1
|
Brandner S. Rodent models of tumours of the central nervous system. Mol Oncol 2024; 18:2842-2870. [PMID: 39324445 PMCID: PMC11619804 DOI: 10.1002/1878-0261.13729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 07/03/2024] [Accepted: 08/23/2024] [Indexed: 09/27/2024] Open
Abstract
Modelling of human diseases is an essential component of biomedical research, to understand their pathogenesis and ultimately, develop therapeutic approaches. Here, we will describe models of tumours of the central nervous system, with focus on intrinsic CNS tumours. Model systems for brain tumours were established as early as the 1920s, using chemical carcinogenesis, and a systematic analysis of different carcinogens, with a more refined histological analysis followed in the 1950s and 1960s. Alternative approaches at the time used retroviral carcinogenesis, allowing a more topical, organ-centred delivery. Most of the neoplasms arising from this approach were high-grade gliomas. Whilst these experimental approaches did not directly demonstrate a cell of origin, the localisation and growth pattern of the tumours already pointed to an origin in the neurogenic zones of the brain. In the 1980s, expression of oncogenes in transgenic models allowed a more targeted approach by expressing the transgene under tissue-specific promoters, whilst the constitutive inactivation of tumour suppressor genes ('knock out')-often resulted in embryonic lethality. This limitation was elegantly solved by engineering the Cre-lox system, allowing for a promoter-specific, and often also time-controlled gene inactivation. More recently, the use of the CRISPR Cas9 technology has significantly increased experimental flexibility of gene expression or gene inactivation and thus added increased value of rodent models for the study of pathogenesis and establishing preclinical models.
Collapse
Affiliation(s)
- Sebastian Brandner
- Department of Neurodegenerative DiseaseUCL Queen Square Institute of Neurology and Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals, NHS Foundation TrustLondonUK
| |
Collapse
|
2
|
Peng X, Zhang S, Wang Y, Zhou Z, Yu Z, Zhong Z, Zhang L, Chen Z, Claret FX, Elkabets M, Wang F, Sun F, Wang R, Liang H, Lin H, Kong D. Stellettin B Sensitizes Glioblastoma to DNA-Damaging Treatments by Suppressing PI3K-Mediated Homologous Recombination Repair. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205529. [PMID: 36453577 PMCID: PMC9875605 DOI: 10.1002/advs.202205529] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/29/2022] [Indexed: 06/02/2023]
Abstract
Glioblastoma (GBM) is the most aggressive type of cancer. Its current first-line postsurgery regimens are radiotherapy and temozolomide (TMZ) chemotherapy, both of which are DNA damage-inducing therapies but show very limited efficacy and a high risk of resistance. There is an urgent need to develop novel agents to sensitize GBM to DNA-damaging treatments. Here it is found that the triterpene compound stellettin B (STELB) greatly enhances the sensitivity of GBM to ionizing radiation and TMZ in vitro and in vivo. Mechanistically, STELB inhibits the expression of homologous recombination repair (HR) factors BRCA1/2 and RAD51 by promoting the degradation of PI3Kα through the ubiquitin-proteasome pathway; and the induced HR deficiency then leads to augmented DNA damage and cell death. It is further demonstrated that STELB has the potential to rapidly penetrate the blood-brain barrier to exert anti-GBM effects in the brain, based on zebrafish and nude mouse orthotopic xenograft tumor models. The study provides strong evidence that STELB represents a promising drug candidate to improve GBM therapy in combination with DNA-damaging treatments.
Collapse
Affiliation(s)
- Xin Peng
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
- Department of Bioinformatics and Computational BiologyThe University of Texas MD Anderson Cancer CenterHoustonTX77030USA
- Department of Systems Biologythe University of Texas MD Anderson Cancer CenterHoustonTX77030USA
| | - Shaolu Zhang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
| | - Yingying Wang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
| | - Zhicheng Zhou
- Department of Bioinformatics and Computational BiologyThe University of Texas MD Anderson Cancer CenterHoustonTX77030USA
- Department of Systems Biologythe University of Texas MD Anderson Cancer CenterHoustonTX77030USA
| | - Zixiang Yu
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
| | - Zhenxing Zhong
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
| | - Liang Zhang
- Department of Pharmacology and Chemical BiologyState Key Laboratory of Oncogenes and Related GenesShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Zhe‐Sheng Chen
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNY11439USA
| | - Francois X. Claret
- Department of Bioinformatics and Computational BiologyThe University of Texas MD Anderson Cancer CenterHoustonTX77030USA
| | - Moshe Elkabets
- The Shraga Segal Department of MicrobiologyImmunology and GeneticsFaculty of Health SciencesBen‐Gurion University of the NegevBeer‐Sheva84105Israel
| | - Feng Wang
- Department of GeneticsSchool of Basic Medical SciencesTianjin Medical UniversityTianjin300070China
| | - Fan Sun
- Research Center for Marine DrugsState Key Laboratory of Oncogenes and Related GenesDepartment of PharmacyRenji HospitalSchool of MedicineShanghai Jiaotong UniversityShanghai200127China
| | - Ran Wang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
| | - Han Liang
- Department of Bioinformatics and Computational BiologyThe University of Texas MD Anderson Cancer CenterHoustonTX77030USA
- Department of Systems Biologythe University of Texas MD Anderson Cancer CenterHoustonTX77030USA
| | - Hou‐Wen Lin
- Research Center for Marine DrugsState Key Laboratory of Oncogenes and Related GenesDepartment of PharmacyRenji HospitalSchool of MedicineShanghai Jiaotong UniversityShanghai200127China
| | - Dexin Kong
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
| |
Collapse
|
3
|
Recent developments in mitogen activated protein kinase inhibitors as potential anticancer agents. Bioorg Chem 2021; 114:105161. [PMID: 34328852 DOI: 10.1016/j.bioorg.2021.105161] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 01/06/2023]
Abstract
The mitogen activated protein kinase (MAPK) belongs to group of kinase that links the extracellular stimuli to intracellular response. The MAPK signalling pathway (RAS-RAF-MEK-ERK) involved in different pathological conditions like cancer, caused due to genetic or any other factor such as physical or environmental. Many studies have been conducted on the pathological view of MAPK cascade and its associated element like RAS, RAF, MEK, ERK or its isoforms, and still the research is going on particularly with respect to its activation, regulation and inhibition. The MAPK signalling pathway has become the area of research to identify new target for the management of cancer. A number of heterocyclics are key to fight with the cancer associated with these enzymes thus give some hope in the management of cancer by inhibiting MAPK cascade. In the present article, we have focussed on MAPK signalling pathway and role of different heterocyclic scaffolds bearing nitrogen, sulphur and oxygen and about their potential to block MAPK signalling pathway. The heterocyclics are gaining importance due to high potency and selectivity with less off-target effects against different targets involved in the MAPK signalling pathway. We have tried to cover recent advancements in the MAPK signalling pathway inhibitors with an aim to get better understanding of the mechanism of action of the compounds. Several compounds in the preclinical and clinical studies have been thoroughly dealt with. In addition to the synthetic compounds, a significant number of natural products containing heterocyclic moieties as MAPK signalling pathway inhibitors have been put together. The structure activity relationship along with docking studies have been discussed to apprehend the mechanistic studies of various compounds that will ultimately help to design and develop more MAPK signalling pathway inhibitors.
Collapse
|
4
|
Antitumoral Activity of the MEK Inhibitor Trametinib (TMT212) Alone and in Combination with the CDK4/6 Inhibitor Ribociclib (LEE011) in Neuroendocrine Tumor Cells In Vitro. Cancers (Basel) 2021; 13:cancers13061485. [PMID: 33807122 PMCID: PMC8004919 DOI: 10.3390/cancers13061485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES This study assessed the antitumoral activity of the MEK inhibitor trametinib (TMT212) and the ERK1/2 inhibitor SCH772984, alone and in combination with the CDK4/6 inhibitor ribociclib (LEE011) in human neuroendocrine tumor (NET) cell lines in vitro. METHODS Human NET cell lines BON1, QGP-1, and NCI-H727 were treated with trametinib or SCH772984, alone and in combination with ribociclib, to assess cell proliferation, cell cycle distribution, and protein signaling using cell proliferation, flow cytometry, and Western blot assays, respectively. RESULTS Trametinib and SCH772984, alone and in combination with ribociclib, significantly reduced NET cell viability and arrested NET cells at the G1 phase of the cell cycle in all three cell lines tested. In addition, trametinib also caused subG1 events and apoptotic PARP cleavage in QGP1 and NCI-H727 cells. A western blot analysis demonstrated the use of trametinib alone and trametinib in combination with ribociclib to decrease the expression of pERK, cMyc, Chk1, pChk2, pCDK1, CyclinD1, and c-myc in a time-dependent manner in NCI-H727 and QGP-1 cells. CONCLUSIONS MEK and ERK inhibition causes antiproliferative effects in human NET cell lines in vitro. The combination of the MEK inhibitor trametinib (TMT212) with the CDK4/6 inhibitor ribociclib (LEE011) causes additive antiproliferative effects. Future preclinical and clinical studies of MEK inhibition in NETs should be performed.
Collapse
|
5
|
Salaroglio IC, Mungo E, Gazzano E, Kopecka J, Riganti C. ERK is a Pivotal Player of Chemo-Immune-Resistance in Cancer. Int J Mol Sci 2019; 20:ijms20102505. [PMID: 31117237 PMCID: PMC6566596 DOI: 10.3390/ijms20102505] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 05/08/2019] [Accepted: 05/18/2019] [Indexed: 12/16/2022] Open
Abstract
The extracellular signal-related kinases (ERKs) act as pleiotropic molecules in tumors, where they activate pro-survival pathways leading to cell proliferation and migration, as well as modulate apoptosis, differentiation, and senescence. Given its central role as sensor of extracellular signals, ERK transduction system is widely exploited by cancer cells subjected to environmental stresses, such as chemotherapy and anti-tumor activity of the host immune system. Aggressive tumors have a tremendous ability to adapt and survive in stressing and unfavorable conditions. The simultaneous resistance to chemotherapy and immune system responses is common, and ERK signaling plays a key role in both types of resistance. In this review, we dissect the main ERK-dependent mechanisms and feedback circuitries that simultaneously determine chemoresistance and immune-resistance/immune-escape in cancer cells. We discuss the pros and cons of targeting ERK signaling to induce chemo-immune-sensitization in refractory tumors.
Collapse
Affiliation(s)
- Iris C Salaroglio
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy.
| | - Eleonora Mungo
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy.
| | - Elena Gazzano
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy.
| | - Joanna Kopecka
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy.
| | - Chiara Riganti
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy.
| |
Collapse
|
6
|
Liu F, Yang X, Geng M, Huang M. Targeting ERK, an Achilles' Heel of the MAPK pathway, in cancer therapy. Acta Pharm Sin B 2018; 8:552-562. [PMID: 30109180 PMCID: PMC6089851 DOI: 10.1016/j.apsb.2018.01.008] [Citation(s) in RCA: 299] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 12/11/2017] [Accepted: 01/08/2018] [Indexed: 12/11/2022] Open
Abstract
The mitogen-activated protein kinases (MAPK) pathway, often known as the RAS-RAF-MEK-ERK signal cascade, functions to transmit upstream signals to its downstream effectors to regulate physiological process such as cell proliferation, differentiation, survival and death. As the most frequently mutated signaling pathway in human cancer, targeting the MAPK pathway has long been considered a promising strategy for cancer therapy. Substantial efforts in the past decades have led to the clinical success of BRAF and MEK inhibitors. However, the clinical benefits of these inhibitors are compromised by the frequently occurring acquired resistance due to cancer heterogeneity and genomic instability. This review briefly introduces the key protein kinases involved in this pathway as well as their activation mechanisms. We also generalize the correlations between mutations of MAPK members and human cancers, followed by a summarization of progress made on the development of small molecule MAPK kinases inhibitors. In particular, this review highlights the potential advantages of ERK inhibitors in overcoming resistance to upstream targets and proposes that targeting ERK kinase may hold a promising prospect for cancer therapy.
Collapse
|
7
|
Shin CH, Robinson JP, Sonnen JA, Welker AE, Yu DX, VanBrocklin MW, Holmen SL. HBEGF promotes gliomagenesis in the context of Ink4a/Arf and Pten loss. Oncogene 2017; 36:4610-4618. [PMID: 28368403 PMCID: PMC5552427 DOI: 10.1038/onc.2017.83] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 02/07/2017] [Accepted: 02/26/2017] [Indexed: 12/19/2022]
Abstract
Heparin-binding epidermal growth factor (EGF)-like growth factor (HBEGF) is a ligand for the epidermal growth factor receptor (EGFR), one of the most commonly amplified receptor tyrosine kinases (RTK) in glioblastoma. While HBEGF has been found to be expressed in a subset of malignant gliomas, its sufficiency for glioma initiation has not been evaluated. In this study, we demonstrate that HBEGF can initiate glioblastoma (GBM) in mice in the context of Ink4a/Arf and Pten loss, and that these tumors are similar to the classical GBM subtype observed in patients. Isogenic astrocytes from these mice showed activation not only of Egfr but also the RTK Axl in response to HBEGF stimulation. Deletion of either Egfr or Axl decreased the tumorigenic properties of HBEGF transformed cells; however only EGFR was able to rescue the phenotype in cells lacking both RTKs indicating that Egfr is required for activation of Axl in this context. Silencing of HBEGF in vivo resulted in tumor regression and significantly increased survival suggesting that HBEGF may be a clinically relevant target.
Collapse
Affiliation(s)
- C H Shin
- Huntsman Cancer Institute, University of Utah Health Sciences Center, University of Utah, Salt Lake City, UT, USA.,Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, UT, USA
| | - J P Robinson
- Hormel Institute, University of Minnesota, Austin, MN, USA
| | - J A Sonnen
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, UT, USA.,ARUP Laboratories, Salt Lake City, UT, USA
| | - A E Welker
- Huntsman Cancer Institute, University of Utah Health Sciences Center, University of Utah, Salt Lake City, UT, USA
| | - D X Yu
- Huntsman Cancer Institute, University of Utah Health Sciences Center, University of Utah, Salt Lake City, UT, USA.,Department of Surgery, University of Utah Health Sciences Center, Salt Lake City, UT, USA
| | - M W VanBrocklin
- Huntsman Cancer Institute, University of Utah Health Sciences Center, University of Utah, Salt Lake City, UT, USA.,Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, UT, USA.,Department of Surgery, University of Utah Health Sciences Center, Salt Lake City, UT, USA
| | - S L Holmen
- Huntsman Cancer Institute, University of Utah Health Sciences Center, University of Utah, Salt Lake City, UT, USA.,Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, UT, USA.,Department of Surgery, University of Utah Health Sciences Center, Salt Lake City, UT, USA
| |
Collapse
|
8
|
Activated MEK cooperates with Cdkn2a and Pten loss to promote the development and maintenance of melanoma. Oncogene 2017; 36:3842-3851. [PMID: 28263969 PMCID: PMC5501768 DOI: 10.1038/onc.2016.526] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/07/2016] [Accepted: 12/27/2016] [Indexed: 01/22/2023]
Abstract
The development of targeted inhibitors, vemurafenib and dabrafenib, has led to improved clinical outcome for melanoma patients with BRAFV600E mutations. Although the initial response to these inhibitors can be dramatic, sometimes causing complete tumor regression, the majority of melanomas eventually become resistant. Mitogen-activated protein kinase kinase (MEK) mutations are found in primary melanomas and frequently reported in BRAF melanomas that develop resistance to targeted therapy; however, melanoma is a molecularly heterogeneous cancer, and which mutations are drivers and which are passengers remains to be determined. In this study, we demonstrate that in BRAFV600E melanoma cell lines, activating MEK mutations drive resistance and contribute to suboptimal growth of melanoma cells following the withdrawal of BRAF inhibition. In this manner, the cells are drug-addicted, suggesting that melanoma cells evolve a ‘just right’ level of mitogen-activated protein kinase signaling and the additive effects of MEK and BRAF mutations are counterproductive. We also used a novel mouse model of melanoma to demonstrate that several of these MEK mutants promote the development, growth and maintenance of melanoma in vivo in the context of Cdkn2a and Pten loss. By utilizing a genetic approach to control mutant MEK expression in vivo, we were able to induce tumor regression and significantly increase survival; however, after a long latency, all tumors subsequently became resistant. These data suggest that resistance to BRAF or MEK inhibitors is probably inevitable, and novel therapeutic approaches are needed to target dormant tumors.
Collapse
|
9
|
Caunt CJ, Sale MJ, Smith PD, Cook SJ. MEK1 and MEK2 inhibitors and cancer therapy: the long and winding road. Nat Rev Cancer 2015; 15:577-92. [PMID: 26399658 DOI: 10.1038/nrc4000] [Citation(s) in RCA: 436] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The role of the ERK signalling pathway in cancer is thought to be most prominent in tumours in which mutations in the receptor tyrosine kinases RAS, BRAF, CRAF, MEK1 or MEK2 drive growth factor-independent ERK1 and ERK2 activation and thence inappropriate cell proliferation and survival. New drugs that inhibit RAF or MEK1 and MEK2 have recently been approved or are currently undergoing late-stage clinical evaluation. In this Review, we consider the ERK pathway, focusing particularly on the role of MEK1 and MEK2, the 'gatekeepers' of ERK1/2 activity. We discuss their validation as drug targets, the merits of targeting MEK1 and MEK2 versus BRAF and the mechanisms of action of different inhibitors of MEK1 and MEK2. We also consider how some of the systems-level properties (intrapathway regulatory loops and wider signalling network connections) of the ERK pathway present a challenge for the success of MEK1 and MEK2 inhibitors, discuss mechanisms of resistance to these inhibitors, and review their clinical progress.
Collapse
Affiliation(s)
- Christopher J Caunt
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Matthew J Sale
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Paul D Smith
- AstraZeneca, Oncology iMed, Cancer Biosciences, Cancer Research UK, Li Ka Shing Centre, Cambridge Institute, Robinson Way, Cambridge CB2 0RE, UK
| | - Simon J Cook
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| |
Collapse
|
10
|
Kegelman TP, Hu B, Emdad L, Das SK, Sarkar D, Fisher PB. In vivo modeling of malignant glioma: the road to effective therapy. Adv Cancer Res 2015; 121:261-330. [PMID: 24889534 DOI: 10.1016/b978-0-12-800249-0.00007-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite an increased emphasis on developing new therapies for malignant gliomas, they remain among the most intractable tumors faced today as they demonstrate a remarkable ability to evade current treatment strategies. Numerous candidate treatments fail at late stages, often after showing promising preclinical results. This disconnect highlights the continued need for improved animal models of glioma, which can be used to both screen potential targets and authentically recapitulate the human condition. This review examines recent developments in the animal modeling of glioma, from more established rat models to intriguing new systems using Drosophila and zebrafish that set the stage for higher throughput studies of potentially useful targets. It also addresses the versatility of mouse modeling using newly developed techniques recreating human protocols and sophisticated genetically engineered approaches that aim to characterize the biology of gliomagenesis. The use of these and future models will elucidate both new targets and effective combination therapies that will impact on disease management.
Collapse
Affiliation(s)
- Timothy P Kegelman
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Bin Hu
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA.
| |
Collapse
|
11
|
Ilkhanizadeh S, Lau J, Huang M, Foster DJ, Wong R, Frantz A, Wang S, Weiss WA, Persson AI. Glial progenitors as targets for transformation in glioma. Adv Cancer Res 2015; 121:1-65. [PMID: 24889528 DOI: 10.1016/b978-0-12-800249-0.00001-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Glioma is the most common primary malignant brain tumor and arises throughout the central nervous system. Recent focus on stem-like glioma cells has implicated neural stem cells (NSCs), a minor precursor population restricted to germinal zones, as a potential source of gliomas. In this review, we focus on the relationship between oligodendrocyte progenitor cells (OPCs), the largest population of cycling glial progenitors in the postnatal brain, and gliomagenesis. OPCs can give rise to gliomas, with signaling pathways associated with NSCs also playing key roles during OPC lineage development. Gliomas can also undergo a switch from progenitor- to stem-like phenotype after therapy, consistent with an OPC-origin even for stem-like gliomas. Future in-depth studies of OPC biology may shed light on the etiology of OPC-derived gliomas and reveal new therapeutic avenues.
Collapse
Affiliation(s)
- Shirin Ilkhanizadeh
- Department of Neurology, University of California, San Francisco, California, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, USA
| | - Jasmine Lau
- Department of Neurology, University of California, San Francisco, California, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, USA
| | - Miller Huang
- Department of Neurology, University of California, San Francisco, California, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, USA
| | - Daniel J Foster
- Department of Neurology, University of California, San Francisco, California, USA; Department of Neurological Surgery and Brain Tumor Research Center, University of California, San Francisco, California, USA; Sandler Neurosciences Center, University of California, San Francisco, California, USA
| | - Robyn Wong
- Department of Neurology, University of California, San Francisco, California, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, USA
| | - Aaron Frantz
- Department of Neurology, University of California, San Francisco, California, USA; Department of Neurological Surgery and Brain Tumor Research Center, University of California, San Francisco, California, USA; Sandler Neurosciences Center, University of California, San Francisco, California, USA
| | - Susan Wang
- Department of Neurology, University of California, San Francisco, California, USA; Department of Neurological Surgery and Brain Tumor Research Center, University of California, San Francisco, California, USA; Sandler Neurosciences Center, University of California, San Francisco, California, USA
| | - William A Weiss
- Department of Neurology, University of California, San Francisco, California, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, USA; Department of Neurological Surgery and Brain Tumor Research Center, University of California, San Francisco, California, USA; Department of Neurology, University of California, San Francisco, California, USA
| | - Anders I Persson
- Department of Neurology, University of California, San Francisco, California, USA; Department of Neurological Surgery and Brain Tumor Research Center, University of California, San Francisco, California, USA; Sandler Neurosciences Center, University of California, San Francisco, California, USA.
| |
Collapse
|
12
|
Shin CH, Grossmann AH, Holmen SL, Robinson JP. The BRAF kinase domain promotes the development of gliomas in vivo. Genes Cancer 2015; 6:9-18. [PMID: 25821557 PMCID: PMC4362480 DOI: 10.18632/genesandcancer.48] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 01/23/2015] [Indexed: 12/31/2022] Open
Abstract
In-frame BRAF fusions have been observed in over 80% of sporadic pilocytic astrocytomas. In each fusion, the N-terminal autoinhibitory domain of BRAF is lost, which results in constitutive activation via the retained C-terminal kinase domain (BRAF-KD). We set out to determine if the BRAF-KD is sufficient to induce gliomas alone or in combination with Ink4a/Arf loss. Syngeneic cell lines demonstrated the transforming ability of the BRAF-KD following Ink4a/Arf loss. In vivo, somatic cell gene transfer of the BRAF-KD did not cause tumors to develop; however, gliomas were detected in 21% of the mice following Ink4a/Arf loss. Interestingly, these mice demonstrated no obvious symptoms. Histologically the tumors were highly cellular and atypical, similar to BRAFV600E tumors reported previously, but with less invasive borders. They also lacked the necrosis and vascular proliferation seen in BRAFV600E-driven tumors. The BRAF-KD-expressing astrocytes showed elevated MAPK signaling, albeit at reduced levels compared to the BRAFV600E mutant. Pharmacologic inhibition of MEK and PI3K inhibited cell growth and induced apoptosis in astrocytes expressing BRAF-KD. Our findings demonstrate that the BRAF-KD can cooperate with Ink4a/Arf loss to drive the development of gliomas and suggest that glioma development is determined by the level of MAPK signaling.
Collapse
Affiliation(s)
- Clifford H Shin
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah, USA ; Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| | - Allie H Grossmann
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, Utah, USA ; ARUP Laboratories, Salt Lake City, Utah, USA
| | - Sheri L Holmen
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah, USA ; Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, Utah, USA ; Department of Surgery, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| | - James P Robinson
- Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| |
Collapse
|
13
|
Joshi S, Wels C, Beham-Schmid C, Fukunaga-Kalabis M, Holmen SL, Otte M, Herlyn M, Waldhoer M, Schaider H. Gα13 mediates human cytomegalovirus-encoded chemokine receptor US28-induced cell death in melanoma. Int J Cancer 2015; 137:1503-8. [PMID: 25754407 DOI: 10.1002/ijc.29506] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 02/12/2015] [Indexed: 11/09/2022]
Abstract
US28, a constitutively active G-protein-coupled receptor encoded by the human cytomegalovirus, leads to mechanistically unknown programmed cell death. Here we show that expression of wild-type US28 in human melanoma cells leads to apoptotic cell death via caspase 3 activation along with reduced cell proliferation. Reduced tumor growth upon US28 expression was observed in a xenograft mouse model. The signaling mute US28R129A showed a reduced antiproliferative effect. On evaluating different G-proteins coupled to US28 for signal transduction, Gα13 was identified as the main G-protein executing the apoptotic effect. Silencing of Gα13 but not Gαq resulted in a substantial increase in cell survival. Overexpression of Gα13 but not Gαq and their GTPase deficient forms Gα13Q226L and GαqQ209L, respectively, confirmed the requirement of Gα13 for US28 mediated cell death. Increasing expression of Gα13 alone induced cell death underscoring its relay function for US28 mediated decreased cell viability. Further reduced expression of Gα13 in melanoma cell lines isolated from advanced lesions and melanoma tissue was observed. These findings identified Gα13 as crucial for US28-induced cell death, substantiating that the effect of US28 on cell fate depends on preferred G-protein binding.
Collapse
Affiliation(s)
- Shripad Joshi
- Cancer Biology Unit, Department of Dermatology, Medical University of Graz, Graz, Austria.,Centre for Medical Research (ZMF), Medical University of Graz, Graz, Austria
| | - Christian Wels
- Cancer Biology Unit, Department of Dermatology, Medical University of Graz, Graz, Austria.,Centre for Medical Research (ZMF), Medical University of Graz, Graz, Austria
| | | | | | - Sheri L Holmen
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | | | | | - Maria Waldhoer
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria.,Novo Nordisk a/S, Novo Nordisk Park, E5.2.18, Måløv, Denmark
| | - Helmut Schaider
- Cancer Biology Unit, Department of Dermatology, Medical University of Graz, Graz, Austria.,Centre for Medical Research (ZMF), Medical University of Graz, Graz, Austria.,Dermatology Research Centre, School of Medicine, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia.,The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD, Australia
| |
Collapse
|
14
|
El Meskini R, Iacovelli AJ, Kulaga A, Gumprecht M, Martin PL, Baran M, Householder DB, Van Dyke T, Weaver Ohler Z. A preclinical orthotopic model for glioblastoma recapitulates key features of human tumors and demonstrates sensitivity to a combination of MEK and PI3K pathway inhibitors. Dis Model Mech 2015; 8:45-56. [PMID: 25431423 PMCID: PMC4283649 DOI: 10.1242/dmm.018168] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 11/18/2014] [Indexed: 12/25/2022] Open
Abstract
Current therapies for glioblastoma multiforme (GBM), the highest grade malignant brain tumor, are mostly ineffective, and better preclinical model systems are needed to increase the successful translation of drug discovery efforts into the clinic. Previous work describes a genetically engineered mouse (GEM) model that contains perturbations in the most frequently dysregulated networks in GBM (driven by RB, KRAS and/or PI3K signaling and PTEN) that induce development of Grade IV astrocytoma with properties of the human disease. Here, we developed and characterized an orthotopic mouse model derived from the GEM that retains the features of the GEM model in an immunocompetent background; however, this model is also tractable and efficient for preclinical evaluation of candidate therapeutic regimens. Orthotopic brain tumors are highly proliferative, invasive and vascular, and express histology markers characteristic of human GBM. Primary tumor cells were examined for sensitivity to chemotherapeutics and targeted drugs. PI3K and MAPK pathway inhibitors, when used as single agents, inhibited cell proliferation but did not result in significant apoptosis. However, in combination, these inhibitors resulted in a substantial increase in cell death. Moreover, these findings translated into the in vivo orthotopic model: PI3K or MAPK inhibitor treatment regimens resulted in incomplete pathway suppression and feedback loops, whereas dual treatment delayed tumor growth through increased apoptosis and decreased tumor cell proliferation. Analysis of downstream pathway components revealed a cooperative effect on target downregulation. These concordant results, together with the morphologic similarities to the human GBM disease characteristics of the model, validate it as a new platform for the evaluation of GBM treatment.
Collapse
Affiliation(s)
- Rajaa El Meskini
- Center for Advanced Preclinical Research, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Anthony J Iacovelli
- Center for Advanced Preclinical Research, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Alan Kulaga
- Center for Advanced Preclinical Research, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Michelle Gumprecht
- Center for Advanced Preclinical Research, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Philip L Martin
- Center for Advanced Preclinical Research, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Maureen Baran
- Center for Advanced Preclinical Research, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Deborah B Householder
- Center for Advanced Preclinical Research, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Terry Van Dyke
- Center for Advanced Preclinical Research, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA. Mouse Cancer Genetics Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Zoë Weaver Ohler
- Center for Advanced Preclinical Research, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.
| |
Collapse
|
15
|
Li H, Chen Z, Zhou S. Apoptosis in glioma-bearing rats after neural stem cell transplantation. Neural Regen Res 2014; 8:1793-802. [PMID: 25206476 PMCID: PMC4145955 DOI: 10.3969/j.issn.1673-5374.2013.19.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 06/03/2013] [Indexed: 12/22/2022] Open
Abstract
Abnormal activation of the Ras/Raf/Mek/Erk signaling cascade plays an important role in glioma. Inhibition of this aberrant activity could effectively hinder glioma cell proliferation and promote cell apoptosis. To investigate the mechanism of glioblastoma treatment by neural stem cell transplantation with respect to the Ras/Raf/Mek/Erk pathway, C6 glioma cells were prepared in suspension and then infused into the rat brain to establish a glioblastoma model. Neural stem cells isolated from fetal rats were then injected into the brain of this glioblastoma model. Results showed that Raf-1, Erk and Bcl-2 protein expression significantly increased, while Caspase-3 protein expression decreased. After transplantation of neural stem cells, Raf-1, Erk and Bcl-2 protein expression significantly decreased, while Caspase-3 protein expression significantly increased. Our findings indicate that transplantation of neural stem cells may promote apoptosis of glioma cells by inhibiting Ras/Raf/Mek/Erk signaling, and thus may represent a novel treatment approach for glioblastoma.
Collapse
Affiliation(s)
- Hua Li
- Department of Neurology, the 476 Hospital of Chinese PLA, Fuzhou 350002, Fujian Province, China
| | - Zhenjun Chen
- Department of Neurology, the 476 Hospital of Chinese PLA, Fuzhou 350002, Fujian Province, China
| | - Shaopeng Zhou
- Department of Anesthesiology, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, Guangdong Province, China
| |
Collapse
|
16
|
Wang Y, Huang JW, Castella M, Huntsman DG, Taniguchi T. p53 is positively regulated by miR-542-3p. Cancer Res 2014; 74:3218-27. [PMID: 24762395 DOI: 10.1158/0008-5472.can-13-1706] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The tumor suppressor p53 and miRNAs are linked through a complex network. Several miRNAs modulate p53 expression, while p53 regulates the transcription and/or biogenesis of several other miRNAs. Here, we report the development of a cell-based assay used with a library of human miRNA mimics in a high-throughput screen for miRNAs that modulate p53 expression. Overexpression of miRNA (miR)-542-3p in cancer cells elevated p53 expression, stimulated the expression of p53 targets, and inhibited cell proliferation. Mechanistically, miR-542-3p increased p53 protein stability by weakening interactions between p53 and its negative regulator MDM2. Furthermore, miR-542-3p suppressed ribosome biogenesis by downregulating a subset of ribosomal proteins such as RPS23, leading to upregulation of RPL11 and stabilization of p53. The 3'untranslated region in the RPS23 transcript contained a miR-542-3p-binding site, suggesting that RPS23 is a direct target of miR-542-3p. Our results define miR-542-3p as an important new positive regulator of p53 with potential applications in cancer treatment.
Collapse
Affiliation(s)
- Yemin Wang
- Authors' Affiliations: Divisions of Human Biology and Public Health Sciences, Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center; Molecular & Cellular Biology Program, University of Washington, Seattle, Washington; and Department of Pathology and Laboratory Medicine, Center for Translational and Applied Genomics, British Columbia Cancer Agency, University of British Columbia, Vancouver BC, CanadaAuthors' Affiliations: Divisions of Human Biology and Public Health Sciences, Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center; Molecular & Cellular Biology Program, University of Washington, Seattle, Washington; and Department of Pathology and Laboratory Medicine, Center for Translational and Applied Genomics, British Columbia Cancer Agency, University of British Columbia, Vancouver BC, Canada
| | - Jen-Wei Huang
- Authors' Affiliations: Divisions of Human Biology and Public Health Sciences, Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center; Molecular & Cellular Biology Program, University of Washington, Seattle, Washington; and Department of Pathology and Laboratory Medicine, Center for Translational and Applied Genomics, British Columbia Cancer Agency, University of British Columbia, Vancouver BC, CanadaAuthors' Affiliations: Divisions of Human Biology and Public Health Sciences, Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center; Molecular & Cellular Biology Program, University of Washington, Seattle, Washington; and Department of Pathology and Laboratory Medicine, Center for Translational and Applied Genomics, British Columbia Cancer Agency, University of British Columbia, Vancouver BC, Canada
| | - Maria Castella
- Authors' Affiliations: Divisions of Human Biology and Public Health Sciences, Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center; Molecular & Cellular Biology Program, University of Washington, Seattle, Washington; and Department of Pathology and Laboratory Medicine, Center for Translational and Applied Genomics, British Columbia Cancer Agency, University of British Columbia, Vancouver BC, Canada
| | - David George Huntsman
- Authors' Affiliations: Divisions of Human Biology and Public Health Sciences, Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center; Molecular & Cellular Biology Program, University of Washington, Seattle, Washington; and Department of Pathology and Laboratory Medicine, Center for Translational and Applied Genomics, British Columbia Cancer Agency, University of British Columbia, Vancouver BC, Canada
| | - Toshiyasu Taniguchi
- Authors' Affiliations: Divisions of Human Biology and Public Health Sciences, Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center; Molecular & Cellular Biology Program, University of Washington, Seattle, Washington; and Department of Pathology and Laboratory Medicine, Center for Translational and Applied Genomics, British Columbia Cancer Agency, University of British Columbia, Vancouver BC, Canada
| |
Collapse
|
17
|
Grzmil M, Huber RM, Hess D, Frank S, Hynx D, Moncayo G, Klein D, Merlo A, Hemmings BA. MNK1 pathway activity maintains protein synthesis in rapalog-treated gliomas. J Clin Invest 2014; 124:742-54. [PMID: 24401275 DOI: 10.1172/jci70198] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 10/30/2013] [Indexed: 01/20/2023] Open
Abstract
High levels of mammalian target of rapamycin complex 1 (mTORC1) activity in malignant gliomas promote tumor progression, suggesting that targeting mTORC1 has potential as a therapeutic strategy. Remarkably, clinical trials in patients with glioma revealed that rapamycin analogs (rapalogs) have limited efficacy, indicating activation of resistance mechanisms. Targeted depletion of MAPK-interacting Ser/Thr kinase 1 (MNK1) sensitizes glioma cells to the mTORC1 inhibitor rapamycin through an indistinct mechanism. Here, we analyzed how MNK1 and mTORC1 signaling pathways regulate the assembly of translation initiation complexes, using the cap analog m7GTP to enrich for initiation complexes in glioma cells followed by mass spectrometry-based quantitative proteomics. Association of eukaryotic translation initiation factor 4E (eIF4E) with eIF4E-binding protein 1 (4EBP1) was regulated by the mTORC1 pathway, whereas pharmacological blocking of MNK activity by CGP57380 or MNK1 knockdown, along with mTORC1 inhibition by RAD001, increased 4EBP1 binding to eIF4E. Furthermore, combined MNK1 and mTORC1 inhibition profoundly inhibited 4EBP1 phosphorylation at Ser65, protein synthesis and proliferation in glioma cells, and reduced tumor growth in an orthotopic glioblastoma (GBM) mouse model. Immunohistochemical analysis of GBM samples revealed increased 4EBP1 phosphorylation. Taken together, our data indicate that rapalog-activated MNK1 signaling promotes glioma growth through regulation of 4EBP1 and indicate a molecular cross-talk between the mTORC1 and MNK1 pathways that has potential to be exploited therapeutically.
Collapse
|
18
|
Robinson GL, Robinson JP, Lastwika KJ, Holmen SL, Vanbrocklin MW. Akt signaling accelerates tumor recurrence following ras inhibition in the context of ink4a/arf loss. Genes Cancer 2014; 4:476-85. [PMID: 24386508 DOI: 10.1177/1947601913513268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 10/27/2013] [Indexed: 12/30/2022] Open
Abstract
Aberrant activation of the RAS signaling pathway contributes to nearly all human cancers, including gliomas. To determine the dependence of high-grade gliomas on this signaling pathway, we developed a doxycycline-regulated KRas glioma mouse model. Using this model we previously demonstrated that inhibition of KRas expression in gliomas induced by activated KRas and Akt results in complete tumor regression. We have also shown that, in the context of Ink4a/Arf loss, abrogation of KRas signaling is sufficient to decrease tumor burden but resistance ensues. In this study, we sought to determine the effect of activated Akt signaling in combination with activated KRas and loss of Ink4a/Arf on the growth and recurrence of brain tumors following suppression of KRas expression. We observed significant tumor formation in Ink4a/Arf(lox/lox) mice injected with retroviruses containing tetracycline responsive element (TRE)-KRas, Tet-off, Akt, and Cre. Abrogation of KRas signaling resulted in significant tumor regression; however, resistance developed after a relatively short latency. Tumor recurrence occurred more rapidly and the tumors were more aggressive in the presence of activated Akt signaling compared with loss of Ink4a/Arf alone suggesting that this pathway contributes to tumor progression in this context.
Collapse
Affiliation(s)
- Gemma L Robinson
- Department of Surgery, University of Utah, Salt Lake City, UT, USA ; Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - James P Robinson
- Department of Surgery, University of Utah, Salt Lake City, UT, USA ; Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | | | - Sheri L Holmen
- Department of Surgery, University of Utah, Salt Lake City, UT, USA ; Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Matthew W Vanbrocklin
- Department of Surgery, University of Utah, Salt Lake City, UT, USA ; Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
19
|
Grzmil M, Hemmings BA. Overcoming resistance to rapalogs in gliomas by combinatory therapies. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1371-80. [PMID: 23395884 DOI: 10.1016/j.bbapap.2013.01.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 01/30/2013] [Indexed: 12/31/2022]
Abstract
Glioblastoma is the most common and aggressive brain tumor type, with a mean patient survival of approximately 1year. Many previous analyses of the glioma kinome have identified key deregulated pathways that converge and activate mammalian target of rapamycin (mTOR). Following the identification and characterization of mTOR-promoting activity in gliomagenesis, data from preclinical studies suggested the targeting of mTOR by rapamycin or its analogs (rapalogs) as a promising therapeutic approach. However, clinical trials with rapalogs have shown very limited efficacy on glioma due to the development of resistance mechanisms. Analysis of rapalog-insensitive glioma cells has revealed increased activity of growth and survival pathways compensating for mTOR inhibition by rapalogs that are suitable for therapeutic intervention. In addition, recently developed mTOR inhibitors show high anti-glioma activity. In this review, we recapitulate the regulation of mTOR signaling and its involvement in gliomagenesis, discuss mechanisms resulting in resistance to rapalogs, and speculate on strategies to overcome resistance. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases (2012).
Collapse
Affiliation(s)
- Michal Grzmil
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
| | | |
Collapse
|
20
|
Pal I, Mandal M. PI3K and Akt as molecular targets for cancer therapy: current clinical outcomes. Acta Pharmacol Sin 2012; 33:1441-58. [PMID: 22983389 DOI: 10.1038/aps.2012.72] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The PI3K-Akt pathway is a vital regulator of cell proliferation and survival. Alterations in the PIK3CA gene that lead to enhanced PI3K kinase activity have been reported in many human cancer types, including cancers of the colon, breast, brain, liver, stomach and lung. Deregulation of PI3K causes aberrant Akt activity. Therefore targeting this pathway could have implications for cancer treatment. The first generation PI3K-Akt inhibitors were proven to be highly effective with a low IC(50), but later, they were shown to have toxic side effects and poor pharmacological properties and selectivity. Thus, these inhibitors were only effective in preclinical models. However, derivatives of these first generation inhibitors are much more selective and are quite effective in targeting the PI3K-Akt pathway, either alone or in combination. These second-generation inhibitors are essentially a specific chemical moiety that helps to form a strong hydrogen bond interaction with the PI3K/Akt molecule. The goal of this review is to delineate the current efforts that have been undertaken to inhibit the various components of the PI3K and Akt pathway in different types of cancer both in vitro and in vivo. Our focus here is on these novel therapies and their inhibitory effects that depend upon their chemical nature, as well as their development towards clinical trials.
Collapse
|
21
|
Disruption of PH-kinase domain interactions leads to oncogenic activation of AKT in human cancers. Proc Natl Acad Sci U S A 2012; 109:19368-73. [PMID: 23134728 DOI: 10.1073/pnas.1204384109] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The protein kinase v-akt murine thymoma viral oncogene homolog (AKT), a key regulator of cell survival and proliferation, is frequently hyperactivated in human cancers. Intramolecular pleckstrin homology (PH) domain-kinase domain (KD) interactions are important in maintaining AKT in an inactive state. AKT activation proceeds after a conformational change that dislodges the PH from the KD. To understand these autoinhibitory interactions, we generated mutations at the PH-KD interface and found that most of them lead to constitutive activation of AKT. Such mutations are likely another mechanism by which activation may occur in human cancers and other diseases. In support of this likelihood, we found somatic mutations in AKT1 at the PH-KD interface that have not been previously described in human cancers. Furthermore, we show that the AKT1 somatic mutants are constitutively active, leading to oncogenic signaling. Additionally, our studies show that the AKT1 mutants are not effectively inhibited by allosteric AKT inhibitors, consistent with the requirement for an intact PH-KD interface for allosteric inhibition. These results have important implications for therapeutic intervention in patients with AKT mutations at the PH-KD interface.
Collapse
|
22
|
Rankin SL, Zhu G, Baker SJ. Review: insights gained from modelling high-grade glioma in the mouse. Neuropathol Appl Neurobiol 2012; 38:254-70. [PMID: 22035336 DOI: 10.1111/j.1365-2990.2011.01231.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
High-grade gliomas (HGGs) are devastating primary brain tumours with poor outcomes. Advances towards effective treatments require improved understanding of pathogenesis and relevant model systems for preclinical testing. Mouse models for HGG provide physiologically relevant experimental systems for analysis of HGG pathogenesis. There are advantages and disadvantages to the different methodologies used to generate such models, including implantation, genetic engineering or somatic gene transfer approaches. This review highlights how mouse models have provided insights into the contribution of specific mutations to tumour initiation, progression and phenotype, the influence of tumour micro-environment, and the analysis of cell types that can give rise to glioma. HGGs are a heterogeneous group of tumours, and the complexity of diverse mutations within common signalling pathways as well as the developmental and cell-type context of transformation contributes to the overall diversity of glioma phenotype. Enhanced understanding of the mutations and cell types giving rise to HGG, along with the ability to design increasingly complex mouse models that more closely simulate the process of human gliomagenesis will continue to provide improved experimental systems for dissecting mechanisms of disease pathogenesis and for preclinical testing.
Collapse
Affiliation(s)
- S L Rankin
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | | |
Collapse
|
23
|
Jones DTW, Gronych J, Lichter P, Witt O, Pfister SM. MAPK pathway activation in pilocytic astrocytoma. Cell Mol Life Sci 2012; 69:1799-811. [PMID: 22159586 PMCID: PMC3350769 DOI: 10.1007/s00018-011-0898-9] [Citation(s) in RCA: 157] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 11/22/2011] [Accepted: 11/24/2011] [Indexed: 12/31/2022]
Abstract
Pilocytic astrocytoma (PA) is the most common tumor of the pediatric central nervous system (CNS). A body of research over recent years has demonstrated a key role for mitogen-activated protein kinase (MAPK) pathway signaling in the development and behavior of PAs. Several mechanisms lead to activation of this pathway in PA, mostly in a mutually exclusive manner, with constitutive BRAF kinase activation subsequent to gene fusion being the most frequent. The high specificity of this fusion to PA when compared with other CNS tumors has diagnostic utility. In addition, the frequency of alteration of this key pathway provides an opportunity for molecularly targeted therapy in this tumor. Here, we review the current knowledge on mechanisms of MAPK activation in PA and some of the downstream consequences of this activation, which are now starting to be elucidated both in vitro and in vivo, as well as clinical considerations and possible future directions.
Collapse
Affiliation(s)
- David T. W. Jones
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Jan Gronych
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Peter Lichter
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Olaf Witt
- Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, DKFZ, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Stefan M. Pfister
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany
| |
Collapse
|
24
|
See WL, Tan IL, Mukherjee J, Nicolaides T, Pieper RO. Sensitivity of glioblastomas to clinically available MEK inhibitors is defined by neurofibromin 1 deficiency. Cancer Res 2012; 72:3350-9. [PMID: 22573716 DOI: 10.1158/0008-5472.can-12-0334] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Loss of neurofibromin 1 (NF1) leads to hyperactivation of RAS, which in turn signals through the RAF/MEK/ERK and phosphoinositide 3-kinase (PI3K)/mTOR pathways to regulate cell growth and survival. Because NF1-deficient acute myeloid leukemias are sensitive to MEK inhibitors, we investigated here whether NF1-deficient glioblastoma multiforme (GBM) would respond to MEK inhibition. In 19 GBM cell lines, we found that treatment with the clinically available MEK inhibitors PD0325901 or AZD6244 decreased levels of phospho-ERK, the downstream effector of MEK, regardless of NF1 status. However, growth inhibition occurred only in a subset of NF1-deficient cells, in association with decreased levels of cyclin D1, increased levels of p27, and G1 arrest. As a single agent, PD0325901 suppressed the growth of NF1-deficient, MEK inhibitor-sensitive cells in vivo as well. Mechanistically, NF1-deficient, MEK inhibitor-sensitive cells were dependent upon the RAF/MEK/ERK pathway for growth and did not activate the PI3K pathway as a mechanism of acquired resistance. Importantly, NF1-deficient cells intrinsically resistant to MEK inhibition were sensitized by the addition of the dual PI3K/mTOR inhibitor PI-103. Taken together, our findings indicate that a subset of NF1-deficient GBMs may respond to MEK inhibitors currently being tested in clinical trials.
Collapse
Affiliation(s)
- Wendy L See
- Department of Neurological Surgery, University of California, San Francisco, California 94158, USA
| | | | | | | | | |
Collapse
|
25
|
Zhou H, Huang HY, Shapiro E, Lepor H, Huang WC, Mohammadi M, Mohr I, Tang MS, Huang C, Wu XR. Urothelial tumor initiation requires deregulation of multiple signaling pathways: implications in target-based therapies. Carcinogenesis 2012; 33:770-80. [PMID: 22287562 DOI: 10.1093/carcin/bgs025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Although formation of urothelial carcinoma of the bladder (UCB) requires multiple steps and proceeds along divergent pathways, the underlying genetic and molecular determinants for each step and pathway remain undefined. By developing transgenic mice expressing single or combinatorial genetic alterations in urothelium, we demonstrated here that overcoming oncogene-induced compensatory tumor barriers was critical for urothelial tumor initiation. Constitutively active Ha-ras (Ras*) elicited urothelial hyperplasia that was persistent and did not progress to tumors over a 10 months period. This resistance to tumorigenesis coincided with increased expression of p53 and all pRb family proteins. Expression of a Simian virus 40 T antigen (SV40T), which disables p53 and pRb family proteins, in urothelial cells expressing Ras* triggered early-onset, rapidly-growing and high-grade papillary UCB that strongly resembled the human counterpart (pTaG3). Urothelial cells expressing both Ras* and SV40T had defective G(1)/S checkpoint, elevated Ras-GTPase and hyperactivated AKT-mTOR signaling. Inhibition of the AKT-mTOR pathway with rapamycin significantly reduced the size of high-grade papillary UCB but hyperactivated mitogen-activated protein kinase (MAPK). Inhibition of AKT-mTOR, MAPK and STAT3 altogether resulted in much greater tumor reduction and longer survival than did inhibition of AKT-mTOR pathway alone. Our studies provide the first experimental evidence delineating the combinatorial genetic events required for initiating high-grade papillary UCB, a poorly defined and highly challenging clinical entity. Furthermore, they suggest that targeted therapy using a single agent such as rapamycin may not be highly effective in controlling high-grade UCB and that combination therapy employing inhibitors against multiple targets are more likely to achieve desirable therapeutic outcomes.
Collapse
Affiliation(s)
- Haiping Zhou
- Department of Urology, NYU Cancer Institute, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Mellinghoff IK, Schultz N, Mischel PS, Cloughesy TF. Will kinase inhibitors make it as glioblastoma drugs? Curr Top Microbiol Immunol 2012; 355:135-69. [PMID: 22015553 PMCID: PMC3784987 DOI: 10.1007/82_2011_178] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Kinase inhibitors have emerged as effective cancer therapeutics in a variety of human cancers. Glioblastoma (GBM), the most common malignant brain tumor in adults, represents a compelling disease for kinase inhibitor therapy because the majority of these tumors harbor genetic alterations that result in aberrant activation of growth factor signaling pathways. Attempts to target the Ras-Phosphatidylinositol 3-kinase (PI3K)-mammalian Target of Rapamycin (mTOR) axis in GBM with first generation receptor tyrosine kinase (RTK) inhibitors and rapalogs have been disappointing. However, there is reason for renewed optimism given the now very detailed knowledge of the cancer genome in GBM and a wealth of novel compounds entering the clinic, including next generation RTK inhibitors, class I PI3K inhibitors, mTOR kinase inhibitors (TORKinibs), and dual PI3(K)/mTOR inhibitors. This chapter reviews common genetic alterations in growth factor signaling pathways in GBM, their validation as therapeutic targets in this disease, and strategies for future clinical development of kinase inhibitors for high grade glioma.
Collapse
Affiliation(s)
- Ingo K Mellinghoff
- Department and Neurology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA.
| | | | | | | |
Collapse
|
27
|
Liappas A, Alexandros L, Mourouzis I, Iordanis M, Zisakis A, Athanasios Z, Economou K, Konstantinos E, Lea RW, Robert-William L, Pantos C, Constantinos P. Cell-type-dependent thyroid hormone effects on glioma tumor cell lines. J Thyroid Res 2011; 2011:856050. [PMID: 22229106 PMCID: PMC3250624 DOI: 10.4061/2011/856050] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 09/24/2011] [Accepted: 09/24/2011] [Indexed: 11/22/2022] Open
Abstract
Purpose. The present study investigated the potential effects of long-term T3 treatment on glioma tumor cell lines. Thyroid hormone action on cell growth, differentiation and survival during development may be of therapeutic relevance Methods and Results 1321N1 cell line, an astrocytoma grade II, and U87MG, a glioblastoma grade IV, were exposed for 2 and 4 days in medium deprived of T3 and in medium containing 1 nM T3. T3 promoted re-differentiation in both cell lines. However, T3 increased cell proliferation in 1321N1 (2 days) which declined thereafter (4 days) while in U87MG resulted in suppression of cell proliferation. At the molecular level, a 2.9 fold increase in the expression of TRα1 receptor was observed in U87MG versus 1321N1, P < 0.05. TRβ1 receptor was undetectable. These changes corresponded to a distinct pattern of T3-induced kinase signaling activation; T3 had no effect on ERK activation in both cell lines but significantly increased phospho-Akt levels in 1321N1. Conclusion. In conclusion, T3 can re-differentiate glioma tumor cells, whereas its effect on cell proliferation appears to be dependent on the type of tumor cell line with aggressive tumors being more sensitive to T3. TRα1 receptor may, at least in part, be implicated in this response.
Collapse
Affiliation(s)
- Alexandros Liappas
- Department of Pharmacology, University of Athens, 75 Mikras Asias Avenue,11527 Goudi, Athens, Greece
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Aguda BD, Kim Y, Kim HS, Friedman A, Fine HA. Qualitative network modeling of the Myc-p53 control system of cell proliferation and differentiation. Biophys J 2011; 101:2082-91. [PMID: 22067145 DOI: 10.1016/j.bpj.2011.09.052] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 09/16/2011] [Accepted: 09/30/2011] [Indexed: 10/15/2022] Open
Abstract
A kinetic model of a molecular control system for the cellular decision to proliferate or differentiate is formulated and analyzed for the purpose of understanding how the system can break down in cancer cells. The proposed core of this control system is composed of the transcription factors Myc and p53. The network of interactions between these factors involves negative and positive feedback loops that are linked to pathways involved in differentiation, cell cycle, and apoptosis. Understanding the dynamics of the Myc-p53 control system is aided by the postulate that there exists a cancer zone defined as a range of oncogenic Myc activities where the probability of initiating cancer is high. We propose that an essential role of p53 is to prevent the system from entering or staying too long in the cancer zone by downregulating Myc or, when Myc activity somehow becomes too high, by inducing apoptosis, cell cycle arrest, or differentiation. Kinetic modeling illustrates how deletions or aberrations in PTEN, MDM2, and ARF (genes implicated in various cancers, including glioma) affect the Myc-p53 control system. In addition, computer simulations demonstrate how this control system generates different cellular phenotypes characterized by rates of cellular differentiation and proliferation.
Collapse
Affiliation(s)
- Baltazar D Aguda
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA.
| | | | | | | | | |
Collapse
|
29
|
Robinson JP, Vanbrocklin MW, McKinney AJ, Gach HM, Holmen SL. Akt signaling is required for glioblastoma maintenance in vivo. Am J Cancer Res 2011; 1:155-167. [PMID: 21796274 PMCID: PMC3142953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 12/06/2010] [Indexed: 05/31/2023] Open
Abstract
Glioblastoma multiforme (GBM) can be induced in mice through the combined expression of activated forms of KRas and Akt in glial progenitor cells. We have previously demonstrated that KRas is required for the maintenance of these tumors in vivo as inhibition of KRas expression resulted in apoptotic tumor regression and significantly increased survival. To determine the reliance of these tumors on Akt signaling in vivo, we generated a viral vector that allows the expression of Akt to be controlled post-delivery. Survival rates were compared between those animals with continued Akt expression and animals in which expression of Akt was suppressed. Although a fifth of the tumors were refractory to treatment, inhibition of Akt significantly increased the survival of tumor-bearing mice and nearly a fourth of the mice remained in remission four months after the treatment period. These data suggest that Akt is required for glioblastoma maintenance in the context of activated Ras and that loss of Akt expression results in increased survival; therefore, the PI3K/AKT signaling pathway is a viable therapeutic target in this context.
Collapse
|