1
|
Sharma A, Thakur P, Thakur V, Chand D, Bhatia RK, Kulshrestha S, Kumar P. Paclitaxel production from endophytic Mucor circinelloides isolated from Taxus sp. of the Northern Himalayan region. 3 Biotech 2024; 14:251. [PMID: 39345967 PMCID: PMC11427637 DOI: 10.1007/s13205-024-04091-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024] Open
Abstract
The current investigation involved the isolation of 13 endophytic fungi from Taxus sp. collected in Himachal Pradesh, India. Among these, isolate PAT-3 produced 195.13 mg/L of Taxol in reformative medium broth using microbial fermentation as an alternative source. The PAT-3 isolate was characterized as Mucor circinelloides through morphologic and molecular techniques. The PAT-3 isolate was the only one to exhibit positive results for the Taxol biosynthesis-related genes 10-deacetylbaccatin-III-10-O-acetyltransferase (dbat), Baccatin-III, 3: amino, 3 phenylpropanol transferase (bapt), and taxadienol-acetyltransferase (tat). Furthermore, human breast cancer (MCF-7) and human melanoma cancer (SKMEL-28) cell lines demonstrated the cytotoxicity of Taxol extracted from isolate PAT-3, with IC50 values of 80.32 µg/mL and 77.21 µg/mL, respectively. To our knowledge, this is the first study that demonstrates the ability of the endophytic fungus M. circinelloides from Taxus sp. in the northern Himalayan region to produce paclitaxel. The study's findings show that Mucor circinelloides is an excellent alternative source of Taxol, and they may pave the way for the production of Taxol at the industrial level in future. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04091-7.
Collapse
Affiliation(s)
- Aparajita Sharma
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, H.P. 173229 India
| | - Pryanka Thakur
- Department of Virology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012 India
| | - Vikram Thakur
- Department of Molecular and Translational Medicine, Centre of Emphasis On Infectious Diseases, Texas Tech University Health Sciences Center El Paso, 130 Rick Francis St., Texas, 79905 USA
| | - Duni Chand
- Department of Biotechnology, Himachal Pradesh University, Shimla, 171005 India
| | - Ravi Kant Bhatia
- Department of Biotechnology, Himachal Pradesh University, Shimla, 171005 India
| | - Sourabh Kulshrestha
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, H.P. 173229 India
| | - Pradeep Kumar
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, H.P. 173229 India
- Department of Forensic Science, Himachal Pradesh University, Shimla, 171005 India
| |
Collapse
|
2
|
Rai P, Clark CJ, Womack CB, Dearing C, Thammathong J, Norman DD, Tigyi GJ, Sen S, Bicker K, Weissmiller AM, Banerjee S. Novel Autotaxin Inhibitor ATX-1d Significantly Enhances Potency of Paclitaxel-An In Silico and In Vitro Study. Molecules 2024; 29:4285. [PMID: 39339280 PMCID: PMC11434342 DOI: 10.3390/molecules29184285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
The development of drug resistance in cancer cells poses a significant challenge for treatment, with nearly 90% of cancer-related deaths attributed to it. Over 50% of ovarian cancer patients and 30-40% of breast cancer patients exhibit resistance to therapies such as Taxol. Previous literature has shown that cytotoxic cancer therapies and ionizing radiation damage tumors, prompting cancer cells to exploit the autotaxin (ATX)-lysophosphatidic acid (LPA)-lysophosphatidic acid receptor (LPAR) signaling axis to enhance survival pathways, thus reducing treatment efficacy. Therefore, targeting this signaling axis has become a crucial strategy to overcome some forms of cancer resistance. Addressing this challenge, we identified and assessed ATX-1d, a novel compound targeting ATX, through computational methods and in vitro assays. ATX-1d exhibited an IC50 of 1.8 ± 0.3 μM for ATX inhibition and demonstrated a significant binding affinity for ATX, as confirmed by MM-GBSA, QM/MM-GBSA, and SAPT in silico methods. ATX-1d significantly amplified the potency of paclitaxel, increasing its effectiveness tenfold in 4T1 murine breast carcinoma cells and fourfold in A375 human melanoma cells without inducing cytotoxic effects as a single agent.
Collapse
Affiliation(s)
- Prateek Rai
- Molecular Biosciences, Middle Tennessee State University, Murfreesboro, TN 37132, USA; (P.R.); (C.J.C.); (K.B.); (A.M.W.)
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN 37132, USA; (C.D.); (J.T.)
| | - Christopher J. Clark
- Molecular Biosciences, Middle Tennessee State University, Murfreesboro, TN 37132, USA; (P.R.); (C.J.C.); (K.B.); (A.M.W.)
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN 37132, USA; (C.D.); (J.T.)
| | - Carl B. Womack
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN 37132, USA;
| | - Curtis Dearing
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN 37132, USA; (C.D.); (J.T.)
| | - Joshua Thammathong
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN 37132, USA; (C.D.); (J.T.)
| | - Derek D. Norman
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (D.D.N.); (G.J.T.)
| | - Gábor J. Tigyi
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (D.D.N.); (G.J.T.)
| | - Subhabrata Sen
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence Deemed to be University, Dadri 201314, UP, India;
| | - Kevin Bicker
- Molecular Biosciences, Middle Tennessee State University, Murfreesboro, TN 37132, USA; (P.R.); (C.J.C.); (K.B.); (A.M.W.)
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN 37132, USA; (C.D.); (J.T.)
| | - April M. Weissmiller
- Molecular Biosciences, Middle Tennessee State University, Murfreesboro, TN 37132, USA; (P.R.); (C.J.C.); (K.B.); (A.M.W.)
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN 37132, USA;
| | - Souvik Banerjee
- Molecular Biosciences, Middle Tennessee State University, Murfreesboro, TN 37132, USA; (P.R.); (C.J.C.); (K.B.); (A.M.W.)
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN 37132, USA; (C.D.); (J.T.)
| |
Collapse
|
3
|
Gamal A, Fikry E, Tawfeek N, El-Shafae AM, El-Sayed ASA, El-Domiaty MM. Production and bioprocessing of Taxol from Aspergillus niger, an endophyte of Encephalartos whitelockii, with a plausible biosynthetic stability: antiproliferative activity and cell cycle analysis. Microb Cell Fact 2024; 23:78. [PMID: 38475853 DOI: 10.1186/s12934-024-02356-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
The biosynthetic potency of Taxol by fungi raises their prospective to be a platform for commercial production of Taxol, nevertheless, the attenuation of its productivity with the fungal storage, is the challenge. Thus, screening for a novel fungal isolate inhabiting ethnopharmacological plants, with a plausible metabolic stability for Taxol production could be one of the most affordable approaches. Aspergillus niger OR414905.1, an endophyte of Encephalartos whitelockii, had the highest Taxol productivity (173.9 μg/L). The chemical identity of the purified Taxol was confirmed by HPLC, FTIR, and LC-MS/MS analyses, exhibiting the same molecular mass (854.5 m/z) and molecular fragmentation pattern of the authentic Taxol. The purified Taxol exhibited a potent antiproliferative activity against HepG-2, MCF-7 and Caco-2, with IC50 values 0.011, 0.016, and 0.067 μM, respectively, in addition to a significant activity against A. flavus, as a model of human fungal pathogen. The purified Taxol displayed a significant effect against the cellular migration of HepG-2 and MCF-7 cells, by ~ 52-59% after 72 h, compared to the control, confirming its interference with the cellular matrix formation. Furthermore, the purified Taxol exhibited a significant ability to prompt apoptosis in MCF-7 cells, by about 11-fold compared to control cells, suppressing their division at G2/M phase. Taxol productivity by A. niger has been optimized by the response surface methodology with Plackett-Burman Design and Central Composite Design, resulting in a remarkable ~ 1.6-fold increase (279.8 μg/L), over the control. The biological half-life time of Taxol productivity by A. niger was ~ 6 months of preservation at 4 ℃, however, the Taxol yield by A. niger was partially restored in response to ethyl acetate extracts of E. whitelockii, ensuring the presence of plant-derived signals that triggers the cryptic Taxol encoding genes.
Collapse
Affiliation(s)
- Asmaa Gamal
- Pharmacognosy Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Eman Fikry
- Pharmacognosy Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Nora Tawfeek
- Pharmacognosy Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Azza M El-Shafae
- Pharmacognosy Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Ashraf S A El-Sayed
- Enzymology and Fungal Biotechnology Lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt.
| | - Maher M El-Domiaty
- Pharmacognosy Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
4
|
Bonni S, Brindley DN, Chamberlain MD, Daneshvar-Baghbadorani N, Freywald A, Hemmings DG, Hombach-Klonisch S, Klonisch T, Raouf A, Shemanko CS, Topolnitska D, Visser K, Vizeacoumar FJ, Wang E, Gibson SB. Breast Tumor Metastasis and Its Microenvironment: It Takes Both Seed and Soil to Grow a Tumor and Target It for Treatment. Cancers (Basel) 2024; 16:911. [PMID: 38473273 DOI: 10.3390/cancers16050911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Metastasis remains a major challenge in treating breast cancer. Breast tumors metastasize to organ-specific locations such as the brain, lungs, and bone, but why some organs are favored over others remains unclear. Breast tumors also show heterogeneity, plasticity, and distinct microenvironments. This contributes to treatment failure and relapse. The interaction of breast cancer cells with their metastatic microenvironment has led to the concept that primary breast cancer cells act as seeds, whereas the metastatic tissue microenvironment (TME) is the soil. Improving our understanding of this interaction could lead to better treatment strategies for metastatic breast cancer. Targeted treatments for different subtypes of breast cancers have improved overall patient survival, even with metastasis. However, these targeted treatments are based upon the biology of the primary tumor and often these patients' relapse, after therapy, with metastatic tumors. The advent of immunotherapy allowed the immune system to target metastatic tumors. Unfortunately, immunotherapy has not been as effective in metastatic breast cancer relative to other cancers with metastases, such as melanoma. This review will describe the heterogeneic nature of breast cancer cells and their microenvironments. The distinct properties of metastatic breast cancer cells and their microenvironments that allow interactions, especially in bone and brain metastasis, will also be described. Finally, we will review immunotherapy approaches to treat metastatic breast tumors and discuss future therapeutic approaches to improve treatments for metastatic breast cancer.
Collapse
Affiliation(s)
- Shirin Bonni
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB T2N 4N1, Canada
- The Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - David N Brindley
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - M Dean Chamberlain
- Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada
- Saskatchewan Cancer Agency, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Nima Daneshvar-Baghbadorani
- Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada
- Saskatchewan Cancer Agency, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Andrew Freywald
- Department of Pathology, Laboratory Medicine, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Denise G Hemmings
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T6G 2S2, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Sabine Hombach-Klonisch
- Department of Human Anatomy and Cell Science, Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Thomas Klonisch
- Department of Human Anatomy and Cell Science, Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Afshin Raouf
- Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3E OT5, Canada
- Cancer Care Manitoba Research Institute, Cancer Care Manitoba, Winnipeg, MB R3E OV9, Canada
| | - Carrie Simone Shemanko
- The Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada
| | - Diana Topolnitska
- Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3E OT5, Canada
- Cancer Care Manitoba Research Institute, Cancer Care Manitoba, Winnipeg, MB R3E OV9, Canada
| | - Kaitlyn Visser
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T6G 2S2, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Franco J Vizeacoumar
- Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada
- Saskatchewan Cancer Agency, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Edwin Wang
- Department of Biochemistry and Molecular Biology, Medical Genetics, and Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Spencer B Gibson
- Department of Oncology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| |
Collapse
|
5
|
Wang Z, Wang Y, Li Z, Xue W, Hu S, Kong X. Lipid metabolism as a target for cancer drug resistance: progress and prospects. Front Pharmacol 2023; 14:1274335. [PMID: 37841917 PMCID: PMC10571713 DOI: 10.3389/fphar.2023.1274335] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/19/2023] [Indexed: 10/17/2023] Open
Abstract
Cancer is the world's leading cause of human death today, and the treatment process of cancer is highly complex. Chemotherapy and targeted therapy are commonly used in cancer treatment, and the emergence of drug resistance is a significant problem in cancer treatment. Therefore, the mechanism of drug resistance during cancer treatment has become a hot issue in current research. A series of studies have found that lipid metabolism is closely related to cancer drug resistance. This paper details the changes of lipid metabolism in drug resistance and how lipid metabolism affects drug resistance. More importantly, most studies have reported that combination therapy may lead to changes in lipid-related metabolic pathways, which may reverse the development of cancer drug resistance and enhance or rescue the sensitivity to therapeutic drugs. This paper summarizes the progress of drug design targeting lipid metabolism in improving drug resistance, and providing new ideas and strategies for future tumor treatment. Therefore, this paper reviews the issues of combining medications with lipid metabolism and drug resistance.
Collapse
Affiliation(s)
- Zi’an Wang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Yueqin Wang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Zeyun Li
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Wenhua Xue
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Shousen Hu
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiangzhen Kong
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
6
|
Lin KH, Lee SC, Dacheux MA, Norman DD, Balogh A, Bavaria M, Lee H, Tigyi G. E2F7 drives autotaxin/Enpp2 transcription via chromosome looping: Repression by p53 in murine but not in human carcinomas. FASEB J 2023; 37:e23058. [PMID: 37358838 PMCID: PMC10364077 DOI: 10.1096/fj.202300838r] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/31/2023] [Accepted: 06/13/2023] [Indexed: 06/27/2023]
Abstract
Dysregulation of the autotaxin (ATX, Enpp2)-lysophosphatidic acid (LPA) signaling in cancerous cells contributes to tumorigenesis and therapy resistance. We previously found that ATX activity was elevated in p53-KO mice compared to wild-type (WT) mice. Here, we report that ATX expression was upregulated in mouse embryonic fibroblasts from p53-KO and p53R172H mutant mice. ATX promoter analysis combined with yeast one-hybrid testing revealed that WT p53 directly inhibits ATX expression via E2F7. Knockdown of E2F7 reduced ATX expression and chromosome immunoprecipitation showed that E2F7 promotes Enpp2 transcription through cooperative binding to two E2F7 sites (promoter region -1393 bp and second intron 996 bp). Using chromosome conformation capture, we found that chromosome looping brings together the two E2F7 binding sites. We discovered a p53 binding site in the first intron of murine Enpp2, but not in human ENPP2. Binding of p53 disrupted the E2F7-mediated chromosomal looping and repressed Enpp2 transcription in murine cells. In contrast, we found no disruption of E2F7-mediated ENPP2 transcription via direct p53 binding in human carcinoma cells. In summary, E2F7 is a common transcription factor that upregulates ATX in human and mouse cells but is subject to steric interference by direct intronic p53 binding only in mice.
Collapse
Affiliation(s)
- Kuan-Hung Lin
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center (UTHSC), Memphis, Tennessee, USA
| | - Sue Chin Lee
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center (UTHSC), Memphis, Tennessee, USA
| | - Mélanie A Dacheux
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center (UTHSC), Memphis, Tennessee, USA
| | - Derek D Norman
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center (UTHSC), Memphis, Tennessee, USA
| | - Andrea Balogh
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center (UTHSC), Memphis, Tennessee, USA
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Mitul Bavaria
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center (UTHSC), Memphis, Tennessee, USA
| | - Hsinyu Lee
- Department of Life Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Gabor Tigyi
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center (UTHSC), Memphis, Tennessee, USA
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
7
|
Kitakaze K, Ali H, Kimoto R, Takenouchi Y, Ishimaru H, Yamashita A, Ueda N, Tanaka T, Okamoto Y, Tsuboi K. GDE7 produces cyclic phosphatidic acid in the ER lumen functioning as a lysophospholipid mediator. Commun Biol 2023; 6:524. [PMID: 37193762 PMCID: PMC10188492 DOI: 10.1038/s42003-023-04900-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 05/02/2023] [Indexed: 05/18/2023] Open
Abstract
Cyclic phosphatidic acid (cPA) is a lipid mediator, which regulates adipogenic differentiation and glucose homeostasis by suppressing nuclear peroxisome proliferator-activated receptor γ (PPARγ). Glycerophosphodiesterase 7 (GDE7) is a Ca2+-dependent lysophospholipase D that localizes in the endoplasmic reticulum. Although mouse GDE7 catalyzes cPA production in a cell-free system, it is unknown whether GDE7 generates cPA in living cells. Here, we demonstrate that human GDE7 possesses cPA-producing activity in living cells as well as in a cell-free system. Furthermore, the active site of human GDE7 is directed towards the luminal side of the endoplasmic reticulum. Mutagenesis revealed that amino acid residues F227 and Y238 are important for catalytic activity. GDE7 suppresses the PPARγ pathway in human mammary MCF-7 and mouse preadipocyte 3T3-L1 cells, suggesting that cPA functions as an intracellular lipid mediator. These findings lead to a better understanding of the biological role of GDE7 and its product, cPA.
Collapse
Affiliation(s)
- Keisuke Kitakaze
- Department of Pharmacology, Kawasaki Medical School, Kurashiki, Okayama, Japan.
| | - Hanif Ali
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, Japan
| | - Raiki Kimoto
- Department of Pharmacology, Kawasaki Medical School, Kurashiki, Okayama, Japan
- Nara Medical University, Kashihara, Nara, Japan
| | - Yasuhiro Takenouchi
- Department of Pharmacology, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Hironobu Ishimaru
- Department of Pharmacology, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Atsushi Yamashita
- Laboratory of Biological Chemistry, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| | - Natsuo Ueda
- Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan
| | - Tamotsu Tanaka
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, Japan
| | - Yasuo Okamoto
- Department of Pharmacology, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Kazuhito Tsuboi
- Department of Pharmacology, Kawasaki Medical School, Kurashiki, Okayama, Japan.
| |
Collapse
|
8
|
Drosouni A, Panagopoulou M, Aidinis V, Chatzaki E. Autotaxin in Breast Cancer: Role, Epigenetic Regulation and Clinical Implications. Cancers (Basel) 2022; 14:5437. [PMID: 36358855 PMCID: PMC9658281 DOI: 10.3390/cancers14215437] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/31/2022] [Accepted: 10/31/2022] [Indexed: 08/02/2023] Open
Abstract
Autotaxin (ATX), the protein product of Ectonucleotide Pyrophosphatase Phosphodiesterase 2 (ENPP2), is a secreted lysophospholipase D (lysoPLD) responsible for the extracellular production of lysophosphatidic acid (LPA). ATX-LPA pathway signaling participates in several normal biological functions, but it has also been connected to cancer progression, metastasis and inflammatory processes. Significant research has established a role in breast cancer and it has been suggested as a therapeutic target and/or a clinically relevant biomarker. Recently, ENPP2 methylation was described, revealing a potential for clinical exploitation in liquid biopsy. The current review aims to gather the latest findings about aberrant signaling through ATX-LPA in breast cancer and discusses the role of ENPP2 expression and epigenetic modification, giving insights with translational value.
Collapse
Affiliation(s)
- Andrianna Drosouni
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Maria Panagopoulou
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Institute of Agri-Food and Life Sciences, Hellenic Mediterranean University Research Centre, 71410 Heraklion, Greece
| | - Vassilis Aidinis
- Institute of BioInnovation, Biomedical Sciences Research Center Alexander Fleming, 16672 Athens, Greece
| | - Ekaterini Chatzaki
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Institute of Agri-Food and Life Sciences, Hellenic Mediterranean University Research Centre, 71410 Heraklion, Greece
| |
Collapse
|
9
|
Saito RDF, Andrade LNDS, Bustos SO, Chammas R. Phosphatidylcholine-Derived Lipid Mediators: The Crosstalk Between Cancer Cells and Immune Cells. Front Immunol 2022; 13:768606. [PMID: 35250970 PMCID: PMC8889569 DOI: 10.3389/fimmu.2022.768606] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/13/2022] [Indexed: 01/16/2023] Open
Abstract
To become resistant, cancer cells need to activate and maintain molecular defense mechanisms that depend on an energy trade-off between resistance and essential functions. Metabolic reprogramming has been shown to fuel cell growth and contribute to cancer drug resistance. Recently, changes in lipid metabolism have emerged as an important driver of resistance to anticancer agents. In this review, we highlight the role of choline metabolism with a focus on the phosphatidylcholine cycle in the regulation of resistance to therapy. We analyze the contribution of phosphatidylcholine and its metabolites to intracellular processes of cancer cells, both as the major cell membrane constituents and source of energy. We further extended our discussion about the role of phosphatidylcholine-derived lipid mediators in cellular communication between cancer and immune cells within the tumor microenvironment, as well as their pivotal role in the immune regulation of therapeutic failure. Changes in phosphatidylcholine metabolism are part of an adaptive program activated in response to stress conditions that contribute to cancer therapy resistance and open therapeutic opportunities for treating drug-resistant cancers.
Collapse
Affiliation(s)
- Renata de Freitas Saito
- Centro de Investigação Translacional em Oncologia (LIM24), Departamento de Radiologia e Oncologia, Faculdade de Medicina da Universidade de São Paulo and Instituto do Câncer do Estado de São Paulo, São Paulo, Brazil
| | - Luciana Nogueira de Sousa Andrade
- Centro de Investigação Translacional em Oncologia (LIM24), Departamento de Radiologia e Oncologia, Faculdade de Medicina da Universidade de São Paulo and Instituto do Câncer do Estado de São Paulo, São Paulo, Brazil
| | - Silvina Odete Bustos
- Centro de Investigação Translacional em Oncologia (LIM24), Departamento de Radiologia e Oncologia, Faculdade de Medicina da Universidade de São Paulo and Instituto do Câncer do Estado de São Paulo, São Paulo, Brazil
| | - Roger Chammas
- Centro de Investigação Translacional em Oncologia (LIM24), Departamento de Radiologia e Oncologia, Faculdade de Medicina da Universidade de São Paulo and Instituto do Câncer do Estado de São Paulo, São Paulo, Brazil
| |
Collapse
|
10
|
Influence of the autotaxin-lysophosphatidic acid axis on cellular function and cytokine expression in different breast cancer cell lines. Sci Rep 2022; 12:5565. [PMID: 35365723 PMCID: PMC8975816 DOI: 10.1038/s41598-022-09565-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 03/23/2022] [Indexed: 11/08/2022] Open
Abstract
Previous studies provide high evidence that autotaxin (ATX)-lysophosphatidic acid (LPA) signaling through LPA receptors (LPAR) plays an important role in breast cancer initiation, progression, and invasion. However, its specific role in different breast cancer cell lines remains to be fully elucidated to offer improvements in targeted therapies. Within this study, we analyzed in vitro the effect of LPA 18:1 and the LPAR1, LPAR3 (and LPAR2) inhibitor Ki16425 on cellular functions of different human breast cancer cell lines (MDA-MB-231, MDA-MB-468, MCF-7, BT-474, SKBR-3) and the human breast epithelial cell line MCF-10A, as well as Interleukin 8 (IL-8), Interleukin 6 (IL-6) and tumor necrosis factor (TNF)-alpha cytokine secretion after LPA-incubation. ATX-LPA signaling showed a dose-dependent stimulatory effect especially on cellular functions of triple-negative and luminal A breast cancer cell lines. Ki16425 inhibited the LPA-induced stimulation of triple-negative breast cancer and luminal A cell lines in variable intensity depending on the functional assay, indicating the interplay of different LPAR in those assays. IL-8, IL-6 and TNF-alpha secretion was induced by LPA in MDA-MB-468 cells. This study provides further evidence about the role of the ATX-LPA axis in different breast cancer cell lines and might contribute to identify subtypes suitable for a future targeted therapy of the ATX-LPA axis.
Collapse
|
11
|
Pouremamali F, Jeddi F, Samadi N. Nrf2-ME-1 axis is associated with 5-FU resistance in gastric cancer cell line. Process Biochem 2022. [DOI: 10.1016/j.procbio.2020.01.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
12
|
Venkatraman G, Tang X, Du G, Parisentti AM, Hemmings DG, Brindley DN. Lysophosphatidate Promotes Sphingosine 1-Phosphate Metabolism and Signaling: Implications for Breast Cancer and Doxorubicin Resistance. Cell Biochem Biophys 2021; 79:531-545. [PMID: 34415509 PMCID: PMC11948428 DOI: 10.1007/s12013-021-01024-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/09/2021] [Indexed: 10/20/2022]
Abstract
Lysophosphatidate (LPA) and sphingosine 1-phosphate (S1P) promote vasculogenesis, angiogenesis, and wound healing by activating a plethora of overlapping signaling pathways that stimulate mitogenesis, cell survival, and migration. As such, maladaptive signaling by LPA and S1P have major effects in increasing tumor progression and producing poor patient outcomes after chemotherapy and radiotherapy. Many signaling actions of S1P and LPA are not redundant; each are vital in normal physiology and their metabolisms differ. In the present work, we studied how LPA signaling impacts S1P metabolism and signaling in MDA-MB-231 and MCF-7 breast cancer cells. LPA increased sphingosine kinase-1 (SphK1) synthesis and rapidly activated cytosolic SphK1 through association with membranes. Blocking phospholipase D activity attenuated the LPA-induced activation of SphK1 and the synthesis of ABCC1 and ABCG2 transporters that secrete S1P from cells. This effect was magnified in doxorubicin-resistant MCF-7 cells. LPA also facilitated S1P signaling by increasing mRNA expression for S1P1 receptors. Doxorubicin-resistant MCF-7 cells had increased S1P2 and S1P3 receptor expression and show increased LPA-induced SphK1 activation, increased expression of ABCC1, ABCG2 and greater S1P secretion. Thus, LPA itself and LPA-induced S1P signaling counteract doxorubicin-induced death of MCF-7 cells. We conclude from the present and previous studies that LPA promotes S1P metabolism and signaling to coordinately increase tumor growth and metastasis and decrease the effectiveness of chemotherapy and radiotherapy for breast cancer treatment.
Collapse
Affiliation(s)
- Ganesh Venkatraman
- Department of Biochemistry, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | - Xiaoyun Tang
- Department of Biochemistry, University of Alberta, Edmonton, AB, T6G 2S2, Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | - Guangwei Du
- Department of Integrative Biology & Pharmacology, University of Texas Health Science at Houston, Houston, TX, 77030, USA
| | - Amadeo M Parisentti
- Northern Ontario School of Medicine, Health Sciences North Research Institute, Sudbury, ON, P3E 2H2, Canada
| | - Denise G Hemmings
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB, T6G 2S2, Canada.
- Medical Microbiology and Immunology, Obstetrics and Gynecology, Women and Children's Health Research Institute, Li Ka Shing Institute of Virology, Cardiovascular Research Center, University of Alberta, Edmonton, AB, T6G 2S2, Canada.
| | - David N Brindley
- Department of Biochemistry, University of Alberta, Edmonton, AB, T6G 2S2, Canada.
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB, T6G 2S2, Canada.
| |
Collapse
|
13
|
Aiello S, Casiraghi F. Lysophosphatidic Acid: Promoter of Cancer Progression and of Tumor Microenvironment Development. A Promising Target for Anticancer Therapies? Cells 2021; 10:cells10061390. [PMID: 34200030 PMCID: PMC8229068 DOI: 10.3390/cells10061390] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 02/06/2023] Open
Abstract
Increased expression of the enzyme autotaxin (ATX) and the consequently increased levels of its product, lysophosphatidic acid (LPA), have been reported in several primary tumors. The role of LPA as a direct modulator of tumor cell functions—motility, invasion and migration capabilities as well as resistance to apoptotic death—has been recognized by numerous studies over the last two decades. Notably, evidence has recently been accumulating that shows that LPA also contributes to the development of the tumor microenvironment (TME). Indeed, LPA plays a crucial role in inducing angiogenesis and lymphangiogenesis, triggering cellular glycolytic shift and stimulating intratumoral fibrosis. In addition, LPA helps tumoral cells to escape immune surveillance. Treatments that counter the TME components, in order to deprive cancer cells of their crucial support, have been emerging among the promising new anticancer therapies. This review aims to summarize the latest knowledge on how LPA influences both tumor cell functions and the TME by regulating the activity of its different elements, highlighting why and how LPA is worth considering as a molecular target for new anticancer therapies.
Collapse
|
14
|
Geraldo LHM, Spohr TCLDS, Amaral RFD, Fonseca ACCD, Garcia C, Mendes FDA, Freitas C, dosSantos MF, Lima FRS. Role of lysophosphatidic acid and its receptors in health and disease: novel therapeutic strategies. Signal Transduct Target Ther 2021; 6:45. [PMID: 33526777 PMCID: PMC7851145 DOI: 10.1038/s41392-020-00367-5] [Citation(s) in RCA: 169] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022] Open
Abstract
Lysophosphatidic acid (LPA) is an abundant bioactive phospholipid, with multiple functions both in development and in pathological conditions. Here, we review the literature about the differential signaling of LPA through its specific receptors, which makes this lipid a versatile signaling molecule. This differential signaling is important for understanding how this molecule can have such diverse effects during central nervous system development and angiogenesis; and also, how it can act as a powerful mediator of pathological conditions, such as neuropathic pain, neurodegenerative diseases, and cancer progression. Ultimately, we review the preclinical and clinical uses of Autotaxin, LPA, and its receptors as therapeutic targets, approaching the most recent data of promising molecules modulating both LPA production and signaling. This review aims to summarize the most update knowledge about the mechanisms of LPA production and signaling in order to understand its biological functions in the central nervous system both in health and disease.
Collapse
Affiliation(s)
- Luiz Henrique Medeiros Geraldo
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Université de Paris, PARCC, INSERM, F-75015, Paris, France
| | | | | | | | - Celina Garcia
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabio de Almeida Mendes
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Catarina Freitas
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcos Fabio dosSantos
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Flavia Regina Souza Lima
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
15
|
Role of Adipose Tissue-Derived Autotaxin, Lysophosphatidate Signaling, and Inflammation in the Progression and Treatment of Breast Cancer. Int J Mol Sci 2020; 21:ijms21165938. [PMID: 32824846 PMCID: PMC7460696 DOI: 10.3390/ijms21165938] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/07/2020] [Accepted: 08/14/2020] [Indexed: 12/15/2022] Open
Abstract
Autotaxin (ATX) is a secreted enzyme that produces lysophosphatidate (LPA), which signals through six G-protein coupled receptors, promoting tumor growth, metastasis, and survival from chemotherapy and radiotherapy. Many cancer cells produce ATX, but breast cancer cells express little ATX. In breast tumors, ATX is produced by tumor-associated stroma. Breast tumors are also surrounded by adipose tissue, which is a major bodily source of ATX. In mice, a high-fat diet increases adipocyte ATX production. ATX production in obesity is also increased because of low-level inflammation in the expanded adipose tissue. This increased ATX secretion and consequent LPA signaling is associated with decreased adiponectin production, which results in adverse metabolic profiles and glucose homeostasis. Increased ATX production by inflamed adipose tissue may explain the obesity-breast cancer association. Breast tumors produce inflammatory mediators that stimulate ATX transcription in tumor-adjacent adipose tissue. This drives a feedforward inflammatory cycle since increased LPA signaling increases production of more inflammatory mediators and cyclooxygenase-2. Inhibiting ATX activity, which has implications in breast cancer adjuvant treatments, attenuates this cycle. Targeting ATX activity and LPA signaling may potentially increase chemotherapy and radiotherapy efficacy, and decrease radiation-induced fibrosis morbidity independently of breast cancer type because most ATX is not derived from breast cancer cells.
Collapse
|
16
|
Lipids in the tumor microenvironment: From cancer progression to treatment. Prog Lipid Res 2020; 80:101055. [PMID: 32791170 DOI: 10.1016/j.plipres.2020.101055] [Citation(s) in RCA: 255] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 12/11/2022]
Abstract
Over the past decade, the study of metabolic abnormalities in cancer cells has risen dramatically. Cancer cells can thrive in challenging environments, be it the hypoxic and nutrient-deplete tumor microenvironment or a distant tissue following metastasis. The ways in which cancer cells utilize lipids are often influenced by the complex interactions within the tumor microenvironment and adjacent stroma. Adipocytes can be activated by cancer cells to lipolyze their triglyceride stores, delivering secreted fatty acids to cancer cells for uptake through numerous fatty acid transporters. Cancer-associated fibroblasts are also implicated in lipid secretion for cancer cell catabolism and lipid signaling leading to activation of mitogenic and migratory pathways. As these cancer-stromal interactions are exacerbated during tumor progression, fatty acids secreted into the microenvironment can impact infiltrating immune cell function and phenotype. Lipid metabolic abnormalities such as increased fatty acid oxidation and de novo lipid synthesis can provide survival advantages for the tumor to resist chemotherapeutic and radiation treatments and alleviate cellular stresses involved in the metastatic cascade. In this review, we highlight recent literature that demonstrates how lipids can shape each part of the cancer lifecycle and show that there is significant potential for therapeutic intervention surrounding lipid metabolic and signaling pathways.
Collapse
|
17
|
Iwaki Y, Ohhata A, Nakatani S, Hisaichi K, Okabe Y, Hiramatsu A, Watanabe T, Yamamoto S, Nishiyama T, Kobayashi J, Hirooka Y, Moriguchi H, Maeda T, Katoh M, Komichi Y, Ota H, Matsumura N, Okada M, Sugiyama T, Saga H, Imagawa A. ONO-8430506: A Novel Autotaxin Inhibitor That Enhances the Antitumor Effect of Paclitaxel in a Breast Cancer Model. ACS Med Chem Lett 2020; 11:1335-1341. [PMID: 32551021 DOI: 10.1021/acsmedchemlett.0c00200] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/14/2020] [Indexed: 12/21/2022] Open
Abstract
Lysophosphatidic acid (LPA) is a bioactive lipid mediator that elicits a number of biological functions, including smooth muscle contraction, cell motility, proliferation, and morphological change. LPA is endogenously produced by autotaxin (ATX) from extracellular lysophosphatidylcholine (LPC) in plasma. Herein, we report our medicinal chemistry effort to identify a novel and highly potent ATX inhibitor, ONO-8430506 (20), with good oral availability. To enhance the enzymatic ATX inhibitory activity, we designed several compounds by structurally comparing our hit compound with the endogenous ligand LPC. Further optimization to improve the pharmacokinetic profile and enhance the ATX inhibitory activity in human plasma resulted in the identification of ONO-8430506 (20), which enhanced the antitumor effect of paclitaxel in a breast cancer model.
Collapse
|
18
|
Signalling by lysophosphatidate and its health implications. Essays Biochem 2020; 64:547-563. [DOI: 10.1042/ebc20190088] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 02/06/2023]
Abstract
AbstractExtracellular lysophosphatidate (LPA) signalling is regulated by the balance of LPA formation by autotaxin (ATX) versus LPA degradation by lipid phosphate phosphatases (LPP) and by the relative expressions of six G-protein-coupled LPA receptors. These receptors increase cell proliferation, migration, survival and angiogenesis. Acute inflammation produced by tissue damage stimulates ATX production and LPA signalling as a component of wound healing. If inflammation does not resolve, LPA signalling becomes maladaptive in conditions including arthritis, neurologic pain, obesity and cancers. Furthermore, LPA signalling through LPA1 receptors promotes fibrosis in skin, liver, kidneys and lungs. LPA also promotes the spread of tumours to other organs (metastasis) and the pro-survival properties of LPA explain why LPA counteracts the effects of chemotherapeutic agents and radiotherapy. ATX is secreted in response to radiation-induced DNA damage during cancer treatments and this together with increased LPA1 receptor expression leads to radiation-induced fibrosis. The anti-inflammatory agent, dexamethasone, decreases levels of inflammatory cytokines/chemokines. This is linked to a coordinated decrease in the production of ATX and LPA1/2 receptors and increased LPA degradation through LPP1. These effects explain why dexamethasone attenuates radiation-induced fibrosis. Increased LPA signalling is also associated with cardiovascular disease including atherosclerosis and deranged LPA signalling is associated with pregnancy complications including preeclampsia and intrahepatic cholestasis of pregnancy. LPA contributes to chronic inflammation because it stimulates the secretion of inflammatory cytokines/chemokines, which increase further ATX production and LPA signalling. Attenuating maladaptive LPA signalling provides a novel means of treating inflammatory diseases that underlie so many important medical conditions.
Collapse
|
19
|
Tang X, Benesch MGK, Brindley DN. Role of the autotaxin-lysophosphatidate axis in the development of resistance to cancer therapy. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158716. [PMID: 32305571 DOI: 10.1016/j.bbalip.2020.158716] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/31/2020] [Accepted: 04/09/2020] [Indexed: 12/17/2022]
Abstract
Autotaxin (ATX) is a secreted enzyme that hydrolyzes lysophosphatidylcholine to produce lysophosphatidate (LPA), which signals through six G-protein coupled receptors (GPCRs). Signaling through LPA is terminated by its degradation by a family of three lipid phosphate phosphatases (LPPs). LPP1 also attenuates signaling downstream of the activation of LPA receptors and some other GPCRs. The ATX-LPA axis mediates a plethora of activities such as cell proliferation, survival, migration, angiogenesis and inflammation, which perform an important role in facilitating wound healing. This wound healing response is hijacked by cancers where there is decreased expression of LPP1 and LPP3 and increased expression of ATX. This maladaptive regulation of LPA signaling also causes chronic inflammation, which has been recognized as one of the hallmarks in cancer. The increased LPA signaling promotes cell survival and migration and attenuates apoptosis, which stimulates tumor growth and metastasis. The wound healing functions of increased LPA signaling also protect cancer cells from effects of chemotherapy and radiotherapy. In this review, we will summarize knowledge of the ATX-LPA axis and its role in the development of resistance to chemotherapy and radiotherapy. We will also offer insights for developing strategies of targeting ATX-LPA axis as a novel part of cancer treatment. This article is part of a Special Issue entitled Lysophospholipids and their receptors: New data and new insights into their function edited by Susan Smyth, Viswanathan Natarajan and Colleen McMullen.
Collapse
Affiliation(s)
- Xiaoyun Tang
- Department of Biochemistry, University of Alberta, Edmonton T6G 2S2, Canada; Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton T6G 2S2, Canada
| | - Matthew G K Benesch
- Department of Biochemistry, University of Alberta, Edmonton T6G 2S2, Canada; Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton T6G 2S2, Canada; Discipline of Surgery, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador A1B 3V6, Canada
| | - David N Brindley
- Department of Biochemistry, University of Alberta, Edmonton T6G 2S2, Canada; Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton T6G 2S2, Canada.
| |
Collapse
|
20
|
Benesch MGK, Tang X, Brindley DN. Autotaxin and Breast Cancer: Towards Overcoming Treatment Barriers and Sequelae. Cancers (Basel) 2020; 12:cancers12020374. [PMID: 32041123 PMCID: PMC7072337 DOI: 10.3390/cancers12020374] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 01/27/2020] [Accepted: 02/01/2020] [Indexed: 02/06/2023] Open
Abstract
After a decade of intense preclinical investigations, the first in-class autotaxin inhibitor, GLPG1690, has entered Phase III clinical trials for idiopathic pulmonary fibrosis. In the intervening time, a deeper understanding of the role of the autotaxin–lysophosphatidate (LPA)–lipid phosphate phosphatase axis in breast cancer progression and treatment resistance has emerged. Concordantly, appreciation of the tumor microenvironment and chronic inflammation in cancer biology has matured. The role of LPA as a central mediator behind these concepts has been exemplified within the breast cancer field. In this review, we will summarize current challenges in breast cancer therapy and delineate how blocking LPA signaling could provide novel adjuvant therapeutic options for overcoming therapy resistance and adverse side effects, including radiation-induced fibrosis. The advent of autotaxin inhibitors in clinical practice could herald their applications as adjuvant therapies to improve the therapeutic indexes of existing treatments for breast and other cancers.
Collapse
Affiliation(s)
- Matthew G. K. Benesch
- Discipline of Surgery, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL AlB 3V6, Canada
- Cancer Research Institute of Northern Alberta, Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada;
| | - Xiaoyun Tang
- Cancer Research Institute of Northern Alberta, Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada;
| | - David N. Brindley
- Cancer Research Institute of Northern Alberta, Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada;
- Correspondence: ; Tel.: +1-780-492-2078
| |
Collapse
|
21
|
Repeated Fractions of X-Radiation to the Breast Fat Pads of Mice Augment Activation of the Autotaxin-Lysophosphatidate-Inflammatory Cycle. Cancers (Basel) 2019; 11:cancers11111816. [PMID: 31752313 PMCID: PMC6895803 DOI: 10.3390/cancers11111816] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/07/2019] [Accepted: 11/13/2019] [Indexed: 12/31/2022] Open
Abstract
Breast cancer patients are usually treated with multiple fractions of radiotherapy (RT) to the whole breast after lumpectomy. We hypothesized that repeated fractions of RT would progressively activate the autotaxin–lysophosphatidate-inflammatory cycle. To test this, a normal breast fat pad and a fat pad containing a mouse 4T1 tumor were irradiated with X-rays using a small-animal “image-guided” RT platform. A single RT dose of 7.5 Gy and three daily doses of 7.5 Gy increased ATX activity and decreased plasma adiponectin concentrations. The concentrations of IL-6 and TNFα in plasma and of VEGF, G-CSF, CCL11 and CXCL10 in the irradiated fat pad were increased, but only after three fractions of RT. In 4T1 breast tumor-bearing mice, three fractions of 7.5 Gy augmented tumor-induced increases in plasma ATX activity and decreased adiponectin levels in the tumor-associated mammary fat pad. There were also increased expressions of multiple inflammatory mediators in the tumor-associated mammary fat pad and in tumors, which was accompanied by increased infiltration of CD45+ leukocytes into tumor-associated adipose tissue. This work provides novel evidence that increased ATX production is an early response to RT and that repeated fractions of RT activate the autotaxin–lysophosphatidate-inflammatory cycle. This wound healing response to RT-induced damage could decrease the efficacy of further fractions of RT.
Collapse
|
22
|
Wang W, Zhao F, Zhao Y, Pan W, Cao P, Wu L, Wang Z, Zhao X, Zhao Y, Wang H. Design, Synthesis, and Preliminary Bioactivity Evaluation of 2,7-Substituted Carbazole Derivatives as Potent Autotaxin Inhibitors and Antitumor Agents†. Anticancer Agents Med Chem 2019; 19:256-264. [PMID: 30173652 DOI: 10.2174/1871520618666180830161821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/18/2018] [Accepted: 08/03/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Autotaxin-LPA signaling has been implicated in cancer progression, and targeted for the discovery of cancer therapeutic agents. OBJECTIVE Potential ATX inhibitors were synthesized to develop novel leading compounds and effective anticancer agents. METHODS The present work designs and synthesizes a series of 2,7-subsitituted carbazole derivatives with different terminal groups R [R = -Cl (I), -COOH (II), -B(OH)2 (III), or -PO(OH)2 (I-IV)]. The inhibition of these compounds on the enzymatic activity of ATX was measured using FS-3 and Bis-pNpp as substrates, and the cytotoxicity of these compounds was evaluated using SW620, SW480, PANC-1, and SKOV-3 human carcinoma cells. Furthermore, the binding of leading compound with ATX was analyzed by molecular docking. RESULTS Compound III was shown to be a promising antitumor candidate by demonstrating both good inhibition of ATX enzymatic activity and high cytotoxicity against human cancer cell lines. Molecular docking study shows that compound III is located in a pocket, which mainly comprises amino acids 209 to 316 in domain 2 of ATX, and binds with these residues of ATX through van der Waals, conventional hydrogen bonds, and hydrophobic interactions. CONCLUSION Compound III with the terminal group R = -B(OH)2 has the most potent inhibitory effect with the greatest cytotoxicity to cancer cells. Moreover, the docking model provides a structural basis for the future optimization of promising antitumor compounds.
Collapse
Affiliation(s)
- Wenming Wang
- Biology Institute of Shanxi, Shanxi, Taiyuan 030006, China.,Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Institute of Molecular Science, Shanxi University, Shanxi, Taiyuan 030006, China
| | - Fengmei Zhao
- Biology Institute of Shanxi, Shanxi, Taiyuan 030006, China
| | - Yarui Zhao
- Biology Institute of Shanxi, Shanxi, Taiyuan 030006, China
| | - Weiwei Pan
- Biology Institute of Shanxi, Shanxi, Taiyuan 030006, China
| | - Pengcheng Cao
- Biology Institute of Shanxi, Shanxi, Taiyuan 030006, China
| | - Lintao Wu
- Department of Chemistry, Changzhi University, Shanxi, Changzhi 046011, China
| | - Zhijun Wang
- Department of Chemistry, Changzhi University, Shanxi, Changzhi 046011, China
| | - Xuan Zhao
- Department of Chemistry, University of Memphis, Memphis, TN 38152, United States
| | - Yi Zhao
- Biology Institute of Shanxi, Shanxi, Taiyuan 030006, China
| | - Hongfei Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Institute of Molecular Science, Shanxi University, Shanxi, Taiyuan 030006, China
| |
Collapse
|
23
|
Deregulated Lysophosphatidic Acid Metabolism and Signaling in Liver Cancer. Cancers (Basel) 2019; 11:cancers11111626. [PMID: 31652837 PMCID: PMC6893780 DOI: 10.3390/cancers11111626] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/18/2019] [Accepted: 10/20/2019] [Indexed: 02/06/2023] Open
Abstract
Liver cancer is one of the leading causes of death worldwide due to late diagnosis and scarcity of treatment options. The major risk factor for liver cancer is cirrhosis with the underlying causes of cirrhosis being viral infection (hepatitis B or C), metabolic deregulation (Non-alcoholic fatty liver disease (NAFLD) in the presence of obesity and diabetes), alcohol or cholestatic disorders. Lysophosphatidic acid (LPA) is a bioactive phospholipid with numerous effects, most of them compatible with the hallmarks of cancer (proliferation, migration, invasion, survival, evasion of apoptosis, deregulated metabolism, neoangiogenesis, etc.). Autotaxin (ATX) is the enzyme responsible for the bulk of extracellular LPA production, and together with LPA signaling is involved in chronic inflammatory diseases, fibrosis and cancer. This review discusses the most important findings and the mechanisms related to ATX/LPA/LPAR involvement on metabolic, viral and cholestatic liver disorders and their progression to liver cancer in the context of human patients and mouse models. It focuses on the role of ATX/LPA in NAFLD development and its progression to liver cancer as NAFLD has an increasing incidence which is associated with the increasing incidence of liver cancer. Bearing in mind that adipose tissue accounts for the largest amount of LPA production, many studies have implicated LPA in adipose tissue metabolism and inflammation, liver steatosis, insulin resistance, glucose intolerance and lipogenesis. At the same time, LPA and ATX play crucial roles in fibrotic diseases. Given that hepatocellular carcinoma (HCC) is usually developed on the background of liver fibrosis, therapies that both delay the progression of fibrosis and prevent its development to malignancy would be very promising. Therefore, ATX/LPA signaling appears as an attractive therapeutic target as evidenced by the fact that it is involved in both liver fibrosis progression and liver cancer development.
Collapse
|
24
|
Tang X, Wuest M, Benesch MGK, Dufour J, Zhao Y, Curtis JM, Monjardet A, Heckmann B, Murray D, Wuest F, Brindley DN. Inhibition of Autotaxin with GLPG1690 Increases the Efficacy of Radiotherapy and Chemotherapy in a Mouse Model of Breast Cancer. Mol Cancer Ther 2019; 19:63-74. [PMID: 31548293 DOI: 10.1158/1535-7163.mct-19-0386] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 08/07/2019] [Accepted: 09/13/2019] [Indexed: 12/21/2022]
Abstract
Autotaxin catalyzes the formation of lysophosphatidic acid, which stimulates tumor growth and metastasis and decreases the effectiveness of cancer therapies. In breast cancer, autotaxin is secreted mainly by breast adipocytes, especially when stimulated by inflammatory cytokines produced by tumors. In this work, we studied the effects of an ATX inhibitor, GLPG1690, which is in phase III clinical trials for idiopathic pulmonary fibrosis, on responses to radiotherapy and chemotherapy in a syngeneic orthotopic mouse model of breast cancer. Tumors were treated with fractionated external beam irradiation, which was optimized to decrease tumor weight by approximately 80%. Mice were also dosed twice daily with GLPG1690 or vehicle beginning at 1 day before the radiation until 4 days after radiation was completed. GLPG1690 combined with irradiation did not decrease tumor growth further compared with radiation alone. However, GLPG1690 decreased the uptake of 3'-deoxy-3'-[18F]-fluorothymidine by tumors and the percentage of Ki67-positive cells. This was also associated with increased cleaved caspase-3 and decreased Bcl-2 levels in these tumors. GLPG1690 decreased irradiation-induced C-C motif chemokine ligand-11 in tumors and levels of IL9, IL12p40, macrophage colony-stimulating factor, and IFNγ in adipose tissue adjacent to the tumor. In other experiments, mice were treated with doxorubicin every 2 days after the tumors developed. GLPG1690 acted synergistically with doxorubicin to decrease tumor growth and the percentage of Ki67-positive cells. GLPG1690 also increased 4-hydroxynonenal-protein adducts in these tumors. These results indicate that inhibiting ATX provides a promising adjuvant to improve the outcomes of radiotherapy and chemotherapy for breast cancer.
Collapse
Affiliation(s)
- Xiaoyun Tang
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada.,Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, Alberta, Canada
| | - Melinda Wuest
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, Alberta, Canada.,Division of Oncologic Imaging, Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Matthew G K Benesch
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada.,Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, Alberta, Canada.,Discipline of Surgery, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Jennifer Dufour
- Division of Oncologic Imaging, Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - YuanYuan Zhao
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Jonathan M Curtis
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | | | | | - David Murray
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, Alberta, Canada.,Division of Experimental Oncology, Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Frank Wuest
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, Alberta, Canada.,Division of Oncologic Imaging, Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - David N Brindley
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada. .,Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
25
|
Abstract
Recent accumulating evidence indicates the biological actions of Autotaxin-Lysophosphatidic acid (ATX-LPA) signaling axis in malignant tumors. However, the role of Autotaxin-Lysophosphatidic acid signaling axis in breast cancer has not been reported. The present study aims to examine the alterations of serum autotaxin in breast cancer and discuss whether serum autotaxin could be useful as a novel parameter of breast cancer.Serum autotaxin antigen was measured in 112 patients with breast cancer and 50 healthy volunteers by ELISA. The association of serum autotaxin antigen levels with clinicopathological parameters and outcomes of breast cancer was analyzed.Serum autotaxin antigen was significantly higher in breast cancer patients than healthy volunteers (291.32 ± 38.02 ng/ml vs 254.04 ± 21.03 ng/ml, respectively; P < .0001). Serum autotaxin measurement successfully discriminated breast cancer patients from normal and healthy controls (AUC = 0.798, 95% CI: 0.732-0.864) with an optimal cut-off value of 267.34 ng/ml (sensitivity = 0.741, specificity = 0.800). Increased serum autotaxin was associated with breast cancer nodal status (P = .007), Tumor-Node- Metastasis (TNM) stage (P = .009) and Ki-67 index (P = .004). Univariate and multivariate Cox regression analysis revealed that elevated serum autotaxin showed an independent prognostic value for poor Disease-free survival.Our present study confirmed the elevation, potential diagnostic, and independent prognostic value of serum autotaxin for breast cancer. Serum autotaxin could serve as a reliable novel biomarker for breast cancer.
Collapse
Affiliation(s)
- Yingbo Shao
- Department of Breast Surgery, Henan Provincial People's Hospital
- Department of Breast Surgery, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Yang Yu
- Department of Breast Surgery, Henan Provincial People's Hospital
- Department of Breast Surgery, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Yaning He
- Department of Breast Surgery, Henan Provincial People's Hospital
- Department of Breast Surgery, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Qi Chen
- Department of Breast Surgery, Henan Provincial People's Hospital
- Department of Breast Surgery, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Hui Liu
- Department of Breast Surgery, Henan Provincial People's Hospital
- Department of Breast Surgery, Zhengzhou University People's Hospital, Zhengzhou, China
| |
Collapse
|
26
|
Lei L, Su J, Chen J, Chen W, Chen X, Peng C. The role of lysophosphatidic acid in the physiology and pathology of the skin. Life Sci 2018; 220:194-200. [PMID: 30584899 DOI: 10.1016/j.lfs.2018.12.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/25/2018] [Accepted: 12/21/2018] [Indexed: 12/13/2022]
Abstract
Lysophosphatidic acid (LPA) is the simplest phospholipid found in nature. LPA is mainly biosynthesized in tissues and cells by autotoxin and PA-PLA1α/PA-PLA1β and is degraded by lipid phosphate phosphatases (LPPs). It is an important component of biofilm, an extracellular signal transmitter and intracellular second messenger. After targeting to endothelial differentiation gene (Edg) family LPA receptors (LPA1, LPA2, LPA3) and non-Edg family LPA receptors (LPA4, LPA5, LPA6), LPA mediates physiological and pathological processes such as embryonic development, angiogenesis, tumor progression, fibrogenesis, wound healing, ischemia/reperfusion injury, and inflammatory reactions. These processes are induced through signaling pathways including mitogen-activated protein kinase (MAPK), phosphatidylinositol-3-kinase (PI3K)/Akt, protein kinase C (PKC)-GSK3β-β-catenin, Rho, Stat, and hypoxia-inducible factor 1-alpha (HIF-1α). LPA is involved in multiple physiological and pathological processes in the skin. It not only regulates skin function but also plays an important role in hair follicle development, skin wound healing, pruritus, skin tumors, and scleroderma. Pharmacological inhibition of LPA synthesis or antagonization of LPA receptors is a new strategy for the treatment of various skin disorders. This review focuses on the current understanding of the pathophysiologic role of LPA in the skin.
Collapse
Affiliation(s)
- Li Lei
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Juan Su
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Junchen Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Wangqing Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Cong Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, China.
| |
Collapse
|
27
|
Tigyi GJ, Yue J, Norman DD, Szabo E, Balogh A, Balazs L, Zhao G, Lee SC. Regulation of tumor cell - Microenvironment interaction by the autotaxin-lysophosphatidic acid receptor axis. Adv Biol Regul 2018; 71:183-193. [PMID: 30243984 DOI: 10.1016/j.jbior.2018.09.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/12/2018] [Accepted: 09/13/2018] [Indexed: 12/12/2022]
Abstract
The lipid mediator lysophosphatidic acid (LPA) in biological fluids is primarily produced by cleavage of lysophospholipids by the lysophospholipase D enzyme Autotaxin (ATX). LPA has been identified and abundantly detected in the culture medium of various cancer cell types, tumor effusates, and ascites fluid of cancer patients. Our current understanding of the physiological role of LPA established its role in fundamental biological responses that include cell proliferation, metabolism, neuronal differentiation, angiogenesis, cell migration, hematopoiesis, inflammation, immunity, wound healing, regulation of cell excitability, and the promotion of cell survival by protecting against apoptotic death. These essential biological responses elicited by LPA are seemingly hijacked by cancer cells in many ways; transcriptional upregulation of ATX leading to increased LPA levels, enhanced expression of multiple LPA GPCR subtypes, and the downregulation of its metabolic breakdown. Recent studies have shown that overexpression of ATX and LPA GPCR can lead to malignant transformation, enhanced proliferation of cancer stem cells, increased invasion and metastasis, reprogramming of the tumor microenvironment and the metastatic niche, and development of resistance to chemo-, immuno-, and radiation-therapy of cancer. The fundamental role of LPA in cancer progression and the therapeutic inhibition of the ATX-LPA axis, although highly appealing, remains unexploited as drug development to these targets has not reached into the clinic yet. The purpose of this brief review is to highlight some unique signaling mechanisms engaged by the ATX-LPA axis and emphasize the therapeutic potential that lies in blocking the molecular targets of the LPA system.
Collapse
Affiliation(s)
- Gabor J Tigyi
- Department of Physiology, University of Tennessee Health Science Center Memphis, Memphis, TN, 38163, USA; Institute of Clinical Experimental Research, Semmelweis University, POB 2, H-1428, Budapest, Hungary.
| | - Junming Yue
- Department of Pathology, University of Tennessee Health Science Center Memphis, Memphis, TN, 38163, USA
| | - Derek D Norman
- Department of Physiology, University of Tennessee Health Science Center Memphis, Memphis, TN, 38163, USA
| | - Erzsebet Szabo
- Department of Physiology, University of Tennessee Health Science Center Memphis, Memphis, TN, 38163, USA
| | - Andrea Balogh
- Department of Physiology, University of Tennessee Health Science Center Memphis, Memphis, TN, 38163, USA; Institute of Clinical Experimental Research, Semmelweis University, POB 2, H-1428, Budapest, Hungary
| | - Louisa Balazs
- Department of Pathology, University of Tennessee Health Science Center Memphis, Memphis, TN, 38163, USA
| | - Guannan Zhao
- Department of Pathology, University of Tennessee Health Science Center Memphis, Memphis, TN, 38163, USA
| | - Sue Chin Lee
- Department of Physiology, University of Tennessee Health Science Center Memphis, Memphis, TN, 38163, USA
| |
Collapse
|
28
|
Fisher N, Edwards MG, Hemming R, Allin SM, Wallis JD, Bulman Page PC, Mckenzie MJ, Jones SM, Elsegood MRJ, King-Underwood J, Richardson A. Synthesis and Activity of a Novel Autotaxin Inhibitor-Icodextrin Conjugate. J Med Chem 2018; 61:7942-7951. [PMID: 30059212 DOI: 10.1021/acs.jmedchem.8b00935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Autotaxin is an extracellular phospholipase D that catalyzes the hydrolysis of lysophosphatidyl choline (LPC) to generate the bioactive lipid lysophosphatidic acid (LPA). Autotaxin has been implicated in many pathological processes relevant to cancer. Intraperitoneal administration of an autotaxin inhibitor may benefit patients with ovarian cancer; however, low molecular mass compounds are known to be rapidly cleared from the peritoneal cavity. Icodextrin is a polymer that is already in clinical use because it is slowly eliminated from the peritoneal cavity. Herein we report conjugation of the autotaxin inhibitor HA155 to icodextrin. The conjugate inhibits autotaxin activity (IC50 = 0.86 ± 0.13 μg mL-1) and reduces cell migration. Conjugation of the inhibitor increased its solubility, decreased its membrane permeability, and improved its intraperitoneal retention in mice. These observations demonstrate the first application of icodextrin as a covalently-bonded drug delivery platform with potential use in the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Natalie Fisher
- School of Pharmacy and Institute for Science and Technology in Medicine , Keele University , Keele ST5 5BG , U.K.,Keele Molecular Chemistry Group, Lennard-Jones Laboratories, School of Chemical and Physical Sciences , Keele University , Keele ST5 5BG , U.K
| | - Michael G Edwards
- Keele Molecular Chemistry Group, Lennard-Jones Laboratories, School of Chemical and Physical Sciences , Keele University , Keele ST5 5BG , U.K
| | - Ryan Hemming
- School of Science and Technology , Nottingham Trent University , Nottingham NG11 8NS , U.K
| | - Steven M Allin
- School of Science and Technology , Nottingham Trent University , Nottingham NG11 8NS , U.K
| | - John D Wallis
- School of Science and Technology , Nottingham Trent University , Nottingham NG11 8NS , U.K
| | | | - Michael J Mckenzie
- Charnwood Molecular Ltd. , The Heritage Building, Prince William Road , Loughborough LE11 5DA , U.K
| | - Stefanie M Jones
- School of Pharmacy and Institute for Science and Technology in Medicine , Keele University , Keele ST5 5BG , U.K
| | - Mark R J Elsegood
- Department of Chemistry , Loughborough University , Loughborough LE11 3TU , U.K
| | - John King-Underwood
- Computational Chemistry Resource , Old Cottage Hospital , Ledbury HR8 1ED , U.K
| | - Alan Richardson
- School of Pharmacy and Institute for Science and Technology in Medicine , Keele University , Keele ST5 5BG , U.K
| |
Collapse
|
29
|
Magkrioti C, Oikonomou N, Kaffe E, Mouratis MA, Xylourgidis N, Barbayianni I, Megadoukas P, Harokopos V, Valavanis C, Chun J, Kosma A, Stathopoulos GT, Bouros E, Bouros D, Syrigos K, Aidinis V. The Autotaxin-Lysophosphatidic Acid Axis Promotes Lung Carcinogenesis. Cancer Res 2018; 78:3634-3644. [PMID: 29724718 DOI: 10.1158/0008-5472.can-17-3797] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/27/2018] [Accepted: 04/30/2018] [Indexed: 11/16/2022]
Abstract
Pathogenesis and progression of lung cancer are governed by complex interactions between the environment and host genetic susceptibility, which is further modulated by genetic and epigenetic changes. Autotaxin (ATX, ENPP2) is a secreted glycoprotein that catalyzes the extracellular production of lysophosphatidic acid (LPA), a growth-factor-like phospholipid that is further regulated by phospholipid phosphatases (PLPP). LPA's pleiotropic effects in almost all cell types are mediated through at least six G-protein coupled LPA receptors (LPAR) that exhibit overlapping specificities, widespread distribution, and differential expression profiles. Here we use both preclinical models of lung cancer and clinical samples (from patients and healthy controls) to investigate the expression levels, activity, and biological role of the above components of the ATX/LPA axis in lung cancer. ENPP2 was genetically altered in 8% of patients with lung cancer, whereas increased ATX staining and activity were detected in patient biopsies and sera, respectively. Moreover, PLPP3 expression was consistently downregulated in patients with lung cancer. Comparable observations were made in the two most widely used animal models of lung cancer, the carcinogen urethane-induced and the genetically engineered K-rasG12D -driven models, where genetic deletion of Enpp2 or Lpar1 resulted in disease attenuation, thus confirming a procarcinogenic role of LPA signaling in the lung. Expression profiling data analysis suggested that metabolic rewiring may be implicated in the procarcinogenic effects of the ATX/LPA axis in K-ras- G12D -driven lung cancer pathogenesis.Significance: These findings establish the role of ATX/LPA in lung carcinogenesis, thus expanding the mechanistic links between pulmonary fibrosis and cancer. Cancer Res; 78(13); 3634-44. ©2018 AACR.
Collapse
Affiliation(s)
- Christiana Magkrioti
- Division of Immunology, Biomedical Sciences Research Center "Alexander Fleming," Greece
| | - Nikos Oikonomou
- Division of Immunology, Biomedical Sciences Research Center "Alexander Fleming," Greece
| | - Eleanna Kaffe
- Division of Immunology, Biomedical Sciences Research Center "Alexander Fleming," Greece
| | | | - Nikos Xylourgidis
- Division of Immunology, Biomedical Sciences Research Center "Alexander Fleming," Greece
| | - Iliana Barbayianni
- Division of Immunology, Biomedical Sciences Research Center "Alexander Fleming," Greece
| | - Petros Megadoukas
- Division of Immunology, Biomedical Sciences Research Center "Alexander Fleming," Greece
| | - Vaggelis Harokopos
- Division of Immunology, Biomedical Sciences Research Center "Alexander Fleming," Greece
| | | | - Jerold Chun
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Alexandra Kosma
- First Pulmonary Clinic, Papanikolaou General Hospital, Greece
| | - Georgios T Stathopoulos
- Department of Physiology, Laboratory for Molecular Respiratory Carcinogenesis, Faculty of Medicine, University of Patras, Patras, Greece.,Comprehensive Pneumology Center and Institute for Lung Biology and Disease, University Hospital, Ludwig-Maximilian University and Helmholtz Zentrum München, Germany
| | - Evangelos Bouros
- Academic Department of Pneumonology, University of Athens, Athens, Greece
| | - Demosthenes Bouros
- Academic Department of Pneumonology, University of Athens, Athens, Greece
| | - Konstantinos Syrigos
- Oncology Unit, Sotiria Hospital, School of Medicine, University of Athens, Athens, Greece
| | - Vassilis Aidinis
- Division of Immunology, Biomedical Sciences Research Center "Alexander Fleming," Greece.
| |
Collapse
|
30
|
Pirpour Tazehkand A, Akbarzadeh M, Velaie K, Sadeghi MR, Samadi N. The role of Her2-Nrf2 axis in induction of oxaliplatin resistance in colon cancer cells. Biomed Pharmacother 2018; 103:755-766. [PMID: 29684854 DOI: 10.1016/j.biopha.2018.04.105] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 04/11/2018] [Accepted: 04/13/2018] [Indexed: 12/21/2022] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) plays a pivotal role in promoting chemoresistance by regulation of antioxidants and detoxification enzymes. Her2 is a member of tyrosine kinase receptor family with a key function in resistance of cancer cells to chemotherapeutics. The aim of this study was to investigate the possible cross talk between Nrf2 and Her2 mediated signaling pathways in development of oxaliplatin resistance in colon cancer cells. We first generated oxaliplatin-resistant LS174T and SW480 colon cancer cells with different Her2 expression levels by employing IC50 concentrations followed by a resting period. We evaluated the viability and apoptosis of the cells by MTT and flow cytometry assays, respectively. Nrf2 and Her2 gene expression levels were examined by qRT-PCR. The morphology analysis and combination index calculation were performed using the ImagJ and CompuSyn softwares, respectively. Development of resistant cells revealed a marked increase in half maximal inhibitory concentration (IC50) value from 3.95 ± 0.92 μM to 29.27 ± 3.13 μM in SW480 cells and 377 ± 46 nM to 9.59 ± 0.76 μM in LS174T cells with a significant change in morphology of the cells from elongated to small round shape (p < 0.05). Her2 expression level was increased in both types of resistant cells, but the Nrf2 expression was increased in LS174T resistant (LS174T/Res) cells and decreased in SW480/Res cells which were consistent with the level of resistance in these cells (25 fold increase in IC50 value in LS174T/Res cells versus 7 fold increase in this value in SW480/Res cells). Inhibition of either Nrf2 or Her2 alone and in combination caused a significant increase in oxaliplatin-induced cytotoxicity and apoptosis with maximum effects in SW480/Res cells with low Her2 and Nrf2 expression levels. Altogether, our results suggest that inhibition of Nrf2 signaling in colon cancer patients with Her2 overexpression can be considered as an important strategy to overcome oxaliplatin resistance.
Collapse
Affiliation(s)
- Abbas Pirpour Tazehkand
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Golgasht Street, Imam Reza Hospital, Tabriz, Iran; Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, Iran; Students' Research Committee, Golgasht Street, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Maryam Akbarzadeh
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Golbad Street, Shahid Madani Hospital, Tabriz, Iran.
| | - Kobra Velaie
- Department of Anatomical Science, Faculty of Medicine, Golgasht Street, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Reza Sadeghi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Golgasht Street, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Nasser Samadi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Golgasht Street, Imam Reza Hospital, Tabriz, Iran; Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, Iran; Immunology Research Center, Golgasht Street, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
31
|
Lysophosphatidic acid (LPA) as a pro-fibrotic and pro-oncogenic factor: a pivotal target to improve the radiotherapy therapeutic index. Oncotarget 2018; 8:43543-43554. [PMID: 28402936 PMCID: PMC5522168 DOI: 10.18632/oncotarget.16672] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 03/08/2017] [Indexed: 12/21/2022] Open
Abstract
Radiation-induced fibrosis is widely considered as a common but forsaken phenomenon that can lead to clinical sequela and possibly vital impairments. Lysophosphatidic acid is a bioactive lipid involved in fibrosis and probably in radiation-induced fibrosis as suggested in recent studies. Lysophosphatidic acid is also a well-described pro-oncogenic factor, involved in carcinogenesis processes (proliferation, survival, angiogenesis, invasion, migration). The present review highlights and summarizes the links between lysophosphatidic acid and radiation-induced fibrosis, lysophosphatidic acid and radioresistance, and proposes lysophosphatidic acid as a potential central actor of the radiotherapy therapeutic index. Besides, we hypothesize that following radiotherapy, the newly formed tumour micro-environment, with increased extracellular matrix and increased lysophosphatidic acid levels, is a favourable ground to metastasis development. Lysophosphatidic acid could therefore be an exciting therapeutic target, minimizing radio-toxicities and radio-resistance effects.
Collapse
|
32
|
Meng G, Tang X, Yang Z, Benesch MGK, Marshall A, Murray D, Hemmings DG, Wuest F, McMullen TPW, Brindley DN. Implications for breast cancer treatment from increased autotaxin production in adipose tissue after radiotherapy. FASEB J 2017; 31:4064-4077. [PMID: 28539367 DOI: 10.1096/fj.201700159r] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 04/08/2017] [Indexed: 01/08/2023]
Abstract
We have previously established that adipose tissue adjacent to breast tumors becomes inflamed by tumor-derived cytokines. This stimulates autotaxin (ATX) secretion from adipocytes, whereas breast cancer cells produce insignificant ATX. Lysophosphatidate produced by ATX promotes inflammatory cytokine secretion in a vicious inflammatory cycle, which increases tumor growth and metastasis and decreases response to chemotherapy. We hypothesized that damage to adipose tissue during radiotherapy for breast cancer should promote lysophosphatidic acid (LPA) signaling and further inflammatory signaling, which could potentially protect cancer cells from subsequent fractions of radiation therapy. To test this hypothesis, we exposed rat and human adipose tissue to radiation doses (0.25-5 Gy) that were expected during radiotherapy. This exposure increased mRNA levels for ATX, cyclooxygenase-2, IL-1β, IL-6, IL-10, TNF-α, and LPA1 and LPA2 receptors by 1.8- to 5.1-fold after 4 to 48 h. There were also 1.5- to 2.5-fold increases in the secretion of ATX and 14 inflammatory mediators after irradiating at 1 Gy. Inhibition of the radiation-induced activation of NF-κB, cyclooxygenase-2, poly (ADP-ribose) polymerase-1, or ataxia telangiectasia and Rad3-related protein blocked inflammatory responses to γ-radiation. Consequently, collateral damage to adipose tissue during radiotherapy could establish a comprehensive wound-healing response that involves increased signaling by LPA, cyclooxygenase-2, and other inflammatory mediators that could decrease the efficacy of further radiotherapy or chemotherapy.-Meng, G., Tang, X., Yang, Z., Benesch, M. G. K., Marshall, A., Murray, D., Hemmings, D. G., Wuest, F., McMullen, T. P. W., Brindley, D. N. Implications for breast cancer treatment from increased autotaxin production in adipose tissue after radiotherapy.
Collapse
Affiliation(s)
- Guanmin Meng
- Signal Transduction Research Group, Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada.,Department of Clinical Laboratory, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Xiaoyun Tang
- Signal Transduction Research Group, Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Zelei Yang
- Signal Transduction Research Group, Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Matthew G K Benesch
- Signal Transduction Research Group, Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Alison Marshall
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
| | - David Murray
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Denise G Hemmings
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada.,Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Frank Wuest
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Todd P W McMullen
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - David N Brindley
- Signal Transduction Research Group, Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada;
| |
Collapse
|
33
|
Quan M, Cui JJ, Feng X, Huang Q. The critical role and potential target of the autotaxin/lysophosphatidate axis in pancreatic cancer. Tumour Biol 2017; 39:1010428317694544. [PMID: 28347252 DOI: 10.1177/1010428317694544] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Autotaxin, an ecto-lysophospholipase D encoded by the human ENNP2 gene, is expressed in multiple tissues, and participates in numerous critical physiologic and pathologic processes including inflammation, pain, obesity, embryo development, and cancer via the generation of the bioactive lipid lysophosphatidate. Overwhelming evidences indicate that the autotaxin/lysophosphatidate signaling axis serves key roles in the numerous processes central to tumorigenesis and progression, including proliferation, survival, migration, invasion, metastasis, cancer stem cell, tumor microenvironment, and treatment resistance by interacting with a series of at least six G-protein-coupled receptors (LPAR1-6). This review provides an overview of the autotaxin/lysophosphatidate axis and collates current knowledge regarding its specific role in pancreatic cancer. With a deeper understanding of the critical role of the autotaxin/lysophosphatidate axis in pancreatic cancer, targeting autotaxin or lysophosphatidate receptor may be a potential and promising strategy for cancer therapy.
Collapse
Affiliation(s)
- Ming Quan
- Cancer Center, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Jiu-Jie Cui
- Cancer Center, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Xiao Feng
- Cancer Center, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Qian Huang
- Cancer Center, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| |
Collapse
|
34
|
Discovery and synthetic optimization of a novel scaffold for hydrophobic tunnel-targeted autotaxin inhibition. Bioorg Med Chem 2016; 24:4660-4674. [PMID: 27544588 DOI: 10.1016/j.bmc.2016.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 08/01/2016] [Accepted: 08/03/2016] [Indexed: 12/11/2022]
Abstract
Autotaxin (ATX) is a ubiquitous ectoenzyme that hydrolyzes lysophosphatidylcholine (LPC) to form the bioactive lipid mediator lysophosphatidic acid (LPA). LPA activates specific G-protein coupled receptors to elicit downstream effects leading to cellular motility, survival, and invasion. Through these pathways, upregulation of ATX is linked to diseases such as cancer and cardiovascular disease. Recent crystal structures confirm that the catalytic domain of ATX contains multiple binding regions including a polar active site, hydrophobic tunnel, and a hydrophobic pocket. This finding is consistent with the promiscuous nature of ATX hydrolysis of multiple and diverse substrates and prior investigations of inhibitor impacts on ATX enzyme kinetics. The current study used virtual screening methods to guide experimental identification and characterization of inhibitors targeting the hydrophobic region of ATX. An initially discovered inhibitor, GRI392104 (IC50 4μM) was used as a lead for synthetic optimization. In total twelve newly synthesized inhibitors of ATX were more potent than GRI392104 and were selective for ATX as they had no effect on other LPC-specific NPP family members or on LPA1-5 GPCR.
Collapse
|
35
|
Bekele RT, Venkatraman G, Liu RZ, Tang X, Mi S, Benesch MGK, Mackey JR, Godbout R, Curtis JM, McMullen TPW, Brindley DN. Oxidative stress contributes to the tamoxifen-induced killing of breast cancer cells: implications for tamoxifen therapy and resistance. Sci Rep 2016; 6:21164. [PMID: 26883574 PMCID: PMC4756695 DOI: 10.1038/srep21164] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 01/14/2016] [Indexed: 02/07/2023] Open
Abstract
Tamoxifen is the accepted therapy for patients with estrogen receptor-α (ERα)-positive breast cancer. However, clinical resistance to tamoxifen, as demonstrated by recurrence or progression on therapy, is frequent and precedes death from metastases. To improve breast cancer treatment it is vital to understand the mechanisms that result in tamoxifen resistance. This study shows that concentrations of tamoxifen and its metabolites, which accumulate in tumors of patients, killed both ERα-positive and ERα-negative breast cancer cells. This depended on oxidative damage and anti-oxidants rescued the cancer cells from tamoxifen-induced apoptosis. Breast cancer cells responded to tamoxifen-induced oxidation by increasing Nrf2 expression and subsequent activation of the anti-oxidant response element (ARE). This increased the transcription of anti-oxidant genes and multidrug resistance transporters. As a result, breast cancer cells are able to destroy or export toxic oxidation products leading to increased survival from tamoxifen-induced oxidative damage. These responses in cancer cells also occur in breast tumors of tamoxifen-treated mice. Additionally, high levels of expression of Nrf2, ABCC1, ABCC3 plus NAD(P)H dehydrogenase quinone-1 in breast tumors of patients at the time of diagnosis were prognostic of poor survival after tamoxifen therapy. Therefore, overcoming tamoxifen-induced activation of the ARE could increase the efficacy of tamoxifen in treating breast cancer.
Collapse
Affiliation(s)
- Raie T Bekele
- Signal Transduction Research Group, Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2S2, Canada
| | - Ganesh Venkatraman
- Signal Transduction Research Group, Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2S2, Canada
| | - Rong-Zong Liu
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, T6G 1Z2, Canada
| | - Xiaoyun Tang
- Signal Transduction Research Group, Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2S2, Canada
| | - Si Mi
- Department of Agricultural, Food and Nutritional Science (Lipid Chemistry Group), University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Matthew G K Benesch
- Signal Transduction Research Group, Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2S2, Canada
| | - John R Mackey
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, T6G 1Z2, Canada
| | - Roseline Godbout
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, T6G 1Z2, Canada
| | - Jonathan M Curtis
- Department of Agricultural, Food and Nutritional Science (Lipid Chemistry Group), University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Todd P W McMullen
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, T6G 1Z2, Canada.,Department of Surgery, Walter C Mackenzie Health Science Centre, University of Alberta, Edmonton, T6G 2R7, Alberta, Canada
| | - David N Brindley
- Signal Transduction Research Group, Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2S2, Canada
| |
Collapse
|
36
|
Volden PA, Skor MN, Johnson MB, Singh P, Patel FN, McClintock MK, Brady MJ, Conzen SD. Mammary Adipose Tissue-Derived Lysophospholipids Promote Estrogen Receptor-Negative Mammary Epithelial Cell Proliferation. Cancer Prev Res (Phila) 2016; 9:367-78. [PMID: 26862086 DOI: 10.1158/1940-6207.capr-15-0107] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 01/27/2016] [Indexed: 01/05/2023]
Abstract
Lysophosphatidic acid (LPA), acting in an autocrine or paracrine fashion through G protein-coupled receptors, has been implicated in many physiologic and pathologic processes, including cancer. LPA is converted from lysophosphatidylcholine (LPC) by the secreted phospholipase autotaxin (ATX). Although various cell types can produce ATX, adipocyte-derived ATX is believed to be the major source of circulating ATX and also to be the major regulator of plasma LPA levels. In addition to ATX, adipocytes secrete numerous other factors (adipokines); although several adipokines have been implicated in breast cancer biology, the contribution of mammary adipose tissue-derived LPC/ATX/LPA (LPA axis) signaling to breast cancer is poorly understood. Using murine mammary fat-conditioned medium, we investigated the contribution of LPA signaling to mammary epithelial cancer cell biology and identified LPA signaling as a significant contributor to the oncogenic effects of the mammary adipose tissue secretome. To interrogate the role of mammary fat in the LPA axis during breast cancer progression, we exposed mammary adipose tissue to secreted factors from estrogen receptor-negative mammary epithelial cell lines and monitored changes in the mammary fat pad LPA axis. Our data indicate that bidirectional interactions between mammary cancer cells and mammary adipocytes alter the local LPA axis and increase ATX expression in the mammary fat pad during breast cancer progression. Thus, the LPC/ATX/LPA axis may be a useful target for prevention in patients at risk of ER-negative breast cancer. Cancer Prev Res; 9(5); 367-78. ©2016 AACR.
Collapse
Affiliation(s)
- Paul A Volden
- Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Maxwell N Skor
- Department of Medicine, The University of Chicago, Chicago, Illinois. Committee on Molecular Metabolism and Nutrition, The University of Chicago, Chicago, Illinois
| | | | | | | | - Martha K McClintock
- Department of Psychology, The University of Chicago, Chicago, Illinois. Institute for Mind and Biology, The University of Chicago, Chicago, Illinois
| | - Matthew J Brady
- Department of Medicine, The University of Chicago, Chicago, Illinois. Committee on Molecular Metabolism and Nutrition, The University of Chicago, Chicago, Illinois.
| | - Suzanne D Conzen
- Department of Medicine, The University of Chicago, Chicago, Illinois. Committee on Molecular Metabolism and Nutrition, The University of Chicago, Chicago, Illinois. Institute for Mind and Biology, The University of Chicago, Chicago, Illinois. Ben May Department of Cancer Research, The University of Chicago, Chicago, Illinois.
| |
Collapse
|
37
|
Molecular mechanisms of target recognition by lipid GPCRs: relevance for cancer. Oncogene 2015; 35:4021-35. [PMID: 26640151 DOI: 10.1038/onc.2015.467] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 11/02/2015] [Accepted: 11/02/2015] [Indexed: 12/18/2022]
|
38
|
Benesch MGK, Tang X, Dewald J, Dong WF, Mackey JR, Hemmings DG, McMullen TPW, Brindley DN. Tumor-induced inflammation in mammary adipose tissue stimulates a vicious cycle of autotaxin expression and breast cancer progression. FASEB J 2015; 29:3990-4000. [DOI: 10.1096/fj.15-274480] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 05/26/2015] [Indexed: 02/06/2023]
|
39
|
Benesch MGK, Tang X, Venkatraman G, Bekele RT, Brindley DN. Recent advances in targeting the autotaxin-lysophosphatidate-lipid phosphate phosphatase axis in vivo. J Biomed Res 2015; 30:272-84. [PMID: 27533936 PMCID: PMC4946318 DOI: 10.7555/jbr.30.20150058] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 05/12/2015] [Accepted: 05/20/2015] [Indexed: 12/21/2022] Open
Abstract
Extracellular lysophosphatidate (LPA) is a potent bioactive lipid that signals through six G-protein-coupled receptors. This signaling is required for embryogenesis, tissue repair and remodeling processes. LPA is produced from circulating lysophosphatidylcholine by autotaxin (ATX), and is degraded outside cells by a family of three enzymes called the lipid phosphate phosphatases (LPPs). In many pathological conditions, particularly in cancers, LPA concentrations are increased due to high ATX expression and low LPP activity. In cancers, LPA signaling drives tumor growth, angiogenesis, metastasis, resistance to chemotherapy and decreased efficacy of radiotherapy. Hence, targeting the ATX-LPA-LPP axis is an attractive strategy for introducing novel adjuvant therapeutic options. In this review, we will summarize current progress in targeting the ATX-LPA-LPP axis with inhibitors of autotaxin activity, LPA receptor antagonists, LPA monoclonal antibodies, and increasing low LPP expression. Some of these agents are already in clinical trials and have applications beyond cancer, including chronic inflammatory diseases.
Collapse
Affiliation(s)
- Matthew G K Benesch
- Signal Transduction Research Group, Department of Biochemistry, University of Alberta, T6G 2S2, Canada
| | - Xiaoyun Tang
- Signal Transduction Research Group, Department of Biochemistry, University of Alberta, T6G 2S2, Canada
| | - Ganesh Venkatraman
- Signal Transduction Research Group, Department of Biochemistry, University of Alberta, T6G 2S2, Canada
| | - Raie T Bekele
- Signal Transduction Research Group, Department of Biochemistry, University of Alberta, T6G 2S2, Canada
| | - David N Brindley
- Signal Transduction Research Group, Department of Biochemistry, University of Alberta, T6G 2S2, Canada.
| |
Collapse
|
40
|
Bakhshaiesh TO, Armat M, Shanehbandi D, Sharifi S, Baradaran B, Hejazi MS, Samadi N. Arsenic Trioxide Promotes Paclitaxel Cytotoxicity in Resistant Breast Cancer Cells. Asian Pac J Cancer Prev 2015. [DOI: 10.7314/apjcp.2015.16.13.5191] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
41
|
Benesch MGK, Ko YM, Tang X, Dewald J, Lopez-Campistrous A, Zhao YY, Lai R, Curtis JM, Brindley DN, McMullen TPW. Autotaxin is an inflammatory mediator and therapeutic target in thyroid cancer. Endocr Relat Cancer 2015; 22:593-607. [PMID: 26037280 DOI: 10.1530/erc-15-0045] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/02/2015] [Indexed: 12/15/2022]
Abstract
Autotaxin is a secreted enzyme that converts extracellular lysophosphatidylcholine to lysophosphatidate (LPA). In cancers, LPA increases tumour growth, metastasis and chemoresistance by activating six G-protein coupled receptors. We examined >200 human thyroid biopsies. Autotaxin expression in metastatic deposits and primary carcinomas was four- to tenfold higher than in benign neoplasms or normal thyroid tissue. Autotaxin immunohistochemical staining was also increased in benign neoplasms with leukocytic infiltrations. Malignant tumours were distinguished from benign tumours by high tumour autotaxin, LPA levels and inflammatory mediators including IL1β, IL6, IL8, GMCSF, TNFα, CCL2, CXCL10 and platelet-derived growth factor (PDGF)-AA. We determined the mechanistic explanation for these results and revealed a vicious regulatory cycle in which LPA increased the secretion of 16 inflammatory modulators in papillary thyroid cancer cultures. Conversely, treating cancer cells with ten inflammatory cytokines and chemokines or PDGF-AA and PDGF-BB increased autotaxin secretion. We confirmed that this autotaxin/inflammatory cycle occurs in two SCID mouse models of papillary thyroid cancer by blocking LPA signalling using the autotaxin inhibitor ONO-8430506. This decreased the levels of 16 inflammatory mediators in the tumours and was accompanied by a 50-60% decrease in tumour volume. This resulted from a decreased mitotic index for the cancer cells and decreased levels of vascular endothelial growth factor and angiogenesis in the tumours. Our results demonstrate that the autotaxin/inflammatory cycle is a focal point for driving malignant thyroid tumour progression and possibly treatment resistance. Inhibiting autotaxin activity provides an effective and novel strategy for decreasing the inflammatory phenotype in thyroid carcinomas, which should complement other treatment modalities.
Collapse
Affiliation(s)
- Matthew G K Benesch
- Signal Transduction Research GroupDepartment of Biochemistry, 357 Heritage Medical Research Centre, University of Alberta, Edmonton, Alberta, Canada T6G 2S2Department of Surgery2D4.41 WC Mackenzie Health Science Centre, University of Alberta, Edmonton, Alberta, Canada T6G 2R7Department of AgriculturalFood and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5Department of Laboratory Medicine and PathologyUniversity of Alberta, Edmonton, Alberta, Canada T6G 2R3
| | - Yi M Ko
- Signal Transduction Research GroupDepartment of Biochemistry, 357 Heritage Medical Research Centre, University of Alberta, Edmonton, Alberta, Canada T6G 2S2Department of Surgery2D4.41 WC Mackenzie Health Science Centre, University of Alberta, Edmonton, Alberta, Canada T6G 2R7Department of AgriculturalFood and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5Department of Laboratory Medicine and PathologyUniversity of Alberta, Edmonton, Alberta, Canada T6G 2R3
| | - Xiaoyun Tang
- Signal Transduction Research GroupDepartment of Biochemistry, 357 Heritage Medical Research Centre, University of Alberta, Edmonton, Alberta, Canada T6G 2S2Department of Surgery2D4.41 WC Mackenzie Health Science Centre, University of Alberta, Edmonton, Alberta, Canada T6G 2R7Department of AgriculturalFood and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5Department of Laboratory Medicine and PathologyUniversity of Alberta, Edmonton, Alberta, Canada T6G 2R3
| | - Jay Dewald
- Signal Transduction Research GroupDepartment of Biochemistry, 357 Heritage Medical Research Centre, University of Alberta, Edmonton, Alberta, Canada T6G 2S2Department of Surgery2D4.41 WC Mackenzie Health Science Centre, University of Alberta, Edmonton, Alberta, Canada T6G 2R7Department of AgriculturalFood and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5Department of Laboratory Medicine and PathologyUniversity of Alberta, Edmonton, Alberta, Canada T6G 2R3
| | - Ana Lopez-Campistrous
- Signal Transduction Research GroupDepartment of Biochemistry, 357 Heritage Medical Research Centre, University of Alberta, Edmonton, Alberta, Canada T6G 2S2Department of Surgery2D4.41 WC Mackenzie Health Science Centre, University of Alberta, Edmonton, Alberta, Canada T6G 2R7Department of AgriculturalFood and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5Department of Laboratory Medicine and PathologyUniversity of Alberta, Edmonton, Alberta, Canada T6G 2R3
| | - Yuan Y Zhao
- Signal Transduction Research GroupDepartment of Biochemistry, 357 Heritage Medical Research Centre, University of Alberta, Edmonton, Alberta, Canada T6G 2S2Department of Surgery2D4.41 WC Mackenzie Health Science Centre, University of Alberta, Edmonton, Alberta, Canada T6G 2R7Department of AgriculturalFood and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5Department of Laboratory Medicine and PathologyUniversity of Alberta, Edmonton, Alberta, Canada T6G 2R3
| | - Raymond Lai
- Signal Transduction Research GroupDepartment of Biochemistry, 357 Heritage Medical Research Centre, University of Alberta, Edmonton, Alberta, Canada T6G 2S2Department of Surgery2D4.41 WC Mackenzie Health Science Centre, University of Alberta, Edmonton, Alberta, Canada T6G 2R7Department of AgriculturalFood and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5Department of Laboratory Medicine and PathologyUniversity of Alberta, Edmonton, Alberta, Canada T6G 2R3
| | - Jonathan M Curtis
- Signal Transduction Research GroupDepartment of Biochemistry, 357 Heritage Medical Research Centre, University of Alberta, Edmonton, Alberta, Canada T6G 2S2Department of Surgery2D4.41 WC Mackenzie Health Science Centre, University of Alberta, Edmonton, Alberta, Canada T6G 2R7Department of AgriculturalFood and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5Department of Laboratory Medicine and PathologyUniversity of Alberta, Edmonton, Alberta, Canada T6G 2R3
| | - David N Brindley
- Signal Transduction Research GroupDepartment of Biochemistry, 357 Heritage Medical Research Centre, University of Alberta, Edmonton, Alberta, Canada T6G 2S2Department of Surgery2D4.41 WC Mackenzie Health Science Centre, University of Alberta, Edmonton, Alberta, Canada T6G 2R7Department of AgriculturalFood and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5Department of Laboratory Medicine and PathologyUniversity of Alberta, Edmonton, Alberta, Canada T6G 2R3
| | - Todd P W McMullen
- Signal Transduction Research GroupDepartment of Biochemistry, 357 Heritage Medical Research Centre, University of Alberta, Edmonton, Alberta, Canada T6G 2S2Department of Surgery2D4.41 WC Mackenzie Health Science Centre, University of Alberta, Edmonton, Alberta, Canada T6G 2R7Department of AgriculturalFood and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5Department of Laboratory Medicine and PathologyUniversity of Alberta, Edmonton, Alberta, Canada T6G 2R3
| |
Collapse
|
42
|
Murph MM, Jiang GW, Altman MK, Jia W, Nguyen DT, Fambrough JM, Hardman WJ, Nguyen HT, Tran SK, Alshamrani AA, Madan D, Zhang J, Prestwich GD. Vinyl sulfone analogs of lysophosphatidylcholine irreversibly inhibit autotaxin and prevent angiogenesis in melanoma. Bioorg Med Chem 2015; 23:5999-6013. [PMID: 26190462 DOI: 10.1016/j.bmc.2015.06.054] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/12/2015] [Accepted: 06/20/2015] [Indexed: 02/07/2023]
Abstract
Autotaxin (ATX) is an enzyme discovered in the conditioned medium of cultured melanoma cells and identified as a protein that strongly stimulates motility. This unique ectonucleotide pyrophosphatase and phosphodiesterase facilitates the removal of a choline headgroup from lysophosphatidylcholine (LPC) to yield lysophosphatidic acid (LPA), which is a potent lipid stimulator of tumorigenesis. Thus, ATX has received renewed attention because it has a prominent role in malignant progression with significant translational potential. Specifically, we sought to develop active site-targeted irreversible inhibitors as anti-cancer agents. Herein we describe the synthesis and biological activity of an LPC-mimetic electrophilic affinity label that targets the active site of ATX, which has a critical threonine residue that acts as a nucleophile in the lysophospholipase D reaction to liberate choline. We synthesized a set of quaternary ammonium derivative-containing vinyl sulfone analogs of LPC that function as irreversible inhibitors of ATX and inactivate the enzyme. The analogs were tested in cell viability assays using multiple cancer cell lines. The IC50 values ranged from 6.74 to 0.39 μM, consistent with a Ki of 3.50 μM for inhibition of ATX by the C16H33 vinyl sulfone analog CVS-16 (10b). A phenyl vinyl sulfone control compound, PVS-16, lacking the choline-like quaternary ammonium mimicking head group moiety, had little effect on cell viability and did not inhibit ATX. Most importantly, CVS-16 (10b) significantly inhibited melanoma progression in an in vivo tumor model by preventing angiogenesis. Taken together, this suggests that CVS-16 (10b) is a potent and irreversible ATX inhibitor with significant biological activity both in vitro and in vivo.
Collapse
Affiliation(s)
- Mandi M Murph
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia, College of Pharmacy, 240 W. Green Street, Athens, GA 30602, United States.
| | - Guowei W Jiang
- Department of Medicinal Chemistry, The University of Utah, 419 Wakara Way, Suite 205, Salt Lake City, UT 84108-1257, United States
| | - Molly K Altman
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia, College of Pharmacy, 240 W. Green Street, Athens, GA 30602, United States
| | - Wei Jia
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia, College of Pharmacy, 240 W. Green Street, Athens, GA 30602, United States
| | - Duy T Nguyen
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia, College of Pharmacy, 240 W. Green Street, Athens, GA 30602, United States
| | - Jada M Fambrough
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia, College of Pharmacy, 240 W. Green Street, Athens, GA 30602, United States
| | - William J Hardman
- The University of Georgia and Georgia Regents University Medical Partnership, 1425 Prince Avenue, Athens, GA 30606, United States
| | - Ha T Nguyen
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia, College of Pharmacy, 240 W. Green Street, Athens, GA 30602, United States
| | - Sterling K Tran
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia, College of Pharmacy, 240 W. Green Street, Athens, GA 30602, United States
| | - Ali A Alshamrani
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia, College of Pharmacy, 240 W. Green Street, Athens, GA 30602, United States
| | - Damian Madan
- Echelon Biosciences Incorporated, 675 Arapeen Way, Suite 302, Salt Lake City, UT 84108, United States
| | - Jianxing Zhang
- Department of Medicinal Chemistry, The University of Utah, 419 Wakara Way, Suite 205, Salt Lake City, UT 84108-1257, United States
| | - Glenn D Prestwich
- Department of Medicinal Chemistry, The University of Utah, 419 Wakara Way, Suite 205, Salt Lake City, UT 84108-1257, United States.
| |
Collapse
|
43
|
Molavi O, Samadi N, Wu C, Lavasanifar A, Lai R. Silibinin suppresses NPM-ALK, potently induces apoptosis and enhances chemosensitivity in ALK-positive anaplastic large cell lymphoma. Leuk Lymphoma 2015; 57:1154-62. [PMID: 26133723 DOI: 10.3109/10428194.2015.1068306] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nucleophosmin-anaplastic lymphoma kinase (NPM-ALK), an oncogenic fusion protein carrying constitutively active tyrosine kinase, is known to be central to the pathogenesis of ALK-positive anaplastic large cell lymphoma (ALK+ALCL). Here, it is reported that silibinin, a non-toxic naturally-occurring compound, potently suppressed NPM-ALK and effectively inhibited the growth and soft agar colony formation of ALK+ALCL cells. By western blots, it was found that silibinin efficiently suppressed the phosphorylation/activation of NPM-ALK and its key substrates/downstream mediators (including STAT3, MEK/ERK and Akt) in a time- and dose-dependent manner. Correlating with these observations, silibinin suppressed the expression of Bcl-2, survivin and JunB, all of which are found to be upregulated by NPM-ALK and pathogenetically important in ALK+ALCL. Lastly, silibinin augmented the chemosensitivity of ALK+ALCL cells to doxorubicin, particularly the small cell sub-set expressing the transcriptional activity of Sox2, an embryonic stem cell marker. To conclude, the findings suggest that silibinin might be useful in treating ALK+ALCL.
Collapse
Affiliation(s)
- Ommoleila Molavi
- a Faculty of Pharmacy, Tabriz University of Medical Sciences , Tabriz , Iran.,b Department of Laboratory Medicine and Pathology , Faculty of Medicine and Dentistry, University of Alberta , Edmonton , Alberta , Canada
| | - Nasser Samadi
- c Department of Biochemistry , Faculty of Medicine, Tabriz University of Medicine , Tabriz , Iran
| | - Chengsheng Wu
- b Department of Laboratory Medicine and Pathology , Faculty of Medicine and Dentistry, University of Alberta , Edmonton , Alberta , Canada
| | - Afsaneh Lavasanifar
- d Faculty of Pharmacy and Pharmaceutical Science, University of Alberta , Edmonton , Alberta , Canada
| | - Raymond Lai
- b Department of Laboratory Medicine and Pathology , Faculty of Medicine and Dentistry, University of Alberta , Edmonton , Alberta , Canada
| |
Collapse
|
44
|
Barbayianni E, Kaffe E, Aidinis V, Kokotos G. Autotaxin, a secreted lysophospholipase D, as a promising therapeutic target in chronic inflammation and cancer. Prog Lipid Res 2015; 58:76-96. [DOI: 10.1016/j.plipres.2015.02.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 01/20/2015] [Accepted: 02/12/2015] [Indexed: 02/07/2023]
|
45
|
Tang X, Benesch MGK, Brindley DN. Lipid phosphate phosphatases and their roles in mammalian physiology and pathology. J Lipid Res 2015; 56:2048-60. [PMID: 25814022 DOI: 10.1194/jlr.r058362] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Indexed: 12/20/2022] Open
Abstract
Lipid phosphate phosphatases (LPPs) are a group of enzymes that belong to a phosphatase/phosphotransferase family. Mammalian LPPs consist of three isoforms: LPP1, LPP2, and LPP3. They share highly conserved catalytic domains and catalyze the dephosphorylation of a variety of lipid phosphates, including phosphatidate, lysophosphatidate (LPA), sphingosine 1-phosphate (S1P), ceramide 1-phosphate, and diacylglycerol pyrophosphate. LPPs are integral membrane proteins, which are localized on plasma membranes with the active site on the outer leaflet. This enables the LPPs to degrade extracellular LPA and S1P, thereby attenuating their effects on the activation of surface receptors. LPP3 also exhibits noncatalytic effects at the cell surface. LPP expression on internal membranes, such as endoplasmic reticulum and Golgi, facilitates the metabolism of internal lipid phosphates, presumably on the luminal surface of these organelles. This action probably explains the signaling effects of the LPPs, which occur downstream of receptor activation. The three isoforms of LPPs show distinct and nonredundant effects in several physiological and pathological processes including embryo development, vascular function, and tumor progression. This review is intended to present an up-to-date understanding of the physiological and pathological consequences of changing the activities of the different LPPs, especially in relation to cell signaling by LPA and S1P.
Collapse
Affiliation(s)
- Xiaoyun Tang
- Signal Transduction Research Group, Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2S2, Canada
| | - Matthew G K Benesch
- Signal Transduction Research Group, Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2S2, Canada
| | - David N Brindley
- Signal Transduction Research Group, Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2S2, Canada
| |
Collapse
|
46
|
Wang X, Wang C, Sun YT, Sun CZ, Zhang Y, Wang XH, Zhao K. Taxol Produced from Endophytic Fungi Induces Apoptosis in Human Breast, Cervical and Ovarian Cancer Cells. Asian Pac J Cancer Prev 2015; 16:125-31. [DOI: 10.7314/apjcp.2015.16.1.125] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
47
|
Pavlíková N, Bartoňová I, Balušíková K, Kopperova D, Halada P, Kovář J. Differentially expressed proteins in human MCF-7 breast cancer cells sensitive and resistant to paclitaxel. Exp Cell Res 2014; 333:1-10. [PMID: 25557873 DOI: 10.1016/j.yexcr.2014.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 12/08/2014] [Accepted: 12/10/2014] [Indexed: 10/24/2022]
Abstract
Resistance of cancer cells to chemotherapeutic agents is one of the main causes of treatment failure. In order to detect proteins potentially involved in the mechanism of resistance to taxanes, we assessed differences in protein expression in MCF-7 breast cancer cells that are sensitive to paclitaxel and in the same cells with acquired resistance to paclitaxel (established in our lab). Proteins were separated using two-dimensional electrophoresis. Changes in their expression were determined and proteins with altered expression were identified using mass spectrometry. Changes in their expression were confirmed using western blot analysis. With these techniques, we found three proteins expressed differently in resistant MCF-7 cells, i.e., thyroid hormone-interacting protein 6 (TRIP6; upregulated to 650%), heat shock protein 27 (HSP27; downregulated to 50%) and cathepsin D (downregulated to 28%). Silencing of TRIP6 expression by specific siRNA leads to decreased number of grown resistant MCF-7 cells. In the present study we have pointed at some new directions in the studies of the mechanism of resistance to paclitaxel in breast cancer cells.
Collapse
Affiliation(s)
- Nela Pavlíková
- Department of Cell & Molecular Biology, Third Faculty of Medicine, Charles University, Prague, Czech Republic.
| | - Irena Bartoňová
- Department of Cell & Molecular Biology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Kamila Balušíková
- Department of Cell & Molecular Biology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Dana Kopperova
- Department of Cell & Molecular Biology, Third Faculty of Medicine, Charles University, Prague, Czech Republic.
| | - Petr Halada
- Laboratory of Molecular Structure Characterization, Institute of Microbiology,v.v.i., Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jan Kovář
- Department of Cell & Molecular Biology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
48
|
Venkatraman G, Benesch MGK, Tang X, Dewald J, McMullen TPW, Brindley DN. Lysophosphatidate signaling stabilizes Nrf2 and increases the expression of genes involved in drug resistance and oxidative stress responses: implications for cancer treatment. FASEB J 2014; 29:772-85. [PMID: 25398768 DOI: 10.1096/fj.14-262659] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The present work elucidates novel mechanisms for lysophosphatidate (LPA)-induced chemoresistance using human breast, lung, liver, and thyroid cancer cells. LPA (0.5-10 μM) increased Nrf2 transcription factor stability and nuclear localization by ≤5-fold. This involved lysophosphatidate type 1 (LPA1) receptors as identified with 1 μM wls-31 (LPA1/2 receptor agonist) and blocking this effect with 20 μM Ki16425 (LPA1-3 antagonist, Ki = 0.34 μM). Knockdown of LPA1 by 50% to 60% with siRNA decreased Nrf2 stability and expressing LPA1, but not LPA2/3, in human HepG2 cells increased Nrf2 stabilization. LPA-induced Nrf2 expression increased transcription of multidrug-resistant transporters and antioxidant genes by 2- to 4-fold through the antioxidant response element. This protected cells from doxorubicin-induced death. This pathway was verified in vivo by orthotopic injection of 20,000 mouse 4T1 breast cancer cells into syngeneic mice. Blocking LPA production with 10 mg/kg per d ONO-8430506 (competitive autotaxin inhibitor, IC90 = 100 nM) decreased expression of Nrf2, multidrug-resistant transporters, and antioxidant genes in breast tumors by ≤90%. Combining 4 mg/kg doxorubicin every third day with ONO-8430506 synergistically decreased tumor growth and metastasis to lungs and liver by >70%, whereas doxorubicin alone had no significant effect. This study provides the first evidence that LPA increases antioxidant gene and multidrug-resistant transporter expression. Blocking this aspect of LPA signaling provides a novel strategy for improving chemotherapy.
Collapse
Affiliation(s)
- Ganesh Venkatraman
- *Signal Transduction Research Group, Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada; and Department of Surgery, University of Alberta, WC Mackenzie Health Science Centre, Edmonton, Alberta, Canada
| | - Matthew G K Benesch
- *Signal Transduction Research Group, Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada; and Department of Surgery, University of Alberta, WC Mackenzie Health Science Centre, Edmonton, Alberta, Canada
| | - Xiaoyun Tang
- *Signal Transduction Research Group, Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada; and Department of Surgery, University of Alberta, WC Mackenzie Health Science Centre, Edmonton, Alberta, Canada
| | - Jay Dewald
- *Signal Transduction Research Group, Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada; and Department of Surgery, University of Alberta, WC Mackenzie Health Science Centre, Edmonton, Alberta, Canada
| | - Todd P W McMullen
- *Signal Transduction Research Group, Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada; and Department of Surgery, University of Alberta, WC Mackenzie Health Science Centre, Edmonton, Alberta, Canada
| | - David N Brindley
- *Signal Transduction Research Group, Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada; and Department of Surgery, University of Alberta, WC Mackenzie Health Science Centre, Edmonton, Alberta, Canada
| |
Collapse
|
49
|
The role and therapeutic potential of the autotaxin-lysophosphatidate signalling axis in breast cancer. Biochem J 2014; 463:157-65. [PMID: 25195735 DOI: 10.1042/bj20140680] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
ATX (autotaxin) is a secreted lysophospholipase capable of catalysing the formation of the bioactive lipid mediator LPA (lysophosphatidate) from LPC (lysophosphatidylcholine). The ATX-LPA signalling axis plays an important role in both normal physiology and disease pathogenesis, including cancer. In a number of different human cancers, expression of ATX and the G-protein-coupled LPARs (lysophosphatidic acid receptors) have been shown to be elevated and their activation regulates many processes central to tumorigenesis, including proliferation, invasion, migration and angiogenesis. The present review provides an overview of the ATX-LPA signalling axis and collates current knowledge regarding its specific role in breast cancer. The potential manipulation of this pathway to facilitate diagnosis and treatment is also discussed.
Collapse
|
50
|
Tang X, Benesch MGK, Dewald J, Zhao YY, Patwardhan N, Santos WL, Curtis JM, McMullen TPW, Brindley DN. Lipid phosphate phosphatase-1 expression in cancer cells attenuates tumor growth and metastasis in mice. J Lipid Res 2014; 55:2389-400. [PMID: 25210149 DOI: 10.1194/jlr.m053462] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lipid phosphate phosphatase-1 (LPP1) degrades lysophosphatidate (LPA) and attenuates receptor-mediated signaling. LPP1 expression is low in many cancer cells and tumors compared with normal tissues. It was hypothesized from studies with cultured cells that increasing LPP1 activity would decrease tumor growth and metastasis. This hypothesis has never been tested in vivo. To do this, we inducibly expressed LPP1 or a catalytically inactive mutant in cancer cells. Expressing active LPP1 increased extracellular LPA degradation by 5-fold. It also decreased the stimulation of Ca(2+) transients by LPA, a nondephosphorylatable LPA1/2 receptor agonist and a protease-activated receptor-1 peptide. The latter results demonstrate that LPP1 has effects downstream of receptor activation. Decreased Ca(2+) mobilization and Rho activation contributed to the effects of LPP1 in attenuating the LPA-induced migration of MDA-MB-231 breast cancer cells and their growth in 3D culture. Increasing LPP1 expression in breast and thyroid cancer cells decreased tumor growth and the metastasis by up to 80% compared with expression of inactive LPP1 or green fluorescent protein in syngeneic and xenograft mouse models. The present work demonstrates for the first time that increasing the LPP1 activity in three lines of aggressive cancer cells decreases their abilities to produce tumors and metastases in mice.
Collapse
Affiliation(s)
- Xiaoyun Tang
- Signal Transduction Research Group, Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2S2, Canada
| | - Matthew G K Benesch
- Signal Transduction Research Group, Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2S2, Canada
| | - Jay Dewald
- Signal Transduction Research Group, Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2S2, Canada
| | - Yuan Y Zhao
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | | | | | - Jonathan M Curtis
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Todd P W McMullen
- Department of Surgery, University of Alberta, Edmonton, Alberta, T6G 2R7, Canada
| | - David N Brindley
- Signal Transduction Research Group, Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2S2, Canada
| |
Collapse
|