1
|
Parfenyev SE, Vishnyakov IE, Efimova TN, Daks AA, Shuvalov OY, Fedorova OA, Lomert EV, Tentler DG, Borchsenius SN, Barlev NA. Effect of infection by Mycoplasma arginini and Mycoplasma salivarium on the oncogenic properties of lung cancer cell line A549. Biochem Biophys Res Commun 2024; 736:150878. [PMID: 39476758 DOI: 10.1016/j.bbrc.2024.150878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/10/2024]
Abstract
Most mycoplasma species are the extracellular parasites affecting different cellular processes including proliferation, cell cycle, protein synthesis, DNA repair and others. Mycoplasma infection was shown to contribute to the pathology of various diseases, including cancer. Upon infection, mycoplasmas typically activate the tumor-associated NF-kB pathway, which is associated with EMT, the main mechanism of metastasis. In this study, we found that two different mycoplasma strains, M. arginini and M. salivarium, promoted the initiation of EMT and simultaneous suppression of the p53 tumor suppressor in A549 lung cancer cells. This led to an increase of cancer cell motility, resistance to the antitumor drug etoposide concomitantly with decreased autophagy. These data indicate that mycoplasmas are able to increase the tumorigenic potential of cancer host cells.
Collapse
Affiliation(s)
- S E Parfenyev
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia.
| | - I E Vishnyakov
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia
| | - T N Efimova
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia
| | - A A Daks
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia
| | - O Y Shuvalov
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia
| | - O A Fedorova
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia
| | - E V Lomert
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia
| | - D G Tentler
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia
| | - S N Borchsenius
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia
| | - N A Barlev
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia; School of Medicine Nazarbayev University, Astana, 010000, Kazakhstan.
| |
Collapse
|
2
|
Keles NA, Dogan S, Dogan A, Sudagidan M, Balci TN, Cetiner O, Kavruk M, Ozalp VC, Tuna BG. Long-term intermittent caloric restriction remodels the gut microbiota in mice genetically prone to breast cancer. Nutrition 2024; 126:112525. [PMID: 39168040 DOI: 10.1016/j.nut.2024.112525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 06/10/2024] [Accepted: 06/21/2024] [Indexed: 08/23/2024]
Abstract
OBJECTIVES Gut microbiota dysbiosis is among the risk factors for breast cancer development, together with genetic background and dietary habits. However, caloric restriction has been shown to remodel the gut microbiota and slow tumor growth. Here, we investigated whether the gut microbiota mediates the preventive effects of long-term chronic or intermittent caloric restriction on breast cancer predisposition. METHODS 10-week-old transgenic breast cancer-prone mice were randomly assigned to dietary groups (ad libitum, chronic caloric restriction, and intermittent caloric restriction groups) and fed up to week 81. Stool samples were collected at weeks 10 (baseline), 17 (young), 49 (adult), and 81 (old). 16S rRNA gene sequencing was performed to identify the gut microbiota profile of the different groups. In order to investigate the breast cancer gut microbiota profile within genetically predisposed individuals regardless of diet, mammary tumor-bearing mice and mammary tumor-free but genetically prone mice were selected from the ad libitum group (n = 6). RESULTS Intermittent caloric restriction increased the microbial diversity of adult mice and modified age-related compositional changes. A total of 13 genera were differentially abundant over time. Pathogenic Mycoplasma was enriched in the re-feeding period of the old intermittent caloric restriction group compared with baseline. Furthermore, mammary tumor-free mice showed shared gut microbiota characteristics with mammary tumor-bearing mice, suggesting an early link between genetic predisposition, gut microbiota, and breast cancer development. CONCLUSIONS Our study revealed the role of gut microbes in the preventive effects of caloric restriction against breast cancer development, implying the significance of diet and microbiome interplay.
Collapse
Affiliation(s)
- Nazim Arda Keles
- Department of Medical Biology, School of Medicine, Yeditepe University, Istanbul, Turkey
| | - Soner Dogan
- Department of Medical Biology, School of Medicine, Yeditepe University, Istanbul, Turkey
| | - Aysenur Dogan
- Department of Medical Biology, School of Medicine, Yeditepe University, Istanbul, Turkey
| | - Mert Sudagidan
- Department of Medical Biology, School of Medicine, Atilim University, Ankara, Turkey
| | - Tugce Nur Balci
- Department of Nutrition and Dietetics, School of Health Sciences, Atilim University, Ankara, Turkey
| | - Ozlem Cetiner
- Department of Nutrition and Dietetics, School of Health Sciences, Atilim University, Ankara, Turkey
| | - Murat Kavruk
- Department of Medical Biology, School of Medicine, Istanbul Aydin University, Istanbul, Turkey
| | - Veli Cengiz Ozalp
- Department of Medical Biology, School of Medicine, Atilim University, Ankara, Turkey
| | - Bilge Guvenc Tuna
- Department of Biophysics, School of Medicine, Yeditepe University, Istanbul, Turkey.
| |
Collapse
|
3
|
Yarahmadi A, Zare M, Aghayari M, Afkhami H, Jafari GA. Therapeutic bacteria and viruses to combat cancer: double-edged sword in cancer therapy: new insights for future. Cell Commun Signal 2024; 22:239. [PMID: 38654309 PMCID: PMC11040964 DOI: 10.1186/s12964-024-01622-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/17/2024] [Indexed: 04/25/2024] Open
Abstract
Cancer, ranked as the second leading cause of mortality worldwide, leads to the death of approximately seven million people annually, establishing itself as one of the most significant health challenges globally. The discovery and identification of new anti-cancer drugs that kill or inactivate cancer cells without harming normal and healthy cells and reduce adverse effects on the immune system is a potential challenge in medicine and a fundamental goal in Many studies. Therapeutic bacteria and viruses have become a dual-faceted instrument in cancer therapy. They provide a promising avenue for cancer treatment, but at the same time, they also create significant obstacles and complications that contribute to cancer growth and development. This review article explores the role of bacteria and viruses in cancer treatment, examining their potential benefits and drawbacks. By amalgamating established knowledge and perspectives, this review offers an in-depth examination of the present research landscape within this domain and identifies avenues for future investigation.
Collapse
Affiliation(s)
- Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Mitra Zare
- Department of Microbiology, Faculty of Sciences, Kerman Branch, Islamic Azad University, Kerman, Iran
| | - Masoomeh Aghayari
- Department of Microbiology, Faculty of Sciences, Urmia Branch, Islamic Azad University, Urmia, Iran
| | - Hamed Afkhami
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran.
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran.
| | - Gholam Ali Jafari
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
| |
Collapse
|
4
|
Galyamina MA, Pobeguts OV, Gorbachev AY. The role of mycoplasmas as an infectious agent in carcinogenesis. ADVANCES IN MOLECULAR ONCOLOGY 2023; 10:36-49. [DOI: 10.17650/2313-805x-2023-10-3-36-49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The review presents data on studies of the role of mycoplasmas as infectious agents in carcinogenesis, as well as their participation in cancer drug therapy and the impact on the outcome of treatment. Mycoplasmas are of particular interest because they have unique abilities to readily attach to and enter eukaryotic cells, modulate their functional state, and induce chronic inflammation while evading the host’s immune system. The review will highlight the data confirming the increased colonization of tumor tissue by mycoplasmas compared to healthy ones, describe the molecular mechanisms by which mycoplasmas activate the expression of oncogenes and growth factors, inactivate tumor suppressors, promote NF-κB-dependent migration of cancer cells and modulate apoptosis, which results in abnormal growth and transformation of host cells. The review also presents data on the effectiveness of anticancer drugs in mycoplasmal infections.
Collapse
Affiliation(s)
- M. A. Galyamina
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency
| | - O. V. Pobeguts
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency
| | - A. Yu. Gorbachev
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency
| |
Collapse
|
5
|
Benedetti F, Silvestri G, Saadat S, Denaro F, Latinovic OS, Davis H, Williams S, Bryant J, Ippodrino R, Rathinam CV, Gallo RC, Zella D. Mycoplasma DnaK increases DNA copy number variants in vivo. Proc Natl Acad Sci U S A 2023; 120:e2219897120. [PMID: 37459550 PMCID: PMC10372619 DOI: 10.1073/pnas.2219897120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 06/14/2023] [Indexed: 07/20/2023] Open
Abstract
The human microbiota affects critical cellular functions, although the responsible mechanism(s) is still poorly understood. In this regard, we previously showed that Mycoplasma fermentans DnaK, an HSP70 chaperone protein, hampers the activity of important cellular proteins responsible for DNA integrity. Here, we describe a novel DnaK knock-in mouse model generated in our laboratory to study the effect of M. fermentans DnaK expression in vivo. By using an array-based comparative genomic hybridization assay, we demonstrate that exposure to DnaK was associated with a higher number of DNA copy number variants (CNVs) indicative of unbalanced chromosomal alterations, together with reduced fertility and a high rate of fetal abnormalities. Consistent with their implication in genetic disorders, one of these CNVs caused a homozygous Grid2 deletion, resulting in an aberrant ataxic phenotype that recapitulates the extensive biallelic deletion in the Grid2 gene classified in humans as autosomal recessive spinocerebellar ataxia 18. Our data highlight a connection between components of the human urogenital tract microbiota, namely Mycoplasmas, and genetic abnormalities in the form of DNA CNVs, with obvious relevant medical, diagnostic, and therapeutic implications.
Collapse
Affiliation(s)
- Francesca Benedetti
- Institute of Human Virology and Global Virus Network Center, University of Maryland School of Medicine, Baltimore, MD21201
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD21201
| | - Giovannino Silvestri
- Institute of Human Virology and Global Virus Network Center, University of Maryland School of Medicine, Baltimore, MD21201
- Department of Medicine, School of Medicine, University of Maryland School of Medicine, Baltimore, MD21201
| | - Saman Saadat
- Institute of Human Virology and Global Virus Network Center, University of Maryland School of Medicine, Baltimore, MD21201
| | - Frank Denaro
- Department of Biology, Morgan State University, Baltimore, MD21251
| | - Olga S. Latinovic
- Institute of Human Virology and Global Virus Network Center, University of Maryland School of Medicine, Baltimore, MD21201
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD21201
| | - Harry Davis
- Institute of Human Virology and Global Virus Network Center, University of Maryland School of Medicine, Baltimore, MD21201
| | - Sumiko Williams
- Institute of Human Virology and Global Virus Network Center, University of Maryland School of Medicine, Baltimore, MD21201
| | - Joseph Bryant
- Institute of Human Virology and Global Virus Network Center, University of Maryland School of Medicine, Baltimore, MD21201
| | | | - Chozha V. Rathinam
- Institute of Human Virology and Global Virus Network Center, University of Maryland School of Medicine, Baltimore, MD21201
- Department of Medicine, School of Medicine, University of Maryland School of Medicine, Baltimore, MD21201
| | - Robert C. Gallo
- Institute of Human Virology and Global Virus Network Center, University of Maryland School of Medicine, Baltimore, MD21201
- Department of Medicine, School of Medicine, University of Maryland School of Medicine, Baltimore, MD21201
| | - Davide Zella
- Institute of Human Virology and Global Virus Network Center, University of Maryland School of Medicine, Baltimore, MD21201
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD21201
| |
Collapse
|
6
|
Siegl D, Kruchem M, Jansky S, Eichler E, Thies D, Hartwig U, Schuppan D, Bockamp E. A PCR protocol to establish standards for routine mycoplasma testing that by design detects over ninety percent of all known mycoplasma species. iScience 2023; 26:106724. [PMID: 37216121 PMCID: PMC10192841 DOI: 10.1016/j.isci.2023.106724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/07/2023] [Accepted: 04/19/2023] [Indexed: 05/24/2023] Open
Abstract
Mycoplasma infection leads to false and non-reproducible scientific data and poses a risk to human health. Despite strict guidelines calling for regular mycoplasma screening, there is no universal and widely established standard procedure. Here, we describe a reliable and cost-effective PCR method that establishes a universal protocol for mycoplasma testing. The applied strategy utilizes ultra-conserved eukaryotic and mycoplasma sequence primers covering by design 92% of all species in the six orders of the class Mollicutes within the phylum Mycoplasmatota and is applicable to mammalian and many non-mammalian cell types. This method can stratify mycoplasma screening and is suitable as a common standard for routine mycoplasma testing.
Collapse
Affiliation(s)
- Dominik Siegl
- Institute of Translational Immunology (TIM), University Medical Center of the Johannes Gutenberg-University, Mainz 55131, Germany
| | - Marie Kruchem
- Institute of Translational Immunology (TIM), University Medical Center of the Johannes Gutenberg-University, Mainz 55131, Germany
| | - Sandrine Jansky
- Institute of Translational Immunology (TIM), University Medical Center of the Johannes Gutenberg-University, Mainz 55131, Germany
| | - Emma Eichler
- Institute of Translational Immunology (TIM), University Medical Center of the Johannes Gutenberg-University, Mainz 55131, Germany
| | - Dorothe Thies
- Institute of Translational Immunology (TIM), University Medical Center of the Johannes Gutenberg-University, Mainz 55131, Germany
| | - Udo Hartwig
- Department of Medicine III Hematology & Medical Oncology, University Medical Center of the Johannes Gutenberg-University, Mainz 55131, Germany
- Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University, Mainz 55131, Germany
| | - Detlef Schuppan
- Institute of Translational Immunology (TIM), University Medical Center of the Johannes Gutenberg-University, Mainz 55131, Germany
- ImmuneNTech GmbH, Wendelsheim 55234, Germany
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University, Mainz 55131, Germany
| | - Ernesto Bockamp
- Institute of Translational Immunology (TIM), University Medical Center of the Johannes Gutenberg-University, Mainz 55131, Germany
- ImmuneNTech GmbH, Wendelsheim 55234, Germany
- Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University, Mainz 55131, Germany
| |
Collapse
|
7
|
Wang Y, Wang G, Hong X, Zhao J, Wu D, Chen L, Liu X, Kong D, Huang Q, Xing J, Wang N, Zhao Y. Downregulated mitochondrial transcription factor A enhances mycoplasma infection to promote the metastasis of hepatocellular carcinoma. Cancer Sci 2023; 114:1464-1478. [PMID: 36601865 PMCID: PMC10067405 DOI: 10.1111/cas.15715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/06/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Mycoplasma is widespread in various hosts and may cause various diseases in animals. Interestingly, the occurrence of mycoplasma infection was observed in many tumor types. However, the mechanism regulating its infection is far from clear. We unexpectedly found that the knockdown of mitochondrial transcription factor A (TFAM) remarkably enhanced mycoplasma infection in hepatocellular carcinoma (HCC) cells. More importantly, we found that mycoplasma infection facilitated by TFAM knockdown significantly promoted HCC cell metastasis. Mycoplasma infection was further found to be positively correlated with poor prognosis in patients with HCC. Mechanistically, the decreased TFAM expression upregulated the transcription factor Sp1 to increase the expression level of Annexin A2 (ANXA2), which was reported to interact with membrane protein of mycoplasma. Moreover, we found that mycoplasma infection enhanced by the TFAM downregulation promoted HCC migration and invasion by activating the nuclear factor-κB signaling pathway. The downregulation of TFAM enhanced mycoplasma infection in HCC cells and promoted HCC cell metastasis. Our study contributes to the understanding of the pathological role of mycoplasma infection and provides supporting evidence that targeting TFAM could be a potential strategy for the treatment of HCC with mycoplasma infection.
Collapse
Affiliation(s)
- Yinping Wang
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Gang Wang
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Xin Hong
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Jing Zhao
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Dan Wu
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Lin Chen
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Xiaoli Liu
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Deyu Kong
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Qichao Huang
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Jinliang Xing
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Nan Wang
- Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Yilin Zhao
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China.,Department of Clinical Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
8
|
Curreli S, Benedetti F, Yuan W, Munawwar A, Cocchi F, Gallo RC, Sherman NE, Zella D. Characterization of the interactome profiling of Mycoplasma fermentans DnaK in cancer cells reveals interference with key cellular pathways. Front Microbiol 2022; 13:1022704. [PMID: 36386669 PMCID: PMC9651203 DOI: 10.3389/fmicb.2022.1022704] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/03/2022] [Indexed: 06/10/2024] Open
Abstract
Chaperone proteins are redundant in nature and, to achieve their function, they bind a large repertoire of client proteins. DnaK is a bacterial chaperone protein that recognizes misfolded and aggregated proteins and drives their folding and intracellular trafficking. Some Mycoplasmas are associated with cancers, and we demonstrated that infection with a strain of Mycoplasma fermentans isolated in our lab promoted lymphoma in a mouse model. Its DnaK is expressed intracellularly in infected cells, it interacts with key proteins to hamper essential pathways related to DNA repair and p53 functions and uninfected cells can take-up extracellular DnaK. We profile here for the first time the eukaryotic proteins interacting with DnaK transiently expressed in five cancer cell lines. A total of 520 eukaryotic proteins were isolated by immunoprecipitation and identified by Liquid Chromatography Mass Spectrometry (LC-MS) analysis. Among the cellular DnaK-binding partners, 49 were shared between the five analyzed cell lines, corroborating the specificity of the interaction of DnaK with these proteins. Enrichment analysis revealed multiple RNA biological processes, DNA repair, chromatin remodeling, DNA conformational changes, protein-DNA complex subunit organization, telomere organization and cell cycle as the most significant ontology terms. This is the first study to show that a bacterial chaperone protein interacts with key eukaryotic components thus suggesting DnaK could become a perturbing hub for the functions of important cellular pathways. Given the close interactions between bacteria and host cells in the local microenvironment, these results provide a foundation for future mechanistic studies on how bacteria interfere with essential cellular processes.
Collapse
Affiliation(s)
- Sabrina Curreli
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Francesca Benedetti
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Weirong Yuan
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Arshi Munawwar
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Fiorenza Cocchi
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Robert C. Gallo
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Nicholas E. Sherman
- Biomolecular Analysis Facility Core, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Davide Zella
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
9
|
Mycoplasma hominis Causes DNA Damage and Cell Death in Primary Human Keratinocytes. Microorganisms 2022; 10:microorganisms10101962. [PMID: 36296238 PMCID: PMC9608843 DOI: 10.3390/microorganisms10101962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/16/2022] [Accepted: 09/24/2022] [Indexed: 11/16/2022] Open
Abstract
Mycoplasma hominis can be isolated from the human urogenital tract. However, its interaction with the host remains poorly understood. In this study, we aimed to assess the effects of M. hominis infection on primary human keratinocytes (PHKs). Cells were quantified at different phases of the cell cycle. Proteins involved in cell cycle regulation and apoptosis progression were evaluated. The expression of genes encoding proteins that are associated with the DNA damage response and Toll-like receptor pathways was evaluated, and the cytokines involved in inflammatory responses were quantified. A greater number of keratinocytes were observed in the Sub-G0/G1 phase after infection with M. hominis. In the viable keratinocytes, infection resulted in G2/M-phase arrest; GADD45A expression was increased, as was the expression of proteins such as p53, p27, and p21 and others involved in apoptosis regulation and oxidative stress. In infected PHKs, the expression of genes associated with the Toll-like receptor pathways showed a change, and the production of IFN-γ, interleukin (IL) 1β, IL-18, IL-6, and tumour necrosis factor alpha increased. The infection of PHKs by M. hominis causes cellular damage that can affect the cell cycle by activating the response pathways to cellular damage, oxidative stress, and Toll-like receptors. Overall, this response culminated in the reduction of cell proliferation/viability in vitro.
Collapse
|
10
|
Lactoferrin as a Human Genome “Guardian”—An Overall Point of View. Int J Mol Sci 2022; 23:ijms23095248. [PMID: 35563638 PMCID: PMC9105968 DOI: 10.3390/ijms23095248] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/06/2022] [Accepted: 05/06/2022] [Indexed: 11/22/2022] Open
Abstract
Structural abnormalities causing DNA modifications of the ethene and propanoadducts can lead to mutations and permanent damage to human genetic material. Such changes may cause premature aging and cell degeneration and death as well as severe impairment of tissue and organ function. This may lead to the development of various diseases, including cancer. In response to a damage, cells have developed defense mechanisms aimed at preventing disease and repairing damaged genetic material or diverting it into apoptosis. All of the mechanisms described above are part of the repertoire of action of Lactoferrin—an endogenous protein that contains iron in its structure, which gives it numerous antibacterial, antiviral, antifungal and anticancer properties. The aim of the article is to synthetically present the new and innovative role of lactoferrin in the protection of human genetic material against internal and external damage, described by the modulation mechanisms of the cell cycle at all its levels and the mechanisms of its repair.
Collapse
|
11
|
Prasad SK, Bhat S, Shashank D, C R A, R S, Rachtanapun P, Devegowda D, Santhekadur PK, Sommano SR. Bacteria-Mediated Oncogenesis and the Underlying Molecular Intricacies: What We Know So Far. Front Oncol 2022; 12:836004. [PMID: 35480118 PMCID: PMC9036991 DOI: 10.3389/fonc.2022.836004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/22/2022] [Indexed: 01/10/2023] Open
Abstract
Cancers are known to have multifactorial etiology. Certain bacteria and viruses are proven carcinogens. Lately, there has been in-depth research investigating carcinogenic capabilities of some bacteria. Reports indicate that chronic inflammation and harmful bacterial metabolites to be strong promoters of neoplasticity. Helicobacter pylori-induced gastric adenocarcinoma is the best illustration of the chronic inflammation paradigm of oncogenesis. Chronic inflammation, which produces excessive reactive oxygen species (ROS) is hypothesized to cause cancerous cell proliferation. Other possible bacteria-dependent mechanisms and virulence factors have also been suspected of playing a vital role in the bacteria-induced-cancer(s). Numerous attempts have been made to explore and establish the possible relationship between the two. With the growing concerns on anti-microbial resistance and over-dependence of mankind on antibiotics to treat bacterial infections, it must be deemed critical to understand and identify carcinogenic bacteria, to establish their role in causing cancer.
Collapse
Affiliation(s)
- Shashanka K Prasad
- Department of Biotechnology and Bioinformatics, Faculty of Life Sciences, Jagadguru Sri Shivarathreeshwara (JSS) Academy of Higher Education and Research (JSSAHER), Mysuru, India
| | - Smitha Bhat
- Department of Biotechnology and Bioinformatics, Faculty of Life Sciences, Jagadguru Sri Shivarathreeshwara (JSS) Academy of Higher Education and Research (JSSAHER), Mysuru, India
| | - Dharini Shashank
- Department of General Surgery, Adichunchanagiri Institute of Medical Sciences, Mandya, India
| | - Akshatha C R
- Department of Medical Oncology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Sindhu R
- Department of Microbiology, Faculty of Life Sciences, Jagadguru Sri Shivarathreeshwara (JSS) Academy of Higher Education and Research (JSSAHER), Mysuru, India
| | - Pornchai Rachtanapun
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai, Thailand
| | - Devananda Devegowda
- Centre of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research (JSSAHER), Mysuru, India
| | - Prasanna K Santhekadur
- Centre of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research (JSSAHER), Mysuru, India
| | - Sarana Rose Sommano
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai, Thailand
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
12
|
Nouri Y, Weinkove R, Perret R. T-cell intrinsic Toll-like receptor signaling: implications for cancer immunotherapy and CAR T-cells. J Immunother Cancer 2021; 9:jitc-2021-003065. [PMID: 34799397 PMCID: PMC8606765 DOI: 10.1136/jitc-2021-003065] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2021] [Indexed: 02/06/2023] Open
Abstract
Toll-like receptors (TLRs) are evolutionarily conserved molecules that specifically recognize common microbial patterns, and have a critical role in innate and adaptive immunity. Although TLRs are highly expressed by innate immune cells, particularly antigen-presenting cells, the very first report of a human TLR also described its expression and function within T-cells. Gene knock-out models and adoptive cell transfer studies have since confirmed that TLRs function as important costimulatory and regulatory molecules within T-cells themselves. By acting directly on T-cells, TLR agonists can enhance cytokine production by activated T-cells, increase T-cell sensitivity to T-cell receptor stimulation, promote long-lived T-cell memory, and reduce the suppressive activity of regulatory T-cells. Direct stimulation of T-cell intrinsic TLRs may be a relevant mechanism of action of TLR ligands currently under clinical investigation as cancer immunotherapies. Finally, chimeric antigen receptor (CAR) T-cells afford a new opportunity to specifically exploit T-cell intrinsic TLR function. This can be achieved by expressing TLR signaling domains, or domains from their signaling partner myeloid differentiation primary response 88 (MyD88), within or alongside the CAR. This review summarizes the expression and function of TLRs within T-cells, and explores the relevance of T-cell intrinsic TLR expression to the benefits and risks of TLR-stimulating cancer immunotherapies, including CAR T-cells.
Collapse
Affiliation(s)
- Yasmin Nouri
- Cancer Immunotherapy Programme, Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Robert Weinkove
- Cancer Immunotherapy Programme, Malaghan Institute of Medical Research, Wellington, New Zealand.,Department of Pathology & Molecular Medicine, University of Otago, Wellington, Wellington, New Zealand.,Wellington Blood & Cancer Centre, Capital and Coast District Health Board, Wellington, New Zealand
| | - Rachel Perret
- Cancer Immunotherapy Programme, Malaghan Institute of Medical Research, Wellington, New Zealand
| |
Collapse
|
13
|
The Relationship between Mycoplasmas and Cancer: Is It Fact or Fiction ? Narrative Review and Update on the Situation. JOURNAL OF ONCOLOGY 2021; 2021:9986550. [PMID: 34373693 PMCID: PMC8349275 DOI: 10.1155/2021/9986550] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/15/2021] [Indexed: 12/24/2022]
Abstract
More than one million new cancer cases occur worldwide every year. Although many clinical trials are applied and recent diagnostic tools are employed, curing cancer disease is still a great challenge for mankind. Heredity and epigenetics are the main risk factors often related to cancer. Although, the infectious etiological role in carcinogenesis was also theorized. By establishing chronic infection and inflammation in their hosts, several microorganisms were suggested to cause cell transformation. Of these suspicious microorganisms, mycoplasmas were well regarded because of their intimate parasitism with host cells, as well as their silent and insidious role during infections. This assumption has opened many questions about the real role played by mycoplasmas in oncogenesis. Herein, we presented a sum up of many studies among the hundreds which had addressed the Mycoplasma-cancer topic over the past 50 years. Research studies in this field have first started by approving the mycoplasmas malignancy potential. Indeed, using animal models and in vitro experiments in various cell lines from human and other mammalians, many mycoplasmas were proven to cause varied modifications leading to cell transformation. Moreover, many studies have looked upon the Mycoplasma-cancer subject from an epidemiological point of view. Diverse techniques were used to assess the mycoplasmas prevalence in patients with cancer from different countries. Not less than 10 Mycoplasma species were detected in the context of at least 15 cancer types affecting the brain, the breast, the lymphatic system, and different organs in the genitourinary, respiratory, gastrointestinal, and urinary tracts. Based on these revelations, one should concede that detection of mycoplasmas often linked to ‘‘wolf in sheep's clothing” is not a coincidence and might have a role in cancer. Thorough investigations are needed to better elucidate this role. This would have a substantial impact on the improvement of cancer diagnosis and its prevention.
Collapse
|
14
|
Zella D, Gallo RC. Viruses and Bacteria Associated with Cancer: An Overview. Viruses 2021; 13:v13061039. [PMID: 34072757 PMCID: PMC8226504 DOI: 10.3390/v13061039] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 12/14/2022] Open
Abstract
There are several human viruses and bacteria currently known to be associated with cancer. A common theme indicates that these microorganisms have evolved mechanisms to hamper the pathways dedicated to maintaining the integrity of genetic information, preventing apoptosis of the damaged cells and causing unwanted cellular proliferation. This eventually reduces the ability of their hosts to repair the damage(s) and eventually results in cellular transformation, cancer progression and reduced response to therapy. Our data suggest that mycoplasmas, and perhaps certain other bacteria with closely related DnaKs, may also contribute to cellular transformation and hamper certain drugs that rely on functional p53 for their anti-cancer activity. Understanding the precise molecular mechanisms is important for cancer prevention and for the development of both new anti-cancer drugs and for improving the efficacy of existing therapies.
Collapse
Affiliation(s)
- Davide Zella
- Institute of Human Virology and Global Virus Network Center, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Robert C. Gallo
- Institute of Human Virology and Global Virus Network Center, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Correspondence:
| |
Collapse
|
15
|
Wilkie T, Verma AK, Zhao H, Charan M, Ahirwar DK, Kant S, Pancholi V, Mishra S, Ganju RK. Lipopolysaccharide from the commensal microbiota of the breast enhances cancer growth: role of S100A7 and TLR4. Mol Oncol 2021; 16:1508-1522. [PMID: 33969603 PMCID: PMC8978520 DOI: 10.1002/1878-0261.12975] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 03/30/2021] [Accepted: 04/23/2021] [Indexed: 11/19/2022] Open
Abstract
The role of commensal bacterial microbiota in the pathogenesis of human malignancies has been a research field of incomparable progress in recent years. Although breast tissue is commonly assumed to be sterile, recent studies suggest that human breast tissue may contain a bacterial microbiota. In this study, we used an immune‐competent orthotopic breast cancer mouse model to explore the existence of a unique and independent bacterial microbiota in breast tumors. We observed some similarities in breast cancer microbiota with skin; however, breast tumor microbiota was mainly enriched with Gram‐negative bacteria, serving as a primary source of lipopolysaccharide (LPS). In addition, dextran sulfate sodium (DSS) treatment in late‐stage tumor lesions increased LPS levels in the breast tissue environment. We also discovered an increased expression of S100A7 and low level of TLR4 in late‐stage tumors with or without DSS as compared to early‐stage tumor lesions. The treatment of breast cancer cells with LPS increased the expression of S100A7 in breast cancer cells in vitro. Furthermore, S100A7 overexpression downregulated TLR4 and upregulated RAGE expression in breast cancer cells. Analysis of human breast cancer samples also highlighted the inverse correlation between S100A7 and TLR4 expression. Overall, these findings suggest that the commensal microbiota of breast tissue may enhance breast tumor burden through a novel LPS/S100A7/TLR4/RAGE signaling axis.
Collapse
Affiliation(s)
- Tasha Wilkie
- Department of Pathology, The Ohio State University, Wexner Medical Center
| | - Ajeet K Verma
- Department of Pathology, The Ohio State University, Wexner Medical Center
| | - Helong Zhao
- Department of Pathology, The Ohio State University, Wexner Medical Center
| | - Manish Charan
- Department of Pathology, The Ohio State University, Wexner Medical Center
| | - Dinesh K Ahirwar
- Department of Pathology, The Ohio State University, Wexner Medical Center
| | - Sashi Kant
- Department of Pathology, The Ohio State University, Wexner Medical Center
| | - Vijay Pancholi
- Department of Pathology, The Ohio State University, Wexner Medical Center
| | - Sanjay Mishra
- Department of Pathology, The Ohio State University, Wexner Medical Center
| | - Ramesh K Ganju
- Department of Pathology, The Ohio State University, Wexner Medical Center
| |
Collapse
|
16
|
Curreli S, Tettelin H, Benedetti F, Krishnan S, Cocchi F, Reitz M, Gallo RC, Zella D. Analysis of DnaK Expression from a Strain of Mycoplasma fermentans in Infected HCT116 Human Colon Carcinoma Cells. Int J Mol Sci 2021; 22:ijms22083885. [PMID: 33918708 PMCID: PMC8069837 DOI: 10.3390/ijms22083885] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 11/29/2022] Open
Abstract
Several species of mycoplasmas, including Mycoplasma fermentans, are associated with certain human cancers. We previously isolated and characterized in our laboratory a strain of human mycoplasma M. fermentans subtype incognitus (MF-I1) able to induce lymphoma in a Severe Combined Immuno-Deficient (SCID) mouse model, and we demonstrated that its chaperone protein, DnaK, binds and reduces functions of human poly-ADP ribose polymerase-1 (PARP1) and ubiquitin carboxyl-terminal hydrolase protein-10 (USP10), which are required for efficient DNA repair and proper p53 activities, respectively. We also showed that other bacteria associated with human cancers (including Mycoplasmapneumoniae, Helicobacterpylori, Fusobacteriumnucleatum, Chlamydiathrachomatis, and Chlamydia pneumoniae) have closely related DnaK proteins, indicating a potential common mechanism of cellular transformation. Here, we quantify dnaK mRNA copy number by RT-qPCR analysis in different cellular compartments following intracellular MF-I1 infection of HCT116 human colon carcinoma cells. DnaK protein expression in infected cells was also detected and quantified by Western blot. The amount of viable intracellular mycoplasma reached a steady state after an initial phase of growth and was mostly localized in the cytoplasm of the invaded cells, while we detected a logarithmically increased number of viable extracellular bacteria. Our data indicate that, after invasion, MF-I1 is able to establish a chronic intracellular infection. Extracellular replication was more efficient while MF-I1 cultured in cell-free axenic medium showed a markedly reduced growth rate. We also identified modifications of important regulatory regions and heterogeneous lengths of dnaK mRNA transcripts isolated from intracellular and extracellular MF-I1. Both characteristics were less evident in dnaK mRNA transcripts isolated from MF-I1 grown in cell-free axenic media. Taken together, our data indicate that MF-I1, after establishing a chronic infection in eukaryotic cells, accumulates different forms of dnaK with efficient RNA turnover.
Collapse
Affiliation(s)
- Sabrina Curreli
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (F.B.); (S.K.); (F.C.); (M.R.); (R.C.G.)
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Correspondence: (S.C.); (D.Z.)
| | - Hervé Tettelin
- Institute for Genome Sciences, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Francesca Benedetti
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (F.B.); (S.K.); (F.C.); (M.R.); (R.C.G.)
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Selvi Krishnan
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (F.B.); (S.K.); (F.C.); (M.R.); (R.C.G.)
| | - Fiorenza Cocchi
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (F.B.); (S.K.); (F.C.); (M.R.); (R.C.G.)
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Marvin Reitz
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (F.B.); (S.K.); (F.C.); (M.R.); (R.C.G.)
| | - Robert C. Gallo
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (F.B.); (S.K.); (F.C.); (M.R.); (R.C.G.)
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Davide Zella
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (F.B.); (S.K.); (F.C.); (M.R.); (R.C.G.)
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Correspondence: (S.C.); (D.Z.)
| |
Collapse
|
17
|
Standish I, Leis E, Erickson S, Katona R, Baumgartner W, Hanson K, Ibrahim I, Goldberg T. Nephroblastoma in a Common Mudpuppy Necturus maculosus simultaneously Present with a Mollicute Bacterium of the Genus Acholeplasma. JOURNAL OF AQUATIC ANIMAL HEALTH 2021; 33:44-52. [PMID: 33825240 DOI: 10.1002/aah.10119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/14/2020] [Indexed: 06/12/2023]
Abstract
In March 2017, a wild-caught female common mudpuppy Necturus maculosus from Iowa, USA, with an enlarged posterior abdomen was submitted for diagnostic assessment. The cause of the abdominal distension was a large fluid-filled abdominal mass, diagnosed as a nephroblastoma. Parasites and numerous bacteria were isolated and identified from the mudpuppy but were determined to be incidental. Samples of the neoplasm inoculated onto an American toad Anaxyrus americanus cell line (BufoTad) yielded cytopathic effect during several passages. However, standard molecular testing of the cell culture supernatant failed to identify any viruses. Next-generation sequencing identified the replicating agent as a bacterium of the genus Acholeplasma. Immunohistochemistry confirmed the presence of Acholeplasma within the nephroblastoma, including within tumor cells. This is the first report of nephroblastoma and the second report of neoplasia in this species. The results also suggest that certain bacteria of the genus Acholeplasma might be oncogenic.
Collapse
Affiliation(s)
- Isaac Standish
- U.S. Fish and Wildlife Service, La Crosse Fish Health Center, Onalaska, Wisconsin, 54650, USA
| | - Eric Leis
- U.S. Fish and Wildlife Service, La Crosse Fish Health Center, Onalaska, Wisconsin, 54650, USA
| | - Sara Erickson
- U.S. Fish and Wildlife Service, La Crosse Fish Health Center, Onalaska, Wisconsin, 54650, USA
| | - Ryan Katona
- U.S. Fish and Wildlife Service, La Crosse Fish Health Center, Onalaska, Wisconsin, 54650, USA
| | - Wes Baumgartner
- College of Veterinary Medicine, Diagnostic Laboratory, University of Illinois, Urbana, Illinois, 61802, USA
| | - Kevin Hanson
- Iowa Department of Natural Resources, Guttenberg Fish Hatchery, Guttenberg, Iowa, 52052, USA
| | - Iman Ibrahim
- Department of Pathology, College of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Tony Goldberg
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| |
Collapse
|
18
|
Benedetti F, Curreli S, Gallo RC, Zella D. Tampering of Viruses and Bacteria with Host DNA Repair: Implications for Cellular Transformation. Cancers (Basel) 2021; 13:E241. [PMID: 33440726 PMCID: PMC7826954 DOI: 10.3390/cancers13020241] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 02/07/2023] Open
Abstract
A reduced ability to properly repair DNA is linked to a variety of human diseases, which in almost all cases is associated with an increased probability of the development of cellular transformation and cancer. DNA damage, that ultimately can lead to mutations and genomic instability, is due to many factors, such as oxidative stress, metabolic disorders, viral and microbial pathogens, excess cellular proliferation and chemical factors. In this review, we examine the evidence connecting DNA damage and the mechanisms that viruses and bacteria have evolved to hamper the pathways dedicated to maintaining the integrity of genetic information, thus affecting the ability of their hosts to repair the damage(s). Uncovering new links between these important aspects of cancer biology might lead to the development of new targeted therapies in DNA-repair deficient cancers and improving the efficacy of existing therapies. Here we provide a comprehensive summary detailing the major mechanisms that viruses and bacteria associated with cancer employ to interfere with mechanisms of DNA repair. Comparing these mechanisms could ultimately help provide a common framework to better understand how certain microorganisms are involved in cellular transformation.
Collapse
Affiliation(s)
- Francesca Benedetti
- Institute of Human Virology and Global Virus Network Center, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Sabrina Curreli
- Institute of Human Virology and Global Virus Network Center, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (S.C.); (R.C.G.)
| | - Robert C. Gallo
- Institute of Human Virology and Global Virus Network Center, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (S.C.); (R.C.G.)
| | - Davide Zella
- Institute of Human Virology and Global Virus Network Center, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| |
Collapse
|
19
|
The Role of the Microbiome in Oral Squamous Cell Carcinoma with Insight into the Microbiome-Treatment Axis. Int J Mol Sci 2020; 21:ijms21218061. [PMID: 33137960 PMCID: PMC7662318 DOI: 10.3390/ijms21218061] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/06/2020] [Accepted: 10/12/2020] [Indexed: 12/24/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one of the leading presentations of head and neck cancer (HNC). The first part of this review will describe the highlights of the oral microbiome in health and normal development while demonstrating how both the oral and gut microbiome can map OSCC development, progression, treatment and the potential side effects associated with its management. We then scope the dynamics of the various microorganisms of the oral cavity, including bacteria, mycoplasma, fungi, archaea and viruses, and describe the characteristic roles they may play in OSCC development. We also highlight how the human immunodeficiency viruses (HIV) may impinge on the host microbiome and increase the burden of oral premalignant lesions and OSCC in patients with HIV. Finally, we summarise current insights into the microbiome–treatment axis pertaining to OSCC, and show how the microbiome is affected by radiotherapy, chemotherapy, immunotherapy and also how these therapies are affected by the state of the microbiome, potentially determining the success or failure of some of these treatments.
Collapse
|
20
|
Mycoplasmas-Host Interaction: Mechanisms of Inflammation and Association with Cellular Transformation. Microorganisms 2020; 8:microorganisms8091351. [PMID: 32899663 PMCID: PMC7565387 DOI: 10.3390/microorganisms8091351] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 08/28/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022] Open
Abstract
Mycoplasmas are the smallest and simplest self-replicating prokaryotes. Located everywhere in nature, they are widespread as parasites of humans, mammals, reptiles, fish, arthropods, and plants. They usually exhibiting organ and tissue specificity. Mycoplasmas belong to the class named Mollicutes (mollis = soft and cutis = skin, in Latin), and their small size and absence of a cell wall contribute to distinguish them from other bacteria. Mycoplasma species are found both outside the cells as membrane surface parasites and inside the cells, where they become intracellular residents as "silent parasites". In humans, some Mycoplasma species are found as commensal inhabitants, while others have a significant impact on the cellular metabolism and physiology. Mollicutes lack typical bacterial PAMPs (e.g., lipoteichoic acid, flagellin, and some lipopolysaccharides) and consequently the exact molecular mechanisms of Mycoplasmas' recognition by the cells of the immune system is the subjects of several researches for its pathogenic implications. It is well known that several strains of Mycoplasma suppress the transcriptional activity of p53, resulting in reduced apoptosis of damaged cells. In addition, some Mycoplasmas were reported to have oncogenic potential since they demonstrated not just accumulation of abnormalities but also phenotypic changes of the cells. Aim of this review is to provide an update of the current literature that implicates Mycoplasmas in triggering inflammation and altering critical cellular pathways, thus providing a better insight into potential mechanisms of cellular transformation.
Collapse
|
21
|
Yaghoubi A, Khazaei M, Jalili S, Hasanian SM, Avan A, Soleimanpour S, Cho WC. Bacteria as a double-action sword in cancer. Biochim Biophys Acta Rev Cancer 2020; 1874:188388. [PMID: 32589907 DOI: 10.1016/j.bbcan.2020.188388] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/09/2020] [Accepted: 06/18/2020] [Indexed: 01/10/2023]
Abstract
Bacteria have long been known as one of the primary causative agents of cancer, however, recent studies suggest that they can be used as a promising agent in cancer therapy. Because of the limitations that conventional treatment faces due to the specific pathophysiology and the tumor environment, there is a great need for the new anticancer therapeutic agents. Bacteriotherapy utilizes live, attenuated strains or toxins, peptides, bacteriocins of the bacteria in the treatment of cancer. Moreover, they are widely used as a vector for delivering genes, peptides, or drugs to the tumor target. Interestingly, it was found that their combination with the conventional therapeutic approaches may enhance the treatment outcome. In the genome editing era, it is feasible to develop a novel generation of therapeutic bacteria with fewer side effects and more efficacy for cancer therapy. Here we review the current knowledge on the dual role of bacteria in the development of cancer as well as cancer therapy.
Collapse
Affiliation(s)
- Atieh Yaghoubi
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saba Jalili
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hasanian
- Department of Medical Biochemistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saman Soleimanpour
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong, SAR, China.
| |
Collapse
|
22
|
Das K, Garnica O, Flores J, Dhandayuthapani S. Methionine sulfoxide reductase A (MsrA) modulates cells and protects against Mycoplasma genitalium induced cytotoxicity. Free Radic Biol Med 2020; 152:323-335. [PMID: 32222467 DOI: 10.1016/j.freeradbiomed.2020.03.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/06/2020] [Accepted: 03/23/2020] [Indexed: 12/28/2022]
Abstract
Methionine sulfoxide reductase A (MsrA) is a ubiquitous antioxidant repair enzyme which specifically reduces the oxidized methionine (Met-O) in proteins to methionine (Met). Previous studies have shown that lack of or overexpression of MsrA in cells affects the function of proteins and can lead to altered cellular processes. Interestingly, some pathogenic bacteria secrete and/or carry MsrA on their surface, suggesting some key roles for this enzyme in the modulation of host cellular processes. Therefore, we investigated how exogenously added MsrA affects the ability of the host cells in combating infection by using an in vitroMycoplasma genitalium cytotoxicity model. HeLa cells pretreated with MsrA and infected with M. genitalium showed significantly lower necrosis (cytotoxicity) than untreated cells infected with M. genitalium. Intriguingly, necrotic cell death pathway specific real time RT-PCR revealed that M. genitalium infection upregulates the expression of the TNF gene in HeLa cells and that MsrA pretreatment of the cells downregulates its expression significantly. Consistent with this, enzyme linked immunosorbent assay (ELISA) results showed that HeLa cells pretreated with MsrA secreted reduced levels of TNF-α following M. genitalium infection. Also, our study demonstrates that MsrA treatment of cells affects the phosphorylation status of transcriptional regulators such as NF-кB, JNK and p53 that regulate different cytokines. Further, fluorescent microscopy showed the cellular uptake of exogenously added MsrA fused with red fluorescent protein (MsrA-RFP). Altogether, our results suggest that secreted MsrA may help pathogens to modulate host cellular processes.
Collapse
Affiliation(s)
- Kishore Das
- Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, 79905, USA
| | - Omar Garnica
- Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, 79905, USA
| | - Javier Flores
- Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, 79905, USA; Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, 79905, USA
| | - Subramanian Dhandayuthapani
- Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, 79905, USA; Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, 79905, USA.
| |
Collapse
|
23
|
Dowling AJ, Hill GE, Bonneaud C. Multiple differences in pathogen-host cell interactions following a bacterial host shift. Sci Rep 2020; 10:6779. [PMID: 32322086 PMCID: PMC7176683 DOI: 10.1038/s41598-020-63714-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 04/01/2020] [Indexed: 12/15/2022] Open
Abstract
Novel disease emergence is often associated with changes in pathogen traits that enable pathogen colonisation, persistence and transmission in the novel host environment. While understanding the mechanisms underlying disease emergence is likely to have critical implications for preventing infectious outbreaks, such knowledge is often based on studies of viral pathogens, despite the fact that bacterial pathogens may exhibit very different life histories. Here, we investigate the ability of epizootic outbreak strains of the bacterial pathogen, Mycoplasma gallisepticum, which jumped from poultry into North American house finches (Haemorhous mexicanus), to interact with model avian cells. We found that house finch epizootic outbreak strains of M. gallisepticum displayed a greater ability to adhere to, invade, persist within and exit from cultured chicken embryonic fibroblasts, than the reference virulent (R_low) and attenuated (R_high) poultry strains. Furthermore, unlike the poultry strains, the house finch epizootic outbreak strain HF_1994 displayed a striking lack of cytotoxicity, even exerting a cytoprotective effect on avian cells. Our results suggest that, at epizootic outbreak in house finches, M. gallisepticum was particularly adept at using the intra-cellular environment, which may have facilitated colonisation, dissemination and immune evasion within the novel finch host. Whether this high-invasion phenotype is similarly displayed in interactions with house finch cells, and whether it contributed to the success of the host shift, remains to be determined.
Collapse
Affiliation(s)
- Andrea J Dowling
- Biosciences, College of Life and Environmental Science, Penryn Campus, University of Exeter, Cornwall, TR10 9FE, UK.
| | - Geoffrey E Hill
- Department of Biological Sciences, Auburn University, Auburn, AL36849-5414, USA
| | - Camille Bonneaud
- Biosciences, College of Life and Environmental Science, Penryn Campus, University of Exeter, Cornwall, TR10 9FE, UK.
| |
Collapse
|
24
|
Effects of Mycoplasmas on the Host Cell Signaling Pathways. Pathogens 2020; 9:pathogens9040308. [PMID: 32331465 PMCID: PMC7238135 DOI: 10.3390/pathogens9040308] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/18/2020] [Accepted: 04/19/2020] [Indexed: 12/22/2022] Open
Abstract
Mycoplasmas are the smallest free-living organisms. Reduced sizes of their genomes put constraints on the ability of these bacteria to live autonomously and make them highly dependent on the nutrients produced by host cells. Importantly, at the organism level, mycoplasmal infections may cause pathological changes to the host, including cancer and severe immunological reactions. At the molecular level, mycoplasmas often activate the NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) inflammatory response and concomitantly inhibit the p53-mediated response, which normally triggers the cell cycle and apoptosis. Thus, mycoplasmal infections may be considered as cancer-associated factors. At the same time, mycoplasmas through their membrane lipoproteins (LAMPs) along with lipoprotein derivatives (lipopeptide MALP-2, macrophage-activating lipopeptide-2) are able to modulate anti-inflammatory responses via nuclear translocation and activation of Nrf2 (the nuclear factor-E2-related anti-inflammatory transcription factor 2). Thus, interactions between mycoplasmas and host cells are multifaceted and depend on the cellular context. In this review, we summarize the current information on the role of mycoplasmas in affecting the host’s intracellular signaling mediated by the interactions between transcriptional factors p53, Nrf2, and NF-κB. A better understanding of the mechanisms underlying pathologic processes associated with reprogramming eukaryotic cells that arise during the mycoplasma-host cell interaction should facilitate the development of new therapeutic approaches to treat oncogenic and inflammatory processes.
Collapse
|
25
|
A MicroRNA Network Controls Legionella pneumophila Replication in Human Macrophages via LGALS8 and MX1. mBio 2020; 11:mBio.03155-19. [PMID: 32209695 PMCID: PMC7157531 DOI: 10.1128/mbio.03155-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cases of Legionella pneumophila pneumonia occur worldwide, with potentially fatal outcome. When causing human disease, Legionella injects a plethora of virulence factors to reprogram macrophages to circumvent immune defense and create a replication niche. By analyzing Legionella-induced changes in miRNA expression and genomewide chromatin modifications in primary human macrophages, we identified a cell-autonomous immune network restricting Legionella growth. This network comprises three miRNAs governing expression of the cytosolic RNA receptor DDX58/RIG-I, the tumor suppressor TP53, the antibacterial effector LGALS8, and MX1, which has been described as an antiviral factor. Our findings for the first time link TP53, LGALS8, DDX58, and MX1 in one miRNA-regulated network and integrate them into a functional node in the defense against L. pneumophila. Legionella pneumophila is an important cause of pneumonia. It invades alveolar macrophages and manipulates the immune response by interfering with signaling pathways and gene transcription to support its own replication. MicroRNAs (miRNAs) are critical posttranscriptional regulators of gene expression and are involved in defense against bacterial infections. Several pathogens have been shown to exploit the host miRNA machinery to their advantage. We therefore hypothesize that macrophage miRNAs exert positive or negative control over Legionella intracellular replication. We found significant regulation of 85 miRNAs in human macrophages upon L. pneumophila infection. Chromatin immunoprecipitation and sequencing revealed concordant changes of histone acetylation at the putative promoters. Interestingly, a trio of miRNAs (miR-125b, miR-221, and miR-579) was found to significantly affect intracellular L. pneumophila replication in a cooperative manner. Using proteome-analysis, we pinpointed this effect to a concerted downregulation of galectin-8 (LGALS8), DExD/H-box helicase 58 (DDX58), tumor protein P53 (TP53), and then MX dynamin-like GTPase 1 (MX1) by the three miRNAs. In summary, our results demonstrate a new miRNA-controlled immune network restricting Legionella replication in human macrophages.
Collapse
|
26
|
Sung J, Hawkins JR. A highly sensitive internally-controlled real-time PCR assay for mycoplasma detection in cell cultures. Biologicals 2020; 64:58-72. [DOI: 10.1016/j.biologicals.2019.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 11/28/2019] [Accepted: 12/20/2019] [Indexed: 01/10/2023] Open
|
27
|
Role of Mycoplasma Chaperone DnaK in Cellular Transformation. Int J Mol Sci 2020; 21:ijms21041311. [PMID: 32075244 PMCID: PMC7072988 DOI: 10.3390/ijms21041311] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/04/2020] [Accepted: 02/12/2020] [Indexed: 12/25/2022] Open
Abstract
Studies of the human microbiome have elucidated an array of complex interactions between prokaryotes and their hosts. However, precise bacterial pathogen-cancer relationships remain largely elusive, although several bacteria, particularly those establishing persistent intra-cellular infections, like mycoplasmas, can alter host cell cycles, affect apoptotic pathways, and stimulate the production of inflammatory substances linked to DNA damage, thus potentially promoting abnormal cell growth and transformation. Consistent with this idea, in vivo experiments in several chemically induced or genetically deficient mouse models showed that germ-free conditions reduce colonic tumor formation. We demonstrate that mycoplasma DnaK, a chaperone protein belonging to the Heath shock protein (Hsp)-70 family, binds Poly-(ADP-ribose) Polymerase (PARP)-1, a protein that plays a critical role in the pathways involved in recognition of DNA damage and repair, and reduces its catalytic activity. It also binds USP10, a key p53 regulator, reducing p53 stability and anti-cancer functions. Finally, we showed that bystander, uninfected cells take up exogenous DnaK-suggesting a possible paracrine function in promoting cellular transformation, over and above direct mycoplasma infection. We propose that mycoplasmas, and perhaps certain other bacteria with closely related DnaK, may have oncogenic activity, mediated through the inhibition of DNA repair and p53 functions, and may be involved in the initiation of some cancers but not necessarily involved nor necessarily even be present in later stages.
Collapse
|
28
|
Atallah S, Berçot B, Laurence V, Hoffmann C. Association of Mycoplasma Hominis and head and neck cancer with unknown primary. Eur Ann Otorhinolaryngol Head Neck Dis 2019; 137:69-71. [PMID: 31186167 DOI: 10.1016/j.anorl.2019.05.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Beside HPV infection, there is currently no evidence of association between head and neck squamous cell carcinomas and microbial infections. We report the case of a cervical squamous cell carcinoma by Mycoplasma hominis. CASE SUMMARY A 20-year-old woman, consulted for a swelling on the left cervical side. Clinical examination found a large fixed mass. Biological tests found no evidence of infection. Biopsies of the cervical lesion diagnosed an HPV negative squamous cell carcinoma. Microbiological tests of 16sRNA identification showed the presence of Mycoplasma hominis in the 3 specimens. The patient was treated by induction chemotherapy associated to antibiotherapy, followed by chemo-radiotherapy. DISCUSSION The present case suggests that oropharyngeal infection by Mycoplasma hominis might be more frequent than expected, that 16sRNA is an efficient technique to isolate this pathogen and finally that further studies are required to document its potential oncogenic role in head and neck squamous cell carcinomas.
Collapse
Affiliation(s)
- S Atallah
- Département de chirurgie oncologique cervico-faciale, Institut Curie, Université PSL, 75005 Paris, France
| | - B Berçot
- Département de microbiologie, Hôpital Saint-Louis, Université Paris VII, 75010 Paris, France
| | - V Laurence
- Département d'oncologie médicale, Institut Curie, Université PSL, 75005 Paris, France
| | - C Hoffmann
- Département de chirurgie oncologique cervico-faciale, Institut Curie, Université PSL, 75005 Paris, France; Inserm U932, Immunité et Cancer, Institut Curie, Université PSL, 75005 Paris, France.
| |
Collapse
|
29
|
Santos VSV, Silveira E, Pereira BB. Toxicity and applications of surfactin for health and environmental biotechnology. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2019; 21:382-399. [PMID: 30614421 DOI: 10.1080/10937404.2018.1564712] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Characterized as one of the most potent biosurfactants, surfactin is a cyclic lipopeptide synthesized by several strains of Bacillus genus. The aim of this review was to present the physicochemical and structural properties of surfactin and to demonstrate advances and applications of this biosurfactant for health and environmental biotechnology. Further, this review also focused on toxicological effects of surfactin on in vivo and in in vitro systems. The hydrophobic nature of surfactin enables interaction with membrane-bound phospholipids and indicates the ability of the molecule to act as a new weapon with respect to therapeutic and environmental properties. Seeking to avoid environmental contamination produced by widespread use of synthetic surfactants, surfactin emerges as a biological control agent against pathogen species owing to its antibacterial and antiviral properties. In addition, the mosquitocidal activity of surfactin was suggested as new strategy to control disease vectors. The current findings warrant future research to assess the toxicity of surfactin to enable an optimizing anticancer therapy and to seek refined methodologies, including nanotechnology techniques, to allow for an improved delivery of the biogenic molecule on target cells.
Collapse
Affiliation(s)
- Vanessa Santana Vieira Santos
- a Department of Environmental Health, Laboratory of Environmental Health , Federal University of Uberlândia, Santa Mônica Campus , Uberlândia , Brazil
- b Institute of Biotechnology, Department of Biotechnology , Federal University of Uberlândia, Umuarama Campus , Uberlândia , Brazil
| | - Edgar Silveira
- b Institute of Biotechnology, Department of Biotechnology , Federal University of Uberlândia, Umuarama Campus , Uberlândia , Brazil
| | - Boscolli Barbosa Pereira
- a Department of Environmental Health, Laboratory of Environmental Health , Federal University of Uberlândia, Santa Mônica Campus , Uberlândia , Brazil
- b Institute of Biotechnology, Department of Biotechnology , Federal University of Uberlândia, Umuarama Campus , Uberlândia , Brazil
| |
Collapse
|
30
|
Mycoplasma promotes malignant transformation in vivo, and its DnaK, a bacterial chaperone protein, has broad oncogenic properties. Proc Natl Acad Sci U S A 2018; 115:E12005-E12014. [PMID: 30509983 PMCID: PMC6304983 DOI: 10.1073/pnas.1815660115] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
We provide evidence here that (i) a strain of mycoplasma promotes lymphomagenesis in an in vivo mouse model; (ii) a bacterial chaperone protein, DnaK, is likely implicated in the transformation process and resistance to anticancer drugs by interfering with important pathways related to both DNA-damage control/repair and cell-cycle/apoptosis; and (iii) a very low copy number of DNA sequences of mycoplasma DnaK were found in some tumors of the infected mice. Other tumor-associated bacteria carry a similar DnaK protein. Our data suggest a common mechanism whereby bacteria can be involved in cellular transformation and resistance to anticancer drugs by a hit-and-hide/run mechanism. We isolated a strain of human mycoplasma that promotes lymphomagenesis in SCID mice, pointing to a p53-dependent mechanism similar to lymphomagenesis in uninfected p53−/− SCID mice. Additionally, mycoplasma infection in vitro reduces p53 activity. Immunoprecipitation of p53 in mycoplasma-infected cells identified several mycoplasma proteins, including DnaK, a member of the Hsp70 chaperon family. We focused on DnaK because of its ability to interact with proteins. We demonstrate that mycoplasma DnaK interacts with and reduces the activities of human proteins involved in critical cellular pathways, including DNA-PK and PARP1, which are required for efficient DNA repair, and binds to USP10 (a key p53 regulator), impairing p53-dependent anticancer functions. This also reduced the efficacy of anticancer drugs that depend on p53 to exert their effect. mycoplasma was detected early in the infected mice, but only low copy numbers of mycoplasma DnaK DNA sequences were found in some primary and secondary tumors, pointing toward a hit-and-run/hide mechanism of transformation. Uninfected bystander cells took up exogenous DnaK, suggesting a possible paracrine function in promoting malignant transformation, over and above cells infected with the mycoplasma. Phylogenetic amino acid analysis shows that other bacteria associated with human cancers have similar DnaKs, consistent with a common mechanism of cellular transformation mediated through disruption of DNA-repair mechanisms, as well as p53 dysregulation, that also results in cancer-drug resistance. This suggests that the oncogenic properties of certain bacteria are DnaK-mediated.
Collapse
|
31
|
Borchsenius SN, Daks A, Fedorova O, Chernova O, Barlev NA. Effects of mycoplasma infection on the host organism response via p53/NF‐κB signaling. J Cell Physiol 2018; 234:171-180. [DOI: 10.1002/jcp.26781] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/23/2018] [Indexed: 12/31/2022]
Affiliation(s)
| | - Alexandra Daks
- Institute of Cytology RAS, Laboratory of Gene Expression Regulation Saint‐Petersburg Russia
| | - Olga Fedorova
- Institute of Cytology RAS, Laboratory of Gene Expression Regulation Saint‐Petersburg Russia
| | - Olga Chernova
- Kazan Scientific Center Kazan Institute of Biochemistry and Biophysics, Laboratory “Omics Technology”, Russian Academy of Sciences Kazan Russia
| | - Nickolai A. Barlev
- Institute of Cytology RAS, Laboratory of Gene Expression Regulation Saint‐Petersburg Russia
| |
Collapse
|
32
|
Yuan B, Zou M, Zhao Y, Zhang K, Sun Y, Peng X. Up-Regulation of miR-130b-3p Activates the PTEN/PI3K/AKT/NF-κB Pathway to Defense against Mycoplasma gallisepticum ( HS Strain) Infection of Chicken. Int J Mol Sci 2018; 19:ijms19082172. [PMID: 30044397 PMCID: PMC6121889 DOI: 10.3390/ijms19082172] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 07/15/2018] [Accepted: 07/20/2018] [Indexed: 12/20/2022] Open
Abstract
Mycoplasma gallisepticum (MG) is the pathogen of chronic respiratory disease (CRD), hallmarked by vigorous inflammation in chickens, causing the poultry industry enormous losses. miRNAs have emerged as important regulators of animal diseases. Previous miRNA sequencing data has demonstrated that miR-130b-3p is up-regulated in MG-infected chicken embryo lungs. Therefore, we aimed to investigate the function of miR-130b-3p in MG infection of chickens. RT-qPCR results confirmed that miR-130b-3p was up-regulated both in MG-infected chicken embryo lungs and chicken embryonic fibroblast cells (DF-1 cells). Furthermore, functional studies showed that overexpression of miR-130b-3p promoted MG-infected DF-1 cell proliferation and cell cycle, whereas inhibition of miR-130b-3p weakened these cellular processes. Luciferase reporter assay combined with gene expression data supported that phosphatase and tensin homolog deleted on chromosome ten (PTEN) was a direct target of miR-130b-3p. Additionally, overexpression of miR-130b-3p resulted in up-regulations of phosphatidylinositol-3 kinase (PI3K), serine/threonine kinase (AKT), and nuclear factor-κB (NF-κB), whereas inhibition of miR-130b-3p led to the opposite results. Altogether, upon MG infection, up-regulation of miR-130b-3p activates the PI3K/AKT/NF-κB pathway, facilitates cell proliferation and cell cycle via down-regulating PTEN. This study helps to understand the mechanism of host response to MG infection.
Collapse
Affiliation(s)
- Bo Yuan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Mengyun Zou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yabo Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Kang Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yingfei Sun
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xiuli Peng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
33
|
Boyarskikh UA, Shadrina AS, Smetanina MA, Tsepilov YA, Oscorbin IP, Kozlov VV, Kel AE, Filipenko ML. Mycoplasma hyorhinis reduces sensitivity of human lung carcinoma cells to Nutlin-3 and promotes their malignant phenotype. J Cancer Res Clin Oncol 2018; 144:1289-1300. [PMID: 29737431 DOI: 10.1007/s00432-018-2658-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/02/2018] [Indexed: 02/08/2023]
Abstract
PURPOSE MDM2 inhibitors are promising anticancer agents that induce cell cycle arrest and tumor cells death via p53 reactivation. We examined the influence of Mycoplasma hyorhinis infection on sensitivity of human lung carcinoma cells NCI-H292 to MDM2 inhibitor Nutlin-3. In order to unveil possible mechanisms underlying the revealed effect, we investigated gene expression changes and signal transduction networks activated in NCI-H292 cells in response to mycoplasma infection. METHODS Sensitivity of NCI-Н292 cells to Nutlin-3 was estimated by resazurin-based cell viability assay. Genome-wide transcriptional profiles of NCI-H292 and NCI-Н292Myc.h cell lines were determined using Illumina Human HT-12 v3 Expression BeadChip. Search for key transcription factors and key node molecules was performed using the geneXplain platform. Ability for anchorage-independent growth was tested by soft agar colony formation assay. RESULTS NCI-Н292Myc.h cells were shown to be 1.5- and 5.2-fold more resistant to killing by Nutlin-3 at concentrations of 15 and 30 µM than uninfected NCI-Н292 cells (P < 0.05 and P < 0.001, respectively). Transcriptome analysis revealed differential expression of multiple genes involved in cancer progression and metastasis as well as epithelial-mesenchymal transition (EMT). Moreover, we have shown experimentally that NCI-Н292Myc.h cells were more capable of growing and dividing without binding to a substrate. The most likely mechanism explaining the observed changes was found to be TLR4- and IL-1b-mediated activation of NF-κB pathway. CONCLUSIONS Our results provide evidence that mycoplasma infection is an important factor modulating the effect of MDM2 inhibitors on cancer cells and is able to induce EMT-related changes.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Carcinoma, Mucoepidermoid/drug therapy
- Carcinoma, Mucoepidermoid/genetics
- Carcinoma, Mucoepidermoid/metabolism
- Carcinoma, Mucoepidermoid/microbiology
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/microbiology
- Cell Line, Tumor
- Drug Resistance, Neoplasm
- Female
- Gene Expression/drug effects
- Humans
- Imidazoles/pharmacology
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/microbiology
- Male
- Middle Aged
- Mycoplasma Infections/metabolism
- Mycoplasma Infections/microbiology
- Mycoplasma Infections/physiopathology
- Mycoplasma hyorhinis/physiology
- Piperazines/pharmacology
- Signal Transduction
- Transcriptome
- Young Adult
Collapse
Affiliation(s)
- Uljana A Boyarskikh
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentjev Avenue, Novosibirsk, 630090, Russia
| | - Alexandra S Shadrina
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentjev Avenue, Novosibirsk, 630090, Russia.
- Novosibirsk State University, 2 Pirogova Street, Novosibirsk, 630090, Russia.
| | - Mariya A Smetanina
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentjev Avenue, Novosibirsk, 630090, Russia
- Novosibirsk State University, 2 Pirogova Street, Novosibirsk, 630090, Russia
| | - Yakov A Tsepilov
- Novosibirsk State University, 2 Pirogova Street, Novosibirsk, 630090, Russia
- Institute of Cytology and Genetics, 10 Lavrentjev Avenue, Novosibirsk, 630090, Russia
| | - Igor P Oscorbin
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentjev Avenue, Novosibirsk, 630090, Russia
- Novosibirsk State University, 2 Pirogova Street, Novosibirsk, 630090, Russia
| | - Vadim V Kozlov
- Novosibirsk Regional Clinical Oncological Center, 2 Plakhotnogo Street, Novosibirsk, 630108, Russia
| | - Alexander E Kel
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentjev Avenue, Novosibirsk, 630090, Russia
- Department of Research and Development, geneXplain GmbH, Am Exer 10b, 38302, Wolfenbüttel, Germany
| | - Maxim L Filipenko
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentjev Avenue, Novosibirsk, 630090, Russia
- Novosibirsk State University, 2 Pirogova Street, Novosibirsk, 630090, Russia
| |
Collapse
|
34
|
Blötz C, Stülke J. Glycerol metabolism and its implication in virulence in Mycoplasma. FEMS Microbiol Rev 2017; 41:640-652. [PMID: 28961963 DOI: 10.1093/femsre/fux033] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 06/09/2017] [Indexed: 12/11/2022] Open
Abstract
Glycerol and glycerol-containing compounds such as lipids belong to the most abundant organic compounds that may serve as nutrient for many bacteria. For the cell wall-less bacteria of the genus Mycoplasma, glycerol derived from phospholipids of their human or animal hosts is the major source of carbon and energy. The lipids are first degraded by lipases, and the resulting glycerophosphodiesters are transported into the cell and cleaved to release glycerol-3-phosphate. Alternatively, free glycerol can be transported, and then become phosphorylated. The oxidation of glycerol-3-phosphate in Mycoplasma spp. as well as in related firmicutes involves a hydrogen peroxide-generating glycerol-3-phosphate oxidase. This enzyme is a key player in the virulence of Mycoplasma spp. as the produced hydrogen peroxide is one of the major virulence factors of these bacteria. In this review, the different components involved in the utilization of lipids and glycerol in Mycoplasma pneumoniae and related bacteria are discussed.
Collapse
Affiliation(s)
- Cedric Blötz
- Department for General Microbiology, Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Jörg Stülke
- Department for General Microbiology, Georg-August-University Göttingen, 37077 Göttingen, Germany
| |
Collapse
|
35
|
Cao S, Shen D, Wang Y, Li L, Zhou L, Wang Y. Potential malignant transformation in the gastric mucosa of immunodeficient mice with persistent Mycoplasma penetrans infection. PLoS One 2017; 12:e0180514. [PMID: 28692662 PMCID: PMC5503272 DOI: 10.1371/journal.pone.0180514] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 06/17/2017] [Indexed: 12/11/2022] Open
Abstract
Mycoplasma infection has been reported in immunocompromised cancer patients; nevertheless, it is not clear if persistent Mycoplasma infection could facilitate the proliferation of cancer cells in immunocompromised organisms. The aim of this study was to examine the relationship between persistent Mycoplasma infection and malignant transformation in an immunodeficient host model. Immunodeficient mouse model was established using cyclophosphamide and mice gastric mucosal cells were infected with Mycoplasma penetrans (Mpe). After 18 weeks, mice were sacrificed and gastric mucosal Mpe infected cells were identified by fluorescence in situ hybridization (FISH). Moreover, pathological and ultrastructural changes in mice gastric mucosa were evaluated and the expression of multiple proto-oncogenes was examined by Western blot. Our data show that Mpe infection was detected in the blood of immunodeficient mice and Mpe persistent infection in mice gastric mucosa was confirmed by FISH. There were pathological and ultrastructural malignant transformation occurred in the gastric mucosa of infected mice compared to control mice. Mpe infected mice showed lower expression of p53 and p21 and higher H-ras expression compared to the control group. Moreover, expression of NF-κB p65 subunit increased in Mpe infected mice, similar to the TNF-α expression. Bax expression in gastric mucosa of Mpe infected mice was lower while Bcl-2 expression was higher than in the uninfected control group. Collectively these data demonstrate that persistent Mpe infection is associated with aberrant expression of multiple proto-oncogenes in gastric mucosa of immunodeficient mice which potentially facilitate the malignant transformation.
Collapse
Affiliation(s)
- Shuyan Cao
- The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Dandan Shen
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, Shanghai, China
| | - Yadong Wang
- Department of Emergency, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Linxi Li
- The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Liping Zhou
- Department of Laboratory Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuxue Wang
- Department of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, China
- * E-mail:
| |
Collapse
|
36
|
Benedetti F, Curreli S, Krishnan S, Davinelli S, Cocchi F, Scapagnini G, Gallo RC, Zella D. Anti-inflammatory effects of H 2S during acute bacterial infection: a review. J Transl Med 2017; 15:100. [PMID: 28490346 PMCID: PMC5424385 DOI: 10.1186/s12967-017-1206-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/03/2017] [Indexed: 12/20/2022] Open
Abstract
Hydrogen sulfide (H2S), previously only considered a toxic environmental air pollutant, is now increasingly recognized as an important signaling molecule able to modulate several cellular pathways in many human tissues. As demonstrated in recent studies, H2S is produced endogenously in response to different cellular stimuli and plays different roles in controlling a number of physiological responses. The precise role of H2S in inflammation is still largely unknown. In particular, the role of H2S in the regulation of the inflammatory response in acute and chronic infections is being actively investigated because of its potential therapeutic use. To study the effect of H2S as an anti-inflammatory mediator during bacterial infections, we developed an ex vivo model of primary cells and cell lines infected with Mycoplasma. Our data demonstrate a dichotomic effect of H2S on the NF-kB and Nrf-2 molecular pathways, which were inhibited and stimulated, respectively.
Collapse
Affiliation(s)
- Francesca Benedetti
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| | - Sabrina Curreli
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Selvi Krishnan
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Sergio Davinelli
- Department of Medicine and Health Sciences, University of Molise, 86100, Campobasso, Italy
| | - Fiorenza Cocchi
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences, University of Molise, 86100, Campobasso, Italy
| | - Robert C Gallo
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Davide Zella
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| |
Collapse
|
37
|
Gedye C, Cardwell T, Dimopoulos N, Tan BS, Jackson H, Svobodová S, Anaka M, Behren A, Maher C, Hofmann O, Hide W, Caballero O, Davis ID, Cebon J. Mycoplasma Infection Alters Cancer Stem Cell Properties in Vitro. Stem Cell Rev Rep 2016; 12:156-61. [PMID: 26514153 DOI: 10.1007/s12015-015-9630-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cancer cell lines can be useful to model cancer stem cells. Infection with Mycoplasma species is an insidious problem in mammalian cell culture. While investigating stem-like properties in early passage melanoma cell lines, we noted poorly reproducible results from an aliquot of a cell line that was later found to be infected with Mycoplasma hyorhinis. Deliberate infection of other early passage melanoma cell lines aliquots induced variable and unpredictable effects on expression of putative cancer stem cell markers, clonogenicity, proliferation and global gene expression. Cell lines established in stem cell media (SCM) were equally susceptible. Mycoplasma status is rarely reported in publications using cultured cells to study the cancer stem cell hypothesis. Our work highlights the importance of surveillance for Mycoplasma infection while using any cultured cells to interrogate tumor heterogeneity.
Collapse
Affiliation(s)
- Craig Gedye
- Ludwig Institute for Cancer Research, Austin Hospital, Studley Road, Heidelberg, VIC, 3084, Australia.,University of Newcastle, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
| | - Tracy Cardwell
- Ludwig Institute for Cancer Research, Austin Hospital, Studley Road, Heidelberg, VIC, 3084, Australia.,School of Cancer Medicine, LaTrobe University, Olivia Newton-John Cancer Research Institute, Level 5, Olivia Newton-John Cancer & Wellness Centre, Austin Health, 145-163 Studley Road, Heidelberg, VIC, 3084, Australia
| | - Nektaria Dimopoulos
- Ludwig Institute for Cancer Research, Austin Hospital, Studley Road, Heidelberg, VIC, 3084, Australia
| | - Bee Shin Tan
- Ludwig Institute for Cancer Research, Austin Hospital, Studley Road, Heidelberg, VIC, 3084, Australia
| | - Heather Jackson
- Ludwig Institute for Cancer Research, Austin Hospital, Studley Road, Heidelberg, VIC, 3084, Australia
| | - Suzanne Svobodová
- Ludwig Institute for Cancer Research, Austin Hospital, Studley Road, Heidelberg, VIC, 3084, Australia
| | - Matthew Anaka
- Ludwig Institute for Cancer Research, Austin Hospital, Studley Road, Heidelberg, VIC, 3084, Australia
| | - Andreas Behren
- Ludwig Institute for Cancer Research, Austin Hospital, Studley Road, Heidelberg, VIC, 3084, Australia.,School of Cancer Medicine, LaTrobe University, Olivia Newton-John Cancer Research Institute, Level 5, Olivia Newton-John Cancer & Wellness Centre, Austin Health, 145-163 Studley Road, Heidelberg, VIC, 3084, Australia
| | - Christopher Maher
- South African National Bioinformatics Institute, University of the Western Cape, Private Bag X17, Bellville, 7535, South Africa.,Washington University Genome Institute, St. Louis, MO, 63110, USA
| | - Oliver Hofmann
- South African National Bioinformatics Institute, University of the Western Cape, Private Bag X17, Bellville, 7535, South Africa.,Department of Biostatistics, Harvard School of Public Health, 655 Huntington Avenue, SPH2, 4th Floor, Boston, MA, 02115, USA
| | - Winston Hide
- South African National Bioinformatics Institute, University of the Western Cape, Private Bag X17, Bellville, 7535, South Africa.,Department of Biostatistics, Harvard School of Public Health, 655 Huntington Avenue, SPH2, 4th Floor, Boston, MA, 02115, USA
| | - Otavia Caballero
- Ludwig Institute for Cancer Research, New York Branch at Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10021, USA
| | - Ian D Davis
- Ludwig Institute for Cancer Research, Austin Hospital, Studley Road, Heidelberg, VIC, 3084, Australia.,Eastern Health Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, and Eastern Health, Box Hill Hospital, 5 Arnold St, Box Hill, VIC, 3128, Australia
| | - Jonathan Cebon
- Ludwig Institute for Cancer Research, Austin Hospital, Studley Road, Heidelberg, VIC, 3084, Australia. .,School of Cancer Medicine, LaTrobe University, Olivia Newton-John Cancer Research Institute, Level 5, Olivia Newton-John Cancer & Wellness Centre, Austin Health, 145-163 Studley Road, Heidelberg, VIC, 3084, Australia.
| |
Collapse
|
38
|
Gudkov AV, Komarova EA. p53 and the Carcinogenicity of Chronic Inflammation. Cold Spring Harb Perspect Med 2016; 6:cshperspect.a026161. [PMID: 27549311 DOI: 10.1101/cshperspect.a026161] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chronic inflammation is a major cancer predisposition factor. Constitutive activation of the inflammation-driving NF-κB pathway commonly observed in cancer or developed in normal tissues because of persistent infections or endogenous tissue irritating factors, including products of secretion by senescent cells accumulating with age, markedly represses p53 functions. In its turn, p53 acts as a suppressor of inflammation helping to keep it within safe limits. The antagonistic relationship between p53 and NF-κB is controlled by multiple mechanisms and reflects cardinal differences in organismal responses to intrinsic and extrinsic cell stresses driven by these two transcription factors, respectively. This provides an opportunity for developing drugs to treat diseases associated with inappropriate activity of either p53 or NF-κB through targeting the opposing pathway. Several drug candidates of this kind are currently in clinical testing. These include anticancer small molecules capable of simultaneous suppression of p53 and activation of NF-κB and NF-κB-activating biologics that counteract p53-mediated pathologies associated with systemic genotoxic stresses such as acute radiation syndrome and side effects of cancer treatment.
Collapse
Affiliation(s)
- Andrei V Gudkov
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, New York 14263
| | - Elena A Komarova
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, New York 14263
| |
Collapse
|
39
|
Khan S, Zakariah M, Palaniappan S. Computational prediction of Mycoplasma hominis proteins targeting in nucleus of host cell and their implication in prostate cancer etiology. Tumour Biol 2016; 37:10805-10813. [PMID: 26874727 DOI: 10.1007/s13277-016-4970-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/02/2016] [Indexed: 12/16/2022] Open
Abstract
Cancer has long been assumed to be a genetic disease. However, recent evidence supports the enigmatic connection of bacterial infection with the growth and development of various types of cancers. The cause and mechanism of the growth and development of prostate cancer due to Mycoplasma hominis remain unclear. Prostate cancer cells are infected and colonized by enteroinvasive M. hominis, which controls several factors that can affect prostate cancer growth in susceptible persons. We investigated M. hominis proteins targeting the nucleus of host cells and their implications in prostate cancer etiology. Many vital processes are controlled in the nucleus, where the proteins targeting M. hominis may have various potential implications. A total of 29/563 M. hominis proteins were predicted to target the nucleus of host cells. These include numerous proteins with the capability to alter normal growth activities. In conclusion, our results emphasize that various proteins of M. hominis targeted the nucleus of host cells and were involved in prostate cancer etiology through different mechanisms and strategies.
Collapse
Affiliation(s)
- Shahanavaj Khan
- Nanomedicine & Biotechnology Research Unit, Department of Pharmaceutics, College of Pharmacy, King Saud University, PO Box 2457, Riyadh, 11451, Saudi Arabia.
- Department of Bioscience, Shri Ram Group of College (SRGC), Muzaffarnagar, UP, India.
| | - Mohammed Zakariah
- Research Center, College of Computer and Information Science, King Saud University, Riyadh, Saudi Arabia
| | - Sellappan Palaniappan
- School of Science and Engineering, Malaysia University of Science and Technology, Petaling Jaya, Malaysia
| |
Collapse
|
40
|
Chernov AV, Reyes L, Peterson S, Strongin AY. Depletion of CG-Specific Methylation in Mycoplasma hyorhinis Genomic DNA after Host Cell Invasion. PLoS One 2015; 10:e0142529. [PMID: 26544880 PMCID: PMC4636357 DOI: 10.1371/journal.pone.0142529] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 10/22/2015] [Indexed: 11/18/2022] Open
Abstract
Adaptation to the environment requires pathogenic bacteria to alter their gene expression in order to increase long-term survival in the host. Here, we present the first experimental evidence that bacterial DNA methylation affects the intracellular survival of pathogenic Mycoplasma hyorhinis. Using bisulfite sequencing, we identified that the M. hyorhinis DNA methylation landscape was distinct in free-living M. hyorhinis relative to the internalized bacteria surviving in the infected human cells. We determined that genomic GATC sites were consistently highly methylated in the bacterial chromosome suggesting that the bacterial GATC-specific 5-methylcytosine DNA methyltransferase was fully functional both pre- and post-infection. In contrast, only the low CG methylation pattern was observed in the mycoplasma genome in the infective bacteria that invaded and then survived in the host cells. In turn, two distinct populations, with either high or low CG methylation, were detected in the M. hyorhinis cultures continually grown in the rich medium independently of host cells. We also identified that M. hyorhinis efficiently evaded endosomal degradation and uses exocytosis to exit infected human cells enabling re-infection of additional cells. The well-orchestrated changes in the chromosome methylation landscape play a major regulatory role in the mycoplasma life cycle.
Collapse
Affiliation(s)
- Andrei V. Chernov
- Infectious & Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States of America
- * E-mail: (AC); (AS)
| | - Leticia Reyes
- Department of Infectious Disease & Pathology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Scott Peterson
- Infectious & Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States of America
| | - Alex Y. Strongin
- Infectious & Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States of America
- * E-mail: (AC); (AS)
| |
Collapse
|
41
|
Abstract
p53 tumor suppressor has been identified as a protein interacting with the large T antigen produced by simian vacuolating virus 40 (SV40). Subsequent research on p53 inhibition by SV40 and other tumor viruses has not only helped to gain a better understanding of viral biology, but also shaped our knowledge of human tumorigenesis. Recent studies have found, however, that inhibition of p53 is not strictly in the realm of viruses. Some bacterial pathogens also actively inhibit p53 protein and induce its degradation, resulting in alteration of cellular stress responses. This phenomenon was initially characterized in gastric epithelial cells infected with Helicobacter pylori, a bacterial pathogen that commonly infects the human stomach and is strongly linked to gastric cancer. Besides H. pylori, a number of other bacterial species were recently discovered to inhibit p53. These findings provide novel insights into host–bacteria interactions and tumorigenesis associated with bacterial infections. This review focuses on a novel aspect of host–bacteria interactions: the direct interplay between bacterial pathogens and tumor suppression mechanisms that protect the host from cancer development. Recent studies revealed that various pathogenic bacteria actively inhibit the major tumor suppression pathway mediated by p53 protein that plays a key role in the regulation of multiple cellular stress responses and prevention of cancerogenesis. Bacterial degradation of p53 was first discovered in the context of Helicobacter pylori infection, which is currently the strongest known risk factor for adenocarcinoma of the stomach. This phenomenon, however, is not limited to H. pylori, and many other bacterial pathogens inhibit p53 using various mechanisms. Inhibition of p53 by bacteria is linked to bacterial modulation of the host cellular responses to DNA damage, metabolic stress, and, potentially, other stressors. This is a dynamic area of research that will continue to evolve and make important contributions to a better understanding of host–microbe interactions and tumorigenesis. These studies may offer new molecular targets and opportunities for drug development.
Collapse
Affiliation(s)
- Alexander I. Zaika
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee, United States of America
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- * E-mail:
| | - Jinxiong Wei
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee, United States of America
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Jennifer M. Noto
- Department of Medicine, Division of Gastroenterology, Vanderbilt University Medical Center, Tennessee, United States of America
| | - Richard M. Peek
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Medicine, Division of Gastroenterology, Vanderbilt University Medical Center, Tennessee, United States of America
| |
Collapse
|
42
|
Patil S, Rao RS, Raj AT. Role of Mycoplasma in the Initiation and Progression of Oral Cancer. J Int Oral Health 2015; 7:i-ii. [PMID: 26229390 PMCID: PMC4513787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Shankargouda Patil
- Associate Professor, Department of Oral Pathology and Microbiology, Faculty of Dental Sciences, MS Ramaiah University of Applied Sciences, Bengaluru, Karnataka, India
| | - Roopa S Rao
- Professor and Head, Department of Oral Pathology, Faculty of Dental Sciences, MS Ramaiah University of Applied Sciences, Bengaluru, Karnataka, India
| | - A Thirumal Raj
- Post-graduate Student, Department of Oral Pathology, Faculty of Dental Sciences, MS Ramaiah University of Applied Sciences, Bengaluru, Karnataka, India.
| |
Collapse
|
43
|
Morris G, Berk M, Walder K, Maes M. The Putative Role of Viruses, Bacteria, and Chronic Fungal Biotoxin Exposure in the Genesis of Intractable Fatigue Accompanied by Cognitive and Physical Disability. Mol Neurobiol 2015; 53:2550-71. [PMID: 26081141 DOI: 10.1007/s12035-015-9262-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 05/28/2015] [Indexed: 01/08/2023]
Abstract
Patients who present with severe intractable apparently idiopathic fatigue accompanied by profound physical and or cognitive disability present a significant therapeutic challenge. The effect of psychological counseling is limited, with significant but very slight improvements in psychometric measures of fatigue and disability but no improvement on scientific measures of physical impairment compared to controls. Similarly, exercise regimes either produce significant, but practically unimportant, benefit or provoke symptom exacerbation. Many such patients are afforded the exclusionary, non-specific diagnosis of chronic fatigue syndrome if rudimentary testing fails to discover the cause of their symptoms. More sophisticated investigations often reveal the presence of a range of pathogens capable of establishing life-long infections with sophisticated immune evasion strategies, including Parvoviruses, HHV6, variants of Epstein-Barr, Cytomegalovirus, Mycoplasma, and Borrelia burgdorferi. Other patients have a history of chronic fungal or other biotoxin exposure. Herein, we explain the epigenetic factors that may render such individuals susceptible to the chronic pathology induced by such agents, how such agents induce pathology, and, indeed, how such pathology can persist and even amplify even when infections have cleared or when biotoxin exposure has ceased. The presence of active, reactivated, or even latent Herpes virus could be a potential source of intractable fatigue accompanied by profound physical and or cognitive disability in some patients, and the same may be true of persistent Parvovirus B12 and mycoplasma infection. A history of chronic mold exposure is a feasible explanation for such symptoms, as is the presence of B. burgdorferi. The complex tropism, life cycles, genetic variability, and low titer of many of these pathogens makes their detection in blood a challenge. Examination of lymphoid tissue or CSF in such circumstances may be warranted.
Collapse
Affiliation(s)
- Gerwyn Morris
- Tir Na Nog, Bryn Road seaside 87, Llanelli, SA15 2LW, Wales, UK
| | - Michael Berk
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Australia.,Orygen, The National Centre of Excellence in Youth Mental Health, Department of Psychiatry and The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Ken Walder
- Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong, Australia
| | - Michael Maes
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Australia. .,Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
44
|
Chernov AV, Reyes L, Xu Z, Gonzalez B, Golovko G, Peterson S, Perucho M, Fofanov Y, Strongin AY. Mycoplasma CG- and GATC-specific DNA methyltransferases selectively and efficiently methylate the host genome and alter the epigenetic landscape in human cells. Epigenetics 2015; 10:303-18. [PMID: 25695131 DOI: 10.1080/15592294.2015.1020000] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Aberrant DNA methylation is frequently observed in disease, including many cancer types, yet the underlying mechanisms remain unclear. Because germline and somatic mutations in the genes that are responsible for DNA methylation are infrequent in malignancies, additional mechanisms must be considered. Mycoplasmas spp., including Mycoplasma hyorhinis, efficiently colonize human cells and may serve as a vehicle for delivery of enzymatically active microbial proteins into the intracellular milieu. Here, we performed, for the first time, genome-wide and individual gene mapping of methylation marks generated by the M. hyorhinis CG- and GATC-specific DNA cytosine methyltransferases (MTases) in human cells. Our results demonstrated that, upon expression in human cells, MTases readily translocated to the cell nucleus. In the nucleus, MTases selectively and efficiently methylated the host genome at the DNA sequence sites free from pre-existing endogenous methylation, including those in a variety of cancer-associated genes. We also established that mycoplasma is widespread in colorectal cancers, suggesting that either the infection contributed to malignancy onset or, alternatively, that tumors provide a favorable environment for mycoplasma growth. In the human genome, ∼ 11% of GATC sites overlap with CGs (e.g., CGAT(m)CG); therefore, the methylated status of these sites can be perpetuated by human DNMT1. Based on these results, we now suggest that the GATC-specific methylation represents a novel type of infection-specific epigenetic mark that originates in human cells with a previous exposure to infection. Overall, our findings unveil an entirely new panorama of interactions between the human microbiome and epigenome with a potential impact in disease etiology.
Collapse
Affiliation(s)
- Andrei V Chernov
- a Infectious & Inflammatory Disease Center ; Sanford-Burnham Medical Research Institute ; La Jolla , CA USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Phenotypic characterization of Mycoplasma synoviae induced changes in the metabolic and sensitivity profile of in vitro infected chicken chondrocytes. BIOMED RESEARCH INTERNATIONAL 2014; 2014:613730. [PMID: 25243158 PMCID: PMC4160629 DOI: 10.1155/2014/613730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 08/09/2014] [Accepted: 08/10/2014] [Indexed: 11/18/2022]
Abstract
In infectious synovitis caused by Mycoplasma synoviae chicken chondrocytes (CCH) may come into direct contact with these bacteria that are also capable of invading CCH in vitro. In this study, phenotype microarrays were used to evaluate the influence of Mycoplasma synoviae on the global metabolic activity of CCH. Therefore, CCH were cultured in the presence of 504 individual compounds, spotted in wells of 11 phenotype microarrays for eukaryotic cells, and exposed to Mycoplasma synoviae membranes or viable Mycoplasma synoviae. Metabolic activity and sensitivity of normal cells versus infected cells were evaluated. Metabolic profiles of CCH treated with viable Mycoplasma synoviae or its membranes were significantly different from those of CCH alone. CCH treated with Mycoplasma synoviae membranes were able to use 48 carbon/nitrogen sources not used by CCH alone. Treatment also influenced ion uptake in CCH and intensified the sensitivity to 13 hormones, 5 immune mediators, and 29 cytotoxic chemicals. CCH were even more sensitive to hormones/immune mediators when exposed to viable Mycoplasma synoviae. Our results indicate that exposure to Mycoplasma synoviae or its membranes induces a wide range of metabolic and sensitivity modifications in CCH that can contribute to pathological processes in the development of infectious synovitis.
Collapse
|
46
|
Vande Voorde J, Balzarini J, Liekens S. Mycoplasmas and cancer: focus on nucleoside metabolism. EXCLI JOURNAL 2014; 13:300-22. [PMID: 26417262 PMCID: PMC4464442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 02/19/2014] [Indexed: 11/26/2022]
Abstract
The standard of care for patients suffering cancer often includes treatment with nucleoside analogues (NAs). NAs are internalized by cell-specific nucleobase/nucleoside transporters and, after enzymatic activation (often one or more phosphorylation steps), interfere with cellular nucleo(s)(t)ide metabolism and DNA/RNA synthesis. Therefore, their efficacy is highly dependent on the expression and activity of nucleo(s)(t)ide-metabolizing enzymes, and alterations thereof (e.g. by down/upregulated expression or mutations) may change the susceptibility to NA-based therapy and/or confer drug resistance. Apart from host cell factors, several other variables including microbial presence may determine the metabolome (i.e. metabolite concentrations) of human tissues. Studying the diversity of microorganisms that are associated with the human body has already provided new insights in several diseases (e.g. diabetes and inflammatory bowel disease) and the metabolic exchange between tissues and their specific microbiota was found to affect the bioavailability and toxicity of certain anticancer drugs, including NAs. Several studies report a preferential colonization of tumor tissues with some mycoplasma species (mostly Mycoplasma hyorhinis). These prokaryotes are also a common source of cell culture contamination and alter the cytostatic activity of some NAs in vitro due to the expression of nucleoside-catabolizing enzymes. Mycoplasma infection may therefore bias experimental work with NAs, and their presence in the tumor microenvironment could be of significance when optimizing nucleoside-based cancer treatment.
Collapse
Affiliation(s)
- Johan Vande Voorde
- Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, blok x - bus 1030, B-3000 Leuven, Belgium
| | - Jan Balzarini
- Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, blok x - bus 1030, B-3000 Leuven, Belgium
| | - Sandra Liekens
- Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, blok x - bus 1030, B-3000 Leuven, Belgium
| |
Collapse
|
47
|
Peptides genetically selected for NF-κB activation cooperate with oncogene Ras and model carcinogenic role of inflammation. Proc Natl Acad Sci U S A 2014; 111:E474-83. [PMID: 24474797 DOI: 10.1073/pnas.1311945111] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chronic inflammation is associated with increased cancer risk. Furthermore, the transcription factor NF-κB, a central regulator of inflammatory responses, is constitutively active in most tumors. To determine whether active NF-κB inherently contributes to malignant transformation, we isolated a set of NF-κB-activating genetic elements and tested their oncogenic potential in rodent cell transformation models. Genetic elements with desired properties were isolated using biologically active selectable peptide technology, which involves functional screening of lentiviral libraries encoding 20 or 50 amino acid-long polypeptides supplemented with endoplasmic reticulum-targeting and oligomerization domains. Twelve NF-κB-activating selectable peptides (NASPs) representing specific fragments of six proteins, none of which was previously associated with NF-κB activation, were isolated from libraries of 200,000 peptides derived from 500 human extracellular proteins. Using selective knockdown of distinct components of the NF-κB pathway, we showed that the isolated NASPs act either via or upstream of TNF receptor-associated factor 6. Transduction of NASPs into mouse and rat embryo fibroblasts did not, in itself, alter their growth. However, when coexpressed with oncogenic Ras (H-Ras(V12)), NASPs allowed rodent fibroblasts to overcome H-Ras(V12)-mediated p53-dependent senescence and acquire a transformed tumorigenic phenotype. Consistent with their ability to cooperate with oncogenic Ras in cell transformation, NASP expression reduced the transactivation activity of p53. This system provides an in vitro model of NF-κB-driven carcinogenesis and suggests that the known carcinogenic effects of inflammation may be at least partially due to NF-κB-mediated abrogation of oncogene-induced senescence.
Collapse
|
48
|
Makarenkova ID, Logunov DY, Tukhvatulin AI, Semenova IB, Besednova NN, Zvyagintseva TN. Interactions between sulfated polysaccharides from sea brown algae and Toll-like receptors on HEK293 eukaryotic cells in vitro. Bull Exp Biol Med 2012; 154:241-4. [PMID: 23330135 DOI: 10.1007/s10517-012-1922-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We studied the interactions between sulfated polysaccharides, fucoidans from sea brown algae Laminaria japonica, Laminaria cichorioides, and Fucus evanescens, with human Toll-like receptors (TLR) expressed on membranes of cultured human embryonic kidney cells (HEK293-null, HEK293-TLR2/CD14, HEK293-hTLR4/CD14-MD2, and HEK293-hTLR5). Fucoidans interacted with TLR-2 and TLR-4, but not with TLR-5, and were nontoxic for the cell cultures. L. japonica fucoidan (1 mg/ml), L. cichorioides fucoidan (100 μg/ml and 1 mg/ml), and F. evanescens fucoidan (10 μg/ml-1 mg/ml) activated transcription nuclear factor NF-ϰB by binding specifically to TLR-2. L. japonica fucoidan (100 μg/ml and 1 mg/ml), L. cichorioides fucoidan (10 μg/ml-1 mg/ml), and F. evanescens fucoidan (1 μg/ml-1 mg/ml) activated NF-ϰB via binding to TLR-4. These results indicated that fucoidans could induce in vivo defense from pathogenic microorganisms of various classes.
Collapse
Affiliation(s)
- I D Makarenkova
- Institute of Epidemiology and Microbiology, Siberian Division of the Russian Academy of Medical Sciences, Vladivostok, Russia.
| | | | | | | | | | | |
Collapse
|
49
|
Degeling MH, Maguire CA, Bovenberg MSS, Tannous BA. Sensitive assay for mycoplasma detection in mammalian cell culture. Anal Chem 2012; 84:4227-32. [PMID: 22506739 DOI: 10.1021/ac2033112] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mycoplasma contamination in mammalian cell cultures is often overlooked yet is a serious issue which can induce a myriad of cellular changes leading to false interpretation of experimental results. Here, we present a simple and sensitive assay to monitor mycoplasma contamination (mycosensor) based on degradation of the Gaussia luciferase reporter in the conditioned medium of cells. This assay proved to be more sensitive as compared to a commercially available bioluminescent assay in detecting mycoplasma contamination in seven different cell lines. The Gaussia luciferase mycosensor assay provides an easy tool to monitor mammalian cell contaminants in a high-throughput fashion.
Collapse
Affiliation(s)
- M Hannah Degeling
- Experimental Therapeutics and Molecular Imaging Laboratory, Neuroscience Center, Department of Neurology, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | |
Collapse
|
50
|
Elkind E, Vaisid T, Kornspan JD, Barnoy S, Rottem S, Kosower NS. Calpastatin upregulation in Mycoplasma hyorhinis-infected cells is promoted by the mycoplasma lipoproteins via the NF-κB pathway. Cell Microbiol 2012; 14:840-51. [PMID: 22288381 DOI: 10.1111/j.1462-5822.2012.01760.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Mycoplasma hyorhinis frequently contaminates cultured cells, with effects on synthetic and metabolic pathways. We demonstrated for the first time that contamination of cells by a strain of M. hyorhinis (NDMh) results in increased levels of calpastatin (the endogenous inhibitor of the ubiquitous Ca(2+) -dependent protease calpain). We now show that the calpastatin upregulation by NDMh in neuroblastoma SH-SY5Y cells resides in the NDMh lipoprotein fraction (LPP), via the NF-κB transcription pathway. NF-κB activation requires dissociation of the cytoplasmic NF-κB/IκB complex followed by NF-κB translocation to the nucleus. NDMh-LPP induced translocation of the NF-κB RelA subunit to the nucleus and upregulated calpastatin. RelA translocation and calpastatin elevation were prevented when dissociation of the NF-κB/IκB complex was inhibited either by transfection with the non-phosphorylatable IκB mutant ΔNIκBα, or by using PS1145, an inhibitor of the IκB kinase (IKK complex). Increased calpastatin levels attenuate calpain-related amyloid-β-peptide and Ca(2+) -toxicity (these are central to the pathogenesis of Alzheimer's Disease). LPP-induced elevation of calpastatin provides an example of effects on non-inflammatory intracellular proteins, the outcome being significant alterations in host cell functions. Since calpastatin level is important in the control of calpain activity, mycoplasmal LPP may be of interest in treating some pathological processes involving excessive calpain activation.
Collapse
Affiliation(s)
- Esther Elkind
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv, Tel-Aviv 69978, Israel
| | | | | | | | | | | |
Collapse
|