1
|
Hu J, Yang Y, Fu S, Yu X, Wang X. Exercise improves glucose and lipid metabolism in high fat diet feeding male mice through androgen/androgen receptor-mediated metabolism regulatory factors. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167926. [PMID: 40419170 DOI: 10.1016/j.bbadis.2025.167926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 05/22/2025] [Accepted: 05/23/2025] [Indexed: 05/28/2025]
Abstract
Exercise alleviates high fat diet (HFD)-induced glycolipid metabolism disorders, but the mechanisms are not discovered totally. Low androgen/androgen receptor (AR) levels are associated with glycolipid metabolism disorders in males, and androgen/AR modulate glycolipid metabolism-related regulators such as peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC1-α), Forkhead box O1 (FoxO1), phosphoenolpyruvate carboxy kinase (PEPCK) and stearyl-coenzyme A desaturase 1 (SCD1). In the present study, we blockaded androgen (by castration) and inhibited or activated AR activity (by AR antagonist flutamide and agonist S4, respectively) to clarify androgen/AR's roles in exercise-induced alleviation of glycolipid metabolism disorders in male high fat diet (HFD) feeding mice and the underlying mechanisms. We found that: (1) exercise reversed HFD-induced glycolipid metabolism disorders, including restoring fasting blood glucose (FBG), glucose tolerance, TC and TG, accompanied with the increases of serum testosterone and AR in muscle and liver. (2) castration exacerbated HFD-induced impairment of glucose tolerance and increases of TC and TG, and abolished the lowering effect of exercise on FBG and TC. Flutamide further impaired glucose tolerance, increased plasm LDL content, and attenuated exercise-induced improvements of FBG and TG content. (3) exercise reduced the levels of FoxO1 and SCD1, increased PGC-1α in muscle and liver of HFD mice; whereas castration and flutamide reversed exercise-induced improvements of these indicators. Furthermore, S4 rectified the levels of FoxO1, PGC-1α and SCD1 in HFD mice even in absence of androgen. In conclusion, androgen/AR, especially AR, play important roles in alleviating glycolipid metabolism disorders in HFD mice at sedentary and exercise states, which might fulfill through FOXO1, PGC-1α and SCD1.
Collapse
Affiliation(s)
- Jing Hu
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Yanan Yang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Shaoting Fu
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China; Department of Kinesiology, College of Physical Education, Shanghai Normal University, Shanghai, China
| | - Xiaohan Yu
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Xiaohui Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China.
| |
Collapse
|
2
|
Freitas da Silva C, Bernardino-Neto M, Fidale TM, Monteiro de Magalhães Neto A, Valentim-Silva JR, Karaccas de Carvalho Y, Raimundo RD, de Abreu LC, Martins Silva RP, Penha-Silva N. Comparison of physiological and biochemical changes in old and young hyperglycemic rats submitted to aerobic exercise and anabolic steroid use. SPORTS MEDICINE AND HEALTH SCIENCE 2025; 7:28-36. [PMID: 39649787 PMCID: PMC11624422 DOI: 10.1016/j.smhs.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 11/06/2023] [Accepted: 12/25/2023] [Indexed: 12/11/2024] Open
Abstract
Prolonged hyperglycemia conditions are a risk factor for chronic degenerative diseases such as diabetes and obesity. Testosterone is known to cause muscle hypertrophy, reduced fat mass, and increased body strength. The study aimed to verify possible alterations and differences in the influence of testosterone on the physical performance in post-exercise conditions of young and old animals with alloxan-induced hyperglycemia. We randomly assigned 32 young Wistar rats to groups of untreated non-diabetic young, treated non-diabetic young, untreated diabetic young, and treated diabetic young rats, and 32 aged Wistar rats to groups of untreated non-diabetic elderly, treated non-diabetic elderly, untreated diabetic elderly, and treated diabetic elderly rats, with eight animals each group. The treated non-diabetic and treated diabetic groups received injections of 15 mg/kg weight Durateston™. All the trained groups performed aquatic training with an overload of 5% of the body mass. Following the experiment, we anesthetized and euthanized the animals after exercise (exhaustion). Hemoglobin, erythrocytes, and hematocrit values were higher in the treated groups. The treated diabetic elderly group had the highest leukocyte and neutrophil counts compared to the untreated young groups (p < 0.05). As for the lipid profile, untreated rats had the highest values. Glucose concentration was higher at rest and after exercise in the untreated diabetic groups (p < 0.05). Lactate was more elevated in the untreated diabetic groups, and the testosterone-treated groups performed the longest swimming time after the maximal test (p < 0.05). The use of testosterone in conjunction with physical exercise improved physical performance in water, blood glucose, and lipid profiles.
Collapse
Affiliation(s)
- Carolina Freitas da Silva
- Institute of Biotechnology, Federal University of Catalão, Catalão, GO, Brazil
- Postgraduate Program in Health Sciences of the Western Amazon, Federal University of Acre, Rio Branco, AC, Brazil
| | - Morun Bernardino-Neto
- Department of Basic and Environmental Sciences, University of São Paulo, Lorena, SP, Brazil
| | | | | | - João Rafael Valentim-Silva
- Postgraduate Program in Health Sciences of the Western Amazon, Federal University of Acre, Rio Branco, AC, Brazil
| | - Yuri Karaccas de Carvalho
- Postgraduate Program in Health Sciences of the Western Amazon, Federal University of Acre, Rio Branco, AC, Brazil
| | - Rodrigo Daminello Raimundo
- Study Design and Scientific Writing Laboratory, Centro Universitario FMABC, Santo André, São Paulo, Brazil
| | - Luiz Carlos de Abreu
- Postgraduate Program in Health Sciences of the Western Amazon, Federal University of Acre, Rio Branco, AC, Brazil
| | - Romeu Paulo Martins Silva
- Institute of Biotechnology, Federal University of Catalão, Catalão, GO, Brazil
- Postgraduate Program in Health Sciences of the Western Amazon, Federal University of Acre, Rio Branco, AC, Brazil
| | - Nilson Penha-Silva
- Postgraduate Program in Health Sciences of the Western Amazon, Federal University of Acre, Rio Branco, AC, Brazil
- Institute of Biotechnology, Uberlândia Federal University, Uberlândia, MG, Brazil
| |
Collapse
|
3
|
Fu S, Hu J, Wang G, Qian Z, Wang X. Androgen receptor regulates the differentiation of myoblasts under cyclic mechanical stretch and its upstream and downstream signals. Int J Biol Macromol 2024; 281:136257. [PMID: 39366623 DOI: 10.1016/j.ijbiomac.2024.136257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/30/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
Our previous studies have demonstrated the important roles of androgen receptor (AR) in myoblast proliferation regulated by 15 % (mimic appropriate exercise) and 20 % (mimic excessive exercise) mechanical stretches. Except for myoblast proliferation, differentiation is also an important factor affecting muscle mass and strength. But the role of AR in stretch-regulated myoblast differentiation and AR's upstream and downstream signals remain unknown. In the present study, firstly the differences of myogenic differentiation between C2C12 (with AR expression) and L6 (without AR expression) myoblasts induced by 15 % and 20 % mechanical stretches were compared; secondly, AR antagonist flutamide and AR agonist GTx-007 were used in 15 % and 20 % stretched myoblasts respectively to confirm AR's roles in stretch-regulated myoblast differentiation; thirdly, RNA-seq, molecular dynamic simulation (MD) and co-immunoprecipitation were performed to screen the downstream and upstream molecules of AR during stretches. We found that (1) 15 % stretch increased while 20 % stretch decreased myotube number in differentiating C2C12 and L6 myoblasts, with more significant changes in C2C12 cells than L6 cells; (2) in stretched C2C12 myoblasts, AR antagonist flutamide inhibited 15 % stretch-promoted differentiation while AR agonist GTx-007 reversed 20 % stretch-inhibited differentiation (reflected by changes in myotube number, MHC contents of fast-twitch and slow-twitch fiber, and the levels of myogenic regulatory factors (MRFs) such as MyoD and myogenin); (3) KEGG analysis of RNA-seq showed that the differently expressed genes (DEGs) in C2C12 cells induced by 15 % stretch were enriched in FoxO and JAK-STAT signaling pathways, while DEGs by 20 % stretch were enriched in FoxO and MAPK signaling pathways; (4) MD and co-immunoprecipitation showed that β1 integrin could interact with AR and influence AR's activity in C2C12 cells. In conclusion, AR plays important roles in myoblast differentiation promoted by 15 % stretch while inhibited by 20 % stretch, which was fulfilled through FoxO-MRFs. In addition, α7β1 integrin may be a bridge linking mechanical stretch and AR. This study is beneficial to deeply understand the roles and mechanisms of AR in stretch-regulated muscle mass and strength; and reports firstly that myoblasts sense mechanical stimulus and transmit into intracellular AR via α7β1 integrin.
Collapse
Affiliation(s)
- Shaoting Fu
- School of Exercise and Health, Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China; Department of Kinesiology, College of Physical Education, Shanghai Normal University, Shanghai, China
| | - Jing Hu
- School of Exercise and Health, Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Gang Wang
- School of Exercise and Health, Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Zhenyu Qian
- School of Exercise and Health, Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China.
| | - Xiaohui Wang
- School of Exercise and Health, Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China.
| |
Collapse
|
4
|
Xega V, Liu JL. Beyond reproduction: unraveling the impact of sex hormones on cardiometabolic health. MEDICAL REVIEW (2021) 2024; 4:284-300. [PMID: 39135604 PMCID: PMC11317208 DOI: 10.1515/mr-2024-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/07/2024] [Indexed: 08/15/2024]
Abstract
This review thoroughly explores the multifaceted roles of sexual hormones, emphasizing their impact beyond reproductive functions and underscoring their significant influence on cardiometabolic regulation. It analyzes the broader physiological implications of estrogen, testosterone, and progesterone, highlighting their effects on metabolic syndrome, lipid metabolism, glucose homeostasis, and cardiovascular health. Drawing from diverse molecular, clinical, and therapeutic studies, the paper delves into the intricate interplay between these hormones and cardiometabolic processes. By presenting a comprehensive analysis that goes beyond traditional perspectives, and recognizing sexual hormones as more than reproductive agents, the review sheds light on their broader significance in health and disease management, advocating for holistic and personalized medical approaches.
Collapse
Affiliation(s)
- Viktoria Xega
- MeDiC Program, The Research Institute of McGill University Health Centre, Montreal, Canada
| | - Jun-Li Liu
- Division of Endocrinology and Metabolism, Department of Medicine, McGill University, Montreal, Canada
| |
Collapse
|
5
|
Jia Y, Yang Y, Qu J, Yin L, Wang X. Chemerin affects blood lipid profile of high-fat diet male mice in sedentary and exercise states via glucose and lipid metabolism enzymes. Endocr Connect 2024; 13:e230484. [PMID: 38323605 PMCID: PMC10959035 DOI: 10.1530/ec-23-0484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/07/2024] [Indexed: 02/08/2024]
Abstract
Adipokine chemerin plays important roles in disorders of glucose and lipid metabolism of obesity and obesity-related diseases, and exercise-induced improvement of glucose and lipid metabolism is closely related to the decrease of chemerin, but the mechanisms by which chemerin regulates glucose and lipid metabolism remain unclarified. Hypotestosterone induces male obesity and disorders of glucose and lipid metabolism through androgen receptor (AR) and its target genes: glucose and lipid metabolism-related molecules (including FOXO1, PEPCK, PGC-1α, and SCD1). Recently, the link between them has been reported that chemerin modulated the secretion of androgen. In this study, global chemerin knockout (chemerin (-/-)) mice were established to demonstrate the roles of chemerin in regulating blood glucose and blood lipid of mice under diet (high-fat (HFD) and normal diet) and exercise interventions and then to explore its mechanisms (AR - glucose and lipid metabolism enzymes). We found that the blood lipid and adipocyte size were low accompanied by the improvements in the levels of serum testosterone, gastrocnemius AR, and gastrocnemius FOXO1, SCD1, and PGC-1α in HFD chemerin (-/-) mice, but exercise-induced improvements of these indicators in HFD WT mice were attenuated or abolished in HFD chemerin (-/-) mice. In conclusion, the decrease of chemerin improved the blood lipid profile of HFD male mice at sedentary and exercise states, mediated partly by the increases of testosterone and AR to regulate glucose and lipid metabolism enzymes. To our knowledge, it is the first report that chemerin's regulation of glucose and lipid metabolism might be mediated by testosterone and AR in vivo.
Collapse
Affiliation(s)
- Yi Jia
- School of Health and Exercise, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Yanan Yang
- School of Health and Exercise, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Jing Qu
- School of Health and Exercise, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Lijun Yin
- School of Health and Exercise, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Xiaohui Wang
- School of Health and Exercise, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
6
|
Alemany M. The Roles of Androgens in Humans: Biology, Metabolic Regulation and Health. Int J Mol Sci 2022; 23:11952. [PMID: 36233256 PMCID: PMC9569951 DOI: 10.3390/ijms231911952] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022] Open
Abstract
Androgens are an important and diverse group of steroid hormone molecular species. They play varied functional roles, such as the control of metabolic energy fate and partition, the maintenance of skeletal and body protein and integrity and the development of brain capabilities and behavioral setup (including those factors defining maleness). In addition, androgens are the precursors of estrogens, with which they share an extensive control of the reproductive mechanisms (in both sexes). In this review, the types of androgens, their functions and signaling are tabulated and described, including some less-known functions. The close interrelationship between corticosteroids and androgens is also analyzed, centered in the adrenal cortex, together with the main feedback control systems of the hypothalamic-hypophysis-gonads axis, and its modulation by the metabolic environment, sex, age and health. Testosterone (T) is singled out because of its high synthesis rate and turnover, but also because age-related hypogonadism is a key signal for the biologically planned early obsolescence of men, and the delayed onset of a faster rate of functional losses in women after menopause. The close collaboration of T with estradiol (E2) active in the maintenance of body metabolic systems is also presented Their parallel insufficiency has been directly related to the ravages of senescence and the metabolic syndrome constellation of disorders. The clinical use of T to correct hypoandrogenism helps maintain the functionality of core metabolism, limiting excess fat deposition, sarcopenia and cognoscitive frailty (part of these effects are due to the E2 generated from T). The effectiveness of using lipophilic T esters for T replacement treatments is analyzed in depth, and the main problems derived from their application are discussed.
Collapse
Affiliation(s)
- Marià Alemany
- Facultat de Biologia, Universitat de Barcelona, Av. Diagonal, 635, 08028 Barcelona, Catalonia, Spain;
- Institut de Biomedicina, Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain
| |
Collapse
|
7
|
Sayaf K, Gabbia D, Russo FP, De Martin S. The Role of Sex in Acute and Chronic Liver Damage. Int J Mol Sci 2022; 23:10654. [PMID: 36142565 PMCID: PMC9505609 DOI: 10.3390/ijms231810654] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Acute and chronic hepatic damages are caused by xenobiotics or different diseases affecting the liver, characterized by different etiologies and pathological features. It has been demonstrated extensively that liver damage progresses differently in men and women, and some chronic liver diseases show a more favorable prognosis in women than in men. This review aims to update the most recent advances in the comprehension of the molecular basis of the sex difference observed in both acute and chronic liver damage. With this purpose, we report experimental studies on animal models and clinical observations investigating both acute liver failure, e.g., drug-induced liver injury (DILI), and chronic liver diseases, e.g., viral hepatitis, alcoholic liver disease (ALD), non-alcoholic fatty liver disease (NAFLD), autoimmune liver diseases, and hepatocellular carcinoma (HCC).
Collapse
Affiliation(s)
- Katia Sayaf
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35131 Padova, Italy
| | - Daniela Gabbia
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Francesco Paolo Russo
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35131 Padova, Italy
- Gastroenterology and Multivisceral Transplant Units, Azienda Ospedale—Università di Padova, 35131 Padova, Italy
| | - Sara De Martin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
8
|
The Role of Insulin Resistance in Fueling NAFLD Pathogenesis: From Molecular Mechanisms to Clinical Implications. J Clin Med 2022; 11:jcm11133649. [PMID: 35806934 PMCID: PMC9267803 DOI: 10.3390/jcm11133649] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/09/2022] [Accepted: 06/21/2022] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) represents a predominant hepatopathy that is rapidly becoming the most common cause of hepatocellular carcinoma worldwide. The close association with metabolic syndrome’s extrahepatic components has suggested the nature of the systemic metabolic-related disorder based on the interplay between genetic, nutritional, and environmental factors, creating a complex network of yet-unclarified pathogenetic mechanisms in which the role of insulin resistance (IR) could be crucial. This review detailed the clinical and pathogenetic evidence involved in the NAFLD–IR relationship, presenting both the classic and more innovative models. In particular, we focused on the reciprocal effects of IR, oxidative stress, and systemic inflammation on insulin-sensitivity disruption in critical regions such as the hepatic and the adipose tissue, while considering the impact of genetics/epigenetics on the regulation of IR mechanisms as well as nutrients on specific insulin-related gene expression (nutrigenetics and nutrigenomics). In addition, we discussed the emerging capability of the gut microbiota to interfere with physiological signaling of the hormonal pathways responsible for maintaining metabolic homeostasis and by inducing an abnormal activation of the immune system. The translation of these novel findings into clinical practice could promote the expansion of accurate diagnostic/prognostic stratification tools and tailored pharmacological approaches.
Collapse
|
9
|
Pang H, Li J, Wang Y, Su X, Gao Y, Li SJ. Mice lacking the proton channel Hv1 exhibit sex-specific differences in glucose homeostasis. J Biol Chem 2021; 297:101212. [PMID: 34547291 PMCID: PMC8503595 DOI: 10.1016/j.jbc.2021.101212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/07/2021] [Accepted: 09/16/2021] [Indexed: 02/07/2023] Open
Abstract
Sex as a physiologic factor has a strong association with the features of metabolic syndrome. Our previous study showed that loss of the voltage-gated proton channel Hv1 inhibits insulin secretion and leads to hyperglycemia and glucose intolerance in male mice. However, there are significant differences in blood glucose between male and female Hv1-knockout (KO) mice. Here, we investigated the differences in glucose metabolism and insulin sensitivity between male and female KO mice and how sex steroids contribute to these differences. We found that the fasting blood glucose in female KO mice was visibly lower than that in male KO mice, which was accompanied by hypotestosteronemia. KO mice in both sexes exhibited higher expression of gluconeogenesis-related genes in liver compared with WT mice. Also, the livers from KO males displayed a decrease in glycolysis-related gene expression and an increase in gluconeogenesis-related gene expression compared with KO females. Furthermore, exogenous testosterone supplementation decreased blood glucose levels in male KO mice, as well as enhancing insulin signaling. Taken together, our data demonstrate that knockout of Hv1 results in higher blood glucose levels in male than female mice, despite a decreased insulin secretion in both sexes. This sex-related difference in glucose homeostasis is associated with the glucose metabolism in liver tissue, likely due to the physiological levels of testosterone in KO male mice.
Collapse
Affiliation(s)
- Huimin Pang
- Department of Biophysics, School of Physics Science, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, PR China
| | - Jinzhi Li
- Biology Laboratory, Tianjin High School, Tianjin, PR China
| | - Yuzhou Wang
- Laboratory Animal Center, College of Life Sciences, Nankai University, Tianjin, PR China
| | - Xiaomin Su
- Laboratory Animal Center, College of Life Sciences, Nankai University, Tianjin, PR China
| | - Yingtang Gao
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Institute of Hepatobiliary Disease, Nankai University Affiliated Third Center Hospital, Tianjin, PR China.
| | - Shu Jie Li
- Department of Biophysics, School of Physics Science, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, PR China; Biomedical Research Center, Qilu Institute of Technology, Shandong, PR China.
| |
Collapse
|
10
|
Della Torre S. Beyond the X Factor: Relevance of Sex Hormones in NAFLD Pathophysiology. Cells 2021; 10:2502. [PMID: 34572151 PMCID: PMC8470830 DOI: 10.3390/cells10092502] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a major health issue worldwide, being frequently associated with obesity, unbalanced dietary regimens, and reduced physical activity. Despite their greater adiposity and reduced physical activity, women show a lower risk of developing NAFLD in comparison to men, likely a consequence of a sex-specific regulation of liver metabolism. In the liver, sex differences in the uptake, synthesis, oxidation, deposition, and mobilization of lipids, as well as in the regulation of inflammation, are associated with differences in NAFLD prevalence and progression between men and women. Given the major role of sex hormones in driving hepatic sexual dimorphism, this review will focus on the role of sex hormones and their signaling in the regulation of hepatic metabolism and in the molecular mechanisms triggering NAFLD development and progression.
Collapse
Affiliation(s)
- Sara Della Torre
- Department of Pharmaceutical Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| |
Collapse
|
11
|
Li X, Liu J, Zhou B, Li Y, Wu Z, Meng H, Wang G. Sex Differences in the Effect of Testosterone on Adipose Tissue Insulin Resistance From Overweight to Obese Adults. J Clin Endocrinol Metab 2021; 106:2252-2263. [PMID: 33982080 DOI: 10.1210/clinem/dgab325] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Adipose tissue distribution and glucose metabolism differ between men and women. Few studies have investigated sex differences in adipose tissue insulin resistance (adipose-IR). Herein, we investigated sex differences in adipose-IR in adults ranging from overweight to obese and the potential factors associated with sex differences in adipose-IR. METHODS A total of 424 adults had their body mass index (BMI), adipose-IR, and sex hormones evaluated. Based on BMI, males and females were assigned to 4 groups. RESULTS In total, males (n = 156) had higher adipose-IR than females with similar BMI levels (n = 268) (P < 0.05). Adipose-IR progressively increased from overweight to class III obesity in both males and females (all P < 0.0001); however, only in the class III obesity group was the adipose-IR significantly higher in males than in females (P = 0.025). There were significant differences in testosterone between males and females (all P < 0.01); testosterone levels were negatively correlated with adipose-IR (r = -0.333, P < 0.001) in males but positively correlated with adipose-IR (r = 0.216, P < 0.001) in females. For the logistic regression analysis, testosterone was an independent protective factor against adipose-IR in males, with an odds ratio of 0.858 (B = -0.153 [95% CI, 0.743-0.991], P = 0.037). CONCLUSIONS Adipose-IR reflects the progressive deterioration in adipose tissue insulin sensitivity from overweight to obesity in both males and females. Males with class III obesity have more severe adipose-IR than similarly obese females. The sex difference is associated with testosterone, and low testosterone levels may contribute to more severe adipose-IR in obese males.
Collapse
Affiliation(s)
- Xiaohui Li
- Department of Endocrinology, Beijing Chao-yang Hospital, Capital Medical University, Beijing 100020, China
| | - Jia Liu
- Department of Endocrinology, Beijing Chao-yang Hospital, Capital Medical University, Beijing 100020, China
| | - Biao Zhou
- Department of General Surgery Department & Obesity and Metabolic Disease Center, China-Japan Friendship Hospital, Beijing 100029, China
| | - Yinhui Li
- Department of Endocrinology, Beijing Chao-yang Hospital, Capital Medical University, Beijing 100020, China
| | - Zhengyu Wu
- Department of Endocrinology, Beijing Chao-yang Hospital, Capital Medical University, Beijing 100020, China
| | - Hua Meng
- Department of General Surgery Department & Obesity and Metabolic Disease Center, China-Japan Friendship Hospital, Beijing 100029, China
| | - Guang Wang
- Department of Endocrinology, Beijing Chao-yang Hospital, Capital Medical University, Beijing 100020, China
| |
Collapse
|
12
|
Qin N, Zhou Z, Zhao W, Zou K, Shi W, Yu C, Liu X, Dong Z, Mao Y, Liu X, Sheng J, Ding G, Wu Y, Huang H. Abnormal Glucose Metabolism in Male Mice Offspring Conceived by in vitro Fertilization and Frozen-Thawed Embryo Transfer. Front Cell Dev Biol 2021; 9:637781. [PMID: 33634140 PMCID: PMC7900417 DOI: 10.3389/fcell.2021.637781] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/20/2021] [Indexed: 12/16/2022] Open
Abstract
Frozen and thawed embryo transfer (FET) is currently widely applied in routine assisted reproductive technology (ART) procedure. It is of great necessity to assess the safety of FET and investigate the long-term effect including glucose metabolism on FET-conceived offspring. The mouse model is a highly efficient method to figure out the relationship between the process of FET and offspring health. In this study, we obtained mouse offspring of natural conception (NC), in vitro fertilization (IVF), and FET. Glucose and insulin tolerance test (GTT/ITT) were performed on both chow fed or high fat diet (HFD) fed offspring to examine the glucose metabolism status. We detected hepatic PI3K/AKT pathway by western blotting and transcriptome status by RNA-sequencing. Impaired glucose tolerance (IGT) and decreased insulin tolerance were occurred in FET conceived male offspring. After challenged with the HFD-fed, male offspring in FET group performed earlier and severer IGT than IVF group. Furthermore, higher HOMA-IR index and higher serum insulin level post glucose injected in FET-chow group suggested the insulin resistance status. The PI3K/AKT signaling pathway, the major pathway of insulin in the liver, were also disrupted in FET group. Transcriptomics of the liver reveals significantly downregulated in glucose metabolic process and insulin resistance in the FET-chow group. In our study, FET-conceived male mouse offspring presented glucose metabolism dysfunction mainly manifesting insulin resistance. The hepatic insulin signaling pathway were in concordance with reduced glycogen synthesis, increased glycolysis and enhanced gluconeogenesis status in FET-conceived male offspring.
Collapse
Affiliation(s)
- Ningxin Qin
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiyang Zhou
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai Jiao Tong University, Shanghai, China
| | - Wenlong Zhao
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai Jiao Tong University, Shanghai, China
| | - Kexin Zou
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai Jiao Tong University, Shanghai, China
| | - Weihui Shi
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai Jiao Tong University, Shanghai, China
| | - Chuanjin Yu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai Jiao Tong University, Shanghai, China
| | - Xia Liu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai Jiao Tong University, Shanghai, China
| | - Zehan Dong
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai Jiao Tong University, Shanghai, China
| | - Yiting Mao
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai Jiao Tong University, Shanghai, China
| | - Xinmei Liu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai Jiao Tong University, Shanghai, China.,Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Jianzhong Sheng
- Department of Pathology and Pathophysiology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Guolian Ding
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai Jiao Tong University, Shanghai, China.,Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Yanting Wu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai Jiao Tong University, Shanghai, China.,Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Hefeng Huang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai Jiao Tong University, Shanghai, China.,Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,The Key Laboratory of Reproductive Genetics, Ministry of Education, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
Lagunin AA, Ivanov SM, Gloriozova TA, Pogodin PV, Filimonov DA, Kumar S, Goel RK. Combined network pharmacology and virtual reverse pharmacology approaches for identification of potential targets to treat vascular dementia. Sci Rep 2020; 10:257. [PMID: 31937840 PMCID: PMC6959222 DOI: 10.1038/s41598-019-57199-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 12/21/2019] [Indexed: 02/07/2023] Open
Abstract
Dementia is a major cause of disability and dependency among older people. If the lives of people with dementia are to be improved, research and its translation into druggable target are crucial. Ancient systems of healthcare (Ayurveda, Siddha, Unani and Sowa-Rigpa) have been used from centuries for the treatment vascular diseases and dementia. This traditional knowledge can be transformed into novel targets through robust interplay of network pharmacology (NetP) with reverse pharmacology (RevP), without ignoring cutting edge biomedical data. This work demonstrates interaction between recent and traditional data, and aimed at selection of most promising targets for guiding wet lab validations. PROTEOME, DisGeNE, DISEASES and DrugBank databases were used for selection of genes associated with pathogenesis and treatment of vascular dementia (VaD). The selection of new potential drug targets was made by methods of NetP (DIAMOnD algorithm, enrichment analysis of KEGG pathways and biological processes of Gene Ontology) and manual expert analysis. The structures of 1976 phytomolecules from the 573 Indian medicinal plants traditionally used for the treatment of dementia and vascular diseases were used for computational estimation of their interactions with new predicted VaD-related drug targets by RevP approach based on PASS (Prediction of Activity Spectra for Substances) software. We found 147 known genes associated with vascular dementia based on the analysis of the databases with gene-disease associations. Six hundred novel targets were selected by NetP methods based on 147 gene associations. The analysis of the predicted interactions between 1976 phytomolecules and 600 NetP predicted targets leaded to the selection of 10 potential drug targets for the treatment of VaD. The translational value of these targets is discussed herewith. Twenty four drugs interacting with 10 selected targets were identified from DrugBank. These drugs have not been yet studied for the treatment of VaD and may be investigated in this field for their repositioning. The relation between inhibition of two selected targets (GSK-3, PTP1B) and the treatment of VaD was confirmed by the experimental studies on animals and reported separately in our recent publications.
Collapse
Affiliation(s)
- Alexey A Lagunin
- Pirogov Russian National Research Medical University, Department of Bioinformatics, Moscow, 117997, Russia.
- Institute of Biomedical Chemistry, Department of Bioinformatics, Moscow, 119121, Russia.
| | - Sergey M Ivanov
- Pirogov Russian National Research Medical University, Department of Bioinformatics, Moscow, 117997, Russia
- Institute of Biomedical Chemistry, Department of Bioinformatics, Moscow, 119121, Russia
| | - Tatyana A Gloriozova
- Institute of Biomedical Chemistry, Department of Bioinformatics, Moscow, 119121, Russia
| | - Pavel V Pogodin
- Institute of Biomedical Chemistry, Department of Bioinformatics, Moscow, 119121, Russia
| | - Dmitry A Filimonov
- Institute of Biomedical Chemistry, Department of Bioinformatics, Moscow, 119121, Russia
| | - Sandeep Kumar
- Punjabi University, Department of Pharmaceutical Sciences and Drug Research, Patiala, 147002, India
| | - Rajesh K Goel
- Punjabi University, Department of Pharmaceutical Sciences and Drug Research, Patiala, 147002, India.
| |
Collapse
|
14
|
Pal M, Khan J, Kumar R, Surolia A, Gupta S. Testosterone supplementation improves insulin responsiveness in HFD fed male T2DM mice and potentiates insulin signaling in the skeletal muscle and C2C12 myocyte cell line. PLoS One 2019; 14:e0224162. [PMID: 31693697 PMCID: PMC6834245 DOI: 10.1371/journal.pone.0224162] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 10/07/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Type 2 Diabetes Mellitus (T2DM) is characterised by hyperglycemia due to the incidence of insulin resistance. Testosterone supplementation has been shown to have a positive co-relation with improved glycemic control in T2DM males. Clinical studies have reported that Androgen Replacement Therapy (ART) to hypogonadic males with T2DM resulted in improved glycemic control and metabolic parameters, but, these studies did not address in detail how testosterone acted on the key glucose homeostatic organs. METHOD In this study, we delineate the effect of testosterone supplementation to high-fat diet (HFD) induced T2DM in male C57BL6J mice and the effect of testosterone supplementation on the skeletal muscle insulin responsiveness. We also studied the effect of testosterone on the insulin signaling pathway proteins in C2C12 myocyte cells to validate the in vivo findings. RESULTS We found that testosterone had a potentiating effect on the skeletal muscle insulin signaling pathway to improve glycaemic control. We demonstrate that, in males, testosterone improves skeletal muscle insulin responsiveness by potentiating the PI3K-AKT pathway. The testosterone treated animals showed significant increase in the skeletal muscle Insulin Receptor (IR), p85 subunit of PI3K, P-GSK3α (Ser-21), and P-AKT (Ser-473) levels as compared to the control animals; but there was no significant change in total AKT and GSK3α. Testosterone supplementation inhibited GSK3α in the myocytes in a PI3K/AKT pathway dependent manner; on the other hand GSK3β gene expression was reduced in the skeletal muscle upon testosterone supplementation. CONCLUSION Testosterone increases insulin responsiveness by potentiating insulin signaling in the skeletal muscle cells, which is in contrast to the increased insulin resistance in the liver of testosterone treated T2DM male animals.
Collapse
Affiliation(s)
- Madhuraka Pal
- Molecular Science Laboratory, National Institute of Immunology, New Delhi, India
| | - Jasim Khan
- Molecular Toxicology Laboratory, Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Ravi Kumar
- Molecular Science Laboratory, National Institute of Immunology, New Delhi, India
| | - Avadhesha Surolia
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Sarika Gupta
- Molecular Science Laboratory, National Institute of Immunology, New Delhi, India
| |
Collapse
|
15
|
Abruzzese GA, Heber MF, Ferrer MJ, Ferreira SR, Silva AF, Motta AB. Effects of in utero androgen excess and metformin treatment on hepatic functions. Mol Cell Endocrinol 2019; 491:110416. [PMID: 30880153 DOI: 10.1016/j.mce.2019.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 03/08/2019] [Accepted: 03/08/2019] [Indexed: 12/27/2022]
Abstract
This study aimed to evaluate the role of prenatal hyperandrogenization in liver functions and the extent of metformin as treatment. Pregnant rats were hyperandrogenized with subcutaneous testosterone (1mg/rat) between 16 and 19 of pregnancy. Prenatally hyperandrogenized (PH) female offspring displayed, at the adult life, two phenotypes; a PH irregular ovulatory phenotype (PHiov) and a PH anovulatory (PHanov) phenotype. From day 70 to the moment of sacrifice (90 days of age), 50% of the animals of each group received a daily oral dose of 50 mg/kg of metformin. We found that both PH phenotypes displayed a hepatic disruptions of insulin and glucose pathway and that metformin treatment reversed some of these alterations in a specific-phenotype manner. Our findings show, for the first time, that androgen excess in utero promotes hepatic dysfunctions and that metformin treatment is able to specifically reverse those hepatic alterations and sheds light on the possible mechanisms of metformin action.
Collapse
Affiliation(s)
- Giselle Adriana Abruzzese
- Laboratorio de Fisio-patología Ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Paraguay 2155, CP1121, Ciudad Autónoma de Buenos Aires, Argentina
| | - María Florencia Heber
- Laboratorio de Fisio-patología Ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Paraguay 2155, CP1121, Ciudad Autónoma de Buenos Aires, Argentina
| | - María José Ferrer
- Laboratorio de Fisio-patología Ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Paraguay 2155, CP1121, Ciudad Autónoma de Buenos Aires, Argentina
| | - Silvana Rocío Ferreira
- Laboratorio de Fisio-patología Ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Paraguay 2155, CP1121, Ciudad Autónoma de Buenos Aires, Argentina
| | - Aimé Florencia Silva
- Laboratorio de Fisio-patología Ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Paraguay 2155, CP1121, Ciudad Autónoma de Buenos Aires, Argentina
| | - Alicia Beatriz Motta
- Laboratorio de Fisio-patología Ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Paraguay 2155, CP1121, Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
16
|
Gambineri A, Pelusi C. Sex hormones, obesity and type 2 diabetes: is there a link? Endocr Connect 2019; 8:R1-R9. [PMID: 30533003 PMCID: PMC6320346 DOI: 10.1530/ec-18-0450] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 12/12/2022]
Abstract
An imbalance in sex hormones has an important impact on type 2 diabetes (T2DM) mainly through the involvement of visceral adipose tissue. Androgens have an interesting sex-dimorphic association with T2DM, since hyperandrogenism in females and hypogonadism in males are risk factors for T2DM. Thus, treatments aimed at correcting hyperandrogenism in females and hypogonadism in males may prevent the development of T2DM or help in its treatment.
Collapse
Affiliation(s)
- Alessandra Gambineri
- Endocrinology Unit, Department of Medical and Surgical Sciences, St Orsola-Malpighi Hospital, Alma Mater University of Bologna, Bologna, Italy
- Correspondence should be addressed to A Gambineri:
| | - Carla Pelusi
- Endocrinology Unit, Department of Medical and Surgical Sciences, St Orsola-Malpighi Hospital, Alma Mater University of Bologna, Bologna, Italy
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize recent findings on hepatic actions of androgens in the regulation of protein, lipid and glucose metabolism. The rationale for liver-targeted testosterone use will be provided. RECENT FINDINGS Liver-targeted testosterone administration, via the oral route, induces protein anabolic effect by reducing the rate of protein oxidation to a similar extent to that of systemic testosterone administration. Recent evidence indicates that testosterone exerts whole-body anabolic effect through inhibition of nitrogen loss via the hepatic urea cycle. Several hepatic effects of androgens, particularly on glucose metabolism, are direct and take place before any changes in body composition occur. This includes an increase in insulin secretion and sensitivity, and reduction in hepatic glucose output by testosterone. Furthermore, lack of testosterone in the liver exacerbates diet-induced impairment in glucose metabolism. In the liver, androgens induce the full spectrum of metabolic changes through interaction with growth hormone or aromatization to estradiol. SUMMARY Liver-targeted testosterone therapy may open up a new approach to achieve whole-body anabolism without systemic side-effects. Aromatizable androgens may be superior to nonaromatizable androgens in inducing a complex spectrum of direct, estrogen-mediated and other hormone-mediated effects of androgens.
Collapse
Affiliation(s)
- Vita Birzniece
- School of Medicine, Western Sydney University, Sydney
- Department of Diabetes and Endocrinology, Blacktown Hospital, Blacktown
- Garvan Institute of Medical Research, Sydney
- School of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
18
|
Yao QM, Wang B, An XF, Zhang JA, Ding L. Testosterone level and risk of type 2 diabetes in men: a systematic review and meta-analysis. Endocr Connect 2018; 7:220-231. [PMID: 29233816 PMCID: PMC5793809 DOI: 10.1530/ec-17-0253] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 12/12/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND Type 2 diabetes is a risk factor for testosterone deficiency and impaired sex steroid status. Some studies also investigated the association of testosterone level with diabetes risk in men, but reported controversial findings. To clarify this issue, we conducted a systematic review and meta-analysis. METHODS PubMed, EMBASE and Web of Science were searched for eligible cohort or nested case-control studies published up to August 15, 2017. Meta-analysis was used to calculate the pooled relative risk (RR) of type 2 diabetes associated with higher testosterone level. RESULTS Thirteen cohort or nested case-control studies with 16,709 participants were included. Meta-analysis showed that higher total testosterone level could significantly decrease the risk of type 2 diabetes in men (RR = 0.65; 95% CI 0.50-0.84; P = 0.001), and higher free testosterone level could also decrease the risk of type 2 diabetes in men (RR = 0.94; 95% CI 0.90-0.99; P = 0.014). After excluding two studies that did not calculate RRs by quartiles of testosterone levels, both higher total testosterone and free testosterone levels could decrease the risk of type 2 diabetes in men, and the pooled RRs were 0.62 (95% CI 0.51-0.76; P < 0.001) and 0.77 (95% CI 0.61-0.98; P = 0.03), respectively. CONCLUSION This meta-analysis suggests that higher testosterone level can significantly decrease the risk of type 2 diabetes in men. Therefore, combined with previous researches, the findings above suggest a reverse-causality scenario in the relation between testosterone deficiency and risk of type 2 diabetes in men.
Collapse
Affiliation(s)
- Qiu-Ming Yao
- Department of EndocrinologyJinshan Hospital of Fudan University, Shanghai, China
| | - Bin Wang
- Department of EndocrinologyJinshan Hospital of Fudan University, Shanghai, China
| | - Xiao-Fei An
- Department of EndocrinologyJinshan Hospital of Fudan University, Shanghai, China
| | - Jin-An Zhang
- Department of EndocrinologyShanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Liumei Ding
- Department of Clinical LaboratoryJinshan Hospital of Fudan University, Shanghai, China
| |
Collapse
|