1
|
Fettig R, Gonda Z, Walter N, Sallmann P, Thanisch C, Winter M, Bauer S, Zhang L, Linden G, Litfin M, Khamanaeva M, Storm S, Münzing C, Etard C, Armant O, Vázquez O, Kassel O. Short internal open reading frames repress the translation of N-terminally truncated proteoforms. EMBO Rep 2025; 26:1566-1589. [PMID: 39962229 PMCID: PMC11933307 DOI: 10.1038/s44319-025-00390-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 01/31/2025] [Accepted: 02/04/2025] [Indexed: 03/26/2025] Open
Abstract
Internal translation initiation sites, as revealed by ribosome profiling experiments can potentially drive the translation of many N-terminally truncated proteoforms. We report that internal short open reading frame (sORF) within coding sequences regulate their translation. nTRIP6 represents a short nuclear proteoform of the cytoplasmic protein TRIP6. We have previously reported that nTRIP6 regulates the dynamics of skeletal muscle progenitor differentiation. Here we show that nTRIP6 is generated by translation initiation at an internal AUG after leaky scanning at the canonical TRIP6 AUG. The translation of nTRIP6 is repressed by an internal sORF immediately upstream of the nTRIP6 AUG. Consistent with this representing a more general regulatory feature, we have identified other internal sORFs which repress the translation of N-terminally truncated proteoforms. In an in vitro model of myogenic differentiation, the expression of nTRIP6 is transiently upregulated through a mechanistic Target of Rapamycin Complex 1-dependent increase in translation initiation at the internal AUG. Thus, the translation of N-terminally truncated proteoforms can be regulated independently of the canonical ORF.
Collapse
Affiliation(s)
- Raphael Fettig
- Karlsruhe Institute of Technology (KIT), Institute for Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe, Germany
| | - Zita Gonda
- Karlsruhe Institute of Technology (KIT), Institute for Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe, Germany
| | - Niklas Walter
- Karlsruhe Institute of Technology (KIT), Institute for Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe, Germany
| | - Paul Sallmann
- Karlsruhe Institute of Technology (KIT), Institute for Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe, Germany
| | - Christiane Thanisch
- Karlsruhe Institute of Technology (KIT), Institute for Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe, Germany
| | - Markus Winter
- Karlsruhe Institute of Technology (KIT), Institute for Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe, Germany
| | - Susanne Bauer
- Karlsruhe Institute of Technology (KIT), Institute for Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe, Germany
| | - Lei Zhang
- Philipps-Universität Marburg, Faculty of Chemistry, Marburg, Germany
| | - Greta Linden
- Philipps-Universität Marburg, Faculty of Chemistry, Marburg, Germany
| | - Margarethe Litfin
- Karlsruhe Institute of Technology (KIT), Institute for Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe, Germany
| | - Marina Khamanaeva
- Karlsruhe Institute of Technology (KIT), Institute for Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe, Germany
| | - Sarah Storm
- Karlsruhe Institute of Technology (KIT), Institute for Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe, Germany
| | - Christina Münzing
- Karlsruhe Institute of Technology (KIT), Institute for Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe, Germany
| | - Christelle Etard
- Karlsruhe Institute of Technology (KIT), Institute for Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe, Germany
| | - Olivier Armant
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SERPEN/LECO, Cadarache, France
| | - Olalla Vázquez
- Philipps-Universität Marburg, Faculty of Chemistry, Marburg, Germany
- Philipps-Universität Marburg, Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Olivier Kassel
- Karlsruhe Institute of Technology (KIT), Institute for Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe, Germany.
| |
Collapse
|
2
|
Christen D, Lauinger M, Brunner M, Dengjel J, Brummer T. The mTOR pathway controls phosphorylation of BRAF at T401. Cell Commun Signal 2024; 22:428. [PMID: 39223665 PMCID: PMC11370054 DOI: 10.1186/s12964-024-01808-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024] Open
Abstract
BRAF serves as a gatekeeper of the RAS/RAF/MEK/ERK pathway, which plays a crucial role in homeostasis. Since aberrant signalling of this axis contributes to cancer and other diseases, it is tightly regulated by crosstalk with the PI3K/AKT/mTOR pathway and ERK mediated feedback loops. For example, ERK limits BRAF signalling through phosphorylation of multiple residues. One of these, T401, is widely considered as an ERK substrate following acute pathway activation by growth factors. Here, we demonstrate that prominent T401 phosphorylation (pT401) of endogenous BRAF is already observed in the absence of acute stimulation in various cell lines of murine and human origin. Importantly, the BRAF/RAF1 inhibitor naporafenib, the MEK inhibitor trametinib and the ERK inhibitor ulixertinib failed to reduce pT401 levels in these settings, supporting an alternative ERK-independent pathway to T401 phosphorylation. In contrast, the mTOR inhibitor torin1 and the dual-specific PI3K/mTOR inhibitor dactolisib significantly suppressed pT401 levels in all investigated cell types, in both a time and concentration dependent manner. Conversely, genetic mTOR pathway activation by oncogenic RHEB (Q64L) and mTOR (S2215Y and R2505P) mutants substantially increased pT401, an effect that was reverted by dactolisib and torin1 but not by trametinib. We also show that shRNAmir mediated depletion of the mTORC1 complex subunit Raptor significantly enhanced the suppression of T401 phosphorylation by a low torin1 dose, while knockdown of the mTORC2 complex subunit Rictor was less effective. Using mass spectrometry, we provide further evidence that torin1 suppresses the phosphorylation of T401, S405 and S409 but not of other important regulatory phosphorylation sites such as S446, S729 and S750. In summary, our data identify the mTOR axis and its inhibitors of (pre)clinical relevance as novel modulators of BRAF phosphorylation at T401.
Collapse
Affiliation(s)
- Daniel Christen
- Institute of Molecular Medicine, University of Freiburg, Stefan-Meier-Str. 17, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Partner Site Freiburg and, Heidelberg, 69120, Germany
| | - Manuel Lauinger
- Institute of Molecular Medicine, University of Freiburg, Stefan-Meier-Str. 17, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Melanie Brunner
- Department of Biology, University of Fribourg, Chemin du Museé 10, 1700, Fribourg, Switzerland
| | - Jörn Dengjel
- Department of Biology, University of Fribourg, Chemin du Museé 10, 1700, Fribourg, Switzerland
| | - Tilman Brummer
- Institute of Molecular Medicine, University of Freiburg, Stefan-Meier-Str. 17, 79104, Freiburg, Germany.
- German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Partner Site Freiburg and, Heidelberg, 69120, Germany.
- Comprehensive Cancer Center Freiburg (CCCF), Medical Center, Faculty of Medicine, University of Freiburg, University of Freiburg, 79106, Freiburg, Germany.
- Center for Biological Signalling Studies BIOSS, University of Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
3
|
Bandyopadhyay S, Adebayo D, Obaseki E, Hariri H. Lysosomal membrane contact sites: Integrative hubs for cellular communication and homeostasis. CURRENT TOPICS IN MEMBRANES 2024; 93:85-116. [PMID: 39181579 DOI: 10.1016/bs.ctm.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Lysosomes are more than just cellular recycling bins; they play a crucial role in regulating key cellular functions. Proper lysosomal function is essential for growth pathway regulation, cell proliferation, and metabolic homeostasis. Impaired lysosomal function is associated with lipid storage disorders and neurodegenerative diseases. Lysosomes form extensive and dynamic close contacts with the membranes of other organelles, including the endoplasmic reticulum, mitochondria, peroxisomes, and lipid droplets. These membrane contacts sites (MCSs) are vital for many lysosomal functions. In this chapter, we will explore lysosomal MCSs focusing on the machinery that mediates these contacts, how they are regulated, and their functional implications on physiology and pathology.
Collapse
Affiliation(s)
- Sumit Bandyopadhyay
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - Daniel Adebayo
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - Eseiwi Obaseki
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - Hanaa Hariri
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States.
| |
Collapse
|
4
|
Rahman M, Nguyen TM, Lee GJ, Kim B, Park MK, Lee CH. Unraveling the Role of Ras Homolog Enriched in Brain (Rheb1 and Rheb2): Bridging Neuronal Dynamics and Cancer Pathogenesis through Mechanistic Target of Rapamycin Signaling. Int J Mol Sci 2024; 25:1489. [PMID: 38338768 PMCID: PMC10855792 DOI: 10.3390/ijms25031489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024] Open
Abstract
Ras homolog enriched in brain (Rheb1 and Rheb2), small GTPases, play a crucial role in regulating neuronal activity and have gained attention for their implications in cancer development, particularly in breast cancer. This study delves into the intricate connection between the multifaceted functions of Rheb1 in neurons and cancer, with a specific focus on the mTOR pathway. It aims to elucidate Rheb1's involvement in pivotal cellular processes such as proliferation, apoptosis resistance, migration, invasion, metastasis, and inflammatory responses while acknowledging that Rheb2 has not been extensively studied. Despite the recognized associations, a comprehensive understanding of the intricate interplay between Rheb1 and Rheb2 and their roles in both nerve and cancer remains elusive. This review consolidates current knowledge regarding the impact of Rheb1 on cancer hallmarks and explores the potential of Rheb1 as a therapeutic target in cancer treatment. It emphasizes the necessity for a deeper comprehension of the molecular mechanisms underlying Rheb1-mediated oncogenic processes, underscoring the existing gaps in our understanding. Additionally, the review highlights the exploration of Rheb1 inhibitors as a promising avenue for cancer therapy. By shedding light on the complicated roles between Rheb1/Rheb2 and cancer, this study provides valuable insights to the scientific community. These insights are instrumental in guiding the identification of novel targets and advancing the development of effective therapeutic strategies for treating cancer.
Collapse
Affiliation(s)
- Mostafizur Rahman
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea; (M.R.); (G.J.L.)
| | - Tuan Minh Nguyen
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea; (M.R.); (G.J.L.)
| | - Gi Jeong Lee
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea; (M.R.); (G.J.L.)
| | - Boram Kim
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea; (M.R.); (G.J.L.)
| | - Mi Kyung Park
- Department of BioHealthcare, Hwasung Medi-Science University, Hwaseong-si 18274, Republic of Korea
| | - Chang Hoon Lee
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea; (M.R.); (G.J.L.)
| |
Collapse
|
5
|
Poddar NK, Agarwal D, Agrawal Y, Wijayasinghe YS, Mukherjee A, Khan S. Deciphering the enigmatic crosstalk between prostate cancer and Alzheimer's disease: A current update on molecular mechanisms and combination therapy. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166524. [PMID: 35985445 DOI: 10.1016/j.bbadis.2022.166524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/05/2022] [Accepted: 08/11/2022] [Indexed: 11/26/2022]
Abstract
Alzheimer's disease (AD) and prostate cancer (PCa) are considered the leading causes of death in elderly people worldwide. Although both these diseases have striking differences in their pathologies, a few underlying mechanisms are similar when cell survival is considered. In the current study, we employed an in-silico approach to decipher the possible role of bacterial proteins in the initiation and progression of AD and PCa. We further analyzed the molecular connections between these two life-threatening diseases. The androgen deprivation therapy used against PCa has been shown to promote castrate resistant PCa as well as AD. In addition, cell signaling pathways, such as Akt, IGF, and Wnt contribute to the progression of both AD and PCa. Besides, various proteins and genes are also common in disease progression. One such similarity is mTOR signaling. mTOR is the common downstream target for many signaling pathways and plays a vital role in both PCa and AD. Targeting mTOR can be a favorable line of treatment for both AD and PCa. However, drug resistance is one of the challenges in effective drug therapy. A few drugs that target mTOR have now become ineffective due to the development of resistance. In that regard, phytochemicals can be a rich source of novel drug candidates as they can act via multiple mechanisms. This review also presents mTOR targeting phytochemicals with promising anti-PCa, anti-AD activities, and approaches to overcome the issues associated with phytochemical-based therapies in clinical trials.
Collapse
Affiliation(s)
- Nitesh Kumar Poddar
- Department of Biosciences, Manipal University Jaipur, Dehmi Kalan, Jaipur-Ajmer Expressway, Jaipur, Rajasthan 303007, India.
| | - Disha Agarwal
- Department of Biosciences, Manipal University Jaipur, Dehmi Kalan, Jaipur-Ajmer Expressway, Jaipur, Rajasthan 303007, India
| | - Yamini Agrawal
- Department of Biosciences, Manipal University Jaipur, Dehmi Kalan, Jaipur-Ajmer Expressway, Jaipur, Rajasthan 303007, India
| | | | - Arunima Mukherjee
- Department of Biosciences, Manipal University Jaipur, Dehmi Kalan, Jaipur-Ajmer Expressway, Jaipur, Rajasthan 303007, India
| | - Shahanavaj Khan
- Department of Health Sciences, Novel Global Community Educational Foundation, NSW, Australia; Department of Pharmaceutics, College of Pharmacy, PO Box 2457, King Saud University, Riyadh 11451, Saudi Arabia; Department of Medical Lab Technology, Indian Institute of health and Technology (IIHT), Deoband, 247554 Saharanpur, UP, India.
| |
Collapse
|
6
|
Zhong Y, Zhou X, Guan KL, Zhang J. Rheb regulates nuclear mTORC1 activity independent of farnesylation. Cell Chem Biol 2022; 29:1037-1045.e4. [PMID: 35294906 DOI: 10.1016/j.chembiol.2022.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/26/2021] [Accepted: 02/10/2022] [Indexed: 11/26/2022]
Abstract
The small GTPase Ras homolog enriched in brain (Rheb) plays a critical role in activating the mechanistic target of rapamycin complex 1 (mTORC1), a signaling hub that regulates various cellular functions. We recently observed nuclear mTORC1 activity, raising an intriguing question as to how Rheb, which is known to be farnesylated and localized to intracellular membranes, regulates nuclear mTORC1. In this study, we found that active Rheb is present in the nucleus and required for nuclear mTORC1 activity. We showed that inhibition of farnesyltransferase reduced cytosolic, but not nuclear, mTORC1 activity. Furthermore, a farnesylation-deficient Rheb mutant, with preferential nuclear localization and specific lysosome tethering, enables nuclear and cytosolic mTORC1 activities, respectively. These data suggest that non-farnesylated Rheb is capable of interacting with and activating mTORC1, providing mechanistic insights into the molecular functioning of Rheb as well as regulation of the recently observed, active pool of nuclear mTORC1.
Collapse
Affiliation(s)
- Yanghao Zhong
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA; Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Xin Zhou
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Kun-Liang Guan
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA; Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Jin Zhang
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA; Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA; Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
7
|
Xie J, De Poi SP, Humphrey SJ, Hein LK, Bruning JB, Pan W, Selth LA, Sargeant TJ, Proud CG. TSC-insensitive Rheb mutations induce oncogenic transformation through a combination of constitutively active mTORC1 signalling and proteome remodelling. Cell Mol Life Sci 2021; 78:4035-4052. [PMID: 33834258 PMCID: PMC11072378 DOI: 10.1007/s00018-021-03825-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 02/02/2021] [Accepted: 03/27/2021] [Indexed: 01/18/2023]
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) is an important regulator of cellular metabolism that is commonly hyperactivated in cancer. Recent cancer genome screens have identified multiple mutations in Ras-homolog enriched in brain (Rheb), the primary activator of mTORC1 that might act as driver oncogenes by causing hyperactivation of mTORC1. Here, we show that a number of recurrently occurring Rheb mutants drive hyperactive mTORC1 signalling through differing levels of insensitivity to the primary inactivator of Rheb, tuberous sclerosis complex. We show that two activated mutants, Rheb-T23M and E40K, strongly drive increased cell growth, proliferation and anchorage-independent growth resulting in enhanced tumour growth in vivo. Proteomic analysis of cells expressing the mutations revealed, surprisingly, that these two mutants promote distinct oncogenic pathways with Rheb-T23M driving an increased rate of anaerobic glycolysis, while Rheb-E40K regulates the translation factor eEF2 and autophagy, likely through differential interactions with 5' AMP-activated protein kinase (AMPK) which modulate its activity. Our findings suggest that unique, personalized, combination therapies may be utilised to treat cancers according to which Rheb mutant they harbour.
Collapse
Affiliation(s)
- Jianling Xie
- Lifelong Health, South Australian Health and Medical Research Institute, Adelaide, SA, 5001, Australia
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Stuart P De Poi
- Lifelong Health, South Australian Health and Medical Research Institute, Adelaide, SA, 5001, Australia
- Department of Molecular and Biomedical Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Sean J Humphrey
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Leanne K Hein
- Lysosomal Health in Ageing, Lifelong Health, South Australian Health and Medical Research Institute, Adelaide, SA, 5001, Australia
| | - John B Bruning
- Institute for Photonics and Advanced Sensing, School of Biological Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Wenru Pan
- Lifelong Health, South Australian Health and Medical Research Institute, Adelaide, SA, 5001, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Luke A Selth
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, 5042, Australia
| | - Timothy J Sargeant
- Lysosomal Health in Ageing, Lifelong Health, South Australian Health and Medical Research Institute, Adelaide, SA, 5001, Australia
| | - Christopher G Proud
- Lifelong Health, South Australian Health and Medical Research Institute, Adelaide, SA, 5001, Australia.
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
- Department of Molecular and Biomedical Sciences, University of Adelaide, Adelaide, SA, 5005, Australia.
| |
Collapse
|
8
|
Benito-Cuesta I, Ordóñez-Gutiérrez L, Wandosell F. AMPK activation does not enhance autophagy in neurons in contrast to MTORC1 inhibition: different impact on β-amyloid clearance. Autophagy 2021; 17:656-671. [PMID: 32075509 PMCID: PMC8032230 DOI: 10.1080/15548627.2020.1728095] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/08/2020] [Accepted: 02/06/2020] [Indexed: 01/04/2023] Open
Abstract
The physiological AKT-MTORC1 and AMPK signaling pathways are considered key nodes in the regulation of anabolism-catabolism, and particularly of macroautophagy/autophagy. Indeed, it is reported that these are altered processes in neurodegenerative proteinopathies such as Alzheimer disease (AD), mainly characterized by deposits of β-amyloid (Aβ) and hyperphosphorylated MAPT. These accumulations disrupt the optimal neuronal proteostasis, and hence, the recovery/enhancement of autophagy has been proposed as a therapeutic approach against these proteinopathies. The purpose of the present study was to characterize the modulation of autophagy by MTORC1 and AMPK signaling pathways in the highly specialized neurons, as well as their repercussions on Aβ production. Using a double transgenic mice model of AD, we demonstrated that MTORC1 inhibition, either in vivo or ex vivo (primary neuronal cultures), was able to reduce amyloid secretion through moderate autophagy induction in neurons. The pharmacological prevention of autophagy in neurons augmented the Aβ secretion and reversed the effect of rapamycin, confirming the anti-amyloidogenic effects of autophagy in neurons. Inhibition of AMPK with compound C generated the expected decrease in autophagy induction, though surprisingly did not increase the Aβ secretion. In contrast, increased activity of AMPK with metformin, AICAR, 2DG, or by gene overexpression did not enhance autophagy but had different effects on Aβ secretion: whereas metformin and 2DG diminished the secreted Aβ levels, AICAR and PRKAA1/AMPK gene overexpression increased them. We conclude that AMPK has a significantly different role in primary neurons than in other reported cells, lacking a direct effect on autophagy-dependent amyloidosis.Abbreviations: 2DG: 2-deoxy-D-glucose; Aβ: β-amyloid; ACACA: acetyl-CoA carboxylase alpha; ACTB: actin beta; AD: Alzheimer disease; AICAR: 5-aminoimidazole-4-carboxamide-1-β-riboside; AKT: AKT kinases group (AKT1 [AKT serine/threonine kinase 1], AKT2 and AKT3); AMPK: adenosine 5'-monophosphate (AMP)-activated protein kinase; APP: amyloid beta precursor protein; APP/PSEN1: B6.Cg-Tg (APPSwe, PSEN1dE9) 85Dbo/J; ATG: autophagy related; ATP: adenosine triphosphate; BafA1: bafilomycin A1; CA: constitutively active; CGN: cerebellar granule neuron; CoC/compound C: dorsommorphin dihydrochloride; ELISA: enzyme-linked immunosorbent assay; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFP: green fluorescent protein; Gmax: GlutaMAX™; IN1: PIK3C3/VPS34-IN1; KI: kinase-inactive; MAP1LC3B/LC3: microtubule associated protein 1 light chain 3; MAPT/TAU: microtubule associated protein tau; Metf: metformin; MRT: MRT68921; MTORC1: mechanistic target of rapamycin kinase complex 1; NBR1: NBR1 autophagy cargo receptor; PRKAA: 5'-AMP-activated protein kinase catalytic subunit alpha; PtdIns3K: phosphatidylinositol 3-kinase; Rapa: rapamycin; RPS6KB1/S6K: ribosomal protein S6 (RPS6) kinase polypeptide 1; SCR: scramble; SQSTM1/p62: sequestosome 1; ULK1/2: unc-51 like autophagy activating kinase 1/2; WT: wild type.
Collapse
Affiliation(s)
- Irene Benito-Cuesta
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Lara Ordóñez-Gutiérrez
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Francisco Wandosell
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
- Alzheimer's Disease and Other Degenerative Dementias, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
9
|
Melick CH, Jewell JL. Regulation of mTORC1 by Upstream Stimuli. Genes (Basel) 2020; 11:genes11090989. [PMID: 32854217 PMCID: PMC7565831 DOI: 10.3390/genes11090989] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/22/2020] [Accepted: 08/23/2020] [Indexed: 01/08/2023] Open
Abstract
The mammalian target of rapamycin (mTOR) is an evolutionary conserved Ser/Thr protein kinase that senses multiple upstream stimuli to control cell growth, metabolism, and autophagy. mTOR is the catalytic subunit of mTOR complex 1 (mTORC1). A significant amount of research has uncovered the signaling pathways regulated by mTORC1, and the involvement of these signaling cascades in human diseases like cancer, diabetes, and ageing. Here, we review advances in mTORC1 regulation by upstream stimuli. We specifically focus on how growth factors, amino acids, G-protein coupled receptors (GPCRs), phosphorylation, and small GTPases regulate mTORC1 activity and signaling.
Collapse
Affiliation(s)
- Chase H. Melick
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jenna L. Jewell
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Correspondence:
| |
Collapse
|
10
|
Demian WL, Persaud A, Jiang C, Coyaud É, Liu S, Kapus A, Kafri R, Raught B, Rotin D. The Ion Transporter NKCC1 Links Cell Volume to Cell Mass Regulation by Suppressing mTORC1. Cell Rep 2020; 27:1886-1896.e6. [PMID: 31067471 DOI: 10.1016/j.celrep.2019.04.034] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/13/2019] [Accepted: 04/05/2019] [Indexed: 01/08/2023] Open
Abstract
mTORC1 regulates cellular growth and is activated by growth factors and by essential amino acids such as Leu. Leu enters cells via the Leu transporter LAT1-4F2hc (LAT1). Here we show that the Na+/K+/2Cl- cotransporter NKCC1 (SLC12A2), a known regulator of cell volume, is present in complex with LAT1. We further show that NKCC1 depletion or deletion enhances LAT1 activity, as well as activation of Akt and Erk, leading to activation of mTORC1 in cells, colonic organoids, and mouse colon. Moreover, NKCC1 depletion reduces intracellular Na+ concentration and cell volume (size) and mass and stimulates cell proliferation. NKCC1, therefore, suppresses mTORC1 by inhibiting its key activating signaling pathways. Importantly, by linking ion transport and cell volume regulation to mTORC1 function, NKCC1 provides a long-sought link connecting cell volume (size) to cell mass regulation.
Collapse
Affiliation(s)
- Wael L Demian
- Program in Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Biochemistry Department, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Avinash Persaud
- Program in Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Biochemistry Department, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Chong Jiang
- Program in Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Étienne Coyaud
- Princess Margaret Cancer Centre, University Health Network, Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 2C1, Canada
| | - Shixuan Liu
- Biochemistry Department, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Andras Kapus
- Biochemistry Department, University of Toronto, Toronto, ON M5S 1A8, Canada; St. Michael Hospital Research Institute, Toronto, ON M5B 1W8, Canada
| | - Ran Kafri
- Biochemistry Department, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 2C1, Canada
| | - Daniela Rotin
- Program in Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Biochemistry Department, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
11
|
Moon GJ, Shin M, Kim SR. Upregulation of Neuronal Rheb(S16H) for Hippocampal Protection in the Adult Brain. Int J Mol Sci 2020; 21:E2023. [PMID: 32188096 PMCID: PMC7139780 DOI: 10.3390/ijms21062023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/14/2020] [Accepted: 03/16/2020] [Indexed: 12/20/2022] Open
Abstract
Ras homolog protein enriched in brain (Rheb) is a key activator of mammalian target of rapamycin complex 1 (mTORC1). The activation of mTORC1 by Rheb is associated with various processes such as protein synthesis, neuronal growth, differentiation, axonal regeneration, energy homeostasis, autophagy, and amino acid uptake. In addition, Rheb-mTORC1 signaling plays a crucial role in preventing the neurodegeneration of hippocampal neurons in the adult brain. Increasing evidence suggests that the constitutive activation of Rheb has beneficial effects against neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD). Our recent studies revealed that adeno-associated virus serotype 1 (AAV1) transduction with Rheb(S16H), a constitutively active form of Rheb, exhibits neuroprotective properties through the induction of various neurotrophic factors, promoting neurotrophic interactions between neurons and astrocytes in the hippocampus of the adult brain. This review provides compelling evidence for the therapeutic potential of AAV1-Rheb(S16H) transduction in the hippocampus of the adult brain by exploring its neuroprotective effects and mechanisms.
Collapse
Affiliation(s)
- Gyeong Joon Moon
- BK21 plus KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Korea;
| | - Minsang Shin
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41566, Korea;
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Sang Ryong Kim
- BK21 plus KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Korea;
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41566, Korea;
| |
Collapse
|
12
|
Abstract
BACKGROUND Molecular switches in phosphatidylinositol 3-kinase (PI3K)-AKT signaling pathway may serve as potential targets for the treatment of colorectal cancer (CRC). This study aims to profile the gene alterations involved in PI3K-AKT signaling pathway in patients with CRC. METHODS Tumoral and matched peritumoral tissues were collected from 15 CRC patients who went routine surgery. A human PI3K-AKT signaling pathway polymerase chain reaction (PCR) array, which profiled the transcriptional changes of a total number of 84 genes involved in the PI3K-AKT pathway, was then applied to determine the gene alterations in CRC tumoral tissue with matched peritumoral tissue as a healthy control. Subsequent real-time reverse transcription PCR and western blot (WB) with different subgroups of CRC patients were then performed to further validate the array findings. RESULTS The PCR array identified 14 aberrantly expressed genes involved in the PI3K-AKT signaling pathway in CRC tumoral tissue, among which 12 genes, CCND1, CSNK2A1, EIF4E, EIF4EBP1, EIF4G1, FOS, GRB10, GSK3B, ILK, PTK2, PTPN11, and PHEB were significantly up-modulated (> two fold) while the remaining two, PDK1 and PIK3CG, were down-regulated (> two fold). These genes involve in the regulation of gene transcription and translation, cell cycle, and cell growth, proliferation, and differentiation. The real-time reverse transcription PCR validation agreed with the array data towards the tested genes, CCND1, EIF4E, FOS, and PIK3CG, while it failed to obtain similar result for PDK1. Interestingly, the WB analyses were further consistent with the PCR results that the protein levels of CCND1, EIF4E, and FOS were apparently up-regulated and that protein PIK3CG was down-modulated. CONCLUSION Taken together, the present study identified a deregulated PI3K-AKT signaling pathway in CRC patients, which might serve as therapeutic target(s).
Collapse
|
13
|
Inpanathan S, Botelho RJ. The Lysosome Signaling Platform: Adapting With the Times. Front Cell Dev Biol 2019; 7:113. [PMID: 31281815 PMCID: PMC6595708 DOI: 10.3389/fcell.2019.00113] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/05/2019] [Indexed: 12/12/2022] Open
Abstract
Lysosomes are the terminal degradative compartment of autophagy, endocytosis and phagocytosis. What once was viewed as a simple acidic organelle in charge of macromolecular digestion has emerged as a dynamic organelle capable of integrating cellular signals and producing signal outputs. In this review, we focus on the concept that the lysosome surface serves as a platform to assemble major signaling hubs like mTORC1, AMPK, GSK3 and the inflammasome. These molecular assemblies integrate and facilitate cross-talk between signals such as amino acid and energy levels, membrane damage and infection, and ultimately enable responses such as autophagy, cell growth, membrane repair and microbe clearance. In particular, we review how molecular machinery like the vacuolar-ATPase proton pump, sestrins, the GATOR complexes, and the Ragulator, modulate mTORC1, AMPK, GSK3 and inflammation. We then elaborate how these signals control autophagy initiation and resolution, TFEB-mediated lysosome adaptation, lysosome remodeling, antigen presentation, inflammation, membrane damage repair and clearance. Overall, by being at the cross-roads for several membrane pathways, lysosomes have emerged as the ideal surveillance compartment to sense, integrate and elicit cellular behavior and adaptation in response to changing environmental and cellular conditions.
Collapse
Affiliation(s)
- Subothan Inpanathan
- Department of Chemistry and Biology, Graduate Program in Molecular Science, Ryerson University, Toronto, ON, Canada
| | - Roberto J Botelho
- Department of Chemistry and Biology, Graduate Program in Molecular Science, Ryerson University, Toronto, ON, Canada
| |
Collapse
|
14
|
Abstract
The PI3K/AKT/mTOR pathway is frequently activated in various human cancers and has been considered a promising therapeutic target. Many of the positive regulators of the PI3K/AKT/mTOR axis, including the catalytic (p110α) and regulatory (p85α), of class IA PI3K, AKT, RHEB, mTOR, and eIF4E, possess oncogenic potentials, as demonstrated by transformation assays in vitro and by genetically engineered mouse models in vivo. Genetic evidences also indicate their roles in malignancies induced by activation of the upstream oncoproteins including receptor tyrosine kinases and RAS and those induced by the loss of the negative regulators of the PI3K/AKT/mTOR pathway such as PTEN, TSC1/2, LKB1, and PIPP. Possible mechanisms by which the PI3K/AKT/mTOR axis contributes to oncogenic transformation include stimulation of proliferation, survival, metabolic reprogramming, and invasion/metastasis, as well as suppression of autophagy and senescence. These phenotypic changes are mediated by eIF4E-induced translation of a subset of mRNAs and by other downstream effectors of mTORC1 including S6K, HIF-1α, PGC-1α, SREBP, and ULK1 complex.
Collapse
|
15
|
Nasser MM, Mehdipour P. Exploration of Involved Key Genes and Signaling Diversity in Brain Tumors. Cell Mol Neurobiol 2018; 38:393-419. [PMID: 28493234 PMCID: PMC11481865 DOI: 10.1007/s10571-017-0498-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 05/02/2017] [Indexed: 02/05/2023]
Abstract
Brain tumors are becoming a major cause of death. The classification of brain tumors has gone through restructuring with regard to some criteria such as the presence or absence of a specific genetic alteration in the 2016 central nervous system World Health Organization update. Two categories of genes with a leading role in tumorigenesis and cancer induction include tumor suppressor genes and oncogenes; tumor suppressor genes are inactivated through a variety of mechanisms that result in their loss of function. As for the oncogenes, overexpression and amplification are the most common mechanisms of alteration. Important cell cycle genes such as p53, ATM, cyclin D2, and Rb have shown altered expression patterns in different brain tumors such as meningioma and astrocytoma. Some genes in signaling pathways have a role in brain tumorigenesis. These pathways include hedgehog, EGFR, Notch, hippo, MAPK, PI3K/Akt, and WNT signaling. It has been shown that telomere length in some brain tumor samples is shortened compared to that in normal cells. As the shortening of telomere length triggers chromosome instability early in brain tumors, it could lead to initiation of cancer. On the other hand, telomerase activity was positive in some brain tumors. It is suggestive that telomere length and telomerase activity are important diagnostic markers in brain tumors. This review focuses on brain tumors with regard to the status of oncogenes, tumor suppressors, cell cycle genes, and genes in signaling pathways as well as the role of telomere length and telomerase in brain tumors.
Collapse
Affiliation(s)
- Mojdeh Mahdian Nasser
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Parvin Mehdipour
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Hao F, Kondo K, Itoh T, Ikari S, Nada S, Okada M, Noda T. Rheb localized on the Golgi membrane activates lysosome-localized mTORC1 at the Golgi-lysosome contact site. J Cell Sci 2018; 131:jcs.208017. [PMID: 29222112 DOI: 10.1242/jcs.208017] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 11/26/2017] [Indexed: 12/31/2022] Open
Abstract
In response to amino acid supply, mTORC1, a master regulator of cell growth, is recruited to the lysosome and activated by the small GTPase Rheb. However, the intracellular localization of Rheb is controversial. In this study, we showed that a significant portion of Rheb is localized on the Golgi but not on the lysosome. GFP-Rheb could activate mTORC1, even when forced to exclusively localize to the Golgi. Likewise, artificial recruitment of mTORC1 to the Golgi allowed its activation. Accordingly, the Golgi was in contact with the lysosome at an newly discovered area of the cell that we term the Golgi-lysosome contact site (GLCS). The number of GLCSs increased in response to amino acid supply, whereas GLCS perturbation suppressed mTORC1 activation. These results suggest that inter-organelle communication between the Golgi and lysosome is important for mTORC1 regulation and the Golgi-localized Rheb may activate mTORC1 at GLCSs.
Collapse
Affiliation(s)
- Feike Hao
- Center for Frontier Oral Science, Graduate School of Dentistry, Osaka University, Osaka 565-0871, Japan
| | - Kazuhiko Kondo
- Graduate School of Frontier Bioscience, Osaka University, Osaka 565-0871, Japan
| | - Takashi Itoh
- Center for Frontier Oral Science, Graduate School of Dentistry, Osaka University, Osaka 565-0871, Japan
| | - Sumiko Ikari
- Graduate School of Frontier Bioscience, Osaka University, Osaka 565-0871, Japan
| | - Shigeyuki Nada
- Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Masato Okada
- Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Takeshi Noda
- Center for Frontier Oral Science, Graduate School of Dentistry, Osaka University, Osaka 565-0871, Japan .,Graduate School of Frontier Bioscience, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
17
|
He L, Ren Y, Zheng Q, Wang L, Lai Y, Guan S, Zhang X, Zhang R, Wang J, Chen D, Yang Y, Zhuang H, Cheng W, Zhang J, Hua ZC. Fas-associated protein with death domain (FADD) regulates autophagy through promoting the expression of Ras homolog enriched in brain (Rheb) in human breast adenocarcinoma cells. Oncotarget 2017; 7:24572-84. [PMID: 27013580 PMCID: PMC5029724 DOI: 10.18632/oncotarget.8249] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 03/01/2016] [Indexed: 01/02/2023] Open
Abstract
FADD (Fas-associated protein with death domain) is a classical adaptor protein in apoptosis. Increasing evidences have shown that FADD is also implicated in cell cycle progression, proliferation and tumorigenesis. The role of FADD in cancer remains largely unexplored. In this study, In Silico Analysis using Oncomine and Kaplan Meier plotter revealed that FADD is significantly up-regulated in breast cancer tissues and closely associated with a poor prognosis in patients with breast cancer. To better understanding the FADD functions in breast cancer, we performed proteomics analysis by LC-MS/MS detection and found that Rheb-mTORC1 pathway was dysregulated in MCF-7 cells when FADD knockdown. The mTORC1 pathway is a key regulator in many processes, including cell growth, metabolism and autophagy. Here, FADD interference down-regulated Rheb expression and repressed mTORC1 activity in breast cancer cell lines. The autophagy was induced by FADD deficiency in MCF7 or MDA-231 cells but rescued by recovering Rheb expression. Similarly, growth defect in FADD-knockdown cells was also restored by Rheb overexpression. These findings implied a novel role of FADD in tumor progression via Rheb-mTORC1 pathway in breast cancer.
Collapse
Affiliation(s)
- Liangqiang He
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Yongzhe Ren
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Qianqian Zheng
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Lu Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Yueyang Lai
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Shengwen Guan
- Changzhou High-Tech Research Institute of Nanjing University and Jiangsu Target Pharma Laboratories Inc., Changzhou, 213164, Jiangsu, China
| | - Xiaoxin Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Rong Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Jie Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Dianhua Chen
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Yunwen Yang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Hongqin Zhuang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Wei Cheng
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Jing Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Zi-Chun Hua
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China.,Changzhou High-Tech Research Institute of Nanjing University and Jiangsu Target Pharma Laboratories Inc., Changzhou, 213164, Jiangsu, China
| |
Collapse
|
18
|
Nelson N, Clark GJ. Rheb may complex with RASSF1A to coordinate Hippo and TOR signaling. Oncotarget 2017; 7:33821-31. [PMID: 27034171 PMCID: PMC5085121 DOI: 10.18632/oncotarget.8447] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 03/23/2016] [Indexed: 12/19/2022] Open
Abstract
The TOR pathway is a vital component of cellular homeostasis that controls the synthesis of proteins, nucleic acids and lipids. Its core is the TOR kinase. Activation of the TOR pathway suppresses autophagy, which plays a vital but complex role in tumorigenesis. The TOR pathway is regulated by activation of the Ras-related protein Rheb, which can bind mTOR. The Hippo pathway is a major growth control module that regulates cell growth, differentiation and apoptosis. Its core consists of an MST/LATS kinase cascade that can be activated by the RASSF1A tumor suppressor. The TOR and Hippo pathways may be coordinately regulated to promote cellular homeostasis. However, the links between the pathways remain only partially understood. We now demonstrate that in addition to mTOR regulation, Rheb also impacts the Hippo pathway by forming a complex with RASSF1A. Using stable clones of two human lung tumor cell lines (NCI-H1792 and NCI-H1299) with shRNA-mediated silencing or ectopic overexpression of RASSF1A, we show that activated Rheb stimulates the Hippo pathway, but is suppressed in its ability to stimulate the TOR pathway. Moreover, by selectively labeling autophagic vacuoles we show that RASSF1A inhibits the ability of Rheb to suppress autophagy and enhance cell growth. Thus, we identify a new connection that impacts coordination of Hippo and TOR signaling. As RASSF1A expression is frequently lost in human tumors, the RASSF1A status of a tumor may impact not just its Hippo pathway status, but also its TOR pathway status.
Collapse
Affiliation(s)
- Nicholas Nelson
- Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, KY, USA.,Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
| | - Geoffrey J Clark
- Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, KY, USA.,Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
| |
Collapse
|
19
|
Xing G, Luo Z, Zhong C, Pan X, Xu X. Influence of miR-155 on Cell Apoptosis in Rats with Ischemic Stroke: Role of the Ras Homolog Enriched in Brain (Rheb)/mTOR Pathway. Med Sci Monit 2016; 22:5141-5153. [PMID: 28025572 PMCID: PMC5215517 DOI: 10.12659/msm.898980] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Background We designed and carried out this study to examine the role of miR-155 and the Rheb/mTOR pathway in ischemic stroke. We also investigated how these two elements interact with each other and contribute to injuries resulting from ischemic stroke. Material/Methods We used both a middle cerebral artery occlusion rat model in vivo and an oxygen-glucose deprivation cell model in vitro to simulate the onset of ischemic stroke. miR-155 mimics, miR-155 inhibitors, and Rheb siRNA were transfected to alter the expression of miR-155 and Rheb. Infarct sizes were measured using magnetic resonance imaging (MRI) and triphenyltetrazolium chloride (TTC) staining; cell apoptosis rates were calculated using Annexin V-FITC/PI staining and flow cytometry. Levels of miR-155, Rheb, mTOR, and S6K were examined by RT-PCR, immunofluorescence, and western blot. We performed a luciferase activity assay so that the association between miR-155 and Rheb could be fully assessed. Results We demonstrated that miR-155 bound the 3′-UTR of Rheb and suppressed Rheb expression. As suggested by animal models, significant cerebral infarct volumes and cell apoptosis were induced by increased expression of miR-155 and decreased expression of Rheb, mTOR, and p-S6K (P<0.05). miR-155 inhibitors exhibited protective effects on ischemic stroke, including down-regulation of infarction size in cerebral tissues in vivo and reduced apoptosis of BV2 cells in vitro with increased expression of Rheb, mTOR and p-S6K (P<0.05). These protective effects could be substantially antagonized by the transfection of Rheb siRNA (P<0.05). Conclusions Inhibition of miR-155 may play protective roles in ischemic stroke by phosphorylating S6K through the Rheb/mTOR pathway.
Collapse
Affiliation(s)
- Guoping Xing
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland).,Department of Neurology, Weifang People's Hospital, Weifang, Shandong, China (mainland)
| | - Zengxiang Luo
- Department of Dermatology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China (mainland)
| | - Chi Zhong
- Department of Neurology, Weifang People's Hospital, Weifang, Shandong, China (mainland)
| | - Xudong Pan
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Xiaowei Xu
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| |
Collapse
|
20
|
Inhibition of MAPK pathway is essential for suppressing Rheb-Y35N driven tumor growth. Oncogene 2016; 36:756-765. [PMID: 27399332 DOI: 10.1038/onc.2016.246] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 05/08/2016] [Accepted: 06/01/2016] [Indexed: 11/08/2022]
Abstract
Rheb is a Ras family GTPase, which binds to and activates mammalian target of rapamycin complex 1 (mTORC1) when GTP loaded. Recently, cancer genome sequencing efforts have identified recurrent Rheb Tyr35Asn mutations in kidney and endometrial carcinoma. Here we show that Rheb-Y35N causes not only constitutive mTORC1 activation, but sustained activation of the MEK-ERK pathway in a TSC1/TSC2/TBC1D7 protein complex and mTORC1-independent manner, contributing to intrinsic resistance to rapamycin. Rheb-Y35N transforms NIH3T3 cells, resulting in aggressive tumor formation in xenograft nude mice, which could be suppressed by combined treatment with rapamycin and an extracellular signal-regulated kinase (ERK) inhibitor. Furthermore, Rheb-Y35N inhibits AMPKα activation in response to nutrient depletion or 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), leading to attenuated phosphorylation of BRAF-S729 and retained mitogen-activated protein kinase (MAPK) activation. Finally, we demonstrate that Rheb-WT can bind AMPK to facilitate AMPK activation, whereas Rheb-Y35N competitively binds AMPK, impairing AMPK phosphorylation. In summary, our findings indicate that Rheb-Y35N is a dominantly active tumor driver that activates both mTORC1 and MAPK to promote tumor growth, suggesting a combination of mTORC1 and MAPK inhibitors may be of therapeutic value in patients whose cancers sustain this mutation.
Collapse
|
21
|
Eukaryotic initiation factor 4E-binding protein 1 (4E-BP1): a master regulator of mRNA translation involved in tumorigenesis. Oncogene 2016; 35:4675-88. [DOI: 10.1038/onc.2015.515] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 12/11/2015] [Accepted: 12/11/2015] [Indexed: 01/17/2023]
|
22
|
Tian Q, Smart JL, Clement JH, Wang Y, Derkatch A, Schubert H, Danilchik MV, Marks DL, Fedorov LM. RHEB1 expression in embryonic and postnatal mouse. Histochem Cell Biol 2015; 145:561-72. [PMID: 26708151 DOI: 10.1007/s00418-015-1394-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2015] [Indexed: 12/16/2022]
Abstract
Ras homolog enriched in brain (RHEB1) is a member within the superfamily of GTP-binding proteins encoded by the RAS oncogenes. RHEB1 is located at the crossroad of several important pathways including the insulin-signaling pathways and thus plays an important role in different physiological processes. To understand better the physiological relevance of RHEB1 protein, the expression pattern of RHEB1 was analyzed in both embryonic (at E3.5-E16.5) and adult (1-month old) mice. RHEB1 immunostaining and X-gal staining were used for wild-type and Rheb1 gene trap mutant mice, respectively. These independent methods revealed similar RHEB1 expression patterns during both embryonic and postnatal developments. Ubiquitous uniform RHEB1/β-gal and/or RHEB1 expression was seen in preimplantation embryos at E3.5 and postimplantation embryos up to E12.5. Between stages E13.5 and E16.5, RHEB1 expression levels became complex: In particular, strong expression was identified in neural tissues, including the neuroepithelial layer of the mesencephalon, telencephalon, and neural tube of CNS and dorsal root ganglia. In addition, strong expression was seen in certain peripheral tissues including heart, intestine, muscle, and urinary bladder. Postnatal mice have broad spatial RHEB1 expression in different regions of the cerebral cortex, subcortical regions (including hippocampus), olfactory bulb, medulla oblongata, and cerebellum (particularly in Purkinje cells). Significant RHEB1 expression was also viewed in internal organs including the heart, intestine, urinary bladder, and muscle. Moreover, adult animals have complex tissue- and organ-specific RHEB1 expression patterns with different intensities observed throughout postnatal development. Its expression level is in general comparable in CNS and other organs of mouse. Thus, the expression pattern of RHEB1 suggests that it likely plays a ubiquitous role in the development of the early embryo with more tissue-specific roles in later development.
Collapse
Affiliation(s)
- Qi Tian
- OHSU Transgenic Mouse Models Shared Resource, Knight Cancer Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | | | - Joachim H Clement
- Department of Hematology and Oncology, Jena University Hospital, 07747, Jena, Germany
| | - Yingming Wang
- OHSU Transgenic Mouse Models Shared Resource, Knight Cancer Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Alex Derkatch
- OHSU Transgenic Mouse Models Shared Resource, Knight Cancer Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | | | - Michael V Danilchik
- Department of Integrative Biosciences, Oregon Health and Science University, Portland, OR, USA
| | - Daniel L Marks
- Department of Pediatrics, Oregon Health and Science University, Portland, OR, USA
| | - Lev M Fedorov
- OHSU Transgenic Mouse Models Shared Resource, Knight Cancer Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA.
- Friedrich-Schiller-University, 07740, Jena, Germany.
| |
Collapse
|
23
|
Altman MK, Alshamrani AA, Jia W, Nguyen HT, Fambrough JM, Tran SK, Patel MB, Hoseinzadeh P, Beedle AM, Murph MM. Suppression of the GTPase-activating protein RGS10 increases Rheb-GTP and mTOR signaling in ovarian cancer cells. Cancer Lett 2015; 369:175-83. [PMID: 26319900 DOI: 10.1016/j.canlet.2015.08.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 08/14/2015] [Accepted: 08/17/2015] [Indexed: 12/15/2022]
Abstract
The regulator of G protein signaling 10 (RGS10) protein is a GTPase activating protein that accelerates the hydrolysis of GTP and therefore canonically inactivates G proteins, ultimately terminating signaling. Rheb is a small GTPase protein that shuttles between its GDP- and GTP-bound forms to activate mTOR. Since RGS10 suppression augments ovarian cancer cell viability, we sought to elucidate the molecular mechanism. Following RGS10 suppression in serum-free conditions, phosphorylation of mTOR, the eukaryotic translation initiation factor 4E binding protein 1 (4E-BP1), p70S6K and S6 Ribosomal Protein appear. Furthermore, suppressing RGS10 increases activated Rheb, suggesting RGS10 antagonizes mTOR signaling via the small G-protein. The effects of RGS10 suppression are enhanced after stimulating cells with the growth factor, lysophosphatidic acid, and reduced with mTOR inhibitors, temsirolimus and INK-128. Suppression of RGS10 leads to an increase in cell proliferation, even in the presence of etoposide. In summary, the RGS10 suppression increases Rheb-GTP and mTOR signaling in ovarian cancer cells. Our results suggest that RGS10 could serve in a novel, and previously unknown, role by accelerating the hydrolysis of GTP from Rheb in ovarian cancer cells.
Collapse
Affiliation(s)
- Molly K Altman
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, The University of Georgia, 240 W. Green Street, Athens, GA 30602, USA
| | - Ali A Alshamrani
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, The University of Georgia, 240 W. Green Street, Athens, GA 30602, USA
| | - Wei Jia
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, The University of Georgia, 240 W. Green Street, Athens, GA 30602, USA
| | - Ha T Nguyen
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, The University of Georgia, 240 W. Green Street, Athens, GA 30602, USA
| | - Jada M Fambrough
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, The University of Georgia, 240 W. Green Street, Athens, GA 30602, USA
| | - Sterling K Tran
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, The University of Georgia, 240 W. Green Street, Athens, GA 30602, USA
| | - Mihir B Patel
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, The University of Georgia, 240 W. Green Street, Athens, GA 30602, USA
| | - Pooya Hoseinzadeh
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, The University of Georgia, 240 W. Green Street, Athens, GA 30602, USA
| | - Aaron M Beedle
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, The University of Georgia, 240 W. Green Street, Athens, GA 30602, USA
| | - Mandi M Murph
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, The University of Georgia, 240 W. Green Street, Athens, GA 30602, USA.
| |
Collapse
|
24
|
Fawal MA, Brandt M, Djouder N. MCRS1 binds and couples Rheb to amino acid-dependent mTORC1 activation. Dev Cell 2015; 33:67-81. [PMID: 25816988 DOI: 10.1016/j.devcel.2015.02.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 12/11/2014] [Accepted: 02/10/2015] [Indexed: 12/31/2022]
Abstract
Ras homolog enriched in brain (Rheb) is critical for mechanistic target of rapamycin complex 1 (mTORC1) activation in response to growth factors and amino acids (AAs). Whereas growth factors inhibit the tuberous sclerosis complex (TSC1-TSC2), a negative Rheb regulator, the role of AAs in Rheb activation remains unknown. Here, we identify microspherule protein 1 (MCRS1) as the essential link between Rheb and mTORC1 activation. MCRS1, in an AA-dependent manner, maintains Rheb at lysosome surfaces, connecting Rheb to mTORC1. MCRS1 suppression in human cancer cells using small interference RNA or mouse embryonic fibroblasts using an inducible-Cre/Lox system reduces mTORC1 activity. MCRS1 depletion promotes Rheb/TSC2 interaction, rendering Rheb inactive and delocalizing it from lysosomes to recycling endocytic vesicles, leading to mTORC1 inactivation. These findings have important implications for signaling mechanisms in various pathologies, including diabetes mellitus and cancer.
Collapse
Affiliation(s)
- Mohamad-Ali Fawal
- Cancer Cell Biology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional de Investigaciones Oncológicas, CNIO, 28029 Madrid, Spain
| | - Marta Brandt
- Cancer Cell Biology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional de Investigaciones Oncológicas, CNIO, 28029 Madrid, Spain
| | - Nabil Djouder
- Cancer Cell Biology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional de Investigaciones Oncológicas, CNIO, 28029 Madrid, Spain.
| |
Collapse
|
25
|
Oncogenic activity of the regulatory subunit p85β of phosphatidylinositol 3-kinase (PI3K). Proc Natl Acad Sci U S A 2014; 111:16826-9. [PMID: 25385636 DOI: 10.1073/pnas.1420281111] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Expression of the regulatory subunit p85β of PI3K induces oncogenic transformation of primary avian fibroblasts. The transformed cells proliferate at an increased rate compared with nontransformed controls and show elevated levels of PI3K signaling. The oncogenic activity of p85β requires an active PI3K-TOR signaling cascade and is mediated by the p110α and p110β isoforms of the PI3K catalytic subunit. The data suggest that p85β is a less effective inhibitor of the PI3K catalytic subunit than p85α and that this reduced level of p110 inhibition accounts for the oncogenic activity of p85β.
Collapse
|
26
|
Swer PB, Bhadoriya P, Saran S. Analysis of Rheb in the cellular slime mold Dictyostelium discoideum: cellular localization, spatial expression and overexpression. J Biosci 2014; 39:75-84. [PMID: 24499792 DOI: 10.1007/s12038-013-9405-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Dictyostelium discoideum encodes a single Rheb protein showing sequence similarity to human homologues of Rheb. The DdRheb protein shares 52 percent identity and 100 percent similarity with the human Rheb1 protein. Fluorescence of Rheb yellow fluorescent protein fusion was detected in the D. discoideum cytoplasm. Reverse transcription-polymerase chain reaction and whole-mount in situ hybridization analyses showed that rheb is expressed at all stages of development and in prestalk cells in the multicellular structures developed. When the expression of rheb as a fusion with lacZ was driven under its own promoter, the beta-galactosidase activity was seen in the prestalk cells. D. discoideum overexpressing Rheb shows an increase in the size of the cell. Treatment of the overexpressing Rheb cells with rapamycin confirms its involvement in the TOR signalling pathway.
Collapse
Affiliation(s)
- Pynskhem Bok Swer
- School of Life Science, Jawaharlal Nehru University, New Delhi 110 067, India
| | | | | |
Collapse
|
27
|
Recent progress in the study of the Rheb family GTPases. Cell Signal 2014; 26:1950-7. [PMID: 24863881 DOI: 10.1016/j.cellsig.2014.05.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 05/15/2014] [Indexed: 11/20/2022]
Abstract
In this review we highlight recent progress in the study of Rheb family GTPases. Structural studies using X-ray crystallography and NMR have given us insight into unique features of this GTPase. Combined with mutagenesis studies, these works have expanded our understanding of residues that affect Rheb GTP/GDP bound ratios, effector protein interactions, and stimulation of mTORC1 signaling. Analysis of cancer genome databases has revealed that several human carcinomas contain activating mutations of the protein. Rheb's role in activating mTORC1 signaling at the lysosome in response to stimuli has been further elucidated. Rheb has also been suggested to play roles in other cellular pathways including mitophagy and peroxisomal ROS response. A number of studies in mice have demonstrated the importance of Rheb in development, as well as in a variety of functions including cardiac protection and myelination. We conclude with a discussion of future prospects in the study of Rheb family GTPases.
Collapse
|
28
|
Mazhab-Jafari MT, Marshall CB, Ho J, Ishiyama N, Stambolic V, Ikura M. Structure-guided mutation of the conserved G3-box glycine in Rheb generates a constitutively activated regulator of mammalian target of rapamycin (mTOR). J Biol Chem 2014; 289:12195-201. [PMID: 24648513 DOI: 10.1074/jbc.c113.543736] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Constitutively activated variants of small GTPases, which provide valuable functional probes of their role in cellular signaling pathways, can often be generated by mutating the canonical catalytic residue (e.g. Ras Q61L) to impair GTP hydrolysis. However, this general approach is ineffective for a substantial fraction of the small GTPase family in which this residue is not conserved (e.g. Rap) or not catalytic (e.g. Rheb). Using a novel engineering approach, we have manipulated nucleotide binding through structure-guided substitutions of an ultraconserved glycine residue in the G3-box motif (DXXG). Substitution of Rheb Gly-63 with alanine impaired both intrinsic and TSC2 GTPase-activating protein (GAP)-mediated GTP hydrolysis by displacing the hydrolytic water molecule, whereas introduction of a bulkier valine side chain selectively blocked GTP binding by steric occlusion of the γ-phosphate. Rheb G63A stimulated phosphorylation of the mTORC1 substrate p70S6 kinase more strongly than wild-type, thus offering a new tool for mammalian target of rapamycin (mTOR) signaling.
Collapse
Affiliation(s)
- Mohammad T Mazhab-Jafari
- From the Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre and, Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 2M9, Canada
| | | | | | | | | | | |
Collapse
|
29
|
Blackburn JS, Liu S, Wilder JL, Dobrinski KP, Lobbardi R, Moore FE, Martinez SA, Chen EY, Lee C, Langenau DM. Clonal evolution enhances leukemia-propagating cell frequency in T cell acute lymphoblastic leukemia through Akt/mTORC1 pathway activation. Cancer Cell 2014; 25:366-78. [PMID: 24613413 PMCID: PMC3992437 DOI: 10.1016/j.ccr.2014.01.032] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Revised: 11/19/2013] [Accepted: 01/31/2014] [Indexed: 12/19/2022]
Abstract
Clonal evolution and intratumoral heterogeneity drive cancer progression through unknown molecular mechanisms. To address this issue, functional differences between single T cell acute lymphoblastic leukemia (T-ALL) clones were assessed using a zebrafish transgenic model. Functional variation was observed within individual clones, with a minority of clones enhancing growth rate and leukemia-propagating potential with time. Akt pathway activation was acquired in a subset of these evolved clones, which increased the number of leukemia-propagating cells through activating mTORC1, elevated growth rate likely by stabilizing the Myc protein, and rendered cells resistant to dexamethasone, which was reversed by combined treatment with an Akt inhibitor. Thus, T-ALL clones spontaneously and continuously evolve to drive leukemia progression even in the absence of therapy-induced selection.
Collapse
Affiliation(s)
- Jessica S Blackburn
- Department of Pathology, Regenerative Medicine and Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Stem Cell Institute, Boston, MA 02138, USA
| | - Sali Liu
- Northwestern University, Chicago, IL 60208, USA
| | | | - Kimberly P Dobrinski
- Center for Integrative Medicine, University of South Florida, Tampa, FL 33620, USA
| | - Riadh Lobbardi
- Department of Pathology, Regenerative Medicine and Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Stem Cell Institute, Boston, MA 02138, USA
| | - Finola E Moore
- Department of Pathology, Regenerative Medicine and Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Stem Cell Institute, Boston, MA 02138, USA
| | - Sarah A Martinez
- Department of Pathology, Regenerative Medicine and Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Eleanor Y Chen
- Department of Pathology, Regenerative Medicine and Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Stem Cell Institute, Boston, MA 02138, USA; Department of Pathology, University of Washington Medical Center, Seattle, WA 98195, USA
| | - Charles Lee
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06030, USA; Department of Graduate Studies, Seoul National University School of Medicine, Seoul 110-744, South Korea
| | - David M Langenau
- Department of Pathology, Regenerative Medicine and Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Stem Cell Institute, Boston, MA 02138, USA.
| |
Collapse
|
30
|
Varea O, Escoll M, Diez H, Garrido J, Wandosell F. Oestradiol signalling through the Akt–mTORC1–S6K1. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1052-64. [DOI: 10.1016/j.bbamcr.2012.12.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 12/11/2012] [Accepted: 12/26/2012] [Indexed: 12/12/2022]
|
31
|
Abstract
Mutations that alter signaling through the mammalian target of rapamycin complex 1 (mTORC1), a well established regulator of neuronal protein synthesis, have been linked to autism and cognitive dysfunction. Although previous studies have established a role for mTORC1 as necessary for enduring changes in postsynaptic function, here we demonstrate that dendritic mTORC1 activation in rat hippocampal neurons also drives a retrograde signaling mechanism promoting enhanced neurotransmitter release from apposed presynaptic terminals. This novel mode of synaptic regulation conferred by dendritic mTORC1 is locally implemented, requires downstream synthesis of brain-derived neurotrophic factor as a retrograde messenger, and is engaged in an activity-dependent fashion to support homeostatic trans-synaptic control of presynaptic function. Our findings thus reveal that mTORC1-dependent translation in dendrites subserves a unique mode of synaptic regulation, highlighting an alternative regulatory pathway that could contribute to the social and cognitive dysfunction that accompanies dysregulated mTORC1 signaling.
Collapse
|
32
|
Yadav RB, Burgos P, Parker AW, Iadevaia V, Proud CG, Allen RA, O'Connell JP, Jeshtadi A, Stubbs CD, Botchway SW. mTOR direct interactions with Rheb-GTPase and raptor: sub-cellular localization using fluorescence lifetime imaging. BMC Cell Biol 2013; 14:3. [PMID: 23311891 PMCID: PMC3549280 DOI: 10.1186/1471-2121-14-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 12/21/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The mammalian target of rapamycin (mTOR) signalling pathway has a key role in cellular regulation and several diseases. While it is thought that Rheb GTPase regulates mTOR, acting immediately upstream, while raptor is immediately downstream of mTOR, direct interactions have yet to be verified in living cells, furthermore the localisation of Rheb has been reported to have only a cytoplasmic cellular localization. RESULTS In this study a cytoplasmic as well as a significant sub-cellular nuclear mTOR localization was shown , utilizing green and red fluorescent protein (GFP and DsRed) fusion and highly sensitive single photon counting fluorescence lifetime imaging microscopy (FLIM) of live cells. The interaction of the mTORC1 components Rheb, mTOR and raptor, tagged with EGFP/DsRed was determined using fluorescence energy transfer-FLIM. The excited-state lifetime of EGFP-mTOR of ~2400 ps was reduced by energy transfer to ~2200 ps in the cytoplasm and to 2000 ps in the nucleus when co-expressed with DsRed-Rheb, similar results being obtained for co-expressed EGFP-mTOR and DsRed-raptor. The localization and distribution of mTOR was modified by amino acid withdrawal and re-addition but not by rapamycin. CONCLUSIONS The results illustrate the power of GFP-technology combined with FRET-FLIM imaging in the study of the interaction of signalling components in living cells, here providing evidence for a direct physical interaction between mTOR and Rheb and between mTOR and raptor in living cells for the first time.
Collapse
Affiliation(s)
- Rahul B Yadav
- Central Laser Facility, STFC, Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot, Oxon OX110QX, UK
| | - Pierre Burgos
- Central Laser Facility, STFC, Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot, Oxon OX110QX, UK
| | - Anthony W Parker
- Central Laser Facility, STFC, Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot, Oxon OX110QX, UK
| | - Valentina Iadevaia
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Christopher G Proud
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | | | | | - Ananya Jeshtadi
- School of Life Sciences, Headington Campus, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Christopher D Stubbs
- Central Laser Facility, STFC, Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot, Oxon OX110QX, UK
| | - Stanley W Botchway
- Central Laser Facility, STFC, Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot, Oxon OX110QX, UK
| |
Collapse
|
33
|
Mazhab-Jafari MT, Marshall CB, Ishiyama N, Ho J, Di Palma V, Stambolic V, Ikura M. An autoinhibited noncanonical mechanism of GTP hydrolysis by Rheb maintains mTORC1 homeostasis. Structure 2012; 20:1528-39. [PMID: 22819219 DOI: 10.1016/j.str.2012.06.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 06/18/2012] [Accepted: 06/20/2012] [Indexed: 01/28/2023]
Abstract
Rheb, an activator of mammalian target of rapamycin (mTOR), displays low intrinsic GTPase activity favoring the biologically activated, GTP-bound state. We identified a Rheb mutation (Y35A) that increases its intrinsic nucleotide hydrolysis activity ∼10-fold, and solved structures of both its active and inactive forms, revealing an unexpected mechanism of GTP hydrolysis involving Asp65 in switch II and Thr38 in switch I. In the wild-type protein this noncanonical mechanism is markedly inhibited by Tyr35, which constrains the active site conformation, restricting the access of the catalytic Asp65 to the nucleotide-binding pocket. Rheb Y35A mimics the enthalpic and entropic changes associated with GTP hydrolysis elicited by the GTPase-activating protein (GAP) TSC2, and is insensitive to further TSC2 stimulation. Overexpression of Rheb Y35A impaired the regulation of mTORC1 signaling by growth factor availability. We demonstrate that the opposing functions of Tyr35 in the intrinsic and GAP-stimulated GTP catalysis are critical for optimal mTORC1 regulation.
Collapse
|
34
|
|
35
|
Kolesnichenko M, Hong L, Liao R, Vogt PK, Sun P. Attenuation of TORC1 signaling delays replicative and oncogenic RAS-induced senescence. Cell Cycle 2012; 11:2391-401. [PMID: 22627671 DOI: 10.4161/cc.20683] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Numerous stimuli, including oncogenic signaling, DNA damage or eroded telomeres trigger proliferative arrest, termed cellular senescence. Accumulating evidence suggests that cellular senescence is a potent barrier to tumorigenesis in vivo, however oncogene induced senescence can also promote cellular transformation. Several oncogenes, whose overexpression results in cellular senescence, converge on the TOR (target of rapamycin) pathway. We therefore examined whether attenuation of TOR results in delay or reversal of cellular senescence. By using primary human fibroblasts undergoing either replicative or oncogenic RAS-induced senescence, we demonstrated that senescence can be delayed, and some aspects of senescence can be reversed by inhibition of TOR, using either the TOR inhibitor rapamycin or by depletion of TORC1 (TOR Complex 1). Depletion of TORC2 fails to affect the course of replicative or RAS-induced senescence. Overexpression of REDD1 (Regulated in DNA Damage Response and Development), a negative regulator of TORC1, delays the onset of replicative senescence. These results indicate that TORC1 is an integral component of the signaling pathway that mediates cellular senescence.
Collapse
Affiliation(s)
- Marina Kolesnichenko
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA.
| | | | | | | | | |
Collapse
|
36
|
McCarty MF. mTORC1 activity as a determinant of cancer risk--rationalizing the cancer-preventive effects of adiponectin, metformin, rapamycin, and low-protein vegan diets. Med Hypotheses 2011; 77:642-8. [PMID: 21862237 DOI: 10.1016/j.mehy.2011.07.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 06/09/2011] [Accepted: 07/01/2011] [Indexed: 02/07/2023]
Abstract
Increased plasma levels of adiponectin, metformin therapy of diabetes, rapamycin administration in transplant patients, and lifelong consumption of low-protein plant-based diets have all been linked to decreased risk for various cancers. These benefits may be mediated, at least in part, by down-regulated activity of the mTORC1 complex, a key regulator of protein translation. By boosting the effective availability of the translation initiator eIF4E, mTORC1 activity promotes the translation of a number of "weak" mRNAs that code for proteins, often up-regulated in cancer, that promote cellular proliferation, invasiveness, and angiogenesis, and that abet cancer promotion and chemoresistance by opposing apoptosis. Measures which inhibit eIF4E activity, either directly or indirectly, may have utility not only for cancer prevention, but also for the treatment of many cancers in which eIF4E drives malignancy. Since eIF4E is overexpressed in many cancers, strategies which target eIF4E directly--some of which are now being assessed clinically--may have the broadest efficacy in this regard. Many of the "weak" mRNAs coding for proteins that promote malignant behavior or chemoresistance are regulated transcriptionally by NF-kappaB and/or Stat3, which are active in a high proportion of cancers; thus, regimens concurrently targeting eIF4E, NF-kappaB, and Stat3 may suppress these proteins at both the transcriptional and translational levels, potentially achieving a very marked reduction in their expression.
Collapse
Affiliation(s)
- Mark F McCarty
- NutriGuard Research, 1051 Hermes Ave., Encinitas, CA 92024, United States.
| |
Collapse
|
37
|
Suk J, Kwak SS, Lee JH, Choi JH, Lee SH, Lee DH, Byun B, Lee GH, Joe CO. Alkaline stress-induced autophagy is mediated by mTORC1 inactivation. J Cell Biochem 2011; 112:2566-73. [PMID: 21590709 DOI: 10.1002/jcb.23181] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The activation of autophagic pathway by alkaline stress was investigated. Various types of mammalian cells were subjected to alkaline stress by incubation in bicarbonate buffered media in humidified air containing atmospheric 0.04% CO(2) . The induction of autophagy following alkaline stress was evaluated by assessing the conversion of cytosolic LC3-I into lipidated LC3-II, the accumulation of autophagosomes, and the formation of autolysosomes. Colocalization of GFP-LC3 with endolysosomal marker in HeLa GFP-LC3 cells undergoing autophagic process by alkaline stress further demonstrates that autophagosomes triggered by alkaline stress matures into autolysosomes for the lysosome dependent degradation. We found that the inactivation of mTORC1 is important for the pathway leading to the induction of autophagy by alkaline stress since the expression of RhebQ64L, a constitutive activator of mTORC1, downregulates the induction of autophagy after alkaline stress in transfected human 293T cells. These results imply that activation of autophagic pathway following the inactivation of mTORC1 is important cellular events governing alkaline stress-induced cytotoxicity and clinical symptoms associated with alkalosis.
Collapse
Affiliation(s)
- Jinkyu Suk
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Lequieu J, Chakrabarti A, Nayak S, Varner JD. Computational modeling and analysis of insulin induced eukaryotic translation initiation. PLoS Comput Biol 2011; 7:e1002263. [PMID: 22102801 PMCID: PMC3213178 DOI: 10.1371/journal.pcbi.1002263] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 09/23/2011] [Indexed: 11/18/2022] Open
Abstract
Insulin, the primary hormone regulating the level of glucose in the bloodstream, modulates a variety of cellular and enzymatic processes in normal and diseased cells. Insulin signals are processed by a complex network of biochemical interactions which ultimately induce gene expression programs or other processes such as translation initiation. Surprisingly, despite the wealth of literature on insulin signaling, the relative importance of the components linking insulin with translation initiation remains unclear. We addressed this question by developing and interrogating a family of mathematical models of insulin induced translation initiation. The insulin network was modeled using mass-action kinetics within an ordinary differential equation (ODE) framework. A family of model parameters was estimated, starting from an initial best fit parameter set, using 24 experimental data sets taken from literature. The residual between model simulations and each of the experimental constraints were simultaneously minimized using multiobjective optimization. Interrogation of the model population, using sensitivity and robustness analysis, identified an insulin-dependent switch that controlled translation initiation. Our analysis suggested that without insulin, a balance between the pro-initiation activity of the GTP-binding protein Rheb and anti-initiation activity of PTEN controlled basal initiation. On the other hand, in the presence of insulin a combination of PI3K and Rheb activity controlled inducible initiation, where PI3K was only critical in the presence of insulin. Other well known regulatory mechanisms governing insulin action, for example IRS-1 negative feedback, modulated the relative importance of PI3K and Rheb but did not fundamentally change the signal flow.
Collapse
Affiliation(s)
- Joshua Lequieu
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, United States of America
| | - Anirikh Chakrabarti
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, United States of America
| | - Satyaprakash Nayak
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, United States of America
| | - Jeffrey D. Varner
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
39
|
Abstract
The target of rapamycin (TOR) is a central cell growth regulator conserved from yeast to mammals. Uncontrolled TOR activation is commonly observed in human cancers. TOR forms two distinct structural and functional complexes, TORC1 and TORC2. TORC1 promotes cell growth and cell size by stimulating protein synthesis. A wide range of signals, including nutrients, energy levels, and growth factors, are known to control TORC1 activity. Among them, amino acids (AA) not only potently activate TORC1 but are also required for TORC1 activation by other stimuli, such as growth factors. The mechanisms of growth factors and cellular energy status in activating TORC1 have been well elucidated, whereas the molecular basis of AA signaling is just emerging. Recent advances in the role of AA signaling on TORC1 activation have revealed key components, including the Rag GTPases, protein kinases, nutrient transporters, and the intracellular trafficking machinery, in relaying AA signals to TORC1 activation.
Collapse
Affiliation(s)
- Joungmok Kim
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, USA.
| | | |
Collapse
|
40
|
Effects of RhebL1 silencing on the mTOR pathway. Mol Biol Rep 2011; 39:2129-37. [PMID: 21655954 DOI: 10.1007/s11033-011-0960-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 05/26/2011] [Indexed: 12/13/2022]
Abstract
The insulin/Ras Homolog Enriched in Brain (Rheb)/Mammalian Target of Rapamycin (mTOR) pathway has been implicated in a variety of cancers. The activation of mTOR is regulated by a small G-protein, Rheb1. In mammalian systems there are two Rheb genes--Rheb1 and RhebL1 (Rheb2). The two genes show high sequence homology, however it has yet to be determined whether they are redundant in function. In this study the contribution of RhebL1 toward the mTOR pathway was investigated by transient gene silencing in three cell lines-HEK293, HeLa, and NIH3T3. Both Rheb1 and RhebL1 genes were silenced individually as well as in combination using eleven commercially synthesized siRNAs. Results from cross reactivity experiments showed the silencing of Rheb1 and RhebL1 to be highly specific for their target gene. This is the first report of its kind to examine the function of the endogenous Rheb genes using single and dual silencing. Phosphorylation of the mTOR effector S6 was not affected by RhebL1 silencing as it was by Rheb1 silencing, suggesting for the first time that RhebL1 may be impacting the mTOR pathway in a different manner than Rheb1.
Collapse
|
41
|
Common cardiovascular medications in cancer therapeutics. Pharmacol Ther 2011; 130:177-90. [DOI: 10.1016/j.pharmthera.2011.01.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Accepted: 01/13/2011] [Indexed: 12/16/2022]
|
42
|
Korolchuk VI, Saiki S, Lichtenberg M, Siddiqi FH, Roberts EA, Imarisio S, Jahreiss L, Sarkar S, Futter M, Menzies FM, O'Kane CJ, Deretic V, Rubinsztein DC. Lysosomal positioning coordinates cellular nutrient responses. Nat Cell Biol 2011; 13:453-60. [PMID: 21394080 PMCID: PMC3071334 DOI: 10.1038/ncb2204] [Citation(s) in RCA: 678] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Accepted: 01/07/2011] [Indexed: 12/14/2022]
Abstract
mTOR (mammalian target of rapamycin) signalling and macroautophagy (henceforth autophagy) regulate numerous pathological and physiological processes, including cellular responses to altered nutrient levels. However, the mechanisms regulating mTOR and autophagy remain incompletely understood. Lysosomes are dynamic intracellular organelles intimately involved both in the activation of mTOR complex 1 (mTORC1) signalling and in degrading autophagic substrates. Here we report that lysosomal positioning coordinates anabolic and catabolic responses with changes in nutrient availability by orchestrating early plasma-membrane signalling events, mTORC1 signalling and autophagy. Activation of mTORC1 by nutrients correlates with its presence on peripheral lysosomes that are physically close to the upstream signalling modules, whereas starvation causes perinuclear clustering of lysosomes, driven by changes in intracellular pH. Lysosomal positioning regulates mTORC1 signalling, which in turn influences autophagosome formation. Lysosome positioning also influences autophagosome-lysosome fusion rates, and thus controls autophagic flux by acting at both the initiation and termination stages of the process. Our findings provide a physiological role for the dynamic state of lysosomal positioning in cells as a coordinator of mTORC1 signalling with autophagic flux.
Collapse
Affiliation(s)
- Viktor I. Korolchuk
- Department of Medical Genetics, Cambridge Institute for Medical Genetics, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK
| | - Shinji Saiki
- Department of Medical Genetics, Cambridge Institute for Medical Genetics, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK
| | - Maike Lichtenberg
- Department of Medical Genetics, Cambridge Institute for Medical Genetics, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK
| | - Farah H. Siddiqi
- Department of Medical Genetics, Cambridge Institute for Medical Genetics, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK
| | - Esteban A. Roberts
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Sara Imarisio
- Department of Medical Genetics, Cambridge Institute for Medical Genetics, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK
| | - Luca Jahreiss
- Department of Medical Genetics, Cambridge Institute for Medical Genetics, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK
| | - Sovan Sarkar
- Department of Medical Genetics, Cambridge Institute for Medical Genetics, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK
| | - Marie Futter
- Department of Medical Genetics, Cambridge Institute for Medical Genetics, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK
| | - Fiona M. Menzies
- Department of Medical Genetics, Cambridge Institute for Medical Genetics, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK
| | - Cahir J. O'Kane
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK
| | - Vojo Deretic
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - David C. Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Genetics, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK
| |
Collapse
|
43
|
Hart JR, Liao L, Ueno L, Yates JR, Vogt PK. Protein expression profiles of C3H 10T1/2 murine fibroblasts and of isogenic cells transformed by the H1047R mutant of phosphoinositide 3-kinase (PI3K). Cell Cycle 2011; 10:971-6. [PMID: 21350335 DOI: 10.4161/cc.10.6.15077] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We have used stable isotope labeling with amino acids in cell culture (SILAC) in conjunction with tandem mass spectrometry to characterize the proteomes of two isogenic cell lines that differ in the expression of a single oncoprotein,p110α of PI3K, carrying the H1047R mutation. 51,510 peptides were identified and assigned to 4,201 proteins. Most notable among the proteins that show increased expression in the oncogenically transformed cells are several involved in the interferon response including Isg15, Ifit1, Igtp and Oas2 (interferon stimulated gene 15, interferon-induced protein with tetratricopeptide repeats 1, interferon gamma-inducible GTP-binding protein, 2'-5'-oligoadenylate synthetase 2). Prominent among the downregulated proteins are several involved in cell adhesion as well as proteins that are affected by the negative feedback from PI3K signaling. The differential expressions documented in this analysis suggest novel links between oncogenic PI3K and several signaling pathways. These links will be explored in future studies.
Collapse
Affiliation(s)
- Jonathan Ross Hart
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA.
| | | | | | | | | |
Collapse
|
44
|
Abstract
The mammalian target of rapamycin (mTOR) regulates cell growth and survival via two different multiprotein complexes, mTORC1 and mTORC2. The assembly of these serine-threonine kinase multiprotein complexes occurs via poorly understood molecular mechanisms. Here, we demonstrate that GRp58/ERp57 regulates the existence and activity of mTORC1. Endogenous mTOR interacts with GRp58/ERp57 in different mammalian cells. In vitro, recombinant GRp58/ERp57 preferentially interacts with mTORC1. GRp58/ERp57 knockdown reduces mTORC1 levels and phosphorylation of 4E-BP1 and p70(S6K) in response to insulin. In contrast, GRp58/ERp57 overexpression increases mTORC1 levels and activity. A redox-sensitive mechanism that depends on GRp58/ERp57 expression activates mTORC1. Although GRp58/ERp57 is known as an endoplasmic reticulum (ER) resident, we demonstrate its presence at the cytosol, together with mTOR, Raptor, and Rictor as well as a pool of these proteins associated to the ER. In addition, the presence of GRp58/ERp57 at the ER decreases in response to insulin or leucine. Interestingly, a fraction of p70(S6K), but not 4E-BP1, is associated to the ER and phosphorylated in response to serum, insulin, or leucine. Altogether, our results suggest that GRp58/ERp57 is involved in the assembly of mTORC1 and positively regulates mTORC1 signaling at the cytosol and the cytosolic side of the ER.
Collapse
|
45
|
Vogt PK, Hart JR, Gymnopoulos M, Jiang H, Kang S, Bader AG, Zhao L, Denley A. Phosphatidylinositol 3-kinase: the oncoprotein. Curr Top Microbiol Immunol 2011; 347:79-104. [PMID: 20582532 DOI: 10.1007/82_2010_80] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The catalytic and regulatory subunits of class I phosphoinositide 3-kinase (PI3K) have oncogenic potential. The catalytic subunit p110α and the regulatory subunit p85 undergo cancer-specific gain-of-function mutations that lead to enhanced enzymatic activity, ability to signal constitutively, and oncogenicity. The β, γ, and δ isoforms of p110 are cell-transforming as overexpressed wild-type proteins. Class I PI3Ks have the unique ability to generate phosphoinositide 3,4,5 trisphosphate (PIP(3)). Class II and class III PI3Ks lack this ability. Genetic and cell biological evidence suggests that PIP(3) is essential for PI3K-mediated oncogenicity, explaining why class II and class III enzymes have not been linked to cancer. Mutational analysis reveals the existence of at least two distinct molecular mechanisms for the gain of function seen with cancer-specific mutations in p110α; one causing independence from upstream receptor tyrosine kinases, the other inducing independence from Ras. An essential component of the oncogenic signal that is initiated by PI3K is the TOR (target of rapamycin) kinase. TOR is an integrator of growth and of metabolic inputs. In complex with the raptor protein (TORC1), it controls cap-dependent translation, and this function is essential for PI3K-initiated oncogenesis.
Collapse
Affiliation(s)
- Peter K Vogt
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Shibata T, Saito S, Kokubu A, Suzuki T, Yamamoto M, Hirohashi S. Global downstream pathway analysis reveals a dependence of oncogenic NF-E2-related factor 2 mutation on the mTOR growth signaling pathway. Cancer Res 2010; 70:9095-105. [PMID: 21062981 DOI: 10.1158/0008-5472.can-10-0384] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In multicellular organisms, adaptive responses to oxidative stress are regulated by NF-E2-related factor 2 (NRF2), a master transcription factor of antioxidant genes and phase II detoxifying enzymes. Aberrant activation of NRF2 by either loss-of-function mutations in the Keap1 gene or gain-of-function mutations in the Nrf2 gene occurs in a wide range of human cancers, but details of the biological consequences of NRF2 activation in the cancer cells remain unclear. Here, we report that mutant NRF2 induces epithelial cell proliferation, anchorage-independent growth, and tumorigenicity and metastasis in vivo. Genome-wide gene expression profiling revealed that mutant NRF2 affects diverse molecular pathways including the mammalian target of rapamycin (mTOR) pathway. Mutant NRF2 upregulates RagD, a small G-protein activator of the mTOR pathway, which was also overexpressed in primary lung cancer. Consistently, Nrf2-mutated lung cancer cells were sensitive to mTOR pathway inhibitors (rapamycin and NVP-BEZ235) in both in vitro and an in vivo xenograft model. The gene expression signature associated with mutant NRF2 was a marker of poor prognosis in patients with carcinoma of the head and neck region and lung. These results show that oncogenic Nrf2 mutation induces dependence on the mTOR pathway during carcinogenesis. Our findings offer a rationale to target NRF2 as an anticancer strategy, and they suggest NRF2 activation as a novel biomarker for personalized molecular therapies or prognostic assessment.
Collapse
Affiliation(s)
- Tatsuhiro Shibata
- Cancer Genomics Project and Pathology Division, National Cancer Center Research Institute, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
47
|
Zheng H, Liu A, Liu B, Li M, Yu H, Luo X. Ras homologue enriched in brain is a critical target of farnesyltransferase inhibitors in non-small cell lung cancer cells. Cancer Lett 2010; 297:117-25. [DOI: 10.1016/j.canlet.2010.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 03/30/2010] [Accepted: 05/03/2010] [Indexed: 01/12/2023]
|
48
|
Vogt PK, Hart JR, Gymnopoulos M, Jiang H, Kang S, Bader AG, Zhao L, Denley A. Phosphatidylinositol 3-kinase: the oncoprotein. Curr Top Microbiol Immunol 2010. [PMID: 20582532 DOI: 10.1007/82-2010-80] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The catalytic and regulatory subunits of class I phosphoinositide 3-kinase (PI3K) have oncogenic potential. The catalytic subunit p110α and the regulatory subunit p85 undergo cancer-specific gain-of-function mutations that lead to enhanced enzymatic activity, ability to signal constitutively, and oncogenicity. The β, γ, and δ isoforms of p110 are cell-transforming as overexpressed wild-type proteins. Class I PI3Ks have the unique ability to generate phosphoinositide 3,4,5 trisphosphate (PIP(3)). Class II and class III PI3Ks lack this ability. Genetic and cell biological evidence suggests that PIP(3) is essential for PI3K-mediated oncogenicity, explaining why class II and class III enzymes have not been linked to cancer. Mutational analysis reveals the existence of at least two distinct molecular mechanisms for the gain of function seen with cancer-specific mutations in p110α; one causing independence from upstream receptor tyrosine kinases, the other inducing independence from Ras. An essential component of the oncogenic signal that is initiated by PI3K is the TOR (target of rapamycin) kinase. TOR is an integrator of growth and of metabolic inputs. In complex with the raptor protein (TORC1), it controls cap-dependent translation, and this function is essential for PI3K-initiated oncogenesis.
Collapse
Affiliation(s)
- Peter K Vogt
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Misra UK, Pizzo SV. Epac1-induced cellular proliferation in prostate cancer cells is mediated by B-Raf/ERK and mTOR signaling cascades. J Cell Biochem 2010; 108:998-1011. [PMID: 19725049 DOI: 10.1002/jcb.22333] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
cAMP-dependent, PKA-independent effects on cell proliferation are mediated by cAMP binding to EPAC and activation of Rap signaling. In this report, we employed the analogue 8-CPT-2-O-Me-cAMP to study binding to EPAC and subsequent activation of B-Raf/ERK and mTOR signaling in human cancer cells. This compound significantly stimulated DNA synthesis, protein synthesis, and cellular proliferation of human 1-LN prostate cancer cells. By study of phosphorylation-dependent activation, we demonstrate that EPAC-mediated cellular effects require activation of the B-Raf/ERK and mTOR signaling cascades. RNAi directed against EPAC gene expression as well as inhibitors of ERK, PI 3-kinase, and mTOR were employed to further demonstrate the role of these pathways in regulating prostate cancer cell proliferation. These studies were then extended to several other human prostate cancer cell lines and melanoma cells with comparable results. We conclude that B-Raf/ERK and mTOR signaling play an essential role in cAMP-dependent, but PKA-independent, proliferation of cancer cells.
Collapse
Affiliation(s)
- Uma Kant Misra
- Department of Pathology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
50
|
Wang RC, Levine B. Autophagy in cellular growth control. FEBS Lett 2010; 584:1417-26. [PMID: 20096689 DOI: 10.1016/j.febslet.2010.01.009] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 12/30/2009] [Accepted: 01/06/2010] [Indexed: 02/09/2023]
Abstract
Cell growth is regulated by two antagonistic processes: TOR signaling and autophagy. These processes integrate signals including growth factors, amino acids, and energy status to ensure that cell growth is appropriate to environmental conditions. Autophagy responds indirectly to the cellular milieu as a downstream inhibitory target of TOR signaling and is also directly controlled by nutrient availability, cellular energy status, and cell stress. The control of cell growth by TOR signaling and autophagy are relevant to disease, as altered regulation of either pathway results in tumorigenesis. Here we give an overview of how TOR signaling and autophagy integrate nutritional status to regulate cell growth, how these pathways are coordinately regulated, and how dysfunction of this regulation might result in tumorigenesis.
Collapse
Affiliation(s)
- Richard C Wang
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | |
Collapse
|