1
|
Hjørne AP, Mortensen MS, Licht TR, Laursen MF. Loperamide increases mouse gut transit time in a dose-dependent manner with treatment duration-dependent effects on distinct gut microbial taxa. GUT MICROBIOME (CAMBRIDGE, ENGLAND) 2025; 6:e7. [PMID: 40336798 PMCID: PMC12056420 DOI: 10.1017/gmb.2025.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 05/09/2025]
Abstract
Intestinal transit time has been recognized as an important factor in shaping the gut microbiota, although causality remains to be firmly demonstrated. The aim of this study was to evaluate the effect of different loperamide doses on the mouse intestinal transit time and to investigate the effects of increasing transit time on the gut microbial community. Loperamide significantly increased the transit time in a dose-dependent manner. Additionally, we observed a significant difference between the control group and the loperamide-treated groups in the abundance of the bacterial families Bacteroidaceae, Erysipelotrichaceae, Porphyromonadaceae, and Akkermansiaceae after 7 days of loperamide treatment, with the bacterial families responding to the increased transit time at different rates. Fermentation of faeces obtained from the same mice, with or without loperamide, demonstrated that the observed effects on gut microbiota in vivo were not a result of direct interactions between loperamide and the gut microbiota but rather a consequence of loperamide-induced increased intestinal transit time. In the cecum of the mice, we found higher levels of propionate in the high-dose group compared to the control and low-dose groups. Collectively, our findings establish that an altered transit time is causal to changes in the composition and activity of the microbiome.
Collapse
Affiliation(s)
- Anna Pii Hjørne
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Tine Rask Licht
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | | |
Collapse
|
2
|
Aljutaily T, Aladhadh M, Alsaleem KA, Alharbi HF, Barakat H, Aljumayi H, Moustafa MMA, Rehan M. Gut microbiota diversity in obese rats treated with intermittent fasting, probiotic-fermented camel milk with or without dates and their combinations. Sci Rep 2025; 15:14204. [PMID: 40269059 PMCID: PMC12019252 DOI: 10.1038/s41598-025-96893-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 04/01/2025] [Indexed: 04/25/2025] Open
Abstract
Dietary alternatives help effectively in obesity management. The present study examines the gut microbiota diversity in obesity-induced rats treated with intermittent fasting, fermented camel milk (FCM), and FCM-incorporated Sukkari date or their combinations. The metagenomic analysis of the gut microbiome through 16 S rRNA revealed 226 families, 499 genera, and 879 bacterial species. In the taxonomy distributions and heatmap analysis, Bacteroidota (i.e., Prevotella) had the uppermost relative abundance in groups before treatments (Before_Groups, most samples clustered in one sub-cluster) reached 80.50% in sample S11 (Before_G2), whereas Firmicutes (i.e., Lactobacillus) presented the dominant in groups after treatments (After_Groups, generality samples grouped in another sub-cluster) and counted 70.86% in sample S88 (After_G6), reflecting potential short-chain fatty acids production. The alpha and beta diversity explored by Shannon and PCoA indices presented high diversity in most groups after treatment. Deferribacterota and Fusobacteriota, in addition to Stenotrophomonas and Listeria, were the key phylotypes in the treated groups at the Phylum and genus levels, respectively. The proposed functional pathways involving mannan, rhamnose I, glucose, and xylose degradation were the most supported pathways in After_Groups with potential carbohydrate degradation. Eventually, intermittent fasting and probiotic fermented camel milk increased microbiome diversity and accelerated weight loss, preventing health issues.
Collapse
Affiliation(s)
- Thamer Aljutaily
- Department of Food Science and Human Nutrition, College of Agriculture and Food, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Mohammed Aladhadh
- Department of Food Science and Human Nutrition, College of Agriculture and Food, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Khalid A Alsaleem
- Department of Food Science and Human Nutrition, College of Agriculture and Food, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Hend F Alharbi
- Department of Food Science and Human Nutrition, College of Agriculture and Food, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Hassan Barakat
- Department of Food Science and Human Nutrition, College of Agriculture and Food, Qassim University, Buraydah, 51452, Saudi Arabia.
| | - Huda Aljumayi
- Department of Food Science and Nutrition, College of Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Mahmoud M A Moustafa
- Genetics Department, Faculty of Agriculture, Benha University, Moshtohor, Qaliuobia, 13736, Egypt
| | - Medhat Rehan
- Department of Plant Production, College of Agriculture and Food, Qassim University, Buraydah, 51452, Saudi Arabia.
| |
Collapse
|
3
|
Lu TJ, Chiou WC, Huang HC, Pan HC, Sun CY, Way TD, Huang C. Modulation of gut microbiota by crude gac aril polysaccharides ameliorates diet-induced obesity and metabolic disorders. Int J Biol Macromol 2024; 273:133164. [PMID: 38878919 DOI: 10.1016/j.ijbiomac.2024.133164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/21/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024]
Abstract
Obesity is a global health challenge that causes metabolic dysregulation and increases the risk of various chronic diseases. The gut microbiome is crucial in modulating host energy metabolism, immunity, and inflammation and is influenced by dietary factors. Gac fruit (Momordica cochinchinensis), widely consumed in Southeast Asia, has been proven to have various biological activities. However, the composition and effect of crude gac aril polysaccharides (GAP) on obesity and gut microbiota disturbed by high-fat diet (HFD) remain to be elucidated. Compositional analysis showed that GAP contains high oligosaccharides, with an average of 7-8 saccharide units. To mimic clinical obesity, mice were first made obese by feeding HFD for eight weeks. GAP intervention was performed from week 9 to week 20 in HFD-fed mice. Our results showed that GAP inhibited body weight gain, eWAT adipocyte hypertrophy, adipokine derangement, and hyperlipidemia in HFD-induced obese mice. GAP improved insulin sensitivity, impaired glucose tolerance, and hepatic steatosis. GAP modulated the gut microbiota composition and reversed the HFD-induced dysbiosis of at least 20 genera. Taken together, GAP improves metabolic health and modulates the gut microbiome to relieve obesity risk factors, demonstrating the potential of dietary GAP for treating obesity-associated disorders.
Collapse
Affiliation(s)
- Tai-Jung Lu
- Department of Ph.D. Program for Biotechnology Industry, China Medical University, Taichung City 406040, Taiwan
| | - Wei-Chung Chiou
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei City 112304, Taiwan
| | - Hsiu-Chen Huang
- Center for Teacher Education, National Tsing Hua University, Hsinchu City 300044, Taiwan; Department of Applied Science, Nanda Campus, National Tsing Hua University, Hsinchu City 300044, Taiwan
| | - Heng-Chih Pan
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung City 204201, Taiwan
| | - Chiao-Yin Sun
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung City 204201, Taiwan
| | - Tzong-Der Way
- Department of Ph.D. Program for Biotechnology Industry, China Medical University, Taichung City 406040, Taiwan.
| | - Cheng Huang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei City 112304, Taiwan.
| |
Collapse
|
4
|
Liu C, Liu X, Li X. Causal relationship between gut microbiota and hidradenitis suppurativa: a two-sample Mendelian randomization study. Front Microbiol 2024; 15:1302822. [PMID: 38348190 PMCID: PMC10860757 DOI: 10.3389/fmicb.2024.1302822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/08/2024] [Indexed: 02/15/2024] Open
Abstract
Background Accumulating evidence suggests that alterations in gut microbiota composition are associated with the hidradenitis suppurativa (HS). However, the causal association between gut microbiota and HS remain undetermined. Methods We performed a bidirectional two-sample Mendelian randomization (MR) analysis using genome-wide association study summary data of gut microbiota and hidradenitis suppurativa from the MiBioGen consortium which concluded 18,340 individuals analyzed by the MiBioGen Consortium, comprising 211 gut microbiota. HS data were acquired from strictly defined HS data collected by FinnGenbiobank analysis, which included 211,548 European ancestors (409 HS patients, 211,139 controls). The inverse variance weighted method (IVW), weighted median (WME), simple model, weighted model, weighted median, and MR-Egger were used to determine the changes of HS pathogenic bacterial taxa, followed by sensitivity analysis including horizontal pleiotropy analysis. The MR Steiger test evaluated the strength of a causal association and the leave-one-out method assessed the reliability of the results. Additionally, a reverse MR analysis was carried out to seek for possible reverse causality. Results By combining the findings of all the MR steps, we identified four causal bacterial taxa, namely, Family XI, Porphyromonadaceae, Clostridium innocuum group and Lachnospira. The risk of HS might be positively associated with a high relative abundance of Clostridium innocuum group (Odds ratio, OR 2.17, p = 0.00038) and Lachnospira (OR 2.45, p = 0.017) but negatively associated with Family XI (OR 0.67, p = 0.049) and Porphyromonadaceae (OR 0.29, p = 0.014). There were no noticeable outliers, horizontal pleiotropy, or heterogeneity. Furthermore, there was no proof of reverse causation found in the reverse MR study. Conclusion This study indicates that Clostridium innocuum group and Lachnospira might have anti-protective effect on HS, whereas Family XI and Porphyromonadaceae might have a protective effect on HS. Our study reveals that there exists a beneficial or detrimental causal effect of gut microbiota composition on HS and offers potentially beneficial methods for therapy and avoidance of HS.
Collapse
Affiliation(s)
- Chengling Liu
- Center of Burns and Plastic Surgery and Dermatology, The 924th Hospital of Joint Logistics Support Force of the PLA, Guilin, China
| | - Xingchen Liu
- Department of Pathology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xin Li
- Center of Burns and Plastic Surgery and Dermatology, The 924th Hospital of Joint Logistics Support Force of the PLA, Guilin, China
| |
Collapse
|
5
|
Marchi PH, Vendramini THA, Zafalon RVA, Príncipe LDA, Cesar CGL, Perini MP, Putarov TC, Gomes COMS, Balieiro JCDC, Brunetto MA. Effects of Increasing Levels of Purified Beta-1,3/1,6-Glucans on the Fecal Microbiome, Digestibility, and Immunity Variables of Healthy Adult Dogs. Microorganisms 2024; 12:113. [PMID: 38257940 PMCID: PMC10818568 DOI: 10.3390/microorganisms12010113] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024] Open
Abstract
Yeast-purified beta-1,3/1,6-glucans (BG) can modulate dogs' immune systems and microbiome, but the optimal inclusion dose remains unknown. The aim of the study was to evaluate the effects of 0.0, 0.07, 0.14, and 0.28% inclusion of BG in a dry extruded diet on the digestibility, immunity, and fecal microbiota of healthy adult dogs. Eight male and female border collies [n = 4; body condition score (BCS) = 5] and English cocker spaniels (n = 4; BCS = 5), aged 3.5 ± 0.5 years, were randomly distributed into two 4 × 4 balanced Latin squares. Fecal microbiota (using 16S rRNA sequencing, Illumina®), apparent digestibility coefficients (ADC) of nutrients, fecal concentrations of short-chain fatty acids (SCFA) and branched-chain fatty acids (BCFA), ammoniacal nitrogen, lactic acid, IgA and pH, lymphocyte immunophenotyping, intensity and percentage of phagocytosis and oxidative burst were determined. No differences were observed in Faith (p = 0.1414) and Pielou-evenness (p = 0.1151) between treatments, but beta diversity was different between 0.0% and 0.14% BG groups (p = 0.047). Moreover, the Firmicutes phylum was the most abundant in all groups and exhibited the highest relative abundance after the consumption of 0.14% BG, a finding considered beneficial for the canine microbiome. The Erysipelotrichaceae and Ruminococcaceae families, along with the Faecalibacterium and Prevotella genera, considered favorable for their involvement in butyrate production and other metabolites, showed increased abundance after the consumption of 0.14% BG. The potentially pathogenic Proteobacteria phylum displayed lower abundance after the consumption of 0.14% BG. Fecal concentrations of the evaluated compounds and pH did not differ after consumption of the BG at all percentages. Higher crude protein ADC was found after 0.14 and 0.28% BG consumption (p < 0.0001), but no differences were found for other nutrients. Phagocytosis, oxidative burst, and lymphocyte populations were not modulated by any of the treatments; however, 0.14% BG modulated the lymphocyte T CD4+:CD8+ ratio (p = 0.0368), an important marker of immune system efficiency. The inclusion of 0.14% BG resulted in the best responses and was the best dose evaluated.
Collapse
Affiliation(s)
- Pedro Henrique Marchi
- Pet Nutrology Research Center, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Pirassununga 13635-000, Brazil; (P.H.M.); (R.V.A.Z.); (L.d.A.P.); (C.G.L.C.); (M.P.P.); (J.C.d.C.B.)
| | - Thiago Henrique Annibale Vendramini
- Pet Nutrology Research Center, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Pirassununga 13635-000, Brazil; (P.H.M.); (R.V.A.Z.); (L.d.A.P.); (C.G.L.C.); (M.P.P.); (J.C.d.C.B.)
| | - Rafael Vessecchi Amorim Zafalon
- Pet Nutrology Research Center, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Pirassununga 13635-000, Brazil; (P.H.M.); (R.V.A.Z.); (L.d.A.P.); (C.G.L.C.); (M.P.P.); (J.C.d.C.B.)
| | - Leonardo de Andrade Príncipe
- Pet Nutrology Research Center, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Pirassununga 13635-000, Brazil; (P.H.M.); (R.V.A.Z.); (L.d.A.P.); (C.G.L.C.); (M.P.P.); (J.C.d.C.B.)
| | - Cinthia Gonçalves Lenz Cesar
- Pet Nutrology Research Center, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Pirassununga 13635-000, Brazil; (P.H.M.); (R.V.A.Z.); (L.d.A.P.); (C.G.L.C.); (M.P.P.); (J.C.d.C.B.)
| | - Mariana Pamplona Perini
- Pet Nutrology Research Center, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Pirassununga 13635-000, Brazil; (P.H.M.); (R.V.A.Z.); (L.d.A.P.); (C.G.L.C.); (M.P.P.); (J.C.d.C.B.)
| | | | | | - Júlio Cesar de Carvalho Balieiro
- Pet Nutrology Research Center, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Pirassununga 13635-000, Brazil; (P.H.M.); (R.V.A.Z.); (L.d.A.P.); (C.G.L.C.); (M.P.P.); (J.C.d.C.B.)
| | - Marcio Antonio Brunetto
- Pet Nutrology Research Center, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Pirassununga 13635-000, Brazil; (P.H.M.); (R.V.A.Z.); (L.d.A.P.); (C.G.L.C.); (M.P.P.); (J.C.d.C.B.)
| |
Collapse
|
6
|
Jennings A, Kühn T, Bondonno NP, Waniek S, Bang C, Franke A, Kassubek J, Müller HP, Both M, Weber KS, Lieb W, Cassidy A. The gut microbiome modulates associations between adherence to a Mediterranean-style diet, abdominal adiposity, and C-reactive protein in population-level analysis. Am J Clin Nutr 2024; 119:136-144. [PMID: 37926191 PMCID: PMC10808821 DOI: 10.1016/j.ajcnut.2023.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/19/2023] [Accepted: 11/02/2023] [Indexed: 11/07/2023] Open
Abstract
BACKGROUND Adherence to a Mediterranean-style dietary pattern is likely to have variable effects on body composition, but the impact of gut microbiome on this relationship is unknown. OBJECTIVES To examine the potential mediating effect of the gut microbiome on the associations between Alternate Mediterranean Diet (aMed) scores, abdominal adiposity, and inflammation in population-level analysis. DESIGN In a community-based sample aged 25 to 83 y (n = 620; 41% female) from Northern Germany, we assessed the role of the gut microbiome, sequenced from 16S rRNA genes, on the associations between aMed scores, estimated using validated food-frequency questionnaires, magnetic resonance imaging-determined visceral (VAT) and subcutaneous (SAT) adipose tissue and C-reactive protein (CRP). RESULTS Higher aMed scores were associated with lower SAT (-0.86 L (95% CI: -1.56, -0.17), P = 0.01), VAT (-0.65 L (95% CI: -1.03,-0.27), P = 0.01) and CRP concentrations (-0.35 mg/L; β: -20.1% (95% CI: 35.5, -1.09), P = 0.04) in the highest versus lowest tertile after multivariate adjustment. Of the taxa significantly associated with aMed scores, higher abundance of Porphyromonadaceae mediated 11.6%, 9.3%, and 8.7% of the associations with lower SAT, VAT, and CRP, respectively. Conversely, a lower abundance of Peptostreptococcaceae mediated 13.1% and 18.2% of the association with SAT and CRP levels. Of the individual components of the aMed score, moderate alcohol intake was associated with lower VAT (-0.2 (95% CI: -0.4, -0.1), P =0.01) with a higher abundance of Oxalobacteraceae and lower abundance of Burkholderiaceae explaining 8.3% and 9.6% of this association, respectively. CONCLUSION These novel data suggest that abundance of specific taxa in the Porphyromonadaceae and Peptostreptococcaceae families may contribute to the association between aMed scores, lower abdominal adipose tissue, and inflammation.
Collapse
Affiliation(s)
- Amy Jennings
- Institute for Global Food Security, Queen's University Belfast, Northern Ireland
| | - Tilman Kühn
- Institute for Global Food Security, Queen's University Belfast, Northern Ireland; Heidelberg Institute of Global Health (HIGH), Faculty of Medicine and University Hospital, Heidelberg, Germany
| | - Nicola P Bondonno
- Institute for Nutrition Research, School of Medical and Health Sciences, Edith Cowan University, Perth, Australia; The Danish Cancer Society Research Centre, Copenhagen, Denmark
| | - Sabina Waniek
- Institute of Epidemiology and Biobank PopGen, University Hospital Schleswig-Holstein, Campus Kiel and Kiel University, Kiel Germany
| | - Corinna Bang
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Jan Kassubek
- Department of Neurology, University of Ulm, Ulm, Germany
| | | | - Marcus Both
- Department of Radiology and Neuroradiology, University Hospital of Schleswig-Holstein, Arnold-Heller-Straße 3, 24105, Kiel, Germany
| | - Katharina S Weber
- Institute of Epidemiology and Biobank PopGen, University Hospital Schleswig-Holstein, Campus Kiel and Kiel University, Kiel Germany
| | - Wolfgang Lieb
- Institute of Epidemiology and Biobank PopGen, University Hospital Schleswig-Holstein, Campus Kiel and Kiel University, Kiel Germany
| | - Aedín Cassidy
- Institute for Global Food Security, Queen's University Belfast, Northern Ireland.
| |
Collapse
|
7
|
Ren Y, Wu J, Wang Y, Zhang L, Ren J, Zhang Z, Chen B, Zhang K, Zhu B, Liu W, Li S, Li X. Lifestyle patterns influence the composition of the gut microbiome in a healthy Chinese population. Sci Rep 2023; 13:14425. [PMID: 37660184 PMCID: PMC10475076 DOI: 10.1038/s41598-023-41532-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023] Open
Abstract
High-throughput sequencing allows for the comprehensive analysis of the human intestinal microbiota. However, extensive association analyses between the microbiome and lifestyle differences in the Chinese population are limited. Here, we carried out an independent cohort study-the Chinese Healthy Gut Project (n = 483)-where correlations between the gut microbiota and dietary and lifestyle variables in a healthy Chinese population are defined. We collected both questionnaire data, including basic information and lifestyle and dietary variables, and fecal stools from the enrolled volunteers. We then performed 16S rRNA sequencing on the microbial DNA isolated from the stools to assess the composition of the intestinal microbiota. We found that Prevotella and Bacteroides were the most abundant genera in the healthy Chinese gut microbiome. Additionally, 9 out of 29 clinical and questionnaire-based phenotype covariates were found to be associated with the variation in the composition of the gut microbiota. Among these lifestyle phenotypes, sleep procrastination, negative mood, and drinking habits had the largest effect size. Additionally, an appreciable effect of urbanization was observed, resulting in decreased intra-individual diversity, increased inter-individual diversity, and an increased abundance of the Bacteroides enterotype. The results of this study provide a foundation for assessing the healthy Chinese gut microbiota community structure at baseline in a healthy Chinese population. Furthermore, this study also provides insights into understanding how distinctive living habits influence the relationships between the Chinese gut microbiome and systemic health state.
Collapse
Affiliation(s)
- Yi Ren
- Coyote Bioscience (Beijing) Co., Ltd., Beijing, China
| | - Jiawei Wu
- Coyote Bioscience (Beijing) Co., Ltd., Beijing, China
| | - Yilin Wang
- Coyote Bioscience (Beijing) Co., Ltd., Beijing, China
| | - Lanying Zhang
- Coyote Diagnostics Lab (Beijing) Co., Ltd., Beijing, China
| | - Jing Ren
- Coyote Bioscience (Beijing) Co., Ltd., Beijing, China
| | - Zhiming Zhang
- Coyote Bioscience (Beijing) Co., Ltd., Beijing, China
| | - Binghan Chen
- Coyote Bioscience (Beijing) Co., Ltd., Beijing, China
| | - Kejian Zhang
- Coyote Bioscience (Beijing) Co., Ltd., Beijing, China
| | - Baoli Zhu
- Coyote Bioscience (Beijing) Co., Ltd., Beijing, China
| | - Wei Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.
| | - Sabrina Li
- Coyote Bioscience (Beijing) Co., Ltd., Beijing, China.
- Coyote Diagnostics Lab (Beijing) Co., Ltd., Beijing, China.
| | - Xu Li
- Coyote Bioscience (Beijing) Co., Ltd., Beijing, China.
| |
Collapse
|
8
|
Montenegro J, Armet AM, Willing BP, Deehan EC, Fassini PG, Mota JF, Walter J, Prado CM. Exploring the Influence of Gut Microbiome on Energy Metabolism in Humans. Adv Nutr 2023; 14:840-857. [PMID: 37031749 PMCID: PMC10334151 DOI: 10.1016/j.advnut.2023.03.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 03/13/2023] [Accepted: 03/30/2023] [Indexed: 04/11/2023] Open
Abstract
The gut microbiome has a profound influence on host physiology, including energy metabolism, which is the process by which energy from nutrients is transformed into other forms of energy to be used by the body. However, mechanistic evidence for how the microbiome influences energy metabolism is derived from animal models. In this narrative review, we included human studies investigating the relationship between gut microbiome and energy metabolism -i.e., energy expenditure in humans and energy harvest by the gut microbiome. Studies have found no consistent gut microbiome patterns associated with energy metabolism, and most interventions were not effective in modulating the gut microbiome to influence energy metabolism. To date, cause-and-effect relationships and mechanistic evidence on the impact of the gut microbiome on energy expenditure have not been established in humans. Future longitudinal observational studies and randomized controlled trials utilizing robust methodologies and advanced statistical analysis are needed. Such knowledge would potentially inform the design of therapeutic avenues and specific dietary recommendations to improve energy metabolism through gut microbiome modulation.
Collapse
Affiliation(s)
- Julia Montenegro
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Anissa M Armet
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Benjamin P Willing
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Edward C Deehan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada; Department of Food Science and Technology, University of Nebraska, Lincoln, Nebraska, United States; Nebraska Food for Health Center, University of Nebraska, Lincoln, Nebraska, United States
| | - Priscila G Fassini
- Department of Internal Medicine, Division of Nutrology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - João F Mota
- School of Nutrition, Federal University of Goiás, Goiânia, Goiás, Brazil; APC Microbiome Ireland, School of Microbiology, and Department of Medicine, University College Cork - National University of Ireland, Cork, Ireland
| | - Jens Walter
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada; APC Microbiome Ireland, School of Microbiology, and Department of Medicine, University College Cork - National University of Ireland, Cork, Ireland.
| | - Carla M Prado
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
9
|
Kunst C, Schmid S, Michalski M, Tümen D, Buttenschön J, Müller M, Gülow K. The Influence of Gut Microbiota on Oxidative Stress and the Immune System. Biomedicines 2023; 11:biomedicines11051388. [PMID: 37239059 DOI: 10.3390/biomedicines11051388] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
The human gastrointestinal tract is home to a complex microbial community that plays an important role in the general well-being of the entire organism. The gut microbiota generates a variety of metabolites and thereby regulates many biological processes, such as the regulation of the immune system. In the gut, bacteria are in direct contact with the host. The major challenge here is to prevent unwanted inflammatory reactions on one hand and on the other hand to ensure that the immune system can be activated when pathogens invade. Here the REDOX equilibrium is of utmost importance. This REDOX equilibrium is controlled by the microbiota either directly or indirectly via bacterial-derived metabolites. A balanced microbiome sorts for a stable REDOX balance, whereas dysbiosis destabilizes this equilibrium. An imbalanced REDOX status directly affects the immune system by disrupting intracellular signaling and promoting inflammatory responses. Here we (i) focus on the most common reactive oxygen species (ROS) and (ii) define the transition from a balanced REDOX state to oxidative stress. Further, we (iii) describe the role of ROS in regulating the immune system and inflammatory responses. Thereafter, we (iv) examine the influence of microbiota on REDOX homeostasis and how shifts in pro- and anti-oxidative cellular conditions can suppress or promote immune responses or inflammation.
Collapse
Affiliation(s)
- Claudia Kunst
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Bavaria, Germany
| | - Stephan Schmid
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Bavaria, Germany
| | - Marlen Michalski
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Bavaria, Germany
| | - Deniz Tümen
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Bavaria, Germany
| | - Jonas Buttenschön
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Bavaria, Germany
| | - Martina Müller
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Bavaria, Germany
| | - Karsten Gülow
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Bavaria, Germany
| |
Collapse
|
10
|
Bifidobacterium lactis Probio-M8 improves bone metabolism in patients with postmenopausal osteoporosis, possibly by modulating the gut microbiota. Eur J Nutr 2023; 62:965-976. [PMID: 36334119 DOI: 10.1007/s00394-022-03042-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 10/20/2022] [Indexed: 11/08/2022]
Abstract
PURPOSE Postmenopausal osteoporosis (PMO) is usually managed by conventional drug treatment. However, prolonged use of these drugs cause side effects. Gut microbiota may be a potential target for treatment of PMO. This work was a three-month intervention trial aiming to evaluate the added effect of probiotics as adjunctive treatment for PMO. METHODS Forty patients with PMO were randomized into probiotic (n = 20; received Bifidobacterium animalis subsp. lactis Probio-M8 [Probio-M8], calcium, calcitriol) and placebo (n = 20; received placebo material, calcium, calcitriol) groups. The bone mineral density of patients was measured at month 0 (0 M; baseline) and month 3 (3 M; after three-month intervention). Blood and fecal samples were collected 0 M and 3 M. Only 15 and 12 patients from Probio-M8 and placebo groups, respectively, provided complete fecal samples for gut microbiota analysis. RESULTS No significant change was observed in the bone mineral density of patients at 3 M. Co-administering Probio-M8 improved the bone metabolism, reflected by an increased vitamin D3 level and decreased PTH and procalcitonin levels in serum at 3 M. Fecal metagenomic analysis revealed modest changes in the gut microbiome in both groups at 3 M. Interestingly, Probio-M8 co-administration affected the gut microbial interactive correlation network, particularly the short-chain fatty acid-producing bacteria. Probio-M8 co-administration significantly increased genes encoding some carbohydrate metabolism pathways (including ABC transporters, the phosphotransferase system, and fructose and mannose metabolism) and a choline-phosphate cytidylyltransferase. CONCLUSIONS Co-administering Probio-M8 with conventional drugs/supplements was more efficacious than conventional drugs/supplements alone in managing PMO. Our study shed insights into the beneficial mechanism of probiotic adjunctive treatment. REGISTRATION NUMBER OF CLINICAL TRIAL Chinese Clinical Trial Registry (identifier number: ChiCTR1800019268).
Collapse
|
11
|
Kuo YJ, Chen CJ, Hussain B, Tsai HC, Hsu GJ, Chen JS, Asif A, Fan CW, Hsu BM. Inferring Bacterial Community Interactions and Functionalities Associated with Osteopenia and Osteoporosis in Taiwanese Postmenopausal Women. Microorganisms 2023; 11:234. [PMID: 36838199 PMCID: PMC9959971 DOI: 10.3390/microorganisms11020234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/30/2022] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Growing evidence suggests that the gut microbiota and their metabolites are associated with bone homeostasis and fragility. However, this association is limited to microbial taxonomic differences. This study aimed to explore whether gut bacterial community associations, composition, and functions are associated with osteopenia and osteoporosis. We compared the gut bacterial community composition and interactions of healthy postmenopausal women with normal bone density (n = 8) with those of postmenopausal women with osteopenia (n = 18) and osteoporosis (n = 21) through 16S rRNA sequencing coupled with network biology and statistical analyses. The results of this study showed reduced alpha diversity in patients with osteoporosis, followed by that in patients with osteopenia, then in healthy controls. Taxonomic analysis revealed that significantly enriched bacterial genera with higher abundance was observed in patients with osteoporosis and osteopenia than in healthy subjects. Additionally, a co-occurrence network revealed that, compared to healthy controls, bacterial interactions were higher in patients with osteoporosis, followed by those with osteopenia. Further, NetShift analysis showed that a higher number of bacteria drove changes in the microbial community structure of patients with osteoporosis than osteopenia. Correlation analysis revealed that most of these driver bacteria had a significant positive relationship with several significant metabolic pathways. Further, ordination analysis revealed that height and T-score were the primary variables influencing the gut microbial community structure. Taken together, this study evaluated that microbial community interaction is more important than the taxonomic differences in knowing the critical role of gut microbiota in postmenopausal women associated with osteopenia and osteoporosis. Additionally, the significantly enriched bacteria and functional pathways might be potential biomarkers for the prognosis and treatment of postmenopausal women with osteopenia and osteoporosis.
Collapse
Affiliation(s)
- Yi-Jie Kuo
- Department of Orthopedic Surgery, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
| | - Chia-Jung Chen
- Department of Chinese Medicine, Dalin Tzu Chi Hospital, The Buddhist Tzu Chi Medical Foundation, Chiayi 622, Taiwan
| | - Bashir Hussain
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi 621, Taiwan
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi 621, Taiwan
| | - Hsin-Chi Tsai
- Department of Psychiatry, School of Medicine, Tzu Chi University, Hualien 970, Taiwan
- Department of Psychiatry, Tzu-Chi General Hospital, Hualien 970, Taiwan
| | - Gwo-Jong Hsu
- Division of Infectious Disease, Department of Internal Medicine, Chia-Yi Christian Hospital, Chiayi 621, Taiwan
| | - Jung-Sheng Chen
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung 824, Taiwan
| | - Aslia Asif
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi 621, Taiwan
- Doctoral Program in Science, Technology, Environment and Mathematics, National Chung Cheng University, Chiayi 621, Taiwan
| | - Cheng-Wei Fan
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi 621, Taiwan
| | - Bing-Mu Hsu
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi 621, Taiwan
| |
Collapse
|
12
|
Jiang CY, Cai WQ, Shang S, Miao XQ, Dong XP, Zhou DY, Jiang PF. Comparative analysis of the flavor profile and microbial diversity of high white salmon (coregonus peled) caviar at different storage temperatures. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
13
|
Magrì S, Demurtas M, Onidi MF, Picchio M, Elisei W, Marzo M, Miculan F, Manca R, Dore MP, Quarta Colosso BM, Cicu A, Cugia L, Carta M, Binaghi L, Usai P, Lai M, Chicco F, Fantini MC, Armuzzi A, Mocci G. Clinical and epidemiological features of ulcerative colitis patients in Sardinia, Italy: Results from a multicenter study. World J Clin Cases 2022; 10:10921-10930. [PMID: 36338227 PMCID: PMC9631144 DOI: 10.12998/wjcc.v10.i30.10921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/06/2021] [Accepted: 08/22/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND There are little data on the epidemiological and clinical features of adult patients with ulcerative colitis (UC) in the different Italian regions, mainly derived from the absence of a national registry. This prevents correct interpretation of the disease burden.
AIM To assess the main clinical and epidemiological features of adult patients diagnosed with UC in Sardinia, Italy.
METHODS We performed a multicenter, observational, cross-sectional study that included adult patients with UC enrolled in seven gastroenterology unit centers in Sardinia. Data were obtained from the patients’ medical records and from a questionnaire administered at the inclusion visit.
RESULTS Four hundred and forty-two patients with UC were included. The median age at diagnosis was 39 years (interquartile range 28-48). After a median disease duration of 10 years, 53 patients experienced proximal extension of proctitis or left-sided colitis. Seventy-five patients developed extraintestinal manifestations. Nineteen patients (4.3%) developed cancer: two with colorectal cancer and seventeen with extracolonic cancers. Mesalazine (5-ASA) remains the mainstay of treatment for UC. Overall, 95 patients (21.5%) were treated with one or more biologic agents, whereas 15 patients (3.4%) underwent surgery, mostly colectomy.
CONCLUSION Our results provide important insights into the clinical and epidemiological features of patients with UC, and while waiting for a national Italian registry, present eligible data on the UC population in Sardinia.
Collapse
Affiliation(s)
- Salvatore Magrì
- Department of Medical Sciences and Public Health, University of Cagliari, Monserrato 09042, Italy
- Endoscopy Unit, Humanitas Istituto Clinico Catanese, Catania 95045, Italy
| | - Mauro Demurtas
- Endoscopy Unit, San Martino Hospital, Oristano 09170, Italy
| | | | - Marcello Picchio
- Division of General Surgery, Ospedale Civile P Colombo, Velletri 00049, Italy
| | - Walter Elisei
- Gastroenterology Unit, San Camillo Forlanini Hospital, Rome 00152, Italy
| | - Manuela Marzo
- Internal Medicine and Gastroenterology Department, Cardinale Panico Hospital, Tricase 73039, Italy
| | - Federica Miculan
- Department of Surgery, San Martino Hospital, Oristano 09170, Italy
| | - Roberto Manca
- Division of Gastroenterology, Santissima Trinità Hospital, Cagliari 09121, Italy
| | - Maria Pina Dore
- Dipartimento di Medicina Clinica e Sperimentale, University of Sassari, Sassari 07100, Italy
| | | | - Antonio Cicu
- Unit of Gastroenterology, ASL Sassari, Sassari 07100, Italy
| | - Luigi Cugia
- Gastroenterology Unit, Santissima Annunziata Hospital, Sassari 07100, Italy
| | - Monica Carta
- Gastroenterology Unit, Santissima Annunziata Hospital, Sassari 07100, Italy
| | - Laura Binaghi
- Gastroenterology Unit, Brotzu Hospital, Cagliari 09121, Italy
| | - Paolo Usai
- Medical Science and Public Health, University of Cagliari, Cagliari 09042, Italy
| | - Mariantonia Lai
- Medical Sciences and Public health, Presidio Policlinico of Monserrato, Cagliari, Monserrato 09042, Cagliari, Italy
| | - Fabio Chicco
- Medical Science and Public Health, University of Cagliari, Cagliari 09042, Italy
| | | | | | - Giammarco Mocci
- Gastroenterology Unit, Brotzu Hospital, Cagliari 09121, Italy
| |
Collapse
|
14
|
Kaliannan K, Donnell SO, Murphy K, Stanton C, Kang C, Wang B, Li XY, Bhan AK, Kang JX. Decreased Tissue Omega-6/Omega-3 Fatty Acid Ratio Prevents Chemotherapy-Induced Gastrointestinal Toxicity Associated with Alterations of Gut Microbiome. Int J Mol Sci 2022; 23:5332. [PMID: 35628140 PMCID: PMC9140600 DOI: 10.3390/ijms23105332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/02/2022] [Accepted: 05/06/2022] [Indexed: 02/04/2023] Open
Abstract
Gastrointestinal toxicity (GIT) is a debilitating side effect of Irinotecan (CPT-11) and limits its clinical utility. Gut dysbiosis has been shown to mediate this side effect of CPT-11 by increasing gut bacterial β-glucuronidase (GUSB) activity and impairing the intestinal mucosal barrier (IMB). We have recently shown the opposing effects of omega-6 (n-6) and omega-3 (n-3) polyunsaturated fatty acids (PUFA) on the gut microbiome. We hypothesized that elevated levels of tissue n-3 PUFA with a decreased n-6/n-3 PUFA ratio would reduce CPT-11-induced GIT and associated changes in the gut microbiome. Using a unique transgenic mouse (FAT-1) model combined with dietary supplementation experiments, we demonstrate that an elevated tissue n-3 PUFA status with a decreased n-6/n-3 PUFA ratio significantly reduces CPT-11-induced weight loss, bloody diarrhea, gut pathological changes, and mortality. Gut microbiome analysis by 16S rRNA gene sequencing and QIIME2 revealed that improvements in GIT were associated with the reduction in the CPT-11-induced increase in both GUSB-producing bacteria (e.g., Enterobacteriaceae) and GUSB enzyme activity, decrease in IMB-maintaining bacteria (e.g., Bifidobacterium), IMB dysfunction and systemic endotoxemia. These results uncover a host-microbiome interaction approach to the management of drug-induced gut toxicity. The prevention of CPT-11-induced gut microbiome changes by decreasing the tissue n-6/n-3 PUFA ratio could be a novel strategy to prevent chemotherapy-induced GIT.
Collapse
Affiliation(s)
- Kanakaraju Kaliannan
- Laboratory for Lipid Medicine and Technology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA; (K.K.); (B.W.); (X.-Y.L.)
| | - Shane O. Donnell
- School of Microbiology, University College Cork, T12 K8AF Cork, Ireland; (S.O.D.); (C.S.)
- Teagasc Moorepark Food Research Centre, Fermoy, P61 C996 Co. Cork, Ireland
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland;
| | - Kiera Murphy
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland;
| | - Catherine Stanton
- School of Microbiology, University College Cork, T12 K8AF Cork, Ireland; (S.O.D.); (C.S.)
- Teagasc Moorepark Food Research Centre, Fermoy, P61 C996 Co. Cork, Ireland
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland;
| | - Chao Kang
- Department of Nutrition, The General Hospital of Western Theater Command, Chengdu 610000, China;
| | - Bin Wang
- Laboratory for Lipid Medicine and Technology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA; (K.K.); (B.W.); (X.-Y.L.)
| | - Xiang-Yong Li
- Laboratory for Lipid Medicine and Technology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA; (K.K.); (B.W.); (X.-Y.L.)
| | - Atul K. Bhan
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA;
| | - Jing X. Kang
- Laboratory for Lipid Medicine and Technology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA; (K.K.); (B.W.); (X.-Y.L.)
| |
Collapse
|
15
|
Vetuschi A, Battista N, Pompili S, Cappariello A, Prete R, Taticchi A, Selvaggini R, Latella G G, Corsetti A, Sferra R. The antiinflammatory and antifibrotic effect of olive phenols and Lactiplantibacillus plantarum IMC513 in dextran sodium sulfate-induced chronic colitis. Nutrition 2022; 94:111511. [PMID: 34813981 DOI: 10.1016/j.nut.2021.111511] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 09/17/2021] [Accepted: 10/03/2021] [Indexed: 12/19/2022]
Abstract
OBJECTIVES After a chronic intestinal injury, several intestinal cells switch their phenotype to activated myofibroblasts, which in turn release an abnormal amount of extracellular matrix proteins, leading to the onset of the fibrotic process. To date, no resolutive pharmacological treatments are available, and the identification of new therapeutic approaches represents a crucial goal to achieve. The onset, maintenance, and progression of inflammatory bowel disease are related to abnormal intestinal immune responses to environmental factors, including diet and intestinal microflora components. This study aimed to evaluate the potential antiinflammatory and antifibrotic effect of a biologically debittered olive cream and its probiotic oral administration in an experimental model of dextran sodium sulfate (DSS)-induced chronic colitis. METHODS Chronic colitis was induced in mice by three cycles of oral administration of 2.5% DSS (5 d of DSS followed by 7 d of tap water). Mice were randomly divided into five groups: 10 control mice fed with standard diet (SD), 20 mice receiving SD and DSS (SD+DSS), 20 mice receiving an enriched diet (ED) with olive cream and DSS (ED+DSS), 20 mice receiving SD plus probiotics (PB; Lactiplantibacillus plantarum IMC513) and DSS (SD+PB+DSS), and 20 mice receiving ED plus PB and DSS (ED+ PB+DSS). Clinical features and large bowel macroscopic, histologic, and immunohistochemical findings were evaluated. RESULTS The simultaneous administration of ED and PB induced a significant reduction in macroscopic and microscopic colitis scores compared with the other DSS-treated groups. In addition, ED and PB led to a significant decrease in the expression of inflammatory cytokines and profibrotic molecules. CONCLUSIONS The concomitant oral administration of a diet enriched with biologically debittered olive cream and a specific probiotic strain (Lactiplantibacillus plantarum IMC513) can exert synergistic antiinflammatory and antifibrotic action in DSS-induced chronic colitis. Further studies are needed to define the cellular and molecular mechanisms modulated by olive cream compounds and by Lactiplantibacillus plantarum IMC513.
Collapse
Affiliation(s)
- Antonella Vetuschi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Natalia Battista
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Simona Pompili
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.
| | - Alfredo Cappariello
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Roberta Prete
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Agnese Taticchi
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Roberto Selvaggini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Giovanni Latella G
- Department of Life, Health and Environmental Sciences-Gastroenterology, Hepatology and Nutrition Division, University of L'Aquila, L'Aquila, Italy
| | - Aldo Corsetti
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Roberta Sferra
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
16
|
Kumar S, D'Souza RN, Corno M, Ullrich MS, Kuhnert N, Hütt MT. Cocoa bean fingerprinting via correlation networks. NPJ Sci Food 2022; 6:5. [PMID: 35075143 PMCID: PMC8786884 DOI: 10.1038/s41538-021-00120-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 12/06/2021] [Indexed: 11/09/2022] Open
Abstract
Cocoa products have a remarkable chemical and sensory complexity. However, in contrast to other fermentation processes in the food industry, cocoa bean fermentation is left essentially uncontrolled and is devoid of standardization. Questions of food authenticity and food quality are hence particularly challenging for cocoa. Here we provide an illustration how network science can support food fingerprinting and food authenticity research. Using a large dataset of 140 cocoa samples comprising three cocoa fermentation/processing stages and eight countries, we obtain correlation networks between the cocoa samples by computing measures of pairwise correlation from their liquid chromatography-mass spectrometry (LC-MS) profiles. We find that the topology of correlation networks derived from untargeted LC-MS profiles is indicative of the fermentation and processing stage as well as the origin country of cocoa samples. Progressively increasing the correlation threshold firstly reveals network clusters based on processing stage and later country-based clusters. We present both, qualitative and quantitative evidence through network visualization, network statistics and concepts from machine learning. In our view, this network-based approach for classifying mass spectrometry data has broad applicability beyond cocoa.
Collapse
Affiliation(s)
- Santhust Kumar
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, 28759, Bremen, Germany.
| | - Roy N D'Souza
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, 28759, Bremen, Germany
| | - Marcello Corno
- Barry Callebaut AG, Westpark, Pfingstweidstrasse 60, Zurich, 8005, Switzerland
| | - Matthias S Ullrich
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, 28759, Bremen, Germany
| | - Nikolai Kuhnert
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, 28759, Bremen, Germany
| | - Marc-Thorsten Hütt
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, 28759, Bremen, Germany.
| |
Collapse
|
17
|
Zhong R, Chen L, Liu Y, Xie S, Li S, Liu B, Zhao C. Anti-diabetic effect of aloin via JNK-IRS1/PI3K pathways and regulation of gut microbiota. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.07.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
18
|
Singh R, Dutta A, Bose T, Mande SS. A compendium of predicted growths and derived symbiotic relationships between 803 gut microbes in 13 different diets. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100127. [PMID: 35909605 PMCID: PMC9325735 DOI: 10.1016/j.crmicr.2022.100127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 03/11/2022] [Accepted: 03/20/2022] [Indexed: 11/30/2022] Open
Abstract
Simulated growth of 803 gut microbes in mono- and co-cultures in 13 distinct diets. Inferred symbiotic relationships and metabolic co-operation among gut microbes. Diet-based variations in metabolic co-operation among gut microbes. Validation of in silico findings against existing literature evidence.
Gut health is intimately linked to dietary habits and the microbial community (microbiota) that flourishes within. The delicate dependency of the latter on nutritional availability is also strongly influenced by interactions (such as, parasitic or mutualistic) between the resident microbes, often affecting their growth rate and ability to produce key metabolites. Since, cultivating the entire repertoire of gut microbes is a challenging task, metabolic models (genome-based metabolic reconstructions) could be employed to predict their growth patterns and interactions. Here, we have used 803 gut microbial metabolic models from the Virtual Metabolic Human repository, and subsequently optimized and simulated them to grow on 13 dietary compositions. The presented pairwise interaction data (https://osf.io/ay8bq/) and the associated bacterial growth rates are expected to be useful for (a) deducing microbial association patterns, (b) diet-based inference of personalised gut profiles, and (c) as a steppingstone for studying multi-species metabolic interactions.
Collapse
|
19
|
Saccharomyces cerevisiae Dehydrated Culture Modulates Fecal Microbiota and Improves Innate Immunity of Adult Dogs. FERMENTATION 2021. [DOI: 10.3390/fermentation8010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Saccharomyces cerevisiae yeast culture can be dehydrated, and it has a potential prebiotic effect. This study evaluated the effects of supplementing increasing levels of dehydrated yeast culture (DYC) of Saccharomyces cerevisiae (Original XPC™, Diamond V, Cedar Rapids, IA, USA) on fecal microbiota, nutrient digestibility, and fermentative and immunological parameters of healthy adult dogs. Eighteen adult male and female dogs with a mean body weight of 15.8 ± 7.37 kg were randomly assigned to three experimental treatments: CD (control diet), DYC 0.3 (control diet with 0.3% DYC) and DYC 0.6 (control diet with 0.6% DYC). After 21 days of acclimation, fecal samples were collected for analysis of nutrient digestibility, microbiota and fecal fermentation products. On the last day, the blood samples were collected for the analysis of immunological parameters. The microbiome profile was assessed by the Illumina sequencing method, which allowed identifying the population of each bacterial phylum and genus. The statistical analyses were performed using the SAS software and the Tukey test for multiple comparison (p < 0.05). Our results suggest that the addition of DYC increased the percentage of the phyla Actinobacteria and Firmicutes (p = 0.0048 and p < 0.0001, respectively) and reduced that of the phylum Fusobacteria (p = 0.0008). Regardless of the inclusion level, the yeast addition promoted reduction of the genera Allobaculum and Fusobacterium (p = 0.0265 and p = 0.0006, respectively) and increased (p = 0.0059) that of the genus Clostridium. At the highest prebiotic inclusion level (DYC 0.6), an increase (p = 0.0052) in the genus Collinsella and decrease (p = 0.0003) in Prevotella were observed. Besides that, the inclusion of the additive improved the apparent digestibility of the crude fiber and decreased the digestibility of crude protein, nitrogen-free extract and metabolizable energy (p < 0.05). There were no significant changes in the production of volatile organic compounds. However, an increase in propionate production was observed (p = 0.05). In addition, the inclusion of yeast resulted in an increased phagocytosis index in both treatments (p = 0.01). The addition of 0.3 and 0.6% DYC to the diet of dogs wase able to modulate the proportions of some phyla and genera in healthy dogs, in addition to yielding changes in nutrient digestibility, fermentative products and immunity in healthy adult dogs, indicating that this additive can modulate fecal microbiota and be included in dog nutrition.
Collapse
|
20
|
Ashrafian F, Keshavarz Azizi Raftar S, Lari A, Shahryari A, Abdollahiyan S, Moradi HR, Masoumi M, Davari M, Khatami S, Omrani MD, Vaziri F, Masotti A, Siadat SD. Extracellular vesicles and pasteurized cells derived from Akkermansia muciniphila protect against high-fat induced obesity in mice. Microb Cell Fact 2021; 20:219. [PMID: 34863163 PMCID: PMC8645101 DOI: 10.1186/s12934-021-01709-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/16/2021] [Indexed: 12/15/2022] Open
Abstract
Background Several studies have shown that probiotics have beneficial effects on weight control and metabolic health. In addition to probiotics, recent studies have investigated the effects of paraprobiotics and postbiotics. Therefore, we evaluated the preventive effects of live and pasteurized Akkermansia muciniphila MucT (A. muciniphila) and its extracellular vesicles (EVs) on HFD-induced obesity. Results The results showed that body weight, metabolic tissues weight, food consumption, and plasma metabolic parameters were increased in the HFD group, whereas A. muciniphila preventive treatments inhibited these HFD. The effects of pasteurized A. muciniphila and its extracellular vesicles were more noticeable than its active form. The HFD led to an increase in the colonic, adipose tissue, and liver inflammations and increased the expression of genes involved in lipid metabolism and homeostasis. Nevertheless, these effects were inhibited in mice that were administered A. muciniphila and its EVs. The assessment of the gut microbiota revealed significant differences in the microbiota composition after feeding with HFD. However, all treatments restored the alterations in some bacterial genera and closely resemble the control group. Also, the correlation analysis indicated that some gut microbiota might be associated with obesity-related indices. Conclusions Pasteurized A. muciniphila and its EVs, as paraprobiotic and postbiotic agents, were found to play a key role in the regulation of metabolic functions to prevent obesity, probably by affecting the gut-adipose-liver axis. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01709-w.
Collapse
Affiliation(s)
- Fatemeh Ashrafian
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran.,Clinical Research Department, Pasteur Institute of Iran, Tehran, Iran
| | | | - Arezou Lari
- Systems Biomedicine Unit, Pasteur Institute of Iran, Tehran, Iran
| | - Arefeh Shahryari
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Sara Abdollahiyan
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran.,Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Moradi
- Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Morteza Masoumi
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran.,Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Mehdi Davari
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran.,Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Shohreh Khatami
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | - Mir Davood Omrani
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzam Vaziri
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran.,Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Andrea Masotti
- Research Laboratories, Children's Hospital Bambino Gesù-IRCCS, Rome, Italy
| | - Seyed Davar Siadat
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran. .,Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
21
|
Jiang Z, Li W, Su W, Wen C, Gong T, Zhang Y, Wang Y, Jin M, Lu Z. Protective Effects of Bacillus amyloliquefaciens 40 Against Clostridium perfringens Infection in Mice. Front Nutr 2021; 8:733591. [PMID: 34746206 PMCID: PMC8566672 DOI: 10.3389/fnut.2021.733591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/16/2021] [Indexed: 12/14/2022] Open
Abstract
This study aimed to investigate the protective effects of Bacillus amyloliquefaciens (BA40) against Clostridium perfringens (C. perfringens) infection in mice. Bacillus subtilis PB6 was utilized as a positive control to compare the protective effects of BA40. In general, a total of 24 5-week-old male C57BL/6 mice were randomly divided into four groups, with six mice each. The BA40 and PB6 groups were orally dosed with resuspension bacteria (1 × 109 CFU/ml) once a day, from day 1 to 13, respectively. In the control and infected groups, the mice were orally pre-treated with phosphate-buffered saline (PBS) (200 μl/day). The mice in the infected groups, PB6 + infected group and BA40 + infected group, were orally challenged with C. perfringens type A (1 × 109 CFU/ml) on day 11, whereas the control group was orally dosed with PBS (200 μl/day). The results showed that the BA40 group ameliorated intestinal structure damage caused by the C. perfringens infection. Furthermore, the inflammatory responses detected in the infected groups which include the concentrations of IL-1β, TNF-α, IL-6, and immunoglobulin G (IgG) in the serum and secretory immunoglobulin (SigA) in the colon, and nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) activity in the jejunum, were also alleviated (P < 0.05) by BA40 treatment. Similarly, cytokines were also detected by quantitative PCR (qPCR) in the messenger RNA (mRNA) levels, and the results were consistent with the enzyme-linked immunosorbent assay (ELISA) kits. Additionally, in the infected group, the mRNA expression of Bax and p53 was increasing and the Bcl-2 expression was decreasing, which was reversed by BA40 and PB6 treatment (P < 0.05). Moreover, the intestinal microbiota imbalance induced by the C. perfringens infection was restored by the BA40 pre-treatment, especially by improving the relative abundance of Verrucomicrobiota (P < 0.05) and decreasing the relative abundance of Bacteroidetes (P < 0.05) in the phyla level, and the infected group increased the relative abundance of some pathogens, such as Bacteroides and Staphylococcus (P < 0.05) in the genus level. The gut microbiota alterations in the BA40 group also influenced the metabolic pathways, and the results were also compared. The purine metabolism, 2-oxocarboxylic acid metabolism, and starch and sucrose metabolism were significantly changed (P < 0.05). In conclusion, our results demonstrated that BA40 can effectively protect mice from C. perfringens infection.
Collapse
Affiliation(s)
- Zipeng Jiang
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Molecular Nutrition, Ministry of Education, Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Nutrition and Feed Nutrition of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou, China
| | - Wentao Li
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Molecular Nutrition, Ministry of Education, Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Nutrition and Feed Nutrition of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou, China
| | - Weifa Su
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Molecular Nutrition, Ministry of Education, Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Nutrition and Feed Nutrition of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou, China
| | - Chaoyue Wen
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Molecular Nutrition, Ministry of Education, Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Nutrition and Feed Nutrition of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou, China
| | - Tao Gong
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Molecular Nutrition, Ministry of Education, Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Nutrition and Feed Nutrition of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou, China
| | - Yu Zhang
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Molecular Nutrition, Ministry of Education, Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Nutrition and Feed Nutrition of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou, China
| | - Yizhen Wang
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Molecular Nutrition, Ministry of Education, Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Nutrition and Feed Nutrition of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou, China
| | - Mingliang Jin
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Molecular Nutrition, Ministry of Education, Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Nutrition and Feed Nutrition of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou, China
| | - Zeqing Lu
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Molecular Nutrition, Ministry of Education, Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Nutrition and Feed Nutrition of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
22
|
Ma S, Wang N, Zhang P, Wu W, Fu L. Fecal microbiota transplantation mitigates bone loss by improving gut microbiome composition and gut barrier function in aged rats. PeerJ 2021; 9:e12293. [PMID: 34721980 PMCID: PMC8542369 DOI: 10.7717/peerj.12293] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 09/21/2021] [Indexed: 12/19/2022] Open
Abstract
Background Gut microbiota (GM) dysbiosis is closely related to bone loss and the occurrence of osteoporosis in animals and human. However, little is known about the effect and the mechanisms of fecal microbiota transplantation (FMT) on bone in the treatment of senile osteoporosis. Methods Aged female rats were randomly divided into the FMT group and the control group. 3-month-old female rats were used as fecal donors. The rats were sacrificed at 12 and 24 weeks following transplantation and the serum, intestine, bone, and feces were collected for subsequent analyses. Results The bone turnover markers of osteocalcin, procollagen type 1 N-terminal propeptide (P1NP), and carboxy-terminal peptide (CTX) decreased significantly at 12 and 24 weeks following FMT (P < 0.05). At 12 weeks following transplantation, histomorphometric parameters including the bone volume (BV), trabecular bone volume fraction (BV/TV), trabecular number (Tb.N), and trabecular thickness (Tb.Th) of the FMT group were comparable to the control group. However, at 24 weeks following transplantation, these parameters of the FMT group were significantly higher than those of the control group (P < 0.05). Besides, the GM aggregated at 12 and 24 weeks following FMT, and the ecological distance was close between the rats in the FMT group and the donor rats. Alpha diversity, shown by the Shannon index and Simpson index, and the Firmicutes/Bacteroidetes ratio decreased significantly after FMT at 24 weeks. Furthermore, FMT restored the GM composition in aged rats at the phylum and family level, and the intestinal microbiota of the aged rats was similar to that of the donor rats. Correlation network analysis indirectly suggested the causality of FMT on alleviating osteoporosis. FMT improved the intestinal structure and up-regulated the expression of tight junction proteins of occludin, claudin, and ZO-1, which might be associated with the protective effects of FMT on bone. Conclusions GM transplanted from young rats alleviated bone loss in aged rats with senile osteoporosis by improving gut microbiome composition and intestinal barrier function. These data might provide a scientific basis for future clinical treatment of osteoporosis through FMT.
Collapse
Affiliation(s)
- Sicong Ma
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ning Wang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pu Zhang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen Wu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lingjie Fu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
23
|
van den Brink W, Bloem R, Ananth A, Kanagasabapathi T, Amelink A, Bouwman J, Gelinck G, van Veen S, Boorsma A, Wopereis S. Digital Resilience Biomarkers for Personalized Health Maintenance and Disease Prevention. Front Digit Health 2021; 2:614670. [PMID: 34713076 PMCID: PMC8521930 DOI: 10.3389/fdgth.2020.614670] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/09/2020] [Indexed: 12/26/2022] Open
Abstract
Health maintenance and disease prevention strategies become increasingly prioritized with increasing health and economic burden of chronic, lifestyle-related diseases. A key element in these strategies is the empowerment of individuals to control their health. Self-measurement plays an essential role in achieving such empowerment. Digital measurements have the advantage of being measured non-invasively, passively, continuously, and in a real-world context. An important question is whether such measurement can sensitively measure subtle disbalances in the progression toward disease, as well as the subtle effects of, for example, nutritional improvement. The concept of resilience biomarkers, defined as the dynamic evaluation of the biological response to an external challenge, has been identified as a viable strategy to measure these subtle effects. In this review, we explore the potential of integrating this concept with digital physiological measurements to come to digital resilience biomarkers. Additionally, we discuss the potential of wearable, non-invasive, and continuous measurement of molecular biomarkers. These types of innovative measurements may, in the future, also serve as a digital resilience biomarker to provide even more insight into the personal biological dynamics of an individual. Altogether, digital resilience biomarkers are envisioned to allow for the measurement of subtle effects of health maintenance and disease prevention strategies in a real-world context and thereby give personalized feedback to improve health.
Collapse
Affiliation(s)
- Willem van den Brink
- Department of Microbiology and Systems Biology, Netherlands Organization for Applied Scientific Research (TNO), Zeist, Netherlands
| | - Robbert Bloem
- Department of Environmental Modeling Sensing and Analysis, Netherlands Organization for Applied Scientific Research (TNO), Utrecht, Netherlands
| | - Adithya Ananth
- Department of Optics, Netherlands Organization for Applied Scientific Research (TNO), Delft, Netherlands
| | - Thiru Kanagasabapathi
- Holst Center, Netherlands Organization for Applied Scientific Research (TNO), Eindhoven, Netherlands
| | - Arjen Amelink
- Department of Optics, Netherlands Organization for Applied Scientific Research (TNO), Delft, Netherlands
| | - Jildau Bouwman
- Department of Microbiology and Systems Biology, Netherlands Organization for Applied Scientific Research (TNO), Zeist, Netherlands
| | - Gerwin Gelinck
- Holst Center, Netherlands Organization for Applied Scientific Research (TNO), Eindhoven, Netherlands
| | - Sjaak van Veen
- Department of Environmental Modeling Sensing and Analysis, Netherlands Organization for Applied Scientific Research (TNO), Utrecht, Netherlands
| | - Andre Boorsma
- Department of Microbiology and Systems Biology, Netherlands Organization for Applied Scientific Research (TNO), Zeist, Netherlands
| | - Suzan Wopereis
- Department of Microbiology and Systems Biology, Netherlands Organization for Applied Scientific Research (TNO), Zeist, Netherlands
| |
Collapse
|
24
|
Diks AM, Khatri I, Oosten LE, de Mooij B, Groenland RJ, Teodosio C, Perez-Andres M, Orfao A, Berbers GAM, Zwaginga JJ, van Dongen JJM, Berkowska MA. Highly Sensitive Flow Cytometry Allows Monitoring of Changes in Circulating Immune Cells in Blood After Tdap Booster Vaccination. Front Immunol 2021; 12:666953. [PMID: 34177905 PMCID: PMC8223751 DOI: 10.3389/fimmu.2021.666953] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/17/2021] [Indexed: 12/21/2022] Open
Abstract
Antigen-specific serum immunoglobulin (Ag-specific Ig) levels are broadly used as correlates of protection. However, in several disease and vaccination models these fail to predict immunity. In these models, in-depth knowledge of cellular processes associated with protective versus poor responses may bring added value. We applied high-throughput multicolor flow cytometry to track over-time changes in circulating immune cells in 10 individuals following pertussis booster vaccination (Tdap, Boostrix®, GlaxoSmithKline). Next, we applied correlation network analysis to extensively investigate how changes in individual cell populations correlate with each other and with Ag-specific Ig levels. We further determined the most informative cell subsets and analysis time points for future studies. Expansion and maturation of total IgG1 plasma cells, which peaked at day 7 post-vaccination, was the most prominent cellular change. Although these cells preceded the increase in Ag-specific serum Ig levels, they did not correlate with the increase of Ig levels. In contrast, strong correlation was observed between Ag-specific IgGs and maximum expansion of total IgG1 and IgA1 memory B cells at days 7 to 28. Changes in circulating T cells were limited, implying the need for a more sensitive approach. Early changes in innate immune cells, i.e. expansion of neutrophils, and expansion and maturation of monocytes up to day 5, most likely reflected their responses to local damage and adjuvant. Here we show that simultaneous monitoring of multiple circulating immune subsets in blood by flow cytometry is feasible. B cells seem to be the best candidates for vaccine monitoring.
Collapse
Affiliation(s)
- Annieck M. Diks
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Indu Khatri
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
- Leiden Computational Biology Center, Leiden University Medical Center, Leiden, Netherlands
| | | | - Bas de Mooij
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Rick J. Groenland
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Cristina Teodosio
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Martin Perez-Andres
- Cancer Research Centre (IBMCC, USAL-CSIC; CIBERONC CB16/12/00400), Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Department of Medicine and Cytometry Service (NUCLEUS Research Support Platform), University of Salamanca (USAL), Salamanca, Spain
| | - Alberto Orfao
- Cancer Research Centre (IBMCC, USAL-CSIC; CIBERONC CB16/12/00400), Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Department of Medicine and Cytometry Service (NUCLEUS Research Support Platform), University of Salamanca (USAL), Salamanca, Spain
| | - Guy A. M. Berbers
- Center for Infectious Disease Control, National Institute of Public Health and the Environment, Bilthoven, Netherlands
| | - Jaap Jan Zwaginga
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | | | | |
Collapse
|
25
|
Gong L, Wang B, Zhou Y, Tang L, Zeng Z, Zhang H, Li W. Protective Effects of Lactobacillus plantarum 16 and Paenibacillus polymyxa 10 Against Clostridium perfringens Infection in Broilers. Front Immunol 2021; 11:628374. [PMID: 33679724 PMCID: PMC7930238 DOI: 10.3389/fimmu.2020.628374] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/31/2020] [Indexed: 12/16/2022] Open
Abstract
This study aimed to investigate the protective effects of Lactobacillus plantarum 16 (Lac16) and Paenibacillus polymyxa 10 (BSC10) against Clostridium perfringens (Cp) infection in broilers. A total of 720 one-day-old chicks were randomly divided into four groups. The control and Cp group were only fed a basal diet, while the two treatment groups received basal diets supplemented with Lac16 (1 × 108 cfu·kg-1) and BSC10 (1 × 108 cfu·kg-1) for 21 days, respectively. On day 1 and days 14 to 20, birds except those in the control group were challenged with 1 × 108 cfu C. perfringens type A strain once a day. The results showed that both Lac16 and BSC10 could ameliorate intestinal structure damage caused by C. perfringens infection. C. perfringens infection induced apoptosis by increasing the expression of Bax and p53 and decreasing Bcl-2 expression and inflammation evidence by higher levels of IFN-γ, IL-6, IL-1β, iNOS, and IL-10 in the ileum mucosa, and NO production in jejunal mucosa, which was reversed by Lac16 and BSC10 treatment except for IL-1β (P < 0.05). Besides, the two probiotics restored the intestinal microbiota imbalance induced by C. perfringens infection, characterized by the reduced Firmicutes and Proteobacteria and the increased Bacteroidetes at the phyla level and decreased Bacteroides fragilis and Gallibacterium anatis at the genus level. The two probiotics also reversed metabolic pathways of the microbiota in C. perfringens-infected broilers, including B-vitamin biosynthesis, peptidoglycan biosynthesis, and pyruvate fermentation to acetate and lactate II pathway. In conclusion, Lac16 and BSC10 can effectively protect broilers against C. perfringens infection through improved composition and metabolic pathways of the intestinal microbiota, intestinal structure, inflammation, and anti-apoptosis.
Collapse
Affiliation(s)
- Li Gong
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, College of Animal Sciences, Institute of Feed Science, Zhejiang University, Hangzhou, China.,School of Life Science and Engineering, Foshan University, Foshan, China
| | - Baikui Wang
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, College of Animal Sciences, Institute of Feed Science, Zhejiang University, Hangzhou, China
| | - Yuanhao Zhou
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, College of Animal Sciences, Institute of Feed Science, Zhejiang University, Hangzhou, China
| | - Li Tang
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, College of Animal Sciences, Institute of Feed Science, Zhejiang University, Hangzhou, China
| | - Zihan Zeng
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, College of Animal Sciences, Institute of Feed Science, Zhejiang University, Hangzhou, China
| | - Huihua Zhang
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Weifen Li
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, College of Animal Sciences, Institute of Feed Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
26
|
Microbiota and Diabetes Mellitus: Role of Lipid Mediators. Nutrients 2020; 12:nu12103039. [PMID: 33023000 PMCID: PMC7600362 DOI: 10.3390/nu12103039] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/23/2020] [Accepted: 08/27/2020] [Indexed: 12/13/2022] Open
Abstract
Diabetes Mellitus (DM) is an inflammatory clinical entity with different mechanisms involved in its physiopathology. Among these, the dysfunction of the gut microbiota stands out. Currently, it is understood that lipid products derived from the gut microbiota are capable of interacting with cells from the immune system and have an immunomodulatory effect. In the presence of dysbiosis, the concentration of lipopolysaccharides (LPS) increases, favoring damage to the intestinal barrier. Furthermore, a pro-inflammatory environment prevails, and a state of insulin resistance and hyperglycemia is present. Conversely, during eubiosis, the production of short-chain fatty acids (SCFA) is fundamental for the maintenance of the integrity of the intestinal barrier as well as for immunogenic tolerance and appetite/satiety perception, leading to a protective effect. Additionally, it has been demonstrated that alterations or dysregulation of the gut microbiota can be reversed by modifying the eating habits of the patients or with the administration of prebiotics, probiotics, and symbiotics. Similarly, different studies have demonstrated that drugs like Metformin are capable of modifying the composition of the gut microbiota, promoting changes in the biosynthesis of LPS, and the metabolism of SCFA.
Collapse
|
27
|
Yang P, Tan C, Han M, Cheng L, Cui X, Ning K. Correlation-Centric Network (CCN) representation for microbial co-occurrence patterns: new insights for microbial ecology. NAR Genom Bioinform 2020; 2:lqaa042. [PMID: 33575595 PMCID: PMC7671402 DOI: 10.1093/nargab/lqaa042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 05/29/2020] [Accepted: 06/05/2020] [Indexed: 12/27/2022] Open
Abstract
Mainstream studies of microbial community focused on critical organisms and their physiology. Recent advances in large-scale metagenome analysis projects initiated new researches in the complex correlations between large microbial communities. Specifically, previous studies focused on the nodes (i.e. species) of the Species-Centric Networks (SCNs). However, little was understood about the change of correlation between network members (i.e. edges of the SCNs) when the network was disturbed. Here, we introduced a Correlation-Centric Network (CCN) to the microbial research based on the concept of edge networks. In CCN, each node represented a species-species correlation, and edge represented the species shared by two correlations. In this research, we investigated the CCNs and their corresponding SCNs on two large cohorts of microbiome. The results showed that CCNs not only retained the characteristics of SCNs, but also contained information that cannot be detected by SCNs. In addition, when the members of microbial communities were decreased (i.e. environmental disturbance), the CCNs fluctuated within a small range in terms of network connectivity. Therefore, by highlighting the important species correlations, CCNs could unveil new insights when studying not only the functions of target species, but also the stabilities of their residing microbial communities.
Collapse
Affiliation(s)
- Pengshuo Yang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Chongyang Tan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Maozhen Han
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Lin Cheng
- Department of Engineering, Trinity College, 300 Summit Street, Hartford, CT 06106, USA
| | - Xuefeng Cui
- School of Computer Science and Technology, Shandong University, Qingdao, Shandong 250100, China
| | - Kang Ning
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
28
|
Blanco-Míguez A, Fdez-Riverola F, Sánchez B, Lourenço A. Resources and tools for the high-throughput, multi-omic study of intestinal microbiota. Brief Bioinform 2020; 20:1032-1056. [PMID: 29186315 DOI: 10.1093/bib/bbx156] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/23/2017] [Indexed: 12/18/2022] Open
Abstract
The human gut microbiome impacts several aspects of human health and disease, including digestion, drug metabolism and the propensity to develop various inflammatory, autoimmune and metabolic diseases. Many of the molecular processes that play a role in the activity and dynamics of the microbiota go beyond species and genic composition and thus, their understanding requires advanced bioinformatics support. This article aims to provide an up-to-date view of the resources and software tools that are being developed and used in human gut microbiome research, in particular data integration and systems-level analysis efforts. These efforts demonstrate the power of standardized and reproducible computational workflows for integrating and analysing varied omics data and gaining deeper insights into microbe community structure and function as well as host-microbe interactions.
Collapse
Affiliation(s)
| | | | | | - Anália Lourenço
- Dpto. de Informática - Universidade de Vigo, ESEI - Escuela Superior de Ingeniería Informática, Edificio politécnico, Campus Universitario As Lagoas s/n, 32004 Ourense, Spain
| |
Collapse
|
29
|
Interactions of dietary fat with the gut microbiota: Evaluation of mechanisms and metabolic consequences. Clin Nutr 2020; 39:994-1018. [DOI: 10.1016/j.clnu.2019.05.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/25/2019] [Accepted: 05/01/2019] [Indexed: 12/12/2022]
|
30
|
Chen Z, Xie Y, Zhou F, Zhang B, Wu J, Yang L, Xu S, Stedtfeld R, Chen Q, Liu J, Zhang X, Xu H, Ren J. Featured Gut Microbiomes Associated With the Progression of Chronic Hepatitis B Disease. Front Microbiol 2020; 11:383. [PMID: 32265857 PMCID: PMC7098974 DOI: 10.3389/fmicb.2020.00383] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 02/20/2020] [Indexed: 12/11/2022] Open
Abstract
Dysbiosis of gut microbiota during the progression of HBV-related liver disease is not well understood, as there are very few reports that discuss the featured bacterial taxa in different stages. The aim of this study was to reveal the featured bacterial species whose abundances are directly associated with HBV disease progression, that is, progression from healthy subjects to, chronic HBV infection, chronic hepatitis B to liver cirrhosis. Approximately 400 fecal samples were collected, and 97 samples were subjected to 16S rRNA gene sequencing after age and BMI matching. Compared with the healthy individuals, significant gut microbiota alterations were associated with the progression of liver disease. LEfSe results showed that the HBV infected patients had higher Fusobacteria, Veillonella, and Haemophilus abundance while the healthy individuals had higher levels of Prevotella and Phascolarctobacterium. Indicator analysis revealed that 57 OTUs changed as the disease progressed, and their combination produced an AUC value of 90% (95% CI: 86-94%) between the LC and non-LC groups. In addition, the abundances of OTU51 (Dialister succinatiphilus) and OTU50 (Alistipes onderdonkii) decreased as the disease progressed, and these results were further verified by qPCR. The LC patients had the higher bacterial network complexity, which was accompanied with a lower abundance of potential beneficial bacterial taxa, such as Dialister and Alistipes, while they had a higher abundance of pathogenic species within Actinobacteria. The compositional and network changes in the gut microbiota in varied CHB stages, suggest the potential contributions of gut microbiota in CHB disease progression.
Collapse
Affiliation(s)
- Zhangran Chen
- Department of Gastroenterology, Zhongshan Hospital Xiamen University, Xiamen, China
- Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, China
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Yurou Xie
- Department of Gastroenterology, Zhongshan Hospital Xiamen University, Xiamen, China
- Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, China
| | - Fei Zhou
- Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, China
| | - Bangzhou Zhang
- Department of Gastroenterology, Zhongshan Hospital Xiamen University, Xiamen, China
- Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, China
| | - Jingtong Wu
- Department of Gastroenterology, Zhongshan Hospital Xiamen University, Xiamen, China
- Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, China
| | - Luxi Yang
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Shuangbin Xu
- Fisheries College, Jimei University, Xiamen, China
| | - Robert Stedtfeld
- Civil and Environmental Engineering, Michigan State University, East Lansing, MI, United States
| | - Qiongyun Chen
- Department of Gastroenterology, Zhongshan Hospital Xiamen University, Xiamen, China
- Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, China
| | - Jingjing Liu
- Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, China
| | - Xiang Zhang
- Department of Gastroenterology, Zhongshan Hospital Xiamen University, Xiamen, China
| | - Hongzhi Xu
- Department of Gastroenterology, Zhongshan Hospital Xiamen University, Xiamen, China
- Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, China
| | - Jianlin Ren
- Department of Gastroenterology, Zhongshan Hospital Xiamen University, Xiamen, China
- Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
31
|
Zhu S, Jiang Y, Xu K, Cui M, Ye W, Zhao G, Jin L, Chen X. The progress of gut microbiome research related to brain disorders. J Neuroinflammation 2020; 17:25. [PMID: 31952509 PMCID: PMC6969442 DOI: 10.1186/s12974-020-1705-z] [Citation(s) in RCA: 271] [Impact Index Per Article: 54.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/07/2020] [Indexed: 02/06/2023] Open
Abstract
There is increasing evidence showing that the dynamic changes in the gut microbiota can alter brain physiology and behavior. Cognition was originally thought to be regulated only by the central nervous system. However, it is now becoming clear that many non-nervous system factors, including the gut-resident bacteria of the gastrointestinal tract, regulate and influence cognitive dysfunction as well as the process of neurodegeneration and cerebrovascular diseases. Extrinsic and intrinsic factors including dietary habits can regulate the composition of the microbiota. Microbes release metabolites and microbiota-derived molecules to further trigger host-derived cytokines and inflammation in the central nervous system, which contribute greatly to the pathogenesis of host brain disorders such as pain, depression, anxiety, autism, Alzheimer’s diseases, Parkinson’s disease, and stroke. Change of blood–brain barrier permeability, brain vascular physiology, and brain structure are among the most critical causes of the development of downstream neurological dysfunction. In this review, we will discuss the following parts:
Overview of technical approaches used in gut microbiome studies Microbiota and immunity Gut microbiota and metabolites Microbiota-induced blood–brain barrier dysfunction Neuropsychiatric diseases
■ Stress and depression ■ Pain and migraine ■ Autism spectrum disorders
Neurodegenerative diseases
■ Parkinson’s disease ■ Alzheimer’s disease ■ Amyotrophic lateral sclerosis ■ Multiple sclerosis
Cerebrovascular disease
■ Atherosclerosis ■ Stroke ■ Arteriovenous malformation
Conclusions and perspectives
Collapse
Affiliation(s)
- Sibo Zhu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Fudan University Taizhou Institute of Health Sciences, Taizhou, China.,Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
| | - Yanfeng Jiang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Fudan University Taizhou Institute of Health Sciences, Taizhou, China
| | - Kelin Xu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Fudan University Taizhou Institute of Health Sciences, Taizhou, China.,School of Data Science, Fudan University, Shanghai, China
| | - Mei Cui
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Weimin Ye
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Genming Zhao
- School of Data Science, Fudan University, Shanghai, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Fudan University Taizhou Institute of Health Sciences, Taizhou, China.,Human Phenome Institute, Fudan University, 825 Zhangheng Road, Shanghai, 201203, China
| | - Xingdong Chen
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China. .,Fudan University Taizhou Institute of Health Sciences, Taizhou, China. .,Human Phenome Institute, Fudan University, 825 Zhangheng Road, Shanghai, 201203, China.
| |
Collapse
|
32
|
Djuric Z, Bassis CM, Plegue MA, Sen A, Turgeon DK, Herman K, Young VB, Brenner DE, Ruffin MT. Increases in Colonic Bacterial Diversity after ω-3 Fatty Acid Supplementation Predict Decreased Colonic Prostaglandin E2 Concentrations in Healthy Adults. J Nutr 2019; 149:1170-1179. [PMID: 31051496 PMCID: PMC6602899 DOI: 10.1093/jn/nxy255] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/01/2018] [Accepted: 09/10/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The intestinal microbiome is an important determinant of inflammatory balance in the colon that may affect response to dietary agents. OBJECTIVE This is a secondary analysis of a clinical trial, the Fish Oil Study, to determine whether interindividual differences in colonic bacteria are associated with variability in the reduction of colonic prostaglandin E2 (PGE2) concentrations after personalized supplementation with ω-3 (n-3) fatty acids. METHODS Forty-seven healthy adults (17 men, 30 women, ages 26-75 y) provided biopsy samples of colonic mucosa and luminal stool brushings before and after personalized ω-3 fatty acid supplementation that was based on blood fatty acid responses. Samples were analyzed using 16S ribosomal RNA sequencing. The data analyses focused on changes in bacterial community diversity. Linear regression was used to evaluate factors that predict a reduction in colonic PGE2. RESULTS At baseline, increased bacterial diversity, as measured by the Shannon and Inverse Simpson indexes in both biopsy and luminal brushing samples, was positively correlated with dietary fiber intakes and negatively correlated with fat intakes. Dietary supplementation with ω-3 fatty acids increased the Yue and Clayton community dis-similarity index between the microbiome in luminal brushings and colon biopsy samples post-supplementation (P = 0.015). In addition, there was a small group of individuals with relatively high Prevotella abundance who were resistant to the anti-inflammatory effects of ω-3 fatty acid supplementation. In linear regression analyses, increases in diversity of the bacteria in the luminal brushing samples, but not in the biopsy samples, were significant predictors of lower colonic PGE2 concentrations post-supplementation in models that included baseline PGE2, baseline body mass index, and changes in colonic eicosapentaenoic acid-to-arachidonic acid ratios. The changes in bacterial diversity contributed to 6-8% of the interindividual variance in change in colonic PGE2 (P = 0.001). CONCLUSIONS Dietary supplementation with ω-3 fatty acids had little effect on intestinal bacteria in healthy humans; however, an increase in diversity in the luminal brushings significantly predicted reductions in colonic PGE2. This trial was registered at www.clinicaltrials.gov as NCT01860352.
Collapse
Affiliation(s)
- Zora Djuric
- Departments of Family Medicine
- Nutritional Sciences
| | | | | | - Ananda Sen
- Departments of Family Medicine
- Biostatistics
| | | | | | | | - Dean E Brenner
- Internal Medicine
- Pharmacology, University of Michigan, Ann Arbor, MI
| | - Mack T Ruffin
- Family and Community Medicine, Penn State Health, Milton S Hershey Medical Center, Hershey, PA
| |
Collapse
|
33
|
Anti-diabetic activity of PUFAs-rich extracts of Chlorella pyrenoidosa and Spirulina platensis in rats. Food Chem Toxicol 2019; 128:233-239. [DOI: 10.1016/j.fct.2019.04.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 12/14/2022]
|
34
|
Zhang HH, Liu J, Lv YJ, Jiang YL, Pan JX, Zhu YJ, Huang MG, Zhang SK. Changes in Intestinal Microbiota of Type 2 Diabetes in Mice in Response to Dietary Supplementation With Instant Tea or Matcha. Can J Diabetes 2019; 44:44-52. [PMID: 31378691 DOI: 10.1016/j.jcjd.2019.04.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/28/2019] [Accepted: 04/30/2019] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Gut microbiota plays a key role in metabolism and health in diabetes patients with gastrointestinal microbiota dysbiosis. Thus, regulating the ecological balance of gut microbiota may provide a pathway toward improvement for these patients. Our previous study showed that functional ingredients in tea may inhibit cornstarch digestion in vitro. METHODS A cornstarch-tea diet was developed, and in this study we investigated the effects of such a diet on blood glucose and gut microbiota in diabetic mice. RESULTS Diabetes resulted in significant weight loss, hyperphagia and hyperglycemia. 16S rDNA sequencing revealed that in diabetes there is significantly increased Bacteroidaceae, Helicobacteraceae, Ruminococcaceae, Enterobacteriaceae, Rikenellaceae and Saccharibacteria_genera_incertae_sedis, and significantly decreased Lactobacillaceae, Prevotellaceae, Coriobacteriaceae, Verrucomicrobiaceae and Bifidobacteriaceae. The cornstarch‒tea diet resulted in a trend toward reduced blood glucose, with particularly increased levels of Coriobacteriaceae, Lactobacillaceae, Prevotellaceae and Bifidobacteriaceae, and decreased Bacteroidaceae, Ruminococcaceae, Helicobacteraceae and Enterobacteriaceae. CONCLUSIONS Instant tea and matcha supplementation had beneficial effects on regulation of blood glucose and gut microbiota, reversing the changes in microbiota caused by alloxan injection. The cornstarch‒tea regulation pathway is involved in bacterium group regulation rather than single-species regulation, which suggests that cornstarch combined with tea may be used as a functional food supplement for diabetes patients.
Collapse
Affiliation(s)
- Hai-Hua Zhang
- Hangzhou Tea Research Institute, CHINA COOP, Zhejiang Key Laboratory of Transboundary Applied Technology for Tea Resources, Hangzhou, China
| | - Jun Liu
- Hangzhou Tea Research Institute, CHINA COOP, Zhejiang Key Laboratory of Transboundary Applied Technology for Tea Resources, Hangzhou, China
| | - Yang-Jun Lv
- Hangzhou Tea Research Institute, CHINA COOP, Zhejiang Key Laboratory of Transboundary Applied Technology for Tea Resources, Hangzhou, China
| | - Yu-Lan Jiang
- Hangzhou Tea Research Institute, CHINA COOP, Zhejiang Key Laboratory of Transboundary Applied Technology for Tea Resources, Hangzhou, China
| | - Jun-Xian Pan
- Hangzhou Tea Research Institute, CHINA COOP, Zhejiang Key Laboratory of Transboundary Applied Technology for Tea Resources, Hangzhou, China
| | - Yue-Jin Zhu
- Hangzhou Tea Research Institute, CHINA COOP, Zhejiang Key Laboratory of Transboundary Applied Technology for Tea Resources, Hangzhou, China
| | - Mei-Gui Huang
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, China
| | - Shi-Kang Zhang
- Hangzhou Tea Research Institute, CHINA COOP, Zhejiang Key Laboratory of Transboundary Applied Technology for Tea Resources, Hangzhou, China.
| |
Collapse
|
35
|
An O(n) method of calculating Kendall correlations of spike trains. PLoS One 2019; 14:e0212190. [PMID: 30763350 PMCID: PMC6375604 DOI: 10.1371/journal.pone.0212190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 01/29/2019] [Indexed: 11/28/2022] Open
Abstract
The ability to record from increasingly large numbers of neurons, and the increasing attention being paid to large scale neural network simulations, demands computationally fast algorithms to compute relevant statistical measures. We present an O(n) algorithm for calculating the Kendall correlation of spike trains, a correlation measure that is becoming especially recognized as an important tool in neuroscience. We show that our method is around 50 times faster than the O (n ln n) method which is a current standard for quickly computing the Kendall correlation. In addition to providing a faster algorithm, we emphasize the role that taking the specific nature of spike trains had on reducing the run time. We imagine that there are many other useful algorithms that can be even more significantly sped up when taking this into consideration. A MATLAB function executing the method described here has been made freely available on-line.
Collapse
|
36
|
Yao Q, Yang H, Wang X, Wang H. Effects of hexavalent chromium on intestinal histology and microbiota in Bufo gargarizans tadpoles. CHEMOSPHERE 2019; 216:313-323. [PMID: 30384300 DOI: 10.1016/j.chemosphere.2018.10.147] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/19/2018] [Accepted: 10/20/2018] [Indexed: 06/08/2023]
Abstract
Chromium is detrimental heavy metal pollutants and can enter and affect aquatic organisms. In our experiment, B. gargarizans embryos were chronically exposed in different concentrations of Cr (VI) (0, 13, 104, and 416 μg Cr6+ L-1) until reached Gosner stage 38. We measured morphological parameters of the body and intestine of B. gargarizans tadpoles, and examined alteration of intestinal tissue. Furthermore, we analyzed the intestinal microbial community of B. gargarizans tadpoles using 16S rRNA gene amplicon sequencing. Our research demonstrated that Cr (VI) exposure caused alteration of intestinal tissue structure in 416 μg Cr6+ L-1 treatment groups. Total body length, body wet weight, intestinal length and wet weight of B. gargarizans tadpoles were significantly declined at 416 μg Cr6+ L-1. In addition, 16S rRNA gene sequencing revealed that Cr (VI) exposure significantly altered the intestinal microbiota diversity and composition, and perturbed the community structure of the microbiota. As for the intestinal microbiota, at the phylum level, Fusobacteria significantly changed in all Cr (VI) treated groups. Saccharibacteria and TM6_Dependentiae were detected only in the high dose exposure groups. At the genus level, Aeromonas was significantly decreased in Cr (VI) treated groups. According to the results of functional prediction, Cr (VI) exposure affected metabolism and increased risk of disease by inducing the alterations of intestinal microbiota structure. Taken together, the present study provide a new framework elucidating the toxic effects Cr (VI) exposure on B. gargarizans tadpoles associated with intestinal histology and microbiota.
Collapse
Affiliation(s)
- Qiong Yao
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Hongyu Yang
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Xianchan Wang
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Hongyuan Wang
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China.
| |
Collapse
|
37
|
Reddavide R, Rotolo O, Caruso MG, Stasi E, Notarnicola M, Miraglia C, Nouvenne A, Meschi T, De' Angelis GL, Di Mario F, Leandro G. The role of diet in the prevention and treatment of Inflammatory Bowel Diseases. ACTA BIO-MEDICA : ATENEI PARMENSIS 2018; 89:60-75. [PMID: 30561397 PMCID: PMC6502201 DOI: 10.23750/abm.v89i9-s.7952] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Indexed: 02/06/2023]
Abstract
Inflammatory bowel diseases (IBD) - Crohn's disease (CD) and ulcerative colitis (UC) - are chronic conditions characterised by relapsing inflammation of the gastrointestinal tract. They represent an increasing public health concern and an aetiological enigma due to unknown causal factors. The current knowledge on the pathogenesis of IBD is that genetically susceptible individuals develop intolerance to a dysregulated gut microflora (dysbiosis) and chronic inflammation develops as a result of environmental triggers. Among the environmental factors associated with IBD, diet plays an important role in modulating the gut microbiome, and, consequently, it could have a therapeutic impact on the disease course. An overabundance of calories and some macronutrients typical of the Western dietetic pattern increase gut inflammation, whereas several micronutrients characteristic of the Mediterranean Diet have the potential to modulate gut inflammation, according to recent evidence. Immunonutrition has emerged as a new concept putting forward the role of vitamins such as vitamins A, C, E, and D, folic acid, beta carotene and trace elements such as zinc, selenium, manganese and iron. However, when assessed in clinical trials, specific micronutrients showed a limited benefit. Further research is required to evaluate the role of individual food compounds and complex nutritional interventions with the potential to decrease inflammation as a means of prevention and management of IBD. The current dietary recommendations for disease prevention and management are scarce and non evidence-based. This review summarizes the current knowledge on the complex interaction between diet, microbiome and immune-modulation in IBD, with particular focus to the role of the Mediterranean Diet as a tool for prevention and treatment of the disease.
Collapse
Affiliation(s)
- Rosa Reddavide
- National Institute of Gastroenterology "S. De Bellis" Research Hospital, Castellana Grotte, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Sun X, Gao Y, Wang X, Hu G, Wang Y, Feng B, Hu Y, Mu X, Zhang Y, Dong H. Escherichia coli O 101-induced diarrhea develops gut microbial dysbiosis in rats. Exp Ther Med 2018; 17:824-834. [PMID: 30651869 DOI: 10.3892/etm.2018.6997] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 07/06/2018] [Indexed: 12/15/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC)-induced diarrhea is a devastating disease and one of the third leading causes of infectious disease-associated mortalities worldwide. Despite recent advances in the identification of the association between gut microbiota and diarrhea, a lack of understanding exists on the status of gut microbiota in rats treated with ETEC. In the present study, a rat model of Escherichia (E.) coli O101-induced diarrhea was established. The diarrhea incidence and index, as well as histological changes, were assessed. In addition, Illumina MiSeq sequencing of V3-V4 hypervariable regions of 16S ribosomal RNA was employed to investigate the changes in the gut microbiota profiles in the feces of the diarrhea rats. The results indicated that E. coli O101 increased the diarrhea index and injury in the intestinal tissues, whereas it decreased the bacterial richness and shifted the distribution pattern of the bacterial communities in the phylum, order and genus levels in the fecal samples. Notably, the proportion of bacteria Prevotella, Enterococcus and Akkermansia was significantly decreased, while the pathogenic bacteria Escherichia/Shigella were significantly increased in diarrhea rats. Taken together, the gut microbiota is closely associated with E. coli O101-induced diarrhea in lower microbial diversity and dysbiosis of gut microbiota at different taxonomical levels.
Collapse
Affiliation(s)
- Xiangwan Sun
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing 102206, P.R. China
| | - Ying Gao
- Department of Biology, Tennessee Center for Botanical Medicine Research, Middle Tennessee State University, Murfreesboro, TN 37132-0001, USA
| | - Xin Wang
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing 102206, P.R. China
| | - Ge Hu
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing 102206, P.R. China
| | - Yun Wang
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing 102206, P.R. China
| | - Bo Feng
- College of Veterinary Medicine, China Agricultural University, Beijing 100083, P.R. China
| | - Yanxin Hu
- College of Veterinary Medicine, China Agricultural University, Beijing 100083, P.R. China
| | - Xiang Mu
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing 102206, P.R. China
| | - Ying Zhang
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Hong Dong
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing 102206, P.R. China
| |
Collapse
|
39
|
Kaliannan K, Robertson RC, Murphy K, Stanton C, Kang C, Wang B, Hao L, Bhan AK, Kang JX. Estrogen-mediated gut microbiome alterations influence sexual dimorphism in metabolic syndrome in mice. MICROBIOME 2018; 6:205. [PMID: 30424806 PMCID: PMC6234624 DOI: 10.1186/s40168-018-0587-0] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 10/30/2018] [Indexed: 05/17/2023]
Abstract
BACKGROUND Understanding the mechanism of the sexual dimorphism in susceptibility to obesity and metabolic syndrome (MS) is important for the development of effective interventions for MS. RESULTS Here we show that gut microbiome mediates the preventive effect of estrogen (17β-estradiol) on metabolic endotoxemia (ME) and low-grade chronic inflammation (LGCI), the underlying causes of MS and chronic diseases. The characteristic profiles of gut microbiome observed in female and 17β-estradiol-treated male and ovariectomized mice, such as decreased Proteobacteria and lipopolysaccharide biosynthesis, were associated with a lower susceptibility to ME, LGCI, and MS in these animals. Interestingly, fecal microbiota-transplant from male mice transferred the MS phenotype to female mice, while antibiotic treatment eliminated the sexual dimorphism in MS, suggesting a causative role of the gut microbiome in this condition. Moreover, estrogenic compounds such as isoflavones exerted microbiome-modulating effects similar to those of 17β-estradiol and reversed symptoms of MS in the male mice. Finally, both expression and activity of intestinal alkaline phosphatase (IAP), a gut microbiota-modifying non-classical anti-microbial peptide, were upregulated by 17β-estradiol and isoflavones, whereas inhibition of IAP induced ME and LGCI in female mice, indicating a critical role of IAP in mediating the effects of estrogen on these parameters. CONCLUSIONS In summary, we have identified a previously uncharacterized microbiome-based mechanism that sheds light upon sexual dimorphism in the incidence of MS and that suggests novel therapeutic targets and strategies for the management of obesity and MS in males and postmenopausal women.
Collapse
Affiliation(s)
- Kanakaraju Kaliannan
- Laboratory of Lipid Medicine and Technology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, 149 -13th Street, Boston, MA 02129 USA
| | - Ruairi C. Robertson
- School of Microbiology, University College Cork, Cork, Ireland
- Teagasc Moorepark Food Research Centre, Fermoy, Co., Cork, Ireland
- APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Kiera Murphy
- School of Microbiology, University College Cork, Cork, Ireland
| | - Catherine Stanton
- School of Microbiology, University College Cork, Cork, Ireland
- Teagasc Moorepark Food Research Centre, Fermoy, Co., Cork, Ireland
- APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Chao Kang
- Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing Key Laboratory of Nutrition and Food Safety, Chongqing Medical Nutrition Research Center, Chongqing, People’s Republic of China
| | - Bin Wang
- Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing Key Laboratory of Nutrition and Food Safety, Chongqing Medical Nutrition Research Center, Chongqing, People’s Republic of China
| | - Lei Hao
- Laboratory of Lipid Medicine and Technology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, 149 -13th Street, Boston, MA 02129 USA
| | - Atul K. Bhan
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114 USA
| | - Jing X. Kang
- Laboratory of Lipid Medicine and Technology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, 149 -13th Street, Boston, MA 02129 USA
| |
Collapse
|
40
|
Qian L, Gao R, Hong L, Pan C, Li H, Huang J, Qin H. Association analysis of dietary habits with gut microbiota of a native Chinese community. Exp Ther Med 2018; 16:856-866. [PMID: 30112040 PMCID: PMC6090428 DOI: 10.3892/etm.2018.6249] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 05/22/2018] [Indexed: 12/17/2022] Open
Abstract
Environmental exposure, including a high-fat diet (HFD), contributes to the high prevalence of colorectal cancer by changing the composition of the intestinal microbiota. However, data examining the interaction between dietary habits and intestinal microbiota of the Chinese population is sparse. We assessed dietary habits using a food frequency questionnaire (FFQ) in native Chinese community volunteers. Based on the dietary fat content determined using the FFQ, the volunteers were divided into HFD group (≥40% of dietary calories came from fat) or low-fat diet (LFD) group (<40%). Fecal and colonic mucosal microbiota composition was determined using 16S rDNA based methods. In stool matter of HFD group, Prevotella and Abiotrophia showed significantly higher abundance, whereas unclassified genus of S24-7 (family level) of Bacteroidetes, Gemmiger, Akkermansia and Rothia were less abundant. On colonic mucosal tissue testing, unclassified genus of S24-7 showed significantly higher abundance while Bacteroides, Coprobacter, Abiotrophia, and Asteroleplasma were less abundant in HFD group. A high fat and low fiber diet in a native Chinese community may partially contribute to changes of intestinal microbiota composition that may potentially favor the onset and progression of gastrointestinal disorders including inflammatory, hyperplastic and neoplastic diseases.
Collapse
Affiliation(s)
- Leimin Qian
- Department of General Surgery, The Affiliated Shanghai No. 10 People's Hospital of Nanjing Medical University, Shanghai 200072, P.R. China
- Department of Gastrointestinal Surgery, Jiangyin People's Hospital, Jiangyin, Jiangsu 214400, P.R. China
| | - Renyuan Gao
- The Tenth People's Hospital Affiliated to Tongji University, Shanghai 200072, P.R. China
- Research Institute of Intestinal Diseases, School of Medicine Tongji University, Shanghai 200092, P.R. China
| | - Leiming Hong
- The Tenth People's Hospital Affiliated to Tongji University, Shanghai 200072, P.R. China
- Research Institute of Intestinal Diseases, School of Medicine Tongji University, Shanghai 200092, P.R. China
| | - Cheng Pan
- The Tenth People's Hospital Affiliated to Tongji University, Shanghai 200072, P.R. China
- Research Institute of Intestinal Diseases, School of Medicine Tongji University, Shanghai 200092, P.R. China
| | - Hao Li
- The Tenth People's Hospital Affiliated to Tongji University, Shanghai 200072, P.R. China
- Research Institute of Intestinal Diseases, School of Medicine Tongji University, Shanghai 200092, P.R. China
| | - Jianming Huang
- Department of Gastrointestinal Surgery, Jiangyin People's Hospital, Jiangyin, Jiangsu 214400, P.R. China
| | - Huanlong Qin
- Department of General Surgery, The Affiliated Shanghai No. 10 People's Hospital of Nanjing Medical University, Shanghai 200072, P.R. China
- The Tenth People's Hospital Affiliated to Tongji University, Shanghai 200072, P.R. China
- Research Institute of Intestinal Diseases, School of Medicine Tongji University, Shanghai 200092, P.R. China
- Correspondence to: Dr Huanlong Qin, Department of General Surgery, The Affiliated Shanghai No. 10 People's Hospital of Nanjing Medical University, 301 Yanchang Middle Road, Zhabei, Shanghai 200072, P.R. China, E-mail:
| |
Collapse
|
41
|
Gamage HKAH, Tetu SG, Chong RWW, Bucio-Noble D, Rosewarne CP, Kautto L, Ball MS, Molloy MP, Packer NH, Paulsen IT. Fiber Supplements Derived From Sugarcane Stem, Wheat Dextrin and Psyllium Husk Have Different In Vitro Effects on the Human Gut Microbiota. Front Microbiol 2018; 9:1618. [PMID: 30072976 PMCID: PMC6060387 DOI: 10.3389/fmicb.2018.01618] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 06/28/2018] [Indexed: 12/12/2022] Open
Abstract
There is growing public interest in the use of fiber supplements as a way of increasing dietary fiber intake and potentially improving the gut microbiota composition and digestive health. However, currently there is limited research into the effects of commercially available fiber supplements on the gut microbiota. Here we used an in vitro human digestive and gut microbiota model system to investigate the effect of three commercial fiber products; NutriKane™, Benefiber® and Psyllium husk (Macro) on the adult gut microbiota. The 16S rRNA gene amplicon sequencing results showed dramatic fiber-dependent changes in the gut microbiota structure and composition. Specific bacterial OTUs within the families Bacteroidaceae, Porphyromonadaceae, Ruminococcaceae, Lachnospiraceae, and Bifidobacteriaceae showed an increase in the relative abundances in the presence of one or more fiber product(s), while Enterobacteriaceae and Pseudomonadaceae showed a reduction in the relative abundances upon addition of all fiber treatments compared to the no added fiber control. Fiber-specific increases in SCFA concentrations showed correlation with the relative abundance of potential SCFA-producing gut bacteria. The chemical composition, antioxidant potential and polyphenolic content profiles of each fiber product were determined and found to be highly variable. Observed product-specific variations could be linked to differences in the chemical composition of the fiber products. The general nature of the fiber-dependent impact was relatively consistent across the individuals, which may demonstrate the potential of the products to alter the gut microbiota in a similar, and predictable direction, despite variability in the starting composition of the individual gut microbiota.
Collapse
Affiliation(s)
- Hasinika K. A. H. Gamage
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
- Australian Research Council Industrial Transformation Training Centre for Molecular Technologies in the Food Industry, Macquarie University, Sydney, NSW, Australia
| | - Sasha G. Tetu
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Raymond W. W. Chong
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
- Australian Research Council Industrial Transformation Training Centre for Molecular Technologies in the Food Industry, Macquarie University, Sydney, NSW, Australia
| | - Daniel Bucio-Noble
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
- Australian Research Council Industrial Transformation Training Centre for Molecular Technologies in the Food Industry, Macquarie University, Sydney, NSW, Australia
| | - Carly P. Rosewarne
- Commonwealth Scientific and Industrial Research Organisation, Sydney, NSW, Australia
| | - Liisa Kautto
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
- Australian Research Council Industrial Transformation Training Centre for Molecular Technologies in the Food Industry, Macquarie University, Sydney, NSW, Australia
| | | | - Mark P. Molloy
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
- Australian Research Council Industrial Transformation Training Centre for Molecular Technologies in the Food Industry, Macquarie University, Sydney, NSW, Australia
| | - Nicolle H. Packer
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
- Australian Research Council Industrial Transformation Training Centre for Molecular Technologies in the Food Industry, Macquarie University, Sydney, NSW, Australia
| | - Ian T. Paulsen
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
- Australian Research Council Industrial Transformation Training Centre for Molecular Technologies in the Food Industry, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
42
|
Zonulin level, a marker of intestinal permeability, is increased in association with liver enzymes in young adolescents. Clin Chim Acta 2018; 481:218-224. [DOI: 10.1016/j.cca.2018.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 09/09/2017] [Accepted: 03/10/2018] [Indexed: 02/06/2023]
|
43
|
Botschuijver S, Welting O, Levin E, Maria-Ferreira D, Koch E, Montijn RC, Seppen J, Hakvoort TBM, Schuren FHJ, de Jonge WJ, van den Wijngaard RM. Reversal of visceral hypersensitivity in rat by Menthacarin ® , a proprietary combination of essential oils from peppermint and caraway, coincides with mycobiome modulation. Neurogastroenterol Motil 2018; 30:e13299. [PMID: 29383802 DOI: 10.1111/nmo.13299] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 01/04/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Irritable bowel syndrome (IBS) is a common gastrointestinal disorder associated with altered gastrointestinal microflora and increased nociception to colonic distension. This visceral hypersensitivity can be reversed in our rat maternal separation model by fungicides. Menthacarin® is a proprietary combination of essential oils from Mentha x piperita L. and Carum carvi. Because these oils exhibit antifungal and antibacterial properties, we investigated whether Menthacarin® can reverse existing visceral hypersensitivity in maternally separated rats. METHODS In non-handled and maternally separated rats, we used the visceromotor responses to colorectal distension as measure for visceral sensitivity. We evaluated this response before and 24 hours after water-avoidance stress and after 7 days treatment with Menthacarin® or control. The pre- and post-treatment mycobiome and microbiome were characterized by sequencing of fungal internal transcribed spacer 1 (ITS-1) and bacterial 16s rDNA regions. In vitro antifungal and antimicrobial properties of Menthacarin® were studied with radial diffusion assay. KEY RESULTS Menthacarin® inhibited in vitro growth of yeast and bacteria. Water-avoidance caused visceral hypersensitivity in maternally separated rats, and this was reversed by treatment. Multivariate analyses of ITS-1 and 16S high throughput data showed that maternal separation, induced changes in the myco- and microbiome. Menthacarin® treatment of non-handled and maternally separated rats shifted the mycobiomes to more similar compositions. CONCLUSIONS & INFERENCES The development of visceral hypersensitivity in maternally separated rats and the Menthacarin® -mediated reversal of hypersensitivity is associated with changes in the mycobiome. Therefore, Menthacarin® may be a safe and effective treatment option that should be tested for IBS.
Collapse
Affiliation(s)
- S Botschuijver
- Department of Gastroenterology and Hepatology, Academic Medical Center, Tytgat Institute for Liver and Intestinal Research, Amsterdam, The Netherlands
| | - O Welting
- Department of Gastroenterology and Hepatology, Academic Medical Center, Tytgat Institute for Liver and Intestinal Research, Amsterdam, The Netherlands
| | - E Levin
- Department of Experimental Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands.,Horaizon BV, Rotterdam, The Netherlands
| | - D Maria-Ferreira
- Department of Gastroenterology and Hepatology, Academic Medical Center, Tytgat Institute for Liver and Intestinal Research, Amsterdam, The Netherlands.,Departamento de Farmacologia, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, PR, Brazil.,Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - E Koch
- Dr. Willmar Schwabe Pharmaceuticals, Karlsruhe, Germany
| | - R C Montijn
- Microbiology and Systems Biology, The Netherlands Organization for Applied Scientific Research (TNO), Zeist, The Netherlands
| | - J Seppen
- Department of Gastroenterology and Hepatology, Academic Medical Center, Tytgat Institute for Liver and Intestinal Research, Amsterdam, The Netherlands
| | - T B M Hakvoort
- Department of Gastroenterology and Hepatology, Academic Medical Center, Tytgat Institute for Liver and Intestinal Research, Amsterdam, The Netherlands
| | - F H J Schuren
- Microbiology and Systems Biology, The Netherlands Organization for Applied Scientific Research (TNO), Zeist, The Netherlands
| | - W J de Jonge
- Department of Gastroenterology and Hepatology, Academic Medical Center, Tytgat Institute for Liver and Intestinal Research, Amsterdam, The Netherlands
| | - R M van den Wijngaard
- Department of Gastroenterology and Hepatology, Academic Medical Center, Tytgat Institute for Liver and Intestinal Research, Amsterdam, The Netherlands
| |
Collapse
|
44
|
Robertson RC, Kaliannan K, Strain CR, Ross RP, Stanton C, Kang JX. Maternal omega-3 fatty acids regulate offspring obesity through persistent modulation of gut microbiota. MICROBIOME 2018; 6:95. [PMID: 29793531 PMCID: PMC5968592 DOI: 10.1186/s40168-018-0476-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 05/06/2018] [Indexed: 05/16/2023]
Abstract
BACKGROUND The early-life gut microbiota plays a critical role in host metabolism in later life. However, little is known about how the fatty acid profile of the maternal diet during gestation and lactation influences the development of the offspring gut microbiota and subsequent metabolic health outcomes. RESULTS Here, using a unique transgenic model, we report that maternal endogenous n-3 polyunsaturated fatty acid (PUFA) production during gestation or lactation significantly reduces weight gain and markers of metabolic disruption in male murine offspring fed a high-fat diet. However, maternal fatty acid status appeared to have no significant effect on weight gain in female offspring. The metabolic phenotypes in male offspring appeared to be mediated by comprehensive restructuring of gut microbiota composition. Reduced maternal n-3 PUFA exposure led to significantly depleted Epsilonproteobacteria, Bacteroides, and Akkermansia and higher relative abundance of Clostridia. Interestingly, offspring metabolism and microbiota composition were more profoundly influenced by the maternal fatty acid profile during lactation than in utero. Furthermore, the maternal fatty acid profile appeared to have a long-lasting effect on offspring microbiota composition and function that persisted into adulthood after life-long high-fat diet feeding. CONCLUSIONS Our data provide novel evidence that weight gain and metabolic dysfunction in adulthood is mediated by maternal fatty acid status through long-lasting restructuring of the gut microbiota. These results have important implications for understanding the interaction between modern Western diets, metabolic health, and the intestinal microbiome.
Collapse
Affiliation(s)
- Ruairi C Robertson
- Laboratory for Lipid Medicine and Technology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Teagasc Moorepark Food Research Centre, Fermoy, Co. Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Kanakaraju Kaliannan
- Laboratory for Lipid Medicine and Technology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Conall R Strain
- Teagasc Moorepark Food Research Centre, Fermoy, Co. Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - R Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Catherine Stanton
- Teagasc Moorepark Food Research Centre, Fermoy, Co. Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Jing X Kang
- Laboratory for Lipid Medicine and Technology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
45
|
Teleosts Genomics: Progress and Prospects in Disease Prevention and Control. Int J Mol Sci 2018; 19:ijms19041083. [PMID: 29617353 PMCID: PMC5979277 DOI: 10.3390/ijms19041083] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 03/11/2018] [Accepted: 03/29/2018] [Indexed: 12/26/2022] Open
Abstract
Genome wide studies based on conventional molecular tools and upcoming omics technologies are beginning to gain functional applications in the control and prevention of diseases in teleosts fish. Herein, we provide insights into current progress and prospects in the use genomics studies for the control and prevention of fish diseases. Metagenomics has emerged to be an important tool used to identify emerging infectious diseases for the timely design of rational disease control strategies, determining microbial compositions in different aquatic environments used for fish farming and the use of host microbiota to monitor the health status of fish. Expounding the use of antimicrobial peptides (AMPs) as therapeutic agents against different pathogens as well as elucidating their role in tissue regeneration is another vital aspect of genomics studies that had taken precedent in recent years. In vaccine development, prospects made include the identification of highly immunogenic proteins for use in recombinant vaccine designs as well as identifying gene signatures that correlate with protective immunity for use as benchmarks in optimizing vaccine efficacy. Progress in quantitative trait loci (QTL) mapping is beginning to yield considerable success in identifying resistant traits against some of the highly infectious diseases that have previously ravaged the aquaculture industry. Altogether, the synopsis put forth shows that genomics studies are beginning to yield positive contribution in the prevention and control of fish diseases in aquaculture.
Collapse
|
46
|
Mulders RJ, de Git KCG, Schéle E, Dickson SL, Sanz Y, Adan RAH. Microbiota in obesity: interactions with enteroendocrine, immune and central nervous systems. Obes Rev 2018; 19:435-451. [PMID: 29363272 DOI: 10.1111/obr.12661] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/27/2017] [Accepted: 11/27/2017] [Indexed: 02/06/2023]
Abstract
Western diets, with high consumption of simple sugars and saturated fats, contribute to the rise in the prevalence of obesity. It now seems clear that high-fat diets cause obesity, at least in part, by modifying the composition and function of the microorganisms that colonize in the gastrointestinal tract, the microbiota. The exact pathways by which intestinal microbiota contribute to obesity remain largely unknown. High-fat diet-induced alterations in intestinal microbiota have been suggested to increase energy extraction, intestinal permeability and systemic inflammation while decreasing the capability to generate obesity-suppressing short-chain fatty acids. Moreover, by increasing systemic inflammation, microglial activation and affecting vagal nerve activity, 'obese microbiota' indirectly influence hypothalamic gene expression and promote overeating. Because the potential of intestinal microbiota to induce obesity has been recognized, multiple ways to modify its composition and function are being investigated to provide novel preventive and therapeutic strategies against diet-induced obesity.
Collapse
Affiliation(s)
- R J Mulders
- Master's Programme Science and Business Management, Utrecht University, Utrecht, The Netherlands
| | - K C G de Git
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - E Schéle
- Institute for Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - S L Dickson
- Institute for Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Y Sanz
- Microbial Ecology, Nutrition and Health Research Group, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Valencia, Spain
| | - R A H Adan
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
47
|
Shaffer M, Armstrong AJS, Phelan VV, Reisdorph N, Lozupone CA. Microbiome and metabolome data integration provides insight into health and disease. Transl Res 2017; 189:51-64. [PMID: 28764956 PMCID: PMC5659916 DOI: 10.1016/j.trsl.2017.07.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 06/28/2017] [Accepted: 07/08/2017] [Indexed: 02/07/2023]
Abstract
For much of our history, the most basic information about the microbial world has evaded characterization. Next-generation sequencing has led to a rapid increase in understanding of the structure and function of host-associated microbial communities in diverse diseases ranging from obesity to autism. Through experimental systems such as gnotobiotic mice only colonized with known microbes, a causal relationship between microbial communities and disease phenotypes has been supported. Now, microbiome research must move beyond correlations and general demonstration of causality to develop mechanistic understandings of microbial influence, including through their metabolic activities. Similar to the microbiome field, advances in technologies for cataloguing small molecules have broadened our understanding of the metabolites that populate our bodies. Integration of microbial and metabolomics data paired with experimental validation has promise for identifying microbial influence on host physiology through production, modification, or degradation of bioactive metabolites. Realization of microbial metabolic activities that affect health is hampered by gaps in our understanding of (1) biological properties of microbes and metabolites, (2) which microbial enzymes/pathways produce which metabolites, and (3) the effects of metabolites on hosts. Capitalizing on known mechanistic relationships and filling gaps in our understanding has the potential to enable translational microbiome research across disease contexts.
Collapse
Affiliation(s)
- Michael Shaffer
- Department of Medicine, University of Colorado Denver, Aurora, Colo; Computational Bioscience Program, University of Colorado Denver, Aurora, Colo
| | - Abigail J S Armstrong
- Department of Medicine, University of Colorado Denver, Aurora, Colo; Department of Immunology and Microbiology, University of Colorado Denver, Aurora, Colo
| | - Vanessa V Phelan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, Colo
| | - Nichole Reisdorph
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, Colo
| | | |
Collapse
|
48
|
Fiamoncini J, Yiorkas AM, Gedrich K, Rundle M, Alsters SI, Roeselers G, van den Broek TJ, Clavel T, Lagkouvardos I, Wopereis S, Frost G, van Ommen B, Blakemore AI, Daniel H. Determinants of postprandial plasma bile acid kinetics in human volunteers. Am J Physiol Gastrointest Liver Physiol 2017; 313:G300-G312. [PMID: 28663304 DOI: 10.1152/ajpgi.00157.2017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/21/2017] [Accepted: 06/26/2017] [Indexed: 01/31/2023]
Abstract
Bile acids (BA) are signaling molecules with a wide range of biological effects, also identified among the most responsive plasma metabolites in the postprandial state. We here describe this response to different dietary challenges and report on key determinants linked to its interindividual variability. Healthy men and women (n = 72, 62 ± 8 yr, mean ± SE) were enrolled into a 12-wk weight loss intervention. All subjects underwent an oral glucose tolerance test and a mixed-meal tolerance test before and after the intervention. BA were quantified in plasma by liquid chromatography-tandem mass spectrometry combined with whole genome exome sequencing and fecal microbiota profiling. Considering the average response of all 72 subjects, no effect of the successful weight loss intervention was found on plasma BA profiles. Fasting and postprandial BA profiles revealed high interindividual variability, and three main patterns in postprandial BA response were identified using multivariate analysis. Although the women enrolled were postmenopausal, effects of sex difference in BA response were evident. Exome data revealed the contribution of preselected genes to the observed interindividual variability. In particular, a variant in the SLCO1A2 gene, encoding the small intestinal BA transporter organic anion-transporting polypeptide-1A2 (OATP1A2), was associated with delayed postprandial BA increases. Fecal microbiota analysis did not reveal evidence for a significant influence of bacterial diversity and/or composition on plasma BA profiles. The analysis of plasma BA profiles in response to two different dietary challenges revealed a high interindividual variability, which was mainly determined by genetics and sex difference of host with minimal effects of the microbiota.NEW & NOTEWORTHY Considering the average response of all 72 subjects, no effect of the successful weight loss intervention was found on plasma bile acid (BA) profiles. Despite high interindividual variability, three main patterns in postprandial BA response were identified using multivariate analysis. A variant in the SLCO1A2 gene, encoding the small intestinal BA transporter organic anion-transporting polypeptide-1A2 (OATP1A2), was associated with delayed postprandial BA increases in response to both the oral glucose tolerance test and the mixed-meal tolerance test.
Collapse
Affiliation(s)
- Jarlei Fiamoncini
- Nutrition and Food Sciences, Technische Universität München, Freising-Weihenstephan, Germany;
| | - Andrianos M Yiorkas
- Section of Investigative Medicine, Imperial College London, London, United Kingdom.,Department of Life Sciences, Brunel University London, Uxbridge, United Kingdom; and
| | - Kurt Gedrich
- Nutrition and Food Sciences, Technische Universität München, Freising-Weihenstephan, Germany
| | - Milena Rundle
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, United Kingdom
| | - Sanne I Alsters
- Section of Investigative Medicine, Imperial College London, London, United Kingdom.,Department of Life Sciences, Brunel University London, Uxbridge, United Kingdom; and
| | - Guus Roeselers
- Microbiology & Systems Biology Group, The Netherlands Organisation for Applied Scientific Research, Zeist, The Netherlands.,Danone-Nutricia Research, Utrecht, The Netherlands
| | - Tim J van den Broek
- Microbiology & Systems Biology Group, The Netherlands Organisation for Applied Scientific Research, Zeist, The Netherlands
| | - Thomas Clavel
- Institute of Medical Microbiology, Rheinisch-Westfaelische Technische Hochschule Aachen University Hospital, Aachen, Germany
| | - Ilias Lagkouvardos
- Core Facility Microbiome/Next Generation Sequencing, Institute for Food & Health, Technische Universität München, Freising-Weihenstephan, Germany
| | - Suzan Wopereis
- Microbiology & Systems Biology Group, The Netherlands Organisation for Applied Scientific Research, Zeist, The Netherlands
| | - Gary Frost
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, United Kingdom
| | - Ben van Ommen
- Microbiology & Systems Biology Group, The Netherlands Organisation for Applied Scientific Research, Zeist, The Netherlands
| | - Alexandra I Blakemore
- Section of Investigative Medicine, Imperial College London, London, United Kingdom.,Department of Life Sciences, Brunel University London, Uxbridge, United Kingdom; and
| | - Hannelore Daniel
- Nutrition and Food Sciences, Technische Universität München, Freising-Weihenstephan, Germany
| |
Collapse
|
49
|
Abstract
Surveys report that 25-57 % of cats are overweight or obese. The most evinced cause is neutering. Weight loss often fails; thus, new strategies are needed. Obesity has been associated with altered gut bacterial populations and increases in microbial dietary energy extraction, body weight and adiposity. This study aimed to determine whether alterations in intestinal bacteria were associated with obesity, energy restriction and neutering by characterising faecal microbiota using 16S rRNA gene sequencing in eight lean intact, eight lean neutered and eight obese neutered cats before and after 6 weeks of energy restriction. Lean neutered cats had a bacterial profile similar to obese rodents and humans, with a greater abundance (P<0·05) of Firmicutes and lower abundance (P<0·05) of Bacteroidetes compared with the other groups. The greater abundance of Firmicutes in lean neutered cats was due to a bloom in Peptostreptococcaceae. Obese cats had an 18 % reduction in fat mass after energy restriction (P<0·05). Energy reduction was concurrent with significant shifts in two low-abundance bacterial genera and trends in four additional genera. The greatest change was a reduction in the Firmicutes genus, Sarcina, from 4·54 to 0·65 % abundance after energy restriction. The short duration of energy restriction may explain why few bacterial changes were observed in the obese cats. Additional work is needed to understand how neutering, obesity and weight loss are related to changes in feline microbiota and how these microbial shifts affect host physiology.
Collapse
|
50
|
Tian T, Wang Z, Zhang J. Pathomechanisms of Oxidative Stress in Inflammatory Bowel Disease and Potential Antioxidant Therapies. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:4535194. [PMID: 28744337 PMCID: PMC5506473 DOI: 10.1155/2017/4535194] [Citation(s) in RCA: 411] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 05/22/2017] [Accepted: 05/31/2017] [Indexed: 12/22/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic gastrointestinal disease whose incidence has risen worldwide in recent years. Accumulating evidence shows that oxidative stress plays an essential role in the pathogenesis and progression of IBD. This review highlights the generation of reactive oxygen species (ROS) and antioxidant defense mechanisms in the gastrointestinal (GI) tract, the involvement of oxidative stress signaling in the initiation and progression of IBD and its relationships with genetic susceptibility and the mucosal immune response. In addition, potential therapeutic strategies for IBD that target oxidative stress signaling are reviewed and discussed. Though substantial progress has been made in understanding the role of oxidative stress in IBD in humans and experimental animals, the underlying mechanisms are still not well defined. Thus, further studies are needed to validate how oxidative stress signaling is involved in and contributes to the development of IBD.
Collapse
Affiliation(s)
- Tian Tian
- College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| | - Ziling Wang
- College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| | - Jinhua Zhang
- College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| |
Collapse
|