1
|
Kellman LN, Neela PH, Srinivasan S, Siprashvili Z, Shanderson RL, Hong AW, Rao D, Porter DF, Reynolds DL, Meyers RM, Guo MG, Yang X, Zhao Y, Wozniak GG, Donohue LKH, Shenoy R, Ko LA, Nguyen DT, Mondal S, Garcia OS, Elcavage LE, Elfaki I, Abell NS, Tao S, Lopez CM, Montgomery SB, Khavari PA. Functional analysis of cancer-associated germline risk variants. Nat Genet 2025; 57:718-728. [PMID: 39962238 DOI: 10.1038/s41588-024-02070-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/20/2024] [Indexed: 03/15/2025]
Abstract
Single-nucleotide variants (SNVs) in regulatory DNA are linked to inherited cancer risk. Massively parallel reporter assays of 4,041 SNVs linked to 13 neoplasms comprising >90% of human malignancies were performed in pertinent primary human cell types and then integrated with matching chromatin accessibility, DNA looping and expression quantitative trait loci data to nominate 380 potentially regulatory SNVs and their putative target genes. The latter highlighted specific protein networks in lifetime cancer risk, including mitochondrial translation, DNA damage repair and Rho GTPase activity. A CRISPR knockout screen demonstrated that a subset of germline putative risk genes also enables the growth of established cancers. Editing one SNV, rs10411210 , showed that its risk allele increases rhophilin RHPN2 expression and stimulus-responsive RhoA activation, indicating that individual SNVs may upregulate cancer-linked pathways. These functional data are a resource for variant prioritization efforts and further interrogation of the mechanisms underlying inherited risk for cancer.
Collapse
Affiliation(s)
- Laura N Kellman
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
- Program in Cancer Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Poornima H Neela
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Suhas Srinivasan
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Zurab Siprashvili
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ronald L Shanderson
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
- Program in Cancer Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Audrey W Hong
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Deepti Rao
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Douglas F Porter
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - David L Reynolds
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Robin M Meyers
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Margaret G Guo
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Xue Yang
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
- Program in Cancer Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Yang Zhao
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Glenn G Wozniak
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Laura K H Donohue
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Rajani Shenoy
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Lisa A Ko
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Duy T Nguyen
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Smarajit Mondal
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Omar S Garcia
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Lara E Elcavage
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ibtihal Elfaki
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Nathan S Abell
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Shiying Tao
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Christopher M Lopez
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Stephen B Montgomery
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Paul A Khavari
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA.
- Program in Cancer Biology, Stanford University School of Medicine, Stanford, CA, USA.
- Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA, USA.
| |
Collapse
|
2
|
Jakobsen ST, Siersbæk R. Transcriptional regulation by MYC: an emerging new model. Oncogene 2025; 44:1-7. [PMID: 39468222 DOI: 10.1038/s41388-024-03174-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 10/30/2024]
Abstract
The transcription factor MYC has long been recognized for its pivotal role in transcriptional regulation of genes fundamental for cellular processes such as cell cycle, apoptosis, and metabolism. Dysregulation of MYC activity is implicated in various diseases, most notably cancer, where MYC drives uncontrolled cell proliferation and growth. Despite its significant role in cancer biology, targeting MYC for therapeutic purposes has been challenging due to its highly disordered protein structure. Hence, recent research efforts have focused on identifying the transcriptional mechanisms underlying MYC function to identify alternative strategies for intervention. This review summarizes recent advances in our understanding of how MYC orchestrates context-dependent and -independent gene-regulatory activities in cancer. Based on recent insights into the gene-regulatory function of MYC at enhancers, we propose an extension of the gene-specific affinity model. In this revised model, MYC enhancer activity drives context-specific gene programs that are distinct from the ubiquitously activated set of core MYC target genes driven by MYC promoter binding. The increased MYC enhancer activity in cancer and the distinct function of MYC at these regions compared to promoters may provide an opportunity for designing therapeutic approaches selectively targeting MYC enhancer activity in cancer cells.
Collapse
Affiliation(s)
- Simon T Jakobsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.
| | - Rasmus Siersbæk
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
3
|
Gaumond SI, Abdin R, Yaghi M, Mahmoud RH, Rodriguez M, Eber AE, Jimenez JJ. Platelet-rich plasma as an adjuvant therapy to fractional ablative carbon dioxide lasers for cutaneous repair: a complementary treatment for atrophic acne scarring. Lasers Med Sci 2024; 39:254. [PMID: 39387947 PMCID: PMC11467096 DOI: 10.1007/s10103-024-04192-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024]
Abstract
Acne has a prevalence of over 90% among adolescents, and subsequently progresses to acne scarring in approximately 47% of cases. Due to the severe psychological and social ramifications acne scarring has on patients, there is a need for more effective treatments. Platelet-rich plasma (PRP), an autologous preparation enriched with growth factors, cytokines, and chemokines, has shown efficacy in promoting wound healing and tissue remodeling in dermatology. Recent evidence suggests that the efficacy of PRP may be enhanced when combined with laser therapy, which induces controlled tissue damage through photo-thermolysis thereby promoting tissue remodeling and epidermal regeneration. The microchannels created by laser treatments are thought to allow deeper penetration of PRP into the skin, potentially increasing its therapeutic effects. This review aims to analyze the combined use of PRP and laser therapy for treating acne scarring by examining randomized control trials from the past decade indexed on PubMed. Six studies met our inclusion criteria and were included in this review. The findings of this review support the hypothesis that combining PRP with laser therapy offers superior clinical results compared to monotherapy, providing a more effective approach to managing acne scarring.
Collapse
Affiliation(s)
- Simonetta I Gaumond
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, USA.
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, USA.
| | - Rama Abdin
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, USA
| | - Marita Yaghi
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, USA
| | - Rami H Mahmoud
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, USA
| | - Mario Rodriguez
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, USA
| | - Ariel E Eber
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, USA
| | - Joaquin J Jimenez
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, USA.
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, USA.
| |
Collapse
|
4
|
Ding XJ, Cai XM, Wang QQ, Liu N, Zhong WL, Xi XN, Lu YX. Vitexicarpin suppresses malignant progression of colorectal cancer through affecting c-Myc ubiquitination by targeting IMPDH2. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155833. [PMID: 39008915 DOI: 10.1016/j.phymed.2024.155833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/05/2024] [Accepted: 06/19/2024] [Indexed: 07/17/2024]
Abstract
BACKGROUND Colorectal cancer (CRC) is the second most common cause of cancer-related mortality and is characterised by extensive invasive and metastatic potential. Previous studies have shown that vitexicarpin extracted from the fruits of Vitex rotundifolia can impede tumour progression. However, the molecular mechanisms involved in CRC treatment are still not fully established. PURPOSE Our study aimed to investigate the anticancer activity, targets, and molecular mechanisms of vitexicarpin in CRC hoping to provide novel therapies for patients with CRC. STUDY DESIGN/METHODS The impact of vitexicarpin on CRC was assessed through various experiments including MTT, clone formation, EDU, cell cycle, and apoptosis assays, as well as a tumour xenograft model. CETSA, label-free quantitative proteomics, and Biacore were used to identify the vitexicarpin targets. WB, Co-IP, Ubiquitination assay, IF, molecular docking, MST, and cell transfection were used to investigate the mechanism of action of vitexicarpin in CRC cells. Furthermore, we analysed the expression patterns and correlation of target proteins in TCGA and GEPIA datasets and clinical samples. Finally, wound healing, Transwell, tail vein injection model, and tissue section staining were used to demonstrate the antimetastatic effect of vitexicarpin on CRC in vitro and in vivo. RESULTS Our findings demonstrated that vitexicarpin exhibits anticancer activity by directly binding to inosine monophosphate dehydrogenase 2 (IMPDH2) and that it promotes c-Myc ubiquitination by disrupting the interaction between IMPDH2 and c-Myc, leading to epithelial-mesenchymal transition (EMT) inhibition. Vitexicarpin hinders the migration and invasion of CRC cells by reversing EMT both in vitro and in vivo. Additionally, these results were validated by the overexpression and knockdown of IMPDH2 in CRC cells. CONCLUSION These results demonstrated that vitexicarpin regulates the interaction between IMPDH2 and c-Myc to inhibit CRC proliferation and metastasis both in vitro and in vivo. These discoveries introduce potential molecular targets for CRC treatment and shed light on new mechanisms for c-Myc regulation in tumours.
Collapse
Affiliation(s)
- Xiao-Jing Ding
- College of Pharmacy, Nankai University, Tianjin 300350, PR China
| | - Xue-Mei Cai
- Huabei Petroleum Administration Bureau General Hospital, Renqiu 062550, PR China
| | - Qian-Qian Wang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, PR China
| | - Ning Liu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, PR China
| | - Wei-Long Zhong
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, PR China.
| | - Xiao-Nan Xi
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, PR China.
| | - Ya-Xin Lu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, PR China; College of Chemistry, Nankai University, Tianjin 300350, PR China.
| |
Collapse
|
5
|
Hernández-Magaña A, Bensussen A, Martínez-García JC, Álvarez-Buylla ER. Engineering principles for rationally design therapeutic strategies against hepatocellular carcinoma. Front Mol Biosci 2024; 11:1404319. [PMID: 38939509 PMCID: PMC11208463 DOI: 10.3389/fmolb.2024.1404319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/23/2024] [Indexed: 06/29/2024] Open
Abstract
The search for new therapeutic strategies against cancer has favored the emergence of rationally designed treatments. These treatments have focused on attacking cell plasticity mechanisms to block the transformation of epithelial cells into cancerous cells. The aim of these approaches was to control particularly lethal cancers such as hepatocellular carcinoma. However, they have not been able to control the progression of cancer for unknown reasons. Facing this scenario, emerging areas such as systems biology propose using engineering principles to design and optimize cancer treatments. Beyond the possibilities that this approach might offer, it is necessary to know whether its implementation at a clinical level is viable or not. Therefore, in this paper, we will review the engineering principles that could be applied to rationally design strategies against hepatocellular carcinoma, and discuss whether the necessary elements exist to implement them. In particular, we will emphasize whether these engineering principles could be applied to fight hepatocellular carcinoma.
Collapse
Affiliation(s)
| | - Antonio Bensussen
- Departamento de Control Automático, Cinvestav-IPN, Ciudad de México, Mexico
| | | | - Elena R. Álvarez-Buylla
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Centro de Ciencias de la Complejidad (C3), Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
6
|
Yuan Y, Li Y, Wu X, Bo J, Zhang L, Zhang J, Hu Y, Chen Y, Zeng Y, Wei X, Zhang H. POH1 induces Smad3 deubiquitination and promotes lung cancer metastasis. Cancer Lett 2024; 582:216526. [PMID: 38061486 DOI: 10.1016/j.canlet.2023.216526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 01/16/2024]
Abstract
Smad3 is the key mediator of TGF-β1-triggered signal transduction and the related biological responses, promoting cell invasion and metastasis in various cancers, including lung cancer. However, the deubiquitinase stabilizing Smad3 remains unknown. In this study, we present a paradigm in which POH1 is identified as a novel deubiquitinase of Smad3 that plays a tumor-promoting role in lung adenocarcinoma (LUAD) by regulating Smad3 stability. POH1 markedly increased Smad3 protein levels and prolonged its half-life. POH1 directly interacted and colocalized with Smad3, leading to the removal of poly-deubiquitination of Smad3. Functionally, POH1 facilitated cell proliferation, migration, and invasion by stabilizing Smad3. Importantly, POH1 also promoted liver metastasis of lung cancer cells. The protein levels of both POH1 and Smad3 were raised in the tumor tissues of patients with LUAD, which predicts poor prognosis. Collectively, we demonstrate that POH1 acts as an oncoprotein by enhancing TGF-β1/Smad3 signaling and TGF-β1-mediated metastasis of lung cancer.
Collapse
Affiliation(s)
- Yang Yuan
- Department of Human Anatomy, Histology and Embryology, Program for Cancer and Cell Biology, School of Basic Medical Sciences, Peking University International Cancer Institute, and State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Yixiao Li
- Department of Human Anatomy, Histology and Embryology, Program for Cancer and Cell Biology, School of Basic Medical Sciences, Peking University International Cancer Institute, and State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Xiao Wu
- Department of Human Anatomy, Histology and Embryology, Program for Cancer and Cell Biology, School of Basic Medical Sciences, Peking University International Cancer Institute, and State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Jinsuo Bo
- Department of Human Anatomy, Histology and Embryology, Program for Cancer and Cell Biology, School of Basic Medical Sciences, Peking University International Cancer Institute, and State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Lei Zhang
- Department of Human Anatomy, Histology and Embryology, Program for Cancer and Cell Biology, School of Basic Medical Sciences, Peking University International Cancer Institute, and State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Jing Zhang
- Department of Human Anatomy, Histology and Embryology, Program for Cancer and Cell Biology, School of Basic Medical Sciences, Peking University International Cancer Institute, and State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Ye Hu
- Department of Human Anatomy, Histology and Embryology, Program for Cancer and Cell Biology, School of Basic Medical Sciences, Peking University International Cancer Institute, and State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Yining Chen
- Department of Human Anatomy, Histology and Embryology, Program for Cancer and Cell Biology, School of Basic Medical Sciences, Peking University International Cancer Institute, and State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Yiyan Zeng
- Department of Human Anatomy, Histology and Embryology, Program for Cancer and Cell Biology, School of Basic Medical Sciences, Peking University International Cancer Institute, and State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Xiaofan Wei
- Department of Human Anatomy, Histology and Embryology, Program for Cancer and Cell Biology, School of Basic Medical Sciences, Peking University International Cancer Institute, and State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China.
| | - Hongquan Zhang
- Department of Human Anatomy, Histology, and Embryology, Shenzhen University School of Medicine, Shenzhen, 518055, China.
| |
Collapse
|
7
|
Wallbillich NJ, Lu H. Role of c-Myc in lung cancer: Progress, challenges, and prospects. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2023; 1:129-138. [PMID: 37920609 PMCID: PMC10621893 DOI: 10.1016/j.pccm.2023.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Lung cancer remains the leading cause of cancer-related deaths worldwide. Despite the recent advances in cancer therapies, the 5-year survival of non-small cell lung cancer (NSCLC) patients hovers around 20%. Inherent and acquired resistance to therapies (including radiation, chemotherapies, targeted drugs, and combination therapies) has become a significant obstacle in the successful treatment of NSCLC. c-Myc, one of the critical oncoproteins, has been shown to be heavily associated with the malignant cancer phenotype, including rapid proliferation, metastasis, and chemoresistance across multiple cancer types. The c-Myc proto-oncogene is amplified in small cell lung cancers (SCLCs) and overexpressed in over 50% of NSCLCs. c-Myc is known to actively regulate the transcription of cancer stemness genes that are recognized as major contributors to tumor progression and therapeutic resistance; thus, targeting c-Myc either directly or indirectly in mitigation of the cancer stemness phenotype becomes a promising approach for development of a new strategy against drug resistant lung cancers. This review will summarize what is currently known about the mechanisms underlying c-Myc regulation of cancer stemness and its involvement in drug resistance and offer an overview on the current progress and future prospects in therapeutically targeting c-Myc in both SCLC and NSCLC.
Collapse
Affiliation(s)
- Nicholas J. Wallbillich
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane University School of Medicine, 1700 Tulane Avenue, New Orleans, LA 70112, USA
| | - Hua Lu
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane University School of Medicine, 1700 Tulane Avenue, New Orleans, LA 70112, USA
| |
Collapse
|
8
|
Pan Y, van der Watt PJ, Kay SA. E-box binding transcription factors in cancer. Front Oncol 2023; 13:1223208. [PMID: 37601651 PMCID: PMC10437117 DOI: 10.3389/fonc.2023.1223208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/27/2023] [Indexed: 08/22/2023] Open
Abstract
E-boxes are important regulatory elements in the eukaryotic genome. Transcription factors can bind to E-boxes through their basic helix-loop-helix or zinc finger domain to regulate gene transcription. E-box-binding transcription factors (EBTFs) are important regulators of development and essential for physiological activities of the cell. The fundamental role of EBTFs in cancer has been highlighted by studies on the canonical oncogene MYC, yet many EBTFs exhibit common features, implying the existence of shared molecular principles of how they are involved in tumorigenesis. A comprehensive analysis of TFs that share the basic function of binding to E-boxes has been lacking. Here, we review the structure of EBTFs, their common features in regulating transcription, their physiological functions, and their mutual regulation. We also discuss their converging functions in cancer biology, their potential to be targeted as a regulatory network, and recent progress in drug development targeting these factors in cancer therapy.
Collapse
Affiliation(s)
- Yuanzhong Pan
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Pauline J. van der Watt
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Steve A. Kay
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
9
|
Li XY, He XY, Zhao H, Qi L, Lu JJ. Identification of a novel therapeutic target for lung cancer: Mitochondrial ribosome protein L9. Pathol Res Pract 2023; 248:154625. [PMID: 37343379 DOI: 10.1016/j.prp.2023.154625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/23/2023]
Abstract
Lung cancer has a high fatality rate and incidence rate. At present, the initial and progress mechanism of lung cancer has not been completely elucidated and new therapeutic targets still need to be developed. In this study, the screening process was based on lung cancer expression profile data and survival analysis. Mitochondrial ribosome protein L9 (MRPL9) was upregulated in lung cancer tissues and related to the poor overall survival rate and recurrence-free survival rate of lung cancer patients. Knockdown of MRPL9 inhibited the proliferation, sphere-formation, and migration ability of lung cancer cells. MRPL9 was associated with the c-MYC signaling pathway, and lung cancer patients with high expression of both MRPL9 and MYC had a poor prognosis. Furthermore, c-MYC was associated with the epithelial-mesenchymal transition (EMT) regulatory protein zinc finger E-box binding homeobox 1 (ZEB1) by bioinformatics analysis. The relationship between ZEB1 and c-MYC was further confirmed by interfering with c-MYC expression. MRPL9 is a potential therapeutic target for lung cancer and exerts its biological functions by affecting the transcription factor c-MYC thereby regulating the EMT regulator ZEB1.
Collapse
Affiliation(s)
- Xin-Yuan Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Xin-Yu He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Hong Zhao
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Lu Qi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macao, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, University of Macau, Macao, China.
| |
Collapse
|
10
|
Xu C, Zhang W, Liu C. FAK downregulation suppresses stem-like properties and migration of human colorectal cancer cells. PLoS One 2023; 18:e0284871. [PMID: 37083591 PMCID: PMC10121060 DOI: 10.1371/journal.pone.0284871] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 04/10/2023] [Indexed: 04/22/2023] Open
Abstract
Focal adhesion kinase (FAK) is a cytoplasmic protein tyrosine kinase, which is overexpressed in colorectal cancer cells. FAK could be activated by phosphorylation to participate in the transduction of multiple signaling pathways and self-renewal of cancer stem cells. Whether the downregulation of FAK inhibits the metastasis in colorectal cancer through the weakening of stem cell-like properties and its mechanisms has yet to be established. CD44, CD133, c-Myc, Nanog, and OCT4 were known to mark colorectal cancer stem cell properties. In this study, AKT inhibitor (MK-2206 2HCl) or FAK inhibitor (PF-562271) decreased the expression of stem cell markers (Nanog, OCT4, CD133, CD44, c-Myc) and spheroid formation in colorectal cancer. Moreover, FAK and AKT protein was shown to interact verified by co-immunoprecipitation. Furthermore, downregulation of FAK, transfected Lenti-FAK-EGFP-miR to colorectal cancer cells, reduced p-AKT but not AKT and decreased the expression of stem cell markers and spheroid formation in colorectal cancer. In conclusion, we demonstrated that downregulation of FAK inhibited stem cell-like properties and migration of colorectal cancer cells partly due to altered modulation of AKT phosphorylation by FAK.
Collapse
Affiliation(s)
- Chunyan Xu
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Institute of Digestive Diseases, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Wenlu Zhang
- Department of Respiratory, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Chengxia Liu
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Institute of Digestive Diseases, Binzhou Medical University Hospital, Binzhou, Shandong, China
| |
Collapse
|
11
|
Liu N, Steer CJ, Song G. MicroRNA-206 enhances antitumor immunity by disrupting the communication between malignant hepatocytes and regulatory T cells in c-Myc mice. Hepatology 2022; 76:32-47. [PMID: 34606648 DOI: 10.1002/hep.32182] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Intertumoral accumulation of regulatory T cells (Tregs) has been implicated in the pathogenesis of HCC. Because of poor understanding of the immunosuppression mechanism(s) in HCC, immunotherapy is largely unsuccessful for the treatment of HCC. APPROACH AND RESULTS Hydrodynamic injection (HDI) of c-Myc into mice resulted in enlarged spleens and lethal HCC associated with an increase in hepatic Tregs and depletion of CTLs (cytotoxic T lymphocytes). Malignant hepatocytes in c-Myc mice overproduced TGFβ1, which enhanced the suppressor function of Tregs and impaired the proliferation and cytotoxicity of CTLs. In addition to activating TGFβ signaling, c-Myc synergized with Yin Yang 1 to impair microRNA-206 (miR-206) biogenesis. HDI of miR-206 fully prevented HCC and the associated enlargement of the spleen, whereas 100% of control mice died from HCC within 5-9 weeks postinjection. Mechanistically, by directly targeting errant kirsten ras oncogene (KRAS) signaling, miR-206 impeded the mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) axis that drives expression of Tgfb1. By blocking the KRAS/MEK/ERK axis, miR-206 prevented TGFβ1 overproduction, thereby impairing the suppressor function and expansion of Tregs, but enhancing the expansion and cytotoxic program of CTLs. Disrupting the interaction between miR-206 and Kras offset the roles of miR-206 in inhibiting immunosuppression and HCC. Depletion of CD8+ T cells impaired the ability of miR-206 to inhibit HCC. CONCLUSIONS c-Myc-educated hepatocytes promoted immunosuppression by overproducing TGFβ1, which promoted HCC development. miR-206, by attenuating TGFβ1 overproduction, disrupted the communication of malignant hepatocytes with CTLs and Tregs, which prevented HCC. miR-206 represents a potential immunotherapeutic agent against HCC.
Collapse
Affiliation(s)
- Ningning Liu
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Clifford J Steer
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA.,Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Guisheng Song
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA.,Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
12
|
Yang R, Zuo L, Ma H, Zhou Y, Zhou P, Wang L, Wang M, Latif M, Kong L. Downregulation of nc886 contributes to prostate cancer cell invasion and TGFβ1-induced EMT. Genes Dis 2022; 9:1086-1098. [PMID: 35685460 PMCID: PMC9170576 DOI: 10.1016/j.gendis.2020.12.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 12/09/2020] [Accepted: 12/24/2020] [Indexed: 11/16/2022] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) activation is important in cancer progression and metastasis. Evidence indicates that nc886 is a representative Pol III gene that processes microRNA products via Dicer and further downregulates its target gene transforming growth factor- β1 (TGF-β1), which is the most prominent inducer of EMT in prostate cancer (PC). Consistent with the previous literature, we found that nc886 downregulation was strongly associated with metastatic behavior and showed worse outcomes in PC patients. However, little is known about the association between nc886 and the EMT signaling pathway. We developed a PC cell model with stable overexpression of nc886 and found that nc886 changed cellular morphology and drove MET. The underlying mechanism may be related to its promotion of SNAIL protein degradation via ubiquitination, but not to its neighboring genes, TGFβ-induced protein (TGFBI) and SMAD5, which are Pol II-transcribed. TGF-β1 also override nc886 promotion of MET via transient suppression the transcription of nc886, promotion of TGFBI or increase in SMAD5 phosphorylation. Both nc886 inhibition and TGFBI activation occur regardless of their methylation status. The literature suggests that MYC inhibition by TGF-β1 is attributed to nc886 downregulation. We incidentally identified MYC-associated zinc finger protein (MAZ) as a suppressive transcription factor of TGFBI, which is controlled by TGF-β1. We elucidate a new mechanism of TGF-β1 differential control of Pol II and the transcription of its neighboring Pol III gene and identify a new EMT unit consisting of nc886 and its neighboring genes.
Collapse
Affiliation(s)
- Ronghui Yang
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing 100069, PR China
| | - Lingkun Zuo
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing 100069, PR China
| | - Hui Ma
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing 100069, PR China
| | - Ying Zhou
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing 100069, PR China
| | - Ping Zhou
- Biomedical Engineering Institute of Capital Medical University, Capital Medical University, Beijing 100069, PR China
| | - Liyong Wang
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing 100069, PR China
| | - Miao Wang
- Department of Pathology, Beijing Friendship Hospital, The Second Clinical Medical College of Capital Medical University, Beijing 100050, PR China
| | - Mahrukh Latif
- Department of Nuclear Medicine, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050010, PR China
| | - Lu Kong
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing 100069, PR China
| |
Collapse
|
13
|
Tsoi H, You CP, Leung MH, Man EPS, Khoo US. Targeting Ribosome Biogenesis to Combat Tamoxifen Resistance in ER+ve Breast Cancer. Cancers (Basel) 2022; 14:1251. [PMID: 35267559 PMCID: PMC8909264 DOI: 10.3390/cancers14051251] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/24/2022] [Accepted: 02/27/2022] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is a heterogeneous disease. Around 70% of breast cancers are estrogen receptor-positive (ER+ve), with tamoxifen being most commonly used as an adjuvant treatment to prevent recurrence and metastasis. However, half of the patients will eventually develop tamoxifen resistance. The overexpression of c-MYC can drive the development of ER+ve breast cancer and confer tamoxifen resistance through multiple pathways. One key mechanism is to enhance ribosome biogenesis, synthesising mature ribosomes. The over-production of ribosomes sustains the demand for proteins necessary to maintain a high cell proliferation rate and combat apoptosis induced by therapeutic agents. c-MYC overexpression can induce the expression of eIF4E that favours the translation of structured mRNA to produce oncogenic factors that promote cell proliferation and confer tamoxifen resistance. Either non-phosphorylated or phosphorylated eIF4E can mediate such an effect. Since ribosomes play an essential role in c-MYC-mediated cancer development, suppressing ribosome biogenesis may help reduce aggressiveness and reverse tamoxifen resistance in breast cancer. CX-5461, CX-3543 and haemanthamine have been shown to repress ribosome biogenesis. Using these chemicals might help reverse tamoxifen resistance in ER+ve breast cancer, provided that c-MYC-mediated ribosome biogenesis is the crucial factor for tamoxifen resistance. To employ these ribosome biogenesis inhibitors to combat tamoxifen resistance in the future, identification of predictive markers will be necessary.
Collapse
Affiliation(s)
| | | | | | | | - Ui-Soon Khoo
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (H.T.); (C.-P.Y.); (M.-H.L.); (E.P.S.M.)
| |
Collapse
|
14
|
Massó-Vallés D, Beaulieu ME, Jauset T, Giuntini F, Zacarías-Fluck MF, Foradada L, Martínez-Martín S, Serrano E, Martín-Fernández G, Casacuberta-Serra S, Castillo Cano V, Kaur J, López-Estévez S, Morcillo MÁ, Alzrigat M, Mahmoud L, Luque-García A, Escorihuela M, Guzman M, Arribas J, Serra V, Larsson LG, Whitfield JR, Soucek L. MYC Inhibition Halts Metastatic Breast Cancer Progression by Blocking Growth, Invasion, and Seeding. CANCER RESEARCH COMMUNICATIONS 2022; 2:110-130. [PMID: 36860495 PMCID: PMC9973395 DOI: 10.1158/2767-9764.crc-21-0103] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/31/2021] [Accepted: 02/01/2022] [Indexed: 11/16/2022]
Abstract
MYC's role in promoting tumorigenesis is beyond doubt, but its function in the metastatic process is still controversial. Omomyc is a MYC dominant negative that has shown potent antitumor activity in multiple cancer cell lines and mouse models, regardless of their tissue of origin or driver mutations, by impacting on several of the hallmarks of cancer. However, its therapeutic efficacy against metastasis has not been elucidated yet. Here we demonstrate for the first time that MYC inhibition by transgenic Omomyc is efficacious against all breast cancer molecular subtypes, including triple-negative breast cancer, where it displays potent antimetastatic properties both in vitro and in vivo. Importantly, pharmacologic treatment with the recombinantly produced Omomyc miniprotein, recently entering a clinical trial in solid tumors, recapitulates several key features of expression of the Omomyc transgene, confirming its clinical applicability to metastatic breast cancer, including advanced triple-negative breast cancer, a disease in urgent need of better therapeutic options. Significance While MYC role in metastasis has been long controversial, this manuscript demonstrates that MYC inhibition by either transgenic expression or pharmacologic use of the recombinantly produced Omomyc miniprotein exerts antitumor and antimetastatic activity in breast cancer models in vitro and in vivo, suggesting its clinical applicability.
Collapse
Affiliation(s)
- Daniel Massó-Vallés
- Preclinical & Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, C/ Natzaret, Barcelona, Spain.,Peptomyc S.L., Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Marie-Eve Beaulieu
- Preclinical & Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, C/ Natzaret, Barcelona, Spain.,Peptomyc S.L., Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Toni Jauset
- Preclinical & Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, C/ Natzaret, Barcelona, Spain.,Peptomyc S.L., Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Fabio Giuntini
- Preclinical & Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, C/ Natzaret, Barcelona, Spain
| | - Mariano F. Zacarías-Fluck
- Preclinical & Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, C/ Natzaret, Barcelona, Spain
| | - Laia Foradada
- Peptomyc S.L., Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Sandra Martínez-Martín
- Preclinical & Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, C/ Natzaret, Barcelona, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Erika Serrano
- Preclinical & Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, C/ Natzaret, Barcelona, Spain
| | - Génesis Martín-Fernández
- Preclinical & Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, C/ Natzaret, Barcelona, Spain
| | | | | | - Jastrinjan Kaur
- Preclinical & Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, C/ Natzaret, Barcelona, Spain
| | | | - Miguel Ángel Morcillo
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - Mohammad Alzrigat
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Loay Mahmoud
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Antonio Luque-García
- Preclinical & Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, C/ Natzaret, Barcelona, Spain
| | - Marta Escorihuela
- Preclinical & Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, C/ Natzaret, Barcelona, Spain
| | - Marta Guzman
- Preclinical & Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, C/ Natzaret, Barcelona, Spain
| | - Joaquín Arribas
- Preclinical & Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, C/ Natzaret, Barcelona, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Violeta Serra
- Preclinical & Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, C/ Natzaret, Barcelona, Spain
| | - Lars-Gunnar Larsson
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Jonathan R. Whitfield
- Preclinical & Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, C/ Natzaret, Barcelona, Spain
| | - Laura Soucek
- Preclinical & Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, C/ Natzaret, Barcelona, Spain.,Peptomyc S.L., Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.,Corresponding Author: Laura Soucek, Vall d'Hebron Institute of Oncology (VHIO), C/ Natzaret, 115-117, CELLEX Centre, Barcelona 08035, Spain. Phone: 349-3254-3450; E-mail:
| |
Collapse
|
15
|
Frey P, Devisme A, Rose K, Schrempp M, Freihen V, Andrieux G, Boerries M, Hecht A. SMAD4 mutations do not preclude epithelial-mesenchymal transition in colorectal cancer. Oncogene 2022; 41:824-837. [PMID: 34857888 PMCID: PMC8816731 DOI: 10.1038/s41388-021-02128-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 11/11/2021] [Accepted: 11/18/2021] [Indexed: 11/14/2022]
Abstract
Transforming growth factor beta (TGFβ) superfamily signaling is a prime inducer of epithelial-mesenchymal transitions (EMT) that foster cancer cell invasion and metastasis, a major cause of cancer-related deaths. Yet, TGFβ signaling is frequently inactivated in human tumor entities including colorectal cancer (CRC) and pancreatic adenocarcinoma (PAAD) with a high proportion of mutations incapacitating SMAD4, which codes for a transcription factor (TF) central to canonical TGFβ and bone morphogenetic protein (BMP) signaling. Beyond its role in initiating EMT, SMAD4 was reported to crucially contribute to subsequent gene regulatory events during EMT execution. It is therefore widely assumed that SMAD4-mutant (SMAD4mut) cancer cells are unable to undergo EMT. Here, we scrutinized this notion and probed for potential SMAD4-independent EMT execution using SMAD4mut CRC cell lines. We show that SMAD4mut cells exhibit morphological changes, become invasive, and regulate EMT marker genes upon induction of the EMT-TF SNAIL1. Furthermore, SNAIL1-induced EMT in SMAD4mut cells was found to be entirely independent of TGFβ/BMP receptor activity. Global assessment of the SNAIL1-dependent transcriptome confirmed the manifestation of an EMT gene regulatory program in SMAD4mut cells highly related to established EMT signatures. Finally, analyses of human tumor transcriptomes showed that SMAD4 mutations are not underrepresented in mesenchymal tumor samples and that expression patterns of EMT-associated genes are similar in SMAD4mut and SMAD4 wild-type (SMAD4wt) cases. Altogether, our findings suggest that alternative TFs take over the gene regulatory functions of SMAD4 downstream of EMT-TFs, arguing for considerable plasticity of gene regulatory networks operating in EMT execution. Further, they establish that EMT is not categorically precluded in SMAD4mut tumors, which is relevant for their diagnostic and therapeutic evaluation.
Collapse
Affiliation(s)
- Patrick Frey
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Antoine Devisme
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Katja Rose
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Monika Schrempp
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Vivien Freihen
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Geoffroy Andrieux
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), partner site Freiburg, Germany, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), partner site Freiburg, Germany, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andreas Hecht
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany.
- Faculty of Biology, University of Freiburg, Freiburg, Germany.
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
16
|
Shen X, Liu Q, Xu J, Wang Y. Correlation between the Expression of Interleukin-6, STAT3, E-Cadherin and N-Cadherin Protein and Invasiveness in Nonfunctional Pituitary Adenomas. J Neurol Surg B Skull Base 2021; 82:e59-e69. [PMID: 34306918 DOI: 10.1055/s-0039-1700499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/13/2019] [Indexed: 10/25/2022] Open
Abstract
Objective This study aimed to investigate the expression of interleukin (IL)-6, signal transducer and activator of transcription 3 (STAT3), epithelial-cadherin (E- cadherin) and neural-cadherin (N-cadherin) proteins in nonfunctional pituitary adenomas, and their correlation with invasiveness. Methods Thirty cases of nonfunctional pituitary adenoma pathological wax specimens were selected from our hospital, including 20 cases of invasive nonfunctional pituitary adenoma (INFPA) and 10 noninvasive nonfunctional pituitary adenomas (NNFPAs). Envision was used to detect IL-6, STAT3, E-cadherin , and N-cadherin in specimens. Statistical methods were used to analyze the correlation between the four proteins and the Knosp classification of nonfunctional pituitary adenomas. Result IL-6 and STAT3 were highly expressed in INFPAs but poorly expressed in NNFPAs. E-cadherin expression in INFPAs was lower than that in NNFPAs. N-cadherin was positive or strongly positive in both groups. Spearman's correlation analysis showed that the expression of IL-6 and STAT3 was positively correlated with Knosp's classification, whereas the expression of E-cadherin was negatively correlated with Knosp classification. Meanwhile, the expression of N-cadherin was not correlated with Knosp's classification. Conclusion The expression of the IL-6, STAT3, E-cadherin proteins were associated nonfunctional pituitary adenomas. However, the expression of N-cadherin was not correlated with nonfunctional pituitary adenomas.
Collapse
Affiliation(s)
- Xiaoxu Shen
- Department of Neurosurgery, The First Affiliated Hospital of Medical College, Shihezi University, Shihezi, China
| | - Qi Liu
- Department of Neurosurgery, The First Affiliated Hospital of Medical College, Shihezi University, Shihezi, China
| | - Jian Xu
- Department of Neurosurgery, The First Affiliated Hospital of Medical College, Shihezi University, Shihezi, China
| | - Yang Wang
- Department of Neurosurgery, The First Affiliated Hospital of Medical College, Shihezi University, Shihezi, China
| |
Collapse
|
17
|
Lv S, Luo T, Yang Y, Li Y, Yang J, Xu J, Zheng J, Zeng Y. Naa10p and IKKα interaction regulates EMT in oral squamous cell carcinoma via TGF-β1/Smad pathway. J Cell Mol Med 2021; 25:6760-6772. [PMID: 34060226 PMCID: PMC8278082 DOI: 10.1111/jcmm.16680] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 12/11/2022] Open
Abstract
Epithelial‐mesenchymal transition (EMT) has been contributed to increase migration and invasion of cancer cells. However, the correlate of Naa10p and IKKα with EMT in oral squamous cell carcinoma (OSCC) is not yet fully understood. In our present study, we found N‐α‐acetyltransferase 10 protein (Naa10p) and IκB kinase α (IKKα) were abnormally abundant in oral squamous cell carcinoma (OSCC). Bioinformatic results indicate that the expression of Naa10p and IKKα is correlated with TGF‐β1/Smad and EMT‐related molecules. The Transwell migration, invasion, qRT‐PCR and Western blot assay indicated that Naa10p repressed OSCC cell migration, invasion and EMT, whereas IKKα promoted TGF‐β1–mediated OSCC cell migration, invasion and EMT. Mechanistically, Naa10p inhibited IKKα activation of Smad3 through the interaction with IKKα directly in OSCC cells after TGF‐β1 stimulation. Notably, knockdown of Naa10p reversed the IKKα‐induced change in the migration, invasion and EMT‐related molecules in OSCC cells after TGF‐β1 stimulation. These findings suggest that Naa10p interacted with IKKα mediates EMT in OSCC cells through TGF‐β1/Smad, a novel pathway for preventing OSCC.
Collapse
Affiliation(s)
- Sai Lv
- Key Laboratory of Xinjiang Endemic and Ethnic Disease, School of Medicine, Shihezi University, Shihezi, China.,Department of Stomatology, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Ting Luo
- Key Laboratory of Xinjiang Endemic and Ethnic Disease, School of Medicine, Shihezi University, Shihezi, China
| | - Yongyong Yang
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Yuqing Li
- Department of Urological Surgery, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
| | - Jie Yang
- Key Laboratory of Xinjiang Endemic and Ethnic Disease, School of Medicine, Shihezi University, Shihezi, China.,Department of Stomatology, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Jiang Xu
- Key Laboratory of Xinjiang Endemic and Ethnic Disease, School of Medicine, Shihezi University, Shihezi, China.,Department of Stomatology, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Jun Zheng
- Key Laboratory of Xinjiang Endemic and Ethnic Disease, School of Medicine, Shihezi University, Shihezi, China.,Department of Stomatology, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Yan Zeng
- Key Laboratory of Xinjiang Endemic and Ethnic Disease, School of Medicine, Shihezi University, Shihezi, China.,Department of Stomatology, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| |
Collapse
|
18
|
Liang X, Lu J, Wu Z, Guo Y, Shen S, Liang J, Dong Z, Guo W. LINC00239 Interacts with C-Myc Promoter-Binding Protein-1 (MBP-1) to Promote Expression of C-Myc in Esophageal Squamous Cell Carcinoma. Mol Cancer Res 2021; 19:1465-1475. [PMID: 34016746 DOI: 10.1158/1541-7786.mcr-20-1025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/29/2021] [Accepted: 05/14/2021] [Indexed: 11/16/2022]
Abstract
Increasing evidence demonstrates that long non-coding RNAs (lncRNA) play a vital role in the progression of tumors, containing esophageal squamous cell carcinoma (ESCC). LINC00239 was reported as an oncogene in diverse kinds of cancers, whereas its specific role is still unclear in ESCC. In this study, we detected the expression and functional role of LINC00239 in ESCC specimens and cells, and investigated the molecular mechanisms of it. LINC00239 was highly expressed in ESCC tissues and cells, and was related to poor prognosis of patients with ESCC. The proliferation, metastasis, and invasion ability as well as epithelial-mesenchymal transition (EMT) process were all enhanced in LINC00239-overexpressed ESCC cells. LINC00239 was upregulated in TGF-β1-treated ESCC cells. Furthermore, LINC00239 was found to bind directly to the transcription factor c-Myc promoter-binding protein-1 (MBP-1). MBP-1 was detected to inhibit the transcription of c-Myc in ESCC. Moreover, LINC00239 could activate c-Myc transcription through influencing MBP-1-binding ability to c-Myc promoter. These data suggest that LINC00239 may act as an oncogene to promote the transcription of c-Myc by competitively combining with MBP-1 in ESCC, and may serve as a potential target for antitumor therapy in ESCC. IMPLICATIONS: LINC00239 may function as an oncogenic lncRNA in ESCC through the LINC00239/MBP-1/c-Myc axis to activate EMT process.
Collapse
Affiliation(s)
- Xiaoliang Liang
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Juntao Lu
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zheng Wu
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yanli Guo
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Supeng Shen
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jia Liang
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zhiming Dong
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Wei Guo
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| |
Collapse
|
19
|
Abolfathi H, Sheikhpour M, Shahraeini SS, Khatami S, Nojoumi SA. Studies in lung cancer cytokine proteomics: a review. Expert Rev Proteomics 2021; 18:49-64. [PMID: 33612047 DOI: 10.1080/14789450.2021.1892491] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Proteins are molecules that have role in the progression of the diseases. Proteomics is a tool that can play an effective role in identifying diagnostic and therapeutic biomarkers for lung cancer. Cytokines are proteins that play a decisive role in activating body's immune system in lung cancer. They can increase the growth of the tumor (oncogenic cytokines) or limit tumor growth (anti-tumor cytokines) by regulating related signaling pathways such as proliferation, growth, metastasis, and apoptosis. AREAS COVERED In the present study, a total of 223 papers including 196 research papers and 27 review papers, extracted from PubMed and Scopus and published from 1997 to present, are reviewed. The most important involved-cytokines in lung cancer including TNF-α, IFN- γ, TGF-β, VEGF and interleukins such as IL-6, IL-17, IL-8, IL-10, IL-22, IL-1β and IL-18 are introduced. Also, the pathological and biological role of such cytokines in cancer signaling pathways is explained. EXPERT OPINION In lung cancer, the cytokine expression changes under the physiological conditions of the immune system, and inflammatory cytokines are associated with the progression of lung cancer. Therefore, the cytokine expression profile can be used in the diagnosis, prognosis, prediction of therapeutic responses, and survival of patients with lung cancer.
Collapse
Affiliation(s)
- Hanie Abolfathi
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | - Mojgan Sheikhpour
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Sadegh Shahraeini
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Shohreh Khatami
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Ali Nojoumi
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
20
|
MYC as a Multifaceted Regulator of Tumor Microenvironment Leading to Metastasis. Int J Mol Sci 2020; 21:ijms21207710. [PMID: 33081056 PMCID: PMC7589112 DOI: 10.3390/ijms21207710] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 12/12/2022] Open
Abstract
The Myc family of oncogenes is deregulated in many types of cancer, and their over-expression is often correlated with poor prognosis. The Myc family members are transcription factors that can coordinate the expression of thousands of genes. Among them, c-Myc (MYC) is the gene most strongly associated with cancer, and it is the focus of this review. It regulates the expression of genes involved in cell proliferation, growth, differentiation, self-renewal, survival, metabolism, protein synthesis, and apoptosis. More recently, novel studies have shown that MYC plays a role not only in tumor initiation and growth but also has a broader spectrum of functions in tumor progression. MYC contributes to angiogenesis, immune evasion, invasion, and migration, which all lead to distant metastasis. Moreover, MYC is able to promote tumor growth and aggressiveness by recruiting stromal and tumor-infiltrating cells. In this review, we will dissect all of these novel functions and their involvement in the crosstalk between tumor and host, which have demonstrated that MYC is undoubtedly the master regulator of the tumor microenvironment. In sum, a better understanding of MYC’s role in the tumor microenvironment and metastasis development is crucial in proposing novel and effective cancer treatment strategies.
Collapse
|
21
|
Gao P, Tian Y, Xie Q, Zhang L, Yan Y, Xu D. Manganese exposure induces permeability in renal glomerular endothelial cells via the Smad2/3-Snail-VE-cadherin axis. Toxicol Res (Camb) 2020; 9:683-692. [PMID: 33178429 DOI: 10.1093/toxres/tfaa067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 07/19/2020] [Accepted: 08/03/2020] [Indexed: 12/22/2022] Open
Abstract
Manganese (Mn) is an essential micronutrient. However, it is well established that Mn overexposure causes nervous system diseases. In contrast, there are few reports on the effects of Mn exposure on glomerular endothelium. In the present study, the potential effects of Mn exposure on glomerular endothelium were evaluated. Sprague Dawley rats were used as a model of Mn overexposure by intraperitoneal injection of MnCl2·H2O at 25 mg/kg body weight. Mn exposure decreased expression of vascular endothelial-cadherin, a key component of adherens junctions, and increased exudate from glomeruli in Sprague Dawley rats. Human renal glomerular endothelial cells were cultured with different concentration of Mn. Exposure to 0.2 mM Mn increased permeability of human renal glomerular endothelial cell monolayers and decreased vascular endothelial-cadherin expression without inducing cytotoxicity. In addition, Mn exposure increased phosphorylation of mothers against decapentaplegic homolog 2/3 and upregulated expression of zinc finger protein SNAI1, a negative transcriptional regulator of vascular endothelial-cadherin. Our data suggest Mn exposure may contribute to development of glomerular diseases by inducing permeability of glomerular endothelium.
Collapse
Affiliation(s)
- Peng Gao
- Laboratory of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, 16766 Jingshi Road, Jinan 250014, Shandong, China
| | - Yutian Tian
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, 18877 Jingshi Road, Jinan 250062, Shandong, China
| | - Qi Xie
- Laboratory of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, 16766 Jingshi Road, Jinan 250014, Shandong, China
| | - Liang Zhang
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, Shandong Normal University, 88 East Wenhua Road, Jinan 250014, Shandong, China
| | - Yongjian Yan
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, 18877 Jingshi Road, Jinan 250062, Shandong, China
| | - Dongmei Xu
- Department of Nephrology, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, 16766 Jingshi Road, Jinan 250014, Shandong, China
| |
Collapse
|
22
|
Whole-genome analysis of noncoding genetic variations identifies multiscale regulatory element perturbations associated with Hirschsprung disease. Genome Res 2020; 30:1618-1632. [PMID: 32948616 PMCID: PMC7605255 DOI: 10.1101/gr.264473.120] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 09/14/2020] [Indexed: 12/16/2022]
Abstract
It is widely recognized that noncoding genetic variants play important roles in many human diseases, but there are multiple challenges that hinder the identification of functional disease-associated noncoding variants. The number of noncoding variants can be many times that of coding variants; many of them are not functional but in linkage disequilibrium with the functional ones; different variants can have epistatic effects; different variants can affect the same genes or pathways in different individuals; and some variants are related to each other not by affecting the same gene but by affecting the binding of the same upstream regulator. To overcome these difficulties, we propose a novel analysis framework that considers convergent impacts of different genetic variants on protein binding, which provides multiscale information about disease-associated perturbations of regulatory elements, genes, and pathways. Applying it to our whole-genome sequencing data of 918 short-segment Hirschsprung disease patients and matched controls, we identify various novel genes not detected by standard single-variant and region-based tests, functionally centering on neural crest migration and development. Our framework also identifies upstream regulators whose binding is influenced by the noncoding variants. Using human neural crest cells, we confirm cell stage-specific regulatory roles of three top novel regulatory elements on our list, respectively in the RET, RASGEF1A, and PIK3C2B loci. In the PIK3C2B regulatory element, we further show that a noncoding variant found only in the patients affects the binding of the gliogenesis regulator NFIA, with a corresponding up-regulation of multiple genes in the same topologically associating domain.
Collapse
|
23
|
Low SYY, Bte Syed Sulaiman N, Tan EEK, Ng LP, Kuick CH, Chang KTE, Tang PH, Wong RX, Looi WS, Low DCY, Seow WT. Cerebrospinal fluid cytokines in metastatic group 3 and 4 medulloblastoma. BMC Cancer 2020; 20:554. [PMID: 32539808 PMCID: PMC7296667 DOI: 10.1186/s12885-020-07048-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 06/06/2020] [Indexed: 02/07/2023] Open
Abstract
Background Metastatic medulloblastoma (MB) portends a poor prognosis. Amongst the 4 molecular subtypes, Group 3 and Group 4 patients have a higher incidence of metastatic disease, especially involving the neuroaxis. At present, mechanisms underlying MB metastasis remain elusive. Separately, inflammation has been implicated as a key player in tumour development and metastasis. Cytokines and their inflammation-related partners have been demonstrated to act on autocrine and, or paracrine pathways within the tumour microenvironment for various cancers. In this study, the authors explore the involvement of cerebrospinal fluid (CSF) cytokines in Group 3 and 4 MB patients with disseminated disease. Methods This is an ethics approved, retrospective study of prospectively collected data based at a single institution. Patient clinicpathological data and corresponding bio-materials are collected after informed consent. All CSF samples are interrogated using a proteomic array. Resultant expression data of selected cytokines are correlated with each individual’s clinical information. Statistical analysis is employed to determine the significance of the expression of CSF cytokines in Group 3 and 4 patients with metastatic MB versus non-metastatic MB. Results A total of 10 patients are recruited for this study. Median age of the cohort is 6.6 years old. Based on Nanostring gene expression analysis, 5 patients have Group 3 as their molecular subtype and the remaining 5 are Group 4. There are 2 non-metastatic versus 3 metastatic patients within each molecular subtype. Proteomic CSF analysis of all patients for both subtypes show higher expression of CCL2 in the metastatic group versus the non-metastatic group. Within the Group 3 subtype, the MYC-amplified Group 3 MB patients with existing and delayed metastases express higher levels of CXCL1, IL6 and IL8 in their CSF specimens at initial presentation. Furthermore, a longitudinal study of metastatic Group 3 MB observes that selected cytokines are differentially expressed in MYC-amplified metastatic Group 3 MB, in comparison to the non-MYC amplified metastatic Group 3 MB patient. Conclusion This study demonstrates higher expression of selected CSF cytokines, in particular CCL2, in metastatic Group 3 and 4 MB patients. Although our results are preliminary, they establish a proof-of-concept basis for continued work in a larger cohort of patients affected by this devastating disease.
Collapse
Affiliation(s)
- Sharon Y Y Low
- Neurosurgical Service, KK Women's and Children's Hospital, 100 Bukit Timah Road, Singapore, 229899, Singapore. .,Department of Neurosurgery, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore. .,SingHealth Duke-NUS Neuroscience Academic Clinical Program, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore. .,VIVA-KKH Paediatric Brain and Solid Tumours Laboratory, 100 Bukit Timah Road, Singapore, 229899, Singapore.
| | - Nurfahanah Bte Syed Sulaiman
- Department of Neurosurgery, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore.,VIVA-KKH Paediatric Brain and Solid Tumours Laboratory, 100 Bukit Timah Road, Singapore, 229899, Singapore
| | - Enrica E K Tan
- Paediatric Haematology/Oncology Service, KK Women's and Children's Hospital, 100 Bukit Timah Road, Singapore, 229899, Singapore
| | - Lee Ping Ng
- Neurosurgical Service, KK Women's and Children's Hospital, 100 Bukit Timah Road, Singapore, 229899, Singapore
| | - Chik Hong Kuick
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, 100 Bukit Timah Road, Singapore, 229899, Singapore
| | - Kenneth T E Chang
- VIVA-KKH Paediatric Brain and Solid Tumours Laboratory, 100 Bukit Timah Road, Singapore, 229899, Singapore.,Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, 100 Bukit Timah Road, Singapore, 229899, Singapore
| | - Phua Hwee Tang
- Department of Diagnostic and Interventional Imaging, KK Women's and Children's Hospital, 100 Bukit Timah Road, Singapore, 229899, Singapore
| | - Ru Xin Wong
- Department of Radiation Oncology, 11 Hospital Drive, Singapore, 169610, Singapore
| | - Wen Shen Looi
- Department of Radiation Oncology, 11 Hospital Drive, Singapore, 169610, Singapore
| | - David C Y Low
- Neurosurgical Service, KK Women's and Children's Hospital, 100 Bukit Timah Road, Singapore, 229899, Singapore.,Department of Neurosurgery, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore.,SingHealth Duke-NUS Neuroscience Academic Clinical Program, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Wan Tew Seow
- Neurosurgical Service, KK Women's and Children's Hospital, 100 Bukit Timah Road, Singapore, 229899, Singapore.,Department of Neurosurgery, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore.,SingHealth Duke-NUS Neuroscience Academic Clinical Program, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| |
Collapse
|
24
|
MYOCD and SMAD3/SMAD4 form a positive feedback loop and drive TGF-β-induced epithelial-mesenchymal transition in non-small cell lung cancer. Oncogene 2020; 39:2890-2904. [PMID: 32029901 DOI: 10.1038/s41388-020-1189-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/18/2020] [Accepted: 01/23/2020] [Indexed: 11/08/2022]
Abstract
Myocardin (MYOCD) promotes Smad3-mediated transforming growth factor-β (TGF-β) signaling in mouse fibroblast cells. Our previous studies show that TGF-β/SMADs signaling activation enhances epithelial-mesenchymal transition (EMT) in human non-small cell lung cancer (NSCLC) cells. However, whether and how MYOCD contributes to TGF-β-induced EMT of NSCLC cells are poorly elucidated. Here, we found that TGF-β-induced EMT was accompanied by increased MYOCD expression. Interestingly, MYOCD overexpression augmented EMT and invasion of NSCLC cells induced by TGF-β, whereas knockdown of MYOCD expression attenuated these effects. Overexpression and knockdown of MYOCD resulted in the upregulation and downregulation of TGF-β-induced Snail mRNA, respectively. Moreover, MYOCD overexpression promoted TGF-β-stimulated NSCLC cell metastasis in vivo. MYOCD was highly expressed and positively correlated with Snail in metastatic NSCLC tissues. Mechanistically, MYOCD directly interacted with SMAD3 and sustained the formation of TGF-β-induced nuclear SMAD3/SMAD4 complex, facilitating TGF-β/SMAD3-induced transactivation of Snail. Importantly, MYOCD was transcriptionally activated by TGF-β-induced SMAD3/SMAD4 complex and CRISPR/Cas9-mediated silencing of SMAD3/SMAD4 led to a reduction in MYOCD mRNA expression. Taken together, our findings indicate that MYOCD promotes TGF-β-induced EMT and metastasis of NSCLC and identify a positive feedback loop between MYOCD and SMAD3/SMAD4 driving TGF-β-induced EMT.
Collapse
|
25
|
Wang X, Wang B, Zhao N, Wang C, Huang M, Chen B, Chen J, Sun Y, Xiong L, Huang S, Liu Y. Pharmacological Targeting of BET Bromodomains Inhibits Lens Fibrosis via Downregulation of MYC Expression. Invest Ophthalmol Vis Sci 2020; 60:4748-4758. [PMID: 31731295 DOI: 10.1167/iovs.19-27596] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Lens fibrosis involves aberrant growth, migration, and transforming growth factorβ (TGFβ)-induced epithelial-mesenchymal transition (EMT) of lens epithelial cells (LECs). In this study, we investigated the role of the bromo- and extra-terminal domain (BET) inhibitor in lens fibrotic disorder to identify drug-based therapies. Methods Rat lens explants, rabbit primary lens epithelial cells (rLECs), human lens explants and human SRA01/04 cells were treated with TGFβ2 in the presence or absence of the BET bromodomain inhibitor JQ1 or the MYC inhibitor 10058-F4. Proliferation was determined by MTS assay. Cell migration was measured by wound healing and transwell assays. The expression levels of fibronectin (FN), α-smooth muscle actin (α-SMA), E-cadherin, and phosphorylated downstream Smads were analyzed by Western blot, qRT-PCR, and immunocytochemical experiments. Transcriptome analysis was conducted to explore the molecular mechanism. Results Blockage of BET bromodomains with JQ1 significantly suppressed rLECs proliferation by inducing G1 cell cycle arrest. Furthermore, JQ1 attenuated TGFβ2-dependent upregulation of mesenchymal gene expression and phosphorylation of Smad2/3 during the progression of EMT, whereas E-cadherin expression was preserved. JQ1 repressed MYC expression, which was dose- and time-dependently upregulated by TGFβ2. Inhibiting MYC with either the small-molecule inhibitor 10058-F4 or genetic knockdown phenocopied the effects of JQ1 treatment. MYC overexpression partially reversed the JQ1-regulated EMT-related alteration of gene expression. Both JQ1 and 10058-F4 blocked the expression of TGFβ receptor II and integrin αv in rLECs and abolished TGFβ2-induced opacification and subcapsular plaque formation in rat lens explants. Conclusions Our results demonstrate the antifibrotic role of JQ1 in maintaining the epithelial characteristics of LECs and blocking TGFβ2-induced EMT, possibly by downregulating MYC, thereby providing new avenues for treating lens fibrosis.
Collapse
Affiliation(s)
- Xiaoran Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Bowen Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Na Zhao
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States
| | - Chenjie Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.,Department of Ophthalmology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Mi Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Baoxin Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jieping Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yan Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Lang Xiong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Shan Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
26
|
Chen J, Zhu H, Liu Q, Ning D, Zhang Z, Zhang L, Mo J, Du P, Liu X, Song S, Fan Y, Liang H, Liu J, Zhang B, Chen X. DEPTOR induces a partial epithelial-to-mesenchymal transition and metastasis via autocrine TGFβ1 signaling and is associated with poor prognosis in hepatocellular carcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:273. [PMID: 31228948 PMCID: PMC6588925 DOI: 10.1186/s13046-019-1220-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 05/08/2019] [Indexed: 12/19/2022]
Abstract
Background DEPTOR is an endogenous inhibitor of mTORC1 and mTORC2 that plays a vital role in the progression of human malignances. However, the biological function of DEPTOR in HCC metastasis and the underlying molecular mechanisms are still unclear. Methods Western blot analysis and immunohistochemistry(IHC) were employed to examine DEPTOR expression in HCC cell lines and tissues. A series of in vivo and in vitro assays were performed to determine the function of DEPTOR and the possible mechanisms underlying its role in HCC metastasis. Results We found that DEPTOR was frequently overexpressed in HCC tissues, and its high expression was associated with high serum AFP levels, increased tumor size, vascular invasion and more advanced TMN and BCLC stage, as well as an overall poor prognosis. Functional experiments demonstrated that DEPTOR silencing inhibited the proliferation and mobility of HCC cells in vitro and suppressed tumor growth and metastasis of HCC cells in vivo. Accordingly, DEPTOR overexpression promoted the invasion and metastasis of HCC cells in vitro and in vivo, but had no effect on cell proliferation in vitro. Overexpression of DEPTOR induced EMT by snail induction. Conversely, knockdown of snail expression impaired the DEPTOR-induced migration, invasion and EMT of HCC cells. Furthermore, we found that the increase of snail expression by DEPTOR overexpression was due to an activation of TGF-β1-smad3/smad4 signaling possibly through feedback inhibition of mTOR. Conclusion DEPTOR promotes the EMT and metastasis of HCC cells by activating the TGF-β1-smad3/smad4-snail pathway via mTOR inhibition. Therefore, targeting DEPTOR may be an ideal treatment strategy for inhibiting the growth and metastasis of HCC. Electronic supplementary material The online version of this article (10.1186/s13046-019-1220-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jin Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, 430030, People's Republic of China
| | - Haidan Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, People's Republic of China
| | - Qiumeng Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, 430030, People's Republic of China
| | - Deng Ning
- Department of Biliary and Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Zhaoqi Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, 430030, People's Republic of China
| | - Long Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, 430030, People's Republic of China
| | - Jie Mo
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, 430030, People's Republic of China
| | - Pengcheng Du
- Department of Biliary and Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Xu Liu
- Hepato-pancreato-biliary Surgery Department, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Shasha Song
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, 430030, People's Republic of China
| | - Yawei Fan
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, 430030, People's Republic of China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, 430030, People's Republic of China
| | - Jikui Liu
- Hepato-pancreato-biliary Surgery Department, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China.
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, 430030, People's Republic of China.
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, 430030, People's Republic of China.
| |
Collapse
|
27
|
Baulida J, Díaz VM, Herreros AGD. Snail1: A Transcriptional Factor Controlled at Multiple Levels. J Clin Med 2019; 8:jcm8060757. [PMID: 31141910 PMCID: PMC6616578 DOI: 10.3390/jcm8060757] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 05/23/2019] [Accepted: 05/23/2019] [Indexed: 12/27/2022] Open
Abstract
Snail1 transcriptional factor plays a key role in the control of epithelial to mesenchymal transition and fibroblast activation. As a consequence, Snail1 expression and function is regulated at multiple levels from gene transcription to protein modifications, affecting its interaction with specific cofactors. In this review, we describe the different elements that control Snail1 expression and its activity both as transcriptional repressor or activator.
Collapse
Affiliation(s)
- Josep Baulida
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Unidad Asociada al CSIC, 08003 Barcelona, Spain.
| | - Víctor M Díaz
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Unidad Asociada al CSIC, 08003 Barcelona, Spain.
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08003 Barcelona, Spain.
| | - Antonio García de Herreros
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Unidad Asociada al CSIC, 08003 Barcelona, Spain.
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08003 Barcelona, Spain.
| |
Collapse
|
28
|
Yu J, Liu M, Liu H, Zhou L. GATA1 promotes colorectal cancer cell proliferation, migration and invasion via activating AKT signaling pathway. Mol Cell Biochem 2019; 457:191-199. [PMID: 31069596 DOI: 10.1007/s11010-019-03523-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 03/15/2019] [Indexed: 01/20/2023]
Abstract
GATA1, a member of the GATA transcription factor family, was reported to play a role in development and progression of erythroid cells and breast cancer cells. However, the role of GATA1 in colorectal cancer (CRC) is unknown. Here, we demonstrate that GATA1 was upregulated in CRC tissues compared with normal tissues, and predicted poor clinical outcome in CRC. Biological functional analyses showed that GATA1 knockdown decreased CRC cells proliferation, migration and invasion, and regulated the process of epithelial-mesenchymal transition (EMT). Moreover, silencing of GATA1 suppressed colorectal tumor growth in nude mice. Mechanistically, GATA1 overexpression significantly increased the activity of PI3K/AKT signaling pathway in CRC cells. These data provide insight into the important role of GATA1 in CRC progression and suggest that GATA1 is a potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Junhui Yu
- Department of Peritoneal Cancer Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, People's Republic of China
| | - Ming Liu
- Department of Surgery, Beijing Zhanlanlu Hospital, Beijing, 100044, People's Republic of China
| | - Hui Liu
- Department of Oncology, Huguosi Hospital of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100035, People's Republic of China
| | - Lei Zhou
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, No 10 Tieyi Road, Yangfangdian Street, Haidian District, Beijing, 100038, People's Republic of China.
| |
Collapse
|
29
|
Qin Y, Hu Q, Ji S, Xu J, Dai W, Liu W, Xu W, Sun Q, Zhang Z, Ni Q, Yu X, Zhang B, Xu X. Homeodomain-interacting protein kinase 2 suppresses proliferation and aerobic glycolysis via ERK/cMyc axis in pancreatic cancer. Cell Prolif 2019; 52:e12603. [PMID: 30932257 DOI: 10.1111/cpr.12603] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 02/16/2019] [Accepted: 02/22/2019] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES To investigate the roles of the homeodomain-interacting protein kinase (HIPK) family of proteins in pancreatic cancer prognosis and the possible molecular mechanism. MATERIALS AND METHODS The expression of HIPK family genes and their roles in pancreatic cancer prognosis were analysed by using The Cancer Genome Atlas (TCGA). The roles of HIPK2 in pancreatic cancer proliferation and glycolysis were tested by overexpression of HIPK2 in pancreatic cancer cells, followed by cell proliferation assay, glucose uptake analysis and Seahorse extracellular flux analysis. The mechanism of action of HIPK2 in pancreatic cancer proliferation and glycolysis was explored by examining its effect on the ERK/cMyc axis. RESULTS Decreased HIPK2 expression indicated worse prognosis of pancreatic cancer. Overexpression of HIPK2 in pancreatic cancer cells decreased cell proliferation and attenuated aerobic glycolysis, which sustained proliferation of cancer cells. HIPK2 decreased cMyc protein levels and expression of cMyc-targeted glycolytic genes. cMyc was a mediator that regulated HIPK2-induced decrease in aerobic glycolysis. HIPK2 regulated cMyc protein stability via ERK activation, which phosphorylated and controlled cMyc protein stability. CONCLUSIONS HIPK2 suppressed proliferation of pancreatic cancer in part through inhibiting the ERK/cMyc axis and related aerobic glycolysis.
Collapse
Affiliation(s)
- Yi Qin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Qiangsheng Hu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Shunrong Ji
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Weixing Dai
- Cancer Research Institute, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Wensheng Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Wenyan Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Qiqing Sun
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Zheng Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Quanxing Ni
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Bo Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xiaowu Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| |
Collapse
|
30
|
Cai F, Cai L, Zhou Z, Pan X, Wang M, Chen S, Luis MAF, Cen C, Biskup E. Prognostic role of Tif1γ expression and circulating tumor cells in patients with breast cancer. Mol Med Rep 2019; 19:3685-3695. [PMID: 30896800 PMCID: PMC6470918 DOI: 10.3892/mmr.2019.10033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 03/06/2019] [Indexed: 01/06/2023] Open
Abstract
Transcription intermediary factor 1γ (Tif1γ), a ubiquitous nuclear protein, is a regulator of transforming growth factor-β (TGF-β)/Smad signaling. Tif1γ can function as an oncogene and as a tumor suppressor. In the present study, Tif1γ levels were measured in the plasma of patients with breast cancer in order to investigate the association of Tif1γ with overall survival (OS). The results indicated that Tif1γ is an independent prognostic and predictive factor in breast cancer, and thus, a promising target protein for use in diagnostics and patient follow-up. Plasma levels of Tif1γ were measured in samples obtained from 110 patients with operable breast cancer and in 110 healthy volunteers at the Breast Cancer Department of Yangpu Hospital between 2008 and 2016. The association between Tif1γ levels and clinicopathologic parameters, and the OS in a follow-up period of 98 months was evaluated. The prognostic significance was assessed using the Kaplan-Meier method. The levels of Tif1γ were significantly lower in patients with breast cancer compared with healthy controls. The average concentration of 18.40 ng/ml was used to discriminate between Tif1γ-positive (52) and Tif1γ-negative patients (58). Tif1γ-positive patients had a significantly improved OS compared with Tif1γ-negative patients. In the multivariate analysis, Tif1γ was an independent predictor of a favorable OS in a prospective follow-up setting; thus, Tif1γ plasma levels are an independent prognostic factor for patients with breast cancer. These findings support the potential of using measurements of Tif1γ plasma levels to guide breast cancer therapy and monitoring. Further studies are required to validate Tif1γ as an easily detectable, non-invasive prognostic biomarker for breast cancer.
Collapse
Affiliation(s)
- Fengfeng Cai
- Department of Breast Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, P.R. China
| | - Lu Cai
- Department of Breast Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, P.R. China
| | - Zhuchao Zhou
- Department of General Surgery, Huashan Hospital, Fudan University, School of Medicine, Shanghai 200041, P.R. China
| | - Xin Pan
- Department of Central Laboratory, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, P.R. China
| | - Minghong Wang
- Department of Cardiology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, P.R. China
| | - Su Chen
- Department of Molecular and Cellular Biology, School of Forensic Sciences, Xi'an Jiao Tong University Health Science Center, Xi'an, Shanxi 710061, P.R. China
| | - Manuel Antonio Falar Luis
- Department of Breast Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, P.R. China
| | - Chunmei Cen
- Department of Breast Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, P.R. China
| | - Ewelina Biskup
- Department of Basic Medical Sciences, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P.R. China
| |
Collapse
|
31
|
Su Y, Pelz C, Huang T, Torkenczy K, Wang X, Cherry A, Daniel CJ, Liang J, Nan X, Dai MS, Adey A, Impey S, Sears RC. Post-translational modification localizes MYC to the nuclear pore basket to regulate a subset of target genes involved in cellular responses to environmental signals. Genes Dev 2018; 32:1398-1419. [PMID: 30366908 PMCID: PMC6217735 DOI: 10.1101/gad.314377.118] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 09/04/2018] [Indexed: 12/14/2022]
Abstract
In this study, Su et al. investigate how post-translational modifications of Myc that affect stability and oncogenic activity regulate its function. They show that Ser62 phosphorylation and PIN1-mediated isomerization of MYC dynamically regulate the spatial distribution of MYC in the nucleus, promoting its association with the inner basket of the nuclear pore in response to proliferative signals, where it recruits the histone acetyltransferase GCN5 to bind and regulate local gene acetylation and expression, thus providing new insights into how post-translational modification of MYC controls its spatial activity. The transcription factor MYC (also c-Myc) induces histone modification, chromatin remodeling, and the release of paused RNA polymerase to broadly regulate transcription. MYC is subject to a series of post-translational modifications that affect its stability and oncogenic activity, but how these control MYC's function on the genome is largely unknown. Recent work demonstrates an intimate connection between nuclear compartmentalization and gene regulation. Here, we report that Ser62 phosphorylation and PIN1-mediated isomerization of MYC dynamically regulate the spatial distribution of MYC in the nucleus, promoting its association with the inner basket of the nuclear pore in response to proliferative signals, where it recruits the histone acetyltransferase GCN5 to bind and regulate local gene acetylation and expression. We demonstrate that PIN1-mediated localization of MYC to the nuclear pore regulates MYC target genes responsive to mitogen stimulation that are involved in proliferation and migration pathways. These changes are also present at the chromatin level, with an increase in open regulatory elements in response to stimulation that is PIN1-dependent and associated with MYC chromatin binding. Taken together, our study indicates that post-translational modification of MYC controls its spatial activity to optimally regulate gene expression in response to extrinsic signals in normal and diseased states.
Collapse
Affiliation(s)
- Yulong Su
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Oregon 97239, USA
| | - Carl Pelz
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Oregon 97239, USA.,Oregon Stem Cell Center, Oregon Health and Science University, Oregon 97239, USA
| | - Tao Huang
- Department of Biomedical Engineering, Oregon Health and Science University, Oregon 97239, USA
| | - Kristof Torkenczy
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Oregon 97239, USA
| | - Xiaoyan Wang
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Oregon 97239, USA
| | - Allison Cherry
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Oregon 97239, USA
| | - Colin J Daniel
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Oregon 97239, USA
| | - Juan Liang
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Oregon 97239, USA
| | - Xiaolin Nan
- Department of Biomedical Engineering, Oregon Health and Science University, Oregon 97239, USA
| | - Mu-Shui Dai
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Oregon 97239, USA
| | - Andrew Adey
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Oregon 97239, USA
| | - Soren Impey
- Oregon Stem Cell Center, Oregon Health and Science University, Oregon 97239, USA
| | - Rosalie C Sears
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Oregon 97239, USA
| |
Collapse
|
32
|
Su B, Xu T, Bruce JP, Yip KW, Zhang N, Huang Z, Zhang G, Liu FF, Liang J, Yang H, Claret FX. hsa‑miR‑24 suppresses metastasis in nasopharyngeal carcinoma by regulating the c‑Myc/epithelial‑mesenchymal transition axis. Oncol Rep 2018; 40:2536-2546. [PMID: 30226609 PMCID: PMC6151896 DOI: 10.3892/or.2018.6690] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/19/2018] [Indexed: 01/06/2023] Open
Abstract
Distant metastasis is the major contributor to treatment failure and mortality in patients with nasopharyngeal carcinoma (NPC). The lack of effective treatment strategies for metastatic NPC is the major cause for the low survival rate. Therefore, it is crucial to understand the molecular mechanisms underlying NPC metastasis and to identify potential biomarkers for targeted therapy. MicroRNA (miRNAs or miRs) have been shown to play an important role in tumorigenesis and metastasis. In the present study, we aimed to evaluate the significance of hsa-miR-24 in NPC metastasis. Significantly lower hsa-miR-24 levels were observed in NPC metastatic tumors and higher hsa-miR-24 levels were associated with longer progression-free and metastasis-free survival durations. hsa-miR-24 overexpression inhibited cell proliferation, invasion and migration. Using bioinformatics approaches together with functional luciferase reporter assays, we demonstrated that the c-Myc 3′-UTR was a direct target of hsa-miR-24 in regulating NPC metastasis. Protein profiling analysis revealed that a high c-Myc expression was inversely associated with metastasis-free overall survival and with epithelial-mesenchymal transition (EMT). Furthermore, the overexpression of hsa-miR-24 decreased NPC cell invasive ability induced by the overexpression of c-Myc, associated with EMT epithelial marker (E-cadherin) restoration. Thus, on the whole, the findings of this study demonstrate that hsa-miR-24 suppresses metastasis in NPC by regulating the c-Myc/EMT axis, suggesting that hsa-miR-24 may be used as a prognostic factor and as a novel target for the prevention of NPC metastasis.
Collapse
Affiliation(s)
- Bojin Su
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Tao Xu
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Jeff P Bruce
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Kenneth W Yip
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Ning Zhang
- Department of Radiation Oncology, Cancer Center, First People's Hospital of Foshan, Foshan, Guangdong 528000, P.R. China
| | - Zeli Huang
- Department of Radiation Oncology, Cancer Center, First People's Hospital of Foshan, Foshan, Guangdong 528000, P.R. China
| | - Guoyi Zhang
- Department of Radiation Oncology, Cancer Center, First People's Hospital of Foshan, Foshan, Guangdong 528000, P.R. China
| | - Fei-Fei Liu
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Jiyong Liang
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Huiling Yang
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - François X Claret
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
33
|
Maturi V, Morén A, Enroth S, Heldin CH, Moustakas A. Genomewide binding of transcription factor Snail1 in triple-negative breast cancer cells. Mol Oncol 2018; 12:1153-1174. [PMID: 29729076 PMCID: PMC6026864 DOI: 10.1002/1878-0261.12317] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 03/28/2018] [Accepted: 04/15/2018] [Indexed: 12/15/2022] Open
Abstract
Transcriptional regulation mediated by the zinc finger protein Snail1 controls early embryogenesis. By binding to the epithelial tumor suppressor CDH1 gene, Snail1 initiates the epithelial–mesenchymal transition (EMT). The EMT generates stem‐like cells and promotes invasiveness during cancer progression. Accordingly, Snail1 mRNA and protein is abundantly expressed in triple‐negative breast cancers with enhanced metastatic potential and phenotypic signs of the EMT. Such high endogenous Snail1 protein levels permit quantitative chromatin immunoprecipitation‐sequencing (ChIP‐seq) analysis. Snail1 associated with 185 genes at cis regulatory regions in the Hs578T triple‐negative breast cancer cell model. These genes include morphogenetic regulators and signaling components that control polarized differentiation. Using the CRISPR/Cas9 system in Hs578T cells, a double deletion of 10 bp each was engineered into the first exon and into the second exon–intron junction of Snail1, suppressing Snail1 expression and causing misregulation of several hundred genes. Specific attention to regulators of chromatin organization provides a possible link to new phenotypes uncovered by the Snail1 loss‐of‐function mutation. On the other hand, genetic inactivation of Snail1 was not sufficient to establish a full epithelial transition to these tumor cells. Thus, Snail1 contributes to the malignant phenotype of breast cancer cells via diverse new mechanisms.
Collapse
Affiliation(s)
- Varun Maturi
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Ludwig Institute for Cancer Research, Uppsala University, Sweden
| | - Anita Morén
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Ludwig Institute for Cancer Research, Uppsala University, Sweden
| | - Stefan Enroth
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Sweden
| | - Carl-Henrik Heldin
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Ludwig Institute for Cancer Research, Uppsala University, Sweden
| | - Aristidis Moustakas
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Ludwig Institute for Cancer Research, Uppsala University, Sweden
| |
Collapse
|
34
|
Kuchuk O, Tuccitto A, Citterio D, Huber V, Camisaschi C, Milione M, Vergani B, Villa A, Alison MR, Carradori S, Supuran CT, Rivoltini L, Castelli C, Mazzaferro V. pH regulators to target the tumor immune microenvironment in human hepatocellular carcinoma. Oncoimmunology 2018; 7:e1445452. [PMID: 29900055 PMCID: PMC5993489 DOI: 10.1080/2162402x.2018.1445452] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 02/16/2018] [Accepted: 02/20/2018] [Indexed: 01/11/2023] Open
Abstract
Interfering with tumor metabolism is an emerging strategy for treating cancers that are resistant to standard therapies. Featuring a rapid proliferation rate and exacerbated glycolysis, hepatocellular carcinoma (HCC) creates a highly hypoxic microenvironment with excessive production of lactic and carbonic acids. These metabolic conditions promote disease aggressiveness and cancer-related immunosuppression. The pH regulatory molecules work as a bridge between tumor cells and their surrounding milieu. Herein, we show that the pH regulatory molecules CAIX, CAXII and V-ATPase are overexpressed in the HCC microenvironment and that interfering with their pathways exerts antitumor activity. Importantly, the V-ATPase complex was expressed by M2-like tumor-associated macrophages. Blocking ex vivo V-ATPase activity established a less immune-suppressive tumor microenvironment and reversed the mesenchymal features of HCC. Thus, targeting the unique cross-talk between tumor cells and the tumor microenvironment played by pH regulatory molecules holds promise as a strategy to control HCC progression and to reduce the immunosuppressive pressure mediated by the hypoxic/acidic metabolism, particularly considering the potential combination of this strategy with emerging immune checkpoint-based immunotherapies.
Collapse
Affiliation(s)
- Olga Kuchuk
- Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.,Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Alessandra Tuccitto
- Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.,Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Davide Citterio
- Hepatology and Liver Transplantation Unit, Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Veronica Huber
- Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.,Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Chiara Camisaschi
- Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.,Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Massimo Milione
- Anatomic Pathology, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Barbara Vergani
- Consorzio MIA (Microscopy and Image Analysis), University of Milano-Bicocca, Milan, Italy
| | - Antonello Villa
- Consorzio MIA (Microscopy and Image Analysis), University of Milano-Bicocca, Milan, Italy
| | - Malcolm Ronald Alison
- Centre for Tumour Biology, Barts Cancer Institute, Charterhouse Square, London, EC1M 6BQ, United Kingdom
| | - Simone Carradori
- Department of Pharmacy, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Claudiu T Supuran
- Polo Scientifico, Department of Pharmaceutical Sciences, Sesto Fiorentino, Firenze, Italy
| | - Licia Rivoltini
- Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.,Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Chiara Castelli
- Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.,Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Vincenzo Mazzaferro
- Hepatology and Liver Transplantation Unit, Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.,University of Milan, Italy
| |
Collapse
|
35
|
Qin T, Barron L, Xia L, Huang H, Villarreal MM, Zwaagstra J, Collins C, Yang J, Zwieb C, Kodali R, Hinck CS, Kim SK, Reddick RL, Shu C, O'Connor-McCourt MD, Hinck AP, Sun LZ. A novel highly potent trivalent TGF-β receptor trap inhibits early-stage tumorigenesis and tumor cell invasion in murine Pten-deficient prostate glands. Oncotarget 2018; 7:86087-86102. [PMID: 27863384 PMCID: PMC5349899 DOI: 10.18632/oncotarget.13343] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 11/07/2016] [Indexed: 11/25/2022] Open
Abstract
The effects of transforming growth factor beta (TGF-β) signaling on prostate tumorigenesis has been shown to be strongly dependent on the stage of development, with TGF-β functioning as a tumor suppressor in early stages of disease and as a promoter in later stages. To study in further detail the paradoxical tumor-suppressive and tumor-promoting roles of the TGF-β pathway, we investigated the effect of systemic treatment with a TGF-β inhibitor on early stages of prostate tumorigenesis. To ensure effective inhibition, we developed and employed a novel trivalent TGF-β receptor trap, RER, comprised of domains derived from the TGF-β type II and type III receptors. This trap was shown to completely block TβRII binding, to antagonize TGF-β1 and TGF-β3 signaling in cultured epithelial cells at low picomolar concentrations, and it showed equal or better anti-TGF-β activities than a pan TGF-β neutralizing antibody and a TGF-β receptor I kinase inhibitor in various prostate cancer cell lines. Systemic administration of RER inhibited prostate tumor cell proliferation as indicated by reduced Ki67 positive cells and invasion potential of tumor cells in high grade prostatic intraepithelial neoplasia (PIN) lesions in the prostate glands of Pten conditional null mice. These results provide evidence that TGF-β acts as a promoter rather than a suppressor in the relatively early stages of this spontaneous prostate tumorigenesis model. Thus, inhibition of TGF-β signaling in early stages of prostate cancer may be a novel therapeutic strategy to inhibit the progression as well as the metastatic potential in patients with prostate cancer.
Collapse
Affiliation(s)
- Tai Qin
- Department of Cell Systems and Anatomy, University of Texas Health Science Center, San Antonio, TX, USA.,Department of Vascular Surgery, Second Xiangya Hospital and Xiangya School of Medicine, Central South University, Hunan, China
| | - Lindsey Barron
- Department of Cell Systems and Anatomy, University of Texas Health Science Center, San Antonio, TX, USA
| | - Lu Xia
- Department of Cell Systems and Anatomy, University of Texas Health Science Center, San Antonio, TX, USA.,Department of Gynecology and Obstetrics, Xiangya Hospital and Xiangya School of Medicine, Central South University, Hunan, China
| | - Haojie Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Maria M Villarreal
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX, USA
| | - John Zwaagstra
- National Research Council Human Health Therapeutics Portfolio, Montréal, Quebec, Canada, Maureen O'Connor-McCourt is currently affiliated with Formation Biologics, Montréal, Quebec, Canada
| | - Cathy Collins
- National Research Council Human Health Therapeutics Portfolio, Montréal, Quebec, Canada, Maureen O'Connor-McCourt is currently affiliated with Formation Biologics, Montréal, Quebec, Canada
| | - Junhua Yang
- Department of Cell Systems and Anatomy, University of Texas Health Science Center, San Antonio, TX, USA
| | - Christian Zwieb
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX, USA
| | - Ravindra Kodali
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Cynthia S Hinck
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Sun Kyung Kim
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX, USA
| | - Robert L Reddick
- Department of Pathology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Chang Shu
- Department of Vascular Surgery, Second Xiangya Hospital and Xiangya School of Medicine, Central South University, Hunan, China
| | - Maureen D O'Connor-McCourt
- National Research Council Human Health Therapeutics Portfolio, Montréal, Quebec, Canada, Maureen O'Connor-McCourt is currently affiliated with Formation Biologics, Montréal, Quebec, Canada
| | - Andrew P Hinck
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Lu-Zhe Sun
- Department of Cell Systems and Anatomy, University of Texas Health Science Center, San Antonio, TX, USA.,Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, Texas, USA
| |
Collapse
|
36
|
Zhai D, Cui C, Xie L, Cai L, Yu J. Sterol regulatory element-binding protein 1 cooperates with c-Myc to promote epithelial-mesenchymal transition in colorectal cancer. Oncol Lett 2018; 15:5959-5965. [PMID: 29556313 DOI: 10.3892/ol.2018.8058] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 02/08/2018] [Indexed: 01/02/2023] Open
Abstract
Metastasis is the primary cause of mortality in colorectal cancer (CRC), the mechanism of which remains unclear. In the present study, by detecting mRNA expression using a reverse transcription-quantitative polymerase chain reaction (qPCR), it was revealed that sterol regulatory element-binding protein 1 (SREBP1) is highly expressed in CRC. Using a cell wound healing assay and a cell invasion assay, a novel metastasis-promoting role for SREBP1 in CRC was identified. Furthermore, snail family transcriptional repressor 1 (SNAIL) was identified as a key downstream effector of SREBP1 in CRC by the use of small interfering RNA against SNAIL. Additionally, using co-immunoprecipitation and chromatin immunoprecipitation-qPCR assays, it was demonstrated that SREBP1 interacts with c-MYC to enhance the binding of c-MYC to the promoter of the mesenchymal gene, SNAIL, thereby increasing SNAIL expression and accelerating epithelial-mesenchymal transition. These results indicated a novel role for SREBP1 and provide insight into the regulatory mechanisms of the c-Myc oncogene in CRC, which may function as a potential therapeutic target for CRC treatment.
Collapse
Affiliation(s)
- Duanyang Zhai
- Department of General Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510530, P.R. China
| | - Chunhui Cui
- Department of General Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510530, P.R. China
| | - Lang Xie
- Department of General Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510530, P.R. China
| | - Lianxu Cai
- Department of General Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510530, P.R. China
| | - Jinlong Yu
- Department of General Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510530, P.R. China
| |
Collapse
|
37
|
Xue C, Yu DMT, Gherardi S, Koach J, Milazzo G, Gamble L, Liu B, Valli E, Russell AJ, London WB, Liu T, Cheung BB, Marshall GM, Perini G, Haber M, Norris MD. MYCN promotes neuroblastoma malignancy by establishing a regulatory circuit with transcription factor AP4. Oncotarget 2018; 7:54937-54951. [PMID: 27448979 PMCID: PMC5342392 DOI: 10.18632/oncotarget.10709] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 06/16/2016] [Indexed: 12/11/2022] Open
Abstract
Amplification of the MYCN oncogene, a member of the MYC family of transcriptional regulators, is one of the most powerful prognostic markers identified for poor outcome in neuroblastoma, the most common extracranial solid cancer in childhood. While MYCN has been established as a key driver of malignancy in neuroblastoma, the underlying molecular mechanisms are poorly understood. Transcription factor activating enhancer binding protein-4 (TFAP4) has been reported to be a direct transcriptional target of MYC. We show for the first time that high expression of TFAP4 in primary neuroblastoma patients is associated with poor clinical outcome. siRNA-mediated suppression of TFAP4 in MYCN-expressing neuroblastoma cells led to inhibition of cell proliferation and migration. Chromatin immunoprecipitation assay demonstrated that TFAP4 expression is positively regulated by MYCN. Microarray analysis identified genes regulated by both MYCN and TFAP4 in neuroblastoma cells, including Phosphoribosyl-pyrophosphate synthetase-2 (PRPS2) and Syndecan-1 (SDC1), which are involved in cancer cell proliferation and metastasis. Overall this study suggests a regulatory circuit in which MYCN by elevating TFAP4 expression, cooperates with it to control a specific set of genes involved in tumor progression. These findings highlight the existence of a MYCN-TFAP4 axis in MYCN-driven neuroblastoma as well as identifying potential therapeutic targets for aggressive forms of this disease.
Collapse
Affiliation(s)
- Chengyuan Xue
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, Australia
| | - Denise M T Yu
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, Australia
| | - Samuele Gherardi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Jessica Koach
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, Australia
| | - Giorgio Milazzo
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Laura Gamble
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, Australia
| | - Bing Liu
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, Australia
| | - Emanuele Valli
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, Australia
| | - Amanda J Russell
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, Australia
| | - Wendy B London
- Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Tao Liu
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, Australia
| | - Belamy B Cheung
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, Australia
| | - Glenn M Marshall
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, Australia.,Kids Cancer Centre, Sydney Children's Hospital, Sydney, Australia
| | - Giovanni Perini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy.,CIRI Health Sciences and Technologies University of Bologna, Bologna, Italy
| | - Michelle Haber
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, Australia
| | - Murray D Norris
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, Australia.,University of New South Wales Centre for Childhood Cancer Research, Sydney, Australia
| |
Collapse
|
38
|
Min S, Yoon JY, Park SY, Moon J, Kwon HH, Suh DH. Combination of platelet rich plasma in fractional carbon dioxide laser treatment increased clinical efficacy of for acne scar by enhancement of collagen production and modulation of laser-induced inflammation. Lasers Surg Med 2017; 50:302-310. [PMID: 29266290 DOI: 10.1002/lsm.22776] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2017] [Indexed: 12/24/2022]
Abstract
BACKGROUND Platelet-rich plasma (PRP) which contains large amounts of growth factors has been tried to enhance therapeutic efficacy of laser treatment for acne scar with unknown underlying mechanism. OBJECTIVES The present study was conducted to investigate the molecular mechanism of increased clinical efficacy of PRP when combined with fractional laser treatment for treating acne scars. METHODS Subjects with mild to moderate acne scars were treated with two sessions of fractional CO2 laser therapy given with and without co-administration of PRP. Skin biopsy specimens were obtained at baseline, 1, 3, 7, and 28 days for investigation of molecular profiles associated with skin changes produced by laser plus PRP treatment. RESULTS The PRP treatment increased clinical efficacy with decreased severity of adverse effects such as erythema, swelling and oozing. Productions of TGFβ1 and TGFβ3 proteins were more highly elevated on the PRP-treated side of the face compared to the control side at day 28. Furthermore, PRP-treated side showed significant increase of c-myc, TIMP, and HGF expression. Experimental fibroblast culture model was also used. PRP administration after laser irradiation increased expressions of p-Akt, TGFβ1, TGFβ3, β-catenin, collagen 1, and collagen 3 in both dose-dependent and time dependent manners in fibroblast. Moreover, we acquired clinical and histological data through randomized control clinical trial. CONCLUSION Taken together with human study results combined with the data from cell experiments we suggest that PRP treatment increased fibrogenetic molecules induced by fractional CO2 laser, which have association with clinical effect. Lasers Surg. Med. 50:302-310, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Seonguk Min
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea.,Acne and Rosacea Research Laboratory, Seoul National University Hospital, Seoul, Korea
| | - Ji Young Yoon
- Acne and Rosacea Research Laboratory, Seoul National University Hospital, Seoul, Korea
| | - Seon Yong Park
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea.,Acne and Rosacea Research Laboratory, Seoul National University Hospital, Seoul, Korea
| | - Jungyoon Moon
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea.,Acne and Rosacea Research Laboratory, Seoul National University Hospital, Seoul, Korea
| | - Hyuck Hoon Kwon
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea.,Acne and Rosacea Research Laboratory, Seoul National University Hospital, Seoul, Korea
| | - Dae Hun Suh
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea.,Acne and Rosacea Research Laboratory, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
39
|
Li L, Chen X, Dong F, Liu Q, Zhang C, Xu D, Allen TD, Liu J. Dihydroartemisinin up-regulates VE-cadherin expression in human renal glomerular endothelial cells. J Cell Mol Med 2017; 22:2028-2032. [PMID: 29193726 PMCID: PMC5824371 DOI: 10.1111/jcmm.13448] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 10/09/2017] [Indexed: 01/05/2023] Open
Abstract
The antimalarial agent dihydroartemisinin (DHA) has been shown to be anti‐inflammatory. In this study, we found that DHA increased the expression of the junctional protein vascular endothelial (VE)‐cadherin in human renal glomerular endothelial cells. In addition, DHA inhibited TGF‐β RI‐Smad2/3 signalling and its downstream effectors SNAIL and SLUG, which repress VE‐cadherin gene transcription. Correspondingly, DHA decreased the binding of SNAIL and SLUG to the VE‐cadherin promoter. Together, our results suggest an effect of DHA in regulating glomerular permeability by elevation of VE‐cadherin expression.
Collapse
Affiliation(s)
- Liqun Li
- Laboratory of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| | - Xiaocui Chen
- Laboratory of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| | - Fengyun Dong
- Laboratory of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| | - Qiang Liu
- Laboratory of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| | - Caiqing Zhang
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Qianfoshan Hospital, Shandong, University, Jinan, Shandong, China
| | - Dongmei Xu
- Department of Nephrology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| | | | - Ju Liu
- Laboratory of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| |
Collapse
|
40
|
Abstract
Members of the MYC family of proto-oncogenes are the most commonly deregulated genes in all human cancers. MYC proteins drive an increase in cellular proliferation and facilitate multiple aspects of tumor initiation and progression, thereby controlling all hallmarks of cancer. MYC's ability to drive metabolic reprogramming of tumor cells leading to biomass accumulation and cellular proliferation is the most studied function of these oncogenes. MYC also regulates tumor progression and is often implicated in resistance to chemotherapy and in metastasis. While most oncogenic functions of MYC are attributed to its role as a transcription factor, more recently, new roles of MYC as a pro-survival factor in the cytoplasm suggest a previously unappreciated diversity in MYC's roles in cancer progression. This review will focus on the role of MYC in invasion and will discuss the canonical functions of MYC in Epithelial to Mesenchymal Transition and the cytoplasmic functions of MYC-nick in collective migration.
Collapse
Affiliation(s)
| | - Maralice Conacci-Sorrell
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX, USA.,Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
41
|
Shao P, Liu Q, Maina PK, Cui J, Bair TB, Li T, Umesalma S, Zhang W, Qi HH. Histone demethylase PHF8 promotes epithelial to mesenchymal transition and breast tumorigenesis. Nucleic Acids Res 2017; 45:1687-1702. [PMID: 27899639 PMCID: PMC5389682 DOI: 10.1093/nar/gkw1093] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 10/27/2016] [Indexed: 12/21/2022] Open
Abstract
Histone demethylase PHF8 is upregulated and plays oncogenic roles in various cancers; however, the mechanisms underlying its dysregulation and functions in carcinogenesis remain obscure. Here, we report the novel functions of PHF8 in EMT (epithelial to mesenchymal transition) and breast cancer development. Genome-wide gene expression analysis revealed that PHF8 overexpression induces an EMT-like process, including the upregulation of SNAI1 and ZEB1. PHF8 demethylates H3K9me1, H3K9me2 and sustains H3K4me3 to prime the transcriptional activation of SNAI1 by TGF-β signaling. We show that PHF8 is upregulated and positively correlated with MYC at protein levels in breast cancer. MYC post-transcriptionally regulates the expression of PHF8 via the repression of microRNAs. Specifically, miR-22 directly targets and inhibits PHF8 expression, and mediates the regulation of PHF8 by MYC and TGF-β signaling. This novel MYC/microRNAs/PHF8 regulatory axis thus places PHF8 as an important downstream effector of MYC. Indeed, PHF8 contributes to MYC-induced cell proliferation and the expression of EMT-related genes. We also report that PHF8 plays important roles in breast cancer cell migration and tumor growth. These oncogenic functions of PHF8 in breast cancer confer its candidacy as a promising therapeutic target for this disease.
Collapse
Affiliation(s)
- Peng Shao
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, IA 52242, USA
| | - Qi Liu
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, IA 52242, USA
| | - Peterson Kariuki Maina
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, IA 52242, USA
| | - Jiayue Cui
- Department of Histology and Embryology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Thomas B Bair
- Iowa Institute of Human Genetics, Carver College of Medicine, The University of Iowa, IA 52242, USA
| | - Tiandao Li
- McDonnell Genome Institute, Washington University, St. Louis, MO 63108, USA
| | - Shaikamjad Umesalma
- Department of Pathology, Carver College of Medicine, The University of Iowa, IA 52242, USA
| | - Weizhou Zhang
- Department of Pathology, Carver College of Medicine, The University of Iowa, IA 52242, USA
| | - Hank Heng Qi
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, IA 52242, USA
| |
Collapse
|
42
|
Zhao C, Isenberg JS, Popel AS. Transcriptional and Post-Transcriptional Regulation of Thrombospondin-1 Expression: A Computational Model. PLoS Comput Biol 2017; 13:e1005272. [PMID: 28045898 PMCID: PMC5207393 DOI: 10.1371/journal.pcbi.1005272] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/29/2016] [Indexed: 01/09/2023] Open
Abstract
Hypoxia is an important physiological stress signal that drives angiogenesis, the formation of new blood vessels. Besides an increase in the production of pro-angiogenic signals such as vascular endothelial growth factor (VEGF), hypoxia also stimulates the production of anti-angiogenic signals. Thrombospondin-1 (TSP-1) is one of the anti-angiogenic factors whose synthesis is driven by hypoxia. Cellular synthesis of TSP-1 is tightly regulated by different intermediate biomolecules including proteins that interact with hypoxia-inducible factors (HIFs), transcription factors that are activated by receptor and intracellular signaling, and microRNAs which are small non-coding RNA molecules that function in post-transcriptional modification of gene expression. Here we present a computational model that describes the mechanistic interactions between intracellular biomolecules and cooperation between signaling pathways that together make up the complex network of TSP-1 regulation both at the transcriptional and post-transcriptional level. Assisted by the model, we conduct in silico experiments to compare the efficacy of different therapeutic strategies designed to modulate TSP-1 synthesis in conditions that simulate tumor and peripheral arterial disease microenvironment. We conclude that TSP-1 production in endothelial cells depends on not only the availability of certain growth factors but also the fine-tuned signaling cascades that are initiated by hypoxia.
Collapse
Affiliation(s)
- Chen Zhao
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail:
| | - Jeffrey S. Isenberg
- Vascular Medicine Institute, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Aleksander S. Popel
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
43
|
Lee JY, Kong G. Roles and epigenetic regulation of epithelial-mesenchymal transition and its transcription factors in cancer initiation and progression. Cell Mol Life Sci 2016; 73:4643-4660. [PMID: 27460000 PMCID: PMC11108467 DOI: 10.1007/s00018-016-2313-z] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/15/2016] [Accepted: 07/19/2016] [Indexed: 02/07/2023]
Abstract
The epithelial-mesenchymal transition (EMT) is a crucial developmental process by which epithelial cells undergo a mesenchymal phenotypic change. During EMT, epigenetic mechanisms including DNA methylation and histone modifications are involved in the regulation of EMT-related genes. The epigenetic gene silencing of the epithelial marker E-cadherin has been well characterized. In particular, three major transcriptional repressors of E-cadherin, Snail, ZEB, and Twist families, also known as EMT-inducing transcription factors (EMT-TFs), play a crucial role in this process by cooperating with multiple epigenetic modifiers. Furthermore, recent studies have identified the novel epigenetic modifiers that control the expression of EMT-TFs, and these modifiers have emerged as critical regulators of cancer development and as novel therapeutic targets for human cancer. In this review, the diverse functions of EMT-TFs in cancer progression, the cooperative mechanisms of EMT-TFs with epigenetic modifiers, and epigenetic regulatory roles for the expression of EMT-TFs will be discussed.
Collapse
Affiliation(s)
- Jeong-Yeon Lee
- Institute for Bioengineering and Biopharmaceutical Research (IBBR), Hanyang University, Seoul, Republic of Korea
| | - Gu Kong
- Department of Pathology, College of Medicine, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.
| |
Collapse
|
44
|
The interplay between HPIP and casein kinase 1α promotes renal cell carcinoma growth and metastasis via activation of mTOR pathway. Oncogenesis 2016; 5:e260. [PMID: 27694835 PMCID: PMC5117846 DOI: 10.1038/oncsis.2016.44] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 05/01/2016] [Accepted: 05/03/2016] [Indexed: 12/31/2022] Open
Abstract
Hematopoietic pre-B cell leukemia transcription factor (PBX)-interacting protein (HPIP) was shown to be crucial during the development and progression of a variety of tumors. However, the role of HPIP in renal cell carcinoma (RCC) is unknown. Here we report that HPIP is upregulated in most RCC patients, positively correlates with tumor size, high Fuhrman grade and preoperative metastasis, and predicts poor clinical outcomes. Mechanistically, we identified casein kinase 1α (CK1α), a critical regulator of tumorigenesis and metastasis, as a novel HPIP-interacting protein. HPIP facilitates RCC cell growth, migration, invasion and epithelial–mesenchymal transition depending on its interaction with CK1α. Activation of mammalian target of rapamycin pathways by HPIP is partly dependent on CK1α and is required for HPIP modulation of RCC cell proliferation and migration. HPIP knockdown suppresses renal tumor growth and metastasis in nude mice through CK1α. Moreover, expression of CK1α is positively correlated with HPIP in RCC samples, and also predicts poor clinical outcome-like expression of HPIP. Taken together, our data demonstrate the critical regulatory role of the HPIP–CK1α interaction in RCC, and suggest that HPIP and CK1α may be potential targets for RCC therapy.
Collapse
|
45
|
Moustakas A, Heldin CH. Mechanisms of TGFβ-Induced Epithelial-Mesenchymal Transition. J Clin Med 2016; 5:jcm5070063. [PMID: 27367735 PMCID: PMC4961994 DOI: 10.3390/jcm5070063] [Citation(s) in RCA: 193] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 06/22/2016] [Accepted: 06/22/2016] [Indexed: 02/07/2023] Open
Abstract
Transitory phenotypic changes such as the epithelial–mesenchymal transition (EMT) help embryonic cells to generate migratory descendants that populate new sites and establish the distinct tissues in the developing embryo. The mesenchymal descendants of diverse epithelia also participate in the wound healing response of adult tissues, and facilitate the progression of cancer. EMT can be induced by several extracellular cues in the microenvironment of a given epithelial tissue. One such cue, transforming growth factor β (TGFβ), prominently induces EMT via a group of specific transcription factors. The potency of TGFβ is partly based on its ability to perform two parallel molecular functions, i.e. to induce the expression of growth factors, cytokines and chemokines, which sequentially and in a complementary manner help to establish and maintain the EMT, and to mediate signaling crosstalk with other developmental signaling pathways, thus promoting changes in cell differentiation. The molecules that are activated by TGFβ signaling or act as cooperating partners of this pathway are impossible to exhaust within a single coherent and contemporary report. Here, we present selected examples to illustrate the key principles of the circuits that control EMT under the influence of TGFβ.
Collapse
Affiliation(s)
- Aristidis Moustakas
- Ludwig Cancer Research, Science for Life Laboratory, Uppsala University, Box 595, SE 751 24 Uppsala, Sweden.
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Box 582, SE 751 23 Uppsala, Sweden.
| | - Carl-Henrik Heldin
- Ludwig Cancer Research, Science for Life Laboratory, Uppsala University, Box 595, SE 751 24 Uppsala, Sweden.
| |
Collapse
|
46
|
Kress TR, Pellanda P, Pellegrinet L, Bianchi V, Nicoli P, Doni M, Recordati C, Bianchi S, Rotta L, Capra T, Ravà M, Verrecchia A, Radaelli E, Littlewood TD, Evan GI, Amati B. Identification of MYC-Dependent Transcriptional Programs in Oncogene-Addicted Liver Tumors. Cancer Res 2016; 76:3463-72. [PMID: 27197165 DOI: 10.1158/0008-5472.can-16-0316] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 02/11/2016] [Indexed: 11/16/2022]
Abstract
Tumors driven by activation of the transcription factor MYC generally show oncogene addiction. However, the gene expression programs that depend upon sustained MYC activity remain unknown. In this study, we employed a mouse model of liver carcinoma driven by a reversible tet-MYC transgene, combined with chromatin immunoprecipitation and gene expression profiling to identify MYC-dependent regulatory events. As previously reported, MYC-expressing mice exhibited hepatoblastoma- and hepatocellular carcinoma-like tumors, which regressed when MYC expression was suppressed. We further show that cellular transformation, and thus initiation of liver tumorigenesis, were impaired in mice harboring a MYC mutant unable to associate with the corepressor protein MIZ1 (ZBTB17). Notably, switching off the oncogene in advanced carcinomas revealed that MYC was required for the continuous activation and repression of distinct sets of genes, constituting no more than half of all genes deregulated during tumor progression and an even smaller subset of all MYC-bound genes. Altogether, our data provide the first detailed analysis of a MYC-dependent transcriptional program in a fully developed carcinoma and offer a guide to identifying the critical effectors contributing to MYC-driven tumor maintenance. Cancer Res; 76(12); 3463-72. ©2016 AACR.
Collapse
Affiliation(s)
- Theresia R Kress
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy. Department of Experimental Oncology, European Institute of Oncology (IEO), Milan, Italy
| | - Paola Pellanda
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Luca Pellegrinet
- Department of Biochemistry, University of Cambridge, Downing Site, Cambridge, United Kingdom
| | - Valerio Bianchi
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Paola Nicoli
- Department of Experimental Oncology, European Institute of Oncology (IEO), Milan, Italy
| | - Mirko Doni
- Department of Experimental Oncology, European Institute of Oncology (IEO), Milan, Italy
| | - Camilla Recordati
- Mouse & Animal Pathology Laboratory, Fondazione Filarete, Milan, Italy
| | - Salvatore Bianchi
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Luca Rotta
- Department of Experimental Oncology, European Institute of Oncology (IEO), Milan, Italy
| | - Thelma Capra
- Department of Experimental Oncology, European Institute of Oncology (IEO), Milan, Italy
| | - Micol Ravà
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy. Department of Experimental Oncology, European Institute of Oncology (IEO), Milan, Italy
| | - Alessandro Verrecchia
- Department of Experimental Oncology, European Institute of Oncology (IEO), Milan, Italy
| | - Enrico Radaelli
- VIB11 Center for the Biology of Disease, KU Leuven Center for Human Genetics, KU Leuven, Leuven, Belgium
| | - Trevor D Littlewood
- Department of Biochemistry, University of Cambridge, Downing Site, Cambridge, United Kingdom
| | - Gerard I Evan
- Department of Biochemistry, University of Cambridge, Downing Site, Cambridge, United Kingdom
| | - Bruno Amati
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy. Department of Experimental Oncology, European Institute of Oncology (IEO), Milan, Italy.
| |
Collapse
|
47
|
Aubourg P. Cerebral adrenoleukodystrophy: a demyelinating disease that leaves the door wide open. Brain 2016; 138:3133-6. [PMID: 26503938 DOI: 10.1093/brain/awv271] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Patrick Aubourg
- Department of Pediatric Neurology and Inserm U1169, University Paris-Sud, Le Kremlin-Bicêtre, 94276, France
| |
Collapse
|
48
|
Zhang Y, Han L, Pang J, Wang Y, Feng F, Jiang Q. Expression of microRNA-452 via adenoviral vector inhibits non-small cell lung cancer cells proliferation and metastasis. Tumour Biol 2015; 37:8259-70. [PMID: 26718215 DOI: 10.1007/s13277-015-4725-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 12/21/2015] [Indexed: 12/31/2022] Open
Abstract
The microRNA miR-452 has been shown to function as a tumor suppressor. However, the cellular mechanism and potential application of miR-452-mediated cancer suppression remain great unknown. This study aims to identify how miR-452 acts in regulating non-small cell lung cancer (NSCLC) proliferation and metastasis. Expression of miR-452 via adenoviral (Ad) vector inhibits the proliferation, invasion, and migration of NSCLC cells A549 or H460. Our data also shows that miR-452 down-regulates the expression of Bmi-1 as well as pro-survival or anti-apoptosis regulators Survivin, cIAP-1, and cIAP-2. By such gene interference, miR-452 modulates NSCLC cell epithelial-mesenchymal transition (EMT) and further disrupts their migration and invasion. Moreover, miR-452 blocks the activation of PI3K/AKT pathway, which is also required for EMT process. These data reveal that miR-452 treatment could be a novel target or strategy for NSCLC treatment.
Collapse
Affiliation(s)
- Yongsheng Zhang
- Department of Respiratory Diseases, The 463 Hospital of Chinese PLA, Shenyang, 110042, People's Republic of China.
| | - Lu Han
- Unit II, Department of Medical Oncology, The General Hospital of Chinese PLA, Beijing, 100853, People's Republic of China
| | - Jian Pang
- Department of Respiratory Diseases, The 463 Hospital of Chinese PLA, Shenyang, 110042, People's Republic of China
| | - Yang Wang
- Department of Respiratory Diseases, The 463 Hospital of Chinese PLA, Shenyang, 110042, People's Republic of China
| | - Fan Feng
- Department of Pharmacy, General Hospital of Shenyang Military Command Area, Shenyang, 110016, People's Republic of China
| | - Qiyu Jiang
- Center of Technical and Service, The 302nd Hospital of Chinese PLA, Beijing, 100039, People's Republic of China
| |
Collapse
|
49
|
Li Y, Klausen C, Zhu H, Leung PCK. Activin A Increases Human Trophoblast Invasion by Inducing SNAIL-Mediated MMP2 Up-Regulation Through ALK4. J Clin Endocrinol Metab 2015; 100:E1415-27. [PMID: 26305619 DOI: 10.1210/jc.2015-2134] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
CONTEXT Activin A increases matrix metalloproteinase (MMP) 2 expression and cell invasion in human trophoblasts, but whether the expression of MMP2 is essential for the proinvasive effect of activin A has yet to be determined. Moreover, the identity of the activin receptor-like kinase (ALK; TGF-β type I receptors) and downstream transcription factors (eg, SNAIL and SLUG) mediating the effects of activin on MMP2 expression and trophoblast cell invasion remains unknown. OBJECTIVE To elucidate the role of MMP2 in activin A-induced human trophoblast cell invasion as well as the involvement of ALK4 and SNAIL. DESIGN HTR8/SVneo immortalized human extravillous cytotrophoblast (EVT) cells and primary cultures of human first-trimester EVT cells were used as study models. Small interfering RNA (siRNA)-mediated knockdown approaches were used to investigate the molecular determinants of activin A-mediated functions. MAIN OUTCOME MEASURES Levels of mRNA and protein were examined by reverse transcription-quantitative real-time PCR and Western blot, respectively. Cell invasiveness was measured by Matrigel-coated transwell assays. RESULTS Treatment of HTR8/SVneo cells with activin A increased the production of SNAIL, SLUG, and MMP2 without altering that of MMP9, TIMP1, TIMP2, TWIST, RUNX2, ZEB1, or ZEB2. Similarly, activin A up-regulated the mRNA and protein levels of SNAIL and MMP2 in primary EVT cells. Knockdown of SNAIL attenuated activin A-induced MMP2 up-regulation in HTR8/SVneo and primary EVT cells. In HTR8/SVneo cells, activin A-induced production of SNAIL and MMP2 was abolished by pretreatment with the TGF-β type I receptor (ALK4/5/7) inhibitor SB431542 or siRNA targeting ALK4, SMAD2/3, or common SMAD4. Likewise, knockdown of ALK4 or SMAD4 abolished the stimulatory effects of activin A on SNAIL and MMP2 expression in primary EVT cells. Importantly, activin A-induced HTR8/SVneo and primary EVT cell invasion were attenuated by siRNA-mediated depletion of ALK4 or MMP2. CONCLUSION Activin A induces human trophoblast cell invasion by inducing SNAIL-mediated MMP2 expression through ALK4 in a SMAD2/3-SMAD4-dependent manner.
Collapse
Affiliation(s)
- Yan Li
- Department of Obstetrics and Gynaecology, Child & Family Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Christian Klausen
- Department of Obstetrics and Gynaecology, Child & Family Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Hua Zhu
- Department of Obstetrics and Gynaecology, Child & Family Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, Child & Family Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| |
Collapse
|
50
|
Qin H, Sha J, Jiang C, Gao X, Qu L, Yan H, Xu T, Jiang Q, Gao H. miR-122 inhibits metastasis and epithelial-mesenchymal transition of non-small-cell lung cancer cells. Onco Targets Ther 2015; 8:3175-84. [PMID: 26604787 PMCID: PMC4631421 DOI: 10.2147/ott.s91696] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
miR-122 may function as a novel tumor suppressor. Expression of miR-122 could suppress the proliferation of multi-kinds of human cancer cell lines. In this work, expression of miR-122 via adenoviral vector in non-small-cell lung cancer (NSCLC) cells reduces the number of invasion and migration cells. miR-122 attenuates the epithelial-mesenchymal transition process, which mediates cancer cells metastasis in NSCLC cells A549 and H460. The mechanisms data reveals that miR-122 would disrupt the epithelial-mesenchymal transition process by downregulating PI3K/AKT activation via reducing endogenous expression of insulin-like growth factor 1 receptor. These data highlight the detailed roles and potential application of miR-122 in NSCLC cells.
Collapse
Affiliation(s)
- Haifeng Qin
- Department of Pulmonary Neoplasm Internal Medicine, Affiliated Hospital of Academy of the Military Medical Sciences, Beijing, People's Republic of China
| | - Jiping Sha
- Department of Rehabilitation, Zhangqiu City People's Hospital, Zhangqiu, People's Republic of China
| | - Caixia Jiang
- Department of Endocrinology, Zhangqiu City People's Hospital, Zhangqiu, People's Republic of China
| | - Xuemei Gao
- Department of Rehabilitation, Zhangqiu City People's Hospital, Zhangqiu, People's Republic of China
| | - Lili Qu
- Department of Pulmonary Neoplasm Internal Medicine, Affiliated Hospital of Academy of the Military Medical Sciences, Beijing, People's Republic of China
| | - Haiying Yan
- Department of Oncology, Cancer Hospital of Ci County, Handan, People's Republic of China
| | - Tianjiao Xu
- Department of Oncology, 477 Hospital of People's Liberation Army, Xiangyang, People's Republic of China
| | - Qiyu Jiang
- Center of Technical and Service, the 302nd Hospital of People's Liberation Army, Beijing, People's Republic of China
| | - Hongjun Gao
- Department of Pulmonary Neoplasm Internal Medicine, Affiliated Hospital of Academy of the Military Medical Sciences, Beijing, People's Republic of China
| |
Collapse
|