to healthy fibroblasts. To this end, we performed Assay of Transposase-Accessible Chromatin (ATAC)-sequencing to identify differentially accessible regions within the genomes of fibroblasts from healthy and IPF lungs. Multiple motifs were identified to be enriched in IPF fibroblasts compared to healthy fibroblasts, including binding motifs for TWIST1 and FOXA1. RNA-sequencing identified 93 genes that could be annotated to differentially accessible regions. Pathway analysis of the annotated genes identified cellular adhesion, cytoskeletal anchoring, and cell differentiation as important biological processes. In addition, single nucleotide polymorphisms (SNPs) analysis showed that linkage disequilibrium (LD) blocks of IPF risk SNPs with IPF accessible regions that have been identified to be located in genes which are important in IPF, including MUC5B, TERT and TOLLIP. Validation studies in isolated lung tissue confirmed increased expression for TWIST1 and FOXA1 in addition to revealing SHANK2 and CSPR2 as novel targets. Thus, modulation of differential chromatin access may be an important mechanism in the pathogenesis of lung fibrosis.
Collapse
Affiliation(s)
- Ankit Hanmandlu
- University of Texas Health Science Center at Houston, 12340, Biochemistry and Molecular Biology, Houston, Texas, United States
| | - Lisha Zhu
- University of Texas Health Science Center at Houston, 12340, School of Biomedical Informatics, Houston, Texas, United States
| | - Tinne Cj Mertens
- University of Texas Health Science Center at Houston, 12340, Biochemistry and Molecular Biology, Houston, Texas, United States
| | - Scott Collum
- University of Texas Health Science Center at Houston, 12340, Biochemistry and Molecular Biology, Houston, Texas, United States
| | - Weizhen Bi
- University of Texas Health Science Center at Houston, 12340, Biochemistry and Molecular Biology, Houston, Texas, United States
| | - Feng Xiong
- University of Texas Health Science Center at Houston, 12340, Biochemistry and Molecular Biology, Houston, Texas, United States
| | - Ruoyu Wang
- University of Texas Health Science Center at Houston, 12340, Biochemistry and Molecular Biology, Houston, Texas, United States
| | | | - Dewei Ren
- Houston Methodist Hospital, 23534, J.C. Walter Jr. Transplant Center, Houston, Texas, United States
| | - Leng Han
- The University of Texas Health Science Center at Houston, 12340, Biochemistry and Molecular Biology, Houston, Texas, United States
| | - Soma Sk Jyothula
- University of Texas Health Science Center at Houston, 12340, Internal Medicine, Houston, Texas, United States
| | - Wenbo Li
- University of Texas Health Science Center at Houston, 12340, Biochemistry and Molecular Biology, Houston, Texas, United States
| | - W Jim Zheng
- The University of Texas Health Science Center at Houston, 12340, School of Biomedical Informatics, Houston, Texas, United States
| | - Harry Karmouty-Quintana
- University of Texas Health Science Center at Houston, 12340, Biochemistry and Molecular Biology, Houston, Texas, United States;
| |
Collapse
|
32
|
Roberts GA, Ozkan B, Gachulincová I, O'Dwyer MR, Hall-Ponsele E, Saxena M, Robinson PJ, Soufi A. Dissecting OCT4 defines the role of nucleosome binding in pluripotency. Nat Cell Biol 2021; 23:834-845. [PMID: 34354236 PMCID: PMC7611526 DOI: 10.1038/s41556-021-00727-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 07/01/2021] [Indexed: 12/19/2022]
Abstract
Pioneer transcription factors such as OCT4 can target silent genes embedded in nucleosome-dense regions. How nucleosome interaction enables transcription factors to target chromatin and determine cell identity remains elusive. Here, we systematically dissect OCT4 to show that nucleosome binding is encoded within the DNA-binding domain and yet can be uncoupled from free-DNA binding. Furthermore, accelerating the binding kinetics of OCT4 to DNA enhances nucleosome binding. In cells, uncoupling nucleosome binding diminishes the ability of OCT4 to individually access closed chromatin, while more dynamic nucleosome binding results in expansive genome scanning within closed chromatin. However, both uncoupling and enhancing nucleosome binding are detrimental to inducing pluripotency from differentiated cells. Remarkably, stable interactions between OCT4 and nucleosomes are continuously required for maintaining the accessibility of pluripotency enhancers in stem cells. Our findings reveal how the affinity and residence time of OCT4-nucleosome complexes modulate chromatin accessibility during cell fate changes and maintenance.
Collapse
Affiliation(s)
- Gareth A Roberts
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, Institute of Stem Cell Research, University of Edinburgh, Edinburgh, UK
| | - Burak Ozkan
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, Institute of Stem Cell Research, University of Edinburgh, Edinburgh, UK
| | - Ivana Gachulincová
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, Institute of Stem Cell Research, University of Edinburgh, Edinburgh, UK
| | - Michael R O'Dwyer
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, Institute of Stem Cell Research, University of Edinburgh, Edinburgh, UK
| | - Elisa Hall-Ponsele
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, Institute of Stem Cell Research, University of Edinburgh, Edinburgh, UK
| | - Manoj Saxena
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, London, UK
| | - Philip J Robinson
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, London, UK
| | - Abdenour Soufi
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, Institute of Stem Cell Research, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
33
|
Chawla A, Nagy C, Turecki G. Chromatin Profiling Techniques: Exploring the Chromatin Environment and Its Contributions to Complex Traits. Int J Mol Sci 2021; 22:7612. [PMID: 34299232 PMCID: PMC8305586 DOI: 10.3390/ijms22147612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 01/04/2023] Open
Abstract
The genetic architecture of complex traits is multifactorial. Genome-wide association studies (GWASs) have identified risk loci for complex traits and diseases that are disproportionately located at the non-coding regions of the genome. On the other hand, we have just begun to understand the regulatory roles of the non-coding genome, making it challenging to precisely interpret the functions of non-coding variants associated with complex diseases. Additionally, the epigenome plays an active role in mediating cellular responses to fluctuations of sensory or environmental stimuli. However, it remains unclear how exactly non-coding elements associate with epigenetic modifications to regulate gene expression changes and mediate phenotypic outcomes. Therefore, finer interrogations of the human epigenomic landscape in associating with non-coding variants are warranted. Recently, chromatin-profiling techniques have vastly improved our understanding of the numerous functions mediated by the epigenome and DNA structure. Here, we review various chromatin-profiling techniques, such as assays of chromatin accessibility, nucleosome distribution, histone modifications, and chromatin topology, and discuss their applications in unraveling the brain epigenome and etiology of complex traits at tissue homogenate and single-cell resolution. These techniques have elucidated compositional and structural organizing principles of the chromatin environment. Taken together, we believe that high-resolution epigenomic and DNA structure profiling will be one of the best ways to elucidate how non-coding genetic variations impact complex diseases, ultimately allowing us to pinpoint cell-type targets with therapeutic potential.
Collapse
Affiliation(s)
- Anjali Chawla
- Integrated Program in Neuroscience, McGill University, 845 Sherbrooke St W, Montreal, QC H3A 0G4, Canada;
- McGill Group for Suicide Studies, Department of Psychiatry, Douglas Mental Health University Institute, McGill University, 6875 LaSalle Blvd, Verdun, QC H4H 1R3, Canada;
| | - Corina Nagy
- McGill Group for Suicide Studies, Department of Psychiatry, Douglas Mental Health University Institute, McGill University, 6875 LaSalle Blvd, Verdun, QC H4H 1R3, Canada;
- Genome Quebec Innovation Centre, Department of Human Genetics, McGill University, 845 Sherbrooke St W, Montreal, QC H3A 0G4, Canada
| | - Gustavo Turecki
- Integrated Program in Neuroscience, McGill University, 845 Sherbrooke St W, Montreal, QC H3A 0G4, Canada;
- McGill Group for Suicide Studies, Department of Psychiatry, Douglas Mental Health University Institute, McGill University, 6875 LaSalle Blvd, Verdun, QC H4H 1R3, Canada;
- Genome Quebec Innovation Centre, Department of Human Genetics, McGill University, 845 Sherbrooke St W, Montreal, QC H3A 0G4, Canada
| |
Collapse
|
34
|
Ishihara S, Sasagawa Y, Kameda T, Yamashita H, Umeda M, Kotomura N, Abe M, Shimono Y, Nikaido I. Local states of chromatin compaction at transcription start sites control transcription levels. Nucleic Acids Res 2021; 49:8007-8023. [PMID: 34233004 PMCID: PMC8373074 DOI: 10.1093/nar/gkab587] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 06/12/2021] [Accepted: 06/30/2021] [Indexed: 11/16/2022] Open
Abstract
The ‘open’ and ‘compact’ regions of chromatin are considered to be regions of active and silent transcription, respectively. However, individual genes produce transcripts at different levels, suggesting that transcription output does not depend on the simple open-compact conversion of chromatin, but on structural variations in chromatin itself, which so far have remained elusive. In this study, weakly crosslinked chromatin was subjected to sedimentation velocity centrifugation, which fractionated the chromatin according to its degree of compaction. Open chromatin remained in upper fractions, while compact chromatin sedimented to lower fractions depending on the level of nucleosome assembly. Although nucleosomes were evenly detected in all fractions, histone H1 was more highly enriched in the lower fractions. H1 was found to self-associate and crosslinked to histone H3, suggesting that H1 bound to H3 interacts with another H1 in an adjacent nucleosome to form compact chromatin. Genome-wide analyses revealed that nearly the entire genome consists of compact chromatin without differences in compaction between repeat and non-repeat sequences; however, active transcription start sites (TSSs) were rarely found in compact chromatin. Considering the inverse correlation between chromatin compaction and RNA polymerase binding at TSSs, it appears that local states of chromatin compaction determine transcription levels.
Collapse
Affiliation(s)
- Satoru Ishihara
- Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Yohei Sasagawa
- Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research, Wako, Saitama 351-0198, Japan.,Functional Genome Informatics, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Takeru Kameda
- Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research, Wako, Saitama 351-0198, Japan.,Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Hayato Yamashita
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Mana Umeda
- Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research, Wako, Saitama 351-0198, Japan
| | - Naoe Kotomura
- Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Masayuki Abe
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Yohei Shimono
- Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Itoshi Nikaido
- Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research, Wako, Saitama 351-0198, Japan.,Functional Genome Informatics, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan.,Master's/Doctoral Program in Life Science Innovation (Bioinformatics), Degree Programs in Systems and Information Engineering, Graduate School of Science and Technology, University of Tsukuba, Wako, Saitama 351-0198, Japan
| |
Collapse
|
35
|
Chen X, Yang H, Liu G, Zhang Y. NUCOME: A comprehensive database of nucleosome organization referenced landscapes in mammalian genomes. BMC Bioinformatics 2021; 22:321. [PMID: 34120586 PMCID: PMC8201709 DOI: 10.1186/s12859-021-04239-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 06/06/2021] [Indexed: 12/02/2022] Open
Abstract
Background Nucleosome organization is involved in many regulatory activities in various organisms. However, studies integrating nucleosome organization in mammalian genomes are very limited mainly due to the lack of comprehensive data quality control (QC) assessment and uneven data quality of public data sets. Results The NUCOME is a database focused on filtering qualified nucleosome organization referenced landscapes covering various cell types in human and mouse based on QC metrics. The filtering strategy guarantees the quality of nucleosome organization referenced landscapes and exempts users from redundant data set selection and processing. The NUCOME database provides standardized, qualified data source and informative nucleosome organization features at a whole-genome scale and on the level of individual loci. Conclusions The NUCOME provides valuable data resources for integrative analyses focus on nucleosome organization. The NUCOME is freely available at http://compbio-zhanglab.org/NUCOME. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-021-04239-9.
Collapse
Affiliation(s)
- Xiaolan Chen
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Hui Yang
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Guifen Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| | - Yong Zhang
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| |
Collapse
|
36
|
Hedley JG, Teif VB, Kornyshev AA. Nucleosome-induced homology recognition in chromatin. J R Soc Interface 2021; 18:20210147. [PMID: 34129789 PMCID: PMC8205524 DOI: 10.1098/rsif.2021.0147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/04/2021] [Indexed: 02/07/2023] Open
Abstract
One of the least understood properties of chromatin is the ability of its similar regions to recognize each other through weak interactions. Theories based on electrostatic interactions between helical macromolecules suggest that the ability to recognize sequence homology is an innate property of the non-ideal helical structure of DNA. However, this theory does not account for the nucleosomal packing of DNA. Can homologous DNA sequences recognize each other while wrapped up in the nucleosomes? Can structural homology arise at the level of nucleosome arrays? Here, we present a theoretical model for the recognition potential well between chromatin fibres sliding against each other. This well is different from the one predicted for bare DNA; the minima in energy do not correspond to literal juxtaposition, but are shifted by approximately half the nucleosome repeat length. The presence of this potential well suggests that nucleosome positioning may induce mutual sequence recognition between chromatin fibres and facilitate the formation of chromatin nanodomains. This has implications for nucleosome arrays enclosed between CTCF-cohesin boundaries, which may form stiffer stem-like structures instead of flexible entropically favourable loops. We also consider switches between chromatin states, e.g. through acetylation/deacetylation of histones, and discuss nucleosome-induced recognition as a precursory stage of genetic recombination.
Collapse
Affiliation(s)
- Jonathan G. Hedley
- Department of Chemistry, Faculty of Natural Sciences, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, UK
| | - Vladimir B. Teif
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| | - Alexei A. Kornyshev
- Department of Chemistry, Faculty of Natural Sciences, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, UK
| |
Collapse
|
37
|
Barbier J, Vaillant C, Volff JN, Brunet FG, Audit B. Coupling between Sequence-Mediated Nucleosome Organization and Genome Evolution. Genes (Basel) 2021; 12:genes12060851. [PMID: 34205881 PMCID: PMC8228248 DOI: 10.3390/genes12060851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022] Open
Abstract
The nucleosome is a major modulator of DNA accessibility to other cellular factors. Nucleosome positioning has a critical importance in regulating cell processes such as transcription, replication, recombination or DNA repair. The DNA sequence has an influence on the position of nucleosomes on genomes, although other factors are also implicated, such as ATP-dependent remodelers or competition of the nucleosome with DNA binding proteins. Different sequence motifs can promote or inhibit the nucleosome formation, thus influencing the accessibility to the DNA. Sequence-encoded nucleosome positioning having functional consequences on cell processes can then be selected or counter-selected during evolution. We review the interplay between sequence evolution and nucleosome positioning evolution. We first focus on the different ways to encode nucleosome positions in the DNA sequence, and to which extent these mechanisms are responsible of genome-wide nucleosome positioning in vivo. Then, we discuss the findings about selection of sequences for their nucleosomal properties. Finally, we illustrate how the nucleosome can directly influence sequence evolution through its interactions with DNA damage and repair mechanisms. This review aims to provide an overview of the mutual influence of sequence evolution and nucleosome positioning evolution, possibly leading to complex evolutionary dynamics.
Collapse
Affiliation(s)
- Jérémy Barbier
- Institut de Génomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Univ Claude Bernard Lyon 1, F-69364 Lyon, France; (J.B.); (F.G.B.)
- Laboratoire de Physique, Univ Lyon, ENS de Lyon, CNRS, F-69342 Lyon, France;
| | - Cédric Vaillant
- Laboratoire de Physique, Univ Lyon, ENS de Lyon, CNRS, F-69342 Lyon, France;
| | - Jean-Nicolas Volff
- Institut de Génomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Univ Claude Bernard Lyon 1, F-69364 Lyon, France; (J.B.); (F.G.B.)
- Correspondence: (J.-N.V.); (B.A.)
| | - Frédéric G. Brunet
- Institut de Génomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Univ Claude Bernard Lyon 1, F-69364 Lyon, France; (J.B.); (F.G.B.)
| | - Benjamin Audit
- Laboratoire de Physique, Univ Lyon, ENS de Lyon, CNRS, F-69342 Lyon, France;
- Correspondence: (J.-N.V.); (B.A.)
| |
Collapse
|
38
|
Not just a writer: PRC2 as a chromatin reader. Biochem Soc Trans 2021; 49:1159-1170. [PMID: 34060617 PMCID: PMC8286813 DOI: 10.1042/bst20200728] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/16/2022]
Abstract
PRC2 deposits the H3K27me3 repressive mark, which facilitates transcription repression of developmental genes. The decision of whether a particular gene is silenced at a given point during development is heavily dependent on the chromatin context. More than just a simple epigenetic writer, PRC2 employs several distinct chromatin reading capabilities to sense the local chromatin environment and modulate the H3K27me3 writer activity in a context-dependent manner. Here we discuss the complex interplay of PRC2 with the hallmarks of active and repressive chromatin, how it affects H3K27me3 deposition and how it guides transcriptional activity.
Collapse
|
39
|
Devenish LP, Mhlanga MM, Negishi Y. Immune Regulation in Time and Space: The Role of Local- and Long-Range Genomic Interactions in Regulating Immune Responses. Front Immunol 2021; 12:662565. [PMID: 34046034 PMCID: PMC8144502 DOI: 10.3389/fimmu.2021.662565] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/26/2021] [Indexed: 12/27/2022] Open
Abstract
Mammals face and overcome an onslaught of endogenous and exogenous challenges in order to survive. Typical immune cells and barrier cells, such as epithelia, must respond rapidly and effectively to encountered pathogens and aberrant cells to prevent invasion and eliminate pathogenic species before they become overgrown and cause harm. On the other hand, inappropriate initiation and failed termination of immune cell effector function in the absence of pathogens or aberrant tissue gives rise to a number of chronic, auto-immune, and neoplastic diseases. Therefore, the fine control of immune effector functions to provide for a rapid, robust response to challenge is essential. Importantly, immune cells are heterogeneous due to various factors relating to cytokine exposure and cell-cell interaction. For instance, tissue-resident macrophages and T cells are phenotypically, transcriptionally, and functionally distinct from their circulating counterparts. Indeed, even the same cell types in the same environment show distinct transcription patterns at the single cell level due to cellular noise, despite being robust in concert. Additionally, immune cells must remain quiescent in a naive state to avoid autoimmunity or chronic inflammatory states but must respond robustly upon activation regardless of their microenvironment or cellular noise. In recent years, accruing evidence from next-generation sequencing, chromatin capture techniques, and high-resolution imaging has shown that local- and long-range genome architecture plays an important role in coordinating rapid and robust transcriptional responses. Here, we discuss the local- and long-range genome architecture of immune cells and the resultant changes upon pathogen or antigen exposure. Furthermore, we argue that genome structures contribute functionally to rapid and robust responses under noisy and distinct cellular environments and propose a model to explain this phenomenon.
Collapse
Affiliation(s)
- Liam P Devenish
- Division of Chemical, Systems, and Synthetic Biology, Department of Integrative Biomedical Sciences, Institute of Infectious Disease & Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Musa M Mhlanga
- Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, Netherlands.,Epigenomics & Single Cell Biophysics Group, Department of Cell Biology, Radboud University, Nijmegen, Netherlands.,Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Yutaka Negishi
- Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, Netherlands.,Epigenomics & Single Cell Biophysics Group, Department of Cell Biology, Radboud University, Nijmegen, Netherlands.,Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
40
|
Cole L, Kurscheid S, Nekrasov M, Domaschenz R, Vera DL, Dennis JH, Tremethick DJ. Multiple roles of H2A.Z in regulating promoter chromatin architecture in human cells. Nat Commun 2021; 12:2524. [PMID: 33953180 PMCID: PMC8100287 DOI: 10.1038/s41467-021-22688-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 03/25/2021] [Indexed: 01/02/2023] Open
Abstract
Chromatin accessibility of a promoter is fundamental in regulating transcriptional activity. The histone variant H2A.Z has been shown to contribute to this regulation, but its role has remained poorly understood. Here, we prepare high-depth maps of the position and accessibility of H2A.Z-containing nucleosomes for all human Pol II promoters in epithelial, mesenchymal and isogenic cancer cell lines. We find that, in contrast to the prevailing model, many different types of active and inactive promoter structures are observed that differ in their nucleosome organization and sensitivity to MNase digestion. Key aspects of an active chromatin structure include positioned H2A.Z MNase resistant nucleosomes upstream or downstream of the TSS, and a MNase sensitive nucleosome at the TSS. Furthermore, the loss of H2A.Z leads to a dramatic increase in the accessibility of transcription factor binding sites. Collectively, these results suggest that H2A.Z has multiple and distinct roles in regulating gene expression dependent upon its location in a promoter.
Collapse
Affiliation(s)
- Lauren Cole
- College of Arts and Sciences, Department of Biological Sciences, Florida State University, Tallahassee, FL, USA
| | - Sebastian Kurscheid
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Maxim Nekrasov
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Renae Domaschenz
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Daniel L Vera
- College of Arts and Sciences, Department of Biological Sciences, Florida State University, Tallahassee, FL, USA
- Department of Genetics, Blavatnik Institute, Paul F. Glenn Center for Biology of Aging Research, Harvard Medical School, Boston, MA, USA
| | - Jonathan H Dennis
- College of Arts and Sciences, Department of Biological Sciences, Florida State University, Tallahassee, FL, USA.
| | - David J Tremethick
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia.
| |
Collapse
|
41
|
Furuyama S, Wu QV, Varnum-Finney B, Sandstrom R, Meuleman W, Stamatoyannopoulos JA, Bernstein ID. Inaccessible LCG Promoters Act as Safeguards to Restrict T Cell Development to Appropriate Notch Signaling Environments. Stem Cell Reports 2021; 16:717-726. [PMID: 33770495 PMCID: PMC8072033 DOI: 10.1016/j.stemcr.2021.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 11/19/2022] Open
Abstract
T cell development is restricted to the thymus and is dependent on high levels of Notch signaling induced within the thymic microenvironment. To understand Notch function in thymic restriction, we investigated the basis for target gene selectivity in response to quantitative differences in Notch signal strength, focusing on the chromatin architecture of genes essential for T cell differentiation. We find that high Notch signal strength is required to activate promoters of known targets essential for T cell commitment, including Il2ra, Cd3ε, and Rag1, which feature low CpG content (LCG) and DNA inaccessibility in hematopoietic stem progenitor cells. Our findings suggest that promoter DNA inaccessibility at LCG T lineage genes provides robust protection against stochastic activation in inappropriate Notch signaling contexts, limiting T cell development to the thymus.
Collapse
Affiliation(s)
- Suzanne Furuyama
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Qian Vicky Wu
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Barbara Varnum-Finney
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Richard Sandstrom
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Wouter Meuleman
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, USA
| | - John A Stamatoyannopoulos
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Department of Medicine, Division of Oncology, University of Washington, Seattle, WA 98195, USA
| | - Irwin D Bernstein
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
42
|
Zhang C, Huang J. Interactions Between Nucleosomes: From Atomistic Simulation to Polymer Model. Front Mol Biosci 2021; 8:624679. [PMID: 33912585 PMCID: PMC8072053 DOI: 10.3389/fmolb.2021.624679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 02/09/2021] [Indexed: 11/23/2022] Open
Abstract
The organization of genomes in space and time dimension plays an important role in gene expression and regulation. Chromatin folding occurs in a dynamic, structured way that is subject to biophysical rules and biological processes. Nucleosomes are the basic unit of chromatin in living cells, and here we report on the effective interactions between two nucleosomes in physiological conditions using explicit-solvent all-atom simulations. Free energy landscapes derived from umbrella sampling simulations agree well with recent experimental and simulation results. Our simulations reveal the atomistic details of the interactions between nucleosomes in solution and can be used for constructing the coarse-grained model for chromatin in a bottom-up manner.
Collapse
Affiliation(s)
- Chengwei Zhang
- College of Life Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Jing Huang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| |
Collapse
|
43
|
At the Crossroad of Gene Regulation and Genome Organization: Potential Roles for ATP-Dependent Chromatin Remodelers in the Regulation of CTCF-Mediated 3D Architecture. BIOLOGY 2021; 10:biology10040272. [PMID: 33801596 PMCID: PMC8066914 DOI: 10.3390/biology10040272] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/20/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023]
Abstract
Simple Summary The way DNA is packaged in the nucleus of a cell is important for when and how genes are expressed. There are many levels of packaging, and new techniques have revealed that long-range interactions are important for both promoting and restricting the transcription of genes. Some long-range interactions are mediated by physical loops in the genome where, like a rubber band, the ring-shaped cohesin complex loops sections of DNA bound by CCCTC-binding factor (CTCF). Both cohesin and CTCF act on DNA, and increasing evidence indicates that their function is inhibited by nucleosomes bound to the DNA. In this review, we summarize the current knowledge of how individual chromatin remodelers, which utilize ATP to move nucleosomes on DNA, facilitate or inhibit cohesin/CTCF-dependent looping interactions. Abstract In higher order organisms, the genome is assembled into a protein-dense structure called chromatin. Chromatin is spatially organized in the nucleus through hierarchical folding, which is tightly regulated both in cycling cells and quiescent cells. Assembly and folding are not one-time events in a cell’s lifetime; rather, they are subject to dynamic shifts to allow changes in transcription, DNA replication, or DNA damage repair. Chromatin is regulated at many levels, and recent tools have permitted the elucidation of specific factors involved in the maintenance and regulation of the three-dimensional (3D) genome organization. In this review/perspective, we aim to cover the potential, but relatively unelucidated, crosstalk between 3D genome architecture and the ATP-dependent chromatin remodelers with a specific focus on how the architectural proteins CTCF and cohesin are regulated by chromatin remodeling.
Collapse
|
44
|
Huseyin MK, Klose RJ. Live-cell single particle tracking of PRC1 reveals a highly dynamic system with low target site occupancy. Nat Commun 2021; 12:887. [PMID: 33563969 PMCID: PMC7873255 DOI: 10.1038/s41467-021-21130-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 01/13/2021] [Indexed: 01/04/2023] Open
Abstract
Polycomb repressive complex 1 (PRC1) is an essential chromatin-based repressor of gene transcription. How PRC1 engages with chromatin to identify its target genes and achieve gene repression remains poorly defined, representing a major hurdle to our understanding of Polycomb system function. Here, we use genome engineering and single particle tracking to dissect how PRC1 binds to chromatin in live mouse embryonic stem cells. We observe that PRC1 is highly dynamic, with only a small fraction stably interacting with chromatin. By integrating subunit-specific dynamics, chromatin binding, and abundance measurements, we discover that PRC1 exhibits low occupancy at target sites. Furthermore, we employ perturbation approaches to uncover how specific components of PRC1 define its kinetics and chromatin binding. Together, these discoveries provide a quantitative understanding of chromatin binding by PRC1 in live cells, suggesting that chromatin modification, as opposed to PRC1 complex occupancy, is central to gene repression.
Collapse
Affiliation(s)
- Miles K Huseyin
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Robert J Klose
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
45
|
Nucleosome Positioning and Spacing: From Mechanism to Function. J Mol Biol 2021; 433:166847. [PMID: 33539878 DOI: 10.1016/j.jmb.2021.166847] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/16/2021] [Accepted: 01/22/2021] [Indexed: 02/08/2023]
Abstract
Eukaryotes associate their genomes with histone proteins, forming nucleosome particles. Nucleosomes regulate and protect the genetic information. They often assemble into evenly spaced arrays of nucleosomes. These regular nucleosome arrays cover significant portions of the genome, in particular over genes. The presence of these evenly spaced nucleosome arrays is highly conserved throughout the entire eukaryotic domain. Here, we review the mechanisms behind the establishment of this primary structure of chromatin with special emphasis on the biogenesis of evenly spaced nucleosome arrays. We highlight the roles that transcription, nucleosome remodelers, DNA sequence, and histone density play towards the formation of evenly spaced nucleosome arrays and summarize our current understanding of their cellular functions. We end with key unanswered questions that remain to be explored to obtain an in-depth understanding of the biogenesis and function of the nucleosome landscape.
Collapse
|
46
|
Martínez-García PM, García-Torres M, Divina F, Terrón-Bautista J, Delgado-Sainz I, Gómez-Vela F, Cortés-Ledesma F. Genome-wide prediction of topoisomerase IIβ binding by architectural factors and chromatin accessibility. PLoS Comput Biol 2021; 17:e1007814. [PMID: 33465072 PMCID: PMC7845959 DOI: 10.1371/journal.pcbi.1007814] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 01/29/2021] [Accepted: 11/13/2020] [Indexed: 12/28/2022] Open
Abstract
DNA topoisomerase II-β (TOP2B) is fundamental to remove topological problems linked to DNA metabolism and 3D chromatin architecture, but its cut-and-reseal catalytic mechanism can accidentally cause DNA double-strand breaks (DSBs) that can seriously compromise genome integrity. Understanding the factors that determine the genome-wide distribution of TOP2B is therefore not only essential for a complete knowledge of genome dynamics and organization, but also for the implications of TOP2-induced DSBs in the origin of oncogenic translocations and other types of chromosomal rearrangements. Here, we conduct a machine-learning approach for the prediction of TOP2B binding using publicly available sequencing data. We achieve highly accurate predictions, with accessible chromatin and architectural factors being the most informative features. Strikingly, TOP2B is sufficiently explained by only three features: DNase I hypersensitivity, CTCF and cohesin binding, for which genome-wide data are widely available. Based on this, we develop a predictive model for TOP2B genome-wide binding that can be used across cell lines and species, and generate virtual probability tracks that accurately mirror experimental ChIP-seq data. Our results deepen our knowledge on how the accessibility and 3D organization of chromatin determine TOP2B function, and constitute a proof of principle regarding the in silico prediction of sequence-independent chromatin-binding factors.
Collapse
Affiliation(s)
- Pedro Manuel Martínez-García
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), CSIC-Universidad de Sevilla-Universidad Pablo de Olavide, Seville, Spain
- * E-mail: (PMMG); (FCL)
| | | | - Federico Divina
- Division of Computer Science, Universidad Pablo de Olavide, Seville, Spain
| | - José Terrón-Bautista
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), CSIC-Universidad de Sevilla-Universidad Pablo de Olavide, Seville, Spain
| | - Irene Delgado-Sainz
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), CSIC-Universidad de Sevilla-Universidad Pablo de Olavide, Seville, Spain
| | | | - Felipe Cortés-Ledesma
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), CSIC-Universidad de Sevilla-Universidad Pablo de Olavide, Seville, Spain
- Topology and DNA breaks Group, Spanish National Cancer Centre (CNIO), Madrid, Spain
- * E-mail: (PMMG); (FCL)
| |
Collapse
|
47
|
Keller L, Belloum Y, Wikman H, Pantel K. Clinical relevance of blood-based ctDNA analysis: mutation detection and beyond. Br J Cancer 2021; 124:345-358. [PMID: 32968207 PMCID: PMC7852556 DOI: 10.1038/s41416-020-01047-5] [Citation(s) in RCA: 255] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 06/22/2020] [Accepted: 08/19/2020] [Indexed: 12/13/2022] Open
Abstract
Cell-free DNA (cfDNA) derived from tumours is present in the plasma of cancer patients. The majority of currently available studies on the use of this circulating tumour DNA (ctDNA) deal with the detection of mutations. The analysis of cfDNA is often discussed in the context of the noninvasive detection of mutations that lead to resistance mechanisms and therapeutic and disease monitoring in cancer patients. Indeed, substantial advances have been made in this area, with the development of methods that reach high sensitivity and can interrogate a large number of genes. Interestingly, however, cfDNA can also be used to analyse different features of DNA, such as methylation status, size fragment patterns, transcriptomics and viral load, which open new avenues for the analysis of liquid biopsy samples from cancer patients. This review will focus on the new perspectives and challenges of cfDNA analysis from mutation detection in patients with solid malignancies.
Collapse
Affiliation(s)
- Laura Keller
- University Medical Center Hamburg-Eppendorf, Institute of Tumor Biology, Martinistrasse 52, Building N27, 20246, Hamburg, Germany
| | - Yassine Belloum
- University Medical Center Hamburg-Eppendorf, Institute of Tumor Biology, Martinistrasse 52, Building N27, 20246, Hamburg, Germany
| | - Harriet Wikman
- University Medical Center Hamburg-Eppendorf, Institute of Tumor Biology, Martinistrasse 52, Building N27, 20246, Hamburg, Germany
| | - Klaus Pantel
- University Medical Center Hamburg-Eppendorf, Institute of Tumor Biology, Martinistrasse 52, Building N27, 20246, Hamburg, Germany.
| |
Collapse
|
48
|
Drag MH, Kilpeläinen TO. Cell-free DNA and RNA-measurement and applications in clinical diagnostics with focus on metabolic disorders. Physiol Genomics 2020; 53:33-46. [PMID: 33346689 DOI: 10.1152/physiolgenomics.00086.2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Circulating cell-free DNA (cfDNA) and RNA (cfRNA) hold enormous potential as a new class of biomarkers for the development of noninvasive liquid biopsies in many diseases and conditions. In recent years, cfDNA and cfRNA have been studied intensely as tools for noninvasive prenatal testing, solid organ transplantation, cancer screening, and monitoring of tumors. In obesity, higher cfDNA concentration indicates accelerated cellular turnover of adipocytes during expansion of adipose mass and may be directly involved in the development of adipose tissue insulin resistance by inducing inflammation. Furthermore, cfDNA and cfRNA have promising diagnostic value in a range of obesity-related metabolic disorders, such as nonalcoholic fatty liver disease, type 2 diabetes, and diabetic complications. Here, we review the current and future applications of cfDNA and cfRNA within clinical diagnostics, discuss technical and analytical challenges in the field, and summarize the opportunities of using cfDNA and cfRNA in the diagnostics and prognostics of obesity-related metabolic disorders.
Collapse
Affiliation(s)
- Markus H Drag
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tuomas O Kilpeläinen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
49
|
Papin C, Le Gras S, Ibrahim A, Salem H, Karimi MM, Stoll I, Ugrinova I, Schröder M, Fontaine-Pelletier E, Omran Z, Bronner C, Dimitrov S, Hamiche A. CpG Islands Shape the Epigenome Landscape. J Mol Biol 2020; 433:166659. [PMID: 33010306 DOI: 10.1016/j.jmb.2020.09.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023]
Abstract
Epigenetic modifications and nucleosome positioning play an important role in modulating gene expression. However, how the patterns of epigenetic modifications and nucleosome positioning are established around promoters is not well understood. Here, we have addressed these questions in a series of genome-wide experiments coupled to a novel bioinformatic analysis approach. Our data reveal a clear correlation between CpG density, promoter activity and accumulation of active or repressive histone marks. CGI boundaries define the chromatin promoter regions that will be epigenetically modified. CpG-rich promoters are targeted by histone modifications and histone variants, while CpG-poor promoters are regulated by DNA methylation. CGIs boundaries, but not transcriptional activity, are essential determinants of H2A.Z positioning in vicinity of the promoters, suggesting that the presence of H2A.Z is not related to transcriptional control. Accordingly, H2A.Z depletion has no impact on gene expression of arrested mouse embryonic fibroblasts. Therefore, the underlying DNA sequence, the promoter CpG density and, to a lesser extent, transcriptional activity, are key factors implicated in promoter chromatin architecture.
Collapse
Affiliation(s)
- Christophe Papin
- Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC), UdS, CNRS, INSERM, Equipe labellisée Ligue contre le Cancer, 1 rue Laurent Fries, B.P. 10142,67404 Illkirch Cedex, France.
| | - Stéphanie Le Gras
- Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC), UdS, CNRS, INSERM, Equipe labellisée Ligue contre le Cancer, 1 rue Laurent Fries, B.P. 10142,67404 Illkirch Cedex, France
| | - Abdulkhaleg Ibrahim
- Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC), UdS, CNRS, INSERM, Equipe labellisée Ligue contre le Cancer, 1 rue Laurent Fries, B.P. 10142,67404 Illkirch Cedex, France; Biotechnology Research Center (BTRC), Tripoli, Libya
| | - Hatem Salem
- Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC), UdS, CNRS, INSERM, Equipe labellisée Ligue contre le Cancer, 1 rue Laurent Fries, B.P. 10142,67404 Illkirch Cedex, France; Biotechnology Research Center (BTRC), Tripoli, Libya
| | - Mohammad Mahdi Karimi
- Comprehensive Cancer Centre, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, Denmark Hill, London, UK
| | - Isabelle Stoll
- Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC), UdS, CNRS, INSERM, Equipe labellisée Ligue contre le Cancer, 1 rue Laurent Fries, B.P. 10142,67404 Illkirch Cedex, France
| | - Iva Ugrinova
- Roumen Tsanev Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Maria Schröder
- Roumen Tsanev Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Emeline Fontaine-Pelletier
- Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Ziad Omran
- Umm AlQura University, Faculty of Pharmacy, Saudi Arabia
| | - Christian Bronner
- Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC), UdS, CNRS, INSERM, Equipe labellisée Ligue contre le Cancer, 1 rue Laurent Fries, B.P. 10142,67404 Illkirch Cedex, France
| | - Stefan Dimitrov
- Roumen Tsanev Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria; Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France.
| | - Ali Hamiche
- Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC), UdS, CNRS, INSERM, Equipe labellisée Ligue contre le Cancer, 1 rue Laurent Fries, B.P. 10142,67404 Illkirch Cedex, France.
| |
Collapse
|
50
|
A Unique Epigenomic Landscape Defines Human Erythropoiesis. Cell Rep 2020; 28:2996-3009.e7. [PMID: 31509757 PMCID: PMC6863094 DOI: 10.1016/j.celrep.2019.08.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/28/2019] [Accepted: 08/02/2019] [Indexed: 12/15/2022] Open
Abstract
Mammalian erythropoiesis yields a highly specialized cell type, the mature erythrocyte, evolved to meet the organismal needs of increased oxygen-carrying capacity. To better understand the regulation of erythropoiesis, we performed genome-wide studies of chromatin accessibility, DNA methylation, and transcriptomics using a recently developed strategy to obtain highly purified populations of primary human erythroid cells. The integration of gene expression, DNA methylation, and chromatin state dynamics reveals that stage-specific gene regulation during erythropoiesis is a stepwise and hierarchical process involving many cis-regulatory elements. Erythroid-specific, nonpromoter sites of chromatin accessibility are linked to erythroid cell phenotypic variation and inherited disease. Comparative analyses of stage-specific chromatin accessibility indicate that there is limited early chromatin priming of erythroid genes during hematopoiesis. The epigenome of terminally differentiating erythroid cells defines a distinct subset of highly specialized cells that are vastly dissimilar from other hematopoietic and nonhematopoietic cell types. These epigenomic and transcriptome data are powerful tools to study human erythropoiesis. Schulz et al. use genome-wide studies of chromatin accessibility, DNA methylation, and transcriptomes in primary human erythroid cells to reveal important characteristics of erythropoiesis. Chromatin accessibility of terminal erythroid differentiation is markedly dissimilar from other hematopoietic cell types. Epigenomic changes are linked to erythroid cell traits and disease genes.
Collapse
|