1
|
Ojha U, Kim S, Rhee CY, You J, Choi YH, Yoon SH, Park SY, Lee YR, Kim JK, Bae SC, Lee YM. Endothelial RUNX3 controls LSEC dysfunction and angiocrine LRG1 signaling to prevent liver fibrosis. Hepatology 2025; 81:1228-1243. [PMID: 39042837 PMCID: PMC11902585 DOI: 10.1097/hep.0000000000001018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 06/23/2024] [Indexed: 07/25/2024]
Abstract
BACKGROUND AND AIMS Liver fibrosis represents a global health burden, given the paucity of approved antifibrotic therapies. Liver sinusoidal endothelial cells (LSECs) play a major gatekeeping role in hepatic homeostasis and liver disease pathophysiology. In early tumorigenesis, runt-related transcription factor 3 (RUNX3) functions as a sentinel; however, its function in liver fibrosis in LSECs remains unclear. This study aimed to investigate the role of RUNX3 as an important regulator of the gatekeeping functions of LSECs and explore novel angiocrine regulators of liver fibrosis. APPROACH AND RESULTS Mice with endothelial Runx3 deficiency develop gradual and spontaneous liver fibrosis secondary to LSEC dysfunction, thereby more prone to liver injury. Mechanistic studies in human immortalized LSECs and mouse primary LSECs revealed that IL-6/JAK/STAT3 pathway activation was associated with LSEC dysfunction in the absence of RUNX3. Single-cell RNA sequencing and quantitative RT-PCR revealed that leucine-rich alpha-2-glycoprotein 1 ( LRG1 ) was highly expressed in RUNX3-deficient and dysfunctional LSECs. In in vitro and coculture experiments, RUNX3-depleted LSECs secreted LRG1, which activated HSCs throughTGFBR1-SMAD2/3 signaling in a paracrine manner. Furthermore, circulating LRG1 levels were elevated in mouse models of liver fibrosis and in patients with fatty liver and cirrhosis. CONCLUSIONS RUNX3 deficiency in the endothelium induces LSEC dysfunction, LRG1 secretion, and liver fibrosis progression. Therefore, endothelial RUNX3 is a crucial gatekeeping factor in LSECs, and profibrotic angiocrine LRG1 may be a novel target for combating liver fibrosis.
Collapse
Affiliation(s)
- Uttam Ojha
- Vessel-Organ Interaction Research Center, VOICE (MRC), Research Institute of Pharmaceutical Sciences, Department of Molecular Pathophysiology, College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea
| | - Somi Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Chang Yun Rhee
- Vessel-Organ Interaction Research Center, VOICE (MRC), Research Institute of Pharmaceutical Sciences, Department of Molecular Pathophysiology, College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea
| | - Jihye You
- Vessel-Organ Interaction Research Center, VOICE (MRC), Research Institute of Pharmaceutical Sciences, Department of Molecular Pathophysiology, College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea
| | - Yoon Ha Choi
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Soo-Hyun Yoon
- Vessel-Organ Interaction Research Center, VOICE (MRC), Research Institute of Pharmaceutical Sciences, Department of Molecular Pathophysiology, College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea
| | - Soo Young Park
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Yu Rim Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jong Kyoung Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Suk-Chul Bae
- Department of Biochemistry, School of Medicine, Institute for Tumor Research, Chungbuk National University, Cheongju, Republic of Korea
| | - You Mie Lee
- Vessel-Organ Interaction Research Center, VOICE (MRC), Research Institute of Pharmaceutical Sciences, Department of Molecular Pathophysiology, College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
2
|
Abdolmaleky HM, Nohesara S, Zhou JR, Thiagalingam S. Epigenetics in evolution and adaptation to environmental challenges: pathways for disease prevention and treatment. Epigenomics 2025; 17:317-333. [PMID: 39948759 PMCID: PMC11970782 DOI: 10.1080/17501911.2025.2464529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 02/04/2025] [Indexed: 04/02/2025] Open
Abstract
Adaptation to challenging environmental conditions is crucial for the survival/fitness of all organisms. Alongside genetic mutations that provide adaptive potential during environmental challenges, epigenetic modifications offer dynamic, reversible, and rapid mechanisms for regulating gene expression in response to environmental changes in both evolution and daily life, without altering DNA sequences or relying on accidental favorable mutations. The widespread conservation of diverse epigenetic mechanisms - like DNA methylation, histone modifications, and RNA interference across diverse species, including plants - underscores their significance in evolutionary biology. Remarkably, environmentally induced epigenetic alterations are passed to daughter cells and inherited transgenerationally through germline cells, shaping offspring phenotypes while preserving adaptive epigenetic memory. Throughout anthropoid evolution, epigenetic modifications have played crucial roles in: i) suppressing transposable elements and viral genomes intruding into the host genome; ii) inactivating one of the X chromosomes in female cells to balance gene dosage; iii) genetic imprinting to ensure expression from one parental allele; iv) regulating functional alleles to compensate for dysfunctional ones; and v) modulating the epigenome and transcriptome in response to influence from the gut microbiome among other functions. Understanding the interplay between environmental factors and epigenetic processes may provide valuable insights into developmental plasticity, evolutionary dynamics, and disease susceptibility.
Collapse
Affiliation(s)
- Hamid Mostafavi Abdolmaleky
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Shabnam Nohesara
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Jin-Rong Zhou
- Nutrition/Metabolism Laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Sam Thiagalingam
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| |
Collapse
|
3
|
Kang KA, Piao MJ, Fernando PDSM, Herath HMUL, Boo HJ, Yoon SP, Hyun JW. Oxidative Stress-Mediated RUNX3 Mislocalization Occurs Via Jun Activation Domain-Binding Protein 1 and Histone Modification. Appl Biochem Biotechnol 2024; 196:8082-8095. [PMID: 38683453 PMCID: PMC11645303 DOI: 10.1007/s12010-024-04944-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2024] [Indexed: 05/01/2024]
Abstract
Runt domain transcription factor 3 (RUNX3) suppresses many different cancer types and is disabled by mutations, epigenetic repression, or cytoplasmic mislocalization. In this study, we investigated whether oxidative stress is associated with RUNX3 accumulation from the nucleus to the cytoplasm in terms of histone modification. Oxidative stress elevated histone deacetylase (HDAC) level and lowered that of histone acetyltransferase. In addition, oxidative stress decreased the expression of mixed lineage leukemia (MLL), a histone methyltransferase, but increased the expression of euchromatic histone-lysine N-methyltransferase 2 (EHMT2/G9a), which is also a histone methyltransferase. Moreover, oxidative stress-induced RUNX3 phosphorylation, Src activation, and Jun activation domain-binding protein 1 (JAB1) expression were inhibited by knockdown of HDAC and G9a, restoring the nuclear localization of RUNX3 under oxidative stress. Cytoplasmic RUNX3 localization was followed by oxidative stress-induced histone modification, activated Src along with RUNX3 phosphorylation, and induction of JAB1, resulting in RUNX3 inactivation.
Collapse
Affiliation(s)
- Kyoung Ah Kang
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju, 63243, Republic of Korea
- Department of Biochemistry, Jeju National University College of Medicine, Jeju, 63243, Republic of Korea
| | - Mei Jing Piao
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju, 63243, Republic of Korea
- Department of Biochemistry, Jeju National University College of Medicine, Jeju, 63243, Republic of Korea
| | - Pincha Devage Sameera Madushan Fernando
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju, 63243, Republic of Korea
- Department of Biochemistry, Jeju National University College of Medicine, Jeju, 63243, Republic of Korea
| | | | - Hye-Jin Boo
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju, 63243, Republic of Korea
| | - Sang Pil Yoon
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju, 63243, Republic of Korea
| | - Jin Won Hyun
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju, 63243, Republic of Korea.
- Department of Biochemistry, Jeju National University College of Medicine, Jeju, 63243, Republic of Korea.
| |
Collapse
|
4
|
Ni Y, Shi M, Liu L, Lin D, Zeng H, Ong C, Wang Y. G9a in Cancer: Mechanisms, Therapeutic Advancements, and Clinical Implications. Cancers (Basel) 2024; 16:2175. [PMID: 38927881 PMCID: PMC11201431 DOI: 10.3390/cancers16122175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
G9a, also named EHMT2, is a histone 3 lysine 9 (H3K9) methyltransferase responsible for catalyzing H3K9 mono- and dimethylation (H3K9me1 and H3K9me2). G9a contributes to various aspects of embryonic development and tissue differentiation through epigenetic regulation. Furthermore, the aberrant expression of G9a is frequently observed in various tumors, particularly in prostate cancer, where it contributes to cancer pathogenesis and progression. This review highlights the critical role of G9a in multiple cancer-related processes, such as epigenetic dysregulation, tumor suppressor gene silencing, cancer lineage plasticity, hypoxia adaption, and cancer progression. Despite the increased research on G9a in prostate cancer, there are still significant gaps, particularly in understanding its interactions within the tumor microenvironment and its broader epigenetic effects. Furthermore, this review discusses the recent advancements in G9a inhibitors, including the development of dual-target inhibitors that target G9a along with other epigenetic factors such as EZH2 and HDAC. It aims to bring together the existing knowledge, identify gaps in the current research, and suggest future directions for research and treatment strategies.
Collapse
Affiliation(s)
- Yuchao Ni
- Department of Urology, West China Hospital, Sichuan University, Chengdu 610041, China;
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada; (M.S.); (L.L.); (D.L.); (Y.W.)
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Mingchen Shi
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada; (M.S.); (L.L.); (D.L.); (Y.W.)
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Liangliang Liu
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada; (M.S.); (L.L.); (D.L.); (Y.W.)
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Dong Lin
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada; (M.S.); (L.L.); (D.L.); (Y.W.)
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Hao Zeng
- Department of Urology, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Christopher Ong
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada; (M.S.); (L.L.); (D.L.); (Y.W.)
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Yuzhuo Wang
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada; (M.S.); (L.L.); (D.L.); (Y.W.)
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
- Department of Experimental Therapeutics, BC Cancer, Vancouver, BC V5Z 1L3, Canada
| |
Collapse
|
5
|
Aziz N, Hong YH, Kim HG, Kim JH, Cho JY. Tumor-suppressive functions of protein lysine methyltransferases. Exp Mol Med 2023; 55:2475-2497. [PMID: 38036730 PMCID: PMC10766653 DOI: 10.1038/s12276-023-01117-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 12/02/2023] Open
Abstract
Protein lysine methyltransferases (PKMTs) play crucial roles in histone and nonhistone modifications, and their dysregulation has been linked to the development and progression of cancer. While the majority of studies have focused on the oncogenic functions of PKMTs, extensive evidence has indicated that these enzymes also play roles in tumor suppression by regulating the stability of p53 and β-catenin, promoting α-tubulin-mediated genomic stability, and regulating the transcription of oncogenes and tumor suppressors. Despite their contradictory roles in tumorigenesis, many PKMTs have been identified as potential therapeutic targets for cancer treatment. However, PKMT inhibitors may have unintended negative effects depending on the specific cancer type and target enzyme. Therefore, this review aims to comprehensively summarize the tumor-suppressive effects of PKMTs and to provide new insights into the development of anticancer drugs targeting PKMTs.
Collapse
Affiliation(s)
- Nur Aziz
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yo Han Hong
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Han Gyung Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Ji Hye Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
6
|
Krajnović M, Kožik B, Božović A, Jovanović-Ćupić S. Multiple Roles of the RUNX Gene Family in Hepatocellular Carcinoma and Their Potential Clinical Implications. Cells 2023; 12:2303. [PMID: 37759525 PMCID: PMC10527445 DOI: 10.3390/cells12182303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most frequent cancers in humans, characterised by a high resistance to conventional chemotherapy, late diagnosis, and a high mortality rate. It is necessary to elucidate the molecular mechanisms involved in hepatocarcinogenesis to improve diagnosis and treatment outcomes. The Runt-related (RUNX) family of transcription factors (RUNX1, RUNX2, and RUNX3) participates in cardinal biological processes and plays paramount roles in the pathogenesis of numerous human malignancies. Their role is often controversial as they can act as oncogenes or tumour suppressors and depends on cellular context. Evidence shows that deregulated RUNX genes may be involved in hepatocarcinogenesis from the earliest to the latest stages. In this review, we summarise the topical evidence on the roles of RUNX gene family members in HCC. We discuss their possible application as non-invasive molecular markers for early diagnosis, prognosis, and development of novel treatment strategies in HCC patients.
Collapse
Affiliation(s)
| | - Bojana Kožik
- Laboratory for Radiobiology and Molecular Genetics, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, Vinča, 11351 Belgrade, Serbia; (M.K.); (A.B.); (S.J.-Ć.)
| | | | | |
Collapse
|
7
|
la Torre A, Lo Vecchio F, Greco A. Epigenetic Mechanisms of Aging and Aging-Associated Diseases. Cells 2023; 12:cells12081163. [PMID: 37190071 DOI: 10.3390/cells12081163] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
Aging is an inevitable outcome of life, characterized by a progressive decline in tissue and organ function. At a molecular level, it is marked by the gradual alterations of biomolecules. Indeed, important changes are observed on the DNA, as well as at a protein level, that are influenced by both genetic and environmental parameters. These molecular changes directly contribute to the development or progression of several human pathologies, including cancer, diabetes, osteoporosis, neurodegenerative disorders and others aging-related diseases. Additionally, they increase the risk of mortality. Therefore, deciphering the hallmarks of aging represents a possibility for identifying potential druggable targets to attenuate the aging process, and then the age-related comorbidities. Given the link between aging, genetic, and epigenetic alterations, and given the reversible nature of epigenetic mechanisms, the precisely understanding of these factors may provide a potential therapeutic approach for age-related decline and disease. In this review, we center on epigenetic regulatory mechanisms and their aging-associated changes, highlighting their inferences in age-associated diseases.
Collapse
Affiliation(s)
- Annamaria la Torre
- Laboratory of Gerontology and Geriatrics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy
| | - Filomena Lo Vecchio
- Laboratory of Gerontology and Geriatrics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy
| | - Antonio Greco
- Complex Unit of Geriatrics, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy
| |
Collapse
|
8
|
Krishnan V. The RUNX Family of Proteins, DNA Repair, and Cancer. Cells 2023; 12:cells12081106. [PMID: 37190015 DOI: 10.3390/cells12081106] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
The RUNX family of transcription factors, including RUNX1, RUNX2, and RUNX3, are key regulators of development and can function as either tumor suppressors or oncogenes in cancer. Emerging evidence suggests that the dysregulation of RUNX genes can promote genomic instability in both leukemia and solid cancers by impairing DNA repair mechanisms. RUNX proteins control the cellular response to DNA damage by regulating the p53, Fanconi anemia, and oxidative stress repair pathways through transcriptional or non-transcriptional mechanisms. This review highlights the importance of RUNX-dependent DNA repair regulation in human cancers.
Collapse
Affiliation(s)
- Vaidehi Krishnan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| |
Collapse
|
9
|
RUNX3 Meets the Ubiquitin-Proteasome System in Cancer. Cells 2023; 12:cells12050717. [PMID: 36899853 PMCID: PMC10001085 DOI: 10.3390/cells12050717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 02/26/2023] Open
Abstract
RUNX3 is a transcription factor with regulatory roles in cell proliferation and development. While largely characterized as a tumor suppressor, RUNX3 can also be oncogenic in certain cancers. Many factors account for the tumor suppressor function of RUNX3, which is reflected by its ability to suppress cancer cell proliferation after expression-restoration, and its inactivation in cancer cells. Ubiquitination and proteasomal degradation represent a major mechanism for the inactivation of RUNX3 and the suppression of cancer cell proliferation. On the one hand, RUNX3 has been shown to facilitate the ubiquitination and proteasomal degradation of oncogenic proteins. On the other hand, RUNX3 can be inactivated through the ubiquitin-proteasome system. This review encapsulates two facets of RUNX3 in cancer: how RUNX3 suppresses cell proliferation by facilitating the ubiquitination and proteasomal degradation of oncogenic proteins, and how RUNX3 is degraded itself through interacting RNA-, protein-, and pathogen-mediated ubiquitination and proteasomal degradation.
Collapse
|
10
|
Bhattacharya A. Epigenetic modifications and regulations in gastrointestinal diseases. EPIGENETICS IN ORGAN SPECIFIC DISORDERS 2023:497-543. [DOI: 10.1016/b978-0-12-823931-5.00005-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
11
|
Lee YM. RUNX Family in Hypoxic Microenvironment and Angiogenesis in Cancers. Cells 2022; 11:cells11193098. [PMID: 36231060 PMCID: PMC9564080 DOI: 10.3390/cells11193098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 11/28/2022] Open
Abstract
The tumor microenvironment (TME) is broadly implicated in tumorigenesis, as tumor cells interact with surrounding cells to influence the development and progression of the tumor. Blood vessels are a major component of the TME and are attributed to the creation of a hypoxic microenvironment, which is a common feature of advanced cancers and inflamed premalignant tissues. Runt-related transcription factor (RUNX) proteins, a transcription factor family of developmental master regulators, are involved in vital cellular processes such as differentiation, proliferation, cell lineage specification, and apoptosis. Furthermore, the RUNX family is involved in the regulation of various oncogenic processes and signaling pathways as well as tumor suppressive functions, suggesting that the RUNX family plays a strategic role in tumorigenesis. In this review, we have discussed the relevant findings that describe the crosstalk of the RUNX family with the hypoxic TME and tumor angiogenesis or with their signaling molecules in cancer development and progression.
Collapse
Affiliation(s)
- You Mie Lee
- Vessel-Organ Interaction Research Center, VOICE (MRC), Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Korea
- Lab of Molecular Pathophysiology, College of Pharmacy, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Korea
- Correspondence: ; Tel.: +82-53-950-8566; Fax:+82-53-950-8557
| |
Collapse
|
12
|
PARP3 supervises G9a-mediated repression of adhesion and hypoxia-responsive genes in glioblastoma cells. Sci Rep 2022; 12:15534. [PMID: 36109561 PMCID: PMC9478127 DOI: 10.1038/s41598-022-19525-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 08/30/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractIn breast cancer, Poly(ADP-ribose) polymerase 3 (PARP3) has been identified as a key driver of tumor aggressiveness exemplifying its selective inhibition as a promising surrogate for clinical activity onto difficult-to-treat cancers. Here we explored the role of PARP3 in the oncogenicity of glioblastoma, the most aggressive type of brain cancer. The absence of PARP3 did not alter cell proliferation nor the in vivo tumorigenic potential of glioblastoma cells. We identified a physical and functional interaction of PARP3 with the histone H3 lysine 9 methyltransferase G9a. We show that PARP3 helps to adjust G9a-dependent repression of the adhesion genes Nfasc and Parvb and the hypoxia-responsive genes Hif-2α, Runx3, Mlh1, Ndrg1, Ndrg2 and Ndrg4. Specifically for Nfasc, Parvb and Ndrg4, PARP3/G9a cooperate for an adjusted establishment of the repressive mark H3K9me2. While examining the functional consequence in cell response to hypoxia, we discovered that PARP3 acts to maintain the cytoskeletal microtubule stability. As a result, the absence of PARP3 markedly increases the sensitivity of glioblastoma cells to microtubule-destabilizing agents providing a new therapeutic avenue for PARP3 inhibition in brain cancer therapy.
Collapse
|
13
|
Wang L, Chen J, Zuo Q, Wu C, Yu T, Zheng P, Huang H, Deng J, Fang L, Liu H, Li C, Yu P, Zou Q, Zheng J. Calreticulin enhances gastric cancer metastasis by dimethylating H3K9 in the E-cadherin promoter region mediating by G9a. Oncogenesis 2022; 11:29. [PMID: 35641480 PMCID: PMC9156786 DOI: 10.1038/s41389-022-00405-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/18/2022] [Accepted: 05/17/2022] [Indexed: 01/06/2023] Open
Abstract
The latest study shows that gastric cancer (GC) ranked the fifth most common cancer (5.6%) with over 1 million estimated new cases annually and the fourth most common cause of cancer death (7.7%) globally in 2020. Metastasis is the leading cause of GC treatment failure. Therefore, clarifying the regulatory mechanisms for GC metastatic process is necessary. In the current study, we discovered that calreticulin (CALR) was highly expressed in GC tissues and related to lymph node metastasis and patient’s terrible prognosis. The introduction of CALR dramatically promoted GC cell migration in vitro and in vivo, while the repression of CALR got the opposite effects. Cell migration is a functional consequence of the epithelial-mesenchymal transition (EMT) and is related to adhesion of cells. Additionally, we observed that CALR inhibition or overexpression regulated the expression of EMT markers (E-cadherin, ZO-1, Snail, N-cadherin, and ZEB1) and cellular adhesive moleculars (Fibronectin, integrin β1and MMP2). Mechanistically, our data indicated that CALR could mediate DNA methylation of E-cadherin promoter by interacting with G9a, a major euchromatin methyltransferase responsible for methylation of histone H3 on lysine 9(H3K9me2) and recruiting G9a to the E-cadherin promoter. Knockdown of G9a in CALR overexpressing models restored E-cadherin expression and blocked the stimulatory effects of CALR on GC cell migration. Taken together, these findings not only reveal critical roles of CALR medicated GC metastasis but also provide novel treatment strategies for GC.
Collapse
Affiliation(s)
- Lina Wang
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, No. 30 Gaotanyan Street, 400038, Chongqing, China
| | - Jun Chen
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Army Medical University, No. 30 Gaotanyan Street, 400038, Chongqing, China
| | - Qianfei Zuo
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, No. 30 Gaotanyan Street, 400038, Chongqing, China
| | - Chunmei Wu
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, No. 30 Gaotanyan Street, 400038, Chongqing, China
| | - Ting Yu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, No. 30 Gaotanyan Street, 400038, Chongqing, China
| | - Pengfei Zheng
- Department of medicinal chemistry, College of Pharmacy, Army Medical University, No. 30 Gaotanyan Street, 400038, Chongqing, China
| | - Hui Huang
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, No. 30 Gaotanyan Street, 400038, Chongqing, China
| | - Jun Deng
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, No. 30 Gaotanyan Street, 400038, Chongqing, China
| | - Lichao Fang
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, No. 30 Gaotanyan Street, 400038, Chongqing, China
| | - Huamin Liu
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, No. 30 Gaotanyan Street, 400038, Chongqing, China
| | - Chenghong Li
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, No. 30 Gaotanyan Street, 400038, Chongqing, China
| | - Peiwu Yu
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Army Medical University, No. 30 Gaotanyan Street, 400038, Chongqing, China.
| | - Quanming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, No. 30 Gaotanyan Street, 400038, Chongqing, China.
| | - Junsong Zheng
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, No. 30 Gaotanyan Street, 400038, Chongqing, China.
| |
Collapse
|
14
|
Kang SK, Bae HJ, Kwon WS, Kim TS, Kim KH, Park S, Yu SY, Hwang J, Park J, Chung HC, Rha SY. Inhibition of the bromodomain and extra-terminal family of epigenetic regulators as a promising therapeutic approach for gastric cancer. Cell Oncol (Dordr) 2021; 44:1387-1403. [PMID: 34791636 DOI: 10.1007/s13402-021-00647-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2021] [Indexed: 02/08/2023] Open
Abstract
PURPOSE Epigenetic dysregulation is a common characteristic of cancers, including gastric cancer (GC), and contributes to cancer development and progression. Although the efficacy of BET (an epigenetic regulator) inhibition has been demonstrated in various cancer types, predictive genetic markers of its efficacy in GC are currently lacking. Therefore, we aimed to identify markers that predict the response of BET inhibition in GC and, suggest an effective treatment regimen through combined therapy. METHODS The effect of BET inhibition was evaluated using iBET-151, a small-molecule inhibitor of BET proteins, in a large panel (n = 49) of GC cell lines and xenograft mouse models. Comprehensive genetic information was used to identify cell lines sensitive to iBET-151. Flow cytometry, Western blotting, and colony-formation and migration assays were used to evaluate the effects of iBET-151 and/or paclitaxel. The synergistic effect of iBET-151 and paclitaxel was evaluated using an organoid model. RESULTS We found that iBET-151 showed a modest growth-inhibitory effect in GC cells (73%, 36/49). iBET-151 inhibited tumorigenicity in vitro and significantly promoted cell cycle arrest and apoptosis. Based on comprehensive genetic information analysis in relation to BET family expression, we found that BRD4 was highly expressed in the iBET-151-sensitive cell lines. We also identified WNT5B and IRS2 as potential biomarkers that are predictive for sensitivity to iBET-151. In GC xenograft model mice, iBET-151 significantly decreased tumor volumes and Ki-67 and BRD4 expression. Combination treatment showed that iBET-151 increased the sensitivity of GC cells to paclitaxel in approximately 70% of the cell lines (34/49) tested. iBET-151 plus paclitaxel significantly promoted cell cycle arrest and apoptosis and suppressed c-Myc, Bcl-2 and Bcl-xL expression. In GC organoids, iBET-151 and paclitaxel showed a synergistic effect. CONCLUSIONS Collectively, our data suggest that iBET-151 is a potential therapeutic agent for GC, especially in combination with paclitaxel, and that WNT5B and IRS2 may predict iBET-151 sensitivity.
Collapse
Affiliation(s)
- Sun Kyoung Kang
- Songdang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea
- MD Biolab Co., Ltd, Seoul, Republic of Korea
| | - Hyun Joo Bae
- Songdang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea
- Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Woo Sun Kwon
- Songdang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea
- Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Tae Soo Kim
- Songdang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea
- Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyoo Hyun Kim
- Songdang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea
- Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sejung Park
- Songdang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea
- Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Biostatistics and Computing, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seo Young Yu
- Songdang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea
- Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jihyun Hwang
- Songdang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea
- Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Juin Park
- Songdang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea
- Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyun Cheol Chung
- Songdang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea
- Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Sun Young Rha
- Songdang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
15
|
Poulard C, Noureddine LM, Pruvost L, Le Romancer M. Structure, Activity, and Function of the Protein Lysine Methyltransferase G9a. Life (Basel) 2021; 11:life11101082. [PMID: 34685453 PMCID: PMC8541646 DOI: 10.3390/life11101082] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/08/2021] [Accepted: 10/08/2021] [Indexed: 12/17/2022] Open
Abstract
G9a is a lysine methyltransferase catalyzing the majority of histone H3 mono- and dimethylation at Lys-9 (H3K9), responsible for transcriptional repression events in euchromatin. G9a has been shown to methylate various lysine residues of non-histone proteins and acts as a coactivator for several transcription factors. This review will provide an overview of the structural features of G9a and its paralog called G9a-like protein (GLP), explore the biochemical features of G9a, and describe its post-translational modifications and the specific inhibitors available to target its catalytic activity. Aside from its role on histone substrates, the review will highlight some non-histone targets of G9a, in order gain insight into their role in specific cellular mechanisms. Indeed, G9a was largely described to be involved in embryonic development, hypoxia, and DNA repair. Finally, the involvement of G9a in cancer biology will be presented.
Collapse
Affiliation(s)
- Coralie Poulard
- Cancer Research Cancer of Lyon, Université de Lyon, F-69000 Lyon, France; (L.M.N.); (L.P.); (M.L.R.)
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- Correspondence:
| | - Lara M. Noureddine
- Cancer Research Cancer of Lyon, Université de Lyon, F-69000 Lyon, France; (L.M.N.); (L.P.); (M.L.R.)
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences, Lebanese University, Hadat-Beirut 90565, Lebanon
| | - Ludivine Pruvost
- Cancer Research Cancer of Lyon, Université de Lyon, F-69000 Lyon, France; (L.M.N.); (L.P.); (M.L.R.)
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Muriel Le Romancer
- Cancer Research Cancer of Lyon, Université de Lyon, F-69000 Lyon, France; (L.M.N.); (L.P.); (M.L.R.)
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| |
Collapse
|
16
|
Histone Methyltransferase G9a Promotes the Development of Renal Cancer through Epigenetic Silencing of Tumor Suppressor Gene SPINK5. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6650781. [PMID: 34336110 PMCID: PMC8294961 DOI: 10.1155/2021/6650781] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 04/05/2021] [Accepted: 06/22/2021] [Indexed: 01/25/2023]
Abstract
Background Renal cell carcinoma (RCC) accounts for approximately 2–3% of malignant tumors in adults, while clear cell renal cell carcinoma accounts for 70–85% of kidney cancer cases, with an increasing incidence worldwide. G9a is the second histone methyltransferase found in mammals, catalyzing lysine and histone methylation. It regulates gene transcription by catalyzing histone methylation and interacting with transcription factors to alter the tightness of histone-DNA binding. The main purpose of this study is to explore the role and mechanism of G9a in renal cell carcinoma. Methods Firstly, we investigated the expression of G9a in 80 clinical tissues and four cell lines. Then, we explored the effect of G9a-specific inhibitor UNC0638 on proliferation, apoptosis, migration, and invasion of two renal cancer cell lines (786-O, SN12C). In order to study the specific mechanism, G9a knocking down renal cancer cell line was constructed by lentivirus. Finally, we identified the downstream target genes of G9a using ChIP experiments and rescue experiments. Results The results showed that the specific G9a inhibitor UNC0638 significantly inhibited the proliferation, migration, and invasion of kidney cancer in vivo and in vitro; similar results were obtained after knocking down G9a. Meanwhile, we demonstrated that SPINK5 was one of the downstream target genes of G9a through ChIP assay and proved that G9a downregulate the expression of SPINK5 by methylation of H3K9me2. Therefore, targeting G9a might be a new approach to the treatment of kidney cancer. Conclusion G9a was upregulated in renal cancer and could promote the development of renal cancer in vitro and in vivo. Furthermore, we identified SPINK5 as one of the downstream target genes of G9a. Therefore, targeting G9a might be a new treatment for kidney cancer.
Collapse
|
17
|
Huang K, Yang C, Zheng J, Liu X, Liu J, Che D, Xue Y, An P, Wang D, Ruan X, Yu B. Effect of circular RNA, mmu_circ_0000296, on neuronal apoptosis in chronic cerebral ischaemia via the miR-194-5p/Runx3/Sirt1 axis. Cell Death Discov 2021; 7:124. [PMID: 34052838 PMCID: PMC8164632 DOI: 10.1038/s41420-021-00507-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/19/2021] [Accepted: 05/01/2021] [Indexed: 01/22/2023] Open
Abstract
Chronic cerebral ischaemia (CCI) is a common pathological disorder, which is associated with various diseases, such as cerebral arteriosclerosis and vascular dementia, resulting in neurological dysfunction. As a type of non-coding RNA, circular RNA is involved in regulating the occurrence and development of diseases, such as ischaemic brain injury. Here, we found that HT22 cells and hippocampus treated with CCI had low expression of circ_0000296, Runx3, Sirt1, but high expression of miR-194-5p. Overexpression of circ_0000296, Runx3, Sirt1, and silenced miR-194-5p significantly inhibited neuronal apoptosis induced by CCI. This study demonstrated that circ_0000296 specifically bound to miR-194-5p; miR-194-5p bound to the 3'UTR region of Runx3 mRNA; Runx3 directly bound to the promoter region of Sirt1, enhancing its transcriptional activity. Overexpression of circ_0000296 by miR-194-5p reduced the negative regulatory effect of miR-194-5p on Runx3, promoted the transcriptional effect of Runx3 on Sirt1, and inhibited neuronal apoptosis induced by CCI. mmu_circ_0000296 plays an important role in regulating neuronal apoptosis induced by CCI through miR-194-5p/Runx3/Sirt1 pathway.
Collapse
Affiliation(s)
- Keyu Huang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China
| | - Chunqing Yang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China
| | - Jian Zheng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China
| | - Xiaobai Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China
| | - Jie Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China
| | - Dongfang Che
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China
| | - Yixue Xue
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| | - Ping An
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| | - Di Wang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China
| | - Xuelei Ruan
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| | - Bo Yu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China. .,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China. .,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.
| |
Collapse
|
18
|
Chebly A, Ropio J, Peloponese JM, Poglio S, Prochazkova-Carlotti M, Cherrier F, Ferrer J, Idrissi Y, Segal-Bendirdjian E, Chouery E, Farra C, Pham-Ledard A, Beylot-Barry M, Philippe Merlio J, Tomb R, Chevret E. Exploring hTERT promoter methylation in cutaneous T-cell lymphomas. Mol Oncol 2021; 16:1931-1946. [PMID: 33715271 PMCID: PMC9067155 DOI: 10.1002/1878-0261.12946] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 02/28/2021] [Accepted: 03/12/2021] [Indexed: 11/11/2022] Open
Abstract
Cutaneous T‐cell lymphomas (CTCLs) are telomerase‐positive tumors expressing hTERT, although neither gene rearrangement/amplification nor promoter hotspot mutations could explain the hTERT re‐expression. As the hTERT promoter is rich in CpG, we investigated the contribution of epigenetic mechanisms in its re‐expression. We analyzed hTERT promoter methylation status in CTCL cells compared with healthy cells. Gene‐specific methylation analyses revealed a common methylation pattern exclusively in tumor cells. This methylation pattern encompassed a hypermethylated distal region from −650 to −150 bp and a hypomethylated proximal region from −150 to +150 bp. Interestingly, the hypermethylated region matches with the recently named TERT hypermethylated oncogenic region (THOR). THOR has been associated with telomerase reactivation in many cancers, but it has so far not been reported in cutaneous lymphomas. Additionally, we assessed the effect of THOR on two histone deacetylase inhibitors (HDACi), romidepsin and vorinostat, both approved for CTCL treatment and a DNA methyltransferase inhibitor (DNMTi) 5‐azacytidine, unapproved for CTCL. Contrary to our expectations, the findings reported herein revealed that THOR methylation is relatively stable under these epigenetic drugs' pressure, whereas these drugs reduced the hTERT gene expression.
Collapse
Affiliation(s)
- Alain Chebly
- Univ. Bordeaux, INSERM, BaRITOn, U1053, F-33000, Bordeaux, France.,Saint Joseph University, Faculty of Medicine, Medical Genetics Unit (UGM), Beirut, Lebanon
| | - Joana Ropio
- Univ. Bordeaux, INSERM, BaRITOn, U1053, F-33000, Bordeaux, France.,Porto University, Institute of Biomedical Sciences of Abel Salazar, Instituto de Investigação e Inovação em Saúde, Institute of Molecular Pathology and Immunology (Ipatimup), Cancer Biology group, 4200-465, Porto, Portugal
| | - Jean-Marie Peloponese
- University of Montpellier, CNRS, IRIM-UMR 9004, Research Institute in Infectiology of Montpellier, Montpellier, France
| | - Sandrine Poglio
- Univ. Bordeaux, INSERM, BaRITOn, U1053, F-33000, Bordeaux, France
| | | | | | - Jacky Ferrer
- Univ. Bordeaux, INSERM, BaRITOn, U1053, F-33000, Bordeaux, France
| | - Yamina Idrissi
- Univ. Bordeaux, INSERM, BaRITOn, U1053, F-33000, Bordeaux, France
| | - Evelyne Segal-Bendirdjian
- INSERM, UMR-S 1124, Team: Cellular Homeostasis Cancer and Therapies, Université de Paris, Paris, France
| | - Eliane Chouery
- Saint Joseph University, Faculty of Medicine, Medical Genetics Unit (UGM), Beirut, Lebanon.,Department of Human Genetics, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Chantal Farra
- Saint Joseph University, Faculty of Medicine, Medical Genetics Unit (UGM), Beirut, Lebanon.,Hotel Dieu de France Medical Center, Faculty of Medicine, Genetics Department, Beirut, Lebanon
| | - Anne Pham-Ledard
- Univ. Bordeaux, INSERM, BaRITOn, U1053, F-33000, Bordeaux, France.,Bordeaux University Hospital Center, Dermatology Department, F-33000, Bordeaux, France
| | - Marie Beylot-Barry
- Univ. Bordeaux, INSERM, BaRITOn, U1053, F-33000, Bordeaux, France.,Bordeaux University Hospital Center, Dermatology Department, F-33000, Bordeaux, France
| | - Jean Philippe Merlio
- Univ. Bordeaux, INSERM, BaRITOn, U1053, F-33000, Bordeaux, France.,Bordeaux University Hospital Center, Tumor Bank and Tumor Biology Laboratory, F-33600, Pessac, France
| | - Roland Tomb
- Saint Joseph University, Faculty of Medicine, Medical Genetics Unit (UGM), Beirut, Lebanon.,Saint Joseph University, Faculty of Medicine, Dermatology Department, Beirut, Lebanon
| | - Edith Chevret
- Univ. Bordeaux, INSERM, BaRITOn, U1053, F-33000, Bordeaux, France
| |
Collapse
|
19
|
Jones K, Zhang Y, Kong Y, Farah E, Wang R, Li C, Wang X, Zhang Z, Wang J, Mao F, Liu X, Liu J. Epigenetics in prostate cancer treatment. JOURNAL OF TRANSLATIONAL GENETICS AND GENOMICS 2021; 5:341-356. [PMID: 35372800 PMCID: PMC8974353 DOI: 10.20517/jtgg.2021.19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Prostate cancer (PCa) is the most commonly diagnosed malignancy among men, and the progression of this disease results in fewer treatment options available to clinical patients. It highlights the vital necessity for discovering novel therapeutic approaches and expanding the current understanding of molecular mechanisms. Epigenetic alternations such as DNA methylation models and histone modifications have been associated as key drivers in the development and advancement of PCa. Several studies have been conducted and demonstrated that targeting these epigenetic enzymes or regulatory proteins has been strongly associated with the regulation of cancer cell growth. Due to the success rate of these therapeutic routes in pre-clinical settings, many drugs have now advanced to clinical testing, where efficacy will be measured. This review will discuss the role of epigenetic modifications in PCa development and its function in the progression of the disease to resistant forms and introduce therapeutic strategies that have demonstrated successful results as PCa treatment.
Collapse
Affiliation(s)
- Katelyn Jones
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Yanquan Zhang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Yifan Kong
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Elia Farah
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Ruixin Wang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Chaohao Li
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Xinyi Wang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA
| | - ZhuangZhuang Zhang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Jianlin Wang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Fengyi Mao
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Xiaoqi Liu
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA.,Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Jinghui Liu
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
20
|
Saha N, Muntean AG. Insight into the multi-faceted role of the SUV family of H3K9 methyltransferases in carcinogenesis and cancer progression. Biochim Biophys Acta Rev Cancer 2020; 1875:188498. [PMID: 33373647 DOI: 10.1016/j.bbcan.2020.188498] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 12/13/2022]
Abstract
Growing evidence implicates histone H3 lysine 9 methylation in tumorigenesis. The SUV family of H3K9 methyltransferases, which include G9a, GLP, SETDB1, SETDB2, SUV39H1 and SUV39H2 deposit H3K9me1/2/3 marks at euchromatic and heterochromatic regions, catalyzed by their conserved SET domain. In cancer, this family of enzymes can be deregulated by genomic alterations and transcriptional mis-expression leading to alteration of transcriptional programs. In solid and hematological malignancies, studies have uncovered pro-oncogenic roles for several H3K9 methyltransferases and accordingly, small molecule inhibitors are being tested as potential therapies. However, emerging evidence demonstrate onco-suppressive roles for these enzymes in cancer development as well. Here, we review the role H3K9 methyltransferases play in tumorigenesis focusing on gene targets and biological pathways affected due to misregulation of these enzymes. We also discuss molecular mechanisms regulating H3K9 methyltransferases and their influence on cancer. Finally, we describe the impact of H3K9 methylation on therapy induced resistance in carcinoma. Converging evidence point to multi-faceted roles for H3K9 methyltransferases in development and cancer that encourages a deeper understanding of these enzymes to inform novel therapy.
Collapse
Affiliation(s)
- Nirmalya Saha
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States of America
| | - Andrew G Muntean
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States of America.
| |
Collapse
|
21
|
Rahman Z, Bazaz MR, Devabattula G, Khan MA, Godugu C. Targeting H3K9 methyltransferase G9a and its related molecule GLP as a potential therapeutic strategy for cancer. J Biochem Mol Toxicol 2020; 35:e22674. [PMID: 33283949 DOI: 10.1002/jbt.22674] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/25/2020] [Indexed: 12/24/2022]
Abstract
H3K9 methyltransferase (G9a) and its relevant molecule GLP are the SET domain proteins that specifically add mono, di and trimethyl groups on to the histone H3K9, which lead to the transcriptional inactivation of chromatin and reduce the expression of cancer suppressor genes, which trigger growth and progress of several cancer types. Various studies have demonstrated that overexpression of H3K9 methyltransferase G9a and GLP in different kinds of tumors, like lung, breast, bladder, colon, cervical, gastric, skin cancers, hepatocellular carcinoma and hematological malignancies. Several G9a and GLP inhibitors such as BIX-01294, UNC0642, A-366 and DCG066 were developed to combat various cancers; however, there is a need for more effective and less toxic compounds. The current molecular docking study suggested that the selected new compounds such as ninhydrin, naphthoquinone, cysteamine and disulfide cysteamine could be suitable molecules as a G9a and GLP inhibitors. Furthermore, detailed cell based and preclinical animal studies are required to confirm their properties. In the current review, we discussed the role of G9a and GLP mediated epigenetic regulation in the cancers. A thorough literature review was done related to G9a and GLP. The databases used extensively for retrieval of information were PubMed, Medline, Scopus and Science-direct. Further, molecular docking was performed using Maestro Schrodinger version 9.2 software to investigate the binding profile of compounds with Human G9a HMT (PDB ID: 3FPD, 3RJW) and Human GLP MT (PDB ID: 6MBO, 6MBP).
Collapse
Affiliation(s)
- Ziaur Rahman
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Mohd Rabi Bazaz
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Geetanjali Devabattula
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Mohd Abrar Khan
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| |
Collapse
|
22
|
RUNX3 methylation drives hypoxia-induced cell proliferation and antiapoptosis in early tumorigenesis. Cell Death Differ 2020; 28:1251-1269. [PMID: 33116296 PMCID: PMC8027031 DOI: 10.1038/s41418-020-00647-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 09/21/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022] Open
Abstract
Inactivation of tumor suppressor Runt-related transcription factor 3 (RUNX3) plays an important role during early tumorigenesis. However, posttranslational modifications (PTM)-based mechanism for the inactivation of RUNX3 under hypoxia is still not fully understood. Here, we demonstrate a mechanism that G9a, lysine-specific methyltransferase (KMT), modulates RUNX3 through PTM under hypoxia. Hypoxia significantly increased G9a protein level and G9a interacted with RUNX3 Runt domain, which led to increased methylation of RUNX3 at K129 and K171. This methylation inactivated transactivation activity of RUNX3 by reducing interactions with CBFβ and p300 cofactors, as well as reducing acetylation of RUNX3 by p300, which is involved in nucleocytoplasmic transport by importin-α1. G9a-mediated methylation of RUNX3 under hypoxia promotes cancer cell proliferation by increasing cell cycle or cell division, while suppresses immune response and apoptosis, thereby promoting tumor growth during early tumorigenesis. Our results demonstrate the molecular mechanism of RUNX3 inactivation by G9a-mediated methylation for cell proliferation and antiapoptosis under hypoxia, which can be a therapeutic or preventive target to control tumor growth during early tumorigenesis.
Collapse
|
23
|
Kim I, Park JW. Hypoxia-driven epigenetic regulation in cancer progression: A focus on histone methylation and its modifying enzymes. Cancer Lett 2020; 489:41-49. [PMID: 32522693 DOI: 10.1016/j.canlet.2020.05.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/28/2020] [Accepted: 05/20/2020] [Indexed: 02/08/2023]
Abstract
The mechanism underlying hypoxia-driven chromatin remodeling is a long-lasting question. For the last two decades, this question has been resolved in part. It is now widely agreed that hypoxia dynamically changes the methylation status of histones to control gene expression. Hypoxia-inducible factor (HIF) plays a central role in cellular responses to hypoxia through transcriptional activation of numerous genes. At least in part, the hypoxic regulation of histone methylation is attributed to the HIF-mediated expression of histone modifying enzymes. Protein hydroxylation and histone demethylation have emerged as the oxygen sensing processes because they are catalyzed by a family of 2-oxoglutarate (2OG)-dependent dioxygenases whose activities depend upon the ambient oxygen level. Recently, it has been extensively investigated that the 2OG dioxygenases oxygen-dependently regulate histone methylation. Nowadays, the hypoxic change in the histone methylation status is regarded as an important event to drive malignant behaviors of cancer cells. In this review, we introduced and summarized the cellular processes that govern hypoxia-driven regulation of histone methylation in the context of cancer biology. We also discussed the emerging roles of histone methyltransferases and demethylases in epigenetic response to hypoxia.
Collapse
Affiliation(s)
- Iljin Kim
- Department of Pharmacology, Cancer Research Institute, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jong-Wan Park
- Department of Pharmacology, Cancer Research Institute, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
24
|
Chen P, Qian Q, Zhu Z, Shen X, Yu S, Yu Z, Sun R, Li Y, Guo D, Fan H. Increased expression of EHMT2 associated with H3K9me2 level contributes to the poor prognosis of gastric cancer. Oncol Lett 2020; 20:1734-1742. [PMID: 32724416 PMCID: PMC7377055 DOI: 10.3892/ol.2020.11694] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 12/31/2019] [Indexed: 12/16/2022] Open
Abstract
Di-methylated lysine 9 of histone H3 (H3K9me2), regulated by histone methyltransferases, is involved in the epigenetic regulation of tumor-associated genes. The present study aimed to evaluate whether the H3K9me2 methylation level is associated with the expression level of euchromatic histone lysine methyltransferase 2 (EHMT2) in the prognosis of gastric cancer (GC). H3K9me2 methylation level and EHMT2 expression level were detected by immunohistochemistry in 118 GC samples. The clinicopathological significance of H3K9me2 and EHMT2 in patients with GC was assessed using a paired Student's t-test, χ2 test, Kaplan-Meier analysis with a log-rank test and Cox's proportional hazard analysis. Strong positive immunostaining of H3K9me2 and EHMT2 was observed in cancerous tissues compared with adjacent non-cancerous tissues. Positive immunostaining of EHMT2 and H3K9me2 was associated with lymph node metastasis, pathological grade and tumor-node-metastasis stage. H3K9me2 expression level was increased in tumor tissue and associated with worse specific-disease and disease-free survival time. In addition, EHMT2 protein expression levels were associated with the expression levels of H3K9me2. Low expression levels of H3K9me2 and EHMT2 predicted a better prognosis of patients with GC. The survival time of patients with a high expression of H3K9me2 and/or EHMT2 was significantly shorter compared with that of the patients with a low expression of H3K9me2 and/or EHMT2. In conclusion, an overexpression pattern of H3K9me2 and/or EHMT2 may be associated with clinicopathological features of GC and may be predictor markers of progression and prognosis in patients with GC, in addition to putative therapeutic targets.
Collapse
Affiliation(s)
- Ping Chen
- Department of Oncology, Yancheng First People's Hospital, Yancheng, Jiangsu 224005, P.R. China
| | - Qi Qian
- Department of Oncology, Yancheng First People's Hospital, Yancheng, Jiangsu 224005, P.R. China
| | - Zhiyuan Zhu
- Department of Oncology, Yancheng First People's Hospital, Yancheng, Jiangsu 224005, P.R. China
| | - Xiaohui Shen
- Department of Medical Genetics and Developmental Biology, Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Shenling Yu
- Department of Medical Genetics and Developmental Biology, Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China.,Institute of Life Sciences, The Key Laboratory of Developmental Genes and Human Diseases, Southeast University, Nanjing, Jiangsu 210018, P.R. China
| | - Zhenghong Yu
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Rui Sun
- Department of Pathology, Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Yiping Li
- Department of Pathology, Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Didi Guo
- Department of Medical Genetics and Developmental Biology, Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China.,Institute of Life Sciences, The Key Laboratory of Developmental Genes and Human Diseases, Southeast University, Nanjing, Jiangsu 210018, P.R. China
| | - Hong Fan
- Department of Medical Genetics and Developmental Biology, Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
25
|
Idrissou M, Sanchez A, Penault-Llorca F, Bignon YJ, Bernard-Gallon D. Epi-drugs as triple-negative breast cancer treatment. Epigenomics 2020; 12:725-742. [PMID: 32396394 DOI: 10.2217/epi-2019-0312] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Triple-negative breast cancer (TNBC) types with poor prognosis are due to the absence of estrogen receptors, progesterone receptors and HEGFR-2. The lack of suitable therapy for TNBC has led the research community to turn toward epigenetic regulation and its protagonists that can modulate certain oncogenes and tumor suppressors. This has opened an important new field of therapy using epi-drugs, in preclinical and clinical trials. The epi-drugs are natural or synthetic molecules capable of inhibiting or modulating the activity of epigenetic proteins such as DNA methyltransferases, modulating the expression of interferon microRNAs, as well as histone methyltransferases, demethylases, acetyltransferases and deacetylases. This review investigated the epi-drugs used in the treatment of TNBC.
Collapse
Affiliation(s)
- Mouhamed Idrissou
- Department of Oncogenetics, Centre Jean Perrin, CBRV, 28 place Henri-Dunant, Clermont-Ferrand 63001, France.,INSERM U 1240 Molecular Imagery & Theranostic Strategies (IMoST), 58 Rue Montalembert, Clermont-Ferrand 63005, France
| | - Anna Sanchez
- Department of Oncogenetics, Centre Jean Perrin, CBRV, 28 place Henri-Dunant, Clermont-Ferrand 63001, France.,INSERM U 1240 Molecular Imagery & Theranostic Strategies (IMoST), 58 Rue Montalembert, Clermont-Ferrand 63005, France
| | - Frédérique Penault-Llorca
- INSERM U 1240 Molecular Imagery & Theranostic Strategies (IMoST), 58 Rue Montalembert, Clermont-Ferrand 63005, France.,Department of Biopathology, Centre Jean Perrin, 58 Rue Montalembert, Clermont-Ferrand 63011, France
| | - Yves-Jean Bignon
- Department of Oncogenetics, Centre Jean Perrin, CBRV, 28 place Henri-Dunant, Clermont-Ferrand 63001, France.,INSERM U 1240 Molecular Imagery & Theranostic Strategies (IMoST), 58 Rue Montalembert, Clermont-Ferrand 63005, France
| | - Dominique Bernard-Gallon
- Department of Oncogenetics, Centre Jean Perrin, CBRV, 28 place Henri-Dunant, Clermont-Ferrand 63001, France.,INSERM U 1240 Molecular Imagery & Theranostic Strategies (IMoST), 58 Rue Montalembert, Clermont-Ferrand 63005, France
| |
Collapse
|
26
|
Park SJ, Kim H, Kim SH, Joe EH, Jou I. Epigenetic downregulation of STAT6 increases HIF-1α expression via mTOR/S6K/S6, leading to enhanced hypoxic viability of glioma cells. Acta Neuropathol Commun 2019; 7:149. [PMID: 31530290 PMCID: PMC6747735 DOI: 10.1186/s40478-019-0798-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 08/26/2019] [Indexed: 01/01/2023] Open
Abstract
Multifunctional signal transducer and activator of transcription (STAT) proteins play important roles in cancer. Here, we have shown that STAT6 is epigenetically silenced in some cases of malignant glioblastoma, which facilitates cancer cell survival in a hypoxic microenvironment. This downregulation results from hypermethylation of CpG islands within the STAT6 promoter by DNA methyltransferases. STAT6 interacts with Rheb under hypoxia and inhibits mTOR/S6K/S6 signaling, in turn, inducing increased HIF-1α translation. STAT6 silencing and consequent tumor-promoting effects are additionally observed in glioma stem-like cells (GSC). Despite recent advances in cancer treatment, survival rates have shown little improvement. This is particularly true in the case of glioma, where multimodal treatment and precision medicine is needed. Our study supports the application of epigenetic restoration of STAT6 with the aid of DNA methyltransferase inhibitors, such as 5-aza-2-deoxycytidine, for treatment of STAT6-silenced gliomas.
Collapse
|
27
|
Affandi AJ, Carvalheiro T, Ottria A, Broen JC, Bossini-Castillo L, Tieland RG, Bon LV, Chouri E, Rossato M, Mertens JS, Garcia S, Pandit A, de Kroon LM, Christmann RB, Martin J, van Roon JA, Radstake TR, Marut W. Low RUNX3 expression alters dendritic cell function in patients with systemic sclerosis and contributes to enhanced fibrosis. Ann Rheum Dis 2019; 78:1249-1259. [PMID: 31126957 DOI: 10.1136/annrheumdis-2018-214991] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 04/15/2019] [Accepted: 04/22/2019] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Systemic sclerosis (SSc) is an autoimmune disease with unknown pathogenesis manifested by inflammation, vasculopathy and fibrosis in skin and internal organs. Type I interferon signature found in SSc propelled us to study plasmacytoid dendritic cells (pDCs) in this disease. We aimed to identify candidate pathways underlying pDC aberrancies in SSc and to validate its function on pDC biology. METHODS In total, 1193 patients with SSc were compared with 1387 healthy donors and 8 patients with localised scleroderma. PCR-based transcription factor profiling and methylation status analyses, single nucleotide polymorphism genotyping by sequencing and flow cytometry analysis were performed in pDCs isolated from the circulation of healthy controls or patients with SSc. pDCs were also cultured under hypoxia, inhibitors of methylation and hypoxia-inducible factors and runt-related transcription factor 3 (RUNX3) levels were determined. To study Runx3 function, Itgax-Cre:Runx3f/f mice were used in in vitro functional assay and bleomycin-induced SSc skin inflammation and fibrosis model. RESULTS Here, we show downregulation of transcription factor RUNX3 in SSc pDCs. A higher methylation status of the RUNX3 gene, which is associated with polymorphism rs6672420, correlates with lower RUNX3 expression and SSc susceptibility. Hypoxia is another factor that decreases RUNX3 level in pDC. Mouse pDCs deficient of Runx3 show enhanced maturation markers on CpG stimulation. In vivo, deletion of Runx3 in dendritic cell leads to spontaneous induction of skin fibrosis in untreated mice and increased severity of bleomycin-induced skin fibrosis. CONCLUSIONS We show at least two pathways potentially causing low RUNX3 level in SSc pDCs, and we demonstrate the detrimental effect of loss of Runx3 in SSc model further underscoring the role of pDCs in this disease.
Collapse
Affiliation(s)
- Alsya J Affandi
- Laboratory of Translational Immunology, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Rheumatology Section, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Tiago Carvalheiro
- Laboratory of Translational Immunology, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Andrea Ottria
- Laboratory of Translational Immunology, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jasper Ca Broen
- Laboratory of Translational Immunology, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Rheumatology Section, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Lara Bossini-Castillo
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Granada, Spain
- Department of Cellular Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Ralph G Tieland
- Laboratory of Translational Immunology, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Lenny van Bon
- Laboratory of Translational Immunology, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Rheumatology Section, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Eleni Chouri
- Laboratory of Translational Immunology, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Marzia Rossato
- Laboratory of Translational Immunology, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Jorre S Mertens
- Laboratory of Translational Immunology, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Dermatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Samuel Garcia
- Laboratory of Translational Immunology, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Aridaman Pandit
- Laboratory of Translational Immunology, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Laurie Mg de Kroon
- Rheumatology Section, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Romy B Christmann
- Rheumatology Section, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Javier Martin
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Granada, Spain
| | - Joel Ag van Roon
- Laboratory of Translational Immunology, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Timothy Rdj Radstake
- Laboratory of Translational Immunology, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Rheumatology Section, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Wioleta Marut
- Laboratory of Translational Immunology, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
28
|
Dong C, Sun J, Ma S, Zhang G. K-ras-ERK1/2 down-regulates H2A.X Y142ph through WSTF to promote the progress of gastric cancer. BMC Cancer 2019; 19:530. [PMID: 31151422 PMCID: PMC6545063 DOI: 10.1186/s12885-019-5750-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 05/24/2019] [Indexed: 12/19/2022] Open
Abstract
Background Histone H2AX phosphorylation at the site of Tyr-142 can participates in multiple biological progressions, which is including DNA repair. Ras pathway is closely involved in human cancers. Our study investigated the effects of Ras pathway via regulating H2AX.Y142ph. Methods Gastric cancer cell line SNU-16 and MKN1 cells were transfected with Ras for G12D and T35S site mutation. The phosphorylation of H2A.XY142 and ERK1/2, WSTF and MDM2 was detected by western blot. Cell viability, cell colonies and migration was analyzed by MTT assay, soft-agar colony formation assay, and Transwell assay, respectively. The expression of Ras pathway related downstream factors, EYA3 and WSTF was detected by qRT-PCR. The relationship between Ras and downstream factors were detected by ChIP. The cell cycle progression was measured by flow cytometry. Results RasG12D/T35V transection decreased the phosphorylation of H2A.XY142 and activated phosphorylation of ERK-1/2. H2A.XY142 inhibited cell viability, colonies and migration. H2A.XY142ph altered the expression of Ras downstream factors. CHIP assay revealed that RasG12D/T35V could bind to the promoters of these Ras pathway downstream factors. Silence of EYA3 increased H2A.XY142ph and inhibited cell viability, migration and percent cells in S stage. Furthermore, silence of EYA3 also changed the downstream factors expression. WSTF and H2A.XY142ph revealed the similar trend and MDM2 on the opposite. Conclusion Ras/ERK signal pathway decreased H2A.XY142ph and promoted cell growth and metastasis. This Ras regulation process was down-regulated by the cascade of MDM2-WSTF-EYA3 to decrease H2A.XY142ph in SNU-16 cells.
Collapse
Affiliation(s)
- Chao Dong
- Department of Clinical Medicine, Qujing Medical College, Qujing, 655000, Yunnan, China
| | - Jing Sun
- Department of Pharmacy, Qujing Medical College, Sanjiang Avenue, Economic Development Zone, Qilin District, Qujing, 655000, Yunnan, China
| | - Sha Ma
- Department of Pharmacy, Qujing Medical College, Sanjiang Avenue, Economic Development Zone, Qilin District, Qujing, 655000, Yunnan, China
| | - Guoying Zhang
- Department of Pharmacy, Qujing Medical College, Sanjiang Avenue, Economic Development Zone, Qilin District, Qujing, 655000, Yunnan, China.
| |
Collapse
|
29
|
Abstract
The epigenetic control of gene expression could be affected by addition and/or removal of post-translational modifications such as phosphorylation, acetylation and methylation of histone proteins, as well as methylation of DNA (5-methylation on cytosines). Misregulation of these modifications is associated with altered gene expression, resulting in various disease conditions. G9a belongs to the protein lysine methyltransferases that specifically methylates the K9 residue of histone H3, leading to suppression of several tumor suppressor genes. In this review, G9a functions, role in various diseases, structural biology aspects for inhibitor design, structure-activity relationship among the reported inhibitors are discussed which could aid in the design and development of potent G9a inhibitors for cancer treatment in the future.
Collapse
|
30
|
Bhat AV, Palanichamy Kala M, Rao VK, Pignata L, Lim HJ, Suriyamurthy S, Chang KT, Lee VK, Guccione E, Taneja R. Epigenetic Regulation of the PTEN-AKT-RAC1 Axis by G9a Is Critical for Tumor Growth in Alveolar Rhabdomyosarcoma. Cancer Res 2019; 79:2232-2243. [PMID: 30833420 DOI: 10.1158/0008-5472.can-18-2676] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 12/17/2018] [Accepted: 02/26/2019] [Indexed: 11/16/2022]
Abstract
Alveolar rhabdomyosarcoma (ARMS) is an aggressive pediatric cancer with poor prognosis. As transient and stable modifications to chromatin have emerged as critical mechanisms in oncogenic signaling, efforts to target epigenetic modifiers as a therapeutic strategy have accelerated in recent years. To identify chromatin modifiers that sustain tumor growth, we performed an epigenetic screen and found that inhibition of lysine methyltransferase G9a significantly affected the viability of ARMS cell lines. Targeting expression or activity of G9a reduced cellular proliferation and motility in vitro and tumor growth in vivo. Transcriptome and chromatin immunoprecipitation-sequencing analysis provided mechanistic evidence that the tumor-suppressor PTEN was a direct target gene of G9a. G9a repressed PTEN expression in a methyltransferase activity-dependent manner, resulting in increased AKT and RAC1 activity. Re-expression of constitutively active RAC1 in G9a-deficient tumor cells restored oncogenic phenotypes, demonstrating its critical functions downstream of G9a. Collectively, our study provides evidence for a G9a-dependent epigenetic program that regulates tumor growth and suggests targeting G9a as a therapeutic strategy in ARMS. SIGNIFICANCE: These findings demonstrate that RAC1 is an effector of G9a oncogenic functions and highlight the potential of G9a inhibitors in the treatment of ARMS.
Collapse
Affiliation(s)
- Akshay V Bhat
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Monica Palanichamy Kala
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Vinay Kumar Rao
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Luca Pignata
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Huey Jin Lim
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sudha Suriyamurthy
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kenneth T Chang
- Department of Pathology, KK Women and Children's Hospital, Singapore, Singapore
| | - Victor K Lee
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ernesto Guccione
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Reshma Taneja
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
31
|
Choo SY, Yoon SH, Lee DJ, Lee SH, Li K, Koo IH, Lee W, Bae SC, Lee YM. Runx3 inhibits endothelial progenitor cell differentiation and function via suppression of HIF-1α activity. Int J Oncol 2019; 54:1327-1336. [PMID: 30968151 DOI: 10.3892/ijo.2019.4713] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 11/30/2018] [Indexed: 11/05/2022] Open
Abstract
Endothelial progenitor cells (EPCs) are bone marrow (BM)‑derived progenitor cells that can differentiate into mature endothelial cells, contributing to vasculogenesis in the blood vessel formation process. Runt‑related transcription factor 3 (RUNX3) belongs to the Runt domain family and is required for the differentiation of specific immune cells and neurons. The tumor suppressive role of RUNX3, via the induction of apoptosis and cell cycle arrest in a variety of cancers, and its deletion or frequent silencing by epigenetic mechanisms have been studied extensively; however, its role in the differentiation of EPCs is yet to be investigated. Therefore, in the present study, adult BM‑derived hematopoietic stem cells (HSCs) were isolated from Runx3 heterozygous (Rx3+/‑) or wild‑type (WT) mice. The differentiation of EPCs from the BM‑derived HSCs of Rx3+/‑ mice was found to be significantly increased compared with those of the WT mice, as determined by the number of small or large colony‑forming units. The migration and tube formation abilities of Rx3+/‑ EPCs were also observed to be significantly increased compared with those of WT EPCs. Furthermore, the number of circulating EPCs, defined as CD34+/vascular endothelial growth factor receptor 2 (VEGFR2)+ cells, was also significantly increased in Rx3+/‑ mice. Hypoxia‑inducible factor (HIF)‑1α was upregulated in Rx3+/‑ EPCs compared with WT EPCs, even under normoxic conditions. Furthermore, in a hindlimb ischemic mouse models, the recovery of blood flow was observed to be highly stimulated in Rx3+/‑ mice compared with WT mice. Also, in a Lewis lung carcinoma cell allograft model, the tumor size in Rx3+/‑ mice was significantly larger than that in WT mice, and the EPC cell population (CD34+/VEGFR2+ cells) recruited to the tumor was greater in the Rx3+/‑ mice compared with the WT mice. In conclusion, the present study revealed that Runx3 inhibits vasculogenesis via the inhibition of EPC differentiation and functions via the suppression of HIF‑1α activity.
Collapse
Affiliation(s)
- So-Yun Choo
- BK21 Plus KNU Multi-Omics Creative Drug Research Team, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Soo-Hyun Yoon
- BK21 Plus KNU Multi-Omics Creative Drug Research Team, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Dong-Jin Lee
- BK21 Plus KNU Multi-Omics Creative Drug Research Team, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sun Hee Lee
- BK21 Plus KNU Multi-Omics Creative Drug Research Team, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kang Li
- BK21 Plus KNU Multi-Omics Creative Drug Research Team, Kyungpook National University, Daegu 41566, Republic of Korea
| | - In Hye Koo
- National Basic Research Laboratory of Vascular Homeostasis Regulation, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Wooin Lee
- National Basic Research Laboratory of Vascular Homeostasis Regulation, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Suk-Chul Bae
- Department of Biochemistry, School of Medicine, Institute of Tumor Research, Chungbuk National University, Chungju 28644, Republic of Korea
| | - You Mie Lee
- BK21 Plus KNU Multi-Omics Creative Drug Research Team, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
32
|
Calcagno DQ, Wisnieski F, Mota ERDS, Maia de Sousa SB, Costa da Silva JM, Leal MF, Gigek CO, Santos LC, Rasmussen LT, Assumpção PP, Burbano RR, Smith MAC. Role of histone acetylation in gastric cancer: implications of dietetic compounds and clinical perspectives. Epigenomics 2019; 11:349-362. [DOI: 10.2217/epi-2018-0081] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Histone modifications regulate the structural status of chromatin and thereby influence the transcriptional status of genes. These processes are controlled by the recruitment of different enzymes to a specific genomic site. Furthermore, obtaining an understanding of these mechanisms could help delineate alternative treatment and preventive strategies for cancer. For example, in gastric cancer, cholecalciferol, curcumin, resveratrol, quercetin, garcinol and sodium butyrate are natural regulators of acetylation and deacetylation enzyme activity that exert chemopreventive and anticancer effects. Here, we review the recent findings on histone acetylation in gastric cancer and discuss the effects of nutrients and bioactive compounds on histone acetylation and their potential role in the prevention and treatment of this type of cancer.
Collapse
Affiliation(s)
- Danielle Q Calcagno
- Programa de Pós-graduação em Oncologia e Ciências Médicas, Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém, PA, Brazil
- Programa de Pós-graduação em Química Medicinal e Modelagem Molecular, Universidade Federal do Pará, Belém, PA, Brazil
- Residência Multiprofissional em Saúde/Oncologia, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, PA, Brazil
| | | | - Elizangela R da Silva Mota
- Programa de Pós-graduação em Química Medicinal e Modelagem Molecular, Universidade Federal do Pará, Belém, PA, Brazil
| | - Stefanie B Maia de Sousa
- Programa de Pós-graduação em Oncologia e Ciências Médicas, Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém, PA, Brazil
| | | | - Mariana F Leal
- Programa de Pós-graduação em Oncologia e Ciências Médicas, Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém, PA, Brazil
- Disciplina de Genética, Universidade Federal de São Paulo, SP, Brazil
| | - Carolina O Gigek
- Disciplina de Genética, Universidade Federal de São Paulo, SP, Brazil
- Departamento de Patologia, Universidade Federal de São Paulo, SP, Brazil
| | - Leonardo C Santos
- Disciplina de Genética, Universidade Federal de São Paulo, SP, Brazil
| | - Lucas T Rasmussen
- Disciplina de Genética, Universidade Federal de São Paulo, SP, Brazil
- Pró-Reitoria de Pesquisa e Pós-Graduação, Universidade do Sagrado Coração, Bauru, SP, Brazil
| | - Paulo P Assumpção
- Programa de Pós-graduação em Oncologia e Ciências Médicas, Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém, PA, Brazil
| | - Rommel R Burbano
- Programa de Pós-graduação em Oncologia e Ciências Médicas, Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém, PA, Brazil
- Laboratório de Biologia Molecular, Hospital Ophir Loyola, Belém, PA, Brazil
| | - Marília AC Smith
- Disciplina de Genética, Universidade Federal de São Paulo, SP, Brazil
| |
Collapse
|
33
|
Singh PK. Histone methyl transferases: A class of epigenetic opportunities to counter uncontrolled cell proliferation. Eur J Med Chem 2019; 166:351-368. [PMID: 30735901 DOI: 10.1016/j.ejmech.2019.01.069] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/03/2019] [Accepted: 01/28/2019] [Indexed: 02/06/2023]
Abstract
With each newly disclosed resistance mechanism, management of cancer with previously established targets have become a "failure" oriented approach. Molecular targets such as kinases did initially provide a ray of hope against cancer but with decades of struggle between novel therapeutic agents and more sophisticated resistance mechanisms, they seem to have saturated as anti-cancer targets. Now, with more exhaustive molecular recognition techniques and approaches, epigenetic targets have accessed the centre stage as anti-cancer targets. Accordingly, several classes of epigenetic enzymes are being studied for this role and histone methyltransferases form one such class. They include a class of epigenetic enzymes which transfer methyl group from histone proteins and maintain genetic homeostasis. In cancer, several reports have deduced upregulation of different members of this family according to the tumor environment, establishing them as one of the novel anti-cancer targets. This compilation provides an updated information on several members of histone methyltransferases family as epigenetic targets for developing novel anti-cancer agents.
Collapse
Affiliation(s)
- Pankaj Kumar Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India.
| |
Collapse
|
34
|
Epigenetic Targeting of Autophagy via HDAC Inhibition in Tumor Cells: Role of p53. Int J Mol Sci 2018; 19:ijms19123952. [PMID: 30544838 PMCID: PMC6321134 DOI: 10.3390/ijms19123952] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/05/2018] [Accepted: 12/06/2018] [Indexed: 12/19/2022] Open
Abstract
Tumor development and progression is the consequence of genetic as well as epigenetic alterations of the cell. As part of the epigenetic regulatory system, histone acetyltransferases (HATs) and deacetylases (HDACs) drive the modification of histone as well as non-histone proteins. Derailed acetylation-mediated gene expression in cancer due to a delicate imbalance in HDAC expression can be reversed by histone deacetylase inhibitors (HDACi). Histone deacetylase inhibitors have far-reaching anticancer activities that include the induction of cell cycle arrest, the inhibition of angiogenesis, immunomodulatory responses, the inhibition of stress responses, increased generation of oxidative stress, activation of apoptosis, autophagy eliciting cell death, and even the regulation of non-coding RNA expression in malignant tumor cells. However, it remains an ongoing issue how tumor cells determine to respond to HDACi treatment by preferentially undergoing apoptosis or autophagy. In this review, we summarize HDACi-mediated mechanisms of action, particularly with respect to the induction of cell death. There is a keen interest in assessing suitable molecular factors allowing a prognosis of HDACi-mediated treatment. Addressing the results of our recent study, we highlight the role of p53 as a molecular switch driving HDACi-mediated cellular responses towards one of both types of cell death. These findings underline the importance to determine the mutational status of p53 for an effective outcome in HDACi-mediated tumor therapy.
Collapse
|
35
|
Manandhar S, Lee YM. Emerging role of RUNX3 in the regulation of tumor microenvironment. BMB Rep 2018; 51:174-181. [PMID: 29429451 PMCID: PMC5933212 DOI: 10.5483/bmbrep.2018.51.4.033] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Indexed: 12/17/2022] Open
Abstract
A number of genes have been therapeutically targeted to relieve cancer, but cancer relapse is still a growing issue. The concept that the surrounding tumor environment is critical for the progression of cancer may foster an answer to the issue of cancer malignancy. Runt domain transcription factors (RUNX1, 2, and 3) are evolutionarily conserved and have been intensively studied for their roles in normal development and pathological conditions. During tumor growth, a hypoxic microenvironment and infiltration of the tumor by immune cells are common phenomena. In this review, we briefly introduce the consequences of hypoxia and immune cell infiltration into the tumor microenvironment with a focus on RUNX3 as a critical regulator. Furthermore, based on our current knowledge of the functional role of RUNX3 in hypoxia and immune cell maintenance, a probable therapeutic intervention is suggested for the effective management of tumor growth and malignancy. [BMB Reports 2018; 51(4): 174-181].
Collapse
Affiliation(s)
- Sarala Manandhar
- Laboratory of Vascular Homeostasis Regulation, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea
| | - You Mie Lee
- Laboratory of Vascular Homeostasis Regulation, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
36
|
The Methylation Status of the Epigenome: Its Emerging Role in the Regulation of Tumor Angiogenesis and Tumor Growth, and Potential for Drug Targeting. Cancers (Basel) 2018; 10:cancers10080268. [PMID: 30103412 PMCID: PMC6115976 DOI: 10.3390/cancers10080268] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/27/2018] [Accepted: 08/06/2018] [Indexed: 12/13/2022] Open
Abstract
Approximately 50 years ago, Judah Folkman raised the concept of inhibiting tumor angiogenesis for treating solid tumors. The development of anti-angiogenic drugs would decrease or even arrest tumor growth by restricting the delivery of oxygen and nutrient supplies, while at the same time display minimal toxic side effects to healthy tissues. Bevacizumab (Avastin)—a humanized monoclonal anti VEGF-A antibody—is now used as anti-angiogenic drug in several forms of cancers, yet with variable results. Recent years brought significant progresses in our understanding of the role of chromatin remodeling and epigenetic mechanisms in the regulation of angiogenesis and tumorigenesis. Many inhibitors of DNA methylation as well as of histone methylation, have been successfully tested in preclinical studies and some are currently undergoing evaluation in phase I, II or III clinical trials, either as cytostatic molecules—reducing the proliferation of cancerous cells—or as tumor angiogenesis inhibitors. In this review, we will focus on the methylation status of the vascular epigenome, based on the genomic DNA methylation patterns with DNA methylation being mainly transcriptionally repressive, and lysine/arginine histone post-translational modifications which either promote or repress the chromatin transcriptional state. Finally, we discuss the potential use of “epidrugs” in efficient control of tumor growth and tumor angiogenesis.
Collapse
|
37
|
Li Z, Fan P, Deng M, Zeng C. The roles of RUNX3 in cervical cancer cells in vitro. Oncol Lett 2018; 15:8729-8734. [PMID: 29805611 DOI: 10.3892/ol.2018.8419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 03/21/2018] [Indexed: 01/28/2023] Open
Abstract
RUNX3 serves an important role in development of various types of human cancer. The purpose of the present study was to investigate the potential biological function of RUNX3 in cervical cancer cells. In the present study, a RUNX3 overexpressed model was constructed in Hce1 cells by PCDNA3.1-RUNX3 transfection. Western blot analysis was used to measure RUNX3 expression in cervical cancer cells. Immunofluorescence analysis was performed to examine subcellular localization of RUNX3 in cervical cancer cells. Effects of RUNX3 expression on proliferation, migration and invasion of cervical cancer cells were detected by colony formation assay, wound healing assay and Transwell assay, respectively. Immunofluorescence confirmed the nuclear location of RUNX3 in cervical cancer cell. Result sindicated that upregulation of RUNX3 expression inhibited proliferation, migration and invasion of cervical cancer cells. However, knockdown of RUNX3 expression promoted the proliferation, migration and invasion of cervical cancer cells. Hence, RUNX3 may serve as a tumor suppressor gene in cervical cancer.
Collapse
Affiliation(s)
- Zhen Li
- Department of Pathology, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Pan Fan
- Department of Pathology, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Min Deng
- Cancer Hospital and Cancer Research Institute, Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| | - Chao Zeng
- Department of Pathology, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| |
Collapse
|
38
|
Park K, Lee HE, Lee SH, Lee D, Lee T, Lee YM. Molecular and functional evaluation of a novel HIF inhibitor, benzopyranyl 1,2,3-triazole compound. Oncotarget 2018; 8:7801-7813. [PMID: 27999195 PMCID: PMC5352362 DOI: 10.18632/oncotarget.13955] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/01/2016] [Indexed: 12/21/2022] Open
Abstract
Hypoxia occurs in a variety of pathological events, including the formation of solid tumors. Hypoxia-inducible factor (HIF)-1α is stabilized under hypoxic conditions and is a key molecule in tumor growth and angiogenesis. Seeking to develop novel cancer therapeutics, we investigated small molecules from our in-house chemical libraries to target HIF-1α. We employed a dual-luciferase assay that uses a luciferase (Luc) reporter vector harboring five copies of hypoxia-responsive element (HRE) in the promoter. Under hypoxic conditions that increased Luc reporter activity by four-fold, we screened 144 different compounds, nine of which showed 30–50% inhibition of hypoxia-induced Luc reporter activity. Among these, “Compound 12, a benzopyranyl 1,2,3-triazole” was the most efficient at inhibiting the expression of HIF-1α under hypoxic conditions, reducing its expression by 80%. Under hypoxic conditions, the half maximal IC50 of the compound was 24 nM in HEK-293 human embryonic kidney cells, and 2 nM in A549 human lung carcinoma cells. Under hypoxic conditions, Compound 12 increased hydroxylated HIF-1α levels and HIF-1α ubiquitination, and also dose-dependently decreased HIF-1α target gene expression as well as vascular endothelial growth factor (VEGF) secretion. Furthermore, this compound inhibited VEGF-induced in vitro angiogenesis in human umbilical vein endothelial cells (HUVECs), and in vivo, it inhibited chick chorioallantoic membrane angiogenesis. In allogaft assays, cotreatment with Compound 12 and gefitinib significantly inhibited tumor growth and angiogenesis. Compound 12 can be a novel inhibitor of HIF-1α by accelerating its degradation, and shows much potential as an anti-cancer agent through its ability to suppress tumor growth and angiogenesis.
Collapse
Affiliation(s)
- Kyunghye Park
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, National Basic Research Laboratory of Vascular Homeostasis Regulation, Kyungpook National University, Buk-gu, 702-701, Daegu, Republic of Korea
| | - Hye Eun Lee
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, National Basic Research Laboratory of Vascular Homeostasis Regulation, Kyungpook National University, Buk-gu, 702-701, Daegu, Republic of Korea
| | - Sun Hee Lee
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, National Basic Research Laboratory of Vascular Homeostasis Regulation, Kyungpook National University, Buk-gu, 702-701, Daegu, Republic of Korea
| | - Doohyun Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Buk-gu, 702-701, Daegu, Republic of Korea
| | - Taeho Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Buk-gu, 702-701, Daegu, Republic of Korea
| | - You Mie Lee
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, National Basic Research Laboratory of Vascular Homeostasis Regulation, Kyungpook National University, Buk-gu, 702-701, Daegu, Republic of Korea.,College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Buk-gu, 702-701, Daegu, Republic of Korea
| |
Collapse
|
39
|
Seelan RS, Mukhopadhyay P, Pisano MM, Greene RM. Effects of 5-Aza-2'-deoxycytidine (decitabine) on gene expression. Drug Metab Rev 2018; 50:193-207. [PMID: 29455551 DOI: 10.1080/03602532.2018.1437446] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
5-Aza-2'-deoxycytidine (AzaD), also known as Decitabine, is a deoxycytidine analog that is typically used to activate methylated and silenced genes by promoter demethylation. However, a survey of the scientific literature indicates that promoter demethylation may not be the only (or, indeed, the major) mechanism by which AzaD affects gene expression. Regulation of gene expression by AzaD can occur in several ways, including some that are independent of DNA demethylation. Results from several studies indicate that the effect of AzaD on gene expression is highly context-dependent and can differ for the same gene under different environmental settings. This may, in part, be due to the nature of the silencing mechanism(s) involved - DNA methylation, repressive histone modifications, or a combination of both. The varied effects of AzaD on such context-dependent regulation of gene expression may underlie some of the diverse responses exhibited by patients undergoing AzaD therapy. In this review, we describe the salient properties of AzaD with particular emphasis on its diverse effects on gene expression, aspects that have barely been discussed in most reviews of this interesting drug.
Collapse
Affiliation(s)
- Ratnam S Seelan
- a Department of Surgical and Hospital Dentistry, Division of Craniofacial Development and Anomalies , ULSD, University of Louisville , Louisville , KY , USA
| | - Partha Mukhopadhyay
- a Department of Surgical and Hospital Dentistry, Division of Craniofacial Development and Anomalies , ULSD, University of Louisville , Louisville , KY , USA
| | - M Michele Pisano
- a Department of Surgical and Hospital Dentistry, Division of Craniofacial Development and Anomalies , ULSD, University of Louisville , Louisville , KY , USA
| | - Robert M Greene
- a Department of Surgical and Hospital Dentistry, Division of Craniofacial Development and Anomalies , ULSD, University of Louisville , Louisville , KY , USA
| |
Collapse
|
40
|
Park SE, Yi HJ, Suh N, Park YY, Koh JY, Jeong SY, Cho DH, Kim CS, Hwang JJ. Inhibition of EHMT2/G9a epigenetically increases the transcription of Beclin-1 via an increase in ROS and activation of NF-κB. Oncotarget 2018; 7:39796-39808. [PMID: 27174920 PMCID: PMC5129971 DOI: 10.18632/oncotarget.9290] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 04/16/2016] [Indexed: 12/31/2022] Open
Abstract
We previously reported that BIX-01294 (BIX), a small molecular inhibitor of euchromatic histone-lysine N-methyltransferase 2 (EHMT2/G9a), induces reactive oxygen species (ROS)-dependent autophagy in MCF-7 cells. Herein, we analyzed the epigenetic mechanism that regulates the transcription of Beclin-1, a tumor suppressor and an autophagy-related gene (ATG). Inhibition of EHMT2 reduced dimethylation of lysine 9 on histone H3 (H3K9me2) and dissociated EHMT2 and H3K9me2 from the promoter of Beclin-1. To this promoter, RNA polymerase II and nuclear factor kappa B (NF-κB) were recruited in a ROS-dependent manner, resulting in transcriptional activation. Moreover, treatment with BIX reversed the suppression of Beclin-1 by the cooperative action of EHMT2 and DNA methyltransferase 1 (DNMT1). Accordingly, a combination treatment with BIX and 5-Aza-2′-deoxycytidine (5-Aza-Cd), a DNMT1 inhibitor, exerted a synergistic effect on Beclin-1 expression. Importantly, high levels of EHMT2 expression showed a significant association with low levels of Beclin-1 expression, which was related to a poor prognosis. These findings suggest that EHMT2 can directly repress Beclin-1 and that the inhibition of EHMT2 may be a useful therapeutic approach for cancer prevention by activating autophagy.
Collapse
Affiliation(s)
- Sang Eun Park
- Institute for Innovative Cancer Research, Asan Medical Center, Seoul, Korea.,Department of Urology, University of Ulsan, College of Medicine, Seoul, Korea
| | - Hye Jin Yi
- Institute for Innovative Cancer Research, Asan Medical Center, Seoul, Korea
| | - Nayoung Suh
- Department of Medicine Engineering, Soon Chun Hyang University, College of Medical Sciences, Asan, Korea
| | - Yun-Yong Park
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea.,Department of Convergence Medicine, University of Ulsan, College of Medicine, Seoul, Korea
| | - Jae-Young Koh
- Department of Neurology, Asan Medical Center, Seoul, Korea.,Department of Urology, Asan Medical Center, Seoul, Korea.,Neural Injury Research Laboratory, University of Ulsan, College of Medicine, Seoul, Korea
| | - Seong-Yun Jeong
- Institute for Innovative Cancer Research, Asan Medical Center, Seoul, Korea.,Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea.,Department of Convergence Medicine, University of Ulsan, College of Medicine, Seoul, Korea
| | - Dong-Hyung Cho
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin, Korea
| | - Choung-Soo Kim
- Institute for Innovative Cancer Research, Asan Medical Center, Seoul, Korea.,Department of Urology, Asan Medical Center, Seoul, Korea.,Department of Urology, University of Ulsan, College of Medicine, Seoul, Korea
| | - Jung Jin Hwang
- Institute for Innovative Cancer Research, Asan Medical Center, Seoul, Korea.,Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea.,Department of Convergence Medicine, University of Ulsan, College of Medicine, Seoul, Korea
| |
Collapse
|
41
|
Li Y, Zhang Z, Zhou X, Li R, Cheng Y, Shang B, Han Y, Liu B, Xie X. Histone Deacetylase 1 Inhibition Protects Against Hypoxia-Induced Swelling in H9c2 Cardiomyocytes Through Regulating Cell Stiffness. Circ J 2017; 82:192-202. [PMID: 28747611 DOI: 10.1253/circj.cj-17-0022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND The process of cardiomyocyte swelling involves changes of biomechanical properties and profiles of cellular genes. Although many genes have been proved to regulate cell edema of cardiomyocyte, the mechanisms involved in this event, as well as the biomechanical properties of swelling cell, remain unknown. METHODS AND RESULTS Whether histone deacetylase 1 (HDAC1) inhibition protects against hypoxia-induced H9c2 cardiomyocyte swelling is examined in this study. Hypoxia-induced changes in the biomechanical properties and cytoskeletal structure that are relevant to cell swelling were also determined. H9c2 cells were treated under a chemical hypoxia situation (cobalt chloride) with HDAC1 inhibition (chemical inhibitor or siRNA) for 5 h, followed by in vitro biological and mechanical characterization. The results showed that expression of HDAC1 instead of HDAC4 was upregulated by chemical hypoxia. HDAC1 inhibition protects H9c2 cells against chemical hypoxia-induced hypoxic injury and cell swelling. HDAC1 inhibition improved cell viability, decreased lactate dehydrogenase leakage, cell apoptosis, malondialdehyde concentration, cell volume, and particles on the cell surface, and increased superoxide dismutase activity. Moreover, chemical hypoxia induced a decrease of Young's modulus, accompanied by alterations in the integrity of acetylated histone and organization of the cytoskeletal network. HDAC1 inhibition significantly reversed these processes. CONCLUSIONS Based on the ideal physical model, HDAC1 inhibition protects against hypoxia-induced swelling in H9c2 cardiomyocytes through enhancing cell stiffness. Overall, HDAC1 is a potential therapeutic target for myocardial edema.
Collapse
Affiliation(s)
- Yi Li
- The Institute of Medical Genetics, School of Basic Medical Sciences, Lanzhou University
- Gansu Cardiovascular Institute
| | - Zhengyi Zhang
- Cardiac Hospital, Lanzhou University Second Hospital
| | - Xiangnan Zhou
- School of Physics and Information Engineering, Shanxi Normal University
| | - Rui Li
- School of Stomatology, Lanzhou University
| | - Yan Cheng
- Experimental Center, Northwest University for Nationalities
- Department of Biochemistry and Medical Genetics, University of Manitoba
| | - Bo Shang
- Cardiac Hospital, Lanzhou University Second Hospital
| | - Yu Han
- College of Life Science & Technology, Huazhong University of Science & Technology
| | - Bin Liu
- School of Stomatology, Lanzhou University
| | - Xiaodong Xie
- The Institute of Medical Genetics, School of Basic Medical Sciences, Lanzhou University
- Gansu Cardiovascular Institute
| |
Collapse
|
42
|
Shin JG, Cheong HS, Kim JY, Lee JH, Yu SJ, Yoon JH, Cheong JY, Cho SW, Park NH, Namgoong S, Kim LH, Kim YJ, Shin HD. Identification of additional EHMT2 variant associated with the risk of chronic hepatitis B by GWAS follow-up study. Genes Immun 2017; 20:1-9. [PMID: 29238036 DOI: 10.1038/s41435-017-0004-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/12/2017] [Accepted: 07/13/2017] [Indexed: 02/07/2023]
Abstract
Chronic hepatitis B (CHB) is a precursor to liver cirrhosis and hepatocellular carcinoma, caused by a Hepatitis B viral infection. Genome-wide association studies (GWASs) have been conducted to find genes associated with CHB risk. In previous GWAS, EHMT2 was identified as one of the susceptibility genes for CHB. To further characterize this association and discover possible causal variants, we conducted an additional association study. A total of 11 EHMT2 single-nucleotide polymorphisms (SNP) were selected and genotyped in 3902 subjects (1046 CHB patients and 2856 controls). An additional eight imputed SNPs were also included in further analysis. As a result, rs35875104 showed a strong association with the CHB, along with the previously reported genetic marker for CHB risk, rs652888 (odds ratio (OR) = 0.53, P = 2.20 × 10-8 at rs35875104 and OR = 1.58, P = 9.90 × 10-12 at rs652888). In addition, linkage disequilibrium and conditional analysis identified one SNP (rs35875104) as a novel genetic marker for CHB susceptibility. The GRSs (genetic risk scores) were calculated to visualize the combined genetic effects of all known CHB-associated loci, including EHMT2 rs35875104, which was additionally identified in this study. The findings from the present study may be useful for further understanding of the genetic etiology of CHB.
Collapse
Affiliation(s)
- Joong-Gon Shin
- Department of Life Science, Sogang University, 1 Shinsu-dong, Mapo-gu, Seoul, 121-742, Republic of Korea.,Research Institute for Basic Science, Sogang University, Seoul, 121-742, Republic of Korea
| | - Hyun Sub Cheong
- Department of Genetic Epidemiology, SNP Genetics, Sogang University, Inc., Taihard building 1007, 1 Shinsu-dong, Mapo-gu, Seoul, 121-742, Republic of Korea
| | - Jason Yongha Kim
- Department of Life Science, Sogang University, 1 Shinsu-dong, Mapo-gu, Seoul, 121-742, Republic of Korea
| | - Jeong-Hoon Lee
- Department of Internal Medicine and Liver Research Institute, Seoul National University, 28 Yungun-dong, Chongro-Gu, Seoul, 110-744, Republic of Korea
| | - Su Jong Yu
- Department of Internal Medicine and Liver Research Institute, Seoul National University, 28 Yungun-dong, Chongro-Gu, Seoul, 110-744, Republic of Korea
| | - Jung-Hwan Yoon
- Department of Internal Medicine and Liver Research Institute, Seoul National University, 28 Yungun-dong, Chongro-Gu, Seoul, 110-744, Republic of Korea
| | - Jae Youn Cheong
- Department of Internal Medicine, Seoul National University Boramae Medical Center, 20 Boramae-ro 5-gil, Dongjak-gu, Seoul, 156-707, Republic of Korea
| | - Sung Won Cho
- Department of Gastroenterology, Ajou University School of Medicine, San-5 Wonchon-dong, Youngtong-gu, Suwon, 442-721, Republic of Korea
| | - Neung Hwa Park
- Department of Internal Medicine, Ulsan University Hospital, 877 Bangeojin Sunhwan-doro, Dong-gu, Ulsan, 682-714, Republic of Korea
| | - Suhg Namgoong
- Department of Life Science, Sogang University, 1 Shinsu-dong, Mapo-gu, Seoul, 121-742, Republic of Korea.,Department of Genetic Epidemiology, SNP Genetics, Sogang University, Inc., Taihard building 1007, 1 Shinsu-dong, Mapo-gu, Seoul, 121-742, Republic of Korea
| | - Lyoung Hyo Kim
- Department of Genetic Epidemiology, SNP Genetics, Sogang University, Inc., Taihard building 1007, 1 Shinsu-dong, Mapo-gu, Seoul, 121-742, Republic of Korea
| | - Yoon Jun Kim
- Department of Internal Medicine and Liver Research Institute, Seoul National University, 28 Yungun-dong, Chongro-Gu, Seoul, 110-744, Republic of Korea.
| | - Hyoung Doo Shin
- Department of Life Science, Sogang University, 1 Shinsu-dong, Mapo-gu, Seoul, 121-742, Republic of Korea. .,Research Institute for Basic Science, Sogang University, Seoul, 121-742, Republic of Korea. .,Department of Genetic Epidemiology, SNP Genetics, Sogang University, Inc., Taihard building 1007, 1 Shinsu-dong, Mapo-gu, Seoul, 121-742, Republic of Korea.
| |
Collapse
|
43
|
Ho JC, Abdullah LN, Pang QY, Jha S, Chow EKH, Yang H, Kato H, Poellinger L, Ueda J, Lee KL. Inhibition of the H3K9 methyltransferase G9A attenuates oncogenicity and activates the hypoxia signaling pathway. PLoS One 2017; 12:e0188051. [PMID: 29145444 PMCID: PMC5690420 DOI: 10.1371/journal.pone.0188051] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 10/31/2017] [Indexed: 12/12/2022] Open
Abstract
Epigenetic mechanisms play important roles in the regulation of tumorigenesis, and hypoxia-induced epigenetic changes may be critical for the adaptation of cancer cells to the hypoxic microenvironment of solid tumors. Previously, we showed that loss-of-function of the hypoxia-regulated H3K9 methyltransferase G9A attenuates tumor growth. However, the mechanisms by which blockade of G9A leads to a tumor suppressive effect remain poorly understood. We show that G9A is highly expressed in breast cancer and is associated with poor patient prognosis, where it may function as a potent oncogenic driver. In agreement with this, G9A inhibition by the small molecule inhibitor, BIX-01294, leads to increased cell death and impaired cell migration, cell cycle and anchorage-independent growth. Interestingly, whole transcriptome analysis revealed that genes involved in diverse cancer cell functions become hypoxia-responsive upon G9A inhibition. This was accompanied by the upregulation of the hypoxia inducible factors HIF1α and HIF2α during BIX-01294 treatment even in normoxia that may facilitate the tumor suppressive effects of BIX-01294. HIF inhibition was able to reverse some of the transcriptional changes induced by BIX-01294 in hypoxia, indicating that the HIFs may be important drivers of these derepressed target genes. Therefore, we show that G9A is a key mediator of oncogenic processes in breast cancer cells and G9A inhibition by BIX-01294 can successfully attenuate oncogenicity even in hypoxia.
Collapse
Affiliation(s)
- Jolene Caifeng Ho
- Cancer Stem Cells and Biology Program, Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- * E-mail: (JCH); (JU); (KLL)
| | - Lissa Nurrul Abdullah
- Cancer Stem Cells and Biology Program, Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Qing You Pang
- Cancer Stem Cells and Biology Program, Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Sudhakar Jha
- Cancer Stem Cells and Biology Program, Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Edward Kai-Hua Chow
- Cancer Stem Cells and Biology Program, Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Henry Yang
- Cancer Stem Cells and Biology Program, Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Hiroyuki Kato
- Cancer Stem Cells and Biology Program, Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Lorenz Poellinger
- Cancer Stem Cells and Biology Program, Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Jun Ueda
- Center for Advanced Research and Education, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
- * E-mail: (JCH); (JU); (KLL)
| | - Kian Leong Lee
- Cancer Stem Cells and Biology Program, Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- * E-mail: (JCH); (JU); (KLL)
| |
Collapse
|
44
|
Feng B, Zhu Y, Su Z, Tang L, Sun C, Li C, Zheng G. Basil polysaccharide attenuates hepatocellular carcinoma metastasis in rat by suppressing H3K9me2 histone methylation under hepatic artery ligation-induced hypoxia. Int J Biol Macromol 2017; 107:2171-2179. [PMID: 29042275 DOI: 10.1016/j.ijbiomac.2017.10.088] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/12/2017] [Accepted: 10/14/2017] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common and fatal cancers in the world. Tumor metastasis is an important factor of poor prognosis in patients with HCC. Tumor hypoxia can promote tumor cell metastasis in HCC. Epigenetic modification is closely related to tumor hypoxia and metastasis. In our previous research, we found that basil polysaccharide suppressed migration and invasion of HCC cell by inhibiting hypoxia induced histone methylation in vitro. In the present study, we investigated the effect of basil polysaccharide on the walker 256 carcinoma cell metastasis in rat. We established an intratumoral hypoxic model in rat by hepatic artery ligation (HAL). Then rats were treated with basil polysaccharide (75, 150 and 300mg/kg). The results showed that HAL could promote tumor metastasis by aggravating tumor hypoxia. However, basil polysaccharide could inhibit tumor metastasis in intratumoral hypoxia. Further, we demonstrated that basil polysaccharide could down-regulate the expression of HIF-1α, G9a, LSD1, JMJD1A, JMJD2B, JARID1B and H3K9me2. Synchronously, basil polysaccharide could increase E-cadherin and VMP1 expression, and decrease N-cadherin, vimentin and β-catenin expression. The results indicated that histone modifying enzymes might be a new therapeutic target of basil polysaccharide on hepatocellular carcinoma metastasis.
Collapse
Affiliation(s)
- Bing Feng
- Guangdong Provincial Hospital of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510120, China
| | - Ying Zhu
- Guangdong Provincial Hospital of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510120, China
| | - Zuqing Su
- Guangdong Provincial Hospital of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510120, China
| | - Lipeng Tang
- Guangdong Provincial Hospital of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510120, China
| | - Chaoyue Sun
- Guangdong Provincial Hospital of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510120, China
| | - Caiyun Li
- Guangdong Provincial Hospital of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510120, China
| | - Guangjuan Zheng
- Guangdong Provincial Hospital of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510120, China.
| |
Collapse
|
45
|
Histone methyltransferase G9a promotes liver cancer development by epigenetic silencing of tumor suppressor gene RARRES3. J Hepatol 2017; 67:758-769. [PMID: 28532996 DOI: 10.1016/j.jhep.2017.05.015] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 04/29/2017] [Accepted: 05/11/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Hepatocellular carcinoma (HCC) is a major leading cause of cancer mortality worldwide. Epigenetic deregulation is a common trait of human HCC. G9s is an important epigenetics regulator however, its role in liver carcinogenesis remains to be investigated. METHODS Gene expressions were determined by RNA-Seq and qRT-PCR. G9a knockdown and knockout cell lines were established by lentiviral-based shRNA and CRISPR/Cas9 gene editing system. Tumor-promoting functions of G9a was studied in both HCC cell lines and nude mice model. The downstream targets of G9a were identified by RNA-Seq and confirmed by ChIP assay. The therapeutic value of G9a inhibitors was evaluated both in vitro and in vivo. RESULTS We identified G9a as a frequently upregulated histone methyltransferase in human HCCs. Upregulation of G9a was significantly associated with HCC progression and aggressive clinicopathological features. Functionally, we demonstrated that inactivation of G9a by RNAi knockdown, CRISPR/Cas9 knockout, and pharmacological inhibition remarkably abolished H3K9 di-methylation and suppressed HCC cell proliferation and metastasis in both in vitro and in vivo models. Mechanistically, we showed that the frequent upregulation of G9a in human HCCs was attributed to gene copy number gain at chromosome 6p21. In addition, we identified miR-1 as a negative regulator of G9a. Loss of miR-1 relieved the post-transcriptional repression on G9a and contributed to its upregulation in human HCC. Utilizing RNA sequencing, we identified the tumor suppressor RARRES3 as a critical target of G9a. Epigenetic silencing of RARRES3 contributed to the tumor-promoting function of G9a. CONCLUSION This study shows a frequent deregulation of miR-1/G9a/RARRES3 axis in liver carcinogenesis, highlighting the pathological significance of G9a and its therapeutic potential in HCC treatment. Lay summary: In this study, we identified G9a histone methyltransferase was frequently upregulated in human HCC and contributes to epigenetic silencing of tumor suppressor gene RARRES3 in liver cancer. Targeting G9a may be a novel approach for HCC treatment.
Collapse
|
46
|
Lai J, Wang H, Luo Q, Huang S, Lin S, Zheng Y, Chen Q. The relationship between DNA methylation and Reprimo gene expression in gastric cancer cells. Oncotarget 2017; 8:108610-108623. [PMID: 29312555 PMCID: PMC5752468 DOI: 10.18632/oncotarget.21296] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 09/13/2017] [Indexed: 12/31/2022] Open
Abstract
Reprimo (RPRM) is a tumor suppressor involved in the development of a number of malignant tumors including gastric cancer which is highly related to its gene hypermethylation. However, the regulation of RPRM gene expression by DNA methylation in gastric cancer is not well understood. We examined the RPRM gene methylation in gastric cancer tissues or plasma samples by bisulfite sequencing, and investigated the relationship between DNA methylation and the RPRM gene expression by quantitative reverse transcription-PCR and Western blotting. We found that the RPRM gene promoter region is hypermethylated in gastric cancer tissues (75%, 45/60), plasma samples (86.3%, 44/51) and various cancer cell lines (75%, 3/4), which is correlated with the decrease of RPRM gene expression. The hypermethylation-induced RPRM reduction can be recovered by treating with zebularine, a demethylating agent, and by inhibition of the DNA methyltransferases via RNA interference and CRISPR/Cas9-mediated gene knockout. In addition, we generated RPRM gene-knockout cells and studied the effects of the RPRM deficiency on tumor formation by inoculating these cells in mice. The data show that the loss of RPRM can promote tumorigenesis. These data suggest that the RPRM expression is inhibited by DNA methyltransferases and the RPRM normal function can be restored by treating with DNA methylation inhibitors. The study provides important information regarding the role of RPRM and its methylation related to gastric cancer development.
Collapse
Affiliation(s)
- Junzhong Lai
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province, China
| | - Hanze Wang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province, China
| | - Qianping Luo
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province, China
| | - Shanlu Huang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province, China
| | - Shujin Lin
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province, China
| | - Yansong Zheng
- The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province, China
| |
Collapse
|
47
|
Tran TQ, Lowman XH, Kong M. Molecular Pathways: Metabolic Control of Histone Methylation and Gene Expression in Cancer. Clin Cancer Res 2017; 23:4004-4009. [PMID: 28404599 DOI: 10.1158/1078-0432.ccr-16-2506] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/05/2017] [Accepted: 04/05/2017] [Indexed: 12/19/2022]
Abstract
Epigenetic alterations contribute to tumor development, progression, and therapeutic response. Many epigenetic enzymes use metabolic intermediates as cofactors to modify chromatin structure. Emerging evidence suggests that fluctuation in metabolite levels may regulate activities of these chromatin-modifying enzymes. Here, we summarize recent progress in understanding the cross-talk between metabolism and epigenetic control of gene expression in cancer. We focus on how metabolic changes, due to diet, genetic mutations, or tumor microenvironment, regulate histone methylation status and, consequently, affect gene expression profiles to promote tumorigenesis. Importantly, we also suggest some potential therapeutic approaches to target the oncogenic role of metabolic alterations and epigenetic modifications in cancer. Clin Cancer Res; 23(15); 4004-9. ©2017 AACR.
Collapse
Affiliation(s)
- Thai Q Tran
- Department of Cancer Biology, Beckman Research Institute of City of Hope Cancer Center, Duarte, California
| | - Xazmin H Lowman
- Department of Cancer Biology, Beckman Research Institute of City of Hope Cancer Center, Duarte, California
| | - Mei Kong
- Department of Cancer Biology, Beckman Research Institute of City of Hope Cancer Center, Duarte, California.
| |
Collapse
|
48
|
Suh YE, Lawler K, Henley-Smith R, Pike L, Leek R, Barrington S, Odell EW, Ng T, Pezzella F, Guerrero-Urbano T, Tavassoli M. Association between hypoxic volume and underlying hypoxia-induced gene expression in oropharyngeal squamous cell carcinoma. Br J Cancer 2017; 116:1057-1064. [PMID: 28324887 PMCID: PMC5396120 DOI: 10.1038/bjc.2017.66] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 02/14/2017] [Accepted: 02/20/2017] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Hypoxia imaging is a promising tool for targeted therapy but the links between imaging features and underlying molecular characteristics of the tumour have not been investigated. The aim of this study was to compare hypoxia biomarkers and gene expression in oropharyngeal squamous cell carcinoma (OPSCC) diagnostic biopsies with hypoxia imaged with 64Cu-ATSM PET/CT. METHODS 64Cu-ATSM imaging, molecular and clinical data were obtained for 15 patients. Primary tumour SUVmax, tumour to muscle ratio (TMR) and hypoxic volume were tested for association with reported hypoxia gene signatures in diagnostic biopsies. A putative gene signature for hypoxia in OPSCCs (hypoxic volume-associated gene signature (HVS)) was derived. RESULTS Hypoxic volume was significantly associated with a reported hypoxia gene signature (rho=0.57, P=0.045), but SUVmax and TMR were not. Immunohistochemical staining with the hypoxia marker carbonic anhydrase 9 (CA9) was associated with a gene expression hypoxia response (rho=0.63, P=0.01). Sixteen genes were positively and five genes negatively associated with hypoxic volume (adjusted P<0.1; eight genes had adjusted P<0.05; HVS). This signature was associated with inferior 3-year progression-free survival (HR=1.5 (1.0-2.2), P=0.047) in an independent patient cohort. CONCLUSIONS 64Cu-ATSM-defined hypoxic volume was associated with underlying hypoxia gene expression response. A 21-gene signature derived from hypoxic volume from patients with OPSCCs in our study may be linked to progression-free survival.
Collapse
Affiliation(s)
- Yae-eun Suh
- Department of Molecular Oncology, King's College London, Hodgkin Building, London SE1 1UL, UK
| | - Katherine Lawler
- Institute of Mathematical and Molecular Biomedicine, King's College London, Guy's Medical School Campus, London SE1 1UL, UK
- Richard Dimbleby Department of Cancer Research, Randall Division and Division of Cancer Studies, King's College London, Guy's Medical School Campus, London SE1 1UL, UK
| | - Rhonda Henley-Smith
- Department of Oral Pathology, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Lucy Pike
- PET Imaging Centre, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St Thomas' Hospital, London SE1 7EH, UK
| | - Russell Leek
- Radcliffe Department of Medicine, Nuffield Division of Laboratory Science, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Sally Barrington
- PET Imaging Centre, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St Thomas' Hospital, London SE1 7EH, UK
| | - Edward W Odell
- Department of Oral Pathology, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Tony Ng
- Richard Dimbleby Department of Cancer Research, Randall Division and Division of Cancer Studies, King's College London, Guy's Medical School Campus, London SE1 1UL, UK
- Breakthrough Breast Cancer Research Unit, Department of Research Oncology, Guy's Hospital, King's College London School of Medicine, London SE1 9RT, UK
- UCL Cancer Institute, Paul O'Gorman Building, University College London, London WC1E 6DD, UK
| | - Francesco Pezzella
- Radcliffe Department of Medicine, Nuffield Division of Laboratory Science, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Teresa Guerrero-Urbano
- Department of Clinical Oncology, Guy's and St Thomas' Hospital NHS Foundation Trust, Guy's Hospital, London SE1 9RT, UK
| | - Mahvash Tavassoli
- Department of Molecular Oncology, King's College London, Hodgkin Building, London SE1 1UL, UK
| |
Collapse
|
49
|
Kang KA, Piao MJ, Ryu YS, Maeng YH, Hyun JW. Cytoplasmic Localization of RUNX3 via Histone Deacetylase-Mediated SRC Expression in Oxidative-Stressed Colon Cancer Cells. J Cell Physiol 2017; 232:1914-1921. [PMID: 27990641 DOI: 10.1002/jcp.25746] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 12/15/2016] [Indexed: 12/14/2022]
Abstract
Runt domain transcription factor 3 (RUNX3) is a transcription factor that functions as a tumor suppressor. RUNX3 is frequently inactivated by epigenetic silencing or its protein mislocalization (cytoplasmic localization) in many cancer types. This study investigated whether oxidative stress induces redistribution of RUNX3 from the nucleus to the cytoplasm. The cytoplasmic localization of RUNX3 was associated with oxidative stress-induced RUNX3 phosphorylation at tyrosine residues via SRC activation. Moreover, oxidative stress increased expression of histone deacetylases (HDACs). RUNX3 phosphorylation and SRC expression induced by oxidative stress were inhibited by knockdown of HDAC1, restoring the nuclear localization of RUNX3 under oxidative stress. In conclusion, these results demonstrate that HDAC1- and SRC-mediated phosphorylation of RUNX3 induced by oxidative stress is associated with the cytoplasmic localization of RUNX3 and can lead to RUNX3 inactivation and carcinogenesis. J. Cell. Physiol. 232: 1914-1921, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kyoung Ah Kang
- School of Medicine, Jeju National University, Jeju, Republic of Korea
| | - Mei Jing Piao
- School of Medicine, Jeju National University, Jeju, Republic of Korea
| | - Yea Seong Ryu
- School of Medicine, Jeju National University, Jeju, Republic of Korea
| | - Young Hee Maeng
- School of Medicine, Jeju National University, Jeju, Republic of Korea
| | - Jin Won Hyun
- School of Medicine, Jeju National University, Jeju, Republic of Korea
| |
Collapse
|
50
|
Liu X, Meltzer SJ. Gastric Cancer in the Era of Precision Medicine. Cell Mol Gastroenterol Hepatol 2017; 3:348-358. [PMID: 28462377 PMCID: PMC5404028 DOI: 10.1016/j.jcmgh.2017.02.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 02/13/2017] [Indexed: 12/14/2022]
Abstract
Gastric cancer (GC) remains the third most common cause of cancer death worldwide, with limited therapeutic strategies available. With the advent of next-generation sequencing and new preclinical model technologies, our understanding of its pathogenesis and molecular alterations continues to be revolutionized. Recently, the genomic landscape of GC has been delineated. Molecular characterization and novel therapeutic targets of each molecular subtype have been identified. At the same time, patient-derived tumor xenografts and organoids now comprise effective tools for genetic evolution studies, biomarker identification, drug screening, and preclinical evaluation of personalized medicine strategies for GC patients. These advances are making it feasible to integrate clinical, genome-based and phenotype-based diagnostic and therapeutic methods and apply them to individual GC patients in the era of precision medicine.
Collapse
Key Words
- CIMP, CpG island methylator phenotype
- CIN, chromosomally unstable/chromosomal instability
- Cancer Genomics
- EBV, Epstein-Barr virus
- GAPPS, gastric adenocarcinoma and proximal polyposis of the stomach
- GC, gastric cancer
- GTPase, guanosine triphosphatase
- Gastric Cancer
- HDGC, hereditary diffuse gastric cancer
- LOH, loss of heterozygosity
- MSI, microsatellite unstable/instability
- MSI-H, high microsatellite instability
- MSS/EMT, microsatellite stable with epithelial-to-mesenchymal transition features
- Molecular Classification
- NGS, next-generation sequencing
- PDX, patient-derived tumor xenografts
- Preclinical Models
- TCGA, The Cancer Genome Atlas
- TGF, transforming growth factor
- hPSC, human pluripotent stem cell
- lncRNA, long noncoding RNA
- miRNA, microRNA
Collapse
Affiliation(s)
- Xi Liu
- Department of Pathology, First Affiliated Hospital of Xi’ an Jiaotong University, Xi’ an, Shaanxi, China,Division of Gastroenterology, Department of Medicine, and Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, Maryland
| | - Stephen J. Meltzer
- Division of Gastroenterology, Department of Medicine, and Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, Maryland,Correspondence Address correspondence to: Stephen J. Meltzer, MD, Johns Hopkins University School of Medicine, 1503 East Jefferson Street, Room 112, Baltimore, Maryland 21287. fax: (410) 502-1329.Johns Hopkins University School of Medicine1503 East Jefferson Street, Room 112BaltimoreMaryland21287
| |
Collapse
|